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Abstract
Glucose is used aerobically and anaerobically to generate energy for cells. Glucose 
transporters (GLUTs) are transmembrane proteins that transport glucose across 
the cell membrane. Insulin promotes glucose utilization in part through 
promoting glucose entry into the skeletal and adipose tissues. This has been 
thought to be achieved through insulin-induced GLUT4 translocation from 
intracellular compartments to the cell membrane, which increases the overall rate 
of glucose flux into a cell. The insulin-induced GLUT4 translocation has been 
investigated extensively. Recently, significant progress has been made in our 
understanding of GLUT4 expression and translocation. Here, we summarized the 
methods and reagents used to determine the expression levels of Slc2a4 mRNA 
and GLUT4 protein, and GLUT4 translocation in the skeletal muscle, adipose 
tissues, heart and brain. Overall, a variety of methods such real-time polymerase 
chain reaction, immunohistochemistry, fluorescence microscopy, fusion proteins, 
stable cell line and transgenic animals have been used to answer particular 
questions related to GLUT4 system and insulin action. It seems that insulin-
induced GLUT4 translocation can be observed in the heart and brain in addition 
to the skeletal muscle and adipocytes. Hormones other than insulin can induce 
GLUT4 translocation. Clearly, more studies of GLUT4 are warranted in the future 
to advance of our understanding of glucose homeostasis.

Key Words: Glucose transporter 4; Insulin; Skeletal muscle; Adipocytes; Brain; Heart; 
Antibodies
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Core Tip: Glucose transporter 4 (GLUT4) can be detected not only in the skeletal 
muscle and adipocytes, but also in the brain and heart. In addition to the translocation 
from vesicles in the cytosol to the cell membrane by insulin, the expression levels of 
Slc2a4 mRNA and GLUT4 proteins are also regulated by many factors. A variety of 
methods and antibodies from various sources have been used to evaluate GLUT4 
expression and translocation.
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INTRODUCTION
Currently, diabetes is a problem of public health[1]. Based on the American Diabetes 
Association definition, diabetes is a serious chronic health condition of your body that 
causes blood glucose levels to rise higher than normal, which will lead to multiple 
complications if hyperglycemia is left untreated or mismanaged[2]. Diabetes occurs 
when your body cannot make insulin or cannot effectively respond to insulin to 
regulate blood glucose level. There are two type of diabetes, insulin-dependent type 1 
diabetes mellitus (T1DM) and -independent type 2 diabetes mellitus (T2DM). T2DM 
accounts for about 90% to 95% of all diagnosed cases of diabetes, and is due to the lack 
of responses to insulin in the body[3]. Insulin resistance is a characteristic of T2DM. For 
a person with diabetes, a major challenge is to control or manage blood glucose level. 
Glucose is a common molecule used for production of energy or other metabolites in 
cells. As a quick energy source, glucose can be metabolized aerobically or 
anaerobically depending on the availability of oxygen or cell characteristics[4]. Glucose 
is a hydrophilic molecule, and cannot diffuse into or out of a cell freely. It needs 
transporters to cross the cell membrane. Glucose transporters (GLUTs) are proteins 
that serve this purpose.

GLUTs are members of the major facilitator superfamily (MFS) transporters, which 
are responsible for the transfer of a large array of small molecules such as nutrients, 
metabolites and toxins across the cell membrane[5]. Multiple members have been 
identified in each family of MFS transporters, and changes of their functions have been 
associated with a number of diseases[5]. Members of MFS transporters have 12 
transmembrane helices, and transport their substrates as uniporters, symporters or 
antiporters[5]. Upon binding of the substrates on side of the membrane, a conformation 
change occurs, which is achieved through coordinative interactions of those helices 
through a “clamp-and-switch” mechanism. Structural studies have shown that the 
substrate specificity is achieved through the conserved amino acid residues within 
each family[5]. Thus, it is important to understand GLUT functions, expressions and 
regulations for the control of blood glucose homeostasis.

Insulin and GLUTs
Dietary starch is first digested into glucose before being absorbed into the body and 
utilized[4]. The first transporter identified is GLUT1, which is expressed universally in 
all cells, and responsible for basal glucose transport[6]. Insulin stimulates glucose 
utilization in the body. This is in part through the insulin-induced glucose uptake in 
the muscle and adipose tissues. In addition to insulin stimulation, physical activity can 
also increase glucose entering into the skeletal muscle cells[7]. The observation that 
insulin promotes the redistribution of GLUTs from intracellular locations to the 
plasma membrane in adipocytes began in the 1980s[8-10]. Few years later, the insulin-
induced glucose transport was also found in muscle cells[11,12]. To understand the 
underlying mechanism of insulin-stimulated glucose uptake, antibodies against 
membrane glucose transport proteins were created[13]. Subcellular fractionation, 
cytokinin B (glucose-sensitive ligand), and glucose absorption into isolated vesicles 
were used to study the phenomenon. It was proposed that these GLUTs are moved 
from intracellular components to the plasma membrane of adipocytes and muscle cells 
upon insulin stimulation[6]. In 1988, a specific antibody against a GLUT sample 
preparation was created, which eventually led to the identification of a molecular 
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clone that encodes an insulin-induced GLUT from mouse adipocytes[6]. It was named 
GLUT4. Since the 1990s, fluorescent-labeled fusion proteins, GLUT4-specific 
antibodies, photoaffinity labeling reagents, immunofluorescence microscopy, and 
high-resolution electron microscope have been used to confirm the insulin-induced 
translocation and underlying mechanisms[6]

It has been widely accepted that insulin mainly stimulates transfer of GLUT4 from 
intracellular storage vesicles to the plasma membrane. Insulin stimulation accelerates 
the movement rate of GLUT4 containing vesicles to the cell membrane[14]. When more 
GLUT4 is on the plasma membrane, more glucose enters the cells without any change 
of the GLUT4 specific activity. During insulin stimulation, GLUT4 is not statically 
maintained in the plasma membrane but continuously recycled[6]. After insulin is 
removed, the amount of GLUT4 on the plasma membrane drops and the rate of 
movement returns to basal level.

Since identification and cloning of GLUT1, 13 additional GLUTs have been cloned 
using recombinant DNA techniques[15]. Based on their phylogeny or genetic and 
structural similarities, GLUTs are classified into three classes. Class I includes GLUTs 
1-4, and GLUT14 which are responsible for glucose transfer. Class II consists of GLTUs 
5, 7, 9 and GLUT 11 which are considered as fructose transporters. Class III contains 
GLTUs 6, 8, 10, 12 and GLUT 13[16]. All GLUTs have nearly 500 amino acid residues 
that form 12 transmembrane helices[15].

Each GLUT has its own unique affinity and specificity for its substrate, tissue 
distribution, intracellular location, regulatory mechanisms and physiological 
functions[17]. The most well studied and known members are GLUTs 1-6. GLUT1 is 
found evenly distributed in the fetal tissues. In human adults, GLUT1 Level is high in 
erythrocytes and endothelial cells. It is responsible for basal glucose uptake[18]. GLUT2 
is expressed in the liver and pancreas, and contributes to glucose sensing and 
homeostasis[17]. In enterocytes, GLUT2 is responsible to transport the absorbed glucose, 
fructose and galactose out of the basolateral membrane to enter into the blood 
circulation through the portal vein[19]. GLUT3 just like GLUT1 is expressed in almost 
all mammalian cells and is responsible for the basal uptake of glucose. GLUT3 is 
considered as the main GLUT isoform expressed in neurons and the placenta, but has 
also been detected in the testis, placenta, and skeletal muscle[20-22]. GLUT5 is specific for 
uptake of fructose in a passive diffusion manner, and is expressed in the small 
intestine, testes and kidney[17]. GLUT6 is expressed in the spleen, brain, and leukocytes 
as well as in muscle and adipose tissue[15,23]. GLUT6 has been shown to move from the 
intracellular locations and plasma membrane of rat adipocytes in a dynamin-
dependent manner[23]. Table 1[24-57] summarizes names, numbers of amino acids, Kms, 
expression profiles and potential functions of those GLUTs.

GLUT4 gene, its tissue distribution, and physiological functions
Human GLUT4 has 509 amino acid residues and is encoded by SLC2A4 gene in the 
human genome. It is mainly expressed in adipocytes and skeletal muscle. The unique 
N-terminal and COOH terminal sequences are responsible for GLUT4's response to 
insulin signaling and membrane transport[58]. The Km of GLUT4 is about 5 mmol/L. In 
response to insulin stimulation, intracellular vesicles containing GLUT4 are moved 
from cytosol to the cell membrane. As shown in Figure 1, insulin receptor is a tetramer 
with two alpha-subunits and two beta-subunits linked by disulfide bonds[59]. When 
insulin binds to its receptor on the cell membrane, insulin receptor beta subunits that 
contain tyrosine kinase domain autophosphorylate each other. The phosphorylated β-
subunits recruit insulin receptor substrates (IRS) and phosphorylate them. Then 
phosphorylated IRSs bind to and activate phosphatidylinositol 3-kinase (PI3K) which 
is recruited to the plasma membrane and converts PIP2 to PIP3. On the plasma 
membrane, PI3K activates PIP3 dependent protein kinase, which phosphorylates and 
activates AKT (also referred to as protein kinase B, PKB). Akt activation triggers 
vesicle fusion, which results in the translocation of GLUT4 containing vesicles from 
intracellular compartments to the plasma membrane. The elevation of GLUT4 on the 
membrane leads to increase of glucose entry into the cell.

Upon refeeding, elevated glucose levels in the blood stimulates insulin secretion 
from pancreatic beta cells. Insulin stimulates GLUT4 translocation to the cell 
membrane, which increases glucose uptake in cells, and achieves glucose 
homeostasis[60,61]. After the insulin stimulation disappears, GLUT4 is transferred back 
into the cytosol from the plasma membrane. More than 90% of GLUT4 is located in the 
intracellular body, trans-Golgi network, and heterogeneous tube-like vesicle structure, 
etc., which constitute the GLUT4 storage vesicle (GSV). In an unstimulated state, most 
GLUT4 is in the intracellular vesicles of muscle and adipocytes[62].

The amount of GLUT4 on the cell membrane is determined by the rate of the 
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Table 1 Summary of glucose transporter family members

Protein 
(gene) Amino acids Km 

(mm) Expression sites Function/substrates Ref.

GLUT1 
(SLC2A1)

492 3-7 Ubiquitous distribution in tissues and 
culture cells

Basal glucose uptake; glucose, galactose, glucosamine, 
mannose

[24-30]

GLUT2 
(SLC2A2)

524 17 Liver, pancreas, brain, kidney, small 
intestine

High-capacity low-affinity transport; glucose, galactose, 
fructose, glucosamine, mannose

[25-27,29-34]

GLUT3 
(SLC2A3)

496 1.4 Brain and nerves cells Neuronal transport; glucose, galactose, mannose
[25-27,29,30,
33-35]

GLUT4 
(SLC2A4)

509 5 Muscle, fat, heart, hippocampal 
neurons

Insulin-regulated transport in muscle and fat; glucose, 
glucosamine

[25-27,29,31,
36,37]

GLUT5 
(SLC2A5)

501 6 Intestine, kidney, testis, brain Fructose
[25-27,29,30,
34,38-42]

GLUT6 
(SLC2A6)

507 5 Spleen, leukocytes, brain Glucose
[25-27,29,30,
43]

GLUT7 
(SLC2A7)

524 0.3 Small intestine, colon, testis, liver Fructose and glucose
[25-27,29,30,
38]

GLUT8  
(SLC2A8)

477 2 Testis, blastocyst, brain, muscle, 
adipocytes

Insulin-responsive transport in blastocyst; glucose, 
fructose, galactose

[25-27,29,30,
44,45]

GLUT9 
(SLC2A9)

Major 540, 
Minor 512

0.9 Liver, kidney Glucose, fructose
[25-27,29,30, 
46-48]

GLUT10 
(SLC2A10)

541 0.3 Heart, lung, brain, skeletal muscle, 
placenta, liver, pancreas 

Glucose and galactose
[25-27,29,30,
48,49]

GLUT11 
(SLC2A11)

496 0.2 Heart, muscle, adipose tissue, 
pancreas

Muscle-specific; fructose and glucose transporter
[25-27,29,30,
50-54]

GLUT12 
(SLC2A12)

617 4-5 Heart, prostate, skeletal muscle, fat, 
mammary gland

Glucose
[25-27,29,30,
53,55]

GLUT13 
(SLC2A13)

Rat 618, 
human 629

0.1 Brain (neurons intracellular vesicles) H+-myo-inositol transporter
[25-27,29,30,
56]

GLUT14 
(SLC2A14)

Short 497, 
Long 520

unknown Testis Glucose transport
[25-27,29,30,
57]

movement from intracellular GSV to the cell membrane. In adipocytes and skeletal 
muscle cells, insulin increases the rate of GLUT4 translocation from GSVs to 
membrane and decreases the rate of GLUT4 movement from membrane back to the 
vesicles, which lead to elevation of GLUT4 content on the cell membrane by 2-3 
times[63]. Moreover, in adipocytes, insulin increases the GLUT4 recirculation to 
maintain a stable and releasable vesicle[64].

So far, insulin-induced GLUT4 translocation has been studied extensively. 
However, questions still remain. Methods and reagents used to determine the 
expression levels of GLUT4 and its translocation mechanism deserve to be 
summarized and analyzed. Therefore, we searched the relevant articles in PubMed 
and investigated the methods and reagents used in the studies. “Glucose transporter 
4” and “GLUT4” as the protein and “SLC2A4” as the gene name were used as 
keywords in the search. In order to have a more clearly overview, we further divided 
and focused on the search into three parts, GLUT4 in the skeletal muscle, GLUT4 in 
adipose tissues, and GLUT4 in heart and brain.

GLUT4 IN THE SKELETAL MUSCLE
The term "muscle" covers a variety of cell types. Mammals have four main types of 
muscle cells: skeletal, heart, smooth, and myoepithelial cells. They are different in 
function, structure and development[65]. The skeletal muscle mass accounts for 40% of 
the total body mass, and the regulation of skeletal muscle glucose metabolism will 
significantly affect the body's glucose homeostasis[66,67]. Skeletal muscle is composed of 
many muscle fibers connected by collagen and reticular fibers. Each skeletal muscle 
fiber is a syncytium that derives from the fusion of many myoblasts. Myoblasts 
proliferate in large quantities, but once fused, they no longer divide. The fusion 
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Figure 1 Schematic of insulin-induced translocation of glucose transporter 4 from cytosol to the cell membrane. The binding of insulin to its 
receptors initiates a signal transduction cascade, which results in the activation of Akt. Akt acts on the glucose transporter 4 (GLUT4) containing vesicles in the 
cytosol to facilitate their fusion with the cell membrane. When more GLUT4 molecules are present in the membrane, the rate of glucose uptake is elevated. GLUT4: 
Glucose transporter 4.

usually follows the onset of myoblast differentiation[65]. Different fiber types have 
distinct contractile and metabolic properties[68]. The skeletal muscle maintains skeletal 
structure and essential daily activities[69]. Also, it is a source of proteins that can be 
broken down into amino acids for the body to use.

