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miRNA-mediated gene expression control. Here we 
highlight the latest findings on angiogenic and antian-
giogenic miRNAs and their targets as well as potential 
implications in ocular neovascular diseases. Emphasis is 
placed on how specific vascular-enriched miRNAs regu-
late cell responses to various cues by targeting several 
factors, receptors and/or signaling molecules in order 
to maintain either vascular function or dysfunction. Fur-
ther improvement of our knowledge in not only miRNA 
specificity, turnover, and transport but also how miRNA 
sequences and functions can be altered will enhance 
the therapeutic utility of such molecules. 

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.

Key words: MircoRNA; Angiogenesis; Retinal neovascu-
larization; Vascular endothelial growth factor; Ischemia; 
Endothelial cell

Core tip: This review examines the critical regulatory 
role of microRNAs (miRNAs) in the process of normal 
and pathological angiogenesis and the prospects that 
they provide for the development of new treatments. 
miRNAs are both upstream and downstream of multiple 
growth factors in regulating endothelial proliferation, 
migration, and vascular patterning, processes critical 
for normal and abnormal formation of blood vessels. 
Emphasis in this review is placed on how specific vas-
cular-enriched miRNAs regulate cell responses to vari-
ous cues by targeting several factors, receptors and/or 
signaling molecules in order to maintain either vascular 
function or dysfunction.
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Abstract
Ischemic retinopathies are clinically well-defined chronic 
microvascular complications characterized by gradually 
progressive alterations in the retinal microvasculature 
and a compensatory aberrant neovascularization of the 
eye. The subsequent metabolic deficiencies result in 
structural and functional alterations in the retina which 
is highly susceptible to injurious stimuli such as diabe-
tes, trauma, hyperoxia, inflammation, aging and dys-
plipidemia. Emerging evidence indicates that an effec-
tive therapy may require targeting multiple components 
of the angiogenic pathway. Conceptually, mircoRNA 
(miRNA)-based therapy provides the rationale basis 
for an effective antiangiogenic treatment. miRNAs are 
an evolutionarily conserved family of short RNAs, each 
regulating the expression of multiple protein-coding 
genes. The activity of specific miRNAs is important 
for vascular cell signaling and blood vessel formation 
and function. Recently, important progress has been 
made in mapping the miRNA-gene target network and 
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INTRODUCTION
Angiogenesis is the generation of  new blood vessels 
from pre-existing ones, a process initiated by branch-
ing “decisions” of  endothelial cells (ECs) to undergo 
proliferation, guided migration, tubulogenesis, vessel 
fusion and pruning. Physiological angiogenesis is crucial 
in maintaining normal vascular growth and homeosta-
sis from embryogenesis to postnatal life, especially in 
instances of  fetal development, wound healing, trans-
plantation, post-ischemic tissue repair and the menstrual 
cycle[1-4]. However, excessive angiogenesis is a commonly 
occurring pathogenic condition in more than 30 diseas-
es, including eye diseases, cancer, rheumatoid arthritis, 
atherosclerosis, diabetic nephropathy, pathologic obesity, 
asthma, cystic fibrosis, inflammatory bowel disease, pso-
riasis, endometriosis, vasculitis and vascular malforma-
tions. In particular, the vascular beds supplying the retina 
often sustains injury as a result of  underlying diseases 
such as diabetes, trauma, hyperoxia, aging, dyslipidemia, 
or the interaction of  genetic predisposition, environ-
mental insults and age. The high metabolic and oxygen 
demands make the retina highly susceptible to these inju-
rious stimuli which lead to an arrest of  vascular develop-
ment, vaso-obliteration and/or vascular occlusion. The 
subsequent vascular pathological response observed, 
especially in intraocular vascular diseases, generates dis-
organized, leaky, and tortuous vessels that leak into the 
interface between the vitreous and the retinal tissue, at-
tracting fibroglial elements causing severe hemorrhage, 
retinal detachment, and vision loss. These are the char-
acteristic features of  neovascular and fibrovascular dis-
eases of  the eye such as retinopathy of  prematurity and 
proliferative diabetic retinopathy. The exudative or “wet” 
form of  age-related macular degeneration (AMD) which 
largely affects choroidal vessels and cause blindness in 
elderly populations is characterized by the overgrowth 
of  the choriocapillaris that invade the Bruch’s membrane 
and grow into subretinal spaces[5,6].

GROWTH FACTOR EXPRESSION AS A 
DETERMINANT FACTOR OF NORMAL 
AND PATHOLOGICAL ANGIOGENESIS IN 
THE RETINA
The formation of  an aberrant and dysfunctional vas-
culature is commonly initiated by the uncontrolled 
expression or, lack thereof  of  growth factors includ-
ing vascular endothelial growth factor (VEGF), Notch 
and Wnt signaling components, bone morphogenic 
protein, thrombospondins and insulin-like growth fac-
tors (IGFs)[7-11]. In particular, VEGF, a highly specific 
mitogen for ECs, is a major determinant of  normal and 
pathological formation of  the retinal vasculature[12]. Loss 
of  VEGF attenuates blood vessel formation in mice 
embryos leading to early embryonic lethality and causes 
defective vascularization in adults[13-16]. Conversely, high 
expression of  VEGF is common in avascular peripheral 

hypoxic regions of  the retina compared to already vascu-
larized areas[17]. Under conditions of  oxygen deprivation, 
hypoxia-inducible factor 1α (HIF-1α) is activated and 
binds to its responsive elements in the promoter region 
of  VEGF and other hypoxia-responsive genes, caus-
ing their upregulation and subsequent abnormal vessel 
growth[18]. Anti-VEGF treatments have been useful in 
reducing neovascularization of  the eye. However, not 
all patients have achieved an optimal response. Safety 
data from several studies identified ocular and systemic 
adverse events including subretinal fibrosis, endophthal-
matis, traumatic cataract, non-ocular hemorrhage, etc. 
Additionally, the use of  anti-VEGF treatments, in the 
case of  AMD in diabetic patients, interfered with myo-
cardial revascularization and, in some cases, worsened 
the pathology in the diabetic eyes as a result of  VEGF-
dependent loss of  neurotrophic and vasculotropic fac-
tors[19].

There are numerous other factors that contribute 
to neovascular growth. The erythropoietin (Epo) and 
VEGF genes, for instance, exhibit a similar expression 
pattern during both physiological and pathological vessel 
growth and inhibition of  Epo suppressed retinal neo-
vascularization both in vivo and in vitro[20,21]. Other factors 
such as basic fibroblast growth factor (bFGF), platelet 
derived growth factor (PDGF), transforming growth fac-
tor alpha, interleukin 8 (IL-8), connective tissue growth 
factor (CTGF), pigment epithelium-derived factor, 
IGF-Ⅰ, and matrix metalloproteinase (MMP)-2 were 
similarly implicated in the neovascular response and are 
considered as potential therapeutic targets. In addition, 
inflammation-mediated cyclooxygenase-2 (COX-2) can 
modulate angiogenesis via its interaction with VEGF[22] 
and important pro-angiogenic and neovascular functions 
have been associated with the activation of  the renin-
angiotensin system, ephrins, tyrosine kinase receptors 
and ligands (e.g., tie/angiopoietin receptors). Together, 
all these factors form a well-coordinated and functional 
network of  molecules affecting the process of  normal 
and pathological angiogenesis. Emerging evidence indi-
cates that antiangiogenic therapy may require therapeutic 
approaches that target multiple components of  the an-
giogenic pathway[23-26]. Conceptually, microRNA-based 
approaches may potentially provide the rationale basis for 
such approaches.

MICRORNA BIOGENESIS AND FUNCTION 
IN THE MODULATION OF GENE 
EXPRESSION 
Key events in gene regulation depend on specific small 
non-coding RNA-guided posttranscriptional regulators, 
commonly referred to as miRNAs that target a “mixture” 
of  diverse growth and differentiation factor mRNAs 
encoding networks[27]. MicroRNAs are a relatively abun-
dant class of  gene expression regulators that function 
as “micromanagers” of  gene expression[28]. These are 
short non-coding RNAs (18-25 nucleotides) which work 

�WJBC|www.wjgnet.com February 26, 2014|Volume 5|Issue 1|



post-transcriptionally to negatively regulate gene expres-
sion through translational inhibition or degeneration of  
mRNAs. They might act as on-off  switches to eliminate 
mRNAs that should not be expressed in a particular cell 
type or at a particular moment. MicroRNAs can also 
act to fine tune mRNA abundance and adjust the levels 
of  their mRNA targets within a physiological range in 
response to environmental cues. A single miRNA has 
the capacity to target multiple target mRNAs, which can 
themselves be targeted by numerous other miRNAs. 
To date, 1186 mouse miRNA and 1872 human miRNA 
sequences have been noted on the miRBase database 
and may control at least 30% of  all the protein-coding 
genes[29]. 

Since the discovery of  miRNAs, their biogenesis has 
been thoroughly examined and it is now known that both 
miRNAs and small interfering (si) RNAs share the same 
cellular machinery[4,30]. Most miRNA genes are transcribed 
by RNA polymerase Ⅱ, which is usually responsible for 
the transcription of  protein coding genes, to yield several 
kilobase-long primary miRNA (pri-miRNA) transcripts 
(Figure 1). Pri-miRNAs have characteristic loop stem (or 
hairpin) morphology and contain the mature miRNA 
sequence in the stem portion near the loop. The micro-
processor, containing the endonuclease Drosha, cleaves 
the pri-miRNA into shorter pre-miRNAs that are trans-
ported to the cytoplasm by exportin-5. Once in the cy-

toplasmic compartment, pre-miRNAs undergo the final 
steps towards maturation. The first step involves “dicing” 
of  the loop portion of  the molecule by another endo-
nuclease, Dicer and the transactivation response RNA 
binding protein (TRBP). A miRNA-miRNA duplex that 
is unwound is released together with the single-stranded 
mature miRNA. The latter is then passed to Argonaute 
to from a functionally mature, approximately 22 nucleo-
tide miRNA. The 2-8-bp “seed” region in the 5’ end of  
miRNAs binds to target 3’UTR of  mRNA sequences and 
inhibits translation if  base-pairing is imperfect or initiates 
mRNA cleavage if  base-pairing is perfect.

REGULATION OF ANGIOGENESIS BY 
MICRORNAS
The first studies of  the functional significance of  the 
miRNA pathway in angiogenesis were performed using 
conditional deletion of  Dicer alleles, as complete loss 
of  Dicer resulted in a significant reduction of  the ma-
ture miRNA profile and early embryonic lethality[31,32]. 
Yang et al[32] have shown that mice with Dicer gene dele-
tion lack adequate blood vessel formation in embryos 
and yolk sacs and die between 12.5 and 14.5 d post-
gestation, thus implicating Dicer-dependent miRNA 
genesis in the regulation of  blood vessel formation. De-
fects in these mice were due to dysregulation of  VEGF 
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Figure 1  Schematic representation of microRNA (miRNA) biogenesis. miRNA genes are transcribed into large pre-miRNA (capital R) that are cleaved by a protein 
complex containing the endonuclease Drosha into shorter pre-miRNAs. The latter are then transported to the cytoplasm by exportin-5. A complex containing the endonucle-
ase, Dicer, then cleaves the loop portion of the pre-miRNA (capital R) to form a short duplex molecule that is unwound, and the single-stranded mature mirNA is then passed 
to Argonaute to from a functional mature, approximately 22 nucleotide, miRNA that inhibit translation after base-pairing with the 3’ UTR of the miRNA (capital R) target.
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and its receptors, KDR and FLT-1, along with Tie-1, an 
angiopoietin-2 receptor[32]. Similarly, silencing of  Dicer 
or Drosha in (ECs) using siRNA significantly inhibited 
capillary sprouting and altered expression patterns of  
Tie-2, VEGF receptor 2 (VEGFR2/KDR), Tie-1, endo-
thelial nitric oxide synthase (eNOS) and IL-8 in vitro[33,34]. 
Another study by Otsuka et al[35] showed that in female 
Dicer hypomorphic mice, infertility ensued from lack of  
angiogenesis in the ovaries. Further analysis revealed that 
impaired angiogenesis resulted from the absence of  two 
pro-angiogenic miRNAs, miR17-5p and let-7b, which 
target anti-angiogenic factors[35]. Additionally, nude mice 
subcutaneously injected with siRNA-transfected ECs 
showed reduced angiogenic sprouting of  transplanted 
cells[33]. In two EC-specific Dicer knock-out mouse mod-
els generated by Suarez et al[34], postnatal angiogenesis 
significantly decreased in response to multiple stimuli. 
In this study, transfection of  cells with miR-18a, miR-
17-5p, and miR-20a (collectively forming the miR-17-92 
cluster) restored normal angiogenesis in Dicer knockout 
mice[34]. Taken together, these studies established a role 
of  Dicer-dependent miRNA biogenesis in the control 
of  angiogenesis in vitro and in vivo.

MICRORNA SIGNATURE IN NORMAL 
AND PATHOLOGICAL ANGIOGENESIS
Recent studies have examined miRNA expression pro-
files and patterns during retinal angiogenesis[8,36-38]. More 
than 250 miRNAs have been enumerated in the retina 
and new information on the regulation and mode of  
action of  those miRNAs is progressively emerging[38]. 
Specific functions have been attributed to individual an-
giogenic miRNAs, although the challenge still remains in 
validating their protein targets[23,36,39-46]. Similarly, differen-
tial expression of  miRNAs during retinal neovasculariza-
tion has been studied in the mouse model of  oxygen-in-
duced retinopathy (OIR). In this model, seven miRNAs 
were upregulated, including miR-451, -424, -146, -214, 
-199a, -181 and -106a, when compared to control reti-
nas, while miR-31, -150 and -184 were downregulated. 
However, this study provided only an exhaustive list of  
potentially key angiogenic miRNAs whose expression 
patterns, localization, and actual targets remain unclear. 

Greater insights on angiogenic and antiangiogenic 
miRNA expression and function have been obtained 
from in vitro studies and other in vivo models of  pathologi-
cal angiogenesis. Poliseno et al[47] have performed the first 
large-scale analysis of  miRNA expression in human um-
bilical vein endothelial cells using miRNA arrays. Twenty 
seven highly expressed miRNAs were identified, 15 of  
which were predicted to regulate the expression of  re-
ceptors for angiogenic factors (e.g., Flt-1, Nrp-2, FGF-R, 
c-Met, c-Kit). Additional studies from other groups have 
identified a total of  200 miRNAs that are expressed in 
ECs[4,24]. Overall 28 endothelial-specific miRNAs were 
highly expressed in 5 out of  8 of  the profiling studies in-
cluding miR-221/222, miR-21, the let-7 family, miR-126, 

miR-17-92 cluster, and the miR 23-27-24 cluster[4,24,25]. 
Angiogenic factors and receptors are putative targets of  
those miRNAs[1,7,48,49]. However, it should be noted that 
both abundantly expressed miRNAs as well as the rarely 
expressed ones play important regulatory roles and the 
exact in vivo relevance of  all miRNAs expressed in ECs 
remains to be determined. Since angiogenesis involves 
complex and intertwined pathways, we have classified the 
currently known endothelial-specific miRNAs based on 
the context/conditions of  their expression (Figure 2). 

Hypoxia-sensitive miRNAs
Microarray-based expression profiling revealed that 
specific miRNAs are induced under hypoxic condi-
tions and target angiogenic factors produced by ECs[50]. 
In particular, miR-15b, -16, -20a and -20b were shown 
to be upregulated under hypoxic conditions and target 
VEGF[50]. Additionally, miR-15b and miR-16 are predict-
ed to be putative regulatory miRNAs of  uPAR, COX2, 
and c-MET, which themselves are induced in response 
to hypoxic conditions[50]. Upregulation of  these miR-
NAs is p53- and HIF-1α-dependent. Other microarray-
based expression profiles have also revealed a set of  
hypoxia-induced miRNAs which are also over-expressed 
in tumors[51]. In particular, miR-210 is hypoxia-induced 
in all cell types tested[41,52]. In ECs subjected to hypoxia, 
miR-210 regulates the tyrosine kinase receptor eph-
rin-A3 that contributes to vascular remodeling. miR-210 
promotes the formation of  capillary-like structures in 
cultured ECs but, under hypoxic conditions, it decreases 
ECs tube formation and migration[52,53]. miR-100 is an-
other hypoxia-sensitive miRNA that was shown to be 
significantly down-regulated after hind-limb ischemia[54]. 
Under these conditions, miR-100 repressed the expression 
of  an angiogenic serine/threonine protein kinase targeted 
by rapamycin[55]. Furthermore, Shen et al[39] reported a dra-
matic increase in the expression of  miR-106a, -146, -181, 
-199a, -214, -424 and -451 in a model of  retinal ischemia 
suggesting their potential roles in the pathogenesis of  
neovascular diseases of  the eye. Similarly, the hypoxia-
induced miR-424 and miR-200 target the protein complex 
that stabilizes HIF-α and promote angiogenesis[56,57].

Growth factor-sensitive miRNAs
The effects of  several angiogenic factors are mediated by 
miRNAs such as miR-155, -191, -21, -18a, -130a, -17-5p, 
-20a, -296, -101, -125b and -132[58]. In particular, serum, 
VEGF, and bFGF increased the expression of  miR-
130a, which enhances angiogenesis by downregulating 
the expression of  anti-angiogenic homeobox proteins 
such as growth arrest-specific homeobox and Homeo-
box protein Hox-A5[52,59]. In the presence of  VEGF or 
epidermal growth factor (EGF), the levels of  miR-296 
were significantly up-regulated in primary human brain 
microvascular ECs[60]. miR-296 was also found to be up-
regulated in tumors and targets the hepatocyte growth 
factor-regulated tyrosine kinase substrate that inhibits 
degradation of  key angiogenic growth factor recep-
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tors such as VEGF receptor 2 and PDGF receptor β[60]. 
Conversely, miR-101 was found to be down-regulated 
by VEGF which then allows the expression of  histone-
methyltransferase enhancer of  zest homolog 2, increasing 
methylation of  histone H3 and enhancing a pro-angio-
genic response[61]. miR-125b was induced transiently by 
VEGF and negatively regulates vascular endothelial (VE)-
cadherin to suppress tube formation in vitro and tumor 
growth in vivo[62]. A prolonged over-expression of  miR-
125b in vivo resulted in blood vessel regression. Trans-
forming growth factor β (TGF-β) which is best known 
for its profibrotic activities, is a potent inducer of  VEGF 
gene expression in retinal pigment epithelial cells[63]. How-
ever, numerous miRNAs have also been found to regulate 
and participate in TGF-β-induced VEGF expression[64]. 
Such effect is mediated by miR-29a which targets the 
phosphatase and tensin homolog (PTEN) gene, leading to 
the activation of  the protein kinase B pathway, increased 
VEGF expression and angiogenesis[64]. Similarly, miR-132, 
which is undetectable in normal endothelium, was shown 
to be induced by VEGF and FGF in ECs and trigger neo-
vascularization in the retina[65,66]. 

Inflammation and cytokines
Inflammation typically has beneficial effects on an acute 
basis, but it produces undesirable effects if  persist-
ing chronically. Angiogenesis sustains inflammation by 
providing oxygen and nutrients for inflammatory cells 
which, in turn, stimulates pathological angiogenesis[67]. 
The increased expression of  many inflammatory pro-
teins such as IL-1, IL-3 and tumour necrosis factor-alpha 
(TNF-α), is regulated at the level of  gene transcription 

through the activation of  proinflammatory transcription 
factors, including nuclear factor-kappa-B (NF-κB). In 
retinal ECs of  diabetic rats, the expression of  miR-146, 
-155, -132 and -21 up-regulates NF-κB gene expression 
and activity[67]. In contrast, miR-146 negatively regulates 
IL-1 receptor-associated kinase 1 and TNF receptor-
associated factor 6 which are themselves induced follow-
ing NF-κB activation[52,67]. Thus, targeting miR-146 may 
have an anti-inflammatory potential. 

Meanwhile, T cell derived cytokine IL-3, a pro-inflam-
matory and a pro-angiogenic cytokine, was reported to 
down-regulate the expression of  miR-296, miR-126, and 
-miR-221/222 in ECs[68]. The miR-222 exhibited anti-
angiogenic effects by negatively regulating STAT5A in a 
mouse model of  retinal neovascularization[68]. miR-126 
has been portrayed as an anti-inflammatory molecule 
because it suppresses TNF-α mediated vascular cell ad-
hesion molecule 1 (VCAM-1) expression and leukocyte 
interactions with ECs[26,31,52]. 

Reactive oxygen species as inducers of EC senescence
There is considerable evidence that increased production 
of  reactive oxygen species (ROS) in the retina affects 
retinal vessel formation, although the mechanisms by 
which this occurs are not fully understood[69]. ROS such 
as superoxide anions such as H2O2 inhibit EC growth 
and increased cell death which are commonly associ-
ated with vaso-obliteration preceding ischemia[70]. Over-
expression of  miR-23a from the miR-23-27-24 cluster 
inhibits H2O2-induced apoptosis in retinal pigment epi-
thelial cells from AMD patients via the repression of  Fas, 
an activator of  the apoptotic pathway[71]. Similarly, the 
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Figure 2  Overview of major angiogenic and antiangiogenic miRNAs and their targets in promoting or suppressing retinal neovascularization. VEGF: Vas-
cular endothelial growth factor; IGFs: Insulin-like growth factors; HIF-1α: Hypoxia-inducible factor 1α; bFGF: Basic fibroblast growth factor; PDGF: Platelet derived 
growth factor; IL-8: Interleukin 8; MMP: Matrix metalloproteinase; ICAM-1: Intercellular adhesion molecule-1; TNF-α: Tumour necrosis factor-alpha; MAPK: Mitogen-
activated protein kinase.
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miR-200c is up-regulated in ECs by oxidative stress and 
affects EC proliferation and death by inhibiting ZEB1[72]. 

The miRNA profiling of  aging human primacy ECs 
revealed that miR-17,-21,-216,-217,-31b, and-181a/b are 
highly expressed[73]. In particular, miR-217 is progres-
sively expressed in response to EC stimulation by ROS 
and targets Sirt1 (silent information regulator 1) that 
regulates angiogenic gene expression via deacetylation 
of  histones[31,73]. Inhibition of  miR-217 in ECs reduced 
senescence and enhanced angiogenesis[73]. Likewise, miR-
34a targets Sirt1 and impairs angiogenesis which leads to 
the onset of  senescence[31,74].

