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Abstract
Proteomics is the complete evaluation of the function and structure of proteins to 
understand an organism’s nature. Mass spectrometry is an essential tool that is 
used for profiling proteins in the cell. However, biomarker discovery remains the 
major challenge of proteomics because of their complexity and dynamicity. There-
fore, combining the proteomics approach with genomics and bioinformatics will 
provide an understanding of the information of biological systems and their 
disease alteration. However, most studies have investigated a small part of the 
proteins in the blood. This review highlights the types of proteomics, the available 
proteomic techniques, and their applica-tions in different research fields.
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challenge of proteomics because of the complexity and dynamicity. This review high-
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ations in different research fields.
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INTRODUCTION
Proteomics is a new type of ‘omics’ that has rapidly developed, especially in the 
therapeutics field. The word proteome was created by Marc Wilkins in 1995[1]. 
Proteomics is the study of the interactions, function, composition, and structures of 
proteins and their cellular activities[2]. Proteomics provides a better understanding of 
the structure and function of the organism than genomics. However, it is much more 
complicated than genomics because the protein expression is altered according to time 
and environmental conditions[3]. It is estimated that there are almost one million 
human proteins, many of which contain some modifications such as post-translational 
modifications (PTMs). However, it is also estimated that the human genome codes for 
about 26000-31000 proteins[4]. There are a variety of proteomics techniques including 
one-dimensional (1D) and two-dimensional (2D) gel electrophoresis (2-DE)[5], as well 
as gel-free high-throughput screening technologies such as multidimensional protein 
identification technology[6], stable isotope labeling with amino acids in cell culture[7], 
isotope-coded affinity tag, and isobaric tagging for relative and absolute quantitation
[8]. Shotgun proteomics[9], 2D difference gel electrophoresis (2D-DIGE)[10], and pro-
tein microarrays[11] can be used in tissues, organelles, and cells. Large-scale western 
blot assays[12], multiple reaction monitoring assays[13], and label-free quantification 
of high mass resolution liquid chromatography (LC)-tandem mass spectrometry (MS) 
are commonly used for high-throughput processing. In the last decade, proteomics has 
been classified into protein expression mapping and protein interaction mapping[14]. 
The former method uses 2-DE combined with MS for quantitative proteome expre-
ssion in cells, body fluids, or tissues. Protein expression mapping can provide an 
understanding of the PTMs of expressed proteins under different environmental 
conditions or disease states[14]. Protein-protein interaction mapping uses the yeast 
two-hybrid system coupled with MS to determine the interaction partners for each 
cell’s encoded proteins and the proteome-wide scale[15].

Proteomics is a multi-step technique in which every step should be very well con-
trolled to avoid non-biological factors interfering with protein expression and in-
teraction. Sample preparation is the most important step because it solubilizes all 
proteins in the sample and eliminates all interfering inhibitory compounds such as 
lipids. Adequate sample preparation is crucial to obtain reliable, accurate, and re-
producible results[16]. PAGE is the most widely used method for protein separation 
and isolation[17]. High-performance LC (HPLC)[18], 1-DE, and 2-DE are the methods 
used to separate proteins[19]. Proteins are isolated using 1-DE based on their molecu-
lar mass. Protein solubility is rarely an issue since proteins are solubilized in sodium 
dodecyl sulfate (SDS).

Furthermore, 1-DE is easy to use, repeatable, and capable of resolving proteins with 
molecular masses ranging from 10 kDa to 300 kDa[17]. As 1-DE gel has minimal 
resolving power, it is most commonly used to characterize proteins after being pu-
rified. However, in more complex protein mixtures, such as a crude cell lysate, 2-DE 
may be used. In 2-DE, proteins are determined by their net charge and their molecular 
mass[17].

Proteomics can analyze the expression of a protein at different levels allowing the 
assessment of specific quantitative and qualitative cellular responses related to that 
protein[20]. Qualitative and quantitative proteomes are measured at post-transcrip-
tional, transcriptomic, and genomic levels[21]. According to the conditions, qualitative 
proteomics utilizes microarrays, 2-DE, and 2D-LC to monitor protein mixture com-
position and protein expression changes[20]. In addition, it can provide information on 
the molecular mechanisms of diseases and compare two groups such as patients with 
healthy controls[20]. Quantitative proteomics can also provide deep insights into 
disease mechanisms, cellular functions[22], and biomarker discovery[23]. Several new 
strategies are used in quantitative proteomics, such as post-extraction or metabolic 
stable-isotope labeling alone or in combination with affinity labeling[24,25]. MS iden-
tifies compounds by sorting cations according to their mass-to-charge ratio[26].

https://www.wjgnet.com/1949-8454/full/v12/i5/57.htm
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The study of proteomics has many applications in different fields such as medicine, 
oncology, food microbiology, and agriculture. This review will shed light on 
proteomics, their techniques, some of its applications, and the challenges currently 
faced in this field.

TYPES OF PROTEOMICS
Proteomics has three main types: expression proteomics, functional proteomics, and 
structural proteomics[27].

Expression proteomics 
Expression proteomics is a novel approach that studies the quantitative and qualitative 
expression of proteins. It aims to specify the difference in protein expression between 
two conditions such as patients and controls[28]. In addition, it can identify disease-
specific proteins and new proteins in signal transduction[17]. Expression proteomics 
experiments are usually used to study the patterns of protein expression in different 
cells. For example, a tumor tissue sample is compared to a normal tissue sample to 
identify differences in the levels of proteins[26]. Variations in protein expression, 
which are present or missing in tumor tissue compared to normal tissue, are detected 
using 2-DE and MS techniques[29].

Structural proteomics
Nuclear magnetic resonance spectroscopy and X-ray crystallography are used in 
structural proteomics to determine the three-dimensional structure and structural 
complexities of functional proteins. It specifies all protein interactions such as mem-
branes, cell organelles, and ribosomes in the mixture[30]. The study of the nuclear pore 
complex is an example of structural proteomics[31].

Functional proteomics
This type of proteomics studies the protein functions and molecular mechanisms in the 
cell and determines the protein partner’s interactions. In particular, it investigates the 
interaction of an unknown protein with partners from a specific protein complex 
involved in a particular process. This may indicate the biological role of the protein
[32]. In addition, the elucidation of protein-protein interactions in vivo can lead to 
comprehensive descriptions of cellular signaling pathways[33].

PROTEOMICS WORKFLOW
Two methods can be used in proteomics: top-down and bottom-up workflows. The 
bottom-up method is sometimes called peptide-based proteomics. Here, the protein is 
digested by trypsin and separated by a specific column, followed by analysis of the 
peptides by MS[15]. The bottom-up approach can be classified into two groups ac-
cording to the fractionation step. The first approach uses 2-DE to isolate the proteins 
from the gel. Then the proteins are digested into peptides that MS can identify. The 
second approach is called “shotgun” proteomics. Here, the digestion of protein occurs 
without fractionation, and LC is used to separate the peptides identified by MS[34]. In 
top-down proteomics, whole proteins or polypeptides are immediately assessed by 
MS. The molecular mass of proteins is sometimes calculated by using electrospray 
ionization (ESI) followed by matrix-assisted laser desorption/ionization (MALDI) MS
[35]. Top-down proteomics can identify proteins with a molecular mass of > 200 kDa
[36]. Both approaches have various advantages and limitations. In the bottom-up 
approach, there is low percentage coverage of the protein sequence, because the 
recovered sample includes small and inconsistent fractions of total peptides. This 
results in missing a large proportion of alternative splice variants and PTMs. However, 
in top-down proteomics, all characteristics of proteins are protected, and almost all 
existing modifications and correlations can also be recovered. Moreover, in top-down 
proteomics, the results of the exclusion of protein digestion with time are preserved
[37]. The major challenge in top-down proteomics is the poor solubility of proteins 
compared to small peptides. Some proteins in the membrane have high solubility but 
need to be washed with SDS; however, SDS cannot be used in ESI[38]. Proteomics 
workflows involve sample preparation and analytical flow. The latter include separa-
tion of proteins, protein identification, and validation.
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Sample preparation
Proteomics experiments highly depend on the accuracy of sample preparation, in 
addition to a well-designed pre-analytical workflow. There is no standard technique 
for sample preparation in proteomics. Each method depends on the number of pro-
teins in the sample, the sample’s complexity, and the study’s objectives. Extraction of 
proteins from the mixture is the most vital step in the preparation of samples. To 
maximize protein extraction and solubilization, the extraction should include organic 
solvents and detergents followed by a tissue disruption technique. The organic sol-
vents and detergents can be removed by lyophilization[39]. In previous detergent-
based methods, the extraction of 2,2,2-trifluoroethanol (TFE) macro-scale (> 100 µg) 
materials and nano-scale (30 µg)-based lysis have provided comparable protein detec-
tion rates[40].

Separation and isolation of protein
Gel-based and chromatography-based approaches are used for the separation and 
isolation of proteins from the mixture.

Gel-based approach
The best technique for protein isolation and detection is PAGE[41]. For separation, 1-
DE and 2-DE can be used. Furthermore, 2D-DIGE and SDS-PAGE are examples of 2D 
variations used in gel electrophoresis[42].

1-DE 
1-DE, can isolate proteins with a molecular weight of 10 kDa to 300 kDa. It uses SDS, a 
detergent that denatures secondary and non-disulfide-linked tertiary structures, and 
combines them with a negative charge proportional to their volume. This allows the 
calculation of molecular weights[43]. SDS-PAGE can be used to verify the purity of 
samples, test protein purification, and calculate molecular weights for unknown 
proteins[44].

2-DE
2-DE differentiates proteins better than 1-DE due to the variation in molecular weight 
and isoelectric point of protein molecules[43]. It also has a better resolution than 1-DE 
because the protein is separated into two different dimensions. In 1-DE, the protein is 
separated based on net charge, but in 2-DE, protein separation is based on the mo-
lecular mass and isoelectric point. Thus, this method can detect different forms of 
proteins such as PTMs and phosphorylation. Some proteins that arise from different 
proteolysis processes and splicing of alternative mRNA can be resolved by 2-DE[45]. 
There are many applications of 2-DE, including protein expression profiling and cell 
map proteomics. Protein expression profiling can be used for comparing normal and 
diseased tissues. Mapping proteins in 2-DE can be used in cellular organelles[46], 
protein complexes[19], and microorganisms[47]. 2-DE can help catalog proteins, and 
the database can be created on the World Wide Web[48]. However, 2-DE cannot detect 
proteins at a low molecular weight and the limits of separation by isoelectric point and 
size[49].

Chromatography-based approach
Chromatography of affinity, size exclusion chromatography (SEC), and ion-exchange 
chromatography (IEC) techniques can be used to purify protein-based chromato-
graphy. In addition, western blotting and the enzyme-linked immunosorbent assay are 
used to identify selective proteins[50].

IEC
IEC is used to purify proteins according to their charges. This technique allows 
separating proteins according to their charge nature, which is not possible by other 
approaches. The charge accepted by the molecule of interest can be readily used by 
altering the pH of the buffer. The IEC technique is low cost and can persist in variable 
buffer conditions[30].

SEC
SEC can be used to separate different compounds according to their size (hydrody-
namic volume) measured by how efficiently they enter the stationary phase’s pores. 
However, this technique is not as useful as other proteomics techniques[51]. Two basic 
versions of SEC are utilized: gel permeation chromatography (GPC) using organic 



Al-Amrani S et al. Proteomics: Concepts and applications

WJBC https://www.wjgnet.com 61 September 27, 2021 Volume 12 Issue 5

solvents, which is used for polymer analysis; and gel filtration, which is performed 
using aqueous solvents.

Affinity chromatography
Affinity chromatography is the process of protein separation according to its 
interaction with an immobilized ligand. In 2-DE and non-2-DE, affinity chromato-
graphy helps decrease the protein complexity[52]. There are three types of affinity 
chromatography: separation of protein before 2-DE, affinity chromatography of pro-
tein before MS, and affinity chromatography of peptides before MS.

LC
LC is a powerful technique that can separate proteins from a complex mixture and can 
analyze large and fragile biomolecules. When combined with MS, it can be used for 
determining the peptides in the mixture[53]. LC can help researchers discover novel 
biomarkers and understand the mechanisms of carcinogenesis according to the mo-
dification of proteins. For example, some researchers use LC-MS/MS to rapidly mo-
nitor congenital adrenal hyperplasia from dried filter-paper blood samples[54].