Insulin stimulates glucose uptake and utilization in the skeletal muscle. GLUT4 
plays a key role in the uptake process. Glucose can be stored as glycogen, which is 
used as a quick source of energy in physical activity[70]. In the skeletal muscle, exercise 
helps increase insulin sensitivity and stimulates SLC2A4 gene transcription[60]. 
Physiological factors such as the type of muscle fibers can also affect the GLUT4 Level. 
An increase in physical activity will induce the GLUT4 Levels, whereas a decrease in 
activity level will reduce GLUT4[68]. The skeletal muscle not only maintains the 
activities, but also regulates the glucose homeostasis in the body, which plays a key 
role in the development of metabolic diseases[69]. Obesity and T2DM have a negative 
impact on skeletal muscle glucose metabolism[71].

To review the methods and reagents of GLUT4 studies in skeletal muscle, "GLUT4, 
skeletal muscle" and "SLC2A4, skeletal muscle" as keywords were used to search the 
PubMed database to retrieve relevant articles. The skeletal muscle is a highly 
specialized tissue made of well-organized muscle fibers. The unique structural 
characteristic of muscle inherits difficulties to be lysed for biochemical studies. 
Therefore, we want to focus on the sample preparation of skeletal muscle in GLUT4 
studies. The retrieved articles were screened mainly according to the research methods 
and reagents used for skeletal muscle preparation, experimental groups included, 
Slc2a4 mRNA and GLUT4 protein measurements and the source of GLUT4 antibodies 
obtained. In the end, 10 representative articles were selected for analysis and summary 
as shown in Table 2[72-81].

Overall, the current research methods of GLUT 4 studies in skeletal muscle are 
listed below: (1) Samples were homogenized to prepare membrane fractions for 
analysis of GLUT 4 in western blot using monoclonal or polyclonal antibodies; (2) 
Real-time polymerase chain reaction (PCR) was used to determine the mRNA 
abundance of Slc2a4; (3) Immunocytochemical staining was used to detect GLUT4 in 
situ. The fibers were labeled for GLUT4 by a preembedding technique and observed as 
whole mounts by immunofluorescence microscopy or after sectioning, by 
immunogold electron microscopy. Preembedding is a technique to label GLUT4 
immediately after tissues or cells are collected, which allows that the antibody interacts 
with the antigen before denaturation; (4) Muscle cell lines stably expressing tagged 
GLUT4 were established to study the translocation; and (5) Radiolabeled 2-
deoxyglucose was used to determine the glucose uptake in muscle tissue slices.

The antibodies used in these articles were from Santa Cruz, Millipore, East Acres, 
Biogenesis and other sources not specified. Only two of the publications have a 
positive control group of GLUT4 expression using overexpression of a fusion protein 
and tissue preparation as a standard for determination. Positive controls are important 
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Table 2 Recent studies of glucose transporter 4 expression and translocation in the skeletal muscle

Methods Materials Comparisons Observations/conclusions Ref.

Western blot. Cell fractions of rat L6 myotubes, 3T3-L1, 
and mouse muscle and adipose tissues. 
Anti-GLUT4 from Santa Cruz 
Biotechnology (1:1000).

Cell: Total cell lysate vs membrane 
fractions. Mouse tissues: Control vs 
high-fat diets.

Insulin treatments increases GLUT4 levels in membrane fractions without any change in 
the total cell lysate. GLUT4 levels in adipose tissue and muscle of mice fed a high-fat diet 
are lower in all fractions than that fed the control diet.

[72]

Western blot. Whole cell and cell fractions from rat L6 
and mouse C2C12 muscle cells, and 
soleus muscle of hind limb from mice. 
Anti-GLUT4 from Santa Cruz. 
Biotechnology (1:1000).

Whole cell lysate vs membrane 
fractions. Treatments without or with 
insulin or AICAR.

GLUT4 translocation occurs in L6 myotubes and 3T3-L1 adipocytes stimulated by insulin 
and AICAR. GLUT4 translocation occurs in muscle at 15 to 30 minutes and in adipose 
tissue at 15 minutes after glucose treatment.

[73]

Western blot. Giant sarcolemmal vesicles from soleus 
muscles of Sprague-Dawley rats.  Anti-
GLUT4 from Millipore (1:4000).

Tissue samples without or with insulin 
released in the presence of glucose as a 
stimulant and lipid as a control. 

A glucose-dependent insulinotropic polypeptide increases glucose transport and plasma 
membrane GLUT4 protein content. 

[74]

Real-time PCR for Slc2a4 mRNA levels. Total RNA of the skeletal muscle from 
male C57BL/6J and ICR mice fed 
different diets.

mRNA levels in muscle samples from 
mice fed the control or CLA 
supplement diet

Dietary CLA does not affect Slc2a4 mRNA levels in the mouse skeletal muscle [75]

Western blot. Preparations of sarcolemmal membrane 
fractions and crude lysates from male 
Muscovy ducklings.  Anti-GLUT4 from 
East Acres (1:500).

GLUT4 from a unique crude 
membrane fraction of rat skeletal 
muscle was used as an arbitrary unit 
and from erythrocyte ghost as a 
negative control

Polyclonal antibodies detect a protein of similar size (approximately 45 kDa) of GLUT4 in 
the crude membrane preparations from rat (positive control) and duckling skeletal 
muscle. No signal was obtained for rat erythrocyte ghost membrane preparation. 

[76]

ATB-BMPA-labelling of glucose transporters, 
Immunoprecipitation, liquid-scintillation counting, 
Western blot.

Tissue samples of isolated and perfused 
EDL or soleus muscle from GLUT1 
transgenic C57BL’KsJ-Leprdbj and 
control mice.  Anti-GLUT4 (R1184; C-
terminal) from an unknown source.

Non-transgenic mice vs transgenic 
mice.

Basal levels of cell-surface GLUT4 in isolated or perfused EDL are similar in transgenic 
and non- transgenic mice. Insulin induces cell-surface GLUT4 by 2-fold in isolated EDL 
and by 6-fold in perfused EDL of both transgenic and non-transgenic mice. Western blot 
results were not shown. 

[77]

Preembedding technique (immune reaction occurs 
prior to resin embedding to label GLUT4), and 
observations of whole mounts by 
immunofluorescence microscopy, or after sectioning 
by immunogold electron microscopy.

Muscle samples from male Wistar rats. 
Anti-GLUT4 (C-terminal, 1:1000), and 
anti-GLUT4 (13 N-terminal, 1:500) from 
unknown species.

Rats were divided in four groups: 
Control, contraction received saline, 
insulin and insulin plus contraction 
groups. They received glucose 
followed by insulin injection. 

Two populations of intracellular GLUT4 vesicles are differentially recruited by insulin and 
muscle contractions. The increase in glucose transport by insulin and contractions in the 
skeletal muscle is due to an additive translocation to both the plasma membrane and T 
tubules. Unmasking of GLUT4 COOH-terminal epitopes and changes in T tubule 
diameters does not contribute to the increase in glucose transport.

[78]

Immunoprecipitation, and Western blot. Membrane fractions from skeletal muscle 
of male Wistar rats treated without or 
with insulin. Anti-GLUT-4 from 
Genzyme, Anti-GLUT-4 from Santa Cruz 
Biotechnology.

Crude membrane preparations and 
cytosolic fractions in samples of rats 
treated without or with insulin.

In vitro activation of PLD in crude membranes results in movement of GLUT4 to 
vesicles/microsomes. This GLUT4 translocation is blocked by the PLD inhibitor, 
neomycin, which also reduces insulin-stimulated glucose transport in rat soleus muscle. 

[79]

Western blot for GLUT4 protein in homogenates of 
epitrochlearis muscles. Tissue slices labeled with 2-
[1,2-3H]-deoxy-d-glucose and counted in a gamma 
counter.

Muscle homogenate and slices from male 
Sprague-Dawley rats.  Anti- GLUT4 from 
Dr. Osamu Ezaki.

Sedentary control vs a 5-day 
swimming training group.

The change of insulin responsiveness after detraining is directly related to muscle GLUT-4 
protein content.  The greater the increase in GLUT-4 protein content induced by training, 
the longer an effect on insulin responsiveness lasts after training.

[80]

Immunofluorescence for membrane preparations, 
and 2-Deoxyglucose uptake in isolated skeletal 

Membrane preparations from L6 cells 
over-expressing GLUT4myc. Isolated 

L6 cells over-expressing GLUT4myc 
treated without or with Indinavir.

HIV-1 protease inhibitor indinavir at 100 µmol/l inhibits 80% of basal and insulin-
stimulated 2-deoxyglucose uptake in L6 myotubes with stable expression of GLUT4myc. 

[81]
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muscles. skeletal muscle samples from mice. Anti-
GLUT4 from Biogenesis.

AICAR: 5-aminoimidazole-4- carboxamide ribonucleotide; CLA: Conjugated linoleic acid; EDL: Extensor digitorum longus; HIV: Human immunodeficiency virus; ICR: Institute of Cancer Research; PLD: Phospholipase D; GLUT4: Glucose 
transporter 4.

when Western blot and fusion protein immunofluorescence methods are used to 
determine the GLUT4 protein levels.

According to studies summarized in Table 2, the following key points can be 
obtained. Insulin and muscle contraction increase glucose uptake in the skeletal 
muscle, which is associated with increases of GLUT4 content and its translocation. 
Neomycin, a phospholipase D inhibitor, blocks GLUT4 translocation. In the skeletal 
muscle isolated from GLUT1 transgenic mice, insulin-induced GLUT4 translocation 
response is lost, which is not due to down-regulation of GLUT4 expression. 
Conjugated linoleic acid in the diet does not affect the Slc2a4 mRNA expression in the 
skeletal muscle. Indinavir, an HIV-1 protease inhibitor, can block the glucose uptake 
mediated by GLUT4 in normal skeletal muscle and adipocytes without or with insulin 
stimulation. More studies are anticipated to elucidate how insulin resistance and 
T2DM affect the functions of GLUT4 system and whether overnutrition plays a role in 
it.

GLUT4 IN ADIPOSE TISSUES
The ability for an organism to store excessive amount of energy in the form of fat is 
helpful for it to navigate a condition of an uncertain supply of food[82]. Adipocytes, the 
main type of cells in adipose tissue, are not only a place for fat storage, but also 
endocrine cells to secrete cytokines for the regulation of whole body energy 
homeostasis[82]. Based on the mitochondrial content and physiological functions, 
adipocytes are divided into white, beige and brown fat cells. Structurally, 90% of the 
cell volume of a white adipocyte is occupied by lipid droplets. In normal-weight 
adults, white adipose tissue accounts for 15% to 20% of body weight[83,84]. Excessive 
accumulation of body fat results in the development of obesity, which can lead to the 
development of T2DM if not managed[85,86]. In addition, adipose tissues secrete 
cytokines such as leptin and adiponectin with abilities to regulate food intake and 
insulin sensitivity[87]. GLUT4 is expressed in adipocytes, where insulin stimulates its 
translocation from intracellular locations to the cell membrane, which leads to increase 
of glucose uptake[88]. High expression levels of GLUT4 in adipose tissue can enhance 
insulin sensitivity and glucose tolerance[89].

Insulin-induced GLUT4 translocation in adipose tissue and skeletal muscle has been 
studied extensively. Overall, in recent years, great progress has been made in the 
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understanding of GLUT4 vesicles movement, the fusion of the vesicles with the cell 
membrane, and the translocation mechanism in response to insulin. As shown in 
Figure 2, in adipocytes of an adipose depot, GLUT4 vesicles move from the specialized 
intracellular compartment to the cell periphery (near cell membrane), which is 
followed by tethering and docking. Tethering is the interaction between GLUT4 
vesicles and the plasma membrane. Docking is the assembly of the soluble N-
ethylmaleimide-sensitive factor-attachment protein (SNAP) receptor (SNARE) 
complex. Fusion occurs when the lipid bilayers of the vesicles with GLUT4 and the cell 
membrane merge[90]. The actin cytoskeleton system plays an important role in retaining 
GLUT4 vesicles in adipocytes. After insulin stimulation, remodeling of cortical actin 
causes the release GLUT4 vesicles to the plasma membrane[90-92]. β-catenin plays an 
important role in regulating the transport of synaptic vesicles. The amount of GLUT4 
within the insulin sensitive pool is determined by the β-catenin levels in adipocytes, 
which allows GLUT4 translocate to the cell membrane in response to insulin 
stimulation[93,94].

To summarize the current methods and reagents used for GLUT4 analysis in 
adipose tissues and adipocytes, “GLUT4, 3T3-L1”, and “GLUT4, adipocytes” were 
used to search the literature published in the past 15 years. We ignored those studies 
that only measured Slc4a2 mRNA, lacked the focus on adipocytes, and did not have 
full text versions. The resulted 30 articles were analyzed and summarized in Tables 
3[95-112] and 4[113-124]. Table 3 contains 18 articles and summarizes the effects of drugs or 
bioactive compounds on Slc2a4 mRNA and GLUT4 protein expressions, and GLUT4 
translocation. Table 4 contains 12 articles and summarizes studies of the regulatory 
mechanisms of GLUT4 system.

There are 11 and 2 articles respectively using real-time PCR and Northern blot to 
evaluate Slc2a4 mRNA levels. Western blot and ELISA are used in 24 articles to detect 
GLUT4 protein content. The antibodies were from Santa Cruz (6), Millipore (3), Cell 
Signaling Technology (4), Chemicon (4), Abcam (3), Pierce (1), Oxford (1) and 
Signalway (1). Two articles did not indicate the antibody sources. One article used 
antibodies from two companies. Nine articles indicated the dilutions of antibodies, and 
only 3 articles included the production catalog number. Immunofluorescence was 
used to detect the content and translocation of GLUT4 protein in 9 articles. Three 
articles used flow cytometry to detect GLUT4 protein. Twenty four of these 30 articles 
directly assessed levels of Slc2a4 mRNA or GLUT4 protein. The remaining 6 of the 30 
articles measured GLUT4 protein using fusion proteins. No article has a positive 
control group that uses overexpression of GLUT4 via a recombinant construct or 
purified recombinant GLUT4 protein.

