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Abstract
The terahertz band lies between the microwave and in-
frared regions of the electromagnetic spectrum. This ra-
diation has very low photon energy and thus it does not 
pose any ionization hazard for biological tissues. It is 
strongly attenuated by water and very sensitive to water 
content. Unique absorption spectra due to intermolecu-
lar vibrations in this region have been found in different 
biological materials. These unique features make tera-

hertz imaging very attractive for medical applications in 
order to provide complimentary information to existing 
imaging techniques. There has been an increasing inter-
est in terahertz imaging and spectroscopy of biologically 
related applications within the last few years and more 
and more terahertz spectra are being reported. This 
paper introduces terahertz technology and provides a 
short review of recent advances in terahertz imaging 
and spectroscopy techniques, and a number of applica-
tions such as molecular spectroscopy, tissue character-
ization and skin imaging are discussed.

© 2011 Baishideng. All rights reserved.

Key words: Biomedical; Imaging; Spectroscopy; Tera-
hertz
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Sun Y, Sy MY, Wang YXJ, Ahuja AT, Zhang YT, Pickwell-
MacPherson E. A promising diagnostic method: Terahertz pulsed 
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Available from: URL: http://www.wjgnet.com/1949-8470/full/
v3/i3/55.htm  DOI: http://dx.doi.org/10.4329/wjr.v3.i3.55

INTRODUCTION
Terahertz (THz, 1 THz = 1012 Hz) radiation, also known 
as THz waves, THz light, or T-rays, is situated in the fre-
quency regime between optical and electronic techniques. 
This regime is typically defined as 0.1-10 THz and has 
become a new area for research in physics, chemistry, bi-
ology, materials science and medicine. Experiments with 
THz radiation date back to measurements of  black body 
radiation using a bolometer in the 1890s[1,2]. However, 
for a long time, this region remained unexplored due to a 
lack of  good sources and detectors, and it was commonly 
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referred to as the “THz gap”. In 1975, David Auston at 
AT&T Bell Laboratories developed a photoconductive 
emitter gated with an optical pulse that led towards bridg-
ing this gap - the ‘Auston switch’ emitted broadband THz 
radiation up to 1 mW. A coherent method to detect THz 
pulses in the time domain was also proposed[3]. This be-
came the foundation of  THz time-domain spectroscopy 
(THz-TDS)[4], since then many improvements in the gen-
eration and detection of  coherent THz radiation enabled 
THz-TDS and imaging techniques to be pioneered for 
applications in various fields such as biomedical engineer-
ing, physics, astronomy, security screening, communica-
tions, genetic engineering, pharmaceutical quality control 
and medical imaging[5]. In this paper, THz technology is 
introduced and some emerging applications in biology 
and medicine including molecular spectroscopy, tissue 
characterization and skin imaging are presented.

The aim of  this article is to review the potential of  
THz pulsed imaging and spectroscopy as a promising 
diagnostic method. Several unique features make THz 
very suitable for medical applications. (1) THz radiation 
has very low photon energy, which is insufficient to cause 
chemical damage to molecules, or knock particles out 
of  atoms. Thus, it will not cause harmful ionization in 
biological tissues; this makes it very attractive for medical 
applications; (2) THz radiation is very sensitive to polar 
substances, such as water and hydration state. For this 
reason, THz waves can provide a better contrast for soft 
tissues than X-rays; (3) THz-TDS techniques use coher-
ent detection to record the THz wave’s temporal electric 
fields, which means both the amplitude and phase of  the 
THz wave can be obtained simultaneously. The temporal 
waveforms can be further Fourier transformed to give the 
spectra. This allows precise measurements of  the refrac-
tive index and absorption coefficient of  samples without 
resorting to the Kramers-Kronig relations; and (4) The 
energy of  rotational and vibrational transitions of  mole-
cules lies in the THz region and intermolecular vibrations 
such as hydrogen bonds exhibit different spectral charac-
teristics in the THz range. These unique spectral features 
can be used to distinguish between different materials or 
even isomers.

PRINCIPLES OF THZ PULSED IMAGING 
AND SPECTROSCOPY
THz systems
Over the past two decades, technology for generating and 
detecting THz radiation has advanced considerably. Sever-
al commercialized systems are now available[6-10] and THz 
systems have been set up by many groups all over the 
world. According to the laser source used, THz systems 
can be divided into two general classes: continuous wave 
(CW) and pulsed.

A typical CW system can produce a single fixed fre-
quency or several discrete frequency outputs. Some of  
them can be tunable. Generation of  CW THz radiation 
can be achieved by approaches such as photomixing[11], 

free-electron lasers[12] and quantum cascade lasers[13]. 
Figure 1 illustrates a CW THz system which photomixes 
two CW lasers in a photoconductor as an example[14]. The 
mixing of  two above-bandgap (visible or near-infrared) 
wavelengths produces beating, which can modulate the 
conductance of  a photoconductive switch at the THz 
difference frequency. The photomixing device is labeled 
“emitter” in Figure 1. Since the source spectrum of  the 
CW system is narrow and sometimes only the intensity 
information is of  interest, the data structures and post-
processing are relatively simple. It is possible now to 
drive a whole CW system by laser diodes and thus it can 
be made compact and inexpensive. However, due to the 
limited information that CW systems provide, they are 
sometimes confined to those applications where only fea-
tures at some specific frequencies are of  interest. 

In pulsed systems, broadband emission up to several 
THz can be achieved. Currently, there are a number of  
ways to generate and detect pulsed THz radiation, such 
as ultrafast switching of  photoconductive antennas[3], rec-
tification of  optical pulses in crystals[15], rapid screening 
of  the surface field via photoexcitation of  dense electron 
hole plasma in semiconductors[16] and carrier tunneling in 
coupled double quantum well structures[17]. Among them, 
the most established approaches based on photoconduc-
tive antennas, where an expensive femtosecond laser is 
required and configured as shown in Figure 2. Unlike CW 
THz imaging system, coherent detection in pulsed THz 
imaging techniques can record THz waves in the time do-
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Figure 1  Schematic illustration of a continuous wave THz imaging system 
in transmission geometry.
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Figure 2  Schematic illustration of a pulsed THz imaging system with re-
flection geometry.



main, including both the intensity and phase information, 
which can be further used to obtain more details of  the 
target such as spectral and depth information[18]. This key 
advantage lends coherent THz imaging to a wider range 
of  applications. 

Molecular interactions in the THz regime
There has been an increased interest in understanding the 
interactions between molecules and THz radiation. Many 
of  the intricate interactions on a molecular level rely on 
changes in biomolecular conformation of  the basic units 
of  proteins such as α helices and β sheets. In recent years, 
dynamic signatures of  the THz frequency vibrations in 
RNA and DNA strands have been characterized[19,20]. 
Furthermore, studies of  water molecule interactions with 
proteins have attracted significant research interest[21]. In 
a protein-water network, the protein’s structure and dy-
namics are affected by the surrounding water which is 
called biological water, or hydration water. As illustrated 
in Figure 3, hydrogen bonds, which are weak attractive 
forces, form between the hydrated water molecules and 
the side chains of  protein. These affect the dynamic relax-
ation properties of  protein and enable distinction between 
the hydration water layer and bulk water. The remarkable 
effects of  the hydrogen bonds associated with the inter-
molecular information are able to be detected using THz 
spectroscopy. THz spectra contain information about in-
termolecular modes as well as intra-molecular bonds and 
thus usually carry more structural information than vibra-
tions in the mid-infrared spectral region which tend to be 
dominated by intra-molecular vibrations.

Unique advantages and challenges for biomedical 
applications
The energy level of  1 THz is only about 4.14 meV (which 
is much less than the energy of  X-rays 0.12 to 120 keV), 
it therefore does not pose an ionization hazard as in X-ray 

radiation. Research into safe levels of  exposure has also 
been carried out through studies on keratinocytes[22] and 
blood leukocytes[23,24], neither of  which has revealed any 
detectable alterations. This non-ionizing nature is a cru-
cial property that lends THz techniques to medical ap-
plications. 

The fundamental period of  THz-frequency electro-
magnetic radiation is around 1ps, and so it is uniquely 
suited to investigate biological systems with mechanisms 
at picosecond timescales. The energy levels of  THz light 
are very low, therefore damage to cells or tissue should 
be limited to generalized thermal effects, i.e. strong reso-
nant absorption seems unlikely. From a spectroscopy 
standpoint, biologically important collective modes of  
proteins vibrate at THz frequencies, in addition, frustrated 
rotations and collective modes cause polar liquids (such 
as water) to absorb at THz frequencies. Many organic 
substances have characteristic absorption spectra in this 
frequency range[25,26] enabling research into THz spectros-
copy for biomedical applications. 