Protein identification and characterization
The identification of proteins is a critical step in proteomics. MS can be used after the 
separation of the proteins by chromatography or electrophoresis[55]. Other techniques 
can also identify proteins such as Edman sequencing and protein microarray[17].

Edman sequencing
Edman sequencing has been used to detect the sequence of amino acids in peptides or 
proteins. This technique includes the reaction of chemicals, which remove and 
determine amino acid residues present at the N-terminus of the polypeptide chain. 
Thus, it plays a significant role in assessing biopharmaceutical quality and therapeutic 
proteins[17].

MS
MS is the best analytical tool for rapidly facilitating the sequencing of proteins[56]. It 
can also be used to detect the molecular weight of proteins. In this technique, protein 
molecules are ionized, and their mass is calculated according to mass-to-charge ratios. 
The mass spectrometer has three main components: an analyzer, an ion source, and a 
detector. The methods used for ionization are ESI and MALDI[57]. In MALDI, a 
chemical matrix is mixed with the peptides, and spotted onto a metal multiwall mi-
croliter plate to make a crystal lattice. The matrix chemicals pass the energy to the 
samples after absorbing it. Then peptide ions are detected by a mass analyzer. MALDI 
creates mostly singly charged ions that help to determine the m/z value[58]. In ESI, 
the power is activated in the protein sample to create charged droplets that increase 
gaseous ion production, which then are analyzed with a mass analyzer[59]. The 
advantages of ESI are its high reproducibility and high elasticity to combine many 
categories of MS. Furthermore, ESI can be fixed to time-of-flight (TOF)-MS, quadruple, 
ion traps, and fourier transform ion cyclotron resonance. On the other hand, the 
disadvantages of ESI are that it cannot be applied for molecular imaging, it requires a 
large quantity of samples, and multiple peaks are produced due to the many charged 
ions that result in the complexity of MS/MS spectra[60].

Protein identification and validation
Sequent, Mascot, Comet, and Tandem are instruments currently available for database 
searching[61]. However, most search devices do not produce matching data as they 
operate on differentiation algorithms and recording functions, creation integration, 
and data comparison from many studies and experiments. As a result, the identi-
fication of peptides by data search needs additional time[62]. High-quality data makes 
the data search more effective and less time consuming. Moreover, using accurate 
mass to measure ion fragments can shorten database explorations and produce more 
accurate results[63].

BIOINFORMATICS IN PROTEOMICS
Bioinformatics analyses use novel proteomics algorithms to manage the large and 
varied data in the process of marker discovery[64]. Controlling this massive quantity 



Al-Amrani S et al. Proteomics: Concepts and applications

WJBC https://www.wjgnet.com 62 September 27, 2021 Volume 12 Issue 5

of data and finding the association between other omics technologies (e.g., metabo-
lomics and genomics) remain difficult. The analyses of proteomics data is challenging 
because of the parameters used in processing, quality valuation, and shortage of 
standards for data formats. The big challenge is how to analyze massive data and 
create real biological understanding[65]. Protein pathways are a collection of internal 
cell reactions that have a specific biological impact. For protein pathways, a variety of 
tools and databases are available[66]. The Kyoto Encyclopedia of Genes and Genomes, 
BioCarta, Pathway Knowledge Base Reactome and Ingenuity pathway databases have 
extensive information on metabolism, signaling, and interactions[67,68]. Unique data-
bases for signal transduction pathways, such as GenMAPP or protein analysis through 
evolutionary relationships (PANTHER), have been created[69,70]. Furthermore, data-
bases such as Netpath, which include cancer-related pathways, have been created to 
detect proteins unique to a specific cancer type[71]. Details about protein interactions 
in complexes can be found in databases including BioGRID, IntAct, MINT, and HRPD
[72-74]. The STRING database links to various other databases for literature mining 
and is commonly used for protein interaction. Furthermore, using the STRING data-
base, protein networks can be drawn based on the list of genes given and the available 
interactions[75,76].

APPLICATIONS OF PROTEOMICS IN MEDICINE
Proteomics is a revolutionary technique that has been used in medicine, including 
drug and biomarker discovery. Proteomics can identify and monitor biomarkers by 
analyzing the proteins in the body fluids such as urine, serum, exhaled breath and 
spinal fluid. Proteomics can also facilitate drug development by providing a compre-
hensive map of protein interactions associated with disease pathways[77].

Biomarker discovery
A biomarker is an assessable pointer of a normal or abnormal biological state in the 
body[78]. In clinical settings, cancer development and its response to therapy are 
measured by cancer biomarkers[79]. 2D-PAGE is used for the discovery of biomarkers. 
It can also compare the profiles of proteins in normal and diseased cells such as tumor 
tissues and body fluids[80]. Cancer biomarkers are divided into three classes, pre-
dictive, prognostic and diagnostic, based on their uses. Predictive biomarkers can 
predict the response to therapy. For instance, in breast cancer, the activation and the 
positivity of human epidermal growth factor receptor 2 can predict the response to 
trastuzumab[81]. In addition, in colorectal cancer, mutation of Kirsten rat sarcoma 
virus gene can predict resistance to treatment with epidermal growth factor receptor 
inhibitors (e.g., cetuximab)[82].

On the other hand, prognostic biomarkers can provide physicians with a prediction 
of the clinical outcomes. For example, the 21-gene repetition mark predicts breast 
cancer relapse and complete survival in node-negative, tamoxifen-treated breast 
cancer[83]. The third group of biomarkers is the diagnostic biomarker, which indicates 
if a patient has a specific disease condition. For example, in colorectal cancer, a stool 
DNA test is used as a diagnostic biomarker[84]. These biomarkers can be found in 
tissues, serum, blood, and urine. The body-fluid sampling for proteomics is thus less 
invasive and low cost. The discovery of biomarkers has progressed in many diseases 
such as acquired immune deficiency syndrome, cardiovascular diseases, diabetes, 
cancer, and renal diseases[85,86]. However, the highly complex mixtures of proteins 
and the high range of protein dynamics are examples of challenges in fluid sampling 
for proteomics. Each type of sample has a different usage according to the disease 
conditions. For instance, in kidney disease, the urine sample is used to assess urine 
proteins, reflecting changes in kidney functions[87]. In other human diseases, blood is 
also used for biomarker discovery. There are some challenges for using the plasma in 
biomarker discovery, such as protein dynamicity, the variation of the patient[87], and 
the low abundance of biomarkers in plasma. These challenges in biomarker discovery 
have yet to be addressed[88]. Most biomarker discovery studies are focused on cancer-
related diseases due to their clinical importance. For instance, many biomarkers are 
associated with tumors that can be used to follow up with the patients[89].

Drug discovery
Drug discovery is a complex process with many different stages including chemical, 
functional, and clinical proteomics-based approaches. The application of proteomics in 
drug discovery has been developed to include patients’ treatment and care[90]. 2-DE 
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cannot be used in drug discovery because it fails to separate the membrane proteins 
that characterized about 50% of important drug targets[91]. Moreover, 2-DE cannot 
detect low-abundance proteins[90]. In drug discovery proteomics, understanding the 
function of proteins and their interactions in the mixture is very important. Also, the 
methods should be able to detect low-abundance proteins and their activity. Therefore, 
many technologies such as MS and protein-chip have been used to identify and 
separate phage proteins. In addition, other techniques such as activity-based assays 
and two-hybrid assays can be used for the same purpose[92]. Using 2D-PAGE-
MALDI-TOF/TOF, Lavandula angustifolia was used as a drug to treat Alzheimer’s 
disease in rats[93].

Oncology
The application of proteomics in cancer is called oncoproteomics. Oncoproteomics can 
be used to identify anticancer drugs and the personalization of cancer management
[94]. Microarrays and laser capture microdissection (LCM) of the tumor tissue can 
classify proteins in cancer. Oncoproteomics applications are used in many tissues such 
as the colon, breast, rectum, prostate, and brain. In addition, proteomics can be used to 
diagnose cancer and discover novel therapies[95]. Many proteomics techniques can be 
used to detect biomarkers in cancer such as aptamer-based molecular probes, cancer 
immunomics, tissue microarrays, nano-proteomics (to isolate signatures of autoanti-
bodies), and antibody microarrays[94].

Two approaches can be used in tumor proteomics, LCM and MS imaging (MSI)[96]. 
LCM can separate the target proteins from the areas within the tumor before analysis 
with MS. In addition, this approach can help to determine proteins that correlate with 
tumor progression in the early and late stages of the disease using the proteinChip 
SELDI system®[97]. However, fewer studies use tumor tissues than serum due to the 
technical difficulties and low throughput using tumor tissues.

The second approach is using MSI. This direct tissue technique allows placing a 
small amount of MALDI matrix mixed directly with a fresh piece of the tumor[98]. 
This approach can help to map small molecules and proteins in a 3D view. This ap-
proach was to map eight normal lung tissues with 42 lung tumors[99]. Additionally, 
MSI can predict diagnosis, categorize lung cancer histology, and organize 85% of the 
nodal connections[96].

Leukemia
Proteomics was used to discover many leukemia biomarkers that could determine 
types of leukemia. Examples of these biomarkers include catalase, annexin 1, alpha-
enolase, annexin A10, tropomyosin, tropomyosin 3, peroxiredoxin 2, and RhoGDI2. 
These biomarkers help to predict the diagnosis and outcome of the disease[100]. In 
addition, the proteomics approach can help developing new treatment pathways for 
leukemias using their proteomics profiles[101]. However, a major limitation of this 
approach is that important proteins controlling key cellular elements are present in 
low abundance and may not be readily detected.

Acute myeloid leukemia and proteomics
Acute myeloid leukemia (AML) is an aggressive blood cancer. Patients reach complete 
remission after intensive chemotherapy given as induction and consolidation[102]. 
However, relapsed AML may acquire at least one specific mutation such as FLT3, 
RUNX1, or ASXL1. Mutations in signaling genes such as KIT, NRAS, PTPN11, and 
NPM1 are less frequent[103]. The use of proteomics in AML may guide the post-
induction strategy of either chemotherapy or allogeneic stem cell transplantation. 
Moreover, proteomics can help discover new or modified therapy options for AML 
patients[104]. Since the 1980s, many studies have focused on finding biomarkers in 
AML. For example, Hanash et al[105] used 2-DE to identify the cell of origin in acute 
leukemia.

While the prognosis of AML patients has improved through the years, especially in 
younger patients, mortality remains the highest among all other cancers[106]. Pro-
teomics can assist the development of personalized therapy in AML[104]. Kwak et al
[107] used 2-DE and MS to identify eight differentially expressed proteins between 12 
healthy people and 12 patients with AML. Proteasome 26S ATPase subunit, immuno-
globulin heavy-chain variant, and haptoglobin-1 were upregulated, while five proteins 
(unknown protein, lipoprotein C-III, RBP4 gene product, SP-40 and α-2-HS-glyco-
protein) were downregulated[107]. Another study identified seven other proteins. 
These proteins were annexin A10, alpha-enolase, tropomyosin 3, lipocortin 1 (annexin 
1), peroxiredoxin 2, RhoGDI2, and catalase[108].
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In a recent study, BCL11A expression was found to play a role in AML. The study 
included 292 AML patients. The study found a significant association between the 
laboratory variables and the levels of BCL11A. However, BCL11A was not associated 
with survival and complete remission[109].

Most studies in proteomics in AML were performed on peripheral blood cells and 
bone marrow samples at an early stage. However, one study compared AML at 
diagnosis, remission, and relapse. It concluded that the proteome expression at diag-
nosis and relapse is similar at a high protein concentration[79,110]. Another study that 
focused on AML (subtypes M1 and M2) compared patients with healthy individuals. 
Twenty-five proteins were characterized in the peripheral blood and bone marrow 
samples. The study found that 6-phosphogluconate dehydrogenase, Annexin III and 
L-plastin were only found in the M2 subtype. The annexin I and actin gamma 1 levels 
were found to correlate with drug resistance at relapse[111].