OTHER MIRNAS WITH POTENTIALLY 
IMPORTANT ANGIOGENIC FUNCTIONS 
IN THE RETINA 
Other miRNAs with potentially important angiogenic 
functions in the retina were shown in Figure 2.

miR-221/222
miR-221 and miR-222 are two paralogue miRNAs 
located in close proximity to one another on Xp11.3 
chromosome[26,47]. Over-expression of  miR-221/222 
reduced EC growth in vitro by targeting the c-Kit re-
ceptor, a tyrosine kinase receptor for stem cell factor 
which regulates EC migration, and survival as well as 
tube formation[47,52]. EC transfection with miR-221/222 
inhibits tube formation, migration, and wound heal-
ing[47,52]. Conversely, miR-221/222 positively regulates 
proliferation and migration of  cultured vascular smooth 
muscle cells, suggesting a cell type-specific function[68,75]. 
The proangiogenic effects of  miR-221/222 in smooth 
muscle cells are p27 and p57-dependent. A recent study 
in zebra fish showed that miR-221 deficiency resulted 
in drastic developmental vascular defects which un-
derscore an important function of  miR-221/222 in 
angiogenesis[11]. In the latter study, miR-221 acts autono-
mously on the VEGF-C/Flt4 signaling pathway, altering 
endothelial tip and stalk cell phenotypes[11]. miR-221 
promotes tip cell migration and proliferation by nega-
tively regulating cyclin dependent kinase inhibitor 1b 
and phosphoinositide-3-kinase regulatory subunit 1[11]. 
The discrepancy between the in vitro and in vivo activities 
of  miR-221/222 may be due to a differential effect on 
the mature and non-mature circulatory system. Further 
studies are needed to ascertain the regulation and func-
tion of  miR-221/222 in developmental and pathological 
angiogenesis in the retina. 

miR-17-92 cluster
The miR-17-92 cluster is a polycistronic miRNA gene 
located in intron 3 of  chromosome 13 in humans, and 
contains six mature miRNAs, miR-17, -18a, -19a, -19b-1, 
-20a and -92a[3,4,26]. This cluster is highly expressed in 
ECs and tumor cells and is strongly up-regulated by 
ischemia[28,31,52,76]. Ectopic expression of  the miR-17-92 
cluster partially rescued the angiogenic phenotype of  

Dicer-deficient ECs[58]. Similarly, restoration of  miR-17 
in combination with let-7b in Dicer knockout mice also 
partially normalized corpus luteum angiogenesis by tar-
geting the tissue inhibitor metalloproteinase-1, an anti-
angiogenic factor[35]. The pro-angiogenic function of  this 
cluster is due to the inhibition of  the anti-angiogenic 
molecules thrombospondin-1 and CTGF by miR-18 and 
miR-19, respectively[58]. However, the function of  this 
miRNA cluster in retinal angiogenesis remains to be elu-
cidated. 

miR-126
miR-126 is the best characterized EC-specific miRNA 
and is known to be highly conserved among species[1,26]. 
It is encoded by intron 7 of  the EGF-like domain 7. 
miR-126 enhanced VEGF signaling by directly targeting 
the 3’UTR of  Sprouty-related EVH1 domain contain-
ing protein-1 and phosphoinositol-3-kinase regulatory 
subunit 2[1,7,26,31,49]. Thus, miR-126 promotes angiogen-
esis by targeting negative regulators of  the angiogenic 
pathway. miR-126 affects cell migration, reorganization 
of  the cytoskeleton, capillary network stability, and cell 
survival in vitro[7]. It also altered developmental angiogen-
esis and vascular integrity. Fifty percent of  miR-126 null 
mice died as a result of  severe systemic edema, ruptured 
blood vessels and multifocal hemorrhages[49]. Vascular-
ization of  the retina was shown to be severely impaired 
in mice that survived the miR-126 deletion[49]. An intra-
vitreal injection of  miR-126 in the retina reduced the 
levels of  VEGF, IGF-2, and HIF-1α[77]. Additionally, 
miR-126 exhibited tumor suppressor functions in lung 
cancer cells by negatively regulating VEGF both in vivo 
and in vitro[26,78]. Hence, strategies to modulate miR-126 
levels may hold a great therapeutic value against retinal 
neovascular diseases. 

miR-200b
The miR-200 family is up-regulated by stimuli such as 
TGF-β1 and PDGF and suppresses growth of  human 
microvascular ECs[57]. Hypoxia inhibits miR-200b ex-
pression, prompting an elevated Ets-1 gene expression 
and its downstream target genes such as MMP1 and 
VEGFR2[57]. Intravitreal injection of  miR-200b mim-
icked reduced elevated levels of  VEGF and prevented 
angiogenesis in a model of  diabetic retinopathy[79]. Thus, 
the regulation of  miR-200b in retinal neovascular diseas-
es may prevent the aberrant expression of  critical factors 
associated with pathological angiogenesis. 

miR-214
miR-214 is located on a non-coding intronic Dynamin-3 
gene sequence and its expression is controlled by the 
transcription factor Twist-1. HIF-1α mediates Twist-1 
transcription, which then allows miR-214 expression[80]. 
Concordantly, miR-214 was shown to be up-regulated 
in ischemic conditions when HIF-1α was stabilized[80]. 
A recent study has shown that miR-214 directly targets 
Quaking (QKI) and regulates the expression and secre-
tion of  angiogenic growth factors such as VEGF, bFGF 
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and PDGF[81]. Quaking plays an essential role in vascular 
development[82]. In vivo silencing of  miR-214 enhanced 
the formation of  blood vessels on Matrigel plugs and 
increased the secretion of  pro-angiogenic growth fac-
tors[81]. Additionally, miR-214 is substantially increased 
in the mouse model of  OIR[39]. Inhibition of  miR-214 
enhanced normalization of  the vascularization of  the 
retina through the expression of  QKI, suggesting that 
miR-214 may function directly to either block pathologi-
cal neovascularization or prevent hyperoxia-induced va-
soobliteration[81]. 

miR-329
miR-329 targets the important pro-angiogenic gene, 
CD146, and inhibits angiogenesis in vitro and in vivo[83]. 
CD146 is an adhesion molecule and an endothelial 
biomarker which actively participates in the angiogenic 
process[83,84]. CD146 functions as a co-receptor for 
VEGFR2 and activates the p38/IκB kinase/NF-κB 
signaling pathway leading to increased EC migration 
and tube formation. A study by Wang et al[83] has shown 
that exposure of  ECs to VEGF represses endogenous 
miR-329 expression, resulting in the simultaneous up-
regulation of  CD146 and treatment with miR-329 sig-
nificantly reduced retinal neovascularization. miR-329 is 
thought to inhibit the expression of  many downstream 
pro-angiogenic genes including intercellular adhesion 
molecule-1 (ICAM-1), IL-8, and MMP-2, among others. 
Thus, miR-329 serves as a potential therapeutic target in 
pathological retinal angiogenesis. 

miR-21
miR-21 is located on chromosome 17q23.2 within the 
protein-coding region of  the transmembrane protein 
49[85]. miR-21 promotes angiogenesis by inhibiting phos-
phate and tensin homolog deleted on chromosome 10 
(PTEN), a potent negative regulator of  the phosphatidyl 
inositol-3 kinase/AKT signaling pathway. By blocking 
Akt signaling, PTEN decreases both eNOS activity and 
VCAM-1 expression[31,86,87]. In tumor cells, overexpres-
sion of  miR-21 significantly increased the levels of  
HIF-α and VEGF. In primary bovine retinal microvas-
cular ECs, inhibition of  miR-21 drastically reduced pro-
liferation, migration, and tube-forming capacity reinforc-
ing the important pro-angiogenic role of  miR-21 in the 
retinal microvasculature[88]. 

miR-23-27-24 cluster
The miR-23-27-24 cluster is highly enriched in ECs and 
is well conserved between rodent and humans[40]. There 
are two paralogs of  the clusters: an intergenic miR-23a-
27a-24-2 cluster and an intronic miR-23b-27b-24-1 clus-
ter on vertebrate chromosomes 8 and 13 respectively[40]. 
miR-27a/b and miR-23a/b mediate proper capillary 
formation in response to VEGF in vitro[40]. miR-27a/b 
and miR-23a/b repress anti-angiogenic gene expression 
such as SPROUTY2, SEMA6A and SEMA6D[40]. These 
anti-angiogenic genes inhibit the mitogen-activated pro-

tein kinase pathway and VEGF pathway[40]. Additionally, 
miR-23a/b and miR-27a/b also promote choroidal neo-
vascularization (CNV)[40]. Silencing of  miR-23a/b and 
miR-27a/b suppressed CNV in mice[40]. Thus, targeting 
the miR-23-27-24 cluster may have beneficial therapeutic 
applications in the treatment of  AMD. 

miR-132
miR-132 is highly up-regulated in human embryonic 
stem cells and tumors whereas it was undetectable in a 
normal endothelium[26,65]. However, stimulation of  ECs 
by growth factors increased the levels of  miR-132 which 
then activates quiescent endothelium by suppressing 
p120RasGAP[26,65,66]. Suppression of  p120RasGAP led 
to the activation of  Ras which then increases VEGF-
mediated phosphorylation of  mitogen-activated protein 
kinase extracellular related protein kinase kinase-1[65]. 
Ectopic expression of  miR-132 was sufficient to induce 
EC proliferation in vitro and its inhibition significantly 
reduced growth factor-mediated angiogenesis in vivo and 
in vitro[65]. Additionally, inhibition of  miR-132 also greatly 
decreased retinal neovascularization in mice[65]. Thus, 
early detection and modulation of  this miRNA may in-
hibit the onset of  neovascularization. 

CONCLUSION
Treatment and management of  neovascular diseases rely 
mainly on pharmacotherapy and/or surgical procedures. 
However, these treatments are seldom efficacious and 
they often are plagued by unwanted side effects and/or 
insurmountable complications. The use of  miRNAs that 
specifically target a set of  angiogenic genes appears to be 
a viable alternative approach. Currently, there are numer-
ous ongoing clinical trials designed to test the efficacy 
and effectiveness of  such approach in the treatment of  
various disorders (e.g., atherosclerosis, cancer, inflam-
matory diseases) and the preliminary results are promis-
ing[89-91]. Neovascular diseases including those of  the eye 
will likely test/use such approach in a near future as our 
understanding of  miRNA regulation and the molecular 
mechanisms underpinning their functions increases ev-
ery day. 

MicroRNAs are also increasingly considered as poten-
tial diagnostic markers of  disease stages. Indeed, miRNAs 
have been discovered in a wide variety of  extracellular 
body fluids such as saliva, serum, plasma, milk, and urine 
as nuclease resistant entities[24,31,92]. These extracellular 
circulating miRNAs enable cell-to-cell communication 
and also provide insight into the physiological states or 
progression of  pathological diseases within the secreting 
cells[92-94]. miRNAs are thought to be secreted from cells 
in three possible ways: (1) via passive leakage from cells 
resulting from injury, inflammation, apoptosis or necrosis; 
(2) via an active secretion method in membrane-bound 
vesicles such as exosomes, shedding vesicles and apoptotic 
bodies; and (3) via an active secretion method of  protein-
miRNA complexes[92]. Exosomes are 30 nm-100 nm ves-
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icles, arising from multivesicular bodies and their release 
is mediated by the enzyme sphingomyelinase-2[31,92-95]. 
Shedding vesicles, arising from the plasma membrane, is 
facilitated via a ligand-receptor method. Further insight 
into the exosomal miRNA formation and circulation may 
not only validate their prognostic potential in the slowly 
developing neovascular diseases of  the eye but, will also 
help design optimal delivery systems of  miRNAs in vivo.
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way, have been discovered recently. These advances 
may be in part attributed to high-throughput systems 
biology techniques including genomic, proteomic, miR-
NA and siRNA screens, as well as through various con-
firmatory methods using quantitative polymerase chain 
reaction, microscopy, and animal models. Collectively, 
these studies have provided insights into novel drug 
targets that could boost host innate immunity or could 
potentially serve as broad-spectrum anti-virals against 
RNA respiratory viruses.
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INTRODUCTION TO SYSTEMS BIOLOGY 
AND INTERFERONS
Virus-host studies of  a wide range of  viruses have identi-
fied many host changes that occur upon infection, includ-
ing the induction of  a variety of  anti-viral pathways. For 
example, these include autophagy, apoptosis, endoplas-
mic-reticular stress, nuclear-factor kappa B (NF-kB) and 
proteasomal degradation pathways as well as the topic of  
this review, interferon signalling. Some of  these studies 
have utilized global genomic, transcriptomics and pro-
teomic technologies and have led to the characterizations 
of  “infectomes”, “interactomes” and “interferomes”.  
One of  the great advantages to systems biology tools is 
that they can provide a relatively unbiased “bottom-up” 
discovery approach such as with global transcriptome 
and siRNA screens. These have proven useful in the 
characterization of  innate immune responses. Biological 
tools for detection of  specific subsets of  the cell are also 
continually being developed, including probes for specific 
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Abstract
Interferon production is an important defence against 
viral replication and its activation is an attractive thera-
peutic target. However, it has long been known that 
viruses perpetually evolve a multitude of strategies to 
evade these host immune responses. In recent years 
there has been an explosion of information on virus-
induced alterations of the host immune response that 
have resulted from data-rich omics technologies. Un-
ravelling how these systems interact and determining 
the overall outcome of the host response to viral infec-
tion will play an important role in future treatment and 
vaccine development. In this review we focus primarily 
on the interferon pathway and its regulation as well as 
mechanisms by which respiratory RNA viruses interfere 
with its signalling capacity.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.

Key words: Respiratory virus; Interferon; Systems biol-
ogy; Proteomics; Genomics; Innate immunity

Core tip: Many novel regulators of innate immune sig-
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classes of  enzymes, methods to detect different protein 
post-translational and epigenetic modifications, and sub-
cellular fractionation techniques. As will be discussed be-
low, many studies have begun to characterize gene tran-
scription programs in response to viruses, have identified 
novel anti-viral proteins and regulators of  interferon pro-
duction and have experimented with novel approaches to 
treatment of  viral infection.

The study of  interferons (IFN) is one of  the oldest 
known family of  proteins with anti-viral properties. They 
are produced and released in response to pathogens, 
such as viruses and bacteria, and function in establish-
ing an anti-viral state in host cells and activating immune 
cells (for review see[1]). Type Ⅰ interferons in humans 
include IFN-α, IFN-β, IFN-e, IFN-κ and IFN-ω and 
are classified as such by their ability to bind the IFNAR1-
IFNAR2 interferon receptor complex[2]. IFN-γ is a type 
Ⅱ interferon and signals through the IFNGR1-IFNGR2 
receptor complex. A third class of  interferons, type Ⅲ, 
has been proposed and would likely contain IFN-λ1, -λ2 
and -λ3, which are also known as interleukin-29 (IL-29), 
IL-28A and IL-28B, respectively, and bind IFNLR1 (also 
known as IL-28 receptor-α, IL-28Rα) and IL-10Rβ[3]. Ef-
fects of  interferons are numerous and depend on down-
stream signaling pathways. The canonical activation of  
Janus-Kinase-Signal Transduction Activator (JAK-STAT) 
signalling[4], for example, induces a variety of  interferon-
stimulated genes (ISGs) of  which some have known anti-
viral activities. Activation of  mitogen-activated protein 
kinases[5] has also been shown to have anti-viral as well 
as anti-proliferative effects. In contrast, phosphatidylino-
sitol 3-kinase activation[6] induces cell proliferation and 
increased protein synthesis (for review see[7]). Autophagy 
has also been described as an inducer of  interferon[8,9] as 
well as being induced by interferons[10,11]. The interactions 
and cross-regulation of  these pathways are complex and 
are not well defined but overall, the ability of  the host to 

mount an effective interferon response typically plays a 
significant protective role against viral pathogenicity. 

Regulation of  the interferon signalling pathway is in-
fluenced by multiple cellular regulatory systems including 
phosphorylation, ubiquitination and miRNA silencing. In 
addition, viral components such as viral proteins and viral 
RNA can also significantly impact interferon production 
by the infected host cell. Systems biology approaches 
have substantially contributed to understanding the inter-
actions of  these various regulatory networks, the overall 
outcome of  their actions, and their impact on respiratory 
virus replication. For example, it is becoming increasingly 
popular to combine various omics technologies such as 
transcriptome and proteomic screens with functional 
validation using techniques such as siRNA screens, pPCR 
and microscopy imaging.

REGULATION OF INTERFERON 
INDUCTION
Activation of viral pattern recognition receptors 
Innate immune responses are initially triggered in re-
sponse to viral infection through the recognition of  
highly conserved pathogen association molecular patterns 
(PAMPs). In terms of  RNA viruses this typically involves 
activation of  RIG-like (RLR), Toll-like (TLR) and Nod-
like receptors (NLR) in the cytoplasm and at membra-
nous surfaces such as the plasma membrane, endosomes 
and endoplasmic reticulum. A major outcome of  RLR 
and TLR activation is the production of  interferons. This 
induction, and its regulation, will be the focus of  this re-
view (summarized in Figure 1).

Coordination of antiviral responses at the mitochondrial 
outer membrane
An important event following RLR activation consists 
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Figure 1  Interferon activation. NLRX1 : 
Nucleotide-binding oligomerization domain, 
leucine rich repeat containing X1; TRIM25: 
Tripartite motif-containing 25; MITA/STING: 
Mediator of IRF3 activation/stimulator of 
interferon genes protein; TRIM11: Tripartite 
motif containing 11; RNF11: Ring finger 
protein 11; TRIP: Thyroid receptor-
interacting protein; DUBA: Deubiquitinat-
ing enzyme A; RLRs: RIG-like recep-
tors; TLRs: Toll-like receptors; IFIT3: 
Interferon-inducible transmembrane 
protein 3; MAVS: Mitochondrial anti-
viral signaling protein; NLRC5: Nod-like 
receptor C5; PCBP2: Poly(rC)-binding 
protein 2; PSMA7: Proteasome subunit 
alpha type-7; TBK1: Tank binding kinase; 
IKKe: Inhibitor of nuclear factor kappa-B 
kinase; IRFs: Interferon regulatory fac-
tors; WNT/CTNNB1: Wnt/beta-catenin.



of  the formation of  mitochondrion-centric anti-viral 
signalling complexes that regulate interferon and NF-kB 
signalling cascades and subsequent immune responses. 
The mitochondrial anti-viral signaling protein (MAVS)/
virus-induced signaling adaptor/interferon-beta pro-
moter stimulator protein 1/Cardif  protein is central to 
this process. Located at the outer mitochondrial mem-
brane, it acts as a scaffolding protein that interacts with 
a variety of  different host proteins that regulate down-
stream signalling pathways. There are many activators 
and facilitators of  MAVS-mediated signalling and some 
of  the most recently discovered ones include retinoic-
acid inducible gene Ⅰ (RIG-I), nucleotide-binding oligo-
merization domain, leucine rich repeat containing X1 
(NLRX1), MITA/Stimulator of  interferon genes pro-
tein[12], Tom70[13], interferon-induced protein with tetratri-
copeptide repeats 3 (IFIT3)[14], C1qA[15], tumor necrosis 
factor receptor associated factor (TRAF) proteins[16] and 
UXT-V1[17]. The formation of  MAVS-mediated com-
plexes can subsequently lead to the recruitment of  tank 
binding kinase (TBK1) and inhibitor of  nuclear factor 
kappa-B kinase (IKKe). However, this process is also 
carefully controlled through recruitment of  negative regu-
lators such as Ezh2[18], Mfn2[19], SEC14L1[20] and Wnt/beta-
catenin (WNT/CTNNB1) signalling[21]. MAVS has also been 
described to associate with the endoplasmic reticulum[12, 22-24], 
peroxisomes[22], and autophagosomes[25], although the 
outcome of  these events are beyond the scope of  this re-
view. For further details we direct readers to a review by 
Belgnaoui[26]. Overall, MAVS-interacting partners influ-
ence the extent of  activation or inhibition of  downstream 
interferon and NF-kB anti-viral pathways.

Activation of interferon regulatory factors
RLR and TLR activation culminate in the phosphoryla-
tion, activation and nuclear translocation of  various IRF 
transcription factors. Two well-known factors are IRF3 
and IRF7, which can be activated by kinases TBK1, 
IKKi, TAK1, and interleukin-1 receptor-associated 
kinase. This activation is carefully controlled through 
ubiquitin-mediated degradation of  TBK1, which can 
be negatively regulated by tripartite motif  containing 
11 (TRIM11)[27], ring finger protein 11 (RNF11)[28] and 
thyroid receptor-interacting protein[29]. Interaction with 
other molecules such as TRAF3, DDX3 [(DEAD (Asp-
Glu-Ala-Asp) box polypeptide 3][30] and nef-associated 
protein 1[31] can also modulate downstream signalling. In-
terestingly, a recent study using triple IRF3/IRF5/IRF7 
knockout mice[32] demonstrated a formerly unappreciated 
role of  IRF5 in interferon induction in myeloid dendritic 
cells. Genome-wide IRF1 binding sites have also been 
characterized in primary monocytes[33]. Overall, the IRF 
family members are essential mediators of  interferon sig-
nalling in response to RNA viral infection.

Other regulators of interferon production
Numerous other proteins have been described in regulat-
ing interferon production including activators Gab1[34] 

and suppressors protein tyrosine phosphatase 1[35], fork-
head box protein O3[36], and toll/interleukin-1 receptor 
domain containing adaptor molecule 2 (TRIF) degrada-
tion[37]. Several E3 ligases promote interferon signalling 
such as Pellino1[38], TRIM25[39], TRIM32[40] and Riplet[41]. 
Other E3 ligases have been characterized with a nega-
tive regulatory role in interferon production, such as 
Smurf1[42], RNF125[43], disintegrin and metalloproteinase 
domain-containing protein 15[44], TRIM38[37], TRIM11[27] 
and TRIM21[45]. Finally, several deubiquitinases appear 
to negatively regulate interferon responses, for example 
OTUB1[46] and UCHL1[47]. In addition, miRNAs are 
emerging as important regulators of  interferon-mediated 
anti-viral responses such as miR-155[48], miR-21[49,50], 
miR-146[51] and miR-466l[52].

JAK-STAT signalling
Secreted type I interferons bind to interferon receptors 
at the cell-membrane and induce the janus activated 
kinase-signal transducer and activator (JAK-STAT) 
pathway. The bound receptor activates self-catalyzed 
kinase activity and causes phosphorylation, dimerization 
and nuclear translocation of  STAT proteins. Ubiquitina-
tion has also been demonstrated to negatively regulate 
this pathway, for example, by ubiquitinating JAK1[53] and 
STAT1[54,55] as well as through binding of  suppressor 
of  cytokine signaling and protein inhibitor of  activated 
STAT proteins, which recruit E3 ligases[56]. In addition, 
mir-19a has been identified as a JAK-STAT regulator[57].

ISG-induced gene transcription
There are many different interferon transcriptional pro-
grams that depend on factors such as the receptor and 
JAK isoforms, as well as the type of  STAT dimer[58] 
that are induced. These in turn are dependent on the 
stimulus, species, cell type, and co-stimuli. Because of  
this complexity, the study of  interferon-stimulated gene 
(ISG) transcription patterns has benefited greatly from 
omics studies and has begun to provide powerful insights 
into the effects of  interferons on host transcription. The 
response to interferon-gamma, for example, has been 
a source of  recent interest and has been demonstrated 
to regulate ISGs at both the mRNA[59] and miRNA lev-
el[59,60]. A few specific miRNAs that have been identified 
as interferon regulators include miR-203[61] and miR-9[62]. 
Genome-wide DNA-binding sites for STAT1 have also 
been characterized using ChIP-Seq[63]. Many quantitative 
proteomic studies have also identified altered expression 
patterns of  interferon-induced proteins upon various 
stimuli, especially after viral infection; some of  these 
genes have also been found to be dependent upon NF-
kB signalling[64]. 

Microarrays and quantitative proteomics: Identifying 
global viral-induced alterations to the host response
A variety of  models have been used to study the induc-
tion of  innate immune pathways following virus infec-
tion, including epithelial cells, productive and abortive 
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infections in macrophages[65], dendritic cells[66] and animal 
models (see Table 1). Microarrays have been particularly 
popular for these studies due to its ability to provide a 
comprehensive analysis of  the entire cellular genome 
with relatively sensitive quantification of  gene expression 
(see[67] for review of  microarray technologies). Quan-
titative proteomic studies have also been important in 
validating these findings at the protein level and have 
been useful, for example, in the search for biomarkers. 
Many respiratory viruses, such as influenza[68-73], reovirus, 
and rhinovirus[74,75], demonstrate a robust activation of  
antiviral pathways and pro-inflammatory cytokines. Both 
genomic and proteomic analyses have demonstrated hubs 
of  gene and protein induction that are induced by key 
transcriptional factors such as IRFs, STAT proteins, NF-
kB and JNK. On the other hand, genomic profiling of  
respiratory syncytial virus[65] and pathogenic coronavirus-
es such as severe acute respiratory syndrome (SARS) and 
EMC strains have been reported to elicit weaker innate 
immune responses[76-78]. The absence of  interferon signal-
ling has also been recapitulated in several proteomic viral-
host studies[79-81].

Analyses of  microRNA expression during influenza 
have recently begun to emerge in a variety of  models 
including respiratory epithelial cells[82-85], human blood[86], 
immune cells[87-89] and lung tissue in animal models[90,91]. 
Collectively these have identified roles for miR-18a[86,92] 
and miR-223[86,93] in negative regulation of  STAT3, mir-29 
in IFN-γ1 production[89], and miR-449b as a positive 
regulator of  IFN-β production[85]. miR-23b has also been 
identified as a novel anti-viral molecule that is induced 
through RLR signaling during rhinovirus infection[94].

Strain differences: One of  the fundamental questions 
of  virology revolves around deciphering factors of  
pathogenesis. Hence, some studies have attempted to 
identify pathways that are differentially altered by patho-
genic viral strains compared to less pathogenic strains. 
Influenza has been particularly well studied in this respect 
and several host factors have been identified that are 
unique to the replication of  strains such as the patho-

genic avian H5N1, the p2009 swine flu and the 1918 
strain[69,70,108,124]. However, rather than inducing radically 
different cell responses, many different influenza strains 
have been found to activate surprisingly similar immune 
signatures (reviewed in[125]). It was, instead, the degree 
and timing of  activation and resolution[125] of  these path-
ways that was found to significantly impact the severity 
of  disease[126]. Dysregulation of  the host inflammatory 
response in particular is a major determinant of  influenza 
pathogenicity and is influenced by both viral and host 
factors[127]. Different rhinovirus strains, for example type 
14 and 1B[128,129], have also been demonstrated to have 
different abilities to attenuate interferon production and 
secretion from epithelial cells. This effect has been attrib-
uted to the inhibition of  IRF3 dimerization[74,129] but the 
viral mechanism leading to this is unknown. 

Cell type differences: Cell types have also been demon-
strated to express different basal levels of  interferon and 
hence, have different innate susceptibilities to viral infec-
tion[130,131]. For example, a direct comparison of  inter-
feron signaling between primary bronchial lung epithelial 
cells and the A549 continuous alveolar epithelial cell line 
suggested differences between either primary and cancer 
cell lines and/or epithelial cells of  different origins in the 
lung[72]. Additionally, different cell types have been shown 
to influence the degree of  interferon activation after reo-
virus infection[132].

Correlation of  interferon signaling with pathogen-
esis: Generally interferon production is considered 
protective against viral infections. It has been shown nu-
merous times that cells that produce less interferon, such 
as Vero cells, are more susceptible to viral infection and 
produce high titers of  the virus[133]. The extent of  inter-
feron inhibition by the influenza non-structural (NS)-1 
protein[134] and RSV NS1 and NS2 proteins[135,136] has also 
been extensively studied and correlates negatively with 
pathogenicity[137,138]. Similarly, models in which interferon 
signaling has been disrupted, such as by deleting IFNR, 
can produce high viral titers[139] and display increased lung 
tissue pathology[140]. Conversely, type I interferon signaling 
has also been shown to contribute to secondary bacterial 
infections[141,142]. In some studies the degree of  interferon 
induction correlated positively with the degree of  patho-
genicity.  For example, the reovirus T3D strain is consid-
ered more pathogenic the T1L strain, but the T3D strain 
was found to induce higher levels of  innate immunity 
proteins[64,117,118]. The role of  interferons in these situa-
tions is not currently understood.