As shown in Table 3, GLUT4 translocation, and Slc2a4 mRNA and GLUT4 
expression levels in 3T3-L1 cells can be regulated by bioactive compounds, crude 
extract of herbs, agonists of nuclear receptors, proteins and chemical drugs. Sl2a4 
mRNA or/and GLUT4 expressions in 3T3-L1 cells or adipose tissues can be increased 
by kaempferitrin, GW9662, inhibitor of p38 kinase, estradiol, crude extract of stevia 
leaf, fargesin, phillyrin, selenium-enriched exopolysaccharide, aspalathin-enriched 
green rooibos extract, bone morphogenetic proteins 2 and 6, and glucose pulse. On the 
other hand, Slc2a4 mRNA and GLUT4 protein levels can be reduced by luteolin, and 
shilianhua extract in 3T3-L1 cells. GLUT4 translocation can be enhanced by 
kaempferitrin, curculigoside and ethyl acetate fractions, gallic acid, 6-hydroxydaidzein 
and ginsenoside Re, and reduced by green tea epigallocatechin gallate.

As shown in Table 4, a variety of methods have been used to study the regulatory 
mechanisms of GLUT4 system. 3T3-L1 cells have been the major model in those 
studies. In addition to the insulin, pathways involved in the Slc2a4 gene expression, 
GLUT4 protein expression and its translocation include cannabinoid receptor 1 (CB1), 
ADP-ribosylation factor-related protein 1, MiR-29 family, proteasome system, estrogen 
pathway, oxidative stress via CCAAT/enhancer-binding protein alpha (C/EBPα), 
obesity development, differentially expressed in normal and neoplastic cells domain-
containing protein 4C, nuclear factor-κB, Akt and Akt substrate of 160 kDa, 
phosphatidylinositol-3,4,5-trisphosphate dependent Rac exchange factor 1, 
secreted protein acidic and rich in cysteine (SPARC), sterol regulatory element-binding 
protein 1 (SREBP-1), and AMP-activated protein kinase (AMPK) pathway. CB1 
receptor antagonists increase Slc2a4 mRNA and GLUT4 protein expressions through 
NF-kB and SREBP-1 pathways. Akt pathway regulates the rate of vesicle 
tethering/fusion by controlling the concentration of primed, and fusion-competent 
GSVs with the plasma membrane. Inhibition of the SPARC expression reduces Slc2a4 
mRNA and GLUT4 expressions. The expressions of C/EBPα and δ alter the C/EBP-
dimer formation at the Slc2a4 gene promoter, which regulates its transcription. 
Inhibition of differentially expressed in normal and neoplastic cells domain-containing 
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Table 3 Recent studies of effects of bioactive compounds and chemical drugs on glucose transporter 4 expression and translocation in adipocytes

Methods Materials Comparisons Conclusions Ref.

Immunoprecipitation, dual fluorescence 
immunostaining, Western blot.

3T3-L1, anti-GLUT4 from Santa Cruz Biotechnology (1:200). Treatments without or with 
kaempferitrin.

Kaempferitrin treatment upregulates total GLUT4 expression and its translocation 
in 3T3-L1 cells.

[95]

Subcellular fractionations, Western blot. 3T3-L1, anti-GLUT4 from Cell Signaling Technology (1:1000). Treatments without or with 
epigallocatechin gallate.

Green tea epigallocatechin gallate suppresses insulin-like growth factor-induced-
glucose uptake via inhibition of GLUT4 translocation in 3T3-L1 cells.

[96]

Western blot. 3T3-L1, anti-GLUT4 from Santa Cruz Biotechnology. Treatments without or with 
GW9662.

GW9662 increases the expression of GLUT4 protein in 3T3-L1 cells. [97]

Immunoprecipitation, Western blot. 3T3-L1, anti-GLUT4 from Chemicon. Treatments without or with 
p38 inhibition.

Inhibition of p38 enhances glucose uptake through the regulation of GLUT4 
expressions in 3T3-L1 cells.

[98]

Western blots, Real-time PCR, Electrophoretic 
mobility shift assay, Immunofluorescence. 

Adipose tissues of Esr1 deletion and wild type female mice, 3T3-
L1, anti-GLUT4 from Merck/Millipore for Western blot (1:4000), 
and for immunofluorescence (1:100). 

Tissue and cells without or 
with gene deletion.

Estradiol stimulates adipocyte differentiation and Slc2a4 mRNA and GLUT4 
protein expressions in an ESR1/CEBPA mediated manner in vitro and in vivo. 

[99]

Real-time PCR, Solid-phase ELISA. 3T3-L1, anti-GLUT4 antibody from Pierce (1:1000). Treatments without or with 
the extract.

The crude extract of stevia leaf can enhance Slc2a4 mRNA and GLUT4 protein 
levels in 3T3-L1 cells.

[100]

GeXP multiplex for mRNA, Western blot. 3T3-L1, anti-GLUT4 from Millipore (1:20). Treatments without or with 
indicated reagents.

Curculigoside and ethyl acetate fractions increase glucose transport activity of 3T3-
L1 adipocytes via GLUT4 translocation. 

[101]

Real-time PCR, Western blot. 3T3-L1, anti-GLUT4 from Cell Signaling Technology. Treatments without or with 
luteolin

Luteolin treatment decreases Slc2a4 mRNA and GLUT4 protein levels in 3T3-L1 
cells.

[102]

Western blot. 3T3-L1, anti-GLUT4 from Abcam (ab654-250). Treatments without or with 
extract.

Shilianhua extract treatment decreases GLUT4 protein level in 3T3-L1 cells. [103]

Western blot. 3T3-L1, and male C57BL/6J mice fed a normal-fat or high-fat diet, 
anti-mouse GLUT4 from AbD SeroTec (1:1000).

Treatments without or with 
fargesin. 

Fargesin treatment increases GLUT4 protein expression in 3T3-L1 cells and adipose 
tissues of mice.

[104]

Western blot. 3T3-L1, antibody no mentioned. Treatments without or with 
phillyrin.

Phillyrin treatment increases the expression levels of GLUT4 protein in 3T3-L1 
cells.

[105]

Real-time PCR, Western blot. 3T3-L1, anti-GLUT4 from Santa Cruz Biotechnology. Treatments without or with 
6Hydroxydaidzein. 

6Hydroxydaidzein facilitates GLUT4 protein translocation, but did not affect Slc2a4 
mRNA level in 3T3-L1 cells. 

[106]

Western blot. 3T3-L1, and C57BL/6J mice with SirT1 and Ampkα1 knockdown, 
anti-GLUT4 from Signalway Antibody. 

Treatments without or with 
indicated reagents.

Seleniumenriched exopolysaccharides produced by Enterobacter cloacae Z0206 
increase the expression of GLUT4 protein in mice, but not in 3T3-L1 cells.

[107]

Western blot. 3T3-L1, anti-GLUT4 from Cell Signaling Technology Treatments without or with 
extract.

Aspalathin-enriched green rooibos extract increases GLUT4 protein expression in 
3T3-L1 cells.

[108]

Transient expression of myc-GLUT4-GFP and 
fluorescence microscopy. 

3T3-L1, fusion protein only. Treatments without or with 
indicated reagents.

Gallic acid can increase GLUT4 translocation and glucose uptake in 3T3-L1 cells. [109]

Real-time PCR, Western blot. 3T3-L1, anti GLUT4 from Santa Cruz Biotechnology (1: 1000). Treatments without or with 
Ginsenoside Re.

Ginsenoside Re promotes the translocation of GLUT4 by activating PPAR-γ2. 
Slc2a4 mRNA is not affected in 3T3-L1 cells.

[110]

Real-time PCR, GLUT4-myc7-GFP from Cells without or with Bone morphogenetic proteins 2 and 6 inhibit PPARγ expression, which increases 3T3-L1 with knockdown of PPARγ, fusion protein. [111]
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retroviral vector, flow cytometry, 
fluorescence microscopy.

knockdown. total GLUT4 levels, but not GLUT4 translocation3T3-L1 cells.

Western blot, real-time PCR. 3T3-L1, anti-GLUT4 antibody from Santa Cruz Biotechnology (sc-
1608). 

Treatments without or with 
pulse or manipulations.

Glucose pulse (25 mM) increases GLUT4 expression. GLUT4 level is partially 
restored by increasing intracellular NAD/P levels. A liver X receptor element on 
Slc2a4 promoter is responsible for glucose-dependent transcription.

[112]

GLUT4: Glucose transporter 4; AMPK: AMP-activated protein kinase; CEBPA and C/EBP: CCAAT/enhancer-binding protein alpha; ESR1: Estrogen receptor 1.

protein 4C can block GLUT4 translocation. Rac exchange factor 1 activation seems to 
promote GLUT4 translocation via arrangement of actin cytoskeleton. The mechanism 
of AMPK-mediated GLUT4 translocation in 3T3-L1 adipocytes seems to be distinct 
from that of insulin-induced one. Future studies are needed to integrate the roles of all 
these players in the regulation of GLUT4 system in adipocytes.

GLUT4 IN THE HEART 
The heart works constantly to support the blood circulation throughout the lifespan. 
Cardiomyocytes constantly contract to pump blood, oxygen, metabolic substrates, and 
hormones to other parts of the body. This requires continuous ATP production for 
energy supply. The primary fuel for the heart is fatty acids, whereas glucose and 
lactate contribute to 30% of energy for ATP production[125]. In addition, glucose plays 
an important role in circumstances like ischemia, increased workload, and pressure 
overload hypertrophy.

Glucose is transported into cardiac myocytes through GLUTs. GLUT4 represents 
around 70% of the total glucose transport activities[15]. GLUT4 protein expression can 
be found as early as 21 days of gestation in rats[126]. The expression level of GLUT4 in 
the heart may increase or decrease depending on the different models. For example, 
GLUT4 protein content decreases along with aging in male Fischer rats, but increases 
4-5 times in C57 Bl6 mice[127,128]. In basal state, GLUT4 is found mainly in intracellular 
membrane compartments, and can be stimulated by insulin and ischemia to 
translocate to the cell membrane[129]. The binding of myocyte enhancer factor-2 (MEF2) 
and thyroid hormone receptor alpha 1 is needed for transcription of Slc2a4 gene in 
cardiac and skeletal muscle in rats[130]. In addition, Slc2a4 gene expression can also be 
regulated by other transcription factors. For example, overexpression of peroxisome 
proliferator-activated receptor gamma coactivator 1 works with MEF2-C to induce 
Slc2a4 mRNA expression in L6 muscle cells[131]. Moreover, GLUT4 expression level can 
be affected by cardiovascular diseases, and myocardial sarcolemma, which reduce the 
expression and translocation of GLUT4[132]. The development of T1DM decreases 
GLUT4 expression level and its translocation in the heart of mice[132]. T2DM 
development also reduces GLUT4 content and translocation due to insulin resistance 
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Table 4 Recent studies of mechanisms of glucose transporter 4 expression and translocation in adipocytes

Methods Materials Comparisons Observations/conclusions Ref.

Western blot, real-time PCR, Electrophoretic 
mobility shift assay.

3T3-L1 pre and differentiated adipocytes. Anti-GLUT4 
antibody from Chemicon (1:4,000).

Treatment groups without or with 
the antagonist.

CB1 receptor antagonist markedly increases Slc2a4 mRNA and GLUT4 protein 
levels in 3T3-L1 cells via NF-kB and SREBP-1 pathways.

[113]

Immunohistochemistry, Western blot, real-
time PCR. 

Brown adipose tissue of Arfrp1 flox/flox and Arfrp1 ad-/-
mouse embryos (ED 18.5) and 3T3-L1 cells with 
knockdown of Arfrp1. Anti-GLUT4 without specifying 
the vendor (1:1000).

Mice without or with deletion, and 
3T3-L1 cells without or with 
knockdown. 

In Arfrp1 ad-/- adipocytes, GLUT4 protein accumulates on the cell membrane rather 
than staying intracellularly without any change of Slc2a4 mRNA. siRNA-mediated 
knockdown of Arfrp1 in 3T3-L1 adipocytes has a similar result and increases basal 
glucose uptake. 

[114]

Real-time PCR, Western blot. 3T3-L1 transfected with Mmu-miR-29a/b/c.  Anti-
GLUT4 from Santa Cruz Biotechnology (SC-7938). 

Cells with or without transfection. Transfection of miR-29 family members inhibits Slc2a4 mRNA and GLUT4 protein 
levels in 3T3-L1 cells by inhibiting SPARC expression.

[115]

Northern blot, Western blot, Nuclear run-on 
assay for the rate of GLUT4 gene 
transcription.

3T3-L1 pre and differentiated adipocytes.  Rabbit 
polyclonal GLUT4 antibody form Chemicon.

Treatment groups without or with 
inhibitors.

Inhibitions of proteasome using Lactacystin and MG132 reduce Slc2a4 mRNA and 
GLUT4 protein levels in 3T3-L1 cells.

[116]

AFFX miRNA expression chips for mRNA, 
Western blot. 

Human Omental adipose tissue, 3T3-L1 pre and 
differentiated adipocytes with miR-222 silenced by 
antisense oligonucleotides. Anti-GLUT4 from Abcam.

Groups without or with transfection. High levels of estrogen reduce the expression and translocation of GLUT4 protein. 
miR -222 silencing dramatically increases the GLUT4 expression and the insulin-
stimulated translocation of GLUT4 in 3T3-L1 adipocytes.

[117]

Northern blot for mRNA, Western blot. 3T3-L1 pre and differentiated adipocytes.  Anti-GLUT4 
from Chemicon.

Treatment groups without or with 
oxidative stress.

Oxidative stress mediated by hydrogen peroxide induces expressions of C/EBPα 
and δ, resulting in altered C/EBP-dimer composition on the GLUT4 promoter, 
which reduces GLUT4 mRNA and protein levels.

[118]

Real-time PCR, Western blot. Human Subcutaneous pre and differentiated adipocytes 
from control and obese subjects, 3T3-L1 pre and 
differentiated adipocytes transfected with miR-155. Anti-
GLUT4 from Abcam.

Primary pre and differentiated 
adipocytes from normal and obese 
subjects, and cells without or with 
transfection.