CHALLENGES OF PROTEOMICS
There are many challenges in proteomics. The major challenge is the broad change in 
protein expression with the environment and cell type[112]. In addition, there is no 
comparable proteomics method, unlike genomics, that uses polymerase chain reaction
[113]. Moreover, protein activities are highly regulated post-transnationally, which 
adds difficulty is proteomics[114]. Finally, the type of samples and sample preparation 
techniques are other challenges in proteomics that can significantly change the quality 
of MS data. For example, the protein and phosphoprotein levels in breast cancer tumor 
samples were affected by the sample manipulation technique and bio-specimen type
[115].

CONCLUSION
Proteomics is a fast, sensitive technology that provides high proteome coverage. 
Expression proteomics, functional proteomics, and structural proteomics are the three 
major types of proteomics. There are two different workflows in proteomics: top-down 
and bottom-up proteomics. In addition, there are increasing uses of proteomics in the 
majority of biological sciences. Finally, proteomics can assist in finding new biomar-
kers in different diseases and discover new therapies.
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Abstract
The prevalence of type 2 diabetes (T2D) continues to rise despite the amount of 
research dedicated to finding the culprits of this debilitating disease. Skeletal 
muscle is arguably the most important contributor to glucose disposal making it a 
clear target in insulin resistance and T2D research. Within skeletal muscle there is 
a clear link to metabolic dysregulation during the progression of T2D but the 
determination of culprits vs consequences of the disease has been elusive. 
Emerging evidence in skeletal muscle implicates influential cross talk between a 
key anabolic regulatory protein, the mammalian target of rapamycin (mTOR) and 
its associated complexes (mTORC1 and mTORC2), and the well-described cano-
nical signaling for insulin-stimulated glucose uptake. This new understanding of 
cellular signaling crosstalk has blurred the lines of what is a culprit and what is a 
consequence with regard to insulin resistance. Here, we briefly review the most 
recent understanding of insulin signaling in skeletal muscle, and how anabolic 
responses favoring anabolism directly impact cellular glucose disposal. This 
review highlights key cross-over interactions between protein and glucose re-
gulatory pathways and the implications this may have for the design of new 
therapeutic targets for the control of glucoregulatory function in skeletal muscle.

Key Words: Insulin resistance; Skeletal muscle; Mammalian target of rapamycin; Glucose 
uptake; Glucose regulation; Insulin signaling
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mammalian target of rapamycin (mTOR) complexes (mTORC1 and mTORC2) during 
insulin stimulated glucose uptake. This review highlights interactions between protein 
and glucose regulatory pathways and the implications this may have for the control of 
glucoregulatory function in skeletal muscle.
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INTRODUCTION
Globally, 462 million individuals are affected by type 2 diabetes (T2D) and it is ranked 
as the 9th leading cause of mortality[1]. The prevalence of diabetes over the past few 
decades has continued to rise with no sign of this changing[1]. T2D is characterized by 
insulin resistance and hyperglycemia and can lead to various other outcomes and 
comorbidities reducing quality of life in those effected. While the pathogenesis and 
progression of T2D is still widely debated, it is clear that a complex interplay between 
the pancreas and peripheral tissues is dependent for maintenance of glucose homeo-
stasis. Peripheral tissues account for 80%-90% of glucose disposal[2,3] and of those 
tissues skeletal muscle is a large contributor to glucose disposal[4,5] and arguably the 
most important for glucose clearance[6,7]. Within skeletal muscle there is clear link to 
metabolic dysregulation during the progression of T2D, but the definition of causes vs 
consequences within the development of this disease is difficult. Identifying clear 
relationships, interactions and feedback loops within the insulin signaling cascade and 
other metabolic pathways in skeletal muscle is imperative to our understanding for the 
development, its progression and ultimately a cure for this disease. To that end, this 
review will present the canonical understanding of insulin signaling, the influential 
connections between mammalian target of rapamycin (mTOR) complexes (mTORC1 
and mTORC2) and the current intertwined implications of these signaling paradigms 
in skeletal muscle metabolic dysregulation.

INSULIN SIGNALING
The insulin signaling cascade involves both glucoregulatory and anabolic processes 
which is outlined in Figure 1. Insulin responsive tissues have insulin receptors (IR) on 
the cell surface plasma membrane. These IR contain subunits where insulin can bind 
as well as residues that provide docking sites for downstream signaling molecules 
including the IR substrates (IRS). The two predominant insulin receptor substrates are 
IRS1 and IRS2 with similar sequences but specific signaling roles[8,9]. IRS1 appears to 
be the insulin receptor substrate protein whose primary responsibility is glucose re-
gulation, including glucose transporter 4 (GLUT-4) translocation[8] with speculation 
that IRS2 is more involved with fatty acid metabolism, currently known to occur in 
adipose tissue[9]. IRS1 is a clear mediator of insulin signaling through a specific in-
termediate phosphatidylinositol 3 kinase (PI3K). Interaction of PI3K to IRS produces 
membrane phosphatidylinositol 3,4,5-triphosphates (PIP3) which is necessary for  the 
recruitment and localization of Protein Kinase B, also known as AKT[10].

Upstream glucose related substrates
This serine/threonine kinase is part of the AGC protein family and is known for its 
diverse function in growth, survival, proliferation and most importantly substrate 
metabolism[11-13] AKT is often referred to as one molecule but actually comprises of 
three distinct isoforms (AKT1, AKT2, AKT3) , while all isoforms are present in skeletal 
muscle, AKT2 is the most prevalent[12], but varies from low to immeasurable amounts 
in skeletal muscle[14,15]. While defining the variation and overlap between the AKT 
isoforms is important and needed, it is beyond the scope of this review but what is 
known currently can be found in these reviews[12,16] It is important to note that AKT2 
is expressed primarily in insulin responsive tissues like fat and skeletal muscle and is 
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Figure 1 Insulin signaling cascade involving both glucoregulatory and anabolic pathways. Phosphorylation sites of interest indicated on figure. 
Blue arrows (→) indicate activation of the substrate, orange bars (Ʇ) indicate inhibitory action on the substrate. Figure created with BioRender.com. mTOR: 
Mammalian target of rapamycin; mTORC: mTOR complex; S6K1: S6 kinase beta-1; IRS: Insulin receptor substrates; PKC: Protein kinase C; AMPK: AMP-activated 
protein kinase; TSC: Tuberous sclerosis complex; GSK-3β: Glycogen synthase kinase 3β; PIP3: phosphatidylinositol 3,4,5-triphosphates.

the most abundant isoform in skeletal muscle[14,15,17,18]. AKT is as a critical regula-
tor of insulin sensitive glucose uptake as well as anabolic signaling through mTORC1 
making it a prime target in understanding metabolic dysregulation.

The upstream regulation of AKT, in its most simple iteration, appears to be very 
similar across isoforms. The two common phosphorylation sites of AKT are Ser473 
(Ser474 in AKT2) and Thr308. The insulin receptors IRS1 and IRS2 will activate the 
PI3K-dependent conversion of PIP2 to PIP3, and PIP3 will recruit Pyruvate Dehydro-
genase Kinase 1 (PDK1) and AKT to the membrane where colocalization will allow for 
phosphorylation at the Thr308 by PDK1[12,13]. Further, some evidence suggests that 
mitogen-activated protein kinase-associated protein 1 (mSin1) of the mTORC2 comp-
lex is brought to the membrane by PIP3 (binding with the pH domain) that promotes 
colocalization of mTORC2 to the membrane[19,20], which is the major kinase for the 
Ser473 phosphorylation site of AKT.

The regulation of mTORC2 activity by mSin1 phosphorylation is controversial. It 
has been proposed that PIP3) promotes mTORC2 activity directly[21,22]. Recent work 
has indicated a positive feedback loop between AKT and mTORC2 via phosphory-
lation of mSin1[23,24]. Those studies in adipocytes and Hela cells indicated that phos-
phorylation of mSin1 at Thr86 by AKT (via Thr308) increased mTORC2 activity and 
phosphorylation of AKT on Ser473[20,23]. This positive feedback loop provides an 
avenue for mTORC2 control via growth factors; however, the total impact of this 
feedback loop on mTORC2 activity and downstream substrates like AKT Ser473 is 
currently unknown. It is well established that PDK1 and mTORC2 are the major ki-
nases involved upstream of AKT and that AKT is involved in a large scale, insulin 
sensitive pathway, but the distinct actions of these two phosphorylation sites are still 
not well understood.

There is also considerable debate over what the phosphorylation of specific AKT 
sites implicates for AKT activity and substrate specificity. Much of the early work in 
AKT reported a requirement of phosphorylation at Ser473 for full activation[25-28]. 
However, more recent work in platelets[29], HEK cells[27,30], and skeletal muscle[31,
32] demonstrated that not all downstream substrates are impacted by Ser473 phos-
phorylation. There is some evidence to support that these changes in activity and 
substrate via phosphorylation site may be isoform specific[33,34] but more work needs 
to be done in this area.

The implications of Ser473 phosphorylation via mTORC2 has been studied in 
various tissues. In mSin1 knockout mouse embryonic fibroblasts, a regulator of 
mTORC2 complex formation and stability, Forkhead box 01/03 (FOX01/3a) phospho-
rylation was inhibited but tuberous sclerosis complex 2 (TSC2) and glycogen synthase 
kinase 3 (GSK-3) phosphorylation was unaffected[35]. In adipose tissue[36] and liver
[37], rapamycin insensitive companion of mTOR (RICTOR) knockouts demonstrated 
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tissue specific differences in mTORC2 substrate specificity. When mTORC2 inhibitors 
were applied in skeletal muscle, phosphorylation of AKT at Thr308 was unaffected 
and the downstream phosphorylation of TSC1/2, S6 kinase beta-1 (S6K1) and GSK-3β, 
all associated with protein synthesis and growth, were also unaffected by the reduc-
tion of Ser473 phosphorylation[32]. However AKT substrate of 160 kDa (AS160), an 
enzyme associated with GLUT-4 translocation and glucose disposal as well as proteins 
in the FOXO family associated with apoptosis were negatively affected by Ser473 
reduction[32]. That work demonstrated that there is some demarcation of substrate 
specificity within AKT of skeletal muscle. It may also indicate phosphorylation of 
Thr308 focuses AKT kinase activity towards substrates involved with growth and 
phosphorylation of Ser473 focuses on substrates involved in glucose regulation and 
cell survival. Alternatively, substrates unaffected by inhibition or downregulation of 
mTORC2 phosphorylation of AKT at Ser473 may be phosphorylated by other proteins. 
For example GSK-3 can be phosphorylated at the same phosphorylation site that AKT 
does Ser9 by S6K[38] and protein kinase C (PKC)[39]. Despite the alternative theory 
there is evidence for at least some context-dependent substrate specificity towards 
AKT’s downstream targets. As for whether the activity of AKT is dependent on Ser473 
for full activation, a recent study in adipose tissue purports that AKT2 activity is 
reduced by about 50% for its substrates TSC2, PRAS40, FOX01/3a and AS160[40]. 
Taken together, there may be argument for some combination of Ser473 impacting 
substrate specificity and activity, but to our knowledge this has not been validated in 
skeletal muscle and would need more systematic study in both AKT1 and AKT2 to 
truly define this regulatory mechanism.

Downstream glucose related substrates
As previously mentioned AKT has various downstream substrates that make the 
action of this kinase quite diverse in cell function. These substrates include members of 
the mTOR complexes Pras40 and Sin1, Glucose uptake proteins AS160 and GSK-3, 
Protein synthesis related Tuberous sclerosis 2, and apoptotic signaling through the 
FOX0 family. This section will focus on signal transduction related to glucose uptake.