THz wavelengths have a diffraction limited spot size 
consistent with the resolution of  a 1990’s vintage laser 
printer (1.22λ0 = 170 μm at 2.160 THz or 150 dots/in). 
At 1 THz, the resolution could be as good as a decent 
computer monitor (70 dots/in). Submillimeter-wavelength 
means that THz signals pass through tissue with only Mie 
or Tyndall scattering (proportional to f2) rather than much 
stronger Rayleigh scattering (proportional to f4) that domi-
nates in the IR and optical since cell size is less than the 
wavelength.

Since most tissues are immersed in, dominated by, or 
preserved in polar liquids, the exceptionally high absorp-
tion losses at THz frequencies make penetration through 
biological materials of  any substantial thickness infeasible. 
However, the same high absorption coefficient that limits 
penetration in tissue also promotes extreme contrast be-
tween substances with lesser or higher degrees of  water 
content which can help to show distinctive contrast in 
medical imaging. 

IMAGING VS SPECTROSCOPY
THz pulsed imaging
Early applications of  THz technology were confined 
mostly to space science[27] and molecular spectroscopy[28,29], 
but interest in biomedical applications has been increasing 
since the first introduction of  THz pulsed imaging (TPI) 
in 1995 by Hu and Nuss[30]. Their THz images of  porcine 
tissue demonstrated a contrast between muscle and fats. 
This initial study promoted later research on the application 
of  THz imaging to other biological samples. THz pulsed 
imaging actually can be viewed as an extension of  the THz-
TDS method. In addition to providing valuable spectral 
information, 2D images can be obtained with THz-TDS by 
spatial scanning of  either the THz beam or the object itself. 
In this way, geometrical images of  the sample can be pro-
duced to reveal its inner structures[31]. Thus, it is possible to 
obtain three-dimensional views of  a layered structure.
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Figure 3  Schematic representation of H-bond interactions between water 
and biomolecules.
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When a THz pulse is incident on such a target, a train 
of  pulses will be reflected back from the various inter-
faces. For each individual pulse in the detected signal, the 
amplitude and timing are different and can be measured 
precisely. The principle of  time of  flight technique is to 
estimate the depth information of  the internal dielectric 
profiles of  the target through the time that is required to 
travel over a certain distance. This permits looking into 
the inside of  optically opaque material and it has been 
used for THz 3D imaging. Among the earliest demon-
strations of  THz 3D imaging, Mittleman et al[31] imaged 
a conventional floppy disk. In their work the various 
parts inside the disk were identified and the discontinu-
ous refractive index profile was derived. This method was 
further extended into THz reflection computed tomog-
raphy[32,33], where the target was rotated to provide back 
reflection from different angles. In a similar way to X-ray 
CT imaging, the filtered back projection algorithm was 
applied to reconstruct the edge map of  the target’s cross-
section. With advances in interactive publishing, Wallace 
et al[34] highlighted the ability of  3-D THz imaging in a 
number of  niche applications. For example they were 
able to resolve two layers of  drugs beneath the protective 
coating of  a pharmaceutical tablet.

THz spectroscopy
THz spectroscopy is typically done with a single point 

measurement (with transmission geometry in most cases) 
of  a homogenous sample and the resulting THz electric 
field can be recorded as a function of  time. Thus, it can 
be Fourier transformed to offer meaningful spectroscopic 
information due to the broadband nature of  pulsed THz 
radiation, shown in Figure 4. Although the spectral resolu-
tion is not as good as that with narrowband techniques, 
coherent detection of  THz-TDS can provide both high 
sensitivity and time-resolved phase information[35]. This 
spectroscopic technique is primarily used to probe mate-
rial properties and it is helpful to see where it lies in the 
electromagnetic spectrum in relation to atomic and mo-
lecular transitions.

THz spectroscopy is complementary to THz imaging 
and is primarily used to determine optical properties in 
the frequency domain. Since THz pulses are created and 
detected using short pulsed visible lasers with pulse widths 
varying from approximately 200 fs down to approximately 
10 fs, it is now possible to make time resolved far-infrared 
studies with sub-picosecond temporal resolution[36]. This 
was not achievable with conventional far-infrared studies. 
An important aspect of  THz time-domain spectroscopy 
is that both the phase and amplitude of  the spectral com-
ponents of  the pulse are determined. The amplitude and 
phase are directly related to the absorption coefficient and 
refractive index of  a sample and thus the complex permit-
tivity is obtained without requiring Kramers-Kronig analy-
sis. Furthermore, another advantage of  THz spectroscopy 
is that it is able to non-destructively detect differences 
because it uses radiation of  sufficiently long wavelength 
and low energy that does not induce any phase changes or 
photochemical reactions to living organisms. 

BIOLOGICAL APPLICATIONS
Pharmaceuticals
There has been a strong drive in the pharmaceutical in-
dustry for comprehensive quality assurance monitoring. 
This motivates development of  new tools providing use-
ful analysis of  tablet formulations. The ability of  THz 
technology to determine both spectral and structural 
information has fuelled interest in the pharmaceutical 
applications of  this technique[37]. For example THz spec-
troscopy has been employed for polymorph identification 
and quantification[38], phase transition monitoring[39], and 
distinguishing between behaviors of  hydrated forms[40]. 
THz radiation can penetrate through plastic packag-
ing materials. To illustrate this we give an example using 
Maalox PlusTM - an over the counter medicine for stom-
ach upsets. Each tablet has “Rorer” engraved on one side 
and “Maalox Plus” on the other side. Figure 5A contains 
a photo of  a tablet in its packaging as well as a THz image 
taken after removing it from the packaging - the engraved 
lettering is clearly seen in the THz image. Figure 5C is a 
THz image of  the tablet taken through the packaging - we 
can still see the lettering on the surface of  the tablet. The 
cross-section of  the tablet is better conveyed by an image 
of  the depth profile. THz pulses are reflected first off  the 
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front surface of  the package and then from any subsurface 
structure within it resulting in multiple pulses returning to 
the detector. The dashed arrows in Figure 5B mark out 
the THz light paths at the edge of  the tablet (path A) and 
the center (path B). In path A the beveled edge means that 
there is an air gap between the packaging and the tablet 
and this corresponds to a greater optical delay between the 
reflected peaks in the waveforms illustrated in Figure 5D. 
Thus, THz imaging has non-destructively revealed the 
structure of  the tablet through the packaging.

Protein spectroscopy
Towards the higher frequency end of  the THz range (from 
about 1 THz and above) there are vibrational modes cor-
responding to protein tertiary structural motion; such 
intermolecular interactions are present in many biomol-
ecules. Other molecular properties that can be probed in 
the THz range include bulk dielectric relaxation modes[41] 
and phonon modes[42] these can be difficult to probe us-
ing other techniques. For instance nuclear magnetic reso-
nance (NMR) spectroscopy can determine the presence 
of  various carbon bonds, but it cannot be used to distin-
guish between molecules with the same molecular formu-
la, but with different structural forms (isomers)[10]. THz 
spectroscopy is able to distinguish between isomers and 
polymorphs[43] and is therefore emerging as an important 
and highly sensitive tool to determine biomolecular struc-
ture and dynamics[44,45]. Indeed THz spectroscopy can 

distinguish between two types of  artificial RNA strands 
when measured in dehydrated form[46]. Furthermore, 
Fischer et al[47] demonstrated that even when the molecu-
lar structure differs only in the orientation of  a single hy-
droxyl group with respect to the ring plane, a pronounced 
difference in the THz spectra is observed. Intermolecular 
interactions are present in all biomolecules, and since bio-
molecules are the fundamental components of  biological 
samples, they can be used to provide a natural source of  
image contrast in biomedical THz imaging[48].