Altered innate immune responses in chronic lung 
diseases: Many studies with rhinovirus have investigated 
differences in the immune response between healthy and 
non-healthy donor cells. In one study, infection of  chron-
ic obstructive pulmonary disorder (COPD) epithelial cells 
induced higher transcription levels of  cytokines, chemo-
kines, RNA helicases, interferons and increased apoptosis 
compared to infection of  healthy control cells. In addi-
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  Respiratory 
  syncytial virus

Epithelial cells [95-98] [99]
Macrophages - [65,100]
Cord blood - [101]

  Coronavirus Epithelial cells [79,80,102-104] [76-78]
Pro-monocytes -

  Influenza Macrophages [70,73,105,106] [110]
Epithelial cells [71, 72, 107] [111]

Mice [108] [112,113] 
Ferrets - [114,115] 

Macaques [109] [112,116]
  Reovirus Epithelial cells [117-120] [64]

Myocytes [119] -
Mice - [121]

  Rhinovirus Epithelial cells - [74,122,123] 
Dendritic cells [66] -

Human nasal cells - [75]

Table 1  For example references
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tion, basal levels of  several antiviral signalling pathways 
were altered in COPD patients[128]. Similarly, asthma-
derived epithelial cells also showed altered expression of  
several immunity genes both at basal levels and during 
rhinovirus infection[122,143]. Modulation of  rhinovirus-
induced host responses has also been investigated in the 
presence of  Echinacea extracts and cigarette smoke[123].

Core innate immune responses shared by multiple 
respiratory viruses: While many studies that have been 
discussed in this review have focused on identifying 
global host responses towards a single virus, a few stud-
ies have directly compared viruses from multiple families. 
For example, Smith el al[144]. identified common gene 
networks that were activated in response to seven respira-
tory viruses: influenza A virus, respiratory syncytial virus, 
rhinovirus, SARS-coronavirus, metapneumonia virus, 
coxsackievirus and cytomegalovirus[144]. Among those re-
sponses were pathways associated with a general immune 
response including interferon signalling[144]. A second 
study also identified core immune responses to four re-
spiratory viruses including apoptosis induction, endoplas-
mic reticulum stress and interferon signalling[98]. In addi-
tion several host interferon-induced proteins have been 
tested against multiple families and strains of  viruses. For 
example, IFIT1[145], Interferon-inducible transmembrane 
(IFITM) proteins[146], ISG15[147,148] and Viperin[149-152] pro-
tect against multiple virus families. 

Overall, microarrays and quantitative proteomics have 
allowed sensitive and comprehensive analyses of  the host 
genome, and have contributed substantially to under-
standing the types and kinetics of  signaling pathways that 
are activated upon viral infections. 

Identification of host-virus interactions and novel 
restriction factors
Interactomes, viral-mediated antagonism of  inter-
feron signaling: As many viruses encode interferon-an-
tagonizing proteins, there has been significant interest in 
defining their interacting partners in the host cell. Several 
studies have also been undertaken to identify host pro-
teins that recognize dsRNA and 5’pppRNA. This has, for 
example, led to the discovery and characterization of  the 
IFIT family[145] and their role anti-viral innate immunity. 

Influenza: The influenza NS1 protein is a well-known 
antagonist of  interferon signalling and is able to interfere 
with multiple anti-viral pathways. Viral-host studies have 
identified additional host proteins that interact with the 
influenza NS1 protein, using either plasmid-based expres-
sion of  NS1[153-155] or during whole virus infection[153,156]. 
Collectively, the integration of  multiple interactome stud-
ies has allowed networks such as Flu-Pol to be established 
which provide the basis for comparing differences and 
commonalities between influenza strains and cell types 
and are useful for targeted drug design.

RSV: RSV proteins NS1 and NS2 strongly inhibit 
IFN α/β by preventing the phosphorylation of  the IFN 
regulatory factor-3[157,158] as well as activation of  NLRX1 
and RIG-I[35]. Additionally, the RSV NS1 protein inter-

feres with interferon signaling through interaction with an 
elonginC-cullin2 E3 ligase complex that ubiquitinates and 
degrades STAT2[97,159]. RSV NS1 and NS2 have also been 
shown to alter miRNA expression, which can contribute 
to antagonism of  interferon and NF-kB responses[160].

Coronavirus: In studies with coronaviruses, it has 
been previously proposed that the viral deubiquitinase, 
PLpro, plays a major role in suppressing interferon-alpha 
induction. In support of  this idea, Li et al[161] recently 
demonstrated that PLpro overexpression mediated the 
down-regulation of  mitogen-activated protein kinase and 
up-regulation of  the ubiquitinase Ubiquitin ligase (UBC 
E2-25k). The open reading frame 6 protein has also been 
shown to attenuate antiviral responses by sequestering 
host nuclear impact factors including STAT1[162], vitamin 
D receptor, cyclic AMP-responsive element-binding pro-
tein 1, mothers against decapentaplegic homolog 4, p53, 
Epas Ⅰ and Oct3/4[163].

Rhinovirus: Despite induction of  interferon gene 
transcription, rhinovirus (type 14) infection can strongly 
attenuate interferon secretion from epithelial cells. This 
effect has been attributed to the inhibition of  IRF3 di-
merization[74,129] but the viral mechanism leading to this 
is unknown. In contrast, rhinovirus 1B readily stimu-
lated interferon production in bronchial smooth muscle 
cells[164], suggesting different interferon regulation be-
tween strains and/or cell types. 

Reovirus: The degree of  IFN-α/β induction after 
reovirus infection has been attributed to both host and 
viral factors but is not well understood. However, repres-
sion of  interferon signaling has been mapped to the M1, 
L2 and S2[132,165] genes. 

Knockdown/Knockout studies: siRNA technology has 
been important in testing functional effects of  interferon-
induced proteins. Both whole genome siRNA screens, 
and individual knockdown experiments have discovered 
and validated anti-viral effects of  many including interferon-
induced proteins such as the IFITM1-3 proteins[166], IRF3 
and IRF2 (Shapira), ISG15[147] and Viperin[167]. In contrast, 
several interferon pathway members have been assigned 
pro-viral functions such as MxB[168] and IFIT2[156,168].

Knock-out animals have also underscored the pro-
tective effects of  interferon signaling during respiratory 
virus infections, for example, ISG15-/-[147,169], IFNAR-/-[170], 
and MxA-/-[171]. In addition to its role in innate immunity, 
interferons have also been demonstrated to have pro-
found effects on the adaptive immune system, for exam-
ple, by priming CD+ T-cells during influenza infection[172] 
and inhibiting neurotropism of  reovirus infection[173,174]. 
Although discussion of  the effects of  interferon on 
whole host immunity is beyond the scope of  this review, 
further discussion can be found in several comprehensive 
reviews[175,176].

Collectively, these studies have provided fundamental 
insights into how cells respond to RNA virus infection 
and have highlighted the importance of  interferon in-
duction in restricting virus replication and activating an 
appropriate host immune response. Many new and unex-
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pected regulators of  interferon signalling have been dis-
covered and have demonstrated how multiple anti-viral 
networks interact such as ubiquitin-mediated regulation 
of  interferon signalling molecules. As large omics studies 
move forward, it will become possible to compare and 
draw connections between anti-viral networks that are 
induced by different viruses.

FUTURE DIRECTIONS: INTERFERON 
SIGNALING AS A BROAD-SPECTRUM 
ANTI-VIRAL PATHWAY?
Using interferons therapeutically has been most exten-
sively studied in models of  hepatitis. However, it has also 
shown some promise in protecting against a variety of  
other virus families, including the respiratory viruses dis-
cussed in this review. For example, exogenous IFN-alpha 
treatment has proven effective against influenza[177-179], 
rhinovirus[128,180] and coronavirus[181-183]. Interferons are 
also important in protecting against reovirus infec-
tions[184]. The role of  type Ⅲ interferons is generally not 
as well understood as type Ⅰ but may also afford protec-
tion against respiratory viruses[185]. 

Interferons can also be endogenously elicited through 
a variety of  RLR and TLR agonists. 5’pppRNA, for ex-
ample, is a well-known and potent RIG-I agonist and 
has been demonstrated to protect against both RNA and 
DNA viruses, including Dengue virus, influenza, hepati-
tis C and human immunodeficiency virus-1[186]. Similarly, 
TLR agonists such as dsRNA[187,188] or inosine-containing 
ssRNA[189] have been shown to protect against coronavi-
rus, influenza, and respiratory syncytial virus infections 
in mice. A commercial compound, Arbidol, has also had 
some success in neutralizing various respiratory viruses 
such as influenza, rhinovirus, adenovirus, coxsackie virus 
and RSV[190]. Additional small molecules that induce type 
I interferons have recently been identified using high-
throughput screens[191,192]. Alternatively, inhibiting antago-
nists of  interferon signaling can also boost the produc-
tion of  interferon. As discussed above, these antagonists 
can either be host molecules or viral proteins, and inhibi-
tors to each have been described[193]. Interestingly, ribavi-
rin treatment of  RSV-infected epithelial cells was shown 
to enhance interferon-stimulated gene expression[194] and 
treating RSV-infected macrophages with lovastatin was 
shown to blunt pro-inflammatory cytokine gene expres-
sion[100]. These therapies may have potential for broad-
spectrum anti-viral properties.

Despite successfully treating some viral infection with 
interferon, it has also been noted that interferon stimula-
tion can increase lung inflammation. Many gene array 
studies have also positively correlated pathogenicity or cy-
topathology with the induction of  interferon and/or in-
flammatory genes. For example, the severe pathology of  
the 1918 influenza pandemic and of  H5N1 (bird flu) vi-
ruses has been attributed to a “cytokine storm” (reviewed 
by[125]). It is therefore important to identify the mecha-

nisms behind interferon-dependent protection against 
viruses. Numerous studies, for example, have suggested 
that MxA is a major effector of  INF-α pre-treatment 
against influenza[195-197]; other newly identified interferon-
induced anti-viral proteins include IFITM proteins[146,198], 
ISG15[147] and Viperin[149-152]. It may also be useful to 
combine interferon treatment with anti-inflammatory 
compounds such as curcumin [199-201], resveratrol[202], S1P 
agonists[203,204], COX-2 inhibitors[205,206] and statins[100,207].

CONCLUSION
The study of  immune responses to viral infection has 
benefited greatly from viral proteomic studies. However, 
knowledge of  proteomic subsets is still limited and fu-
ture studies could provide more detailed insight into the 
dynamics of  protein localization, activity and regulation 
through post-translational modifications during virus in-
fection. Based on current technologies and identified net-
works, it may be beneficial to also investigate alterations 
of  the phosphoproteome, ubiquitome, and the activity 
of  proteasomes after viral infection. The development of  
broad-spectrum anti-virals has also shown some potential 
and could benefit from comparative analyses of  multiple 
viruses.
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present in the cell cytoplasm, and recently this blocking 
effect has been suggested to play a role in the physio-
logical control of CFTR channel function, in particular as 
a novel mechanism linking CFTR function dynamically 
to the composition of epithelial cell secretions. It has 
also been suggested that future drugs could target this 
same pathway as a way of pharmacologically increasing 
CFTR activity in cystic fibrosis. Studying open channel 
blockers and their mechanisms of action has resulted in 
significant advances in our understanding of CFTR as a 
pharmacological target in disease states, of CFTR chan-
nel structure and function, and of how CFTR activity is 
controlled by its local environment.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core Tip: This review summarizes our understanding 
of small molecules that inhibit the cystic fibrosis trans-
membrane conductance regulator (CFTR) by blocking 
the channel pore. It describes how such inhibitors could 
be used in the treatment of diarrhea and hereditary 
kidney disease; how studying these inhibitors’ mecha-
nisms of action has led to advances in our understand-
ing of CFTR channel structure and function; and how 
substances acting via  this mechanism could contribute 
to the physiological control of CFTR function in epi-
thelial cells. Ironically, studying channel inhibitors has 
recently led to the discovery of a new class of CFTR 
potentiators that could be used to treat cystic fibrosis.
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Abstract
Dysfunction of the cystic fibrosis transmembrane con-
ductance regulator (CFTR) chloride channel causes cys-
tic fibrosis, while inappropriate activity of this channel 
occurs in secretory diarrhea and polycystic kidney dis-
ease. Drugs that interact directly with CFTR are there-
fore of interest in the treatment of a number of disease 
states. This review focuses on one class of small mol-
ecules that interacts directly with CFTR, namely inhibi-
tors that act by directly blocking chloride movement 
through the open channel pore. In theory such com-
pounds could be of use in the treatment of diarrhea 
and polycystic kidney disease, however in practice all 
known substances acting by this mechanism to inhibit 
CFTR function lack either the potency or specificity for 
in vivo use. Nevertheless, this theoretical pharmaco-
logical usefulness set the scene for the development 
of more potent, specific CFTR inhibitors. Biophysically, 
open channel blockers have proven most useful as ex-
perimental probes of the structure and function of the 
CFTR chloride channel pore. Most importantly, the use 
of these blockers has been fundamental in developing a 
functional model of the pore that includes a wide inner 
vestibule that uses positively charged amino acid side 
chains to attract both permeant and blocking anions 
from the cell cytoplasm. CFTR channels are also subject 
to this kind of blocking action by endogenous anions 
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INTRODUCTION
Cystic fibrosis (CF) is the most common fatal autosomal 
recessive disease affecting Caucasians, with around 80000 
CF sufferers in the world today. CF is caused by muta-
tions that cause loss of  function of  the CF transmem-
brane conductance regulator (CFTR) protein[1]. Over 
1900 different mutations that affect the transcription, 
synthesis, trafficking, turnover, or function of  CFTR 
have been shown to cause CF. CFTR is expressed in the 
apical membrane of  many different epithelial tissues, 
where it plays a central role in epithelial Cl-, HCO3

-, and 
fluid transport[2]. As a consequence, CF is associated with 
respiratory, pancreatic, gastrointestinal, and reproductive 
disease that results from deficient salt and fluid secretion 
in these epithelia[1,3]. Conversely, inappropriately elevated 
CFTR function results in excessive intestinal fluid secre-
tion in secretory diarrhoeas such as that associated with 
cholera[4]. CFTR-mediated Cl- transport by renal epithe-
lial cells also underlies fluid accumulation and growth 
of  renal cysts in autosomal dominant polycystic kidney 
disease (ADPKD), the most common hereditary kidney 
disease[5]. The involvement of  CFTR in such common 
and serious disease states makes it an attractive target for 
therapeutic intervention. Many different small molecules 
interact directly with the CFTR protein, and these have 
proven useful experimental tools. The therapeutic poten-
tial of  drugs that act directly with CFTR is also receiving 
increasing interest. This review focuses on one class of  
small molecules interacting with CFTR-those that directly 
block Cl- movement through the open channel pore.

OVERVIEW OF CFTR ARCHITECTURE
CFTR is a member of  a large family of  membrane pro-
teins, the adenosine triphosphate (ATP)-binding cassette 
(ABC) proteins, most members of  which function as 
active transport ATPases[6,7]. CFTR appears to be unique 
within the ABC family in functioning instead as an ATP-
dependent Cl- channel[8]. The structure and function of  
CFTR has been reviewed in detail recently[8-12] and will  be 
described only briefly here. In common with other ABC 
proteins, CFTR has a modular architecture, consisting of  
two membrane-spanning domains (MSDs) each compris-
ing six transmembrane α-helices (TMs) (Figure 1). Each 
MSD is followed by a cytoplasmic nucleotide binding do-
main (NBD), and the two MSD-NBD modules are joined 
by a cytoplasmic regulatory domain (R domain) that is 
unique to CFTR. The modular architecture of  CFTR also 
corresponds with its defining functional features. The 
R domain contains multiple consensus phosphorylation 
sites for protein kinase A and protein kinase C, allowing 
the channel to be regulated physiologically by hormones 
that act through these protein kinases. Phosphorylation 

of  the R domain is a prerequisite for channel activity. Fol-
lowing R domain phosphorylation, CFTR channel gating 
(opening and closing) is controlled by ATP binding and 
hydrolysis at a dimer of  the two NBDs. The NBDs also 
make physical contact with the long intracellular loops 
(ICLs) that join individual TMs (Figure 1). The chan-
nel pore that forms the transmembrane pathway for the 
movement of  Cl- ions is formed by a pseudo-symmetrical 
arrangement of  the two MSDs. Recent evidence suggests 
that the ICLs form a functional link that allows a confor-
mational rearrangement initiated by ATP interaction with 
the NBDs to be transmitted to the TMs, controlling the 
opening and closing the channel pore.  

The channel pore itself  has been studied using a 
combination of  structural[10,13], functional[8,14], substituted 
cysteine accessibility[8,15,16] and molecular modeling[17-21] 
approaches. A simple model of  the proposed overall 
functional architecture of  the pore is shown in Figure 
1C. The pore is thought to have a relatively narrow re-
gion over which discrimination between different anions 
is predominantly determined. This region is flanked by 
outer and inner vestibules, with functional evidence sug-
gesting that the inner vestibule is both deeper and wider. 
Of  the 12 TMs (Figure 1), TM6 appears to play a domi-
nant role in determining functional interactions between 
the narrow pore region and permeating anions[15,22]. TM1, 
TM6, TM11 and TM12 all contribute to the inner ves-
tibule[15,23-29], while TM1, TM6, TM11, TM12, and the 
extracellular loops (ECLs) adjacent to these TMs con-
tribute to the outer vestibule[16,30-33]. As described in detail 
below (see “Biophysical Relevance”), residues from TM1 
(K95), TM5 (R303), TM6 (S341) and TM12 (S1141) have 
all been proposed to interact with CFTR open channel 
blockers (Figure 1D and E).

CFTR CHANNEL BLOCKERS
The first kinds of  CFTR inhibitors to be identified were 
those that act as open channel blockers[34,35] (Figure 2). 
These are substances that enter into the open channel 
pore and physically occlude it, temporarily preventing 
the flow of  Cl- ions until the blocker molecule dissoci-
ates from the pore. Many diverse substances share this 
mechanism of  CFTR channel block, the best known (and 
best studied) of  which are sulfonylureas such as gliben-
clamide[36-42] and related substances[36,42-44], arylaminoben-
zoates such as 5-nitro-2-(3-phenylpropylamino) benzoic 
acid (NPPB) and diphenylamine-2-carboxylate[23,45-48], and 
disulfonic stilbenes such as 4,4’-diisothiocyanostilbene-
2,2’-disulfonic acid and 4,4’-dinitrostilbene-2,2’-disulfonic 
acid (DNDS)[49]. Detailed biophysical analysis of  the 
blocking effects of  these groups of  negatively charged 
substances reveal a number of  common features that 
may reflect a common mechanism of  action. In each case 
the blocker enters the pore only from its cytoplasmic end 
to reach its binding site inside the channel pore (Figure 
2); block is voltage-dependent, being stronger at more 
hyperpolarized voltages that favour entry of  negatively 
charged substances into the pore from its cytoplasmic 
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end; and block is sensitive to the extracellular Cl- concen-
tration, being stronger at low Cl- and weaker at higher 
Cl-. Each of  these defining features tells us something 
about the mechanism of  inhibition and the location of  
the blocker binding site. Inhibition from the cytoplasmic 
side of  the membrane was originally used to suggest that 
the open CFTR channel pore is structurally asymmetric, 
with a wide inner vestibule that is easily accessible from 
the cytoplasm[35,49], and a narrower extracellular entrance 
that prevents the entry of  large substances from the ex-
tracellular solution (Figure 2). Voltage-dependent block 
suggests that the blocker binding site is located within the 

transmembrane electric field, such that the blocker appar-
ently experiences at least part (generally about 20%-50%) 
of  this electric field as it moves between the cytoplasm 
and its binding site inside the pore. While the relation-
ship between distance across the transmembrane electric 
field and physical distance across the membrane itself  is 
neither direct nor straightforward, this voltage-depen-
dence is consistent with the blocker moving into the 
membrane-spanning parts of  CFTR to access the blocker 
binding site. Finally, sensitivity of  block to the extracel-
lular Cl- concentration is usually ascribed to repulsive 
electrostatic interactions between Cl- and the negatively 

28WJBC|www.wjgnet.com February 26, 2014|Volume 5|Issue 1|

Figure 1  Three-dimensional and two-dimensional representations of cystic fibrosis transmembrane conductance regulator structure. A: Atomic homology 
model of cystic fibrosis transmembrane conductance regulator in a so-called “channel like” conformation[20]. Different colours are used to illustrate the approximate 
extent of the extracellular loops (ECLs, red), transmembrane domains (TMs, green), intracellular loops (ICLs, blue), and two nucleotide binding domains (NBD1, cyan; 
NBD2, magenta). The cytoplasmic R domain is not included in this homology model; B: Schematic representation of these different domains (and the R domain), us-
ing the same colour scheme; C: Functional model of pore architecture. As described in the text, experimental evidence suggests that the pore has a narrow region 
that is connected to the cytoplasmic and extracellular solutions by a wide inner vestibule and a narrower outer vestibule, respectively; D: Location of putative blocker-
interacting residues in the TMs (K95-TM1; R303-TM5; S341-TM6; S1141-TM12) within the same homology model shown in A. E: Location of these same residues in 
the same schematic model shown in B.
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charged blocker molecule that take place when both are 
bound simultaneously within the open channel pore. 

Many or all of  these features of  the blocking reac-
tion have been observed with other, unrelated blocking 
anions, including substrates of  related ABC proteins[50,51] 
such as the conjugated bile salt taurolithocholate-3-sulfate 
(TLCS) and the conjugated steroid β-estradiol 17-(β-d-
glucuronide), indazole compounds such as lonidam-
ine[52,53], short-chain fatty acids butyrate and 4-phenyl-
butyrate[54], the fluorescein derivative phloxine B[55], and 
even commonly used experimental compounds such as 
the pH buffer 3-(4-morpholino) propane sulfonic acid[56] 
and the negatively charged cysteine-reactive reagent 
(2-sulfatoethyl) methanesulfonate (MTSES)[57]. Together 
these open channel blocking substances represent a large 
and structurally diverse group of  organic anions, suggest-
ing that entry of  anions into the CFTR Cl- channel pore 
from its cytoplasmic end is a process that shows little 
specificity or size discrimination. Furthermore, most of  
these blockers show relatively low potency (dissociation 
constants usually in the micromolar to millimolar range, 
depending on voltage). At the single channel level, these 
blockers may cause discrete “flickers” in the open chan-
nel current (due to resolved individual blocking events)[3

7,38,44,45,47,49,51,52], or an apparent reduction in single channel 
current amplitude where blocking and unblocking are too 

fast to be resolved at the bandwidth used for patch clamp 
recording[44,48,50,54,56-58]. These effects reflect kinetically 
“intermediate” and “fast” blocking and unblocking reac-
tions, respectively, according to the scheme proposed by 
Hille[59]. The low apparent affinity of  CFTR open channel 
blockers limits their potential for use in vivo. Furthermore, 
many of  these substances also block other classes of  Cl- 
channels[34,60], perhaps reflecting some structural similarity 
amongst Cl- channel pores that results in similar sensitiv-
ity to block by organic anions[14].

In more recent years, high-throughput screening tech-
nologies have been used to identify more potent CFTR 
inhibitors[61]. The thiazolidinone CFTRinh-172 inhibits 
CFTR from the cytoplasmic side of  the membrane at 
sub-micromolar concentrations[62], due to a voltage-inde-
pendent effect on channel gating[63,64]. Glycine hydrazides 
such as GlyH-101 cause voltage-dependent block from 
the extracellular side of  the membrane at low micromo-
lar concentrations[65]. These substances appear to inhibit 
CFTR by different mechanisms than that described 
above and in Figure 2 for intracellular open channel 
blockers. CFTRinh-172 has been shown to bind preferen-
tially to open channels, perhaps triggering a conforma-
tional change to an “inactivated” nonconducting state[64]. 
GlyH-101 does appear to act as an open channel blocker, 
however acting from the extracellular side of  the mem-
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Figure 2  Mechanism of open channel blocker action. A: Chemical structures of three well-known voltage-dependent cystic fibrosis transmembrane conductance 
regulator (CFTR) channel blockers: the sulfonylurea glibenclamide, the aryl amino benzoate 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), and the disulfonic 
stilbene 4,4’-dinitrostilbene-2,2’-disulfonic acid (DNDS). B-D: Characteristic functional properties of block shared by these and other CFTR open channel blockers: 
block is side-dependent, voltage-dependent, and sensitive to extracellular Cl- concentration; B: Blockers enter the pore only from its cytoplasmic end, likely because 
the extracellular entrance to the pore is too small and/or the narrow pore region prevents them from accessing their binding site in the wide inner vestibule; C: Block is 
relatively strengthened at hyperpolarized membrane potentials that favour entry of negative substances into the pore from the cytoplasm, and weakened at depolar-
ized membrane potentials that favour anion retention in the cytoplasm; D: Block is weakened at higher extracellular Cl- concentrations; this is usually ascribed to a 
“knock-off” mechanism whereby Cl- entering the pore from its extracellular end electrostatically repels negatively charged blockers back into the cytoplasm, destabiliz-
ing blocker binding inside the pore.
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brane[65], perhaps becoming lodged close to the narrow 
pore region to occlude Cl- permeation[66]. These two potent 
and relatively selective inhibitors have become drugs of  
choice for experimental inhibition of  CFTR activity; be-
cause of  their different sidedness of  action, CFTRinh-172 
is preferred when applied to the intracellular side of  the 
membrane, and GlyH-101 for extracellular application.

Finally, a 3.7 kDa peptide toxin isolated from scorpion 
venom and named GaTx1 inhibits CFTR channels from 
the cytoplasmic side of  the membrane at sub-micromolar 
concentrations[67]. Although the molecular mechanism of  
GaTx1 inhibition is not well defined, this substance has 
been described as acting as a non-competitive inhibitor 
of  channel gating[67,68], with no demonstrated open chan-
nel blocking action. Currently GaTx1 is the only known 
peptide inhibitor of  CFTR.