The level of SLC2A4 is reduced in obese people, and the expression of GLUT4 
protein is reduced in 3T3-L1 cells and differentiated human mesenchymal stem cells 
transfected with miR-155.

[119]

HA-GLUT4-GFP from transfected lentiviral 
plasmid and analyzed by flow cytometry, 
and fluorescence microscopy. 

3T3-L1 pre and differentiated adipocytes with 
knockdown of Dennd4C. Fusion protein.

Groups without or with knockdown. Knockdown of Dennd4C inhibits GLUT4 translocation, and over- expression of 
DENND4C slightly stimulates it. DENND4C is found in isolated GLUT4 vesicles. 

[120]

HA-Glut4-GFP from transfected plasmid, 
and analyzed by flow cytometry, 
fluorescence microscopy 

3T3-L1 pre and differentiated adipocytes with AS160 
knockdown.Fusion protein. 

Groups without or with knockdown. Akt regulates the rate of vesicle tethering/fusion by regulating the concentration of 
primed, and fusion-competent GSVs with the plasma membrane, but not changing 
the intrinsic rate constant for tethering/fusion.

[121]

HA-tagged GLUT4 by fluorescence 
microscopy, Western blots, Immune 
pulldown.

3T3-L1 pre and differentiated adipocytes without or with 
GST-ClipR-59 transfection. Rabbit anti-GLUTlut4 from 
Millipore; Mouse monoclonal anti-GLUT4 from Cell 
Signaling Technology.

Pull down antibodies. By interacting with AS160 and enhancing the association of AS160 with Akt, ClipR-
59 promotes phosphorylation of AS160 and GLUT4 membrane translocation.

[122]

Transfection of GFP-GLUT4 and indirect 
immunofluorescence.

3T3-L1 pre and differentiated adipocytes with siRNA 
knockdown of P-Rex1. Fusion protein.

Without or with knockdown. P-Rex1 activates Rac1 in adipocytes, which leads to actin rearrangement, GLUT4 
trafficking, increase of glucose uptake.

[123]

Transfection of GLUT4-eGFP plasmid and 
analyzed by fluorescence microscopy. 

3T3-L1 pre and differentiated adipocytes. Fusion protein. Treatment groups without or with 
activators.

AMPK-activated GLUT4 translocation in 3T3-L1 adipocytes is mediated through the 
insulin-signaling pathway distal to the site of activated phosphatidylinositol 3-
kinase or through a signaling system distinct from that activated by insulin.

[124]
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GLUT4: Glucose transporter 4; ARFRP1: ADP-ribosylation factor-related protein 1; AMPK: AMP-activated protein kinase; AS160: Akt substrate of 160 kDa; CB1: Cannabinoid receptor 1; CEBPA and C/EBP: CCAAT/enhancer-binding 
protein alpha; CLIPR-59: Cytoplasmic linker protein R-59; DENND4C: Differentially expressed in normal and neoplastic cells domain-containing protein 4C; GSV: GLUT4 storage vesicle; NF-Κb: Nuclear factor-κB; PREX1: 
Phosphatidylinositol-3,4,5-trisphosphate dependent Rac exchange factor 1; SPARC: Secreted protein acidic and rich in cysteine; SREBP-1: Sterol regulatory element-binding protein 1.

and impairments of insulin signaling pathway in human cardiomyocytes[133].
To investigate the methods and reagents used for GLUT4 studies in the heart, 

“GLUT4, heart”, and “cardiomyocytes, GLUT4 expression” were used as key words to 
search PubMed for articles published after 2000. We went through all papers with 
cardiomyocytes and GLUT4 in titles or short descriptions and selected 9 of them that 
are mainly focused on GLUT4 expression and translocation in the heart as shown in 
Table 5[134-142].

Rats are used in all 9 studies. Various methods and reagents are used to analyze 
Slc2a4 mRNA and GLUT4 protein levels in the heart and cardiomyocytes. Real-time 
PCR was used in 4 of them to determine Slc2a4 mRNA levels. Antibodies and Western 
blot were used to assess GLUT 4 protein in 8 of them. Immunohistochemistry was 
used in 1 of them. Two of them used immunofluorescence to track down GLUT4 
translocation.

To determine the content of GLUT4 protein in the heart, Western blot and fusion 
protein immunofluorescence methods were used. As shown in Table 5, these studies 
do not include overexpressed GLUT4 or cell samples with Slc2a4 deletion as controls. 
Several of them did not mention sources of anti GLUT4 antibodies used in Western 
blots. Some used polyclonal antibodies, which may need a positive control to indicate 
the correct size and location of GLUT4 protein.

From the papers listed above, GLUT4 expression and translocation in the heart and 
cardiomyocytes can be affected through activations of ERK and Akt pathways. 
Proteins like growth hormone, catestatin or pigment epithelium-derived factor can 
stimulate GLUT4 translocation and glucose uptake. Chemicals like sitagliptin and 
ethanol can up- and down-regulate Slc2a4’s mRNA expression levels, respectively. 
However, the underlying mechanisms responsible for these regulations of GLUT4 
translocation and Slc2a4 mRNA expression remain to be revealed. In addition, the 
research results summarized here are from tissue and cells of rats. It will be interesting 
to see whether same results will be observed when tissues and cells from other animal 
models are used.

GLUT4 IN THE BRAIN
The brain is a complex organ in the body and controls a variety of functions from 
emotions to metabolism. It consists of cerebrum, the brainstem, and the cerebellum[143]. 
Brain cells utilize glucose constantly to produce energy in normal physiological 
conditions. The brain can consume about 120 g of glucose per day, which is about 420 
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Table 5 Recent studies of glucose transporter 4 expression and translocation in the heart

Methods Materials Comparisons Conclusions Ref. 

Western blot. Cytosol and membrane fractions of left ventricular, heart, 
and blood from male Sprague-Dawley rats. Anti-GLUT4 
from Santa Cruz Biotechnology (1:200).

Groups without or with the indicated treatments. Na+/K+-ATPase and 
β-actin were loading controls of the membrane and cytosol fractions, 
respectively. Losartan was used as a positive control.

Ginsenoside Rb1 treatment can increase GLUT4 expression 
via inhibition of the TGF-β1/Smad and ERK pathways, and 
activation of the Akt pathway. 

[134]

Real-time PCR,Western blot. Isolated ventricular cells from heart of male adult (aged 6-8 
wk) and neonatal (1-3 d old) Wistar rats.Anti GLUT4 from 
Abcam (unknown dilution).

Groups with or without the ethanol feeding. Gapdh and β-actin were 
included as loading controls for real-time PCR and Western blot, 
respectively. 

Long-term (22 wk) ethanol consumption increases AMPK 
and MEF2 expressions, and reduces GLUT4 mRNA and 
protein expression in rat myocardium 

[135]

Western Blot. Isolated ventricular cells from heart of adult male Wistar 
rats. Polyclonal rabbit anti-human GLUT4 from AbD 
Serotec (4670–1704 1:750)

Groups with or without the indicated treatments. Heart failure and MI reduce glucose uptake and utilization. 
GGF2 partially rescues GLUT4 translocation during MI.

[136]

Western blot, 
Immunofluorescence.

Isolated ventricular cells from heart of adult rats. 
Polyclonal anti-GLUT4 from Thermo Fisher Scientific 
(1:100).

Treatment groups were compared with that of 100 nM insulin. Catestatin can induce AKT phosphorylation, stimulate 
glucose uptake, and increase GLUT4 translocation. 

[137]

Western blot, Flow cytometric 
analysis.

Isolated ventricular cells from heart of adult male Wistar 
rats. Anti-GLUT4 (H-61) from unknow source (1:1000 for 
Western) and conjugated to Alexa Fluor 488.

Treatment groups with or without AMPK agonists. AMPK activation does not affect GLUT4 translocation and 
glucose uptake in isolated cardiomyocytes. 

[138]

Real-time PCRUsing TaqMan® 
Gene Expression assays. 

Blood, heart, frontal cortex cerebellum from male Wistar 
rats.

Tissues from control and diabetic rats. Slc2a4’s expression is downregulated in STZ-treated rat’s 
heart, but unaffected in tissue protected by blood-brain 
barrier like frontal cortex. 

[139]

Western blot, 
Immunohistochemistry.

Heart from male Sprague-Dawley rats, anti-GLUT4 from 
Cell Signaling Technology (2213, 1:1000), anti GLUT4 from 
Abcam (ab654, 1:200 for ICC/IF)

Treatment groups without or with the indicated treatments. PEDF can increase glucose uptake and GLUT4 
translocation in ischemic myocardium.

[140]

Real-time PCR,Western blot. Heart from male wild type rats and SHRs. Rabbit 
polyclonal antibody GLUT4 from Millipore 

Wild type rats and SHRs without or with the indicated treatments. Sitagliptin upregulates levels of GLUT4 protein and Slc2a4 
mRNA, and its translocation in cardiac muscles of SHRs. 

[141]

Real-time PCR,Western blot. Left ventricles muscle from male Wistar rats. Anti-GLUT4 
from Chemicon (1:1000)

Saline as untreated control and reagent treated groups. Growth hormone stimulates the translocation of GLUT4 to 
the cell membrane of cardiomyocytes in adult rats. 

[142]

GLUT4: Glucose transporter 4; AMPK: Adenosine monophosphate-activated protein kinase; ERK: Extracellular signal-regulated kinase; GGF2: Glial growth factor 2; GAPDH: Glyceraldehyde-3-Phosphate Dehydrogenase; MEF2: Myocyte 
enhancer factor-2; MI: Myocardial infarction; PEDF: Pigment epithelium-derived factor; SHR: Spontaneously hypertensive rats; STZ: Streptozotocin; TGF: Transforming growth factors.

kcal and accounts for 60% of glucose ingested in a human subject[125]. The glucose 
influx and metabolism in the brain can be affected by multiple factors such as aging, 
T2DM and Alzheimer’s disease[144]. Reduction of glucose metabolism in the brain can 
lead to cognitive deficits[145]. Due to the critical relationship between cognitive 
performance and glucose metabolism, it is important to understand the regulatory 
mechanism of glucose metabolism in the brain.

Studies have shown that insulin signaling can be impacted in both T2DM and 
Alzheimer’s disease[146,147]. Insulin is a key component for hippocampal memory 
process, and specifically involved in regulating hippocampal cognitive processes and 
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Figure 2 The movement of glucose transporter 4 in adipocytes. Adipose tissue is made of adipocytes. In adipocytes, glucose transporter 4 (GLUT4) can 
be found in the cell membrane and in the cytosol. The translocation of GLUT4 from cytosolic vesicles to the cell membrane leads to elevated glucose uptake, 
whereas endocytosis brings GLUT4 back to the cytosol. (1): In unstimulated cells, GLUT4 containing membrane portions are internalized in an endocytosis manner to 
generate vesicles containing GLUT4. GLUT4 vesicles are internalized into early (or sorted) endosomes. They can enter the recovery endoplasmic body, and follow 
the retrograde pathway to the trans-Golgi network and endoplasmic reticulum-Golgi intermediate compartment or other donor membrane compartments. (2): GLUT4 
vesicles derived from the donor membrane structures are secured by tether containing a UBX domain for GLUT4 (TUG) protein. (3): During insulin signal stimulation, 
GLUT4 vesicles are released and loaded onto the microtubule motor to be transferred to the plasma membrane. The continuous presence of insulin leads to the 
direct movement of these vesicles to the plasma membrane. (4): GLUT4 vesicles are tethered to motor protein kinesin and other proteins. A stable ternary SNARE 
complex forms when this occurs. (5): The stable ternary SNARE complex is docked on the target membrane. (6): The docked vesicles rely on SNARE to move to and 
fuse with the target membrane[60,90,94]. GLUT4: Glucose transporter 4.

metabolism[148]. Insulin-modulated glucose metabolism depends on regions in the 
brain. The cortex and hippocampus are the most sensitive areas in the brain[149]. 
Hippocampus located deeply in temporal lobe plays an important role in learning and 
memory, and relates to diseases like Alzheimer’s disease, short term memory loss and 
disorientation[150]. Hippocampal cognitive and metabolic impairments are relatively 
common in T2DM, which may be caused by diet-induced obesity and systemic insulin 
resistance[151]. On the other hand, insulin stimulation can enhance memory and 
cognitive function[152]. This enhancement may require the brain GLUT4 translocation as 
shown in rats[153]. It is very important to determine the expression profile of GLUT4 in 
the brain, and factors that impact GLUT4 expression and translocation.

To summarize methods and reagents used in brain GLUT4 studies, “brain, GLUT4 
expression” were used as key words to search PubMed for articles that have brain and 
GLUT4 in their titles or short descriptions. Ten research articles published after 2000 
were identified as representative ones, which are focused on GLUT4 translocations 
and content in the brain of rats and mice. We summarized the methods and reagents 
for GLUT4 analysis, and conclusions as shown in Table 6[154-163].

In these 10 papers, two of them used real-time PCR to determine the Slc2a4 mRNA 
in the brain. Eight of them used anti-GLUT4 antibodies and Western blot to detect 
GLUT 4 protein. Five papers included β-actin as loading control in Western blot. Four 
used immunohistochemistry. One paper used electrophysiological technique, and one 
paper used fluorescent microscopy to identify GLUT 4 in neurons. One study used 
brain specific Slc2a4 knockout and wild type mice to study the functions of GLUT4 in 
the brain.

In conclusion, results of Western blot and real-time PCR demonstrate that GLUT4 
protein and Slc2a4 mRNA can be detected in rat’s brain and central nervous system. 
Deletion of Slc2a4 in the brain causes insulin resistance, glucose intolerance, and 
impaired glucose sensing in the ventromedial hypothalamus. GLUT4 mediates the 
effects of insulin, or insulin-like growth factor on regulations of cognition, memory, 
behavior, motor activity and seizures. GLUT4 positive neurons are responsible for 
glucose sensing. Physical activity improves GLUT4 translocation in neurons, a process 
that needs Rab10 phosphorylation. Interestingly, 27-OH cholesterol treatment seems to 
decrease GLUT4 expression in the brain. Studies of Slc2a4 mRNA and GLUT4 protein 
in the brain and central nervous system have begun to demonstrate the potential roles 
of GLUT4 expression and its translocation in the regulation of glucose metabolism in 
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Table 6 Recent studies of glucose transporter 4 expression and translocation in the brain

Methods Materials Comparisons Conclusions Ref.

Western blot. Brain, skeletal muscle, heart, and whiteadipose tissue from mice.  Anti-
GLUT4 from Chemicon (1:1000).