Biomolecules, especially proteins, which play an es-
sential structural and catalytic role in cells and tissues, often 
require an aqueous phase in order to be transported to their 
target sites. In the protein-water system, the characteristic 
water structure induced near the surfaces of  proteins arises 
not only through hydrogen bonding of  the water molecules 
to available proton donor and proton acceptor sites, but 
also through electrostatic forces associated with the water 
molecule that arise from its large electric dipole moment. 
If  an electric field is applied to such a system of  protein-
associated water, there will be a torque exerted on each wa-
ter dipole moment inducing them to attempt to align along 
the direction of  the field vector. The dielectric spectrum 
has been widely used to describe the interaction between 
protein and its solvent molecule in THz frequency[49]. A 
dielectric orientational relaxation time τ can then be defined 
as the time required for 1/e of  the field-oriented water 
molecules to become randomly reoriented on removing 
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Figure 5  Terahertz imaging of the tablet. A: Photograph of the tablet in the plastic package and THz C-Scan section imaging without the packaging; B: THz B-Scan 
image shows the structure of the cross-section of the tablet and the THz light paths at the edge of the tablet (path a) and the centre (path b); C: THz C-Scan image 
shows the tablet face inside the plastic package; D: THz deconvolved waveforms in the time-domain reflected from the paths a and b in Figure 5B.
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the applied field. Measurements may be analyzed in terms 
of  the complex dielectric constant ε(ω) (where ω denotes 
angular frequency) or the complex refractive index n(ω). 
The degree of  orientational polarization and the rate of  
reorientational relaxation depend on how the water dipoles 
are influenced by local electrostatic forces and the extent 
to which the breaking and/or reforming of  local hydrogen 
bonds is required to accommodate the changes in orienta-
tion. Relaxations of  polar side-groups, vibrations of  the 
polypeptide backbone, and fluctuating proton transfer 
between ionized side-groups of  the protein also contribute 
to the overall polarizability of  the protein-water system. 
If  dielectric measurements are made on protein solutions, 
then orientational relaxations of  the protein molecule itself  
will also be observed[50]. Figure 6 shows that the vibration 
mode of  two types of  labeled antibodies (peroxidase con-
jugated IgG and the fluorescein conjugated IgG) can be 
distinguished at 0.76 and 1.18 THz using the THz dielectric 
spectrum. By investigating the concentration dependence 
of  the spectra it is also possible to obtain an estimate of  the 
hydration shell thickness around the protein molecules[51].

MEDICAL APPLICATIONS
Tissue characterization
There is also interest in tissue contrast for in vivo and ex vivo  

identification of  abnormalities, hydration, and subder-
mal probing. Only a small number of  measurements 
have been made to date, and systematic investigations to 
catalogue absorption coefficients, refractive indices and 
contrast mechanisms are just beginning to accumulate. 
Measurements on the absorption and refractive index of  
biological materials in the THz region go back at least to 
1976[52]. Several research groups have investigated excised 
and fixed tissue samples, either alcohol perfused[8], forma-
lin fixed[53-57], or freeze dried and wax mounted[58] looking 
for inherent contrast to define unique modalities. One of  
the first applications on human ex vivo wet tissue involved 
imaging of  excised basal cell carcinoma[59,60]. In vivo work 
has focused on the skin[61] and accessible external surfaces 
of  the body for measuring hydration[62] and tumor infiltra-
tion[60]. A catalogue of  unfixed tissue properties (including 
blood constituents) was compiled by the University of  
Leeds, UK[54] for frequencies between 500-1500 GHz us-
ing a pulsed time-domain system. Difficulties in extrapo-
lating measurements on excised tissue to in vivo results 
are numerous and include for example uptake of  saline 
from the sample storage environment, changes in hydra-
tion level during measurement, temperature-dependent 
loss, measurement chamber interactions, and scattering 
effects. In our previous work[63], we performed reflec-
tion geometry spectroscopy to investigate the properties 
of  several types of  healthy organ tissues, including liver, 
kidney, heart muscle, leg muscle, pancreas and abdominal 
fat tissues using THz pulsed imaging. The frequency de-
pendent refractive index and the absorption coefficient of  
the tissues are shown in Figure 7. All the results are the 
mean values of  the ten samples and error bars represent 
the 95% confidence intervals. We found clear differences 
between the tissue properties, particularly the absorption 
coefficient. Since fatty tissue largely consists of  hydrocar-
bon chains and relatively few polar molecules, the absorp-
tion coefficient and refractive index of  the fatty tissue are 
much lower that those of  the kidney and liver tissues.

We have also investigated the optical properties of  
fresh and formalin fixed samples in the THz frequency 
range using THz reflection spectroscopy[64]. As seen in 
Figure 8A, when the fixing time increased the waveform 
amplitude of  the adipose tissue also increased. This was 
primarily because the refractive index of  the adipose tis-
sue was decreasing over the majority of  the bandwidth 
(due to the fixing) and this meant there was a greater 
difference between the refractive index of  the quartz (n 
approximately 2.1) and that of  the adipose tissue (e.g. 1.5 
at 1 THz when fixed compared to 1.6 when it was fresh). 
From Fresnel theory, this increased difference in refractive 
indices resulted in a greater reflected amplitude. As the 
fixing time increased for the muscle, three main changes 
were apparent. A small peak started to appear preceding 
the trough and the width and magnitude of  the trough 
decreased (Figure 8B). These changes can also be ex-
plained by considering the effects of  the formalin on the 
refractive index and absorption coefficient of  the muscle. 
For the muscle, the formalin significantly reduced both 
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the refractive index and the absorption coefficient. Before 
fixing, the refractive index of  the fresh muscle was greater 
than that of  quartz over the whole of  the frequency range 
measured (Figure 8C). The fixing reduced the refractive 
index so much that the refractive index became lower than 
that of  quartz at higher frequencies (Figure 8D) and this 
was the cause for the small peak which appeared (arrow in 
Figure 8B) and increased as the fixing time was increased. 

Skin cancer, breast tumors and dental caries 
Due to the low penetration depth of  THz in biological 
tissues, THz biomedical applications investigated to date 

have been limited to easily accessible parts of  the body, 
such as skin and teeth, or those that would benefit from 
intra-operative imaging such as breast cancer. Figure 9 is a 
photograph of  the reflection geometry THz probe from 
TeraView Ltd. which we use in Hong Kong. 

One potential application of  THz imaging is the diag-
nosis of  skin cancer. Work by Woodward et al[60] has dem-
onstrated the potential to use THz imaging to determine 
regions of  skin cancer non-invasively using a reflection 
geometry imaging system. The first ex vivo measurements 
on skin cancer revealing the ability of  TPI to differentiate 
basal cell carcinoma (BCC) from normal skin were pro-
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duced by Woodward et al[59].
Breast-conserving surgery is also an area of  medicine 

which may benefit from THz imaging. Fitzgerald et al[65] 
conducted ex vivo studies of  breast cancer to investigate the 
potential of  THz imaging to aid the removal of  breast can-
cer intra-operatively. In particular, they studied the feasibil-
ity of  THz pulsed imaging to map the tumor margins on 
freshly excised human breast tissue. Good correlation was 
found for the area and shape of  tumor in the THz images 
compared with that of  histology. They also performed a 
spectroscopy study comparing the THz optical properties 
(absorption coefficient and refractive index) of  the excised 
normal breast tissue and breast tumor. Both the absorption 
coefficient and refractive index were higher for tissue that 
contained tumor and this is a very positive indication that 
THz imaging could be used to detect margins of  tumor 
and provide complementary information to techniques 
such as infrared and optical imaging, thermography, electri-
cal impedance, and magnetic resonance imaging[66,67].

Since in vivo THz imaging is currently limited to sur-

face features, another potential application of  THz imag-
ing is the diagnosis of  dental caries[68,69]. Figure 10 is a 
schematic diagram of  a THz reflection from the outer 
layer of  enamel. Caries are a result of  mineral loss from 
enamel, and this causes a change in refractive index within 
the enamel. The change in refractive index means that 
small lesions, smaller than those detected by the naked 
eye, can be detected[70]. However, in practice THz imag-
ing systems are large and cumbersome - even structures 
as obvious as teeth can make a challenging target. In this 
respect THz imaging is still some way off  offering a non-
ionizing alternative to X-rays in dentistry. 

Burn depth diagnosis
Since THz waves can penetrate several hundreds of  mi-
crons into the skin and most burn injuries are superficial, 
this opens up the possibility of  employing THz tech-
niques for burn assessment[71]. The waveforms and optical 
parameters of  the burn wounds were investigated and 
THz images have shown contrast between burn-damaged 
tissue and healthy tissue. Their results indicate that THz 
imaging may be promising in evaluating skin burn sever-
ity, especially for characterizing burn areas. Moreover, the 
time of  flight technique is able to reveal the depth profile 
thus could be used to evaluate burn depth. 

The potential of  THz imaging as a burn diagnostic 
has been demonstrated using chicken breast[6]. It is also 
conceivable that THz imaging could be of  use in moni-
toring treatment of  skin conditions (like psoriasis), since 
THz imaging is cheaper than MRI and does not require a 
coupling gel like ultrasound[72]. 

THz light can penetrate many materials: we have in-
vestigated whether it can resolve skin layers beneath a 
Tegaderm® plaster as this would also be of  benefit in 
monitoring burn wounds. Normal skin comprises three 
different layers: the stratum corneum, epidermis, and 
dermis. The stratum corneum on the palm of  the hand 
is 100-200 μm thick and thus has been resolved in previ-
ous in vivo skin studies. We placed the plaster on the palm 
of  the hand and the resulting THz reflected waveform 

Figure 9  Photograph of the THz hand-held probe.