PHARMACOLOGICAL RELEVANCE
Because of  the inviolable relationship between loss of  
CFTR function and CF, there is tremendous current 
interest in the identification and development of  small 
molecules that directly interact with the CFTR protein 
to increase its function (known as CFTR “potentia-
tors”)[1,69-72]. On the other hand, it has long been suggest-
ed that CFTR channel blockers could (at least in theory) 
be used in the treatment of  secretory diarrhoea and 
ADPKD[35,73]. CFTR inhibitors have also been suggested 
as potential male contraceptives[53,74]. As described above, 
known intracellular-active open channel blockers lack 
either the potency or the specificity for in vivo use. How-
ever, the higher affintiy CFTR inhibitors CFTRinh-172 
and GlyH-101 have been shown to be effective in in vitro 
and in vivo models of  secretory diarrhea[62,65,75]. Moreover, 
non-absorbable lectin conjugated forms of  GlyH-101 
were active against cholera-induced fluid secretion and 
mortality in mice when administered orally[76]. Similarly, 
CFTRinh-172 and GlyH-101 (or closely related substanc-
es) have been shown to retard cyst growth in in vitro[77,78] 
and in vivo[78] models of  ADPKD. The therapeutic po-
tential of  potent and specific CFTR inhibitors has been 
discussed in several recent reviews[61,79,80].

BIOPHYSICAL RELEVANCE
Since open channel blockers bind to specific sites within 
the channel pore with relatively high affinity (compared 
to Cl- and other permeant anions), they have proven 
invaluable probes of  the structure and function of  the 
Cl- permeation pathway. Mutations in TM6 and TM12 
have been shown to alter the affinity of  block by arylami-
nobenzoates[23,46], sulfonylureas[42,81] and lonidamine[52], 
consistent with functional evidence[25-28,82] and molecular 
models[17-21] that suggest that these two TMs make sub-
stantial contributions to the inner vestibule of  the pore 
where the blocker binding site is thought to reside (Figures 
1 and 2). Because open channel blockers are anions, and 
because positively charged amino acid side chains in the 

CFTR channel pore are known to play important roles in 
electrostatic attraction of  Cl- ions[24,30,31,82,83], much atten-
tion has also been placed on the role of  such fixed posi-
tive charges in interactions with blockers. In particular, 
mutations that remove the positive charge at lysine resi-
due K95 in TM1 (Figure 1D and E) dramatically reduce 
the channel blocking affinity of  glibenclamide, DNDS, 
lonidamine, NPPB and TLCS[24,82]. This finding suggests 
that these structurally diverse open channel blockers 
share a common molecular mechanism of  block - they 
are attracted into the wide inner vestibule by electrostatic 
attraction between the negative charge on the blocker 
molecule and the positive charge on the lysine side chain 
at K95, and once in the inner vestibule they bind tightly 
enough to occlude the pore and temporarily prevent Cl- 
permeation (Figure 3). This model of  blocker binding in 
the pore inner vestibule is also supported by a recent in 
silico investigation of  blocker docking inside the pore of  
an atomic homology model of  CFTR[20]. Neutralization 
of  fixed positive charge in the inner vestibule by muta-
genesis of  K95 also decreases single channel Cl- conduc-
tance by about 85%[22,29,82], suggesting that this positive 
charge also plays an important role in the normal Cl- 
permeation mechanism, most likely due to electrostatic 
attraction of  Cl- ions. The functional importance of  the 
positive charge on the side chain of  K95 may explain 
the sensitivity of  CFTR to broad range of  intracellular 
anionic blockers: a positive charge in the inner vestibule 
is necessary to attract Cl- ions and so maximize the rate 
of  Cl- permeation, however, this fixed positive charge 
also attracts all anions in the cytoplasm, many of  which 
reside within the wide inner vestibule for long enough to 
temporarily block the passage of  Cl- ions beyond into the 
narrow pore region. Mutagenesis of  all positively charged 
lysine and arginine residues within the TMs suggests that 
K95 plays a unique role within the pore inner vestibule in 
attracting permeant and blocking ions[31,83], although other 
positive charges may also play somewhat analogous roles 
in attracting cytoplasmic ions to more superficial parts of  
the pore close to its intracellular mouth.

If  K95 does play a unique role in attracting anions 
into the pore inner vestibule - suggesting that it might be 
the only fixed positive charge located close to the blocker 
binding site within this vestibule[82] then what would 
be the effect of  adding a second positive charge to the 
walls of  this vestibule? This question has been addressed 
by using mutagenesis to introduce additional positively 
charged lysine residues at positions that have been shown 
to donate pore-lining side chains to the pore inner ves-
tibule. Initially it was demonstrated that the unique, im-
portant role played by the positive charge at K95 could 
be “moved” from TM1 to TM12. Thus, while the charge-
neutralizing K95S mutation dramatically decreased both 
Cl- conductance and sensitivity to open channel blockers, 
the double mutant K95S/S1141K showed similar single 
channel conductance and open channel blocker binding 
properties as wild type CFTR[82]. This “rescue” of  chan-
nel function suggests that these two amino acids play 
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interchangeable roles within the pore inner vestibule, in 
that either could effectively host the positive charge that 
supports interactions with Cl- and blocking anions[82] 
(Figure 4). Substituted cysteine accessibility mutagenesis 
and disulfide cross-linking experiments indicated that the 
amino acid side chains at these two positions line the in-
ner vestibule in open channels and that these side chains 
are in close physical proximity[82]. Subsequent experiments 
showed that the positive charge from K95 could similarly 
be transplanted to different pore-accessible positions in 
TM6 (I344, V345, M348, A349), as well as a site closer 
to the extracellular end of  TM1 (Q98)[29]. Thus it appears 
that the exact location of  the positive charge in the pore 
inner vestibule is not critical to support channel function. 
The ability of  other sites in TMs 1, 6 and 12 to accom-
modate the positive charge that normally resides at K95 
then allowed investigation of  the effects of  introducing 
a second positive charge at these sites (by mutagenesis 

to lysine) while retaining the positive charge at K95 - in 
effect, increasing the number of  positive charges lo-
cated deep in the pore inner vestibule from one to two 
(Figure 4). Interestingly, at no site tested (Q98K, I344K, 
V345K, M348, A349K, S1141K) did the addition of  a 
second positive charge increase single channel conduc-
tance[29,82]. This suggests that, while the presence of  one 
positive charge is essential for normal Cl- conductance, 
a second positive charge provides no additional benefit. 
However, a second fixed positive charge (in S1141K) 
increased the strength of  block by cytoplasmic NPPB, 
and also induced apparent voltage-dependent channel 
block by polyvalent anions present in the experimental 
solutions (ATP, pyrophosphate)[82], suggesting that the 
number of  positive charges was correlated with open 
channel blocker potency (Figure 4). This suggestion was 
most strongly supported using the small divalent anion 
Pt(NO2)4

2-, which also causes voltage-dependent open 
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Figure 3  Location of amino acid residues key for blocker interactions in the pore inner vestibule. A: The positively charged side chain of lysine residue K95 
is essential for block, due to electrostatic attraction between this positive charge and the negatively charged blocker. However, this important charge can also be sup-
ported by other amino acid side chains that line the pore inner vestibule. B, C: Sites that have been shown to host positive charge that can support block are shown in 
an atomic homology model of the whole cystic fibrosis transmembrane conductance regulator protein (B) and in a detailed view of the central portions of TMs 1, 6 and 
12 (C) the area highlighted in (B). The endogenous positively charged side chain of K95 is shown in red; those residues that were deemed best able to support this 
functionally important positive charge in orange (V345, S1141) or yellow (I344); and those that were able to host this positive charge to a lesser extent in blue (Q98, 
S341, M348) or green (A349). The homology model used here is the “channel like” conformation presented by ref[20] and shown in Figure 1A; other models give similar 
relative positions of these pore-lining side chains.

Figure 4  Importance of the number of fixed positive charges in the pore inner vestibule. The importance of electrostatic interactions with the pore inner ves-
tibule is demonstrated by the finding that the strength of block can be decreased or increased by mutations that decrease or increase, respectively, the number of 
positively charged amino acid side chains in the pore inner vestibule area shown in Figure 3C. A: Block is relatively weak in when the endogenous positive charge is 
removed, for example as in the K95Q mutation; B: Block is of similar strength to that observed in wild type cystic fibrosis transmembrane conductance regulator when 
the positive charge is “transplanted” to other, nearby sites, for example as in the double mutants K95Q/I344K, K95Q/V345K, and K95S/S1141K; C: Block is relatively 
strong when a second positive charge is introduced, for example as in I344K, V345K and S1141K.
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channel block in a K95-dependent manner[84,85]. Addition 
of  a second positive charge to nearby pore-lining sites in 
TM6 (I344K, V345K) or TM12 (S1141K) led to a dra-
matic (40-100 fold) increase in the apparent affinity of  in-
tracellular Pt(NO2)4

2- block[29,82], suggesting that increasing 
the number of  positive charges in the pore has a greater 
impact on interactions with multivalent anions (such as 
Pt(NO2)4

2- and ATP) than monovalent anions such as 
Cl-. Positive charges introduced at other sites within the 
pore inner vestibule (Q98K, S341K, M348K, A349K) 
also supported strengthened Pt(NO2)4

2- block, albeit to 
a lesser extent. These findings, summarized in Figure 4, 
led to the hypothesis that one positive charge in the inner 
vestibule (as in wild type CFTR) was optimum for CFTR 
channel function[82]. Thus, removal of  the one endog-
enous positive charge (as in K95Q or K95S) decreases 
channel function due to reduced electrostatic attraction 
of  Cl- ions and a resulting dramatic decrease in channel 
conductance. This effect can be “rescued” by introducing 
a positive charge at other, nearby positions (as in K95S/
S1141K and K95Q/V345K). Conversely, addition of  a 
second positive charge (as in I344K, V345K, S1141K and 
other lysine substitutions) results in no further increase in 
Cl- conductance but increases the electrostatic attraction 
of  multivalent anions that block the pore, resulting in an 
overall decrease in channel function. Thus the greatest 
importance of  a single fixed positive charge in the inner 
vestibule may be in conferring preference for monovalent 
anions, including the physiological channel transport sub-
strates Cl- and HCO3

-.
If  one is the optimum number of  positive charges in 

the inner vestibule to maximize channel function, where 
is the optimal location for this charge? Since normal 
channel function can be rescued by moving the positive 
charge to other, nearby sites in TM1, TM6 or TM12, the 
exact location of  this charge does not appear to be criti-
cal[29]. Of  all sites tested as hosts of  the positive charge 
(K95, Q98 in TM1; S341, I344, V345, M348, A349 in 
TM6; S1141 in TM12), K95 appears optimal in terms 
of  maximizing single channel conductance[29]. In terms 
of  both single channel conductance and blocker binding 
properties, I344, V345 and S1141 appeared to be the best 
locations for a positive charge to reproduce wild type 
properties, with Q98, S341, M348 and A349 also being 
able to host this positive charge to some extent[29]. Simi-
larly, a second positive charge at I344, V345 or S1141 had 
the greatest impact on divalent Pt(NO2)4

2- block[29]. These 
ideas are presented graphically, within the framework of  
a recent atomic homology model of  CFTR, in Figure 
3C. Within this model, the side chains of  I344, V345 and 
S1141 appear to be at approximately the same “depth” 
into the channel pore as K95; with Q98 and S341 being 
located more deeply into the pore from its cytoplas-
mic end, and M348 and A349 closer to the cytoplasmic 
mouth of  the pore. This relative location of  amino acids 
is also supported by experimental evidence that disulfide 
bonds can be formed between cysteine side chains sub-
stituted for K95 and S1141[82], as well as between K95C 

and I344C and between Q98C and I344C[86]. This model 
suggests that it is location along the axis of  the channel 
pore that is most important in defining the functional 
effects of  a positive charge in the pore inner vestibule: 
residues close to the endogenous site at K95 are best able 
to substitute and rescue pore function, while residues 
either further from, or closer to, the cytoplasmic entrance 
of  the pore are less able to host this important positive 
charge. This is consistent with molecular modeling stud-
ies that show open channel blockers docked within the 
pore inner vestibule and with their negative charges close 
to the positive charge of  K95[20].

As described above, interaction with the positive 
charge at K95 and occlusion of  the pore inner vestibule 
appears to be the molecular mechanism of  many dif-
ferent kinds of  CFTR open channel blockers, including 
those shown in Figure 2. However, a second blocker 
binding site was identified using the large, polyvalent or-
ganic anion suramin[87]. Suramin causes potent, voltage-
independent block of  CFTR channels exclusively from 
the intracellular side of  the membrane[87,88]. Furthermore, 
block by intracellular suramin is independent of  extra-
cellular Cl- concentration, and completely unaffected by 
removal of  the key positive charge in the inner vestibule 
in the K95Q mutant[87]. This suggests that suramin does 
not enter deeply enough into the pore inner vestibule to 
experience electrostatic interaction with K95, perhaps 
because the suramin molecule is simply too big to pass 
into this restricted pore region. In contrast, suramin 
block was weakened in an electrostatic fashion by muta-
genesis of  another positively charged amino acid, R303 
at the cytoplasmic end of  TM5[87] (Figure 1D and E). 
This result was consistent with the previous finding that 
the positive charge of  R303 attracts intracellular Cl- ions 
to the cytoplasmic entrance of  the pore[83] and suggests 
that the large suramin molecule may be able to occlude 
the cytoplasmic mouth of  the pore to prevent Cl- move-
ment into or out of  the pore. As shown in Figure 5, this 
proposed molecular mechanism of  suramin action is 
consistent with observed biophysical differences between 
suramin block and block by other (smaller) open chan-
nel blockers that interact with K95 (see above). Because 
of  its size, suramin does not penetrate deeply into the 
inner vestibule; as a result, it does not traverse enough 
of  the transmembrane electric field to generate measur-
able voltage-dependence of  block, it does not reside in 
close proximity to Cl- ions bound within the channel pore 
(perhaps in the narrow pore region or close to the outer 
extent of  the inner vestibule) and so does not experience 
the kind of  repulsive electrostatic interactions that are 
thought to underlie extracellular Cl- dependence, and it 
does not approach close enough to K95 to experience 
attractive electrostatic interactions with this positively 
charged residue (Figure 5). Electrostatic interaction with 
R303 near the cytoplasmic mouth of  the pore may also 
contribute to the inhibitory effects of  other substances 
on CFTR, for example arachidonic acid[89].
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PHYSIOLOGICAL RELEVANCE
CFTR channel currents are routinely studied in excised, 
inside-out membrane patches, where the current-voltage 
relationship is uniformly linear[90,91] (Figure 6). Conversely, 
CFTR channel currents in intact cells, including native 
epithelial cells[92-94], cardiac myocytes[95,96], and many dif-
ferent heterologous expression systems[82,97-99], exhibit 
outward rectification of  the current-voltage relation-
ship, such that outward currents (carried by Cl- influx) 
show greater conductance than inward currents (carried 
by Cl- efflux) (Figure 6). This rectification - and its dis-
appearance in cell-free membrane patches - led to the 
longstanding suggestion that CFTR channels in intact 
cells are subject to voltage-dependent block by unknown 
cytosolic anions[58,97,100]. This appears to reflect predomi-
nantly a voltage-dependent flickery block by cytosolic 
anions that is lost when the membrane patch is excised 
from the cell[94,97,98,100], although differences in single chan-
nel conductance in cell-attached and excised patches have 
also been reported[92,95,97]. Detailed single channel record-
ing experiments from cell-attached membrane patches 
suggested that the flickery blocking mechanism was 
functionally analogous to that generated by exogenous 
voltage-dependent blocking anions with intermediate 
blocking and unblocking kinetics[100]. Open channel block 
as the mechanism of  outward rectification was further 

supported by the more recent finding that inhibition of  
currents in intact cells was reduced in K95Q-CFTR and 
(to a lesser extent) R303Q-CFTR[101]. This indicates that 
the unknown cytosolic blocking anions interact with 
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Figure 5  Two distinct proposed mechanisms of block by cytoplasmic 
anions. A: The effects of most blockers are voltage- and Cl- dependent (as 
described in Figure 2) and are sensitive to mutations that remove the positive 
charge at K95; B: The large multivalent anion suramin blocks the channel in a 
voltage- and Cl- independent fashion, and its effects are dependent on a posi-
tive charge at R303 but independent of K95. This is interpreted as the large 
suramin molecule blocking the cytoplasmic entrance to the pore; at a site that 
does not involve entering significantly into the transmembrane electric field or 
approaching close enough to Cl- ions inside the pore to experience repulsive 
electrostatic interactions.

Figure 6  Channel block by cytoplasmic anions in intact cells and its 
dependence on extracellular anions. A: During patch clamp recording from 
intact cells, cystic fibrosis transmembrane conductance regulator (CFTR) chan-
nels in the cell membrane are subject to block anions present in the cytoplasm 
of the cell (left). This blocking effect is lost when the patch of membrane is 
excised into the inside-out patch configuration (right); B: Example of this effect 
during macroscopic CFTR current recording from a baby hamster kidney cell 
expressing human CFTR, as described in detail[82]. Currents were recorded 
before (red) and after (black) excision of the patch from the cell, during voltage 
steps to between -100 mV and +100 mV in 20 mV increments from a holding 
potential of 0 mV. Dotted line represents the zero current level; C: Current-
voltage relationships for the currents shown in (B). Note the outward rectifica-
tion of the relationship in cell-attached recording (red) due to voltage-dependent 
channel block, and loss of this blocking effect following patch excision (black); 
D: Similar example current-voltage relationships from baby hamster kidney cell 
membrane patches when the extracellular solution contained 150 mmol/L NaCl 
(left) or 150 mmol/L NaHCO3- (right), as described in detail[101]. Note that the 
apparent degree of block in cell attached patches (red) is stronger when the ex-
tracellular solution contains HCO3- compared to Cl-, an effect quantified in detail 
in ref. [101]. 
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these positively charged residues in the CFTR pore in 
intact cells, much as had previously been shown for exog-
enous channel blockers. 

While outward rectification of  CFTR currents in 
intact cells-and the weak form of  voltage-dependence it 
confers on CFTR channel currents (Figure 6) has long 
been recognized, only recently has it been suggested 
that the voltage-dependent channel block that underlies 
this voltage-dependence might fulfil some kind of  chan-
nel regulatory role. Just as block by exogenously applied 
open channel blockers is sensitive to extracellular Cl- 
(Figure 2D), so too is block by endogenous cytosolic 
anions in intact cells[82,100,101] (Figures 6D and Figure 7). 
This is not surprising if, as described above, these two 
intracellular voltage-dependent blocking effects share a 
common molecular mechanism. Recently it was proposed 
that this Cl- dependence might be one mechanism that 
allows CFTR conductance to be regulated by the com-
position of  secreted fluid bathing the extracellular face 
of  epithelial cells[101]. Most CFTR-expressing epithelia 
secrete substantial amounts of  Cl- and HCO3

- (up to 
140 mmol/L HCO3

- in the case of  the pancreas[102]) in a 
CFTR-dependent fashion[2,103,104]. Furthermore, in many 
epithelia the concentrations of  Cl- and HCO3

- in secreted 
fluid vary greatly under physiological conditions[102,104-110]. 
Interestingly, it was shown that voltage-dependent block 
of  CFTR in intact cells was significantly stronger under 
high extracellular (HCO3

-) conditions than under high 
extracellular Cl- conditions[101]. This suggests that extra-
cellular HCO3

- is unable to substitute for Cl- in relieving 
the blocking effects of  endogenous cytoplasmic blocking 

anions. As a result, overall CFTR activity will be increased 
under high extracellular Cl- conditions (i.e., during peri-
ods of  epithelial Cl- secretion) and decreased under high 
HCO3

- conditions (i.e., during periods of  secretion of  rel-
atively HCO3

--rich fluid)[101] (Figure 7). These findings led 
to the suggestion that endogenous cytoplasmic blocking 
anions are physiologically relevant regulators of  CFTR 
channel function, in that they confer upon the channel 
sensitivity to physiologically relevant changes in extracel-
lular fluid composition[101]. In epithelial cells, this may be 
one mechanism by which CFTR channel function is fine-
tuned by the concentration of  its transport substrates Cl- 
and HCO3

- at the apical face of  these cells[111-113].
While extracellular Cl- may be an endogenous sub-

stance regulating CFTR channel function via modula-
tion of  the blocking effects of  cytoplasmic anions, this 
mechanism of  channel regulation may also be subject to 
pharmacological manipulation. Thus, millimolar concen-
trations of  extracellular multivalent psuedohalide anions 
(Co(CN)6

3-, Co(NO2)6
3-, Fe(CN)6

3-, IrCl6
3-, Fe(CN)6

4-) 
were shown to mimic the effects of  high extracellular 
Cl- on channel block in intact cells, leading to an overall 
stimulation of  CFTR channel function[114] (Figure 7). It 
was suggested that these anions represent the founder 
members of  a new class of  CFTR potentiators, and that 
their effects identify a novel mechanism by which CFTR 
function could potentially be increased therapeutically 
in the treatment of  CF. Interestingly, these pseudohalide 
anions do not enter into the CFTR channel pore[114] and 
as such presumably do not interact electrostatically with 
blocking anions inside the channel pore; such an electro-

Figure 7  Interactions between cytoplasmic blocking anions and extracellular anions. Cytoplasmic block is modified by extracellular anions by different mecha-
nisms, leading to different degrees of block under different conditions. A: Block is strong in the absence of modulation of block by extracellular anions; physiologically, 
such a condition may occur during periods of epithelial HCO3- secretion, leading to strong block of cystic fibrosis transmembrane conductance regulator (CFTR) chan-
nel currents under these conditions[101]; B: Block is weakened by extracellular anions that can enter the channel pore, such as Cl-, due to an electrostatic “knock-off” 
mechanism. This may lead to increased CFTR channel currents during periods of epithelial Cl- secretion[101]; C: Block is weakened by extracellular anions that interact 
with an extracellular part of the protein involving extracellular loop 4. This is presumed to result in a long-range conformational change in CFTR that decreases the af-
finity of the cytoplasmic blocker binding site. This mechanism may allow pharmacological manipulation of CFTR activity by compounds that interact with the extracel-
lular anion binding site[114]. Note that Cl- ions may also interact with intracellular blocking anions by the non-pore mediated effect shown in (C)[114].
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static “knock off ” mechanism is commonly proposed to 
underlie the effect of  extracellular Cl- ions on intracel-
lular open channel blockers[115,116] (Figure 7), as well as 
permeant ion effects on blocker binding in many other 
ion channel types[59]. Instead, pseudohalide anions were 
shown to exert their effects via interation with extracel-
lular parts of  CFTR, in particular ECL4[114,117]. The mo-
lecular mechanism of  action of  these substances, acting 
on extracellular parts of  the protein, is therefore distinct 
from those of  known CFTR potentiators, perhaps al-
lowing additive or synergistic effects with other types of  
potentiators. Furthermore, the suggestion that a novel 
potentiator “binding site” might exist on ECL4 raises 
the possibility that this externally-accessible part of  the 
CFTR protein could in future be targetted by drugs that 
can manipulate CFTR function therapeutically. 

CONCLUSION 
The architecture and Cl- permeation mechanism of  
CFTR likely results in a susceptibility to relatively low 
affinity, voltage dependent open channel block by a 
very broad range of  structurally diverse organic anions, 
including unidentified anions that the channel normally 
encounters in the cytoplasm of  the cell. Because the 
channel is normally involved in the secretion of  Cl- and 
HCO3

- ions at hyperpolarized cell membrane potentials, 
the channel has a relatively large intracellular vestibule 
that contains fixed positive charges to allow it to capture 
these anions from the cytoplasm by the process of  elec-
trostatic attraction. As the vestibule narrows toward the 
centre of  the pore (Figure 1C and D), a single, function-
ally unique positive charge (K95 in TM1) ensures efficient 
attraction of  monovalent anions (Figure 3). Beyond this 
point, permeating anions pass into a narrow, uncharged 
pore region that may allow some level of  discrimination 
between different anions, and also acts as a size selectivity 
filter to prevent larger organic anions from escaping the 
cell. While this architecture appears efficient at maximiz-
ing channel Cl- conductance (Figure 4), it also probably 
results in some degree of  channel inhibition by cytoplas-
mic anions that are attracted by the positive charge at 
K95, but which are too large to pass into the narrow pore 
region (Figures 2, 3, 4 and 5). CFTR experimentalists 
have long taken advantage of  these voltage dependent 
blocking anions to investigate CFTR-dependent process-
es, to think about the possible advantages of  inhibiting 
CFTR function in disease states associated with inappro-
priately elevated CFTR function, and as relatively high-
affinity probes to investigate the structure and function 
of  the wide inner vestibule of  the channel pore. This has 
allowed the development of  functional (Figures 3, 4 and 
5) and structural[20] models of  the pore. More recently, it 
has been suggested that endogenous substances that act 
in this fashion may in fact play a role in tying CFTR func-
tion to the content of  epithelial cell secretions (Figures 6 
and 7), perhaps allowing CFTR activity to be fine-tuned 
directly by the amount of  its substrate(s) being secreted 

from epithelial cells. In the future, this mechanism of  
CFTR regulation could be targetted by new drugs that act 
at an extracellular site on the CFTR protein to reduce the 
voltage-dependent blocking effects of  endogenous cyto-
plasmic anions and so increase overall CFTR function in 
CF patients. 
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circumstances, such as their expression levels, affinity 
to the binding sites, and localization in the cell, which 
can be controlled by various physiological conditions. 
Moreover, the functional and/or physical interactions of 
the factors binding to 3’UTR can change the character 
of their actions. These interactions vary during the cell 
cycle and in response to changing physiological condi-
tions. Abnormal functioning of the factors can lead to 
disease. In this review we will discuss how alterations 
of these factors or their interaction can affect cancer 
development and promote or enhance the malignant 
phenotype of cancer cells. Understanding these altera-
tions and their impact on 3’UTR-directed posttran-
scriptional gene regulation will uncover promising new 
targets for therapeutic intervention and diagnostics. 
We will also discuss emerging new tools in cancer di-
agnostics and therapy based on 3’UTR binding factors 
and approaches to improve them.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: The messenger RNA 3’-untranslated region (3’
UTR) plays an important role in regulation of gene ex-
pression on the posttranscriptional level. 3’UTR controls 
gene expression via  orchestrated interaction between 
structural components mRNAs (cis-element) and specif-
ic trans-acting factors (RNA binding proteins and non-
coding RNAs). Alteration of any of these components 
can lead to various pathologies. In this review we will 
discuss how alteration of these factors or a change in 
the crosstalk between them can affect cancer develop-
ment and promote or enhance the malignant phenotype 
of cancer cells. Understanding these regulatory mecha-
nisms and their impact on 3’UTR-directed posttran-
scriptional gene regulation may uncover promising new 
targets for therapeutic intervention and diagnostics.
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Abstract
The messenger RNA 3’-untranslated region (3’UTR) 
plays an important role in regulation of gene expres-
sion on the posttranscriptional level. The 3’UTR con-
trols gene expression via  orchestrated interaction 
between the structural components of mRNAs (cis-ele-
ment) and the specific trans-acting factors (RNA bind-
ing proteins and non-coding RNAs). The crosstalk of 
these factors is based on the binding sequences and/
or direct protein-protein interaction, or just functional 
interaction. Much new evidence that has accumulated 
supports the idea that several RNA binding factors can 
bind to common mRNA targets: to the non-overlapping 
binding sites or to common sites in a competitive fash-
ion. Various factors capable of binding to the same 
RNA can cooperate or be antagonistic in their actions. 
The outcome of the collective function of all factors 
bound to the same mRNA 3’UTR depends on many 
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INTRODUCTION
During tumor growth, characteristic alterations in gene 
expression result in modification of  the quantity of  the 
corresponding proteins. The alterations have been ex-
tensively documented at the mRNA transcription and 
protein degradation levels; both have a strong impact on 
the accumulation of  critical proteins involved in tumori-
genesis. While translational control is a key mechanism 
involved in the regulation of  the gene expression[1], the 
impact of  the misregulation of  gene expression during 
carcinogenesis at the translational level has long been 
widely underestimated.