GLUT-4 is the predominant isoform of the GLUT family found in skeletal muscle, 
and one of insulin’s primary metabolic roles is to promote the translocation of GLUT-4 
to the surface membrane. AKT has been linked to downstream substrates that impact 
insulin-dependent GLUT-4 translocation including GSK-3[41] as well as AKT Subs-
trate of 160kd (AS160)[31,42,43] making it a prime target for understanding glucose 
uptake. GSK-3β is a well-known inhibitor of glycogen synthase, but is also an inhibitor 
of eiF2B which is a potent regulator of protein synthesis. When GSK-3β is phos-
phorylated at Ser79 its activity is inhibited, which allows for the activation of both 
glycogen synthase and eiF2B. Interestingly GSK-3 has been linked to mTORC2 regu-
lation via RICTOR phosphorylation at Ser1235 which interferes with mTORC2 binding 
to AKT[44] and Ser1695[45] which marks RICTOR for degradation. Also been linked to 
AS160 is a substrate of AKT that contains a Rab-GTPase activating protein and has 
been associated with regulating glucose transport. In basal conditions AS160 maintains 
GLUT-4 containing vesicles in the cytosol (intracellular) through its gap domain[46,
47], when insulin is applied AS160 is rapidly phosphorylated which disengages AS160 
from the vesicles allowing them to move to the membrane for exocytosis. In skeletal 
muscle, like fat[43,48], AS160 is phosphorylated in response to insulin in a dose de-
pendent manner[49] and insulin stimulation of GLUT-4 exocytosis is dependent on 
AS160 phosphorylation[48]. AS160 can be phosphorylated by other proteins including 
AMP-activated protein kinase (AMPK) making it part of both insulin dependent and 
insulin independent translocation of GLUT-4[31,50].

Anabolic signaling
AKT phosphorylates TSC2 at Thr1462 which regulates the tuberin-hamartin complex 
and it’s activity[51-53]. Phosphorylation at this site releases the tuberin-hamartin 
complex inhibition of the mTORC1 complex and allows for downstream targets to be 
phosphorylated[51]. mTORC1 is a prolific kinase with multiple downstream sub-
strates, but Ribosomal protein S6K1 and eukaryotic translation initiation factor 4E-
binding protein 1 (4E-BP1) are arguably the most well-known downstream targets. 4E-
BP1 is known as a translation repressor protein because it inhibits cap-dependent 
mRNA translation by binding to peptide-chain initiation factor eIF4E. Phosphorylation 
of 4E-BP1 disrupts the interaction of 4E-BP1 and eIF4E, releasing it so that it may 
participate in translation by chaperoning specific cap-dependent transcripts to the 
translation apparatus[54]. S6K1 is best known for its action on ribosomal protein S6 
(S6) which is involved in the translational control of 5’ oligopyrimidine tract (5’-TOP) 
mRNAs[55]. Phosphorylation of S6K1 at Thr389 is known to be critical for function of 
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the protein[55], as well as correlated with kinase activity in vivo[56]. The subsequent 
phosphorylation of S6 ribosomal protein correlates with increases in translation of cap-
dependent proteins, that are necessary for the manufacture of ribosomal machinery 
and peptide-chain elongation factors necessary for mRNA translation[57,58]. The re-
gulation of S6K1 activity is diverse but S6K1 activation has been shown to be elevated 
by hyperglycemia[59], hyperinsulinemia[60], and high fat diet in muscle and adipose 
tissue[61].

INSULIN SIGNALING AND DIABETES
It is generally agreed that glucose transport is the rate limiting step of glucose uptake, 
and the step most impacted by the progression of T2D. The consensus in diabetes 
research at large is that the translocation or trafficking of glucose transport molecules 
in skeletal muscle is impaired in T2D[43,62] but the culprit behind this impairment is 
still widely debated. In skeletal muscle GLUT-4 is the predominantly expressed 
isoform[63,64] and the localization of GLUT-4 has been confirmed with insulin[65], 
exercise[65,66] and hypoxia[67]. The first important finding with diabetes is that the 
limitation in glucose transport cannot be explained by production or maintenance of 
the GLUT itself, because total GLUT-4 protein is largely unchanged with diabetes[68-
70]. This implies that the issue is not related to GLUT-4 expression, per se, but within 
the signaling cascades that assist in the translocation of GLUT-4 to the surface mem-
branes.

As the initial step in the insulin signaling cascade, the insulin receptor was a 
primary target of research related to the breakdown of the glucoregulatory signals. 
While current data are conflicting on IR activity with some reporting impairment[62,
71,72] and others reporting normal activity[73-77], it appears that the important 
signaling ‘defects’ of T2D are further down the signal cascade. Signaling defects in 
IRS1 phosphorylation[73,77-79] and PI3K[73,77,78,80,81], activity are consistently 
found in the diabetic model. More controversial is the activity of AKT with studies 
reporting significant reductions of insulin stimulated AKT phosphorylation on Ser473 
or Thr308[69,75,82,83]. While others report not impact of T2D on insulin dependent 
phosphorylation[80,81]. Downstream substrates of AKT have also been presented in 
the diabetic model with reduced glycogen synthase activity with protein levels of 
GSK-3 reported as being elevated which would inhibit GS activity[84]. Additionally, 
insulin dependent phosphorylation of AS160 has also been reported to be higher in 
T2D[42], despite the fact that AKT phosphorylation was not different in the same 
study.

Despite the continued exploration and detailed understanding of what the signaling 
cascades are doing during diabetes, there is still no consensus on where these dys-
functions are originating. Molecular mechanisms that underlie this dysfunction of 
glucoregulatory processes associated with T2D as outlined above have been studied 
extensively, but the interaction of glucoregulatory processes with those of protein 
metabolism (protein turnover) are still lacking, despite the evidence that the two 
processes may be dependent on one another.

It is well documented that muscle mass and strength decline with T2D[85,86] and 
contribute to a decline in quality life over time. Interestingly despite a loss in muscle 
mass, there appears to be an upregulation of protein synthesis and the anabolic signal 
cascade in diabetic muscle[87,88]. Previously, studies assessing anabolic responses 
[fractional synthesis rate (FSR)] in diabetic skeletal muscle have been inconsistent, 
ranging from decreased[89,90], to normal[91,92] but more recently increased FSR has 
been confirmed by our lab[87,88,93,94] and others[95,96]. In Fatty Zucker rats, a well-
documented model for T2D, upregulated protein synthesis in specific muscle fractions 
and increased phosphorylation of S6K1 were observed despite an overall decrease in 
muscle mass. This upregulation of S6K1 appears to be linked to a loss of control of 
upstream mTOR activation. While the hyperactive mTOR activity may be a result of 
the maintained state of hyperinsulinemia with glucose intolerance, we suspect some-
thing much more sinister for the progression of diabetes.

Our recent studies have demonstrated that the constitutive activation of mTOR may 
be a result of suppressed DEPTOR expression in the diabetic state. DEPTOR is one of 
the mTOR associated binding partners that can be a part of either mTORC1 or 
mTORC2 and is a negative regulator of mTOR activity. Similar to several lines of 
cancer[97]. DEPTOR is substantially lower in obese subjects[87,88]. Since DEPTOR is 
still a fairly new discovery in the mTOR signaling cascade, the implications of low 
DEPTOR and the regulation of mTORC1 are still speculative but the low DEPTOR 
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appears to allow the downstream anabolic signals to go unchecked[98] which has 
implications for mRNA translation[99], as well as glucoregulatory signaling cascades. 
This is unbridled mTORC1 activity without concomitant muscle mass accretion is 
indicative of high protein turnover[88], where it may not be warranted or wanted. It is 
also an important bridge between mTORC1 and mTORC2 which will be discussed in a 
later section.

CONNECTING ANABOLISM TO INSULIN RESISTANCE
A relatively recent but important discovery in the connection of anabolic and glucoreg-
ulatory signaling paths is an inhibitory pathway that directly links S6K1 to IRS1. IRS1 
can be serine phosphorylated through many pathways including c-Jun NH2-terminal 
kinase, IkB kinase, PKC, and S6K1[100,101]. It is now known that the insulin receptor 
contains multiple phosphorylation sites[102] and even in a basal state it is highly 
phosphorylated[103]. Ser/Thr phosphorylation of IRS-1 has been linked to the de-
gradation of IRS1 itself and the downstream signaling needed for glucose uptake. 
While the patterns and requirements of these phosphorylation’s for the downstream 
signal disruption are still undefined it has been clearly demonstrated that chronic 
exposure of cells to insulin results in degradation of IRS-1 protein[104-106]. It was later 
found that AKT mediated the Ser/Thr phosphorylation of IRS-1 and that this was 
inhibited by rapamycin[107]. More specifically IRS1 phosphorylation at Ser307 and 
Ser636/639 were observed in moments of increased mTORC1 activation and this 
increase was absent in mice that were S6K1 deficient[61]. In support of this cons-
titutive activation of S6K1 lead to IRS1 phosphorylation and degradation as well as 
inhibition of IRS-1 transcription[108,109]. It is now a well-supported conclusion that 
IRS1 phosphorylation by S6K1 (Figure 2), decreases insulin signaling through the 
insulin receptor substrate[61,100,103,110,111]. This critical role is highlighted in the 
elevated levels of activation in liver adipose and muscle of obese animals[61,87,88,112] 
and is further supported by S6K1 deficient mice being protected against diet-induced 
obesity and insulin resistance[61]. This clearly links mTORC1 and more specifically 
S6K1 to the general insulin signaling cascade making it a target molecule for alteration 
of insulin signaling.

While we are gaining perspective in the current literature about the interaction 
between mTORC1 signaling for protein synthesis and the disruption of insulin sig-
naling for glucose disposal in skeletal muscle, far less is known about how the two 
mTOR complexes interact in this process. While the S6K1 connection to IRS1 is now 
fairly accepted, S6K1 also appears to have a role in the cross-talk between the two 
mTOR complexes that is not yet well defined but thought to play a role in insulin 
resistance. To date, very little is known about the regulation of mTORC2[113] despite 
its role in phosphorylation of AKT at Ser473. The role of AKT and its regulation 
through Ser473, both upstream and downstream is still quite controversial in the 
literature as discussed earlier in section 2.1 AKT/protein kinase B (PKB), despite its 
being a widely used marker of AKT activity[25-27]. The downstream targets of AKT 
include various substrates involved in glucose uptake so the choice of this important 
intermediate as a marker seems obvious; however, the interpretation of what phos-
phorylation of AKT at Ser473 truly implies remains ambiguous.

The mTORC2 complex is best known for its involvement in cell survival but is 
known to phosphorylate AKT through Ser473[25,114-117] as well as the PKC family
[40,116-119]. This complex is composed of binding partners mSin1, DEPTOR, Protor1, 
mLST8 and RICTOR. While all of these binding partners play roles in mTORC2 ac-
tivity, the RICTOR has currently demarcated mTORC2’s role in signal transduction
[25]. RICTOR aids in localization of mTOR to the plasma membrane as well as the 
binding of mSin1 to the mTORC2 complex[19], making it an important binding part-
ner worthy of the interest it has received. While mTORC2 has been established as the 
kinase responsible for phosphorylation of AKT at Ser473 the mechanism behind this 
phosphorylation is controversial. Two binding partners, RICTOR and Sin1, have been 
established as important regulators of mTORC2 complex activity, and of interest is 
that both of these binding partners appear to be regulated by S6K1. RICTOR is prone 
to phosphorylation[114,120,121] and that phosphorylation may impact downstream 
targets like AKT, as indicated by phosphorylation at Ser473[115,122].

Work by others indicated that the muscle-specific deletion of RICTOR led to de-
creased Ser473 phosphorylation of AKT and was accompanied by reduced phospho-
rylation of AS160 at Thr642 and overall glucose intolerance[123]. That work lead to 
speculation that regulation of RICTOR through phosphorylation was responsible for 
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Figure 2 Downstream mammalian target of rapamycin complex 1 substrate S6 kinase beta-1 phosphorylation of insulin receptor sub-
strates 1 at Ser307 and Ser636/639 leads to insulin receptor substrates 1 degradation. Blue arrows (→) indicate activation of the substrate, black 
arrow (→) indicates degradative pathway. Figure created with BioRender.com. S6K1: S6 kinase beta-1; IRS: Insulin receptor substrates.

the increases or decreases in Ser473 phosphorylation[115,122], and the concomitant 
responses of insulin-stimulated glucose homeostasis. Others determined that the 
phosphorylation of RICTOR at thr1135 (Figure 3) was responsible for inhibition of 
kinase activity toward AKT at Ser473[119,122,124,125]. Phosphorylation of RICTOR at 
Thr1135 was sensitive to both growth factors and rapamycin[124] and was the direct 
target, established through silencing and pharmacology, of S6K1[119]. Although the 
evidence connecting S6K1 to RICTOR regulation is compelling, the functional con-
sequences of this phosphorylation are controversial. Some studies have indicated that 
this phosphorylation is a direct regulator of mTORC2 activity towards AKT[119,122], 
while others report no alteration in mTORC2 activity[124,125]. It must be noted that 
different experimental models were used across these studies, so it is possible that 
some of the differences observed were due to the differences in genetic models used to 
arrive at those conclusions. Despite those discrepancies, the S6K1-RICTOR interaction 
further supports the concept of crosstalk between the insulin glucoregulatory and 
protein synthesis pathways, as implicated by data demonstrating that mTORC1 
regulation is important for Ser473 regulation. With mTORC1 and S6K1 activity being 
upregulated with diabetes, this connection to the insulin signaling pathways and the 
direct control mTORC1 may be critically important for further understanding of the 
metabolic dysregulation of T2D.