0.025

0.015

0.005

-0.005

-0.015

-0.025

-0.035

In
te

ns
ity

 (
v)

14     16     18     20     22     24
           Optical delay (ps)

From palm and plaster

From palm only

Figure 11  Measured pulses from the palm. The blue line is the measurement 
of the palm through a tegaderm plaster and the red dotted line is the measure-
ment of the palm alone. In both cases, two troughs are seen - they are the 
reflections from the top and bottom surfaces of the stratum corneum.

PulpGum

Dentin

Enamel

Detected pulse

Incident
THz pulse

1

1

2

2

Figure 10  Schematic representation of the THz reflections from enamel. 
Reflection 1 is the reflection from the surface of the enamel and reflection 2 is 
the reflection from within the enamel due to tooth decay causing mineral loss.

Sun Y et al . Terahertz pulsed imaging and spectroscopy



63 March 28, 2011|Volume 3|Issue 3|WJR|www.wjgnet.com

is shown in Figure 11. For comparison the measurement 
of  the palm alone is also plotted. In the figure, there are 2 
troughs, which correspond to the top and bottom surface 
of  the stratum corneum. The optical delay between them 
can be used to calculate the thickness of  this layer. These 
results show that THz light is able to penetrate through 
wound dressings with only slight attenuation to reveal 
the skin depth information. This therefore indicates that 
THz imaging is likely to be able to detect and measure 
changes to the stratum corneum and epidermis which 
could for example, be caused by burns. To illustrate how 
sensitive THz imaging is to the stratum corneum, we have 
also imaged the side of  a healthy hand. As the position 
of  the measurement changes, as indicated by the arrow in  
Figure 12A, the optical delay between the reflections from 
the top and bottom of  the stratum corneum increases. This 
is because the stratum corneum is thicker at the tip of  the 
arrow than at the arrow foot. By plotting the reflected am-
plitude intensity against position we obtain the depth pro-
file image of  the palm in Figure 12B. By using frequency 
and wavelet domain deconvolution we are able to resolve 
thinner layers of  skin than if  basic deconvolution is used[73].

COMPARISON WITH OTHER 
TECHNOLOGIES
Numerous groups have investigated direct transmission 
or reflection THz imaging as a means of  distinguish-
ing tissue types[30,55,74] and recognizing diseases including 
tumors penetrating below the surface layers of  skin or 
into organs[56,58,75]. Although progress is being made, the 
competition from other more developed imaging modali-
ties is fierce. Optical coherence tomography, ultrasound, 
near-IR, and Raman spectroscopy, MRI, positron emis-
sion tomography, in situ confocal microscopy, and X-ray 
techniques have all received much more attention and 
currently offer enhanced resolution, greater penetration, 
higher acquisition speeds, and specifically targeted con-
trast mechanisms. This does not preclude THz imaging 
from finding a niche in this barrage of  already favorable 
modalities. There is still no technique that can readily dis-
tinguish benign from malignant lesions macroscopically 
at the surface or subdermally. The sensitivity of  THz sig-
nals to skin moisture, which is often a key indictor, is very 
high, and competing techniques such as high-resolution 
MRI are less convenient and more costly. 

The resolution of  ordinary THz imaging is diffraction 
limited, however, its high sensitivity to water content and 
great surface imaging capability provide motivation for fur-
ther development and sub-wavelength resolution has been 
achieved in near-field studies[76]. Indeed shallow subsurface 
images can be very revealing and the first few hundred 
micrometers are hard to image with other modalities. The 
high sensitivity of  THz radiation to fluid composition and 
the variable conductivity in tissue[77] is likely to lead to sta-
tistically significant differences between nominally identical 
samples taken at different locations in the body at different 
times or from different subjects. This may ultimately prove 
advantageous; however, in the short term, it will tend to 
mask sought for differences that are indicative of  diseases.

CONCLUSION
THz imaging is still in its early stage of  development, but 
as this paper has shown, has great potential to be a valu-
able imaging technique in the future. In the past decade, 
THz imaging applications in biomedical fields have drawn 
extensive interest and advancements in imaging methods 
and theoretical analysis continue to enable further applica-
tions to be investigated. 
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Abstract
New highly conformal irradiation modalities have emerged 
for treatment of Hodgkin lymphoma. Helical Tomotherapy 
offers both intensity-modulated irradiation and accurate 
patient positioning and was shown to significantly de-
crease radiation doses to the critical organs. Here we re-
view some of the most promising applications of helical 
tomotherapy in Hodgkin disease. By decreasing doses to 
the heart or the breast, helical tomotherapy might de-
crease the risk of long-term cardiac toxicity or second-
ary breast cancers, which are major concerns in patients 
receiving chest radiotherapy. Other strategies, such as 
debulking radiotherapy prior to stem cell transplantation 
or total lymphoid irradiation may be clinically relevant. 
However, helical tomotherapy may also increase the vol-
ume of tissues that receive lower doses, which has been 
implicated in the carcinogenesis process. Prospective 
assessments of these new irradiation modalities of heli-
cal tomotherapy are required to confirm the potential 
benefits of highly conformal therapies applied to hema-
tological malignancies.
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INTRODUCTION
Radiation therapy still plays a major role in the manage-
ment of  hematological malignancies. Its place and modali-
ties for treatment of  lymphoma have evolved over recent 
decades. First, randomized studies supported reduction 
of  field size and dose radiation in treatment programs for 
Hodgkin disease[1]. These developments were encouraged 
by reports that mediastinal radiotherapy was associated 
with cardiac toxicity and second malignancies, particularly 
when chemotherapy agents were used concomitantly or 
sequentially. Second, sophisticated imaging technologies 
and new radiation delivery techniques have become avail-
able[2]. With the recent advances in irradiation devices, new 
intensity modulated irradiation modalities have emerged. 
Those offer both increased target dose conformality and 
improved normal tissue avoidance. Helical tomotherapy 
combines inversely planned intensity modulated radio-
therapy (IMRT) with on-board megavoltage imaging 
devices[3]. In this way, it has become possible to tailor very 
sharp dose distributions around the target volumes, close 
to critical organs[4]. It has emerged as one of  the most 
promising techniques for IMRT delivery.

Here we summarize some of  the most promising ap-
plications of  helical tomotherapy in patients with hema-
tological malignancies.

CLINICAL APPLICATIONS
For lymphoma irradiation, it is now the standard of  care 
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to use involved-field radiotherapy rather than the extend-
ed radiation fields of  the past[5]. In this setting of  volume 
reduction, implementation of  new strategies aimed at 
further improving target coverage is promising. Helical 
tomotherapy combines inversely planned IMRT with 
on-board megavoltage imaging devices[3]. In this way, it 
has become possible to tailor very sharp dose distribu-
tions around the target volumes, close to critical organs. 
Improving dose conformality around the volumes has 
become an important end-point for radiation oncologists. 
Dosimetric results from planning studies of  helical to-
motherapy have demonstrated its ability in better sparing 
critical organs from irradiation, in comparison with more 
conventional irradiation modalities. Helical tomotherapy 
was shown to provide similar target coverage, and to 
improve both dose conformality and dose homogene-
ity within the target volume. This modern irradiation 
device allows accurate repositioning and critical organs 
visualization. Tomita et al[6] compared radiation treatment 
plans that used IMRT with helical tomotherapy or three-
dimensional conformal radiation therapy for nasal natu-
ral killer/T-cell lymphoma. Authors found that IMRT 
achieved significantly better coverage of  the planning 
target volume (PTV), with more than 99% of  the PTV 
receiving 90% of  the prescribed dose, whereas 3D-CRT 
could not provide adequate coverage of  the PTV, with 
only 90.0% receiving 90% (P < 0.0001). These results 
and others demonstrated that helical tomotherapy could 
significantly improve target coverage when the PTV was 
close to critical organs.

Prospective data with long-term follow-up evidenced 
that heart dose exposure may cause cardiac disease and 
adversely affect quality of  life, particularly in young pa-
tients with mediastinal radiotherapy for Hodgkin lym-
phoma. Hudson et al[7] assessed the impact of  treatment 
toxicity on long-term survival in pediatric Hodgkin’s 
disease, and reported an excess mortality from cardiac dis-
ease in survivors of  pediatric Hodgkin’s disease (22, 95% 
CI: 8-48), compared with age- and sex-matched control 
populations. Cardiac irradiation contributes to this excess 
of  risk[8]. Recent data reported that helical tomotherapy 
could decrease radiation dose exposure for breasts, lung, 
heart and thyroid gland in patients treated for advanced 
Hodgkin’s disease[9].