Translation of  mRNA into proteins can be specifi-
cally regulated by a combination of  RNA-binding factors 
(proteins and antisense RNA) that act positively or nega-
tively on translation initiation and elongation, mRNA sta-
bility and mRNA localization. This regulation is mostly 
controlled by sequence elements in 3’-untranslated region 
(3’UTR) of  the transcripts, located downstream from 
the open reading frame. The importance of  the 3’UTR 
was not fully appreciated until the discovery of  small 
non-coding regulatory RNAs (microRNAs or miRNAs). 
MiRNAs interact with a protein complex called RNA-
induced silencing complex (RISC), which controls gene 
expression by binding to miRNA target sites in mRNA 
3’UTRs. MiRNAs have proven to be not only impor-
tant markers but also key players in the control of  gene 
expression during cancer development. Multiple 3’UTR 
regulatory elements are usually involved in the regulation 
of  translation. One of  the best characterized of  them is 
the cytoplasmic polyadenylation element (CPE) which, 
upon binding by the CPE-binding protein (CPEB), regu-
lates specific target mRNAs. CPEB1 directly controls the 
mammalian cell cycle, particularly during senescence, sug-
gesting a role in cancer and aging. According to the lit-
erature and to our unpublished data, members of  CPEB 
family are misregulated in many cancers and can play 
important role in carcinogenesis[2,3].

The insulin-like growth factor (IGF)-2 mRNA-bind-
ing proteins 1, 2 and 3 [IGF2BP1-3/Insulin-like growth 
factor 2 mRNA-binding protein 1 (IMP1-3)] belong to 
another well-known family of  proteins that bind to 3’
UTR and control the expression of  proteins important in 
the normal cell cycle and in cancerous transformation[4,5]. 
IGF2BP1-3 and IMPs are highly over-expressed in a 
number of  cancers[6].

The aim of  this review is to show that regulatory fac-
tors controlling gene expression via binding to 3’UTR do 
not act separately but in cooperation. Crosstalk of  these 

factors is based on the binding sequences and direct 
protein-protein interaction. The functional and physi-
cal interactions of  factors binding to 3’UTR can change 
the character of  their action, according to physiological 
conditions[7]. Disruption of  the coordinated action of  
these factors can have a big impact on the expression of  
proteins involved in cancer induction and development. 
A detailed understanding of  these mechanisms can help 
in development of  new tools for cancer diagnostics and 
treatment.

MIRNA AND CANCER
One of  the main breakthroughs in cellular and molecu-
lar biology in the last decade was the discovery of  gene 
expression regulation by non-coding RNAs. The num-
ber of  classes of  non-coding RNAs continues to grow 
rapidly. Major among them are miRNAs, piRNAs, endo-
siRNAs, exo-siRNAs, rasiRNAs, scnRNAs, tasiRNAs, 
natsiRNAs, 21U-RNA, lncRNAs and tRNA-derived 
RNA fragments[8]. We will focus this review on miRNAs, 
which is the most widely studied group of  non-coding 
regulatory RNAs. MiRNAs are small (21-23 nt) RNAs. 
MiRNAs originate from Pol Ⅱ-transcribed precursors 
(pri-miRNAs). Then the Drosha enzyme recognizes a 70 
nt stem-loop structure and produces pre-miRNA, which 
is transported from the nucleus by Еxportin 5. In the 
cytoplasm, Dicer enzyme forms a double-stranded 22 
nt RNA from pre-miRNA. One of  the RNA strands is 
degraded, whereas the other one inserts into the RISC 
complex, binds to the target sequence in 3’UTR, and 
carries out its regulatory function[9]. These tiny mol-
ecules are involved in the regulation of  almost all cellular 
processes[10-12]. Since single miRNA can potentially have 
hundreds of  targets, alteration of  its expression can 
easily influence cellular homeostasis, which in the most 
extreme case may result in cell death or in malignant 
transformation of  the cell. Indeed, the first evidence of  
involvement of  miRNAs in tumorigenesis was shown 
in 2002 by Calin et al[13]. These authors found that in 
68% of  chronic lymphocytic leukemia (CLL) cases, dele-
tions and down-regulation of  miRNA genes miR-15 and 
miR-16 at 13q14 locus were observed. Since then, thou-
sands of  publications have been devoted to miRNAs 
involvement in various types of  cancer.

Misregulation of miRNA expression in various cancers
Involvement of  miRNA in cancer has been proven 
by genome-wide expression studies using microarray 
technology and techniques based on quantitative poly-
merase chain reaction (qPCR), which have helped to 
establish the miRNA profiles of  normal and neoplastic 
tissues[14,15]. These studies revealed a global decrease in 
miRNA expression in many tumors. Various tumors 
also correlate with changes in specific miRNA expres-
sion. The above studies were supported by a number of  
investigations of  individual types of  neoplasms[16-29] (and 
many others). About 200 miRNAs have at least once 
been reported as being up- or down-regulated in tumors. 
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Overall, these studies prove that each neoplasm could 
exhibit a distinct miRNA expression profile that differs 
from one of  the other neoplasms and its normal tissue 
counterpart. However, a group of  miRNAs was shown 
to have a similar expression profile in multiple cancers, 
suggesting that their involvement in tumorigenesis is 
common for many cancer types. At the same time, there 
are many miRNAs that are differentially misregulated in 
different cancers[30]. The reason for this is not yet clear, 
but it is likely that the function of  a miRNA may vary 
because of  tissue-specific expression of  their targets. 
On the other hand, specific miRNAs can have differ-
ent cofactors and build different networking in different 
cancers. Thus, it becomes possible for a given miRNA to 
act either as an oncogene or as a tumor suppressor, ac-
cording to the context.

One of  the best examples for tissue-specific target 
regulation is the let-7 family of  miRNAs, which accord-
ing to many reports acts as tumor suppressors[31-34]. It has 
been shown that let-7 is frequently down-regulated in 
many cancers, leading to up-regulation of  the proto-on-
cogenes RAS[35], High Mobility Group A2 (HMGA2)[36-38], 
Myc[39], integrin beta 3[40], the oncofetal gene IMP-1[41] and 
the miRNAs maturation enzyme Dicer[42]. Let-7b was 
shown to down-regulate the expression of  cyclin D1, 
D3, A and cyclin-dependent kinase (Cdk 4) in melanoma 
cells[43].

A similar effect was observed for the miR-34 family, 
another potential tumor-suppressor in a variety of  can-
cers. Localized to chromosomes 1 (34a) and 11 (34c and 
b), this family is frequently deregulated in various cancers, 
including lung, ovarian, CLL and colorectal[44-47]. In addi-
tion, miR-34b/c polymorphism has been linked to risk 
of  developing hepatocellular carcinoma[48]. The miR-34 
family appears to be the direct transcriptional target of  
p53[49,50] and has few validated targets, SNAIL (zing finger 
protein SNAL1, epithelial-mesenchymal transition), Wnt, 
SIRT1 (silent mating type information regulation homo-
log), cyclin-dependent kinase 6 (CDK6) and others[51-54].

The miR-29 family (a, b and c) also has often been 
found to be decreased in tumors, such as CLL, hepato-
cellular carcinoma and breast cancer[55-57], and has been 
validated to target key components of  cellular survival 
as MCL-1 (induced myeloid leukemia cell differentiation 
protein), cell cycle CDK6 and dedifferentiation Krüppel-
like factor 4[26,55,58]. The most interesting observation con-
cerning miR-29 is that it can globally alter methylation 
status through targeting of  DNA methyltransferases 3A 
and B (DNA methyltransferases 3A and B) and lead to 
the derepression of  critical tumor suppressors[59].

The miR-17-92 cluster acts as a group of  oncogenes 
when over-expressed. This group includes 14 homolo-
gous miRNAs that are encoded by three gene clusters 
on chromosomes 7, 13 and X[25,60]. The cluster on chro-
mosome 13 is amplified in human B cell lymphomas[61], 
which leads to increased expression of  various miRNA 
members. Forced expression of  the miR17-92 cluster 
along with myc proto-oncogene (MYC) accelerates tumor 
development in mouse B cell lymphoma[62], thus acts as 

an oncogene. Up-regulation of  members of  this large 
miRNA group protects cells from apoptosis by inhibiting 
the expression of  E2F, p21 and Bim[63,64].

Among oncogenic miRNAs families, the most thera-
peutic and diagnostic potential is the miR-21 family, lo-
cated on chromosome 17. It is over-expressed in several 
cancers, including breast, colorectal and lung[65-67], and 
has few validated targets: TPMI (tropomyosin), PDCD4 
(program cell death protein 4) and PTEN (phosphatase 
and tensin homolog)[68-70].

These and other observations found in the literature 
prove that miRNAs play very important roles in cancer, 
although their mode of  action can differ according to the 
composition of  the targets and a combination of  other 
factors. Knowledge of  the mechanisms of  miRNA action 
in particular cancers, especially understanding of  their 
collaborators or inhibitors, will help to develop proper 
tools for miRNA-based therapy and diagnostics.

Cancer processes associated with misbalance of miRNA 
expression
Epithelial-mesenchymal transition: To date, it is 
believed that one of  the causes of  failure in the treat-
ment of  cancer is the existence of  cancer stem cells[71]. 
In cancer, epithelial-mesenchymal transition (EMT) is a 
process by which epithelial cells are reprogrammed to 
lose their differentiation and become undifferentiated 
stem cells with mesenchymal properties. Despite the fact 
that genes responsible for EMT are well known[72], data 
devoted to the involvement of  miRNAs in this process 
are still accumulating. Thus, Nairismägi et al[73] showed 
that miR-580 and CPEB1/2 down-regulate TWIST1 
expression, one of  the main inductors of  EMT in a co-
operative way. Another miRNA that suppresses EMT 
belongs to the miR-200 family. These miRNAs increase 
E-cadherin expression by targeting the mRNA of  the 
E-cadherin transcriptional repressors zinc finger E-box-
binding homeobox 1 (ZEB1) and ZEB2[74,75]. It was 
later shown that the miR-200 family is downregulated 
in the initial stages of  stromal invasion, but restored at 
metastatic sites[76]. In cases of  hepatocellular carcinoma, 
miR-612 was found to have an inhibitory effect on EMT 
targeting of  the AKT (also known as protein kinase B) 
signal cascade[77]. On the other hand, a set of  miRNAs is 
correlated with EMT progression. MiR-21 is thus over-
expressed during EMT, whereas blockage of  miR-21 
inhibits metastasis development[78,79]. During EMT, 
the Twist transcription factor induces expression of  
miR-10b. In turn, over-expression of  miR-10b in non-
metastatic breast tumors initiates intense invasion and 
metastasis[80]. Furthermore, in hepatocellular carcinoma, 
miR-106b promotes cell migration and metastasis by ac-
tivating the EMT process[81].

Angiogenesis and proliferation: The tumor growth 
rate is one of  the most critical characteristics that define 
the level of  cell malignancy. However, while growing, a 
tumor must supply itself  with nutrients, which are pro-
vided by active angiogenesis. Deregulation of  miRNA 
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expression is also involved in these processes. For 
instance, upregulation of  the miR-17-92 cluster in ad-
enocarcinoma leads to downregulation of  its predicted 
targets: anti-angiogenic thrombospondin-1 and connec-
tive tissue growth factor, resulting in enhanced neovas-
cularization[82]. Lee et al[83] showed that miR-378 increases 
cell survival, tumor growth and angiogenesis. Detailed 
analyses revealed that the main targets of  the miR-378 
were SuFu (inhibitor of  Hedgehog signal cascade) and 
tumor suppressor Fus-1. Regulation of  proliferation is 
mainly carried out by forced entry and progression of  
the cell cycle. Cyclins and their CDKs regulators are key 
players in the above-mentioned process. Thus, miRNAs 
can potentially inhibit key components, resulting in the 
inhibition of  proliferation or in decreased expression of  
cyclin inhibitors. Indeed, Linsley et al[84] showed that the 
miR-16 family regulates cell cycle progression. Further-
more, the miR-497-195 cluster has been shown to target 
multiple cell cycle regulators, including CDKs, but it is 
transcriptionally silenced in hepatocellular carcinoma[85]. 
In the case of  breast cancer, the same miRNA was able 
to decrease the cyclin E1 level[86]. Wee-1, a well-known 
cell cycle regulator, is also a target of  miR-497[87]. There 
are other cases in which miRNAs inhibit cell cycle inhib-
itors. Thus, analyses of  miRnome from a broad set of  
different cancer samples demonstrated that a number of  
miRNAs were over-expressed in all cases. Interestingly, 
one of  the main targets of  these miRNAs was RB1, a 
well-known negative regulator of  the cell cycle[15].

Mechanisms of alterations of miRNA-mediated control 
of gene expression in cancer
Genetic mechanisms: It is well known that genome 
instability characterizes malignant cells. The discov-
ery of  DNA alteration involvement in trespassing of  
miRNA gene expression came from the observation 
that 30%-50% of  miRNA genes are located in fragile 
sites[88,89]. Fragile DNA sites are regions that possess high 
levels of  instability and are susceptible to such processes 
as genomic rearrangement, which include multiplication 
and deletion of  loci, translocation, high rates of  muta-
tion etc[90]. Such a process is deletion of  oncosuppressive 
miR-15a/miR-16a miRNAs that target the anti-apoptotic 
B-cell lymphoma 2 (BCL-2) protein[91], which was found 
in the majority of  CLL cases[13]. Another rearrangement, 
translocation, was shown to alter the 17-92 cluster that 
contains a set of  miRNAs among which is leukemogenic 
miR-19[92]. Translocation can also alter miRNA targets, 
which results in the disruption of  miRNA-mediated 
proto-oncogenes repression. For instance, Mayr showed 
that translocation of  High Mobility Group A2 (HMGA2) 
3’UTR disrupts its repression by let-7 miRNA[37]. Dur-
ing amplification, the number of  pro-oncogenic miRNA 
genes is often increased. Thus, miR-26a, a direct regula-
tor of  PTEN, is frequently amplified at the DNA level 
in human glioma[93]. Amplification of  growth-promoting 
miR-23a is widely observed in gastric cancer[94]. While 
there is little data concerning the role of  mutations in 
miRNA-mediated control in cancer, the number of  

publications dedicated to the role of  single-nucleotide 
polymorphism (SNP) on miRNA action is growing fast. 
SNPs are single-nucleotide variations that naturally occur 
in the genome. They can potentially alter miRNA seed 
sequence, which results in alterations in miRNA target 
sites and deprivation of  proto-oncogene expression 
control. It may also influence miRNA secondary struc-
ture and cause disruption of  pri-miRNA recognition by 
miRNA processing enzymes. So far, numerous genomic 
studies have shown that SNPs in the miRNA seed se-
quence or target site may be associated with the risk for 
different types of  cancer and in the prognosis of  cancer 
treatment[95-99].

Transcriptional mechanisms: MiRNAs can be pro-
cessed from RNA intron (mirtron) or transcribed as in-
dependent transcripts. In the latter case, an miRNA gene has 
its own promoter and is transcribed by Pol Ⅱ[9]. Since tissue 
transcription factors in cancer are often misregulated, 
it is logical to assume that this also influences miRNA 
expression. Indeed, regulation of  miRNA expression 
by such well-known cancer-related transcription factors 
such as E2F, RAS, MYC and P53 has been shown[100,101]. 
Moreover, miRNAs and their transcription factors often 
work in feedback loops. Thus, E2F is responsible for 
up-regulation of  the above-mentioned 17-92 cluster of  
miRNA in gliomas. E2F1 acts as a transcriptional acti-
vator of  the miR-17-92 cluster and binds directly to the 
miR-17-92 promoter[102]. However, the set of  miRNAs 
produced from this cluster directly inhibits E2F1. This 
is an example of  a negative feedback loop[102,103]. Since 
E2F1 activates its own transcription by a positive feed-
back loop, miRNAs in this case act as a fuse for E2F1 
over-saturation. MiRNAs miR-449a and miR-449b are 
other targets of  E2F1. In this case, both miRNAs form 
a negative feedback loop indirectly by targeting the pRb-
E2F1 pathway through cell cycle arrest[104]. High expres-
sion of  miR-375 and estrogen receptor α (ERα) in 
breast cancer cells is an example of  a positive feedback 
circuit. MiR-375 targets dexamethasone-induced ras-re-
lated protein 1 mRNA, an ERα inhibitor, whereas ERα 
increases miR-375 expression[105].

Epigenetic mechanisms: Methylation of  DNA, espe-
cially gene promoter regions of  the genes, causes altera-
tion in gene expression[106]. During cancer progression, 
two cases could potentially be realized: hypermethylation 
of  oncosuppressors and hypomethylation of  oncogenes. 
The fact that most miRNAs are associated with CpG is-
lands[107] allows us to assume that miRNA genes are po-
tential targets of  DNA methylation machinery. Indeed, 
treatment of  cells with inhibitors of  DNA methylation 
(5-aza-2’deoxycytidine) led to upregulation of  the subset 
of  oncosuppressor miRNAs in human cancer cells[108]. 
Another example is the oncosuppressor miR-663 gene, 
which targets well-known proto-oncogenes such as 
EEF1A2, TGFβ , JunB and JunD[109-111]. It was found 
to be downregulated via methylation in samples of  hu-
man acute myeloid leukemia, hepatocellular carcinoma 
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and breast cancer, as well as in the K-562 leukemia cell 
line[112-115]. Similar processes occur with miR-129-2, a tu-
mor-suppressive miRNA that is frequently methylated in 
lymphoid but not myeloid malignancies[116]. The process 
of  hypomethylation can also be influenced in cancer-re-
lated alterations of  miRNA expression. Thus, Li et al[117] 
observed hypomethylation of  miR-200a/200b promot-
ers with subsequent overexpression of  these miRNAs. 
MiR-200a and miR-200b target SIP1, a protein product 
that suppresses E-cadherin expression and contributes 
to epithelial mesenchymal transition[74,117]. In renal cell 
carcinoma, the promoter of  the well-known oncogene 
miR-21 was found to be hypomethylated, which corre-
lates with upregulated miRNA expression level[118].

The stoichiometry of  miRNAs and their targets: 
Each miRNA potentially targets hundreds of  transcripts. 
Depending on the strength of  the miRNA binding site, 
the target can be more or less inhibited. Thus, constant 
levels of  miRNAs and mRNAs expression are in equi-
librium, which provides cell homeostasis. However, 
several mechanisms that might decrease the miRNA 
level by using “miRNA sponges” have been discovered. 
The most well-known example is regulation of  PTEN 
oncosuppressor expression by its pseudogene PTENP1, 
which harbors the same conserved miRNA binding 
site as PTEN mRNA[119]. In samples of  colon cancer, a 
decrease in the PTENP1 pseudogene copy number was 
found, which potentially increases the miRNA pool that 
targets PTEN. A pseudogene sequestering the miRNA 
pool was also shown in the case of  KRAS1P pseudo-
gene that possess binding sites for miR-143 and let-7 
family[120]. Another example of  a “miRNA sponge” is 
circular RNAs (circRNAs). These non-coding RNAs are 
processed from introns during splicing and carry multi-
ple miRNA binding sites. Hansen et al[121] has shown that 
ciRS-7 (circular RNA sponge for miR-7) contains more 
than 70 selectively conserved miRNA target sites and 
strongly inhibits miR-7 oncosuppressor activity[122,123].

3’UTR BINDING PROTEINS AND CANCER
Modulation of  the protein expression on the posttran-
scriptional level during oncogenic transformation often 
depends on 3’UTR and takes place by changing cis-ele-
ments or trans-binding factors that dictate stability and 
translation efficiency of  cancer-related protein mRNAs.

There are few well-characterized cis-elements present 
in the 3’UTR region. One of  them is the CPE, which has 
a consensus sequence of  U4-8A1-2U and is located in 
relatively close proximity to the ubiquitous nuclear poly-
adenylation hexanucleotide AAUAAA[124-126].

CPE binds CPEB, one member of  a family of  four 
conserved sequence-specific RNA-binding proteins that 
contain a zinc finger and two RNA recognition motifs[127]. 
During Xenopus oocyte maturation, CPEB controls 
meiosis progression from prophase Ⅰ to metaphase 
Ⅱ[127]. Translational control by CPEBs was later also 
shown to be involved in learning and memory[128,129] and 

in the regulation of  the mammalian cell cycle[130]. CPEB 
is also implicated in senescence in mammals[131,132] and 
in controlling the translation of  proteins involved in cell 
cycle checkpoints[133]. Xenopus studies have shown that 
CPEB can both promote and inhibit RNA translation by 
respectively elongating and shortening the poly(A) tail. 
The balance between the two CPEB-associated activities 
is altered during progression of  the cell cycle, depending 
on post-transcriptional modifications as well as on the 
number and location of  CPEs to which CPEB binds and 
recruits associated adenylating and de-adenylating protein 
complexes.  The CPEB-containing complex in Xenopus 
include: symplekin, which may be a platform protein 
upon which multi-component complexes are assembled, 
poly(A) ribonuclease, a de-adenylating enzyme and germ-
line-development factor 2 (Gld2), an atypical poly(A) 
polymerase[134,135]. The induction of  cytoplasmic polyade-
nylation is mediated by activation of  the serine/threonine 
kinase Aurora A/Eg2, possibly through repression of  
glycogen synthase kinase 3[136,137]. When phosphorylated 
on S174 or T171 (species-dependent), CPEB promotes 
polyadenylation by stimulating the activity of  Gld-2[138]. 
The newly elongated tail bound by the poly(A)-binding 
protein promotes translation by augmenting the assembly 
of  the eIF4F initiation complex[139].

CPEB family members were found to be misregulated 
in various cancers[3]. One of  them, CPEB4, was recently 
shown to be not only over-expressed in pancreatic cancer 
and glioblastoma in comparison with healthy pancreatic 
and brain tissues, but also plays a role as a key regula-
tor of  cancer transformation and controls translation 
of  hundreds of  mRNAs. SiRNA down-regulation of  
CPEB4 expression in RWP-1 (human pancreatic cancer 
lines) and Capan pancreatic cancer cells reduce their abil-
ity to form tumors after injection into nude mice[2]. This 
group found that one of  the most enriched CPEB4-
associated mRNAs, tissue type plasminogen activators 
(tPA), which is known to be over-expressed in pancreatic 
tumors, has a short poly(A) tail in normal tissue, whereas 
in ductal tumors and pancreatic ductal adenocarcinoma 
cell lines, the tPA poly(A) tail is elongated. This observa-
tion supports the idea that misregulation of  protein ex-
pression during cancer transformation can be controlled 
by the length of  the poly(A) tail, which depends on the 
presence of  CPEB proteins[2].

Insulin-like growth factor-2 mRNA-binding proteins 
(IGF2BPs or IMPs) are oncofetal proteins that were first 
discovered in human embryonic Rhabdomyosarcoma and 
are highly expressed in a number of  human cancers[6]. 
IMPs belong to a conserved family of  RNA-binding 
proteins implicated in the post-transcriptional regulation 
of  multiple mRNAs, IGF2, MYC, CD44, PTEN, G1/
S-specific cyclin-D1 (CCND1), CCND3, G1/S-specific 
cyclin-G1 (CCNG1) and others[4,5,140,141]. All these IMP 
targets are implicated in the proliferation and invasion of  
human cancer cells. Moreover, several studies have shown 
that IMPs participate in essential cell functions alienated 
during cancer transformation, such as cell polarization, 
migration, morphology, metabolism, proliferation and 
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differentiation[142].
IMPs are mainly expressed in the embryo and are im-

portant during development. However, because of  their 
abnormal re-expression in several types of  cancer, IMPs 
are considered as oncofetal proteins. Typically, IMP1 
and IMP3 have been implicated in colon, liver, kidney, 
pancreas and female reproductive tissue cancers. IMP3 is 
reported in over 50 publications as being over-expressed 
in multiple cancer types. IMP3 expression actually corre-
lates with tumor aggressiveness. Concerning IMP2, a few 
studies have linked its expression to liposarcoma, liver 
cancer and endometrial adenocarcinomas[142].