RESISTANCE EXERCISE 
Exercise and physical activity are effective, low cost interventions for insulin resistance 
and T2D[126,127]. The benefits of aerobic exercise on glucose tolerance are well es-
tablished[128-132] and the improvements are independent of improvements in general 
condition[132]. However many people with T2D are overweight and/or obese, have 
mobility issues and other neuropathies making aerobic-type exercises difficult to 
accomplish[133,134]. Resistance exercise has been proposed as a more feasible activity 
when aerobic exercise is inaccessible and there is a growing body of evidence to 
support that this form of exercise can be beneficial with regard to glucose tolerance
[135,136]. Much of this work attributes the glucoregulatory improvements following 
resistance training are due to increased muscle mass[2,137,138] which may or may not 
be applicable to T2D. Additionally, acute resistance exercise appears to increase 
insulin clearance without a change in glucose tolerance[139], which was originally 
attributed to increases in insulin sensitivity via receptor number or a greater liver or 
tissue clearance following exercise.

It is often speculated that insulin-resistant skeletal muscle is desensitized or ‘re-
sistant’ to the anabolic actions of exercise[88,140,141], making it difficult to achieve 
gains in muscle mass. Given the aforementioned hyperactivation of mTOR with in-
sulin resistance, the current theory is that the ‘anabolic resistance’ observed with 
diabetes/obesity may really be due to an “anabolic ceiling” in skeletal muscle that has 
been achieved in the hyper-insulinemic state. In healthy tissue. resistance exercise is a 
potent stimulator of rates of protein synthesis in muscle and repeated bouts of re-
sistance exercise lead to skeletal muscle hypertrophy[142]. It has also been established 
that insulin is a necessary component in elevated protein synthesis rates after re-
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Figure 3 Downstream mammalian target of rapamycin complex 1 substrate S6 kinase beta-1 is the primary kinase responsible for 
phosphorylation of the mammalian target of rapamycin complex 2 component Rictor at Thr1135 which has been implicated in phos-
phorylation of AKT at Ser473. Blue arrow (→) indicates activation of the substrate, orange bar (Ʇ) indicates inhibitory action on the substrate. Figure created 
with BioRender.com. mTOR: Mammalian target of rapamycin; mTORC: mTOR complex; S6K1: S6 kinase beta-1.

sistance exercise and it is the combination of resistance exercise and insulin that causes 
this modulation[143,144]. This effect of insulin appears to be through a rapamycin 
sensitive pathway[145-148] at least in healthy unperturbed tissue, but en-gaging in a 
moderate to high intensity exercise bouts involving eccentric muscle actions lead to a 
transiently-reduced capacity of insulin to elevate glucose uptake[149,150]. The me-
chanisms behind this alteration are still not well defined, but speculation includes a 
diminished capacity for glycogen synthesis and reductions in GLUT-4 protein which 
may be fiber type specific[150]. Further, as noted above, there are circumstances where 
the activation of protein anabolism requires S6K1 activation, which may feedback on 
upstream signals that impair glucose uptake by insulin[61,87,88,111]. More work is 
warranted to better define these mechanisms.

Aside from insulin sensitivity, there are benefits to regular exercise, whether it is of 
an aerobic or anaerobic nature. It is important to note here that there are insulin 
independent pathways that trigger glucose uptake that are directly related to skeletal 
muscle contraction. This pathway is triggered by muscle contraction and involves a 
distinct subset of GLUT-4[66,151-153]. These pathways can involve nitric oxide[154] 
and activation of AMPK[155,156] as well as cytosolic calcium[130] but these effects are 
distinct and additive to those of insulin mediated glucose uptake[2,157-159]. Probably 
most important for T2D research is that these contraction mediated glucose pathways 
are not only present in T2D but are fully functional[160,161].

Interestingly, in insulin resistant muscle there seems to be a difference in the control 
of muscle protein synthesis. It appears that in tissue where the upstream activators of 
the mTORC1 pathway are impaired there are alterations to the use in protein syn-
thesis. Unlike their lean counterparts obese Zucker rats administered insulin had 
augmented rates of muscle protein synthesis and that these actions persisted in the 
presence of rapamycin[94]. This suggest that the rapamycin sensitive mTORC1 path-
way is not responsible for the increased muscle protein synthesis rates observed.

One key player that may have an impact on muscle protein synthesis in response to 
insulin is a serine/threonine kinase called PKC. PKC has long been considered as a 
regulatory contributor during mRNA translation in a number of tissues[162,163] but 
more recently specific isoforms of PKC have been implicated in the regulation of 
glucose uptake. Specifically, the conventional family of PKCs (α, β, γ) lead to atte-
nuated insulin receptor tyrosine kinase and PI3K activity[164,165] which leads to 
reduced glucose disposal. It has been discovered that in diabetic tissue, when insulin 
complexes with its receptor PKC is activated which then impairs downstream insulin 
signal[93]. This phenomenon is not observed in muscle from lean humans who have 
normal glucose response, mirroring the observed changes in insulin induced protein 
synthesis not present in lean counterparts[94]. Additionally inhibition of PKC activity 
through pharmacology has been demonstrated to partially restore signal transduction 
and glucose disposal in otherwise insulin resistant muscle[164,166]

The regulation of PKC, like many of the enzymes related to insulin signal trans-
duction and glucose uptake is complex. It is known that PKCα is a downstream 
substrate of mTORC2 at both its turn motif (Thr638) and is hydrophobic motif (Ser657) 
both of which are required for PKCα stability[40,116-119]. Deletion of RICTOR, abo-
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lishes phosphorylation of the hydrophobic motif of PKCα[114,115] and deletion of 
either RICTOR or Sin1 dramatically reduces PKCα protein content[117], implicating 
that RICTOR, a component of mTORC2, plays a role in PKC activation much like it 
does for the activation of AKT at Ser473. This draws mTORC2 further into the complex 
crosstalk that impacts insulin signaling and provides a feasible opportunity for 
mTORC2 to assist in the bypass of normal insulin signaling with the upregulation of 
PKC. It is important to note that PKC activation does not rely on mTORC2 however 
because it can also be activated by Diacylglycerol[117] which would be high in the 
obese state.

CONCLUSION
Dysregulation of mTOR signaling is a key player in the development of many disease 
states including diabetes. While decades of research have been dedicated to under-
standing the insulin signaling cascade, many aspects of its regulation and control 
remain elusive. It is becoming clear that crosstalk between the two mTOR complexes is 
adding considerable complexity by impacting both hormone-mediated glucose uptake 
and the underlying pathogenesis of this disease. This emerging evidence now blurs 
their roles and responsibilities of fixtures in protein homeostasis. Research in this area 
has focused on specific culprits in the glucoregulatory pathway that are thought to 
cause the manifestation of the disease, but with all of the newly emerging anabolic/ 
glucoregulatory cross talk that are involved with the manifestation of this disease, it is 
possible that the factors once viewed as culprits for this disease may actually be the 
consequence of anabolic/glucoregulatory cross talk. These recent findings offer 
exciting new targets for the control of insulin resistance.
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Abstract
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level. Although the disease spectrum of ALD is widely recognized, the precise 
triggers for disease progression are still to be fully elucidated. Oxidative stress, 
mitochondrial dysfunction, gut dysbiosis and altered immune system response 
plays an important role in disease pathogenesis, triggering the activation of 
inflammatory pathways and apoptosis. Despite many recent clinical studies 
treatment options for ALD are limited, especially at the alcoholic hepatitis stage. 
We have therefore reviewed some of the key pathways involved in the patho-
genesis of ALD and highlighted current trials for treating patients.
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INTRODUCTION
Alcoholic liver disease (ALD) is one of the most prevalent chronic liver diseases and 
causes significant mortality globally. Chronic alcohol consumption has been imp-
licated in multiple medical conditions including cancer, diabetes, cardiovascular 
disease, liver and pancreatic disorders. However, no new treatment options have been 
developed for many years. At present, abstinence remains the most important treat-
ment for ALD, however, there is a need to develop effective treatment options asso-
ciated with alcohol misuse.

The spectrum of ALD is widely recognized ranging from simple liver steatosis; 
which can occur in up to 90% of heavy drinkers[1] to alcoholic hepatitis (AH), which 
develops in 10% to 35% of heavy drinkers[2]. AH can ultimately progress to fibrosis, 
where hepatic stellate cell (HSC) activation, collagen synthesis and accumulation of 
extracellular matrix proteins occurs due to the formation of protein adducts. Cirrhosis 
and lastly hepatocellular cancer are the final stages. Fibrosis/cirrhosis can cause 
hepatocyte inactivation, and is associated with abnormal DNA repair, damage to 
mitochondrial function and oxygen utilization disorders[3]. This can lead to hepato-
cellular failure and portal hypertension which ultimately requires a liver transplan-
tation.

The molecular and biochemical mechanisms underlying the pathogenesis of ALD as 
well as the precise triggers for disease progression are not completely understood. 
Recent evidence suggests disease progression is thought to involve several patho-
logical stages such as mitochondrial dysfunction, oxidative stress, altered methionine 
metabolism, iron dysregulation, gut dysbiosis, activation of inflammatory pathways 
and decreased production of antioxidants (Figure 1)[4]. Currently, no effective treat-
ment for ALD exists due to the incomplete understanding of hepatic biochemical 
alterations and pathogenic mechanisms responsible for disease progression.

EPIDEMIOLOGY AND PREVALENCE
Alcohol misuse is a leading cause of liver disease worldwide. ALD is a global disease 
burden and results in approximately 3 million deaths per year[5]. In 2016, 5.3% of all 
deaths were caused by the harmful effects of alcohol worldwide[5]. Alcohol accounts 
for 5.1% of total disease burden worldwide, measured in disability-adjusted life years
[5]. Total alcohol consumption per capita increased in 2005 from 5.5 L to 6.4 L in 2010 
and was sustained at 6.4 L in 2016[5]. Europe has the highest per capita alcohol 
consumption and disability-adjusted life years[5], as well as binge drinking partic-
ularly, in France and England[6].

Although the overall prevalence of ALD has remained stable from 2001-2016 at 
between 8.1%-8.8%, the proportion of ALD with stage 3 fibrosis and above has 
increased from 2.2%-6.6%[7], such that in the United States chronic liver disease and 
cirrhosis is the 12th leading cause of death[7]. In the United States, the number of adults 
listed as waiting for liver transplants also increased by 63% from 2007 to 2017[7], 
where approximately one third of all liver transplants are due to alcohol-related 
disease[8]. Due to the high-risk drinking rates, the number of deaths due to alcohol-
related liver disease in the United States is projected to increase by 84% from 2019-2040
[9]. In the United Kingdom, the number of deaths from ALD was reported at 5964 
deaths in 2020 compared to 4954 deaths in 2019, increasing by 20%[10]. From 2001 the 
number of deaths due to ALD has increased by 72% from 2001-2020[10].

There are several factors which effect the development of ALD. There are significant 
differences in the amounts of alcohol consumed between males and females. It is well 
documented that men consume more alcohol than women, leading to a higher pre-
valence of alcohol related liver disease[11]. It is estimated 237 million men and 46 
million women have alcohol use disorders[5]. Although men often consume more 
alcohol, women are more susceptible to the toxic effects of alcohol and have a higher 
risk of advanced liver disease[11], due to higher blood alcohol concentrations despite 
equal dosing between genders[11]. Therefore, female gender is an important risk factor 
for progression of ALD. Genomic data has also discovered that a variation in the 
PNPLA3 gene is associated with increased hepatic fat content, increasing the risk of 
both ALD and non-alcoholic fatty liver disease, which has the highest frequency in 
Hispanics[12].
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Figure 1 Alcohol-related induction of oxidative stress and liver injury. Alcohol misuse leads to loss of tight junctions in the gut increasing its 
permeability. This causes translocation of lipopolysaccharide into the liver activating toll-like receptor 4 on Kupffer cells (KCs). Activation of KCs can cause reactive 
oxygen species (ROS) production and pro-inflammatory cytokines such as tumor necrosis factor-α. ROS production also occurs due to the metabolism of alcohol. 
ROS production and inflammatory cytokines leads to inflammation and recruitment of inflammatory cells as well as activation of apoptotic pathways. (Figure created 
with BioRender.com). LPS: Lipopolysaccharide; ROS: Reactive oxygen species; TNF-α: Tumor necrosis factor-α.