Since radiation-induced cardiovascular pathology 
is a major concern in patients undergoing therapeutic 
chest irradiation, helical tomotherapy has been logically 
investigated for improving heart avoidance. The physio-
pathology and manifestations of  radiation-induced heart 
disease may considerably vary according to the dose, 
volume and technique of  irradiation, and every effort 
should be made to avoid irradiating cardiac structures[10]. 
In this way, it will be possible to substantially decrease 
the risk of  death from ischemic heart disease associated 
with radiation, which is particularly significant in patients 
receiving other cardiotoxic agents, such as anthracyclines. 
Actually, helical tomotherapy also allows treatments 
that would be difficult for conventional radiotherapy 

machines to deliver, such as treating mediastinal lymph 
nodes[11]. Figure 1 shows the distribution dose during ra-
diotherapy of  a patient who was diagnosed with multiple 
pleural and mediastinal locations from lymphoma. Dose-
volumes histograms evidence accurate sparing of  some 
organs at risk, with the possibility to treat multiple targets 
simultaneously.

Several other promising applications for helical tomo-
therapy have emerged. These strategies include treatment 
of  patients who are at high risk of  radiation-induced tox-
icity because of  individual susceptibility, such as patients 
with acquired immunodeficiency[12]. Helical tomotherapy 
could also be used for decreasing the doses to critical 
structures in patients treated with concurrent targeted 
agents, which might potentially increase the risk of  side 
effects[13]. Moreover, it permits re-irradiation of  relapsed 
disease, a setting that considerably increases the risk of  
consequent delayed toxicity. Introducing helical tomo-
therapy to the field of  lymphoma may also provide safer 
and more accurate radiotherapy to selected patients with 
bulky residual disease[1]. We previously reported the feasi-
bility of  helical tomotherapy to decrease the acute toxic-
ity of  debulking irradiation before allograft in patients 
with refractory lymphoma. In other malignancies, our 
retrospective data in patients with solitary plasmocytoma 
demonstrated that doses to critical organs, including the 
heart, lungs, or kidneys could be decreased[14]. This may 
be clinically relevant in heavily pretreated patients who 
are at risk for subsequent treatment-related cardiac toxic-
ity. High response rates were also reported and encour-
aged further prospective assessment, and most patients 
experienced a complete response prior to stem cell al-
lograft.

An increased risk of  secondary malignancies has been 
reported after radiotherapy for lymphoma. In particular, 
young patients have a high risk of  developing breast can-
cer in their life after mediastinal radiotherapy for a lym-
phoma[15]. The improved outcome among patients with 
Hodgkin’s lymphoma has been associated with increased 
incidence of  second malignancies. This risk becomes 
significantly elevated 5 to 10 years after irradiation for 
Hodgkin lymphoma[16,17] and the incidence of  breast can-
cer has been reported to increase by a factor of  4.3 (95% 
CI: 2.0-8.4) for patients treated with mantle irradiation[18]. 
Koh et al[19] quantified the reduction in radiation dose to 
normal tissues and modeled the reduction in second-
ary breast cancer risk, and suggested significant relative 
risk reduction for second cancers with involved field 
radiotherapy. While the dose response for radiation dose 
above 10 Gy remains uncertain, carcinogenesis after radi-
ation is exacerbated by the large dose gradient across the 
breast and treatment field position[20]. Although helical 
tomotherapy might significantly decrease high doses de-
livered to the breast, it increases the volume that receives 
lower doses, which has also been implicated in the carci-
nogenesis process. For that reason, intensity-modulated 
irradiation should not be delivered in children outside of  
a clinical trial.
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Finally, preliminary results suggested that helical to-
motherapy could be employed for total lymphoid irradia-
tion in the preparative regimens for allogeneic bone mar-
row and chronic graft-versus-host disease. When using 
conventional irradiation devices, extended source-to-skin 
patient setup and/or field matching are required, and all 
critical organs are within the beam coverage. Treatment 
planning with helical tomotherapy for total lymphoid 
irradiation in adults demonstrated that the dose to the 
spinal cord, kidneys, intestinal compartment, and lungs 
could be decreased[21,22].

ALTERNATIVE IRRADIATION 
MODALITIES
We have pointed out the potential of  helical tomotherapy 
in the light of  our institutional experience. Actually, heli-
cal tomotherapy is not the only solution to improve both 
dose conformality and dose homogeneity within the tar-
get volume, and its availability remains rather limited (low 
number of  helical tomotherapy devices). Other IMRT 
techniques could also be applied for delivering highly 
conformal irradiation. In 2005, Goodman et al[23] assessed 
the feasibility and potential advantages of  linear accelera-
tor based IMRT in the treatment of  lymphoma involving 
large mediastinal disease volumes or requiring reirradia-

tion. Compared to conventional parallel-opposed plans 
and conformal radiotherapy plans, IMRT could decrease 
the dose delivered to the lung by 12% and 14%, respec-
tively. The PTV coverage was also improved, compared 
with conventional RT[23]. Recent dosimetric data demon-
strated that the forward planned IMRT technique could 
be easily used for improving PTV conformity while spar-
ing normal tissue in Hodgkin’s lymphoma[24]. 

Volumetric modulated arc therapy (VMAT) has also 
demonstrated its ability in tailoring accurate dose distribu-
tions around the target volumes. Weber et al[25] compared 
VMAT to conventional fixed beam IMRT in ten patients 
with early Hodgkin disease. They found no difference in 
levels of  dose homogeneity. However, for involved node 
radiotherapy, doses to the PTV and OAR were higher 
and lower with VMAT when compared to IMRT, respec-
tively.

Finally, the dosimetric advantages of  proton therapy 
could also be used for reducing the risk of  late radiation-
induced toxicity related to low-to-moderate doses in 
critical organs. Chera et al[26] compared the dose distribu-
tion in Hodgkin’s lymphoma patients using conventional 
radiotherapy, IMRT, and 3D proton therapy in Hodgkin’s 
lymphoma patients with stage Ⅱ disease. Authors found 
that 3D proton therapy could reduce the dose to the 
breast, lung, and total body. However, the availability of  

68 March 28, 2011|Volume 3|Issue 3|WJR|www.wjgnet.com

Figure 1  This figure shows the dose distribution during radiotherapy for the first patient who was diagnosed with multiple pleural and mediastinal tumors 
and also the dose-volumes histograms showing the sparing of some organs at risk (for example heart in orange with 5 Gy received by 20% of heart vol-
ume, in red planning target volume (planning treatment volume with homogeneous dose distribution and adequate coverage). Since irradiation to the bilat-
eral hilum increases the risk of radiation pneumonitis, every effort was made to decrease the doses to the lung. Helical tomotherapy could be particularly useful in this 
setting. In this example, no more than 10% of the volume defined as the [lung - PTV] received 20 Gy.
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proton therapy is very low and only a few patients could 
benefit from this highly conformal irradiation modality.

CONCLUSION
There is growing dosimetric evidence that highly con-
formal irradiation modalities may improve critical organs 
sparing, with clinically relevant consequences. Prospective 
clinical evaluation of  helical tomotherapy modalities is 
required to confirm the potential benefits of  highly con-
formal therapies applied to hematological malignancies.
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Abstract
AIM: To investigate intra-operator variability of semi-
quantitative perfusion parameters using dynamic con-
trast-enhanced ultrasonography (DCE-US), following 
bolus injections of SonoVue®. 

METHODS: The in vitro  experiments were conducted 
using three in-house sets up based on pumping a fluid 
through a phantom placed in a water tank. In the in vivo  
experiments, B16F10 melanoma cells were xenografted 
to five nude mice. Both in vitro  and in vivo , images 
were acquired following bolus injections of the ultra-
sound contrast agent SonoVue® (Bracco, Milan, Italy) 
and using a Toshiba Aplio® ultrasound scanner connect-
ed to a 2.9-5.8 MHz linear transducer (PZT, PLT 604AT 

probe) (Toshiba, Japan) allowing harmonic imaging 
(“Vascular Recognition Imaging”) involving linear raw 
data. A mathematical model based on the dye-dilution 
theory was developed by the Gustave Roussy Institute, 
Villejuif, France and used to evaluate seven perfusion 
parameters from time-intensity curves. Intra-operator 
variability analyses were based on determining perfu-
sion parameter coefficients of variation (CV).

RESULTS: In vitro , different volumes of SonoVue® 
were tested with the three phantoms: intra-operator 
variability was found to range from 2.33% to 23.72%. 
In vivo , experiments were performed on tumor tissues 
and perfusion parameters exhibited values ranging 
from 1.48% to 29.97%. In addition, the area under the 
curve (AUC) and the area under the wash-out (AUWO) 
were two of the parameters of great interest since 
throughout in vitro  and in vivo  experiments their vari-
ability was lower than 15.79%. 