IMPs are generally observed in the cytoplasm, where 
they associate with target mRNAs in cytoplasmic ribo-
nucleoprotein complexes (mRNPs). Actually, in complex 
with a wide range of  other RNA binding proteins (RBPs), 
IMPs are able to control mRNA turnover, transport, lo-
calization and translation.

Other studies provide evidence suggesting an impor-
tant role for IMPs in cell migration. For instance, IMP2 
binds and controls the expression of  PINCH-2 (par-
ticularly interesting new cysteine-histidine-rich protein) 
and MURF-3 (muscle specific RING finger protein2)  
mRNAs to modulate cell motility[143].

Despite controversial observations regarding a po-
tential nuclear role of  IMPs, increasing evidence suggests 
that IMPs can recruit their target mRNAs in the nucleus 
during their transcription[144-146]. Moreover, a recent study 
actually shows that in contrast with IMP1 and IMP2, 
IMP3 has nuclear localization in a large number of  hu-
man cancer cell lines. For example, IMP3 is almost 100% 
nuclear in hepatocellular carcinoma, breast and ovarian 
cancer cells[4].

Among other well known proteins that bind mostly 
to the AU-rich sequences in 3’UTR and are involved in 
cancer transformations are Hu/elav proteins, known 
to bind AU-rich sequences in the 3’UTR and enhance 
mRNA translation or increase its stability[147,148]. HuR is 
ubiquitously expressed and HuB, -C and -D are primarily 
neuronal. HuR is also known as embryonic lethal, abnor-
mal vision, Drosophila-like 1. A link between HuR and 
malignant transformation has been suggested in cancers 
such as breast, colon, lung and ovary[149]. Their targets 
are involved in several processes, such as cell growth and 
survival, proliferation, stress response, senescence and 
cancer[150,151].

AU-binding factor 1 (AUF1), also known as hetero-
geneous nuclear ribonucleoprotein D, belongs to a big 
family of  hnRNPs that includes hnRNNP A, B, C, D, E, 
F, H, I, K, L, M, Q and R. AUF1 binds to the AU-rich 
sequence in the 3’UTR of  target mRNAs and promotes 
degradation of  the target transcript, most probably by 
recruiting them to exosomes for degradation[152,153]. How-
ever, AUF1 was found to enhance stability and transla-
tion of  some mRNAs[154,155]. AUF1 was also shown to be 
involved in several processes: cell cycle, stress response, 
apoptosis and carcinogenesis.

T-cell intracellular antigen 1 (TIA-1) TIA-1-related 
(TIAR) binds to AU/U-rich sequences in the 3’UTR 

of  the target transcript and suppresses mRNA trans-
lation[156]. Under stress conditions, these proteins are 
thought to halt mRNA-to-protein aggregations known as 
stress granules[157].

Nuclear factors 90 interacts with AU rich sequences 
and suppresses translation of  mRNAs involved in the cell 
cycle[158].

Tristetraprolin (TTP), zinc finger protein, binds AU-
rich sequences in mRNAs to promote their decay. It is 
involved in the cell cycle, inflammation and carcinogen-
esis[159,160].

KH-type splices regulatory protein (KSRP). RBP 
binds to AU-rich sequences of  target transcripts, pro-
moting mRNA decay. Its targets encoded cytokines, tran-
scription factors, proto-oncogenes and cell cycle regula-
tors[161].

Nucleolin interacts with mRNAs bearing AU-rich 
or G-rich sequences and regulates mRNA stability and 
translation. Its targets are involved in the cell cycle, cell 
morphology, development, cell proliferation and cancer 
genesis[148].

Obviously, two or more RBP may functionally inter-
play among themselves and with microRNAs through 
binding to the same mRNA 3’UTR.

INTERACTION BETWEEN 3’UTR BINDING 
FACTORS AND THEIR FUNCTION IN 
NEOPLASTIC TRANSFORMATION
RNA binding proteins interaction
Significant evidence has accumulated to support the 
idea that several RNA binding proteins can bind the 
same mRNA target on either the non-overlapping bind-
ing sites or on common sites in a competitive fashion. 
Different RBPs that are capable of  binding to the same 
RNA can cooperate or compete in their actions (Figure 
1). The outcome of  the combined action of  all factors 
bound to the same mRNA 3’UTR depends on many cir-
cumstances, such as expression of  different RBPs, their 
affinity for the binding sites, and their localization in the 
cells. This can be controlled by different physiological 
conditions.

For instance, interleukin (IL)-8 plays an integral role 
in promoting a malignant phenotype in breast cancer 
and its production is directly influenced by inflammatory 
cytokines in the tumor microenvironment. Subsequently, 
activation of  the IL-1 receptor on malignant breast can-
cer cells strongly induces IL-8 mRNA expression. HuR, 
KSRP and TIAR were found to bind one or more loca-
tions within the IL-8 3’UTR, although affinity of  the 
stabilizing factor HuR was 20-fold stronger than that of  
the KSRP destabilizing factor[162]. HuR, AUF1 and nu-
cleolin bind to BCL-2 mRNAs. HuR and nucleolin both 
stabilized the BCL-2 transcript, while AUF1 enhanced 
degradation[163-166]. Thus HuR and nucleolin can have a 
cooperative effect that is antagonized by AUF1. Another 
example is related to regulation of  GADD45A mRNA 
stability and translation efficiency. Nucleolin stabilized 

45WJBC|www.wjgnet.com February 26, 2014|Volume 5|Issue 1|

Vislovukh A et al . Role of 3’UTR translational control in cancer



GADD45A mRNA and was antagonized by AUF1, 
which promotes decay of  this mRNA, and by TIAR, 
which suppresses translation[167].

In addition, HuR and AUF1 formed a stable ribo-
nucleoprotein complex in the nucleus, whereas in the 
cytoplasm, HuR and AUF1 bound to target mRNAs indi-
vidually. HuR colocalizes with the translational apparatus 
and AUF1 with exosomes[168].

The nuclear localization of  IMP3 depends on its pro-
tein partner, HNRNPM. Nuclear IMP3 is important for 
the efficient synthesis of  CCND1, D3 and G1 proteins 
and for the proliferation of  human cancer cells. Curi-
ously, IMP3 can be differentially localized  in normal 
versus cancerous adult cells, which in turn will determine 
the efficiency of  protein synthesis of  CCND1, D3 and 
G1 in these cells and have an impact on their prolifera-
tion[4]. These studies suggested that IMPs are controlling 
the transcript destiny of  targeted mRNAs in the nucleus 
and subsequently influence their stability and translation 
in the cytoplasm. IMP is also found in complex with 
other RNA-binding proteins, such as HNRNP A2/B1, 
HNRNP A1, HNRNP A3, Polypyrimidine tract-binding 

protein 1, interleukin enhancer-binding factor 3, an RNA 
helicase DHX9 and a mRNA-stabilizing protein HuR[4]. 
Some of  these IMP3 partners, such as HuR, are already 
known to positively regulate CCND1 mRNA stability 
and translation[168].

Members of  the CPEB and PUF (drosophila pumilio 
(Pum) protein is a founder member of  a novel family of  
RNA-binding proteins, known as the PUF family.) (Po-
melia/Fem-3 mRNA-binding factor 1) families collabo-
rate to regulate mRNA expression throughout eukary-
otes. PUF was shown to directly interact with CPEB in C. 
elegans and humans (CPEB3) and to inhibit translation 
of  common targets[169].

3’UTR binding factors can control translation effi-
ciency via interaction with translation, initiation and elon-
gation factors. An example of  the interaction with initia-
tion factors has been described for CPEB1 in a previous 
chapter. Recently, the eukaryotic translation elongation 
factor 1A1 (eEF1A1) was shown to be involved in EMT 
regulation. The main function of  eEF1A1 is delivery of  
aminoacyl tRNA to the A-site of  the ribosome[170-172]. 
However, Hussey et al[173] discovered a new mechanism 
of  EMT control when eEF1A1 in complex with hnRNP 
E1 binds to the BAT element in the 3’UTR of  the EMT, 
inducing Dab2 and ILEI transcripts. This results in the 
inhibition of  eEF1A1 release from the ribosomal A site, 
which causes a stall in translational elongation of  the 
above-mentioned transcripts[173].

Moreover, PUF and Ago can interact with eEF1A 
proteins to repress translation elongation in both C. el-
egans and mammalians. This repression occurred after 
translation initiation and led to ribosome accumulation 
within the open reading frame, roughly at the site where 
the nascent polypeptide emerged from the ribosomal 
exit tunnel. Together, these data suggest that a conserved 
PUF-Ago-eEF1A complex attenuates translation elonga-
tion[174].

RNA binding protein and microRNA interaction
Proteins that bind to the same mRNAs 3’UTR can 
modulate the function of  miRNAs. They either enhance 
the inhibitory function of  miRNA or prevent it. On the 
other hand, miRNA also can assist the function of  RNA 
binding protein or inhibit it. This can happen simply 
through binding site competition or collaboration (via 
RNA remodeling), direct protein-protein interaction of  
3’UTR-binding complexes, or just functional interplay 
when a few factors act separately but their actions aug-
ment or negate each other (Figure 2).

Interestingly there are few cases described in the 
literature in which miRNA in collaboration with RNA 
binding proteins can change their mode of  action during 
the cell cycle or under physiological conditions such as 
oxidative stress and others.

It has been shown that upon cell cycle arrest, the 
ARE (AU-rich element) in tumor necrosis factor-a 
mRNA acts as a translation activation signal, recruiting 
AGO (argonaute RISC catalytic component) and fragile 
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Figure 1  Models of RNA binding proteins interplay in regulation of the 
same target. A, B: Two RBPs compete for the same binding site in 3’UTR; A: 
RBP1 binds to the site, repels RBP2, and stimulates translation; B: RBP2 binds 
to the site, repels RBP1, and inhibits translation; C, D, E: Two RBPs bind to the 
different sites and cooperate (C, E) or compete (D) in their actions; C: Coopera-
tive action of two RBPs stimulating expression; D: Two RBPs antagonized their 
effects; E: Cooperative action of two RBPs inhibiting expression. RBPs: RNA 
binding proteins; 3’UTR: 3’-untranslated region; ORF: Open reading frame. 
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X mental retardation-related protein 1 factors associated 
with miRNPs. Human miRNA mir-369-3 directs the as-
sociation of  these proteins with the AREs, leading to the 
activation of  translation[7]. Moreover, two well-studied 
miRNAs, let-7 and the synthetic miRNA miRcxcr4, also 
induce translational up-regulation of  target mRNA upon 
cell cycle arrest. However, they repress translation in 
proliferating cells. It has been proposed that translation 
regulation by miRNPs oscillates between repression and 
activation during the cell cycle[7].

Another example of  inactivation, storage and reacti-
vation is calcium transport protein (CAT)-1 mRNA tar-
geting by mir-122 under stress conditions. The derepres-
sion of  CAT-1 mRNA is accompanied by its release from 
cytoplasmic P-bodies and its recruitment to polysomes. 
Derepression requires binding of  HuR, an AU-rich-element-
binding protein, to the 3’UTR of  CAT-1 mRNA[175]. Thus, 
interaction with RNA binding proteins can change the 
miRNA mode of  action directed to the same target, ac-

cording to conditions.
Some difficulty in understanding the affiliation of  

certain RBPs for oncogenes or tumor suppressors came 
from the observation that the same RBP interacting 
with different miRNAs in the regulation of  different 
targets could lead to enhanced or suppressed cancer 
transformation, according to the nature of  the target. 
The stimulation effect of  Pomelia on miRNA function, 
most probably through mRNA remodeling, is directed 
towards the targets acting in opposite ways, as oncogene 
or tumor suppressor. It was shown by Kedde and co-
workers that Pomelia RBP pumilio RNA-binding family 
member 1 (PUM1) and PUM2 promote the regulation 
of  miR-221/222 on the p27kip1 check-point protein and 
tumor suppressor mRNAs by opening of  the secondary 
structure of  the p27 3’UTR and exposing the binding se-
quence to miR-221/222. This causes down-regulation of  
p27kip1 accumulation and stimulates cell proliferation and 
breast cancer development[176]. On the other hand, Po-
melia collaborates with some miRNAs to repress E2F3, 
transcription factor and strong oncogene. This prevents 
cell proliferation and down-regulates bladder cancer de-
velopment[177].

Another example of  miRNA and RBP collabora-
tion was shown by Nairismägi et al[73] who showed that 
miR-580 and CPEB1/2 down-regulate TWIST1 expres-
sion, one of  the main inductors of  EMT in a cooperative 
way. On the other hand, Dnd1 is an example of  RBP that 
prevents binding of  miRNA to their target sequences in 
a few genes, such as p27kip1 and LATS2, and suppresses 
formation of  germ cell tumor[178]. It also prevents miR-21 
function on its MutS protein homolog 2 target, which 
suppresses tumorigenesis in skin[179]. Thus by preventing 
miRNA down-regulation of  tumor suppressors, Dnd1 
inhibits the development of  certain tumors.

The same RNA binding protein can cooperate or 
antagonize miRNA functions, according to the mRNA-
target. One of  the most investigated examples is HuR[147], 
which was found to recruit let-7 to suppress c-MYC 
mRNA translation[8] but competes with miR-494 and 
miR-548-3p for the regulation of  nucleolin and TOP2A 
mRNA, respectively[180,181].

Some RBPs not working alone but in complex with 
other RNA binding proteins can prevent miRNA actions. 
IMP1 in complex with heterogeneous nuclear ribonu-
cleoprotein U, synaptotagmin binding, cytoplasmic RNA 
interacting protein, YXB1 (transcriptional regulator ) and 
DHX9 [DEAH (Asp-Glu-Ala-His) box helicase 9] is able 
to stabilize the mRNA of  MYC, possibly by inhibiting its 
translation-coupled degradation[182]. However, some stud-
ies showed that MYC is repressed by members of  the 
let-7 microRNA family, suggesting a possible function 
of  IMP1 in protecting MYC mRNAs from microRNA 
silencing. This was previously proposed as a mechanism 
for the stabilization of  the BTRC (beta-transducin re-
peat containing E3 ubiquitin protein ligase) mRNA by 
IMP1[183,184].

Not only RNA-binding protein can influence miRNA 
function, but reciprocal action has already also been 
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Figure 2  Models of RNA binding protein and miRNA interplay targeting the 
same mRNA. A, B: Competitive interaction. A: RBP stabilizes the secondary struc-
ture in 3’UTR, and prevents miRNA binding; B: RBP competes with miRNA for the 
same binding site; C, D: Cooperative interaction; C: RBP facilitates miRNA function 
by opening secondary structure in 3’UTR and liberating its binding site; D: RBP 
directly interacts with RISC (RNA-induced silencing complex) complex, stabilizing 
binding of the latter. RBPs: RNA binding proteins; 3’UTR: 3’-untranslated region.
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documented in the literature. Some miRNAs can affect 
the function of  RNA binding protein. For example, in-
teraction of  mir-16 (a member of  the mir-15/16 family 
of  miRNPs) and an ARE-binding protein TTP (tristet-
raprolin) has been shown to occur through association 
with AGO/eiF2C family members. Mir-16 assists TTP in 
targeting ARE, which appears to be an essential step in 
ARE-mediated mRNA degradation[185].

From all of  these examples, one can see that interac-
tion among factors binding to 3’UTR brings a new level 
of  complexity to the mechanisms of  action of  these fac-
tors and their influences on cancer transformation. It is 
becoming clear that to understand the true picture of  the 
post-transcriptional control of  certain genes via 3’UTR, 
especially that involved in cancer transformation, one 
needs to take into account all proteins and miRNAs bind-
ing to their 3’UTRs.

APPLICATION OF 3’UTR-BINDING 
FACTORS TO CANCER DIAGNOSIS AND 
TREATMENT
From the very early investigations that suggested 
miRNA involvement in cancer, scientists began to 
think about using it as a tool for cancer diagnosis and 
therapy. A number of  studies have been initiated utiliz-
ing miRNA expression profiling to determine markers 
for diseases. An early study comparing a limited number 
of  available miRNAs in cancer and normal tissues drove 
the conclusions that miRNAs expression signatures are 
able to classify tumors based on the development lin-
eage and the differentiation state, suggesting miRNAs 
as a potential biomarker[14]. Following works used the 
miRNA expression profile to define a number of  nor-
mal and cancerous tissues from thyroid, kidney, bladder, 
liver etc[186-193]. Furthermore, miRNA profiling has also 
been used to classify tumor subtypes in breast cancer in 
development[194,195]. Mir-342 is differentially expressed in 
breast cancer subtypes with high expression in Luminal 
B-type tumors and decreased expression in therapeu-
tically difficult estrogen receptor/human epidermal 
growth factor receptor 2-negative tumors[196]. This obser-
vation suggested that select miRNAs expression could 
differentiate tumor subtypes that can be more sensitive 
or resistant to particular treatments.

Radiation therapy (RT) is one of  the most often used 
procedures in cancer treatment; however, not all patients 
respond well to it. So, it is very important to develop 
markers that can predict a patient’s response to RT. MiR-
NA profiling has a big potential for this type of  diagnosis.

One of  the first reports identifies the let-7 family for 
its role in modulating sensitivity for RT in lung cancer[197]. 
It has been demonstrated that over-expression of  let-7 
promotes radio-sensitivity while knockdown increases 
resistance both in vitro and in vivo. Mir-181a has been 
identified as an important miRNA for radio-sensitivity 
in glioma cells. Transient over-expression of  miR-181a 
prevented radio-sensitivity that correlated with decreased 

quantities of  Bcl-2, an anti-apoptotic protein[198]. Simi-
larly, over-expression of  mir-451 in colorectal cancer cell 
lines decreases proliferation and increases RT sensitivity 
of  colorectal cancer cells[199].

Chemotherapy is another widely used treatment in 
cancer therapy. The miRNA profile also has a big poten-
tial as a marker for chemo-sensitivity. Inhibition or intro-
duction of  some miRNAs to certain cancers can improve 
their chemo-sensitivity. Inhibition of  mir-21 sensitizes 
U251 glioma cells to etoposide and glioma in mice to tu-
mor necrosis factor-related apoptosis, inducing the ligand 
S-TRAIL (TNF-related apoptosis-inducing ligand)[200-202]. 
Mir-451 is downregulated in the glioblastoma stem cell 
population. Reintroduction of  mir-451 in combination 
with the frequently used glioblastoma treatment imatinib 
inhibits the growth of  glioblastoma stem cells and the 
formation of  neurospheres[203].

Mir-122 was shown to be downregulated in hepa-
tocellular carcinoma (HCC) cells, which promotes RT 
resistance as well as growth, proliferation and metasta-
sis[204]. Insulin growth factor 1 tyrosine kinase receptor is 
targeted and suppressed by miR-122 in normal liver cells. 
However, depletion of  mir-122 in HCC increases the 
IgfIR level. Reintroduction of  mir-122 in HCC promotes 
sensitivity to the tyrosine kinase inhibitor sorafenib[204].

In colorectal cancer, a number of  miRNAs have been 
associated with predicting the response to nucleoside 
analogs. Mir-143 is downregulated in colon cancer. It tar-
gets NF-kB, Bxl-2 and ERK5 and has been shown to in-
crease sensitivity to fluorouracil in HCT-166 colon cancer 
cell lines[205]. In rectal cancer, mir-125b and mir-137 were 
associated with poor response to capecitabine, a pro-
drug that is enzymatically converted to fluorouracil[206]. 
In colon cancer, mir-519c targets and suppresses ATP-
binding cassette sub-family G member 2 (ABCG2) in cell 
lines that are sensitive to mitoxantrone, whereas mir-519c 
inhibition increases the ABCG2 level and chemoresis-
tance. In the ABCG2 resistant cell line, mRNA possess a 
shortened 3’UTR, which results in the loss of  a mir-519c 
target site and a high-level of  ABCG2 protein[207].

All these examples clearly show that miRNA profil-
ing of  each cancer could provide useful information for 
choosing the right treatment strategy. Few bio-pharma-
ceutical companies are working on developing miRNA-
profiling platforms for more detailed identification of  
cancer subtypes that could improve recommendation of  
treatment. There are more than 100 ongoing trials incor-
porating miRNA as biomarkers underway in various bio-
pharmacological companies.

Direct miRNA therapeutics, the fundamental prin-
ciple of  miRNA therapy, involves either directed silenc-
ing or reduction in tumor-promoting miRNAs versus 
enrichment of  tumor suppressive miRNAs. In vivo, these 
approaches include genetically engineered animals and 
different ways of  delivery, such as viral vectors, nanopar-
ticle-based delivery, mimics and antimiRs. Targeting 
miRNA for suppression through the use of  antimiRs is 
perhaps the most promising model. Through comple-
mentary binding to the target miRNA (working strand), 
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these molecules can repress the action of  select miRNAs.
To improve stability and target specificity, investiga-

tors have developed various modifications. Three types 
of  modification currently give the most promising results: 
replacement of  2-OH residues by 2’-O-methyl modified 
oligonucleotides, 2’-O-methoxyethyl and locked nucleic 
acid. In addition, conjugation of  cholesterol may be used 
to improve target specificity[208].

Sponge is another tool for RNA-silencing. By having 
multiple target binding sites, sponges essentially compete 
with target mRNA for miRNA occupancy, thus decreas-
ing binding miRNA to its real target[209].

To target a few miRNAs involved in the same cancer 
formation, investigators started using tiny 8-mer locked 
nucleic acids with a phosphorothioate backbone to en-
hance the stability level[210]. They were shown to inhibit 
families of  miR-221/222 and let-7 with high specificity.

Viral vector-based delivery systems, including ad-
enoviral, retroviral and lentiviral systems provide some 
advantages. For example, lentiviral let-7 delivery has been 
successfully used in murine models of  lung cancer[32]. 
Several nanoparticles with lipid-based formulations were 
perhaps the most effective in delivery while minimizing 
toxicity. Lipid emulsions have been used to deliver miR-
NAs in lung cancer and lymphoma[211-213].

In spite of  big efforts, only mir-122 has successfully 
reached the clinical trial in targeted therapy[214,215]. The 
systematic delivery of  antimiR-122 could reduce the 
hepatitis C virus (HCV) viral load chimpanzee model of  
chronic HCV infection with minimal toxicity[216]. San-
taris Pharma conducted a human phase Ⅱa trial safety 
antiviral function using miravirsen (a locked nucleic acid-
modified miR-122 antagonist).

RNA binding proteins similarly can be used as mark-
ers for proper cancer diagnostics, leading to better treat-
ment selection. For example, IMP3 over-expression has 
been associated with distinct cancer types. Several studies 
have suggested IMP3 as an important marker for poor 
prognosis in cancer[217,218]. Moreover, it was demonstrated 
that IMP3 promotes cell growth, proliferation and re-
sistance to ionic irradiation in an IGF2-dependent man-
ner[219,220]. Since CPEB4 was found to be a key protein for 
pancreatic cancer and glioblastoma development, one can 
try to apply siRNA-dependent direct down-regulation 
of  CPEB4 protein in this type of  tumor using delivery 
methods that are discussed in this chapter.

In conclusion, 3’UTRs of  human mRNAs contained 
many cis-elements that bind trans factors and are impor-
tant for the development of  various diseases, including 
cancer. Additional work is required to identify the com-
plete set of  3’UTR cis-elements and the trans-regulatory 
factors that interact with them and to determine func-
tional consequences of  these interactions and their role 
in cancer transformation. Powerful transcriptome-wide 
computational and experimental methods are now be-
ing used to address these questions. Along with lower-
throughput reductionist approaches, they should move us 
closer to a system biology understanding of  how 3’UTRs 
contribute to gene regulation during cancer transforma-

tion. This will allow developing new, more powerful 
drugs in cancer therapy.
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Core tip: This is a comprehensive review regarding 
the role and mechanism of the CD38/Cyclic adenosine 
diphosphate ribose (cADPR)/Ca2+ signaling pathway in 
various cellular processes. We introduce the structure 
and function of cADPR, together with its production 
and degradation pathways. We also describe CD38, 
the main enzyme that is responsible for synthesis of 
cADPR, through its structure and topology. Finally, we 
summarize the functions of the CD38/cADPR/Ca2+ sig-
naling pathway under both physiological and pathologi-
cal conditions.