Samples from wild type and knockout mice. Deletion of Slc2a4 in the brain leads to insulin resistance, 
glucose intolerance, and impaired glucose sensing in the 
VMH.

[154]

Western blot,Real time-
PCR,Immunofluorescence.

Cortex, hypothalamus, cerebella samples from CD-1 mice. Monoclonal anti 
Glut4 (1F8) from Dr. Paul Pilch, Polyclonal anti Glut4 MC2A from Dr. 
Giulia Baldini, Polyclonal anti Glut4 αG4 from Dr. Samuel Cushman, 
Polyclonal anti Glut4 (C-20) from Santa Cruz Biotechnology.

Expression profile in the mouse and rat brain 
samples.

Slc2a4 mRNA is expressed in cultured neurons. GLUT4 
protein is highly expressed in the granular layer of the mouse 
cerebellum. GLUT4 translocation to the plasma membrane 
can be stimulated by physical activity.

[155]

Western blot. Brian tissue from STZ-induced diabetic male Sprague-Dawley rats.Anti-
GLUT4 from Millipore (1:1000).

Comparing treatment samples using β-actin and 
NA/K ATPase as loading controls in Western blot.

Chronic infusion of insulin into the VMH in poorly controlled 
diabetes is sufficient to normalize the sympathoadrenal 
response to hypoglycemia via restoration of GLUT4 
expression.

[156]

Immunocytochemistry. Cerebellum and hippocampus from male Sprague-Dawley rats.Rabbit anti-
GLUT4 antibody from Alomone Labs (AGT-024, RRID: AB_2631197).

Identifying expression profile and translocation. GLUT4 is expressed in neurons including nerve 
terminals.Exercising axons rely on translocation of GLUT4 to 
the cell membrane for metabolic homeostasis.

[157]

Real-time PCR, 
Immunocytochemistry.

Cerebral cortex, hippocampus, thalamus, cerebellum, medulla oblongata, 
cervical spinal cord, biceps muscles from male Wistar rats. Unknown source 
of antibody.

Identifying expression profile using β -actin as 
loading control in real-time PCR. 

Slc2a4 mRNA is detected in many neurons located in brain 
and spinal cord. GLUT4 protein is detected in different 
regions of the CNS including certain allocortical regions, 
temporal lobe, hippocampus, and substantia nigra.

[158]

Immunocytochemistry, Western 
blot.

Brain, spleen, kidney from Lrrk2 knockout mice.Anti GLUT4 Avivasysbio 
(ARP43785_P050, 1:100), andanti GLUT4 from R&D Systems (MAB1262, 
1:1000).

Samples from wild type and knockout mice, andanti-
β-Tubulin as loading control.

Phosphorylation of Rab10 by LRRK2 is necessary for GLUT4 
translocation.Lrrk2 deficiency increases GLUT4 expression on 
the cell surface in “aged” cells.

[159]

Western blot, 
Immunofluorescence, real-time 
PCR.

Brain from Cyp27Tg mice. Anti GLUT4 from Cell Signaling Technology 
(#2213,1:1000 dilution).

Mice with different treatments. A reduction of GLUT4 protein expression in brain occurs 
after 27-OH cholesterol treatment.

[160]

Immunohistochemistry. Brain, hypothalamus, and other tissues from Sprague–Dawley rats.Anti-
GLUT4 antibody from Santa Cruz Biochemicals (1:200), Anti GLUT4 from S. 
Cushman (1:1000).

Identifying the expression profiles. Soleus muscle as 
GLUT4 positive control. Antibodies after pre-
absorption with the corresponding synthetic peptide 
were used as negative control. for GLUT4 antibody.

GLUT4 is localized to the micro vessels comprising the blood 
brain barrier of the rat VMH.GLUT4 is co-expressed with 
both GLUT1 and zonula occludens-1 on the endothelial cells 
of these capillaries.

[161]

Electrophysiological analyses, 
fluorescent microscope.

Brain from GLUT4-EYFP transgenic mice. Fusion protein. Comparing samples from treatments. A scrambled 
RNA expressed by AAV acted as a negative control. 

GLUT4 neurons are responsible for glucose sensing. [162]

Western 
blot,Immunohistochemistry.

Brain samples from 7, 11, 15, 21 and 60 d old Balb/c mice. Rabbit anti-rat 
GLUT4 from an unknow source (1:2500 dilution for Western and 1:2000 for 
immunohistochemistry). 

Determine the expression profiles. Vinculin is used as 
the loading control in Western blot.

GLUT4 is expressed in neurons of the postnatal mouse brain. 
GLUT4 and GLUT8 may mediate the effects of insulin, or 
insulin-like growth factor on regulations of cognition, 
memory, behavior, motor activity and seizures.

[163]

AAV: Adeno-associated virus; CNS: Central nervous system; CRR: Counterregulatory response; EYFP: Enhanced Yellow Fluorescent Protein; LRRK2: Leucine-rich repeat kinase 2; STZ: Streptozotocin; VMH: Ventromedial hypothalamus.

the brain and central nervous system. More studies of GLUT4 expression and 
translocation in the control of functions and metabolism in various region in the brain 
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and central nervous system are expected in the future.

CONCLUSION
GLUT4 is generally thought to contribute to insulin-stimulated glucose uptake in 
adipocytes and skeletal muscle. Studies summarized here seem to show that GLUT4 is 
also expressed in the brain, neurons, and heart. GLUT4 is expressed concurrently with 
other GLUTs in multiple tissues in a temporal and spatial specific manner such as 
during brain development[163]. Hormones and cytokines other than insulin can also 
regulate the expression levels and translocation of GLUT4 in different tissues[141,142,163]. 
In adipocytes alone, many bioactive compounds or chemical reagents have shown to 
affect GLUT4 pathways as shown in Table 3. All these seem to indicate that the 
regulatory mechanism of the GLUT4 pathway is complicated than we originally 
proposed.

So far, various methods from gene knockout to immunohistochemistry have been 
used to study the mechanisms of Slc2a4 mRNA and GLUT4 expressions, and its 
translocation in different cells. Every technique has its pros and cons. Based on the 
studies summarized here, anti-GLUT4 antibodies from a variety of sources have been 
used to study GLUT4 expression and translocation. The conclusions of these studies 
are based on the experimental results derived from the use of those antibodies. A 
positive control derived from a cell or tissue with unique overexpression or silencing 
of GLUT4 is critical to confirm the antibody’s specificity to pick up a right signaling in 
the study system. This is especially true for Western blot. It appears that some of the 
studies did not include control groups like this. Another challenge facing biochemical 
study of GLUT4 translocation in the muscle may be the sample processing. This 
probably explains why fusion proteins and stable cell lines are developed to enhance 
signals and specificities for detection. Confirmation of the antibody specificity in a 
particular system probably should be done first.

As glucose homeostasis is a complicate process involved in many players. It is 
anticipated to see that many proteins seem to play a role in the regulation of GLUT4 
system. It will be interesting to see how GLUT4 in different regions of the brain 
contributes to the regulation of glucose metabolism, and what the roles of insulin-
induced GLUT4 translocation in those areas are. In addition, other GLUTs are also 
expressed in the same cells that GLUT4 are expressed. How GLUT4 works with other 
GLUTs to regulate metabolism also deserves to be investigated. Last, as glucose usage 
in the skeletal muscle is altered in insulin resistance and T2DM, how GLUT4 system 
contributes to progressions and interventions of these diseases still remains to be the 
focus in the future. Nevertheless, further understanding GLUT4 system will be very 
helpful for us to combat the development of T2DM.
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Abstract
X-linked adrenoleukodystrophy (X-ALD), an inborn error of peroxisomal β-
oxidation, is caused by defects in the ATP Binding Cassette Subfamily D Member 
1 (ABCD1) gene. X-ALD patients may be asymptomatic or present with several 
clinical phenotypes varying from severe to mild, severe cerebral adrenoleuko-
dystrophy to mild adrenomyeloneuropathy (AMN). Although most female 
heterozygotes present with AMN-like symptoms after 60 years of age, occasional 
cases of females with the cerebral form have been reported. Phenotypic variability 
has been described within the same kindreds and even among monozygotic 
twins. There is no association between the nature of ABCD1 mutation and the 
clinical phenotypes, and the molecular basis of phenotypic variability in X-ALD is 
yet to be resolved. Various genetic, epigenetic, and environmental influences are 
speculated to modify the disease onset and severity. In this review, we summarize 
the observations made in various studies investigating the potential modifying 
factors regulating the clinical manifestation of X-ALD, which could help 
understand the pathogenesis of the disease and develop suitable therapeutic 
strategies.

Key Words: X-adrenoleukodystrophy; Cerebral adrenoleukodystrophy; Adrenomyelo-
neuropathy; Phenotypic variation; Modifiers
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ALD), presents with different clinical phenotypes. The molecular basis for the 
phenotypic variation has yet to be resolved and is considered to be influenced by 
genetic, epigenetic, cellular, or environmental factors. We herein discuss the various 
modifying factors, which can potentially alter the phenotypic presentation of X-ALD.
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INTRODUCTION
Monogenic disorders are primarily caused by a single defective gene, but mutations in 
a single gene can result in a disease with varying clinical phenotypes. X-linked 
adrenoleukodystrophy (X-ALD), caused by mutations in the ABCD1 gene, is one such 
monogenic disorder affecting peroxisomal β-oxidation. ABCD1, mapped on Xq28, 
comprises of 10 exons[1] and codes for a 75kDa peroxisomal membrane protein called 
the ABCD1 protein or adrenoleukodystrophy protein (ALDP)[2]. ALDP is highly 
expressed in specific cell types like oligodendrocytes, astrocytes, microglial cells, 
adrenocortical cells, and endothelial cells in the brain, adrenal glands, testis, and 
kidney, liver, lung, and placenta[1,3,4]. ALDP transports very-long-chain fatty acids 
(VLCFAs), activated by coenzyme-A, into the peroxisomes, for β oxidation. A defect in 
the ABCD1 gene results in the synthesis of a dysfunctional ALDP protein, unable to 
transport VLCFA across the peroxisomal membrane. This leads to the buildup of 
VLCFA, mainly hexacosanoic and tetracosanoic acids, in various body tissues, 
primarily the brain, spinal cord, adrenal cortex, testis, and plasma[1]. The elevated 
plasma concentration of VLCFA acts as a diagnostic marker for this disorder.

The exact role of VLCFA in the pathogenesis of X-ALD remains unclear, and no 
correlation has been established between the concentration of VLCFA and the different 
phenotypes of X-ALD. The abnormally accumulated VLCFA can disrupt the integrity 
of the plasma membranes through interdigitating between the leaflets of the lipid 
bilayer and can induce lipotoxicity, endoplasmic reticulum stress, mitochondrial 
dysfunction, and oxidative stress leading to apoptosis favoring the process of cerebral 
demyelination in the brain[5-8].

CLINICAL SPECTRUM OF X-ALD
X-ALD patients have a diverse clinical presentation. They may be asymptomatic or 
present with the rapidly progressive forms after 3 years of age[1]. The main types of 
presentation in male patients are: (1) Cerebral ALD (CALD), the cerebral 
demyelinating form; (2) Adrenomyeloneuropathy (AMN), with spinal cord 
demyelination and axonal degeneration; and (3) Addison-like phenotype due to 
adrenocortical insufficiency.

Cerebral ALD affects males and is typified by progressive inflammatory cerebral 
demyelination leading to neurodegeneration. It includes the childhood cerebral form 
(CCALD) - appearing in mid-childhood (4-8 years), adolescent cerebral form or 
adolescent CALD (10-20 years), and adult cerebral form or adult CALD (> 20 years). 
Children with CCALD present with behavioral problems and a decline in school 
performance due to impairment of auditory discrimination and spatial orientation, 
thereby affecting writing and speech. Rarely, seizures may be the initial manifestation. 
As the disease progresses, there are further signs of damage to the brain white matter, 
including spastic quadriparesis, dysphagia, and visual loss leading to a vegetative 
condition. Adolescent CALD manifests between 10 and 20 years of age with clinical 
features of cerebral involvement. In adult CALD, psychiatric symptoms, seizures, 
spastic paraparesis, and dementia develop in males over the age of 20.

The second most common phenotype, AMN, is usually characterized as a gradually 
developing, non-inflammatory axonopathy, mainly affecting males over 20 years of 
age. AMN is sub-divided as “pure AMN” and “AMN-cerebral.” In patients with pure 
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AMN, there is spinal cord involvement resulting in gait disturbances and bladder 
dysfunction, whereas patients with AMN-cerebral form show clinical features of 
cerebral inflammation besides the symptoms of pure AMN[9]. The transformation of 
pure AMN to the cerebral form of AMN is not clearly understood.

A significant proportion of male patients with X-ALD develop adrenocortical 
insufficiency, which may occur either after the appearance of neurological symptoms 
or decades ahead. A majority of males present with adrenocortical insufficiency in 
association with features of CALD or AMN[1]. Rare cases have shown to manifest 
adrenocortical insufficiency without cerebral demyelination and are characterized as 
“Addison only” type of X-ALD[1,10].

In 20%-50% of heterozygotes or female carriers of X-ALD, symptoms similar to 
AMN, typically consisting of gait disturbance, dysuria, and urgency, occur after 40 
years. There are also reports of female carriers with CALD and adrenal 
insufficiency[11]. For instance, Hershkovitz et al[12] reported a case of CALD in a girl of 
age, 8.9 years, where the genetic analysis was indicative of heterozygosity with a 
deletion at Xq27.2-tel. Similarly, Chen et al[13] reported CALD and adrenal insufficiency 
in a 38-year-old Chinese woman. The possible explanation for the symptomatic state 
observed in certain heterozygotes could be skewed X-chromosome inactivation, 
resulting in the expression of the chromosome carrying the faulty ABCD1 gene[14]. 
Studies have found a significant association between the degree of skewness and the 
severity of neurological deficits[14,15]. However, factors favoring this event remain 
unidentified.

PHENOTYPIC VARIABILITY IN THE SAME PEDIGREE
The various clinical types of X-ALD frequently appear in the same kindreds and 
nuclear families carrying the same mutation in the ABCD1 gene. In half of the 
kindreds, both CALD and AMN are found[16]. Diverse phenotypes and clinical features 
have been seen in mother and son, monozygotic twins, heterozygous siblings, and 
affected members of several generations of families[17-19]. For instance, a study reported 
a family with X-ALD where the proband was diagnosed with the CCALD. In contrast, 
his two other siblings and maternal uncle were diagnosed with the adolescent form of 
CALD, Addison’s only phenotype of X-ALD, and AMN. Mutational analysis found a 
hemizygous mutation of c.1780C>G in the ABCD1 gene in all three siblings[20].