CONCLUSION: AUC and AUWO appear to be the most 
reliable parameters for assessing tumor perfusion using 
DCE-US as they exhibited the lowest CV values.

© 2011 Baishideng. All rights reserved.
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INTRODUCTION
Tumor angiogenesis is a process involving the prolifera-
tion of  new blood vessels which penetrate tumors sup-
plying them with nutrients and oxygen[1,2]. Nowadays, re-
search is focused on the development of  anti-angiogenic 
treatments whose aim is to destroy neoblood vessels 
which often occur initially without any morphological 
changes[3,4].

Until now, treatment evaluation has been based on 
Response Evaluation Criteria in Solid Tumors (RECIST)[5]. 

Even though RECIST criteria were recently revised, they 
still only concern morphological information[6]. It is com-
monly recognized that this criterion is no longer optimal 
for the early assessment of  anti-angiogenic treatments 
which primarily target microvascularization. Functional 
imaging is currently establishing itself  as the best modality 
for evaluating such therapies, by determining a series of  
semi-quantitative perfusion parameters related to tumor 
perfusion. These were defined as semi-quantitative as they 
only provided a relative evaluation of  the physiological 
parameters such as blood flow or blood volume based on 
the dye dilution theory.

Nowadays, dynamic contrast-enhanced ultrasonogra-
phy (DCE-US) is becoming increasingly widespread[7,8] as 
it allows functional imaging[9,10]. However, one of  its ma-
jor drawbacks is its intra-operator variability which could 
have a major impact on measurements, leading to errone-
ous interpretations. A small difference in perfusion could 
be interpreted as a functional change but might simply be 
due to operator variability. 

Until now, information on intra-operator variability has 
been lacking. Consequently, the purpose of  our study was 
to evaluate the intra-operator variability of  semi-quantita-
tive perfusion parameter measurements using DCE-US, 
both in vitro and in vivo, following bolus injections of  Son-
oVue® (Bracco, Milan, Italy).

MATERIALS AND METHODS
Contrast agents
DCE-US studies were performed using bolus injections 
of  SonoVue®, a second generation contrast agent, con-
sisting of  microbubbles of  sulphur hexafluoride (SF6) 
stabilized by a shell of  amphiphilic phospholipids[11,12]. 
The SF6 gas does not interact with any other molecules 
found in the body as it is a very inert gas. The size of  the 
microbubbles, ranging from 1 to 10 μm[12], allows them 
to circulate through the whole blood volume. In addition, 
SonoVue® is a purely intravascular contrast agent which 
makes it ideal for the evaluation of  perfusion[12]. Insonat-
ed at low acoustic power, SonoVue®, whose nonlinear 
harmonic response is high[13], provides continuous real-

time ultrasonographic (US) imaging without destroying 
the microbubbles[14].

Before any US exam, the contrast agent was reconsti-
tuted by introducing 5 mL of  0.9% sodium chloride into 
the vial, containing a pyrogen-free lyophilized product, 
followed by manual shaking for at least 20 s. One experi-
ment involved several injections of  SonoVue®. As the 
microbubbles tended to accumulate at the upper surface 
because of  buoyancy, the preparation was systematically 
manually checked before each injection in order to recov-
er the required homogeneous solution. Each experiment 
lasted less than 2 h on account of  the stability of  Son-
oVue® over time which is 6 h after its reconstitution[11].

Time-intensity method
The time intensity method is essentially based on the dye 
dilution theory: after the injection of  the indicators, con-
trast agent concentration is monitored as a function of  
time, generating a time intensity curve (TIC) from which 
a series of  semi-quantitative perfusion parameters is ex-
tracted and analyzed[15,16]. To be valid, a series of  assump-
tions must be verified[17]: (1) Flow has to be constant so 
that the amount of  microbubbles injected has no effect 
on the flux; (2) Blood and contrast agent must be ad-
equately mixed to obtain a homogeneous concentration; 
(3) Recirculation should not interfere with the first pass; 
and (4) The mixing of  the contrast agent must exhibit 
linearity and a stable condition[18]. Linearity refers to the 
linear relationship between bubble concentration and sig-
nal intensity and was previously confirmed for low doses 
by Greis[12] as well as by Lampaskis et al[19] in the context 
of  bolus injection.

In our study, conditions were assumed to be satisfied. 
The semi-quantitative perfusion parameters that we ana-
lyzed were therefore directly extracted from the TIC.

In vitro studies
US protocol: SonoVue® bolus injections were performed 
through a 1-mL syringe (Terumo®, Belgium) and a 
“26Gx1/2” needle (Terumo®, Belgium). The injection 
site was marked so that the same site was used for all the 
in vitro studies. It was positioned at a distance of  30 cm 
from the input of  the phantom.

According to the Guidelines for Evaluating and Ex-
pressing the Uncertainty of  NIST (National Institute of  
Standards and Technology) Measurements Results, intra-
operator variability studies must be performed under the 
following conditions: (1) The same measurement proce-
dure; (2) The same observer; (3) The same measuring in-
strument, used under the same conditions; (4) The same 
location; and (5) Repetition over a short period of  time.

Thus, all the experimental conditions as well as the 
operators injecting the SonoVue® and manipulating the 
ultrasound scanner were the same for all acquisitions.

To minimize errors which might have been due to 
possible SonoVue® residues in the injection materials, a 
new syringe and a new needle were used for each injec-
tion. In addition, the circuit was entirely emptied, rinsed 
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and reset with degassed water between each acquisition. 
Thus, no contrast agent residues were present in the cir-
cuit so that the initial conditions were exactly the same 
for all the experiments.

The three phantoms consisted of  a closed-circuit flow 
model as no contact with ambient air was possible. Con-
sequently, as the water was degassed and the circuit was 
closed, no significant amount of  gas was trapped in the 
set-up (Figure 1).

Images were acquired using a Toshiba Aplio® ultra-
sound scanner (Toshiba, Japan) version 6, release 5, con-
nected to a 2.9-5.8 MHz linear transducer (PZT, PLT 
604AT probe). Harmonic imaging was performed using 
the “Vascular Recognition Imaging” (VRI) mode com-
bining: (1) Fundamental B mode imaging, which allows 
simultaneous but independent grey scale visualization of  
morphological structures; (2) Doppler imaging, which 
provides vascular information; and (3) Harmonic imag-
ing, based on the pulse inversion mode, which consists 
of  summing echoes resulting from two waves which are 
inverted copies of  each other. As microbubbles exhibit 
non-linear responses, the resulting sum of  the echoes will 
be different from 0 implying a non-null signal[20].

Acquisitions lasting 50 s were obtained at a low me-
chanical index (MI = 0.1) and at a rate of  5 frames per sec-
ond (fps).

Single straight pipe phantom: The first assembly consist-
ed of  a single straight silicone pipe phantom, immersed 
in a custom-made water tank which was connected to a 
peristaltic pump (SP vario/PD 5101, Heidolph®, Germa-
ny) providing a defined water flow rate of  42.4 mL/min. 
This phantom was used to mimic blood flow. Tubing was 
made of  a 1 mm thick silicone pipe with a 2 mm internal 
diameter. A custom-made probe holder was used to keep 
the probe still throughout the experiments.

A region of  interest (ROI) was set in the upper part 

of  the pipe (Figure 2A). Each injection involved a new 
ROI and its associated TIC (Figure 2B). Three volumes 
of  SonoVue® were tested. The first experiment involved 
five 0.02 mL bolus injections of  contrast agent for a 
total amount of  water set at 50 mL in the closed-circuit. 
This ratio respected that granted by marketing approval 
(“Autorisation de Mise sur le Marché”: AMM) (2.4 mL of  
SonoVue® for 5 L of  blood). The second experiment was 
performed by injecting five times a 0.05 mL bolus of  So-
noVue®. This volume involved a ratio routinely used for 
clinical exams (4.8 mL of  SonoVue® for 5 L of  blood) 
and particularly in four studies performed at the Gustave 
Roussy Institute (IGR), involving 117 patients and 823 
DCE-US exams[21,22] as well as a national project support-
ed by the “Institut National du Cancer” (French National 
Cancer Institute)[23]. The last experiment involved five 
0.08 mL bolus injections of  SonoVue®. As the phantom 
became more complex, we focused on the IGR ratio pre-
viously validated in IGR studies.