Wei W, Graeff R, Yue J. Roles and mechanisms of the CD38/
cyclic adenosine diphosphate ribose/Ca2+ signaling pathway. 
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INTRODUCTION
Discovered more than two decades ago, cyclic adenosine 
diphosphate ribose (cADPR) has been established as a 
second messenger, according to criteria first proposed 
by Sutherland and co-workers[1]. Together with inositol 
1,4,5-trisphosphate (IP3) and nicotinic acid adenine dinu-
cleotide phosphate (NAADP), cADPR has been recog-
nized as a principal second messenger involved in cellular 
Ca2+ mobilization. Extracellular stimuli can induce cAD-
PR production, which leads to Ca2+ mobilization from 
intracellular stores as well as Ca2+ entry from the extracel-
lular compartment to initiate diverse cellular responses. 
cADPR is synthesized by ADP-ribosyl cyclases and the 
major ADP-ribosyl cyclase in mammals is CD38 (Figure 
1). In this review, we will first introduce the structure and 
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Abstract
Mobilization of intracellular Ca2+ stores is involved in 
many diverse cell functions, including: cell proliferation; 
differentiation; fertilization; muscle contraction; secre-
tion of neurotransmitters, hormones and enzymes; 
and lymphocyte activation and proliferation. Cyclic ad-
enosine diphosphate ribose (cADPR) is an endogenous 
Ca2+ mobilizing nucleotide present in many cell types 
and species, from plants to animals. cADPR is formed 
by ADP-ribosyl cyclases from nicotinamide adenine di-
nucleotide. The main ADP-ribosyl cyclase in mammals 
is CD38, a multi-functional enzyme and a type Ⅱ mem-
brane protein. It has been shown that many extracel-
lular stimuli can induce cADPR production that leads 
to calcium release or influx, establishing cADPR as a 
second messenger. cADPR has been linked to a wide 
variety of cellular processes, but the molecular mecha-
nisms regarding cADPR signaling remain elusive. The 
aim of this review is to summarize the CD38/cADPR/
Ca2+ signaling pathway, focusing on the recent advanc-
es involving the mechanism and physiological functions 
of cADPR-mediated Ca2+ mobilization.
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function of  cADPR. Next, the structure and topology of  
CD38 will be reviewed. Finally, the physiological func-
tions of  CD38/cADPR/Ca2+ signaling and their involve-
ment in pathological processes will be summarized.

THE STRUCTURE AND FUNCTION OF 
CADPR 
A suitable model system is the foundation of  any novel 
finding and this concept is also true for the discovery of  
cADPR. Sea urchin eggs are large and amenable for mi-
croinjection studies so that Ca2+ mobilizing activities dur-
ing fertilization can be readily observed, and it is easy to 
isolate endoplasmic reticulum (ER) from sea urchin eggs, 
making them the perfect system to investigate mecha-
nisms of  intracellular Ca2+ mobilization[2]. Taking ad-
vantage of  the sea urchin homogenate preparation and 
use of  the fluorescent Ca2+ indicator Fura 2, Lee et al[3] 
and Clapper et al[4] found that the pyridine nucleotide 
nicotinamide adenine dinucleotide (NAD) can invoke a 
delayed Ca2+ release from ER independent of  IP3. They 
then determined that this delay was due to enzymatic 
conversion of  NAD to cADPR by the homogenate. 
Later, Lee et al[5] solved the structure of  cADPR by x-ray 
crystallography and showed that it is a novel cyclic nucle-
otide formed by the covalent linkage of  the N1 nitrogen 
of  the adenine ring to the anomeric carbon of  the termi-
nal ribose to become a closed cyclic structure (Figure 2). 
Benefiting from the identified structure, multiple cADPR 
analogs have been synthesized, which greatly promoted 
research on the role and mechanism of  cADPR-mediated 
Ca2+ signaling[6-9]. 

From the very beginning of  research on cADPR, sev-
eral pharmacological studies have clearly shown that the 
mechanism of  cADPR-induced Ca2+ release is different 
from that of  IP3. For example, desensitization experi-

ments demonstrated that the sea urchin homogenates 
which were desensitized to IP3 would still respond to 
cADPR[4], and the IP3 inhibitor heparin had no effect on 
the cADPR-induced Ca2+ release[10]. Using the sea urchin 
homogenate as the model, Galione et al[11] proposed that 
calcium-induced calcium release (CICR) may be modu-
lated by cADPR, since concentrations of  cADPR in the 
nanomolar range could greatly increase the sensitivity to 
Ca2+ during the CICR process. Thus, ryanodine recep-
tors (RyRs) were proposed to be the cADPR receptors 
through which the CICR functions, and this idea was 
supported by several subsequent studies. For example, 
cADPR was shown to directly activate RyR2 that was 
incorporated into lipid bilayers[12]. In HEK293 cells trans-
fected with an islet type RyR, which is a splice variant 
of  the RyR2 gene by alternative splicing of  exons 4 and 
75, Ca2+ release was enhanced in the presence of  100 
μmol/L cADPR, and the effect could be reversed by pre-
incubating with a cADPR antagonist, 8-bromo-cADPR 
(8-Br-cADPR)[13]. Similarly, cADPR triggered a marked 
Ca2+ transient in HEK293 cells that stably expressed 
RyR1 and RyR3, and this Ca2+ transient was abolished by 
dantrolene, an RyR antagonist[14]. In summary, all these 
results suggested that RyRs might serve as cADPR recep-
tors (Figure 1). 

However, further experiments argued that the action 
of  cADPR on ryanodine receptors might require the 
assistance of  additional protein factors (Figure 1). For 
example, both calmodulin and FK506 binding protein 
(FKBP) have been shown to be required for cADPR 
action[15-20]. These data suggested that cADPR does not 
directly bind to the ryanodine receptors, but acts through 
some intermediate proteins, whose definitive identities 
remain to be established. Zheng et al[21] demonstrated in 
mouse bladder smooth muscle that Ca2+ release induced 
by cADPR is actually mediated by FKBP12.6 proteins. 
Nevertheless, additional research such as genome-wide 
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Figure 1  Cyclic adenosine diphosphate ribose mediated Ca2+ signaling. TRPM2: Transient receptor potential cation channel M2; cADPR: Cyclic adenosine di-
phosphate ribose; NAADP: Nicotinic acid adenine dinucleotide phosphate; NAD: Nicotinamide adenine dinucleotide; ER: Endoplasmic reticulum.
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RNAi screening is needed to elucidate the direct receptor 
of  cADPR.

In addition, growing evidence has shown that cADPR 
also evokes Ca2+ influx (Figure 1)[22]. It has been shown 
that cADPR can significantly potentiate the transient re-
ceptor potential cation channel M2 (TRPM2) channel ac-
tivity in a temperature dependent manner[23]. Similarly, we 
recently synthesized a novel fluorescent caged cADPR 
analogue, coumarin caged isopropylidene-protected cI-
DPRE (Co-i-cIDPRE), and found that it is a potent and 
controllable cell permeant cADPR agonist. Moreover, we 
demonstrated that uncaging of  Co-i-cIDPRE activates 
RyRs for Ca2+ mobilization and triggers Ca2+ influx via 
TRPM2[24]. Yet, another experiment showed that TRPM2 
is not involved in the effect of  another membrane-per-
meant cADPR agonist, 8-bromo-cyclic IDP-ribose (8-Br-
N1-cIDPR), which induced Ca2+ entry in T cells[25]. Thus, 
the channel that mediates the cADPR induced Ca2+ influx 
still needs to be elucidated.

ENZYMATIC PATHWAY OF CADPR 
SYNTHESIS AND DEGRADATION
As mentioned above, the effect of  NAD to induce Ca2+ 
release in sea urchin eggs was shown to result from its 
enzymatic conversion to cADPR. Subsequently, a similar 
enzymatic activity was shown to exist in a wide variety of  
mammalian tissues[26]. The first purified enzyme shown 
to produce cADPR from NAD was identified in Aplysia 
and was later named ADP-ribosyl cyclase[27]. Surpris-

ingly, the amino acid sequence of  Aplysia ADP-ribosyl 
cyclase, a soluble 30 kDa protein, showed overall about 
68% homology with human CD38, a lymphocyte anti-
gen[28,29]. CD38 was indeed able to catalyze the cyclization 
of  NAD to cADPR in pancreatic beta-cells[30]. More-
over, purified murine CD38 was able to convert NAD 
to cADPR in an in vitro assay[28]. Later, CD157, a GPI-
anchored antigen that shared 30% homology with CD38, 
was found to have ADP-ribosyl cyclase activity as well[31].

Overall, these ADP-ribosyl cyclases share about 
25%-30% sequence identity[32], and this family is likely 
to grow since researchers have continued to find ADP-
ribosyl cyclase activity that is undefined. In addition, it 
appears that these unknown cyclases function differently 
in different tissues. For example, an unidentified cardiac 
ADPR cyclase can be inhibited by micromolar concentra-
tions of  Zn2+, which is different from the effects of  this 
cation on CD38 and CD157[33,34]. A similar ADP-ribosyl 
cyclase that can be inhibited by the divalent cations Zn2+ 
and Cu2+ has also been found in the disks of  bovine reti-
nal rod outer segments[35]. Specific inhibitor based analy-
sis confirmed the existence of  a distinct ADP-ribosyl 
cyclase in the kidney since it responded differently to the 
inhibitor 4,4’-dihydroxy azobenzene (DHAB) treatment 
than CD38[36].

So far, CD38 is still considered to be the main mam-
malian ADP-ribosyl cyclase, as shown by the fact that 
extracts of  tissues from CD38 knockout mice have little 
if  any ADP-ribosyl activity compared to those from wild 
type mice. When incubated with NAD in vitro, CD38 only 
produced a small portion of  cADPR, while the major-
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Figure 2  Schematic of the structure and synthesis of cyclic adenosine diphosphate ribose. cADPR: Cyclic adenosine diphosphate ribose; NAADP: Nicotinic 
acid adenine dinucleotide phosphate; NAD: Nicotinamide adenine dinucleotide.
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ity of  the product is ADP-ribose; thus CD38 possesses 
both cyclase and NADase activities. In addition, CD38 
can hydrolyze cADPR to ADP-ribose and, other than 
CD157, it remains the only ADP-ribosyl cyclase that has 
been identified in mammals[28]. Moreover, CD38 shows 
another bifunctional character in that it catalyzes the syn-
thesis and hydrolysis of  another secondary messenger, 
NAADP. In this reaction, CD38 catalyzes the exchange 
of  the nicotinamide group of  NADP with nicotinic 
acid under acidic conditions to generate NAADP; fur-
thermore, NAADP can also be hydrolyzed by CD38 to 
ADPRP (Figure 2)[37,38]. Understanding the structure and 
function of  CD38 is a crucial part of  cADPR/Ca2+ sig-
naling research.

STRUCTURE AND ENZYMATIC 
FUNCTION OF CD38
CD38 is a transmembrane protein, containing a short 
21 amino acid residue N-terminal cytoplasmic tail, a 23 
amino acid residue hydrophobic transmembrane domain, 
and a large 256 amino acid residue carboxyl-terminal ex-
tracellular domain with four putative glycosylation sites[39]. 
The extracellular domain of  human CD38 with the gly-
cosylation sites removed has been expressed in yeast and 
purified. Structural analysis of  the recombinant CD38 by 
X-ray crystallography showed that the secondary struc-
ture of  CD38 is similar to that of  the Aplysia cyclase. 
Overall, both CD38 and the cyclase have similar topology 
although the cyclase forms dimers in the crystals whereas 
CD38 does not. The middle cleft of  both proteins forms 
a deep pocket as the active site, with a TLEDTL con-
served sequence sitting in the bottom of  the pocket[40,41]. 
Site-directed mutagenesis studies identified Glu226 as the 
catalytic residue of  CD38[42]. Two other residues, Glu146 
and Thr221, were found to be essential for the cyclization 
and hydrolysis activity of  CD38, respectively[43]. Upon 
binding of  NAD to the active site, the nicotinamide ring 
interacts with Trp189 by hydrophobic ring stacking, the 2’ 
and 3’ hydroxyls of  the northern ribose form hydrogen 
bonds with Glu226, and the ribose diphosphate moi-
ety interacts with amino acids Trp125, Ser126, Arg127, 
Thr221 and Phe222. Upon cleavage of  the nicotinamide 
ring, the N1 nitrogen of  the adenine ring gains access to 
the anomeric carbon to form a covalent bond and pro-
duce cADPR. Alternatively, a water molecule, rather than 
the adenine ring, attacks the intermediate to form ADP-
ribose[44]. In contrast to the formation of  cyclic ADP-
ribose from NAD, CD38 also catalyzes the formation of  
NAADP from NADP. Under acidic pH and in the pres-
ence of  nicotinic acid, the acidic residues in the active site 
of  CD38 are protonated, thereby facilitating the nucleo-
philic attack of  the intermediate of  NADP by nicotinic 
acid to generate NAADP[44]. 

TOPOLOGY OF CD38
Structurally, CD38 is predicted to be a type-II transmem-

brane protein with its catalytic C-terminal domain located 
outside of  the cell[39]. This circumstance presents a dilem-
ma because the NAD substrate is located intracellularly 
whereas the enzyme is positioned extracellularly. If  so, 
cytosolic NAD must be transported out of  cells first and 
then cyclized by CD38 to produce cADPR in the extra-
cellular space. Subsequently, the cADPR product must be 
transported back into the cytosol to induce Ca2+ release 
from the ER. This scenario obviously presents a “topo-
logical paradox” for the cADPR/Ca2+ signaling cascade. 
Two general hypotheses have been proposed to solve this 
puzzle (Figure 3). The first proposal is based on the pres-
ence of  transporters, such as connexin 43 hemichannels, 
which allow intracellular NAD to move to the extracel-
lular space so that it is available for access to the catalytic 
domain of  CD38 to be converted to cADPR[45]. The 
cADPR product is then transferred back to cells via either 
CD38 or nucleoside transporters[46]. Besides this direct 
transport model via transporters, Zocchi et al[47] also sug-
gested that CD38 undergoes an extensive internalization 
through invaginations of  the plasma membrane to form 
endocytotic vesicles, which makes the active site of  CD38 
intravesicular and able to convert cytosolic NAD into 
cADPR. CD38 itself  is a unidirectional transmembrane 
transporter of  cADPR that mediates the cADPR efflux 
into the cytoplasm to reach the Ca2+ store, while influx of  
the cytosolic NAD+ substrate into the endocytotic CD38-
containing vesicles is mediated by other transmembrane 
transporters, such as connexin 43 hemichannels[48]. The 
internalization of  CD38 has been supported by several 
studies. For example, the internalization of  CD38 can 
be induced by NADP in Chinese hamster ovary (CHO) 
cells[49] and hemin treatment can induce internalization of  
CD38 in K562 cells[50]. Rah et al[51] have also demonstrat-
ed that association of  phospho-nonmuscle myosin heavy 
chain ⅡA with tyrosine kinase Lck and CD38 is critical 
for the internalization and activation of  CD38. However, 
mechanisms regarding the transporter mediated CD38 
activation process remain elusive. For example, connexin 
43 hemichannels are opened for NAD export only when 
the cellular Ca2+ is 100 nmol/l; thus this system is unlike-
ly to operate when Ca2+ is elevated above basal levels[45].

The second proposal offered to explain the topologi-
cal paradox involves a consideration of  the orientation of  
CD38. Bruzzone and coworkers have shown that treat-
ment of  granulocytes with 8-Br-cyclic adenosine mono-
phosphate (cAMP), a cell-permeant analog of  cAMP, in-
duced serine phosphorylation of  CD38, correlating with 
a cAMP-dependent intracellular cADPR synthesis[52]. Al-
though the exact location of  the phosphorylation sites is 
unknown, it was predicted to be in the catalytic C-terminal 
domain that contains multiple serine residues. However, 
if  the catalytic domain of  CD38 is phosphorylated by 
protein kinase A (PKA), this domain should be in the cy-
tosol to directly cyclize NAD, thereby synthesizing cAD-
PR intracellularly. This suggests that although CD38 is 
believed to be a type-Ⅱ protein, at least a portion of  the 
total CD38 is expressed as a type-Ⅲ membrane protein 
with its C-terminal catalytic domain sitting in the cyto-
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sol[53]. Since the number of  positive charges that determine 
the polarity of  membrane protein is equal on each side of  
the CD38 transmembrane segment, studies from protease 
digestion[54] and electron microscopy[55] showed that the 
nuclear CD38 might be a type-Ⅲ membrane protein. Most 
recently, Zhao et al[56] reported that expression of  a cyto-
solic CD38 protein with deletion of  both the N-terminal 
tail and transmembrane domain results in intact disulfides 
as well as active enzyme in spite of  the cytosolic reductive 
environment; this result appears to solve the fundamental 
need of  the six disulfides for CD38 enzymatic activity. 
Based on this finding, they consequently proved the co-
expression of  type Ⅱ and type Ⅲ CD38 on the surface 
of  leukemia HL-60 cells during retinoic acid-induced dif-
ferentiation and on interferon Υ-activated natural human 
monocytes and U937 cells[57]. They proposed that the type-
Ⅲ structure may take part in fast cellular responses, while 
the type-Ⅱstructure may be more suitable for slower and 
long term responses (Figure 3)[58]. 

PHYSIOLOGICAL FUNCTIONS OF THE 
CD38/CADPR/CA2+ PATHWAY
In addition to its role in cADPR production, another 
function of  CD38 is to regulate the NAD level inside 
cells. It has been well established that NAD plays an 
essential role in energy metabolism and is involved in 
diverse signal transduction pathways. A rather surprising 

finding is that CD38 has a dramatic role in intracellular 
NAD metabolism. NAD levels in CD38 knockout mice 
are 10 to 20-fold higher than that in wild-type animals. 
These results suggest that CD38 is a major regulator of  
NAD levels in mammalian cells[59].

CD38 was originally identified as a lymphocyte anti-
gen; thus it is not surprising that the CD38/cADPR/Ca2+ 
pathway plays an important role in inflammatory process-
es. In an ischemic stroke study, CD38-/- mice produced 
less monocyte chemoattractant protein-1 (MCP-1) after 
temporary middle cerebral artery occlusion and had fewer 
infiltrating macrophages and lymphocytes in the ischemic 
hemisphere than the wild type mice, whereas the amount 
of  resident microglia was unaltered. The same study also 
demonstrated that CD38 affected immune cell migration 
as well as activation, two crucial postischemic inflamma-
tory responses in secondary brain damage, suggesting 
that CD38 might be a therapeutic target to modulate 
the inflammatory mechanisms after cerebral ischemia[60]. 
Recently, Ng et al[61] used intravital multi-photon micros-
copy to observe the neutrophil granulocyte traffic into 
the injury site in the dermis of  mice and found that the 
amplification phase, which is the attraction of  more neu-
trophils toward the damage focus after the initial phase 
of  migration by scouting neutrophils, was mediated by 
cADPR. cADPR and CD38 were also involved in the 
regulation of  leukocyte adhesion and chemotaxis and 
were required for the deletion of  T regulatory cells dur-
ing inflammation as well[62]. In addition, 8-Br-cADPR, a 
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Figure 3  Models of CD38 topology. cADPR: Cyclic adenosine diphosphate ribose; NAD: Nicotinamide adenine dinucleotide; RyR: Ryanodine receptor.
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cADPR antagonist, inhibited the MCP-1 induced Ca2+ 
increase, reactive oxygen species (ROS) production and 
apoptosis in human retinal pigment epithelium, suggest-
ing that cADPR is also involved in the inflammatory re-
sponses of  age-related macular degeneration (AMD)[63].

Recently, we demonstrated that cADPR is important 
for regulating cell proliferation and neuronal differentia-
tion in PC12 cells. We found that acetylcholine (Ach) 
activates the CD38/cADPR pathway to induce Ca2+ 

release and the CD38/cADPR/Ca2+ signaling pathway 
is required for Ach-stimulated cell proliferation in PC12 
cells. Interestingly, inhibition of  the cADPR pathway ac-
celerated nerve growth factor (NGF)-induced neuronal 
differentiation in PC12 cells. On the other hand, CD38 
overexpression increased cell proliferation but delayed 
NGF-induced differentiation. Taken together, we demon-
strated that cADPR plays a dichotomic role in regulating 
proliferation and neuronal differentiation of  PC12 cells[64].

Abscisic acid (ABA) is an endogenous stimulator of  
insulin secretion in human and murine pancreatic beta 
cells. ABA triggered activation of  CD38 and production 
of  cADPR before insulin release, suggesting that CD38 
is a regulator of  insulin release[65]. Also, CD38 expression 
and cADPR production induced by ABA were required 
for ABA-induced upregulation of  COX-2 and prosta-
glandin E2 in human mesenchymal stem cells (MSC) and 
for chemokinesis of  MSC[66].

Since cADPR can activate RyRs for Ca2+ release from 
ER and can modulate the CICR process, the CD38/
cADPR/Ca2+ pathway is predicted to participate in the 
regulation of  cardiac activities, including cardiogenesis 
and the function of  adult cardiac tissue. In fact, ever 
since the discovery of  cADPR, researchers have vigor-
ously explored its role in cardiac tissues. Galione et al[67] 
showed that application of  cADPR through a patch 
electrode resulted in an increase in Ca2+ transients with 
a concomitant increase of  the magnitude of  contraction 
in guinea-pig cardiac ventricular myocytes, whereas ap-
plication of  the inhibitor 8-amino-cADPR resulted in 
a significant reduction in contractions and Ca2+ release 
from the SR. Similarly, in rat cardiac ventricular myocytes, 
cADPR increased the frequency of  Ca2+ “sparks”, which 
may contribute to the increase in subsequent whole-
cell Ca2+ transients[68]. In addition, Prakash et al[69] found 
that microinjection of  cADPR into adult rat ventricular 
myocytes not only induced sustained Ca2+ responses in a 
concentration dependent manner but also increased the 
frequency and amplitude of  spontaneous Ca2+ waves, 
which were completely blocked by 8-amino-cADPR, a 
cADPR antagonist.

Interestingly, cardiac hypertrophy developed only in 
CD38 knockout male mice. The expression of  RyR pro-
tein was increased only in female CD38 knockout mice 
compared with wild type, suggesting that the CD38/
cADPR signaling plays an important role in intracellular 
Ca2+ homeostasis in cardiac myocytes in vivo, although its 
deficiency was compensated differentially according to 
gender[70].

cADPR was also shown to be involved in angiotensin 

Ⅱ-induced cardiac hypertrophy[71]. In rat cardiomyocytes, 
angiotensin Ⅱ evoked a Ca2+ increase via IP3R to activate 
PKC, which then activated the NAD(P)H oxidase to ini-
tiate ROS generation. The ROS together with Ca2+ then 
activated the ADP-ribose cyclase to synthesize cADPR, 
which induced a sustained increase of  both Ca2+ and 
ROS and finally led to cardiac hypertrophy[72]. Most re-
cently, Xu et al[73] demonstrated that CD38/cADPR was 
involved in the regulation of  superoxide (O2

•-) production 
in mouse coronary arterial myocytes (CAMs). NAD(P)H 
oxidase is responsible for O2

•- production. Since CD38 
can use NAD, an NAD(P)H oxidase product, to produce 
cADPR and cADPR production can result in an increase 
in NAD(P)H oxidase activity, the system contains a posi-
tive feedback loop. Xu et al[73] found that oxotremorine, a 
muscarinic type 1 receptor agonist, stimulated intracellu-
lar O2

•- production in CAMs that was inhibited in CD38 
knockout, CD38 knockdown, or nicotinamide-treated 
(a CD38 inhibitor) cells. On the other hand, direct ap-
plication of  cADPR into CAMs increased intracellular 
Ca2+ and O2

•- production in CD38-/- CAMs. Moreover, 
CD38 knockout, Nox1 knockdown or Nox4 knockdown 
blocked oxotremorine-induced contraction in the iso-
lated perfused coronary arteries in mice. Taken together, 
these data indicate that the CD38/cADPR pathway is an 
important regulator of  Nox-mediated intracellular O2

•- 
production.

The CD38/cADPR/Ca2+ pathway has also been 
shown to regulate the cardiogenesis process. We recently 
studied the role of  CD38/cADPR/Ca2+ in the cardio-
myogenesis of  mouse embryonic stem (ES) cells. We 
found that beating cells appeared earlier and were more 
abundant in CD38 knockdown embryoid bodies (EBs) 
than control EBs, and the expression of  several cardiac 
markers was increased significantly in CD38 knockdown 
EBs than control EBs. Similarly, more cardiomyocytes 
(CMs) existed in CD38 knockdown or cADPR antago-
nist-treated EBs compared to control EBs. Conversely, 
CD38 overexpression in mouse ES cells markedly inhib-
ited CM differentiation. Surprisingly, CD38 knockdown 
ES cell derived CMs possess the functional properties 
characteristic of  normal ES cell derived CMs. In addition, 
we found that the CD38/cADPR pathway inhibited the 
Erk1/2 cascade during CM differentiation of  ES cells, 
and transient inhibition of  Erk1/2 blocked the enhancive 
effects of  CD38 knockdown on the differentiation of  
CM from ES cells. Taken together, we demonstrated that 
the CD38/cADPR/Ca2+ signaling pathway inhibits the 
CM differentiation of  mouse ES cells[74]. 

The mechanism underlying cADPR regulation of  Ca2+ 
sparks in cardiomyocyte remains elusive. Zhang et al[19]. 
showed that cADPR markedly increased the Ca2+ spark 
frequency in cardiomyocytes isolated from wild type 
mice, whereas cADPR failed to initiate Ca2+ sparks in car-
diomyocytes isolated from FK506 binding protein 12.6 
(FKBP12.6) knockout mice. They further demonstrated 
that cADPR induced FKBP12.6 dissociation from RyRs 
in a phosphorylation-dependent manner. Yet, another 
study showed that cAMP signaling is required for the 
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role of  cADPR in the beta-adrenergic receptor induced 
Ca2+increase in rat cardiomyocytes. They found that the 
isoproterenol-mediated increase of  Ca2+ was blocked by 
pretreatment with 8-Br-cADPR, PKA inhibitor H89 or 
a high concentration of  ryanodine. Moreover, incuba-
tion of  ventricular lysates with isoproterenol, forskolin 
or cAMP resulted in activation of  ADP-ribosyl cyclase 
of  the ventricular lysates[34]. Interestingly, for comparison, 
estrogen increased CD38 expression and its cyclase activ-
ity, but did not affect its hydrolase activity, while proges-
terone eliminated the effects of  estrogen on CD38 in the 
rat myometrium[75]. Nevertheless, the mechanism of  how 
the CD38/cADPR is involved in the regulation of  car-
diac function is still unclear.