A Brazilian study reports two siblings with CCALD presenting with different 
clinical features at diagnosis. Both parents had the p.Trp132Ter mutation in ABCD1. 
Addison's disease phenotype was found in their maternal grandfather[21]. Similarly, 
different clinical phenotypes have been reported in a Tunisian family with 
p.Gln316Pro mutation in ABCD1[22].

In an early study of 15 Dutch kindreds, van Geel and coworkers[23] found only 
CALD in 20%, only AMN in 40%, and both CALD and AMN in 40%. Another large 
study of 178 kindreds found CALD in 30%, AMN in 20%, and both CALD and AMN 
in 50%[1].

Korenke et al[19] describe phenotypic variation in monozygotic twins with the same 
mutation (C2203T) in exon8 of ABCD1, where neuroimaging studies were found 
normal for the first twin, and parietooccipital demyelination was found in the second 
twin at ten years of age. Sobue et al[24] also report genetically confirmed monozygotic 
twins who presented with different clinical types of X-ALD. Although 
myeloneuropathy was present in both twins, widespread brain demyelination with 
cognitive dysfunction and behavioral symptoms was pronounced in the older twin, 
while the younger twin presented with adrenal insufficiency.

CAUSE OF PHENOTYPIC VARIABILITY IN X-ALD
Despite various studies, the exact cause of the phenotypic variability is not clear. Over 
> 800 mutations have been characterized in the ABCD1 gene, but, based on the 
observations of various studies, it is clear that there is no association between the 
genotype and the different phenotypes of X-ALD. Identical defects in the ABCD1 gene 
have been found in cases with different types of X-ALD (CCALD, adult CALD, AMN, 
Addison only, and asymptomatic)[25,26]. Mutations that can cause deleterious damage to 
the protein, such as large deletions are reported in severe cerebral forms and milder 
types such as AMN and asymptomatic cases[27]. These data support the assumption 
that factors other than the X-linked locus participate in deciding the phenotype. It is 
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possible that the specific mutation, along with the influence of individual genetic and 
environmental factors commonly referred to as “modifiers”, could play a crucial role 
in penetrance and the disease severity. Exploring these potential modifiers and 
understanding their roles in defining the phenotype in X-ALD associated with a 
specific mutation in the ABCD1 gene is crucial in predicting the disease phenotype.

POTENTIAL MODIFIERS IN X-ALD
A variant at a particular genetic locus may not be adequate to determine the clinical 
phenotype, severity, and progression in human diseases[28]. Direct or indirect 
association of different genetic, epigenetic factors, and environmental factors can 
change the expressivity, penetrance, and severity of a disease progression (Figure 1). 
The relative involvement of multiple modifiers to the disease phenotype may generate 
a combined impact on the phenotypic expression, and the combination of these 
modifiers may differ among individuals. Identifying these modifying factors and 
establishing a collective association with different clinical phenotypes is very 
challenging, but maybe crucial for appropriate management of the disease.

Modifier genes
Phenotypic variability of a disease can be explained by the influence of other genes 
apart from the gene involved in the disease, and these genes are called “modifier 
genes”[29]. Modifier genes can affect the expression or function of another gene. The 
final impact of these genes on clinical variability could depend on their collective 
interaction and the interplay of other epigenetic or environmental factors. Genetic 
segregation analysis of a considerable number of families with X-ALD and analysis of 
concordant and discordant siblings indicates that a modifying gene, with an allele 
frequency of approximately 0.5, could be the main determining factor for phenotypic 
differences[16,30]. Numerous studies have been directed towards identifying potential 
modifier genes that control the clinical variability of X-ALD. The foremost challenge 
for many studies is the small sample size for detecting the genetic association. These 
studies have attempted to investigate a modifier role in various genes involved in the 
metabolism of VLCFA, inflammatory pathways, methionine metabolism, and bile acid 
metabolism (Table 1). However, no studies have attempted to elucidate an interactive 
association of different genes with different phenotypes associated with the primary 
mutation in the ABCD1 gene.

Genes involved in peroxisomal metabolism of VLCFA: The molecular defect in X-
ALD is a deficiency of the ALDP protein due to which there is a defective passage of 
VLCFA into the peroxisome. In the peroxisomal matrix, saturated and unbranched 
VLCFA are metabolized by enzymes of the β-oxidation pathway[31]. In patients with X-
ALD, VLCFA, particularly C26:0, collect in various tissues and are incorporated into 
different complex lipids. Excess levels of VLCFAs and VLCFA-containing lipids are 
considered as biochemical triggers playing a central part in the development of X-
ALD.

The superfamily of ATP-binding cassette transporters, which ALDP belongs to, also 
includes ALDRP, PMP70, and ABCD4 coded by ABCD2, ABCD3, and ABCD4 genes. 
Experimental data suggest that ABCD2 and ABCD3 genes, when over-expressed, can 
supplement the biochemical defect in ALD fibroblasts[32]. However, Asheuer et al[33] 
demonstrated that the concentrations of ABCD2 transcripts were similar in the 
unaffected white brain matter in different ALD phenotypes suggesting that difference 
in ABCD2-gene expression was not likely to contribute to the vulnerability for cerebral 
demyelination. In contrast, the expression of ABCD4 genes correlated with the 
predisposition for brain demyelination and showed a trend of an association with 
CCALD, AMN-cerebral, and pure AMN phenotypes. Two other independent 
association studies have reported that ALD phenotypes are not associated with the 
ABCD2 genotype[34]. A Japanese study found no significant association of SNPs in 
ABCD2, ABCD3, and ABCD4, and ALD phenotypes, except for five single nucleotide 
polymorphisms in ABCD4, were less commonly found in AMN patients than in 
controls, but no significant association with CCALD (Table 1). However, a repetition of 
this study of five SNPs on another group of French ALD patients found no significant 
link with CCALD or pure AMN[35].

Accumulation of VLCFA could also result from the excessive lengthening of long-
chain fatty acids to VLCFA in the cell[36]. This increased elongation can be due to 
enhanced expression of elongases and/or imbalance in the degradation and synthesis 
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Table 1 List of potential modifier genes for X-linked adrenoleukodystrophy investigated in various studies

Series 
No. Gene name Variants studied No. of cases Inference Ref.

Genes associated with VLCFA metabolism

rs11172566 No significanceI ABCD2

rs11172661

117

No significance

Maier et al[34]

A/T(5’UTR) No significanceI ABCD2

M94V

280

No significance

Matsukawa 
et al[35]

rs4148058 No significance

rs2147794 No significance

rs16946 No significance

rs681187 No significance

rs662813 No significance

II ABCD3

rs337592

280

No significance

Matsukawa 
et al[35]

rs17182959 No significance

rs17158118 No significance

rs17782508 No significance

rs2301345 No significance

rs4148077 No significance

rs4148078 No significance

III ABCD4

rs3742801

280

No significance

Matsukawa 
et al[35]

rs21086622 Minor allele A associated with 
CALD (P = 0.036)

rs3093207 No significance

rs1272 No significance

rs3093200 No significance

rs3093194 No significance

rs3093166 No significance

rs4808400 No significance

rs3093153 No significance

rs3093135 No significance

IV Cytochrome P450 4F subfamily (
CYP4F2)

rs3093105

152

No significance

van Engen 
et al[38]

Genes associated with methionine metabolism

I Cystathionine β-Synthase (CBS) c.844_845ins68 86 Associated with pure AMN Linnebank 
et al[46]

I Cystathionine β-Synthase (CBS) c.844_845ins68 172 No significance Semmler 
et al[48]

II Methionine synthase (MTR) c.2756A>G 86 No significance Linnebank 
et al[45]

II Methionine synthase (MTR) c.2756A>G 172 No significance Semmler 
et al[48]

III Methylenetetrahydrofolate reductase 
(MTHFR)

c.677C>T 86 No significance Linnebank 
et al[45]

c.677C>T No significanceIII Methylenetetrahydrofolate reductase 
(MTHFR)

c.1298A>C

172

No significance

Semmler 
et al[48]

Semmler IV Dihydrofolate reductase (DHFR) c.594+59del19bp 172 No significance
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et al[48]

V 5-Methyltetrahydrofolate-
Homocysteine Methyltransferase 
Reductase (MTRR)

c.60A>G 172 No significance Semmler 
et al[48]

VI Transcobalamin 2 (TC2) c. 776C>G 86 GG genotype prevalent in AMN 
with demyelination compared 
to pure AMN (P = 0.001)

Linnebank 
et al[45]

VI Transcobalamin 2 (TC2) c. 776C>G (GG) 172 GG genotype associated with 
demyelination (P = 0.036)

Semmler 
et al[48]

VII Reduced folate carrier 1 (RFC1) c.80G>A 172 No significance Semmler 
et al[48]

Genes associated with inflammation

I TNF-α G- 308A 15 No significance McGuinness 
et al[64]

II Cluster of differentiation (CD1) CD1A-CD1E 139 No significance Barbier 
et al[44]

HLA-DRB1*16 HLA-DRB1*16 associated with 
X-ALD (P < 0.02)

III Human leukocyte antigen (HLA)

HLA-DRB1*15

29

No significance

Berger et al[40]

III Human leukocyte antigen (HLA) HLA-DBR1* 70 No significance Schmidt 
et al[41]

HLA-DRB1*16III Human leukocyte antigen (HLA)

HLA-DRB1*15

106 No significance McGuinness 
et al[65]

IV Interleukin 6 (IL6) 68 No significance Schmidt 
et al[41]

V Myelin Oligodendrocyte glycoprotein 
(MOG)

(TAAA)n 68 226bp (TAAA)n polymorphism 
associated with the presence of 
Anti-MOG antibody. (P < 0.05).

Schmidt 
et al[41]

G15A No significance

CTC 5 repeats No significance

G511C No significance

G520A No significance

551+68 A→G No significance

V Myelin oligodendrocyte glycoprotein 
(MOG)

551+77 C→T

44

No significance

Gomez-Lira 
et al[42]

Other genes

rs4880 T-allele associated with cerebral 
involvement in non-CCALD 
cases

rs2758352 No significance

rs2842980 No significance

I Superoxide oxide dismutase (SOD2)

rs2758329 No significance

Brose et al[49]

II Apolipoprotein E (APOE) rs7412 rs429358 83 APOE4 associated with cerebral 
involvement

Orchard 
et al[52]

rs3824260 (c.-
533T>C)

CC allele observed in patient 
whereas CT in mother

III Cytochrome P450 family 7 subfamily 
A member 1 (CYP2A1)

rs3808607 (c.-
267C>A)

AA allele observed in patient 
whereas CA in mother

rs9938550 
(c.748A>G)

GG allele observed in bothIV 3 β-hydroxysteroid dehydrogenase 
type 7 (HSD3B7)

rs2305880 
(c.1068T>C)

CC allele observed in patient

V Bile acyl-CoA synthetase (SLC27A5) rs4810274 (c.1668-
6T>C)

CC observed in patient

Study carried out on a patient 
diagnosed with AMN with 
c.659T>C mutation in ABCD1 
gene in patient and mother

Płatek et al[50]
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VI Aldo-keto reductase family 1 member 
D1 (AKR1D1)

c.-71G>C GC observed in patient

VII Cytochrome P450 Family 27 
Subfamily A Member 1 (CYP27A1)

rs397795841 (c.-
357dupC)

Homozygous mutation in both

AMN: Adrenomyeloneuropathy; CALD: Cerebral adrenoleukodystrophy; CCALD: Childhood cerebral adrenoleukodystrophy; VLCFA: Very-long-chain 
fatty acid; X-ALD: X-linked adrenoleukodystrophy.

Figure 1 Possible modifiers associated with disease phenotypic variability. Phenotypic heterozygosity observed in a monogenic disorder can be due 
to the association of modifying factors such as genetic, epigenetic, and/or environmental factors, commonly termed as “modifiers.”

of VLCFA. Ofman et al[37] reported no change in the expression of ELOVL1 in X-ALD 
fibroblast, therefore ruling out the possibility of VLCFA accumulation due to increased 
expression of ELOVL1. However, knockdown of ELOVL1 showed a reduction in C26:0 
concentrations in X-ALD fibroblasts, thus indicating that ELOVL1 could be a possible 
modifier for X-ALD.

The oxidation of VLCFA starts with its activation by coenzyme A and enzymes with 
very-long-chain acyl-CoA synthetase (VLACS) activity. In a study of the unaffected 
brain white matter from X-ALD cases, Asheuer et al[33] have found that the expression 
of VLACS genes did not correlate with the clinical phenotypes (CALD and AMN 
phenotypes). On the contrary, lower expression of the BG1 gene, which codes for a 
non-peroxisomal synthetase which activates VLCFA to its coenzyme A derivatives, 
was found in the white matter of ALD patients which correlated with the presence of 
cerebral demyelination. Hence BG1 could be considered as a potential modifier gene[33].

VLCFAs can also undergo ω-oxidation, and are further converted to dicarboxylic 
acids by the cytochrome P450 system. These reactions may present another route for 
the metabolism of the accumulated VLCFAs. The gene, CYP4F2, codes for a critical 
enzyme in the ω-oxidation of VLCFA to very long-chain dicarboxylic acids. van Engen 
et al[38] reported that the CYP4F2 polymorphism (CYP4F2 p.433M) increased the 
chances of acquiring CALD in male Caucasians (Table 1). They further demonstrated 
the functional impact of the CYP4F2 p.433M variant on cellular models, which showed 
reduced CYP4F2 protein level, led to a reduction in the metabolism of VLCFA through 
ω-oxidation.

Inflammation-related genes: Brain inflammation and the ensuing progressive 
inflammatory demyelination is characteristically found in the demyelinating forms of 
X-ALD. Acute inflammation occurs only in the CNS and not in other tissues of the 
affected cases[39]. Variants in the genes playing a role inflammation have been 
speculated to influence disease variability. The putative modifying genes could 
participate in an inflammatory response to the buildup of VLCFA or some other 
related metabolite in the brain. Since the pathology of the cerebral form is akin to that 
seen in multiple sclerosis (MS), some of the genetic factors involved in triggering 
inflammation in multiple sclerosis could also participate in the pathogenesis of X-ALD.
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Genetic variants of specific major histocompatibility complex class II antigens (
HLA-DRB1) are reported to be associated with the risk for MS and could be suitable 
candidate modifiers for X-ALD. Berger et al[40] described a significant relationship 
between the HLA-DRB1*16 allele and X-ALD. However, this allele did not show 
association with CALD, the inflammatory phenotype of X-ALD. The DRB genes are 
involved in the synthesis of peptides receptors playing a central role in the immune 
system.