Three intertwined pipe phantom: A second phantom 
consisted of  three intertwined silicone pipes immersed in 
a custom-made water tank. Two of  the three tubes were 

72 March 28, 2011|Volume 3|Issue 3|WJR|www.wjgnet.com

Figure 1  Schematic diagram of the closed-circuit. No contact with ambient 
air was possible. In addition, as water was degassed, no significant amount of 
gas was trapped in the circuit. Based on the same set-up, three phantoms were 
used throughout the in vitro experiments: (a) a single straight pipe phantom; (b) 
a three intertwined pipe phantom; (c) a dialyzer. The Gustave Roussy Institute 
(IGR) ratio was tested throughout the in vitro experiments as it corresponded 
to the ratio (4.8 mL per patient) previously validated and routinely used at the 
IGR. 1: Peristaltic pump; 2: Syringe; 3: PZT, PLT 604AT probe; 4: Phantom; 5: 
Custom-made water tank; 6: Reservoir; 7: Tubing (silicone pipe; internal diam-
eter: 2 mm; wall thickness: 1 mm).
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Figure 2  Single straight pipe phantom. A: Image extracted from an acquisi-
tion obtained after the bolus injection of SonoVue®. Harmonic imaging was 
done based on the Vascular Recognition Imaging mode. The region of interest 
was set in the upper part of the pipe. Each acquisition involved a new manually 
drawn region of interest. Once the region of interest was selected, the ultra-
sound scanner directly allowed access to the time intensity curve associated 
with the selected region of interest. The linear raw data to be modeled were 
converted through text files generated by the ultrasound scanner and extracted 
to obtain a graph using Excel®; B: The graph displays the Excel® curve to be fit-
ted and analyzed in order to obtain the perfusion parameters.

Gauthier M et al . Variability of perfusion parameters using DCE-US



in silicone with an internal diameter of  2 mm and a 1 mm 
thick wall as in the case of  the previous phantom. The 
third one, originating from a catheter (Surflo® winged in-
fusion set, Terumo®, Belgium), had a 1 mm internal diam-
eter and a 0.5 mm thick wall. The input and the output of  
the phantom were composed of  three-way taps (Discofix®, 
B. Braun, Melsungen, Germany) allowing linkage between 
the three pipes (Figure 3A). The phantom was connected 
to the same pump as previously described, providing a 
defined water flow rate set at 42.4 mL/min. Such an as-

sembly was designed to mimic a complex structure akin to 
that of  vessels in tumors. 

A new ROI containing both pipes and water spaces 
(Figure 3B), was drawn for each injection and the associ-
ated TIC was obtained (Figure 3C). The total amount 
of  water in the circuit was set at 60 mL. Two series of  
acquisitions were obtained involving, respectively, five 
0.03 mL (AMM ratio) and 0.06 mL (IGR ratio) bolus in-
jections of  contrast agent.

Dialyzer: The third assembly was composed of  a dialyzer 
(FX PAED, Fresenius Medical Care, France). The dialysis 
cartridge, consisting of  about 1550 capillaries with an 
internal diameter of  220 μm, was connected to the peri-
staltic pump providing a water flow rate of  42.4 mL/min 
and was immersed in water. To minimize attenuation due 
to the original plastic case of  the dialyzer, a rectangular 
part of  it was removed and replaced by a cellophane sheet 
to maintain the circuit closed[24]. The advantage of  such a 
phantom was that the capillaries of  the dialyzer were com-
parable in dimension to that of  one type of  vessel found 
in the microvascularization (arteriole diameter < 300 μm). 
In addition, as the size of  SonoVue® microbubbles ranged 
from 1 to 10 μm[12], they were about a thousand-fold the 
dimensions of  capillary pores (2.4 nm), thus ensuring the 
intravascular property of  the ultrasound contrast agent.

As shown in Figure 4A, attenuation occurs in the low-
er part of  the dialyzer: it is characterized by a strong de-
crease in amplitude and a loss of  the contrast signal. An 
ROI was drawn for each of  the repeated measurements 
and only contained the upper part of  the dialyzer so that 
the acquisition was not prone to attenuation phenom-
ena[25]. Based on the selected ROI, the associated time 
intensity curve was obtained for the analysis (Figure 4B). 
The total amount of  water was 100 mL and a volume of  
0.10 mL of  SonoVue® was tested five times (IGR ratio). 

In vivo studies
Animals and tumor model: Experiments were conduct-
ed with nude female mice aged from 6 to 8 wk with the 
approval of  the European Convention for the Protection 
of  Vertebrate Animals used for experimental and other 
scientific purposes (Strasbourg, 18.III.1986; text amended 
according to the provisions of  protocol ETS No. 170 as 
of  its entry into force on 2nd December 2005).

The selected tumor model was the B16F10 (CRL-6475, 
ATCC, American Type Culture Collection) melanoma cell 
line which is a murine skin cancer. The tumor cells were 
cultured in DMEM (Dulbecco minimum essential me-
dium) (Gibco Life Technologies, France) combined with 
10% fetal bovine serum, 1% penicillin/streptomycin and 
glutamate (Invitrogen Life Technologies, Inc., France) 
to avoid bacterial contamination of  the solution. While 
growing, cells were maintained in an incubator at 37℃. 
Tumors were xenografted onto the right flank of  five 
mice (Figure 5A) through a subcutaneous injection of  2 
× 106 melanoma cells in 0.2 mL of  Phosphate Buffered 
Saline (PBS). DCE-US exams were performed follow-
ing three 0.02 mL, 0.05 mL or 0.1 mL retro-orbital bolus 
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curve converted through text files. These were used to display the associated 
Excel® curve to be analyzed.
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injections of  SonoVue® according to the methodology 
used in our lab.

Settings: During the experiments, mice were placed on 
the left flank and maintained at a constant temperature 
through a warming pad (TEM, Bordeaux, France) con-
nected to a Gaymar T/Pump® (Gaymar Industries, Inc., 
USA). The temperature was regulated with the adjustable 
thermostat of  the pump and was set at 40°C (internal 
mouse temperature: 39℃). Each mouse was weighed and 
the tumor volume was determined before each DCE-
US exam. The ROI was set to exclusively include the 
tumor (Figure 5B-C). An ROI was drawn for each of  
the repeated measurements and once it was selected, the 
ultrasound scanner directly allowed access to the time in-
tensity curve associated with the selected ROI. The linear 
raw data to be modeled were converted through text files 
and extracted to obtain a graph using Excel® (Figure 5D).

A break of  at least 15 min was observed between each 
injection in addition to 3 min of  insonation at a high 
mechanical index (MI = 1.4), so that contrast agent could 
be eliminated. Mice were kept asleep no more than 2 h. 
This duration included the time required for the mice to 
obtain a stationary heart rate after the administration of  
anesthesia, acquisition time and the duration of  the break 

between each injection. Three injections per mouse were 
considered for the data analysis. Mice underwent either 
chemical or gaseous anesthesia.

Chemical anesthesia: The amount of  chemical anesthe-
sia was determined based upon mouse body weight. Once 
weighed, the required amount of  anesthesia was prepared 
and injected intraperitoneally using the 1-mL syringe and a 
“30Gx1/2” needle (Microlance™, Ireland). The solution 
consisted of  ketamine (10 mg/mL, Ketalar®, Parapharm, 
France) and xylazine (2%, Rompun®, Bayer, France). To 
ensure that the mice remained asleep throughout the 
experiment, 150 µL/g per mouse were systematically in-
jected.

Gaseous anesthesia: Mice were anaesthetized through 
a 2 L/min inhalation of  O2 combined with 2.5% of  iso-
flurane. It was possible to modify the flow rate during the 
experiment so that mice could be maintained asleep with-
out being endangered throughout the experiment.

US protocol: Preliminary fundamental B-mode imaging 
using a 14 MHz PLT 1204AT (Toshiba, Japan) probe 
was performed to determine the tumor volume prior to 
the SonoVue® injection (Figure 5B). The largest longi-
tudinal and transversal sections allowed us to determine 
the tumor volume by measuring the three perpendicular 
tumor diameters[26] according to the following formula: 
V = 1/2 × (depth × width × length).

Harmonic imaging was performed in the same way 
as for the in vitro experiments with a mechanical index set 
at 0.1 and a rate of  5 fps. Acquisitions lasting 3 min were 
recorded allowing visualization of  both the wash-in and 
wash-out parts of  the TICs.