CD38/CADPR/CA2+ PATHWAY IN 
PATHOLOGICAL PROCESSES
The CD38/cADPR/Ca2+ pathway has been suggested 
to be involved in various pathological processes. For 
example, CD38 deficiency accelerated diabetes in a non-
obese diabetic (NOD) mice model[76]. It has also been 
shown that both the specific kidney ADP-ribosyl cyclase 
activity and cADPR production were increased in the 
kidneys of  diabetic mice, suggesting that cADPR plays 
a role in the renal pathogenesis of  diabetes[77]. Down-
regulation of  CD38 has also been shown to mediate the 
intermittent hypoxia induced impairment of  glucose-
induced insulin secretion, suggesting that CD38 plays a 
role in type 2 diabetes progression[78]. Numerous studies 
have been attempted to dissect the molecular mechanism 
of  the role of  CD38/cADPR/Ca2+ pathway in mediat-
ing diabetes in order to identify an alternative therapeutic 
tool. Tian et al[79] found that the content of  cADPR was 
elevated with concomitant enhanced activity of  RyR2 in 
ventricular myocytes isolated from a type 1 diabetic rat 
model, suggesting that cADPR mediates type 1 diabetes 
through regulating the function of  RyR2. Chen et al[80] 
demonstrated that the ATP-gated ion channel P2X7 was 
required for the acceleration of  type 1 diabetes induced 
by CD38 deficiency. Taken together, knowledge about 
the role of  the CD38/cADPR/Ca2+ pathway in diabetes 
is accumulating rapidly and there is hope that understand-
ing this pathway will facilitate the development of  novel 
therapeutics for the disease. 

The CD38/cADPR/Ca2+ pathway has been associat-
ed with inflammatory airway disorders. In human airway 
smooth muscle (ASM) cells, increased ASM contractil-
ity in inflammatory diseases such as asthma was due to 
enhanced Ca2+ sensitivity to cytokines, which was corre-
lated with the increase of  CD38 expression and cADPR 
level[81]. This increase of  CD38 was induced by TNFα 
via NFκB and could be inhibited by glucocorticoids[82]. 
In addition, the CD38/cADPR/Ca2+ pathway also me-
diated the 2-arachidonoylglycerol induced rapid actin 
rearrangement during differentiation of  HL-60 cells into 
macrophage-like cells[83], and extracellular NAD+ induced 
stimulation and recruitment of  human granulocytes dur-

ing the inflammation process[84]. In addition, CD38 was 
involved in a neuroinflammatory disorder where CD38 
expression level was markedly increased in IL-1beta- or 
HIV-1-activated human astrocytes, whereas CD38 knock-
down significantly reduced proinflammatory cytokine and 
chemokine production in astrocytes[85]. Considering these 
results, the CD38/cADPR/Ca2+ pathway plays important 
roles in multiple inflammatory processes.

CONCLUSION
The CD38/cADPR/Ca2+ pathway modulates various 
processes of  cells, including inflammation, insulin secre-
tion, cardiogenesis, cardiac regulation etc. With further 
investigation, it is likely that other physiological roles of  
the CD38/cADPR/Ca2+ pathway will be revealed. For 
example, Yue et al[64] have shown that the CD38/cAD-
PR/Ca2+ pathway delayed the nerve growth factor in-
duced differentiation of  PC12 cells; thus it is reasonable 
to predict that this pathway might also be involved in the 
regulation of  neurogenesis. Using the mouse embryonic 
stem cell in vitro differentiation model, our preliminary re-
sults showed that the CD38/cADPR/Ca2+ pathway does 
play a role in neural differentiation of  mES (unpublished 
data); however, further research is needed to decipher the 
underlying mechanism. A comprehensive understanding 
of  the physiological and pathological roles of  the CD38/
cADPR/Ca2+ pathway in various cellular processes will 
undoubtedly be helpful for exploiting new molecular 
therapy targets. In addition, it still remains to be deter-
mined whether cADPR binds directly to RyRs or through 
some unknown proteins. Recently, the long-sought-after 
store-operated Ca2+ entry proteins were identified using a 
genome-wide RNAi screen by several groups[86-88]. A simi-
lar strategy could be applied to identify novel cADPR-
interacting proteins or regulators.
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catalysis will contribute significantly to designing and 
developing new RNR inhibitors for improved cancer 
chemotherapy, antibiotic development and antiviral 
treatments.
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INTRODUCTION
Ribonucleotide reductase (RNR) catalyzes the rate limit-
ing step of  the DNA synthesis where the reduction of  
ribonucleotides (NTPs) results in the formation of  cor-
responding deoxyribonucleotides (dNTPs)[1-4]. The RNR 
catalysis involves protein free radicals, redox-active thiols 
and proteins of  the thioredoxin (Trx) superfamily. In the 
RNR complex, the R1 subunit contains the active site, 
allosteric sites and redox active thiols/disulfides required 
for the RNR catalysis; while the R2 subunit provides a 
dinuclear metal cluster and a tyrosyl free radical essential 
for the catalytic cycle. The RNR activity can be regulated 
by expression of  different subunits, subcellular localiza-
tion, post-translational modifications and allosteric regu-
lation involving both activity and substrate specificity[3-8]. 
The DNA replication is coordinated with the cell growth 
by different regulatory mechanisms. Development of  
malignancy and cancer are found to be associated with 
an increased expression and activity of  RNR. In cells, an 
imbalance in the levels of  dNTPs will cause mutagenesis 
and carcinogenesis. On the other hand, blockage of  RNR 
activity can inhibit DNA synthesis and repair which re-
sults in apoptosis. In recent years, several RNR inhibitors 
have entered clinical trials. Recent developments in the 
field will provide a new basis for the discovery of  more 
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Abstract
Ribonucleotide reductase (RNR), the rate-limiting 
enzyme in DNA synthesis, catalyzes reduction of the 
different ribonucleotides to their corresponding deoxyri-
bonucleotides. The crucial role of RNR in DNA synthesis 
has made it an important target for the development of 
antiviral and anticancer drugs. Taking account of the re-
cent developments in this field of research, this review 
focuses on the role of thioredoxin and glutaredoxin sys-
tems in the redox reactions of the RNR catalysis.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.

Key words: Ribonucleotide reductase; Thioredoxin; Glu-
taredoxin; DNA synthesis; Thiol disulfides; Replication

Core tip: Thioredoxin and glutaredoxin-mediated redox 
regulations of ribonucleotide reductase (RNR) catalysis 
play a vital role as the RNR catalysis involves differ-
ent redox active thiol functions, thiyl radicals and thiol 
proteins. The in depth knowledge of the whole redox 
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effective RNR inhibitors for cancer therapy. Taking ac-
count of  the recent progress in this field of  research, this 

review focuses on the role of  Trx and glutaredoxin (Grx) 
systems in the redox regulations of  the RNR catalysis.

RNR: CLASSIFICATION AND CATALYSIS
Based on the pathways of  radical initiation and require-
ments of  metal cofactors, the RNRs have been divided in 
to three classes[2-5]. The active site of  all three classes of  
RNR has a very similar structure (Figure 1)[2-5,9]. A con-
served cysteine residue plays the vital role for the genera-
tion of  a thiyl radical in all the classes of  RNR (Figures 1 
and 2). The reaction mechanisms of  different classes of  
RNR are similar due to the structural similarities of  the 
catalytic domains. The RNR catalysis starts with the gen-
eration of  a thiyl radical close to the bound substrate[2-5]. 
Then the abstraction of  hydrogen from the C3’ of  the 
ribose ring and generation of  a substrate radical occur. 
During the RNR catalysis, a cysteinyl radical, required for 
the abstraction of  hydrogen at the C3’ ribose substrate, 
is derived from a tyrosyl radical for class Ⅰ or cobalamin 
cofactor for class Ⅱ or a glycyl radical for class Ⅲ. For 
class Ⅰ and Ⅱ enzymes, electrons required for the reduc-
tion of  the ribonucleotides aare provided by reduced 
nicotinamide adenine dinucleotide phosphate (NADPH) 
through Trx or Grx systems. However, for class Ⅲ en-
zymes, the electrons are supplied by formate.

The class Ⅰ RNR occurs in eukaryotes, eubacteria, 
bacteriophages and viruses. The complex, in its simple 
form, is a tetramer with the dimer of  larger subunit (R1) 
and the dimer of  R2 subunit (Figures 1 and 2)[2-5,9]. Oxy-
gen is required for the generation of  a tyrosyl radical 
(Tyr 122) in the R2 subunit. As described above, during 
catalysis, the radical is continuously transferred to a cys-
teine (Cys 439) residue of  the R1 subunit and generates a 
thiyl radical to activate the substrate. The R1 subunit car-
ries the catalytic site, allosteric effector binding sites and 
redox-active thiol groups required for the catalysis. p53R2 
is an additional mammalian RNR protein which functions 
as a catalytic partner of  the R1 subunit[10-12]. The expres-
sion of  the p53R2 subunit is induced by DNA damage 
which is mediated by the tumor suppressor protein p53. 
Both R2 and p53R2 subunits use a diferric iron center gen-
erating a tyrosyl free radical required for the RNR catalysis. 
The R1-p53R2 complex is suggested to be required for 
basal DNA repair and the R1–R2 complex is suggested to 
be associated with DNA replication[11]. Moreover, the R1-
p53R2 complex has been found to play a significant role in 
dNTP supply for mitochondrial DNA synthesis. 

For class Ⅱ RNR (archaebacteria, eubacteria), a co-
factor (5’-deoxyadenosylcobalamin) replaces the pres-
ence of  a separate subunit for storage of  radicals[2-5]. 
The cleavage of  5’-deoxyadenosylcobalamin generates 
a deoxyadenosyl radical which abstracts hydrogen from 
the active site cysteine residue. Trx system can reduce the 
C-terminal pair of  redox-active cysteines which, in turn, 
can reduce the active site to continue the RNR catalysis. 
For anaerobic class Ⅲ RNR (archaebacteria, eubacteria, 
bacteriophages), a glycyl radical is generated by the ac-
tion of  activase, S-adenosylmethionine and a reducing 
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Figure 1  Crystal structure of Class Ⅰ aerobic ribonucleotide reductase 
complex (A), and proposed reaction mechanism of ribonucleotide reduc-
tase catalysis (B). A: This is based on the crystal structures of the R1 and R2 
proteins (Protein Data Bank ID: 1RLR and 1RIB). The figure shows the pres-
ence of substrate in R1 subunit and dinuclear iron center in R2 subunit. The 
ribonucleotide reductase complex (RNR) complex is a tetramer with the dimer of 
R1 subunit and the dimer of R2 subunit. The allosteric regulatory domain of R1 sub-
unit (ATP-cone) binds either ATP or dATP to regulate the enzymatic activity (adapted 
from Logan et al[9]); B: The figure describes the reduction of nucleoside diphosphate 
(NDP) to deoxyribonucleoside diphosphates (dNDP) by class Ⅰ RNR (E. coli). The 
reduction is initiated by a thiyl radical (Cys 439) by abstracting the 3′-hydrogen from 
the NDP. A water molecule is lost and the two cysteines (Cys 225 and Cys 462) then 
deliver the required reducing equivalents, generating a 3′-ketodeoxynucleotide 
which is subsequently reduced to give dNDP (adapted from Holmgren et al[4]).
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system containing flavoredoxin, NADPH and NADPH-
flavoredoxin reductase. Then the glycyl radical generates 
a thiyl radical required for the catalysis. 

TRX AND GRX SYSTEM
Trx is a class of  12 kDa ubiquitous redox proteins found 
primarily in the cytosol[13]. Trxs possess a catalytically ac-
tive dithiol function in a Cys-Gly-Pro-Cys motif  and are 
present in all organisms. The complete mammalian Trx 
system comprising Trx, the selenoenzyme thioredoxin 
reductase (TrxR) and NADPH also plays a crucial role in 
redox signaling and thiol homeostasis of  cells. Cytosolic 
Trx1 and mitochondrial Trx2 regulate several metabolic 
pathways, oxidative/nitrosative stress defence, apoptosis 
and DNA synthesis[4,13-15]. On the other hand, Grxs are 
small redox enzymes of  approximately 10 kDa and they 
participate in thiol-disulfide exchange reactions in the 
presence of  glutathione (GSH), glutathione reductase 
(GR) and NADPH. In the Grx system, Grx is reduced via 
GSH[16]. The glutathione disulfide formed is then reduced 
by GR and NADPH. Grxs are involved in redox signaling 
and maintenance of  cellular redox environment. More-
over, the maintenance of  cytosolic and mitochondrial iron 
homeostasis have been found to be linked to Grxs[16,17].

Several findings support the redundancy between cy-
tosolic Trx and Grx systems to provide a backup for each 
other. Yeast and bacterial strains can survive in the ab-
sence of  either of  the disulphide reductase pathways[18]. 

Moreover, GSH synthesis was found to be essential for 
mouse development[19], whereas the deletion of  Trx gene 
was reported to be lethal for mouse embryo[20]. Loss of  
TrxR1 showed no effect on the normal replicative poten-
tial[21]. However, the survival of  TrxR1-deficient tumor 
cells was found to be very much dependent on GSH[22]. 
In a recent study, it has also been shown that the GSH/
Grx system can reduce Trx1 in TrxR1-deficient HeLa 
cells[23]. 

ROLE OF TRX AND GRX AS EXTERNAL 
ELECTRON DONORS FOR RNR
Trxs and Grxs belong to related families of  low mo-
lecular weight redox enzymes catalyzing thiol-disulfide 
exchange reactions with catalytically active cysteine thiols 
in a CXXC active site[13,16]. For class Ⅰ and Ⅱ RNR en-
zymes, the electrons are supplied by NADPH through 
Trx or Grx systems[2-5]. Reduction of  ribonucleotide in 
the RNR catalysis involves the formation of  a disulfide 
in the active site of  R1 subunit. Structural studies with E. 
coli RNR show that the active site cleft of  the R1 subunit 
is not very wide to permit the direct reduction by the 
external redoxin system(s)[3,24]. However, the reduction 
of  active site disulfide is performed by a pair of  shuttle 
cysteine residues in the C-terminal mobile tail of  R1 sub-
unit (Figure 3)[4,25,26]. The C-terminal shuttle dithiols of  
E. coli R1 subunit has the CXXXXC sequence; whereas 
yeast and mammalian R1 has a CXXC sequence. In vitro 
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Figure 2  Subunit organization of ribonucleotide reductase complex. Amino acids are shown with E. coli numbering which are crucial for the radical transfer and 
ribonucleotide reductase (RNR) catalysis. The R2 subunit contains the iron-oxygen cluster (Fe-O-Fe) which reacts with dioxygen to generate a stable tyrosyl radical in 
Tyr 122 required for the RNR catalysis. The radical transfer pathway from Tyr 122 to the active-site Cys 439 in R1 subunit involves the network of Asp 84, His 118, Asp 
237, Trp 48, Tyr 356 in R2 subunit and Tyr 730, Tyr 731 in R1 subunit[2-5]. The Cys 225, Cys 462, Asn 437 and Glu 441 residues are involved in binding the substrate 
nucleoside diphosphate (NDP) in R1 subunit. During the catalysis, the disulfide bond between Cys 225 and Cys 462 is reduced by the C-terminal shuttle dithiols[2-5]. 
The figure is adapted and modified from Holmgren et al[4].
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mutagenesis and kinetic studies support a critical role for 
the C-terminal cysteine pair of  R1 in regeneration of  the 
active site[27,28]. The disulfide exchange reaction results in 
the formation of  a disulfide in the C-terminal tail of  R1. 
Then, the external redoxin systems reduce the disulfide 
bond to continue the next cycle of  RNR catalysis.

Trx and Grx systems were found to act as dithiol 
electron donors of  E. coli RNR[29,30]. Recently, Gustafs-
son et al[31] characterized the Trx1 system as the physi-
ologically relevant electron donor for RNR in Bacillus 
anthracis. In E. coli, the class Ⅰa enzyme requires the 
dithiol form of  at least one of  Grx1, Trx1 or Trx2 to be 
viable[32-34]. The Grx1 system showed 10-fold lower km 
value compared to that of  Trx1 system, while both of  
the redoxins had similar vmax (Table 1). This makes Grx1 
the most efficient electron donor for the E. coli enzyme. 
However, there is a mechanistic difference between the 
E. coli and the mammalian RNR catalysis involving Trx1 
and Grx1 systems as electron donors[26]. Trx1 and Grx1 
system showed similar catalytic efficiencies (kcat/km) with 
recombinant mouse RNR complex (Figure 4 and Table 
1). In the presence of  4 mmol/L GSH, the Grx1 system 
showed a higher affinity compared to Trx1 and displayed 
a higher apparent kcat. The RNR activity with the Grx 
system was found to be very much dependent on the 
concentrations of  GSH. Here, it is noteworthy to men-
tion that mammalian cells have significantly high concen-
trations of  GSH (5-20 mmol/L)[35]. Moreover, the ability 
of  the monothiol mutant of  Grx2 to maintain RNR 
catalysis demonstrates a glutathionylation mechanism for 
Grx catalysis in contrast to the dithiol mechanism for the 
Trx system[26]. However, the E. coli RNR complex showed 

no activity with the monothiol mutant of  bacterial Grx1 
suggesting the involvement of  a dithiol-disulfide mecha-
nism for the catalysis[36]. 

The advantage of  a glutathionylation mechanism may 
be with the very low levels of  R1 involved in the repair 
and production of  dNTPs for mitochondrial DNA syn-
thesis. Trx is present at low levels in many resting post-
mitotic cells. The sigmoidal curve of  Trx activity showed 
that reduced Trx could not be efficient with a low con-
centration of  R1 in postmitotic cells[26]. The high concen-
tration of  GSH[35] would ensure that there is glutathionyl-
ated R1 and then monothiol/dithiol Grx should be able 
to catalyze reduction of  the C-terminal disulfide. Several 
studies reported that the rapidly proliferating cells have 
increased GSH concentration, while a decrease in GSH 
concentration limits cell proliferation. GSH acts as a key 
regulator of  cell proliferation and thus the colocalization 
of  GSH with nuclear DNA was observed in proliferat-
ing cells[37]. In mammary carcinoma cells, the depletion 
of  glutathione was found to inhibit DNA synthesis[38]. A 
similar study with 3T3 fibroblast cells showed a signifi-
cant correlation between progression of  cell cycle and the 
distribution of  nuclear GSH[39]. Moreover, accumulation 
of  DNA damage was found in liver, kidney and lung of  
mice deficient in γ-glutamyl transpeptidase, the enzyme 
responsible for initiating the catabolism of  GSH[40]. In an-
other study, down-regulation of  TrxR showed no effects 
on the dNTP pools in malignant mouse cells[41]. This sug-
gests the role of  the GSH/Grx system as an alternative 
pathway used by the RNR in tumor cells. Moreover, a 
study in mouse hepatocytes, suggested the importance of  
a TrxR-independent pathway for the supply of  electrons 
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Figure 3  The mechanistic model for the role of thioredoxins and glutaredoxins for the ribonucleotide reductase catalysis. After the completion of one turn-
over cycle of ribonucleotide reductase (RNR) catalysis, a disulfide bond is formed between the conserved cysteine pair at the active site (shown in the circle). Shuttle 
dithiol function present at the C-terminal CXXC motif of the neighboring subunit reduces the disulfide bond through disulfide-exchange. Then, the resulting disulfide 
bond at the C-terminal tail is reduced by the thioredoxin/glutaredoxin (Trx/Grx) systems resulting in an active R1 to continue the next cycle of RNR catalysis. The Grx 
system can also reduce the C-terminal thiols by the glutathionylation mechanism[4,25,26]. For simplicity, only the reduction of active site of one subunit by the C-terminal 
shuttle dithiols of the neighboring subunit is shown in the diagram. The figure is adapted and modified from Holmgren et al[4].
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to RNR[21]. These studies clearly show the crucial role of  
the GSH/Grx system in DNA repair via RNR catalysis.

ROLE OF TRX FOR CLASS Ⅲ RNR
The class Ⅲ RNR (present in strict and facultative anaer-
obes) forms an inactive α2β2 complex in resting state[2-5]. 
The cysteine residues present in the C-terminus of  pro-
tein α were found to be responsible for the formation 
of  glycyl radical and to participate in radical transfer 
reactions during enzyme activation. Under the reducing 
condition, the small β subunit can activate several α pro-
teins. The Trx system was found to activate the enzyme 
with the same efficiency as dithiothreitol (DTT)[42]. The 
data suggests that the Trx system keeps the conserved 
cysteines of  the C-terminus of  the α-polypeptide in a 
reduced form which is required for radical generation. 
Therefore, Trx acts only for the activation of  the class 
Ⅲ RNR. Later, a structural study of  the homologous 
enzyme from bacteriophage T4 revealed the presence of  
zinc bound to four conserved cysteine residues[43]. It was 
also shown that the Trx system or DTT is dispensable 
for the formation of  the glycyl radical with the fully Zn-
loaded RNR. The radical transfer from glycine to the 
active-site cysteine to the substrate is controlled by a cru-
cial hydrogen-bond network. Thus, the suggested role of  
the Trx system (or DTT) was to facilitate the recognition 
of  the network and allow efficient radical transfer.

CONCLUSION
For several years, the RNR inhibitors have been used to 
treat cancers and viral infections[6,7,44,45]. Most of  the RNR 
inhibitors are either radical scavengers (hydroxyurea) or 
metal chelators (triapine) which specifically inactivate the 
R2 subunit[46,47]. On the other hand, several nucleoside 
analogs and sulfhydryl group inhibitors (such as cisplatin, 
caracemide, chlorambucil, etc.) are used as R1-specific 
inhibitors[48-50]. Gene expression silencers and R1-R2 
polymerization inhibitors (oligopeptides) have also been 
used to block RNR activity[51-55]. In recent years, many 
new strategies have emerged in the designing of  subunit-
specific and more effective RNR inhibitors. Redox regu-
lation of  RNR catalysis plays a vital role as the RNR 
catalysis involves different redox active thiol functions, 
thiyl radicals and thiol proteins of  the Trx superfamily. 

Therefore, further investigations on the Trx/Grx-mediat-
ed redox regulation of  RNR catalysis will contribute sig-
nificantly to design and develop new RNR inhibitors for 
improved cancer chemotherapy and antiviral treatments. 
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km (μmol/L)
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tured into the following sections: AIM (no more than 20 words; 
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Text
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Illustrations
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rate page. Detailed legends should not be provided under the 
figures. This part should be added into the text where the figures 
are applicable. Figures should be either Photoshop or Illustra-
tor files (in tiff, eps, jpeg formats) at high-resolution. Examples 
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Tables
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clearly in the main text. Provide a brief  title for each table. Detailed 
legends should not be included under tables, but rather added into 
the text where applicable. The information should complement, 
but not duplicate the text. Use one horizontal line under the title, a 
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Notes in tables and illustrations
Data that are not statistically significant should not be noted. aP < 0.05, 
bP < 0.01 should be noted (P > 0.05 should not be noted). If  there 
are other series of  P values, cP < 0.05 and dP < 0.01 are used. A third 
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als) in the upper left corner. In a multi-curve illustration, each curve 
should be labeled with ●, ○, ■, □, ▲, △, etc., in a certain sequence.

Acknowledgments
Brief  acknowledgments of  persons who have made genuine con-
tributions to the manuscript and who endorse the data and conclu-
sions should be included. Authors are responsible for obtaining 
written permission to use any copyrighted text and/or illustrations.

REFERENCES
Coding system
The author should number the references in Arabic numerals ac-
cording to the citation order in the text. Put reference numbers in 
square brackets in superscript at the end of  citation content or after 
the cited author’s name. For citation content which is part of  the 
narration, the coding number and square brackets should be typeset 
normally. For example, “Crohn’s disease (CD) is associated with 
increased intestinal permeability[1,2]”. If  references are cited directly 
in the text, they should be put together within the text, for example, 
“From references[19,22-24], we know that...”

When the authors write the references, please ensure that the 
order in text is the same as in the references section, and also ensure 
the spelling accuracy of  the first author’s name. Do not list the same 
citation twice. 

PMID and DOI
Pleased provide PubMed citation numbers to the reference list, e.g. 
PMID and DOI, which can be found at http://www.ncbi.nlm.nih.
gov/sites/entrez?db=pubmed and http://www.crossref.org/Sim-
pleTextQuery/, respectively. The numbers will be used in E-version 
of  this journal.

Style for journal references
Authors: the name of  the first author should be typed in bold-faced 
letters. The family name of  all authors should be typed with the ini-
tial letter capitalized, followed by their abbreviated first and middle 
initials. (For example, Lian-Sheng Ma is abbreviated as Ma LS, Bo-
Rong Pan as Pan BR). The title of  the cited article and italicized 
journal title (journal title should be in its abbreviated form as shown 
in PubMed), publication date, volume number (in black), start page, 
and end page [PMID: 11819634   DOI: 10.3748/wjg.13.5396].

Style for book references
Authors: the name of  the first author should be typed in bold-
faced letters. The surname of  all authors should be typed with the 
initial letter capitalized, followed by their abbreviated middle and 
first initials. (For example, Lian-Sheng Ma is abbreviated as Ma LS, 
Bo-Rong Pan as Pan BR) Book title. Publication number. Publica-
tion place: Publication press, Year: start page and end page.

Format
Journals 
English journal article (list all authors and include the PMID where applicable)
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If  you have any questions about the revision, please send e-mail to 
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