DISEASE SPECTRUM
Sustained excessive alcohol consumption produces a vast range of hepatic lesions. The 
first stage is liver steatosis or alcoholic fatty liver, which can occur in up to 90% of 
heavy drinkers, emerging as early as 3 to 7 d after initial excessive alcohol consump-
tion[1]. Steatosis is often asymptomatic with normal or only slightly increased liver 
enzymes levels. The deposition of microscopic fat droplets occurs initially in the 
centrilobular zone then spreads towards the periportal region of hepatocytes[13]. 
Steatosis, although reversible and originally thought to be a benign state, is a now a 
priming phase for AH, which develops in 10% to 35% of heavy drinkers and is a more 
severe stage of ALD. AH is characterized by hepatocyte ballooning, the formation of 
Mallory-Denk bodies, infiltration of white blood cells, Kupffer cell (KC) activation, and 
collagen deposition via once dormant HSCs[14], the latter playing an important role in 
fibrosis leading to cirrhosis. At this stage hepatocyte inactivation, abnormal DNA 
repair, damage to mitochondrial structures, oxygen utilization disorders, and the 
accumulation of extracellular matrix proteins occurs[3]. Continuation of hepatic 
scarring and the spread of collagen (bridging fibrosis) throughout the liver can lead to 
cirrhosis and in some cases hepatocellular cancer.

Although the pathogenesis of ALD is yet to be fully understood, it is thought to 
include multiple interplaying factors and pathways including the production of toxic 
ethanol metabolites, oxidative stress, innate and adaptive immune activation, fi-
brogenesis and cell death. Upon activation of these pathways tissue damage can occur 
leading to the progression of the disease. This review will focus on mechanisms 
involved in inflammation that predominantly occur at the AH stage.

ALCOHOL METABOLISM
Within the liver, alcohol dehydrogenase and cytochrome p450 2E1 (CYP2E1) are the 
main oxidative pathways of alcohol metabolism. Another minor pathway of alcohol 
metabolism in the liver is via the peroxisomal enzyme catalase[15]. A small proportion 
of ethanol may also be metabolized by non-oxidative pathways such as by interaction 
with fatty acids, generating fatty acid ethyl esters[16]. Alcohol dehydrogenase oxi-
datively metabolizes alcohol to acetaldehyde, a highly reactive and toxic by product 
that contributes to tissue damage. This conversion reaction requires the cofactor nicoti-
namide adenine dinucleotide (NAD+), creating reduced NAD+ in the process. Due to 
the toxic nature of acetaldehyde, it is further oxidized to acetate, catalyzed by the 
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enzyme mitochondrial aldehyde dehydrogenase-2[17]. Increased conversion of NAD+ 
results in leakage of electrons and reactive oxygen species (ROS) production. The toxic 
metabolites produced during alcohol metabolism as well as increased ROS can also 
trigger endoplasmic reticulum (ER) stress. The second major pathway is via the 
microsomal ethanol-oxidizing system and involves CYP2E1, which is involved in 
ethanol oxidation to acetaldehyde[17]. The activity of CYP2E1 is induced by alcohol, 
increasing its hepatocellular content causing accumulation of CYP2E1[18]. Electron 
leakage from the CYP2E1 pathway, leads to ROS generation, including hydroxyethyl, 
superoxide anion and hydroxyl radicals[19]. ROS can also form lipid peroxides and 
DNA adducts such as N2-ethyldeoxyguanosine, which has been detected both in the 
livers of alcohol-fed rats as well as leukocytes in ALD patients[20].

AUTOPHAGY, MITOPHAGY AND INFLAMMASOMES
Alcohol metabolism increases ROS production and ER stress leading to calcium 
depletion, glycosylation and lipid overloading, triggering the unfolded protein res-
ponse (UPR)[21]. The UPR can restore ER homeostasis by attenuating translation of 
proteins, increasing folding capacity and degrading unfolded proteins. However, a 
prolonged UPR causes inflammation, fat accumulation, mitochondrial stress and 
apoptosis via direct activation apoptosis signal-regulating kinase 1[22], nuclear factor-
κB (NF-κB), c-Jun N-terminal kinases and P38[23]. Alcohol induced ER stress invol-
ving an impaired UPR was first identified in a model of intragastric alcohol fed mice
[24].

Alcohol can induce autophagy, a self-degradative process which occurs by the 
action of lysosomes and can be selective only for damaged mitochondria (mitophagy). 
Evidence suggests that autophagy in ALD can have inhibitory effects on inflammation 
and steatosis as well as the ability to remove lipid droplets, Mallory-Denk bodies and 
damaged mitochondria[25]. Whilst tumor necrosis factor (TNF)-α induces autophagy, 
generation of ROS can lead to inhibition of TNF-α induced autophagy through 
activation of NF-κB[26]. This suggests dysfunction of autophagy is associated with 
ALD pathogenesis[27,28]. Multiple animal models have observed autophagy as a 
protective response in ALD, as well as confirming ameliorative effects in ALD. Acute 
ethanol feeding (6 g/kg bodyweight) increased autophagy as measured by autopha-
gosome numbers, however, chronic ethanol feeding (5.2% ethanol by volume) 
inhibited hepatic autophagy[29], suggesting that this protective mechanism is lost with 
longer term alcohol consumption.

Mitophagy can also be induced as a protective response to both acute and chronic 
alcohol consumption due to accumulation of ROS or loss of mitochondrial membrane 
potential via elimination of dysfunctional mitochondria. The process of mitophagy 
depends on induction of autophagy and priming of damaged mitochondria for re-
cognition and is mediated by phosphatase and tensin homolog-induced putative 
kinase 1-Parkin signalling pathway or Nip3-like protein X[30]. The duration of alcohol 
exposure can affect the mitophagy process[30]. In rats, binge-models of alcohol 
consumption have been shown to increase mitophagy, decreasing alcohol-induced 
hepatoxicity[30,31]. Acute ethanol consumption also increases transcription factor EB, 
a master regulator of lysosomal biogenesis, however, chronic ethanol exposure de-
creased transcription factor EB[29]. Accumulation of damaged mitochondria occurs in 
chronic ethanol models which releases mitochondrial damage-associated molecular 
patterns (DAMPs), which in turn promote inflammation and fibrogenesis contributing 
to accelerated disease state[30]. Mitochondrial DNA (a mitochondrial DAMP), can 
bind to toll-like receptor (TLR)-9 activating HSCs and fibrogenesis[31]. Therefore, 
targeting mitophagy may be a potential therapeutic for ALD.

Inflammasomes
Oxidative stress in response to alcohol metabolism can damage hepatocytes, releasing 
endogenous DAMPs. Recognition of DAMPs can induce inflammation by release of 
proinflammatory cytokines, immune cell localization and stimulation of the inflam-
masome[32]. Inflammasomes are expressed in hepatic cells and are multi-protein 
complex’s containing a nucleotide-binding oligomerization domain-like receptor 
(NLR). Inflammasome activation is thought to be a two-step process. Inflammasome 
sensor molecules can trigger the assembly of inflammasomes, including NLR mole-
cules, for example NOD-, LRR- and pyrin domain-containing 3 (NLRP3)[33]. Assem-
bly is initiated by TLR and pathogen-associated molecular pattern (PAMP)/DAMP 
signaling which results in the NLR forming complexes with pro-caspase 1 with or 
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without an adaptor molecule, apoptosis-associated speck like CARD-domain contai-
ning protein (ASC)[4,33]. Inflammasome assembly initiates cleavage of procaspase-1 to 
its active form caspase-1. Activated caspase-1 then promotes the secretion and ac-
tivation of pro-inflammatory cytokines via cleavage of pro-interleukin (IL)-1β and pro-
IL-18 into their active forms IL-1β and IL-18[33]. IL-1β plays an important role in the 
infiltration of immune cells and IL-18 is important for the production interferon-
gamma (IFN-γ)[33]. Inflammasome activation also leads to a pathway of cell death 
called pyroptosis.

NLRP3 can be activated by a variety of stimuli including bacterial toxins, mito-
chondrial dysfunction and production of ROS. Interestingly, increased levels of IL-1β, 
ASC and NLRP3 have been documented in the livers of ethanol fed mice, whereas 
elevated mRNA expression of IL-1β, IL-18 and caspase-1 has been documented in the 
liver of ALD patients which correlated with liver lesions[34] and has also been 
associated with the development of liver fibrosis. Blocking IL-1β activity strongly 
decreases liver inflammation and damage[35]. Higher levels of serum IL-1 has also 
been documented in patients with AH in comparison to healthy controls[36]. Caspase-
1 knockout mice have also been shown to be protected from fibrosis as well as treat-
ment with IL-1 receptor antagonist has been shown to attenuate steatosis and liver 
injury when administered 2 wk post-ethanol feeding[36]. Decreased inflammation, 
steatosis and IL-1β expression has been associated in NLRP3 deficiency. Research has 
also shown mice deficient in NLRP3 have protection against ethanol-induced inflam-
mation including attenuation of steatosis and liver injury[37]. Previous research has 
also shown inflammasome components such as NLRP3 and ASC are present in HSCs 
and are required for the development of liver fibrosis by inducing changes including 
upregulation of transforming growth factor-β and collagen[38]. Therefore, this 
demonstrates the importance of IL-1β signaling, inflammasome components and 
activation in ALD.

INNATE AND ADAPTIVE IMMUNITY
Gut permeability
Increases in gut permeability due to alcohol has been confirmed in both clinical and 
experimental studies[39,40]. Increased gut permeability enables the entrance of 
PAMPs, such as lipopolysaccharide (LPS) in the portal circulation[41]. LPS is one of 
the exogenous ligands for TLR4, a pattern recognition receptor found on KCs. LPS 
interaction with TLR4 initiates downstream signaling via TIR-domain-containing 
adapter-inducing IFN-β and IFN regulatory factor 3, leading to production of 
proinflammatory cytokines proinflammatory cytokines such as TNF-α and IL-1β 
(Figure 2), the former can activate the extrinsic pathway of apoptosis via the TNF 
receptor 1 and TNF receptor 2 signaling[42]. High levels of these death receptors, 
including Fas, are expressed in all liver cells, therefore, the extrinsic pathway is the 
main apoptotic pathway in hepatocytes, such that hepatocyte apoptosis has been 
correlated with severity of disease in AH[43]. Serum TNF-α and IL-6 are also increased 
after exposure to alcohol and LPS[44], with TNF-α correlating with liver injury and 
mortality. However, chronic ethanol exposure to TNF-α knockout mice does not cause 
alcohol-associated inflammation and liver injury[45], therefore, mechanisms to reduce 
TNF-α may be an important tool in preventing inflammation.