Myel in  ol igodendrocyte  glycoprotein  (MOG) is  the  main target for 
demyelinating autoantibodies in MS. Schmidt et al[41] found increased serum anti-MOG 
in X-ALD cases and reported that these were linked with MOG (TAAA)n gene 
polymorphism but not with clinical types of ALD. Gomez- Lira and coworkers[42] 
identified six sequence variants in MOG gene: G15A, G511C, G520A, CTC repeats in 
exon1, 551168A→G and 551177C→T in X-ALD patients, but no frequency difference 
was observed in cases when compared to controls.

Tumor necrosis factor (TNF-α), a major pro-inflammatory cytokine, is involved in 
the pathogenesis of many neurological disorders including MS. TNF-α is capable of 
causing damage to the myelin sheath and oligodendrocytes and has also found to 
modulate the MBP (Myelin basic protein) gene promoter activity, via activation of NF-
κB transcriptional factor in oligodendroglioma cells[43]. However, increased TNF-α 
bioactivity was not found to be associated with any allelic difference in the TNF-α gene 
(G- 308A).

Genetic variants of the cytokine, interleukin-6 (IL-6), such as the IL-6 C-allele which 
is a variable number tandem repeat polymorphism situated on the 3’ flanking region 
of the IL-6 gene, is reported to be linked to late-onset Alzheimer’s and MS, but no 
association was found with the different clinical phenotypes of X-ALD[41].

Neuroinflammation in CALD is suspected to be due to the involvement of different 
classes of lipids enriched in the VLCFA[2]; thus, the participation of CD1, a lipid 
antigen-presenting molecule, was speculated. Barbier et al[44] assessed the association 
between the genetic variants of CD1 molecules (CD1A-E) and the presence of 
neuroinflammation in X-ALD but found no association between them.

Genes associated with methionine metabolism: The pathological characteristic of the 
cerebral type of X-ALD is CNS demyelination. Demyelination starts in the mid of 
corpus callosum and advances outwards in both brain hemispheres. This leads to a 
gradual neurologic decline and death within 3 to 5 years[3].

The sulfur-containing amino acid, methionine, plays a vital metabolic role in 
providing methyl group required for DNA methylation, brain myelination, and 
precursors for the generation of glutathione taurine. S-adenosyl methionine (SAM), the 
active form of methionine, is a methyl donor. Deficiency of SAM can lead to 
demyelination in the CNS. Studies have reported variants of methionine metabolism 
as risk factors causing demyelination in X-ALD patients. Linnebank et al[45] studied the 
combined risk genotype, i.e. the occurrence of a minimum of one distinct genotype of 
three functional polymorphisms in genes associated with methionine metabolism, 
5,10-methylenetetrahydrofolate reductase (MTHFR) c.677CT, methionine synthase (
MTR) c.2756AG, and transcobalamin 2 (Tc2) c.776CG, in 86 patients with various 
phenotypes of X-ALD. These authors reported that CCALD patients tended to have a 
higher prevalence of the combined risk genotype (46%) in comparison to the group 
with the benign variant "pure" AMN (33%; P = 0.222) due to a higher prevalence of the 
MTR (41% vs 22%, P = 0.110) and the Tc2 risk genotype (18% vs 14%, P = 0.675). 
Moreover, this genotype was overrepresented in patients with AMN with CNS 
demyelination (AMN-cerebral) when compared to 49 AMN patients without CNS 
demyelination (“pure” AMN) and suggested that variations in genes associated with 
methionine metabolism might influence the phenotypic variability in X-ALD. 
Cystathionine β-synthase (CBS) is another important enzyme in the methionine 
metabolic pathway, and the CBS c.844_845ins68 variant may affect the availability or 
concentrations of activated methionine and glutathione. Linnebank and colleagues 
also found that CBS c.844_845ins68 insertion allele protected X-ALD patients from 
cerebral demyelination[46].

In another study of CBS c.844_855ins68, MTR c.2756A to G, and TC2 c.776 C to G in 
120 Chinese ALD patients, the frequency of only the GG genotype of the TC2 c.776 
C/G was more in those with brain demyelination than in controls[47]. TC2 is the 
transport carrier protein for cobalamin and methylcobalamin, the active form of 
cobalamin, a crucial cofactor necessary for the enzymatic activity of methionine 
synthase.

These results were further confirmed by Semmler et al[48] who genotyped eight 
polymorphisms in methionine metabolism genes, including CBS c.844_855ins68, 
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MTHFR c.677C>T, MTR c.2756A>G and DHFR c.594+59del19bp, and found Tc2 c.776 
GG genotype to be more prevalent in X-ALD cases with clinical features of brain 
demyelination compared to those without demyelination.

Other potential genetic modifiers: Reactive oxygen species (ROS) can trigger 
oxidative damage to DNA and proteins and ineffective oxidative phosphorylation, 
and this could result in dying-back axonopathy. Axonal degeneration in the spinal 
cord is typically observed in the AMN form of X-ALD. The mitochondrial superoxide 
dismutase (SOD2) is responsible for detoxifying ROS and is considered a modifying 
factor for the development of demyelination in X-ALD. A study reported that SOD2 
variant C47T and GTAC haplotype with reduced activity were associated with 
adolescent cerebral, adult cerebral X-ALD, and AMN- cerebral patients[49] (Table 1).

Bile acid metabolism occurs in the peroxisomes. An abnormal bile acid profile and 
mutations in the genes associated with the metabolism of bile acids such as CYP7A1, 
CYP27A1, CYP7B1, HSD3B7, AKR1D1, and SLC27A52, has been reported in a Polish 
AMN patient and these genes have been suggested as potential modifiers of X-ALD[50] 
(Table 1). However, more studies are required to confirm this association

Apolipoprotein E, a protein associating with lipid particles and functioning in 
lipoprotein-mediated lipid transport between organs, has three isoforms 
APOE2, APOE3 and APOE4 encoded by three alleles situated on a single gene locus. 
APOE3 protein maintains the blood-brain-barrier integrity (BBB) through the 
downregulation of cyclophilin A (CypA), a pro-inflammatory protein[51]. Male X-ALD 
patients bearing the APOE4 genotype are reported to have greater cerebral 
involvement as determined by MRI severity score, lesser neurologic function, and 
elevated concentrations of matrix metalloproteinase-2 (MMP-2) in the cerebrospinal 
fluid compared to non-carriers[52]. The presence of the APOE4 allele has been suggested 
to upregulate CypA leading to the activation of MMP-9 and loss of BBB integrity, 
leading to increased severity of cerebral disease in cerebral ALD[51].

Influence of epigenetic factors
Epigenetic factors, too, can influence the onset of disease by inducing a subtle change 
in the gene expression without any notable alteration in the DNA sequence. Epigenetic 
alterations comprise DNA methylation, post-translational modifications of histones 
such as methylation, phosphorylation, acetylation, and post-transcriptional regulation 
by non-coding RNA.

DNA methylation acts as a regulatory mechanism for gene expression, and cell 
differentiation and various studies have demonstrated the association between change 
in DNA methylation and disease pathogenesis[53]. A study by Schlüter et al[54] compared 
the genome-wide DNA methylation pattern of unaffected frontal brain white matter of 
patients with CCALD and AMN with cerebral involvement and found 
hypermethylation of genes that are majorly involved in differentiation of 
oligodendrocytes including MBP, CNP, MOG, PLP1 that can result to impaired 
differentiation of oligodendrocyte precursor cells to remyelinating oligodendrocyte 
and hypomethylation of genes associated with an immune function such as IFITM1 
and CD59. This supports the neuropathological evidence of lack of remyelination and 
immune activation noted in the cerebral form of X-ALD. This study also showed that 
combined methylation levels of SPG20, UNC45A, and COL9A3 and combined 
expression levels of ID4 and MYRF could be useful as biomarkers for differentiating 
CALD from AMN.

Aberrant expression of microRNAs (miRNAs), a group of small non-coding RNAs 
regulating post-transcriptional gene expression, has been suggested to play a 
significant part in the development of neuroinflammation and degeneration[55]. Shah 
et al[55] found decreased expression of miR-196a and increased expression of ELOVL, 
IKKα, IKKβ, MAP4K3, and MAP3K2 in cerebral ALD compared to AMN and control 
fibroblasts, and suggested that the regulation of inflammatory signaling pathway in 
CALD brain occurs via miR-196a.

Other potential modifying factors
Various host or cellular environmental factors may influence disease development in 
an individual. Oxidative stress is a common phenomenon reported in various 
neurodegenerative disorders, including X-ALD. Overproduction of free radicles 
results in lipid peroxidation, whose byproducts can cause deleterious damage to the 
cells[56]. Nury et al[57] observed reduced plasma levels of oxidative stress markers such 
as α-tocopherol, GSH, and docosahexaenoic acid (DHA) in different X-ALD 
phenotypes. These authors also showed that 7α-hydroxycholesterol, 7β-
hydroxycholesterol, 7-ketocholesterol, and 9- and 13-hydroxyoctadecadienoic acids 
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were produced as a result of oxidative stress. Increased level of 7-ketocholesterol was 
found to cause overproduction of free radicles, activation of PRAP-1, and caspase 3 
and elevated LC3-II/LC3-I and p62 in BV-12 microglia cells, indicating its ability to 
induce cell death[53]. A recent study demonstrated 7-ketocholesterol induced activation 
of PRAP-1 via NF-κB transforms microglial cells from a resting stage to an active stage, 
ultimately damaging the neurons. As 7-ketocholesterol induces oxidative stress, 
inflammation, and cell death, high levels could enhance peroxisomal dysfunction in 
microglial cells, promoting brain damage in the affected patients.

Jang et al[58] demonstrated the abnormal generation of cholesterol 25-hydroxylase 
and 25-hydroxycholesterol in CCALD patient-derived cell models and showed that 25-
hydroxycholesterol aids the aggregation and activation of NLRP3 inflammasome, a 
caspase-1- activating multi-protein complex, resulting in increased formation of pro-
inflammatory cytokines, IL-1β, IL-18[59]. 25-hydroxycholesterol has also been found to 
induce mitochondrial-dependent apoptosis of cells via the stimulation of glycogen 
synthesis kinase-3β (GSK-3β)/LXR pathway in the amyotrophic lateral sclerosis cell 
model[60]. This could also account for severe cerebral inflammatory demyelination, the 
hallmark of CCALD.

Trauma to the head has been speculated to trigger or worsen symptoms in X-
ALD[61], and asymptomatic cases of X-ALD presenting with symptoms after head 
trauma have been reported. The inflammatory response following a traumatic brain 
injury, followed by mitochondrial dysfunction, oxidative stress, and disruption of the 
BBB, has been suggested to activate cerebral inflammatory demyelination resulting in 
the appearance of symptoms[62].

The major difference between the different X-ALD phenotypes is the presence or 
absence of neuroinflammation and cerebral demyelination. The inflammatory 
response in the brain is believed to begin after the abnormal accumulation of VLCFA. 
ALDP deficiency has been shown to induce alteration in brain endothelial cells 
favoring the migration of leukocytes by downregulating the expression of c-Myc, 
leading to a reduction in the expression of cell surface tight junction proteins CLDN5 
and ZO1 and increased expression of cell adhesion molecule ICAM-1 and MMP9[63]. 
We speculate that the migration of immune cells into the brain could be a rate-limiting 
step in the induction of cerebral demyelination. The onset of the migration across the 
BBB could be precipitated by various environmental triggers, genetic or epigenetic 
factors and ABCD1 deficiency acting either alone or in concert, marking the onset of 
brain inflammation leading to cerebral symptoms (Figure 2). Further, the absence of 
neuroinflammation in “pure AMN” and “Addison’s only” phenotype could also 
possibly be due to the involvement of modifiers that are protective against the VLCFA 
toxicity in the brain. For instance, it is commonly known that MMP2 and MMP9 are 
required for the migration of the immune cells across the endothelial basal membrane 
and parenchymal border, respectively. However, the delay in the synthesis and 
secretion of MMP2 and MMP9 could delay the migration process and, ultimately, the 
disease onset. Genetic factors such as APOE4, which is shown to be associated with 
cerebral involvement in young males, are also associated with increased expression of 
MMP9 via cyclophilin A, leading to BBB leakiness. Thus, a complex interplay between 
multiple determinants could affect the onset and severity of the disease symptoms.

CONCLUSION
The role of different modifiers influencing disease phenotypes has been described in 
various metabolic disorders. Therefore, though X-ALD is a monogenic disorder, other 
genetic factors, along with the environmental triggers, may be responsible for the 
severity and penetrance of the disease. Although numerous studies have made efforts 
to understand different genetic, epigenetic, and environmental factors in X-ALD, the 
exact cause of phenotypic differences in X-ALD patients with the same genotype is not 
clear. Improved knowledge of these factors will allow identification of patients prone 
to developing a particular form or clinical type of X-ALD. Besides, detailed elucidation 
of the association of different potential modifiers with the clinical heterozygosity in X-
ALD is crucial for understanding the disease pathogenesis and for developing novel 
therapeutic strategies. With the introduction of neonatal screening for X-ALD, X-ALD 
modifiers will become increasingly essential to categorize patients who are likely to 
develop cerebral demyelination and plan appropriate management of these patients.
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Figure 2 Factors determining the onset of symptoms of cerebral demyelination. Migration of immune cells into the brain could be a rate-limiting step 
in the appearance of symptoms of cerebral demyelination. Onset of the migration across the blood brain barrier could be precipitated by environmental triggers, 
genetic or epigenetic factors and ATP Binding Cassette Subfamily D Member 1 (ABCD1) deficiency acting either alone or in concert, marking the onset of brain 
inflammation leading to cerebral symptoms.
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Abstract
BACKGROUND 
Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (E. coli) are 
among the main pathogens in urinary tract infections (UTIs) among kidney 
transplant patients (KTPs).

AIM 
To estimate the prevalence of ESBL-producing E. coli in KTPs and to evaluate the 
most prevalent serotypes and antibacterial susceptibility patterns of isolated 
bacteria in Tehran, Iran.