Natural killer cells
LPS and HSCs can directly interact with immune cells such as natural killer (NK) cells, 
natural killer T (NKT) cells and T cells leading to disease progression[46]. NK cells can 
kill activated HSCs via TNF-α related apoptosis, however, HSCs isolated from ethanol-
fed mice showed reduced sensitivity to NK cell killing[46]. Alcohol consumption also 
enhances splenic NK cell apoptosis and blocks NK cell release from the bone marrow, 
as well as accelerating progression to fibrosis due to reduced NK cell activity[46]. Gut-
derived bacteria such as LPS may influence the activation of hepatic NKT cells leading 
to induction of HSCs and apoptosis, further exacerbating liver injury. Patients with 
ALD have shown a decreased number of circulating NK cells along with reduced 
cytotoxic activity resulting in decreased anti-viral, anti-fibrotic, and anti-tumor effects 
which can contribute to accelerated progression of disease state[47]. However, NK/ 
NKT cells may inhibit fibrosis through deletion of activated HSCs and production of 
IFN-γ[48]. On the other hand, activation of NKT cells also promotes liver fibrosis via 
enhancing hepatocellular damage and promoting HSC activation[48]. Therefore, a 
balance is required between inhibitory and stimulatory effects for liver health.
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Figure 2 The inflammatory response during alcoholic liver disease. Excessive consumption of alcohol causes lipopolysaccharide release from the gut 
activating toll-like receptor 4 on Kupffer cells (KCs). Pattern recognition receptors become activated by pathogen-associated molecular patterns/damage-associated 
molecular patterns which induces inflammation via release of proinflammatory cytokines and inflammasome activation. Interleukin (IL)-18 production from KCs causes 
activation of natural killer cells. Toll-like receptor stimulation in hepatic stellate cells results in the expression of IL-6, transforming growth factor-β1 and tumor necrosis 
factor-α. (Figure created with BioRender.com). DAMPs: Damage-associated molecular patterns; FFA: Free fatty acids; PAMPs: Pathogen-associated molecular 
patterns; IL: Interleukin; LPS: Lipopolysaccharide; NF-κB: Nuclear factor-κB; NK: Natural killer; NLRP3: NOD-, LRR- and pyrin domain-containing protein 3; PRR: 
Pattern recognition receptor; ROS: Reactive oxygen species; TGF-β: Transforming growth factor β; TLR4: Toll-like receptor 4; TNF-α: Tumor necrosis factor-α.

Neutrophil activation
Neutrophils can be recruited in response to liver injury to form neutrophil extracel-
lular traps (NETs), which generate ROS and undertake phagocytosis. Acute alcohol 
consumption leads to neutrophil imbalance in the liver releasing spontaneous NETs
[49]. The scavenging ability of macrophages to eliminate NETs diminishes resulting in 
persistent inflammation via hepatocyte damage[49]. During AH, the infiltration of 
neutrophils is believed to occur via the activation of KCs, which recruit cytokines and 
chemokines including IL-8 and IL-17. In mouse models, blockade of inflammatory 
mediators such as IL-8 and IL-17, which are necessary for neutrophil infiltration, can 
ameliorate liver disease[50,51], which supports neutrophil dysfunction in disease 
progression. Patients with ALD have a decreased baseline function of neutrophils in 
the liver[14], which may provide an explanation for high rates of bacterial, fungal and 
viral infection as well as organ failure and mortality. Neutrophil dysfunction has been 
shown to be reversed in patients with AH following endotoxin removal[52]. In AH 
patients, extensive modification of albumin occurs, further activating neutrophil infilt-
ration causing inflammation and oxidative stress[46,49]. Monocyte chemoattractant 
protein-1 also known as C–C motif chemokine ligand 2 is involved in proinflammatory 
cytokine activation and its levels have been found to be correlated with neutrophil 
infiltration and disease severity[46]. Therefore, neutrophils have been implicated in 
disease pathogenesis and a balance between anti-bacterial and anti-inflammatory 
functions is important for ALD patients.

Adaptive immunity
The adaptive immune response has also been implicated in pathogenesis of ALD 
(Figure 3). Early studies in both animals and humans have shown excessive alcohol 
consumption reduces peripheral T cell numbers, disrupts the balance between phe-
notypes, impairs function and promotes apoptosis[53]. Alcohol consumption can cause 
lymphopenia as well as disrupt the balance between T cell phenotypes, causing a shift 
from naïve populations to memory cells, experimentally and clinically[54-56]. Cy-
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Figure 3 Innate and adaptive immune response to alcohol exposure. Kupffer cells, hepatic stellate cells and natural killer cells are components of the 
innate immune system which becomes activated following chronic alcohol consumption. This leads to the release of inflammatory cytokines, causing further 
recruitment of inflammatory cells. The adaptive immune system also becomes activated releasing inflammatory mediators as well as antibody generation to protein 
and Malondialdehyde-acetaldehyde adducts. Both immune response mechanisms eventually become dysregulated over time with alcohol consumption. (Figure 
created with BioRender.com). HSC: Hepatic stellate cell; IFN-γ: Interferon-γ; IL: Interleukin; KC: Kupffer cell; LPS: Lipopolysaccharide; NK: Natural killer; NKT: 
Natural killer T; ROS: Reactive oxygen species; TGF-β: Transforming growth factor β; TLR4: Toll-like receptor 4; TNF-α: Tumor necrosis factor-α.

totoxic CD8+ T cells are greatly reduced, and this reduction was shown to correlate 
with stage of fibrosis and Child-Pugh (CTP) score, impairing cytotoxic functions 
leading to immune incompetence[56]. Decreased numbers of regulatory T cells are also 
associated with immune activation and increased inflammatory cytokines in AH[57].

More recently increasing phenotypes of T cells have been implicated in ALD. 
Chemokines such as CCL5, a chemoattractant for immune cells such as T lymphocytes, 
has been found to be upregulated in the liver[58]. Various proteins are expressed on 
the cell surface such as T-cell receptor, which recognize antigens and elicit a response. 
Infiltration and activation of both CD4+ and CD8+ T cells have been found to be 
increased in the livers of patients with ALD[58,59]. Until recently it had not been 
defined whether the increased activation of T cells in the livers of ALD patients were 
caused by bystander activation or due to an antigen-specific response[58,59]. Protein 
adducts derived from alcohol metabolism and lipid peroxidation have been identified 
in the liver of patients which act as neoantigens. These neoantigens are presented to 
CD4+ T cells by antigen presenting cells inducing proliferation[58,59]. As well as 
antigen-specific activation, bystander activation of T cells can occur induced in the 
absence of via cytokines, DAMPs and PAMPs[59]. This infiltration of T cells has been 
found to be correlated with inflammation and necrosis in ALD as well as regeneration. 
Therefore, both antigen-specific and bystander activation may contribute to the 
progression of ALD but also provide a beneficial role, however, this requires further 
research.

Alterations in regulatory cells may also provide an explanation for disease pa-
thogenesis, as oxidative stress is known to lower regulatory T cell populations in the 
liver[60]. Th17 cells have been identified in the livers of ALD patients and are critical 
for defense of bacterial infections[46]. These cells produce IL-17 and promote neu-
trophil infiltration. Mucosa-associated invariant T cells (MAIT), an innate-like subset 



Petagine L et al. Alcoholic liver disease

WJBC https://www.wjgnet.com 94 September 27, 2021 Volume 12 Issue 5

of T cells which inhibit bacterial infection, have been found to be reduced in ALD 
patients, consequentially increasing bacterial infection. Transcription factors (RORC/ 
RORγt, ZBTB16/PLZF and Eomes) which control the differentiation of MAIT cells 
were lower in AH patients compared to heathy controls[61]. Therefore, MAIT cell 
function may provide an important therapeutic approach for the treatment of ALD.

During ALD a loss of peripheral B cells also occurs, as well as increased amounts of 
circulating immunoglobulin[53]. B cell numbers are documented to be lower in heavy 
drinkers (90 to 249 drinks/mo) compared to moderate (30 to 89 drinks/mo) to light 
drinkers (< 9 drinks/mo) as well as a loss or circulating B cells in patients consuming 
164.9 to 400 g of alcohol/day on average. The differentiation of progenitor B cells can 
be affected by ethanol exposure via down-regulation of transcription factors (early B 
cell factor and Pax5) and cytokine receptors (IL-7R α)[62] and thus, alcohol use can 
affect subpopulations of B cells (B-1a, B-1b, B2-B)[53]. Exposure to 100 mmol/L of 
alcohol in vitro blocks the expression of transcription factors which has been shown to 
impair B cell differentiation[62]. Alcoholics cannot respond adequately to antigens 
which is likely due to a reduction in high-affinity antibody-producing B-2B subset[53]. 
Further, this decrease in B-2B subsets is typically associated with a decrease in the 
number of B-1a cells as well as a relative increase in the percentage of B-1b cells, 
important for T cell independent responses[53]. Although B cells numbers appear to be 
reduced in alcoholics, during cirrhosis, circulating levels of immunoglobulins (IgA, 
IgG, and IgE) may be increased against liver antigens. It has also been reported that 
IgG antibodies against CYP2E1 have developed in both alcohol fed rats and patients 
with advanced ALD[63]. The role of B cells in ALD requires further research.

DIAGNOSIS
Diagnosis of ALD is challenging as many patients present as asymptomatic. An ALD 
diagnosis is commonly made on a combination of clinical laboratory abnormalities, 
imaging and a history of alcohol abuse. Laboratory blood tests are used to identify 
abnormal aspartate aminotransferase (AST), alanine aminotransferase (ALT) level, 
gamma-glutamyl transpeptidase (GGT), mean corpuscular volume (MCV), carbohy-
drate-deficient transferrin (CDT) levels, albumin, prothrombin time (PT) (international 
normalized ratio), bilirubin and platelet counts. These blood tests are useful to suggest 
alcohol misuse but are inadequate at predicting alcohol use on their own or the disease 
severity[64]. Historically GGT was used alone as a marker for ALD, although elevated 
GGT alone has low sensitivity and specificity for alcohol abuse and may be limited by 
a high rate for false positives[64]. An AST/ALT ration above 2 is regarded as an 
indicator of ALD, although it is used less frequently to predict chronic alcohol abuse 
due to low sensitivity[64]. CDT is used as a biomarker for chronic ethanol intake (> 60 
g ethanol/d) and has a higher specificity (sensitivity 46%-73%, specificity 70%) than 
conventional markers such as GGT and MCV. However, no individual biomarker 
alone provides suitable sensitivity and specificity for ALD diagnosis, therefore, a 
combination of these biomarkers, imaging and in some cases a biopsy can provide an 
improved diagnosis.

CLINICAL STAGING OF DISEASE SEVERITY
There are various algorithms used to assess the severity of liver disease as well as 
predicating survival and treatment options (Table 1). The first models developed were 
the CTP score and the model for end-stage liver disease (MELD) score. The CTP score 
identifies patients as class A, B or C determined by serum levels of bilirubin and 
albumin, prothrombin time, ascites, and encephalopathy[65]. These measures are 
scored 1-3, with 3 being the most severe. A CTP defined as Class A (5-6 points) in-
dicates a 100% 1-year survival and 85% 2-year survival. Class B (7-9 points) has an 80% 
1-year survival and 60% 2-year survival. Class C (10-15 points) has a 45% 1-year 
survival and a 35% 2-year survival[66]. The MELD score is determined by total 
bilirubin, creatinine, and international normalized ratio (INR) levels, and is a widely 
useful tool for evaluation of liver transplantation in patients[67]. MELD is calculated 
by the formula 9.57 × loge (creatinine) + 3.78 × loge (total bilirubin) + 11.2 × loge (INR) 
+ 6.43[66]. Although these scores are useful in predicting mortality, they are less useful 
in assessing prognosis and treatment options. Research by Sheth et al[68] has shown 
that 30-d mortality predictions from the MELD scoring were 86% sensitive and 82% 
specific for MELD scores greater than 11[68].
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Table 1 Models for clinical staging in alcoholic liver disease

Model Stratification Bilirubin Albumin Prothrombin 
Time Ascites Encephalopathy INR Creatinine

White 
blood 
cell 
count

Serum 
urea Age

Child-Pugh[65,
66]

Severe: ≥ 10 + + + + +

Model for End-
Stage Liver 
disease[66]

Severe: ≥ 21 + + +

Maddrey 
Discriminant 
Function score
[66]

Severe: ≥ 32 + +

The Glasgow 
Alcoholic 
Hepatitis Score
[66]

Poor prognosis: ≥ 
9

+ + + + +

Lille Model[66,
69]

≥ 0.45: 
Nonresponse. < 
0.45: Response

+ + + + +

INR: International normalized ratio.