METHODS 
A total of 60 clinical isolates of uropathogenic E. coli were collected from 3 kidney 
transplant centers from April to May 2019. Antimicrobial susceptibility testing 
was performed by the disk diffusion method as recommended by the Clinical 
Laboratory and Standards Institute. The serotyping of E. coli isolates was 
performed by the slide agglutination method. The presence of blaTEM, blaSHV, and bla
CTX-M genes was evaluated by polymerase chain reaction.

RESULTS 
The frequency of ESBL-producing E. coli in KTPs was found to be 33.4%. All of the 
60 E. coli isolates were found to be susceptible to doripenem (100%) and 
ertapenem (100%). High resistance rates to ampicillin (86%), cefotaxime (80%), 
and cefazolin (77%) were also documented. The most frequent serotypes were 
serotype I (50%), serotype II (15%), serotype III (25%), and serotype VI (10%). The 
gene most frequently found was blaTEM (55%), followed by blaCTX-M (51%) and blaSHV 
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(41%).

CONCLUSION 
Molecular analysis showed that blaTEM was the most common ESBL-encoding gene. 
The high resistance to β-lactams antibiotics (i.e., ampicillin, cefotaxime, and 
cefazolin) found in E. coli from KTPs with UTIs remains a serious clinical 
challenge. Further efforts to control ESBL-producing E. coli should include the 
careful use of all antibiotics as well as barrier precautions to reduce spread.

Key Words: Kidney transplantation; Urinary tract infection; Drug resistance; Escherichia 
coli; Serotyping; β-Lactamase

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Extended-spectrum β-lactamases (ESBLs)-producing Escherichia coli (E. 
coli) are among the main pathogens in urinary tract infections among kidney transplant 
patients (KTPs). The aims of this study were: To estimate the prevalence of ESBL-
producing E. coli in KTPs, and to evaluate the most prevalent serotypes and 
antibacterial susceptibility patterns of isolated bacteria in Tehran, Iran. The most 
important findings were: (1) The frequency of ESBL-producing E. coli in KTPs was 
33.4%; (2) High resistance rates to ampicillin (86%) and cefotaxime (80%) were 
documented; (3) The most frequent serotype was serotype I (50%); (4) The most 
frequently found related gene was blaTEM (55%); and (5) Further efforts to control 
ESBL-producing E. coli should include the careful use of all antibiotics as well as 
barrier precautions to reduce spread.

Citation: Najafi Khah A, Hakemi-Vala M, Samavat S, Nasiri MJ. Prevalence, serotyping and 
drug susceptibility patterns of Escherichia coli isolates from kidney transplanted patients with 
urinary tract infections. World J Biol Chem 2020; 11(3): 112-118
URL: https://www.wjgnet.com/1949-8454/full/v11/i3/112.htm
DOI: https://dx.doi.org/10.4331/wjbc.v11.i3.112

INTRODUCTION
Urinary tract infection (UTI) remains one of the most common bacterial infections in 
kidney transplant patients (KTPs)[1,2]. Escherichia coli (E. coli) is one of the main 
uropathogens isolated from KTPs with UTIs[3]. Recently, several studies have reported 
a high incidence of extended-spectrum β-lactamases (ESBLs)-producing E. coli among 
KTPs[4]. Infections caused by ESBL-producing bacteria are usually associated with 
increased morbidity and mortality[5-7]. Therefore, UTI caused by ESBL-producing E. coli 
in KTPs is an important challenge in healthcare settings.

The ESBL-producing strains are resistant to all penicillins, cephalosporins 
(including first-, second-, and third-generation) and aztreonam. This event occurs due 
to the production of CTX-M, TEM, and SHV β-lactamases which are encoded by 
blaCTX-M, blaSHV, and blaTEM genes, respectively[5-7]. To date, several studies have reported 
the rates of ESBL-producing E. coli in Iran; however, very few studies have evaluated 
ESBL-producing bacteria in KTPs or their antimicrobial susceptibility profiles. 
Therefore, the aims of this study were to estimate the prevalence of ESBL-producing E. 
coli in KTPs, to serotype the ESBL-producing E. coli, and to identify the antibacterial 
susceptibility patterns of isolated bacteria in Tehran, Iran.

MATERIALS AND METHODS
Setting and samples
In this study, urine samples were collected using the mid-stream clean catch method. 
A total of 60 E. coli isolates from 60 KTPs referred to Labofinejad Hospital and two 
private laboratories, Yekta and Gholhak, were collected from April to May 2019. All 
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isolates were confirmed as E. coli by standard bacteriologic methods and kept in 10% 
glycerol and TSB at -70°C for further evaluation.

Detection of ESBLs
ESBL production was detected according to the Clinical Laboratory and Standards 
Institute (CLSI) confirmatory test using cefotaxime 30 mg and ceftazidime (CAZ) 30 
mg disks alone and in combination with clavulanic acid (CA) 10 mg[8]. The test was 
considered positive when an increase in the growth-inhibitory zone around either the 
cefotaxime or the CAZ disk with CA was 5 mm or greater than the diameter around 
cefotaxime or CAZ alone[9]. E. coli ATCC 25922 and Klebsiella. pneumoniae ATCC 700603 
were used as negative and positive controls, respectively.

Antimicrobial susceptibility testing
Antimicrobial susceptibility testing (AST) was performed by the disk diffusion method 
on Mueller-Hinton agar as recommended by the CLSI[10]. The tested antibiotics were 
purchased from Mast (England) or Rosco (Denmark) companies and were used for 
AST: Ceftriaxone 30 mg, cefotaxime 30 mg, cefixime 30 mg, cefazolin 30 μg, cephalexin 
30 mg from Rosco Company and ampicillin 10 μg, ampicillin-sulbactam 20/10 μg, 
piperacillin/tazobactam 100/10 μg, cefpodoxime 30 μg, doripenem 10 μg, imipenem 
10 μg, ertapenem 10 μg, meropenem 10 μg, gentamicin 10 μg, tobramycin 10 μg, 
amikacin 30 μg, ciprofloxacin 5 μg, trimethoprim 5 μg, and nitrofurantoine 200 μg 
from Mast Company, respectively.

A bacterial suspension with turbidity equal to a homemade 0.5 MacFarland 
standard (1.5 × 108 CFU/mL) was prepared for each bacterial isolate, a bacterial lawn 
was performed on a Mueller Hinton agar plate using a sterile cotton swab and selected 
antibiotic disks were placed on the agar plate with sterile forceps. The plates were then 
incubated at 37°C for 24 h. The diameter of the zone of inhibition was measured and 
the results were reported as susceptible (S), resistant (R) or intermediate (I) based on 
the CLSI criteria[11]. Escherichia coli ATCC 25922 was used as a control.

Serotyping
Agglutination (Bahar Afshan_Iran) reactions were performed in triplicate following 
the manufacturer’s protocol: 25 μL of test solution and 25 μL of bacterial suspension 
were added to a black slide. They were then thoroughly mixed, and the slide was 
incubated for 5 min at room temperature on a rotator set to 100 rpm[12].

DNA extraction and polymerase chain reaction method
A 1000 μL aliquot of cell suspension containing 107 cells/mL was transferred to 
microtubes and incubated at 100°C in a boiling water-bath for 5 min. The suspension 
containing DNA was vigorously homogenized by vortex for 10 s and the tube was 
frozen on ice. The DNA sample was stored at -18°C[13].

β-Lactamase genes were amplified by the polymerase chain reaction (PCR) using a 
panel of primers for the detection of blaTEM, blaSHV , and blaCTX-M genes[13]. PCR 
amplification of blaTEM, blaSHV, and blaCTX-M genes was performed in 25 µL reaction 
mixtures containing 25 units/mL of Taq DNA polymerase, 200 µmol/L each of dATP, 
dGTP, dTTP, and dCTP, 0.2 µmol/L of each primer, 1.5 mmol/L MgCl2, and 5 µL of 
DNA template[14]. The PCR products were analyzed by gel electrophoresis using 0.8% 
gel[15].

RESULTS
Based on the demographic data of the enrolled patients[15], 25% were male and 45 
(75%) were female. The age of the patients ranged from 12 to 67 years. All of the 60 E. 
coli isolates were found to be susceptible to doripenem (100%) and ertapenem (100%). 
High resistance rates to ampicillin (86%), cefotaxime (80%), and cefazolin (77%) were 
also found in the collected isolates (Table 1). Based on the CLSI confirmatory test, the 
frequency of ESBL-producing E. coli in KTPs was found to be 33.4%. Using the slide 
agglutination method, the most frequent serotypes were found to be serotype I 
(including: O126, O55 and O111; 50%), serotype II (O86, O127; 15%), serotype III (O44, 
O125, O128; 25%), and serotype VI (O120, O114; 10%). The genes most frequently 
found were blaTEM (55%), followed by blaCTX-M (51%) and blaSHV (41%).
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Table 1 Antimicrobial susceptibility patterns of Escherichia coli isolates from kidney transplant patients

Antibiotic Susceptible (%) Intermediate (%) Resistant (%)

Ampicillin 5 (8) 1 (2) 54 (90)

Amoxicillin-clavulanic acid 28 (46) 28 (46) 23 (38)

Ampicillin-sulbactam 26 (44) 8 (12) 26 (44)

Piperacillin-Tazobactam 40 (67) 6 (8) 14 (24)

Cefazolin 40 (67) 8 (12) 12 (20)

Cefepime 27 (45) 7 (12) 25 (43)

Cefotaxime 10 (17) 1 (2) 39 (65)

Doripenem 60 (100) 0 (0) 0 (0)

Ertapenem 60 (100) 0 (0) 0 (0)

Fosfomycin 57 (95) 2 (3) 1 (1)

Imipenem 57 (95) 3 (5) 0 (0)

Meropenem 36 (60) 10 (17) 0 (0)

Amikacin 40 (67) 14 (25) 14 (23)

Tobramycin 41 (68) 10 (17) 9 (15)

Trimethoprim 10 (17) 13 (22) 37 (61)

Nitrofurantoin 48 (82) 6 (8) 6 (8)

Ciprofloxacin 16 (27) 4 (6) 40 (67)

Gentamycin 43 (71) 6 (8) 6 (8)

Cefpodoxime 20 (34) 2 (2) 38 (64)

DISCUSSION
UTI is the main infectious complication in patients with kidney transplants. The high 
incidence of ESBL-producing E. coli among KTPs has been frequently reported[4]. In the 
current study, the frequency of ESBL-producing E. coli in KTPs was found to be 33.4%. 
A similar observation was noted by Linares et al[16], who reported that the incidence of 
ESBL-producing gram-negative bacteria in renal transplantation was 11.8%. Previous 
antibiotic therapy is an important risk factor for the development of ESBL-producing 
bacteria[17,18]. ESBL-producing E. coli infection is commonly associated with a 
significantly longer hospital stay and greater hospital charges[19].

According to the current study, high resistance rates to ampicillin (86%), cefotaxime 
(80%) and cefazolin (77%) were documented. Our results were comparable to a 
previous study that was conducted in Iran and reported a similar resistance rate to 
ampicillin[20].

In the current study, the most frequent ESBL genes were blaTEM (55%), followed by 
blaCTX-M (51%) and blaSHV (41%). In Portugal, studies from individual hospitals have 
reflected a common spread of blaCTX-M and blaTEM

[21]. Studies reporting different ESBL-
producing bacteria are increasing among European countries[22]. A high prevalence of 
E. coli and K. pneumoniae isolates exhibiting two or three ESBL genes was also reported 
in a similar study from Iran[23]. The epidemiology of ESBL-producing bacteria is 
becoming more complex[24]. For example, E. coli harboring blaCTX-M-15 and -14 have 
consistently been reported as the predominant ESBL types in clinical isolates from 
adult centers worldwide[25-27], yet a wide diversity of CTX-M enzymes was observed in 
children[28-30]. Moreover, it should be taken into consideration that bacterial isolates 
producing ESBLs are responsible for serious healthcare-related infections[31].

CONCLUSION
In conclusion, the frequency of ESBL-producing E. coli in KTPs was found to be 33.4% 
in the current study. Molecular analysis showed that blaTEM was the most common 
ESBL encoding gene. The high resistance to β-lactams antibiotics (i.e., ampicillin, 
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cefotaxime, and cefazolin) found in E. coli from KTPs with UTI remains a serious 
clinical challenge. Further efforts to control ESBL-producing E. coli should include the 
careful use of all antibiotics as well as barrier precautions to reduce spread.

ARTICLE HIGHLIGHTS
Research background
Escherichia coli (E. coli) isolates are the main pathogens in urinary tract infections 
(UTIs). Their effect is more important in kidney transplant patients (KTPs). Based on 
several studies and documents, the frequency of E. coli resistant to common drugs is 
increasing. Their resistance to antimicrobial drugs is mediated by different 
mechanisms such as producing extended-spectrum beta-lactamase (ESBLs). Therefore, 
UTIs caused by ESBL-producing E. coli in KTPs is an important challenge in healthcare 
settings.

Research motivation
However, different studies have reported the frequency of ESBLs E. coli isolates from 
different origins in Iran, but there are few studies on their frequency and role in KTPs 
and their antimicrobial susceptibility profile.

Research objectives
The aims of this study were: (1) To estimate the prevalence of ESBL-producing E. coli 
in KTPs; (2) To serotype the ESBL-producing E. coli; and (3) To identify the 
antibacterial susceptibility patterns of isolated bacteria in Tehran, Iran.

Research methods
Bacterial culture and isolation based on standard bacteriologic methods were carried 
out. Antimicrobial susceptibility testing based on the Clinical Laboratory and 
Standards Institute was performed. The minimum inhibitory concentration was 
determined using Epsilon strips during the E-test. The frequency of genes responsible 
for ESBLs coding was assessed after DNA extraction and polymerase chain reaction. 
Statistical analysis of the data was performed.

Research results
The most important findings were: (1) The frequency of ESBL-producing E. coli in 
KTPs was found to be 33.4%; (2) High resistance rates to ampicillin (86%) and 
cefotaxime (80%) were documented; (3) The most frequent serotype was serotype I 
(50%); (4) The most frequently found related gene was blaTEM (55%); and (5) All of the 
E. coli isolates were susceptible to doripenem and ertapenem.

Research conclusions
Further efforts to control ESBL-producing E. coli isolates should include the careful use 
of all antibiotics as well as barrier precautions to reduce their spread.

Research perspectives
More E. coli isolates from different parts of Iran should be obtained and their 
antimicrobial profiles evaluated. Also, the frequency of ESBLs production and the 
existence of other ESBLs genes such as KPC and metalo-betalactamases should be 
determined.
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