The Maddrey Discriminant Function score (MDF) and The Glasgow AH Score 
(GAHS) were developed to determine disease severity and treatment options in AH 
patients. The MDF score assesses serum bilirubin and prothrombin time via the 
equation DF = {4.6 x [PT (sec) - control PT (sec)]} + (serum bilirubin) and classifies 
disease as either severe (MDF > 32) or non-severe (MDF < 32) and patients who fall in 
the severe category are most likely to benefit from steroid treatment[66]. The diag-
nostic sensitivity and specificity of the MDF scoring system was 86% and 48% when 
the DF was greater than 32[68]. The GAHS was developed to predict outcomes and to 
initiate therapy in AH patients. The GAHS includes age, white blood cell count, serum 
urea, bilirubin, and PT. Each variable is given a score and a final combined score 
between 5-12 is obtained. Patients with a GAHS above 9 have a poorer prognostic 
outcome. A study has shown patients with an MDF > 32 and a GAHS > 9 who were 
treated with steroids has a higher survival rate than those without treatment (59% 
compared to 38%)[67]. The Lille model is another prognostic model developed to 
identify response to corticosteroids in severe AH patients after 7 d of treatment[69]. 
Lille Model Score is defined as [exp(-R)]/[1 + exp(-R)]. Where r = 3.19 – 0.101*(age, 
years) + 0.147*(albumin day 0, g/L) + 0.0165* (evolution in bilirubin level, μmol/L) - 
0.206*(renal insufficiency) - 0.0065*(bilirubin day 0, μmol/L) - 0.0096*(PT, seconds)
[66]. It is useful for predicting short-term survival due to its high sensitivity and 
specificity and is able to identify patients at high risk of death at 6 mo[69].

THERAPEUTIC INTERVENTION
The consequences of excessive alcohol consumption causes significant morbidity and 
mortality with 704300 projected deaths due to alcohol-related liver disease in the 
United States between 2019-2040[9]. However, with a lack of new therapeutic options, 
abstinence is still regarded as the most important treatment, as well as treatments such 
as nutritional therapy, pharmacological therapy, combination therapy and transplan-
tation (Table 2).

Abstinence
Abstinence is the most important treatment for patients with ALD[70]. Abstinence 
from alcohol improves overall survival and prognosis as well as preventing further 
disease progression[71]. A reduction in portal pressure, decreased progression to 
cirrhosis and an improvement in survival has been shown after a period of abstinence
[70,72]. However, relapse rates are as high as 67%-81% in alcoholics[73]. Several drugs 
such as disulfiram, naltrexone and acamprosate have been trialed to sustain abstinence 
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Table 2 Current available treatments for alcoholic liver disease

Intervention Objective Treatment method Treatment effects

Abstinence Stop drinking Abstinence combined with disulfiram, 
naltrexone or acamprosate

Improve overall survival at all stages[70]. Acamprosate has been shown 
to be effective in reducing withdrawal symptoms[77]

Nutritional 
Therapy

Replenish 
nutrition

1.5 g protein and 35 to 49 kcal per kg of 
body weight. Supplementation with 
vitamins

Nutritional support showed improved hepatic encephalopathy and 
reduced infections in AH patients[80]

Corticosteroid Anti-
inflammatory

40 mg daily for 28 d, then 20 mg daily for 7 
d, and 10 mg daily for 7 d

Short-term histological improvement has been documented, however, 
no improvement in long term survival[83]

Pentoxifylline Anti-cytokine 400 mg orally three times a day for 4 wk Reduction in the levels of cytokines and lower mortality rate[86]

Infliximab Anti-cytokine Not confirmed. 5 mg/kg studied Further studies required. Treatment has shown to predispose patients 
to higher rate of infections as well as higher likelihood of mortality[93]

Liver 
transplantation

Surgery Healthy ‘donor’ liver transplanted. 6 mo 
abstinence required

Transplantation has been shown to improve in quality of life[95,96]

N-acetylcysteine Antioxidant Not confirmed In animal models NAC has been shown to prevent relapse and improve 
injury[111]. Further research is required

SAM Antioxidant Not confirmed SAM therapy has improved survival and delayed the need for 
transplants however other studies have not found evidence to support 
or refute its use[102,103]

Silymarin Herbal Eurosil 85® 420 mg a day Treatment with Silymarin reduced mortality and improved 4-yr overall 
survival in cirrhotic patients as well as improving liver function[119]

Betaine Nutrient Not confirmed Animal models have shown betaine supplementation can attenuate 
alcoholic fatty liver[106-108,120,121]

AH: Alcoholic hepatitis; NAC: N-acetylcysteine; SAM: S-adenosyl methionine.

and treat alcohol addiction. However, disulfiram has little evidence at improving 
abstinence[74]. Naltrexone, an opioid antagonist aimed to control alcohol cravings 
lowers the risk of relapse, although, it also has been shown to cause hepatocellular 
injury[71,75]. Acamprosate is used to minimize withdrawal symptoms when abstai-
ning from alcohol[76]. It has been shown to reduce withdrawal in 15 controlled trials
[77].

Nutritional therapy
Malnutrition is often correlated with disease severity in ALD patients[78]. Alcoholics 
suffer from deficiencies in several vitamins and minerals, including vitamin A, vitamin 
D, thiamine, folate, pyridoxine, and zinc[78]. Supplementation with zinc has shown to 
improve and prevent liver disease, as well as block mechanisms of liver injury 
including ‘leaky gut’, oxidative stress and apoptosis in animal models[79]. The 
recommended amount for ALD patients is 1.5 g of protein/kg body weight[2]. Supple-
mentation with micronutrients may be necessary if an individual develops deficien-
cies. Nutritional support in AH has been reported to improve hepatic encephalopathy 
and reduce infections[80]. A reverse in both energy and protein deficits has been 
shown reduce morbidity and mortality in patients with acute AH and cirrhosis[81].

Steroid and anti-cytokine therapy
Steroids serve as the primary treatment for severe AH[82]. Treatment with glucocor-
ticoids have decreased proinflammatory cytokines as well as inhibiting neutrophil 
activation[83]. Glucocorticoid therapy in AH patients showed short-term histological 
improvement and 28-d survival, however, long-term survival (beyond 1 year) was not 
improved[83].

Pentoxifylline, a phosphodiesterase inhibitor, is an anti-TNF-α agent. Pentoxifylline 
has been trialed in 101 patients with severe AH[84,85]. In-hospital mortality was 40% 
lower in those patients who were treated with pentoxifylline as well as reducing the 
likelihood of hepatorenal syndrome (HRS). 50% of deaths in the pentoxifylline 
treatment group were due to HRS, compared to 92% in the placebo group. Pentoxi-
fylline also exhibited a higher 6-mo survival and a reduced incidence of HRS in 
patients with severe AH[86].

The Steroids or Pentoxifylline for AH trial (double-blind, randomized control trial) 
has evaluated the effects of both treatment with prednisolone and/or pentoxifylline
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[87-89]. 1103 patients underwent randomization with 1053 suitable for primary end 
point analysis. The primary endpoint was mortality at 28 d[89]. Results showed 
primary end point mortality at 28 d was 17% in the placebo–placebo group, 14% in the 
prednisolone–placebo group, 19% in the pentoxifylline–placebo group, and 13% in the 
prednisolone–pentoxifylline group, showing that pentoxifylline did not improve 
patients overall survival[89]. Although not significant, the steroid group showed a 
trend toward reduced 28-d mortality[89]. However, in those patients who received 
steroid treatment the rate of serious infection was nearly doubled[89,90].

Another anti-cytokine therapy used in the treatment of ALD is infliximab, a mo-
noclonal chimeric anti-TNF antibody. In a primary randomized study using infli-
ximab, 20 AH patients were given either 5 mg/kg of infliximab as well as 40 mg/d of 
prednisone or prednisone alone[91]. The results indicated there was no change in 
overall mortality, however, combination therapy decreased cytokine levels[84]. In 
France, a clinical trial studied prednisolone (40 mg/d for 4 wk) treatment compared to 
prednisolone with infliximab (10 mg/kg, at study entry, 2 wk and 4 wk after entry) in 
36 patients[92]. Unfortunately the trial was stopped early due to mortality and in-
fection[84], and therefore, this study has received criticism for the dose of infliximab in 
the trial as this predisposed patients to infections[93]. These trials suggest that anti-
cytokine treatment in ALD is associated with an increase likelihood of severe in-
fections and mortality. Canakinumab, a licensed monoclonal antibody inhibitor of IL-1 
is currently being studied to treat ALD, as IL-1 has the ability to mediate disease 
progression in ALD[58].

Liver transplantation
Liver transplantation is a common treatment for end stage chronic liver disease; 
however, it remains controversial due to the increasing demand for donor organs as 
well as concerns of relapse from abstinence. Prior to surgery patients must abstain 
from alcohol for a fixed period of 6 mo[94]. Studies have shown patients who receive 
transplants have a better quality of life[95,96], however, less than 20% of patients 
whom have an end-stage liver disease receive surgery[97].

Antioxidants
Oxidative stress is a major contributor to the pathogenesis of chronic liver disease; 
therefore, antioxidant therapy has been considered to be beneficial in the treatment of 
ALD. Antioxidant agents able to mediate ROS include vitamins E and C, N-acetyl-
cysteine (NAC) as well as S-adenosyl methionine (SAM), and betaine.

SAM operates to synthesize glutathione, the primary cellular antioxidant[98,99]. 
Patients with AH and cirrhosis have decreased hepatic SAM levels[100]. In animal 
models, SAM supplementation can reverse liver injury and mitochondrial damage 
caused by alcohol[101]. However, no significant difference between SAM supple-
mentation and placebo groups has been reported[102,103]. Betaine, a nutrient involved 
in the formation of glutathione, is effective in protecting against damage from chronic 
alcohol consumption[104,105]. Supplementation with dietary betaine in animal studies 
has shown to ameliorate effects of oxidative stress[106-109]. In rats, NAC was able to 
reduce ethanol seeking behavior by 77%[110] as well as inhibiting ethanol intake by up 
to 70%[111]. In 174 patients with severe AH, combination therapy with NAC and 
prednisolone, compared to prednisolone only increased 1-mo survival in patients with 
AH, although 6-mo survival did not improve[112]. There are several trials underway 
investigating treatment options for ALD. A current clinical trial is assessing the effects 
of SAM and choline treatment for 24 wk against a placebo (trial number NCT 
03938662). Choline can help the liver undergo glucose metabolism as well as repairing 
the cell membrane[113]. As damaged livers cannot produce SAM sufficiently, adminis-
tration of choline and SAM may be a beneficial treatment in patients with ALD.

Fecal bacteria transplants
Chronic alcohol consumption leads to bacterial overgrowth promoting gut dysbiosis 
which correlates to disease severity. In cirrhosis patients Bacteroidetes and Firmicutes 
phyla were found to be decreased[114], however, Proteobacteria, Fusobacteria and 
Actinobacteria phyla were increased[114]. Cirrhosis is also characterized by reduced 
beneficial autochthonous bacteria such as Lachnospiraceae, Ruminococcaceae, and 
Clostridiales XIV as well increased pathogenic bacteria such as Enterococcaeae, Staphylo-
coccaceae and Enterobacteriaceae[115]. The significance of bacteria in liver disease has 
been demonstrated when ethanol-fed, germ-free mice developed severe inflammation 
and necrosis when supplemented with gut microbiota from AH patients[116]. Fur-
thermore, subsequent transfer of gut microbiota from patients without ALD, led to less 
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inflammation and liver injury[117] implicating the importance of healthy bacteria. 
More recently administration of probiotics containing beneficial bacteria such as 
Lactobacillus and Bifidobacterium to patients with ALD has improved liver damage and 
function, including reduction of ALT, AST and bilirubin[118]. Modulation of the gut 
microbiota with Profermin®, a disease specific food for special medical purposes, has 
been hypothesized to reduce disease progression (trial number NCT03863730). These 
studies provide strong evidence that fecal bacteria transplants/probiotic adminis-
tration may prove an effective mode for the treatment of ALD.

CONCLUSION
Previous research has uncovered many elements in the pathogenesis of ALD, how-
ever, the precise triggers and biochemical alterations are yet to be fully understood. 
Oxidative stress can impair proliferation and alter the immune system leading to 
bacterial overgrowth and an increased risk of infection. Poor treatments options are 
available for patients with ALD which have not transformed for several years. Treat-
ment options rely on abstinence, steroids, nutritional therapy and lastly liver trans-
plantation. Current new therapies are aimed at reducing pro-inflammatory signals as 
well as treating the gut-liver axis. This highlights a need for new therapeutic in-
tervention and advancements in the understanding of the mechanisms involved in 
disease pathogenesis.
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