Data analysis
As already described in the literature, linear raw data (un-
compressed linear data obtained before standard video-
visualization) have the advantage of  exhibiting a linear 
dynamic range which is the essential part of  the evalu-
ation of  semi-quantitative perfusion parameters from 
TICs[27]. Acquisitions involved recording harmonic imag-
es after the SonoVue® injection, using dedicated software, 
CHI-Q®, on the Toshiba Aplio® ultrasound scanner. In 
a manually outlined ROI, the mean US signal intensity 
induced by contrast uptake was obtained and expressed 
in arbitrary units. This was linearly linked to the number 
and size of  microbubbles in the ROI (Aplio® proce-
dure)[28,29]. Then, the corresponding TIC to be modeled 
was converted through text files generated by the ultra-
sound scanner and extracted to obtain a graph using Ex-
cel®. Seven semi-quantitative perfusion parameters were 
extracted from this curve: the peak intensity (PI) was the 
difference between Vmax [maximal intensity value: V(Tmax)] 
and V0 [Initial intensity value: V(T0)] and represented the 
highest intensity value attained by the TIC for the defined 
ROI. The time to peak intensity (TPI), corresponding 
to Time to Peak Intensity, was the time required for the 
contrast agent to arrive in the tumor and reach the PI. It 

74 March 28, 2011|Volume 3|Issue 3|WJR|www.wjgnet.com

5 fps
VRh5.8

9.2

MI 0.1

7.6
A

Attenuated part

1030

930

830

730

630

530

430

Po
w

er
 (

a.
u.

)

0              10             20             30             40
                                       t /s

Linear raw dataB

Figure 4  Dialyzer. A: Image extracted from an acquisition obtained after a 
bolus injection of SonoVue®. As in the case of the first two phantoms, harmonic 
imaging was based on the Vascular Recognition Imaging mode. The region of 
interest contained the upper part of the dialyzer to avoid attenuation phenom-
ena in the lower parts. This was manually drawn for each injection; B: To deter-
mine perfusion parameters from the time intensity curve obtained following the 
selection of the region of interest, this was converted through text files so that 
the analysis could be performed using the Solver program in Excel®.

Gauthier M et al . Variability of perfusion parameters using DCE-US



corresponded to the difference between the latency time 
(TL), defined as the time between the injection of  the 
product and the beginning of  contrast uptake, and Tmax. 
From a mathematical point of  view, TL corresponded to 
the time at the intersection between y=V0 and the tangent 
at Tmax/2. The AUC, AUWI and AUWO corresponded to 
the area under the curve, the area under the wash-in (from 
T0 to Tmax) and the area under the wash-out (from Tmax to 
Tend corresponding to the end of  the acquisition) of  the 
TIC. The area calculations were based on the trapezoidal 
rule: the region under the graph of  the fitted curve was 
approximated by trapezoids whose areas were calculated 
to provide approximations of  the areas under the curve, 
the wash-in or the wash-out. An additional operation of  
subtracting the offset on the y-axis was performed so that 
the total area under the curve was independent of  it. The 
limits of  integration were defined as follows: 

[ ]0 , endX T T∈

Where T0 is the initial time. The slope coefficient of  
the wash-in (WI) was literally defined as the slope of  the 
tangent of  the wash-in at half  maximum. Finally, the 
full-width at half  maximum (FWHM) was defined as the 
time interval during which the value of  the intensity was 
higher than Vmax/2. This parameter is commonly con-
sidered as a first approximation of  the mean transit time 
(MTT) (Figure 6)[8,26,30]. However, as the linear raw data 
provided by the ultrasound scanner were too noisy, ex-

traction was performed after TIC fitting. This was based 
on the mathematical model developed at the IGR (Pat-
ent: WO/2008/053268 entitled “Method and system for 
quantification of  tumoral vascularization”).
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where I(t) describes the variation in the intensity of  
contrast uptake as a function of  time; a0 is the intensity 
before the arrival of  the contrast agent; a1 is linked to 
the maximum value of  contrast uptake; a2 is linked to the 
rise time to the peak intensity; p is a coefficient related to 
the increase in intensity; q is a coefficient related to the 
decrease in intensity; A and B are arbitrary parameters.

The fitted curve was obtained by adjusting all the 
coefficients of  the equation (called the IGR equation) 
to obtain a sum of  the least-squares differences between 
the linear raw data and the modeled values as close to 0 
as possible. Equation parameters were derived through 
the mathematical model so that asymptotic values were 
properly defined. This fitting was performed using the 
Solver program in Excel®. Through this modeling step, it 
was possible to avoid recirculation so that the conditions 
required to apply the time intensity method were fulfilled. 
Indeed, the IGR equation was used to perfectly fit the 
wash-in part of  the curve while the wash-out part was 
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adjusted so that recirculation was not taken into account 
in the final fitted curve (Figure 7). This adjustment is of-
ten performed[31] to ensure that the conditions required 
for the time intensity method are adequately verified. 
Once the fitted curve was determined, the semi-quantita-
tive perfusion parameters were derived according to their 
previously described definitions.

Statistical analysis
Intra-operator variability was measured as the coefficient 
of  variation (CV) which is the ratio of  the SD of  a spe-
cific parameter to its mean. CV = SD/mean.

For each set of  experiments, the CV was evaluated 
and recorded for each of  the seven semi-quantitative 
perfusion parameters. An overall range of  variation was 
additionally provided in the “Results” part.

RESULTS
In vitro experiments
Three different phantoms were tested. Acquisitions were 
obtained after five injections of  SonoVue®.

1st phantom - Single straight pipe phantom results: 
Three volumes of  SonoVue® were tested: 0.02, 0.05 and 
0.08 mL. For each volume, five fitted TICs were obtained 
following the five contrast agent injections. Data analysis 
was performed according to the protocol detailed in the 
“Materials and Methods” part: semi-quantitative perfusion 
parameters were extracted directly from the fitted TICs and 
their associated CV values were evaluated. The 0.02, 0.05 
and 0.08 mL five injections respectively led to CV values 
ranging from 6.03% to 11.11%, from 5.23% to 13.24% and 
from 2.94% to 23.72%. Table 1 shows perfusion parameter 
CV values obtained following each set of  experiments. 

2nd phantom - Three intertwined pipe phantom results:  
The five fitted TICs resulting from the series of  0.03 and 
0.06 mL bolus injections of  SonoVue® were analyzed us-
ing the IGR model. Intra-operator variability values were 
found to respectively range from 2.33% to 9.65% and 
from 6.12% to 11.62%. CV values associated with each 
perfusion parameter are shown in Table 2.

For both these phantoms, maximum CV values were 
found in correspondence with the highest injected dose 
of  SonoVue®. This observation might impact on the lin-
ear assumption. However, as previously mentioned in the 
“Time Intensity Method” part, to transfer in vitro results 
into clinical context, the concentration of  interest is the 
IGR one which remains in the linear range. 

3rd phantom - Dialyzer results: Data analysis was per-
formed following five 0.10 mL bolus injections of  Son-
oVue®. This series of  experiments led to intra-operator 
variability values ranging from 8.11% to 19.11%. Table 3 
provides more detailed results associated with each evalu-
ated semi-quantitative perfusion parameter. 

In vivo experiments
Intra-operator variability studies were performed on five 
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Table 1  Single straight pipe phantom: intra-operator variabil-
ity of semi-quantitative perfusion parameters following five 
0.02/0.05/0.08 mL bolus injections of SonoVue®

PI TPI Slope of 
the WI

FWHM AUC AUWI AUWO

0.02 mL/
CV (%)

  6.03   9.78   9.57   6.43 9.40   9.97 11.11

0.05 mL/
CV (%)

  9.27 10.14   8.28 13.24 5.23 12.76   6.84

0.08 mL/
CV (%)

20.87 10.10 23.52 17.43 5.87 23.72   2.94

CV: Coefficient of variation; PI: Peak intensity; TPI: Time to peak intensity; 
FWHM: Full width at half maximum; AUC: Area under the curve; AUWI: 
Area under the wash-in; AUWO: Area under the wash-out.
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mice following three 0.02 mL, 0.05 mL or 0.1 mL bolus 
injections of  SonoVue®. Experiments were performed 
over 5 d. 

Chemical anesthesia: Four mice underwent chemical 
anesthesia. The body weight was found to be 23.5 g (min: 
22.6 g; max: 25 g) throughout the experiments. As experi-
ments lasted over 5 d and due to the rapid doubling time 
of  melanoma cells[32-34], tumor volume ranged from 93.8 
to 599.7 mm3 with a mean tumor value of  339.39 mm3. We 
calculated the semi-quantitative perfusion parameters di-
rectly from the TICs using the IGR mathematical model. 
CV values ranged from 1.48% to 29.97%. Table 4 shows 
variability values associated with each perfusion parameter 
for each mouse.

Gaseous anesthesia: One mouse underwent gaseous 
anesthesia. It weighed 24.6 g. The tumor volume was 
503.56 mm3. CV values were determined based on the 
fitted TICs and ranged from 1.90% to 24.96%. More de-
tailed results are provided in Table 4.

DISCUSSION
In this study, intra-operator variability was assessed through 
the determination of  the coefficients of  variation of  semi-
quantitative perfusion parameters using three distinct 
phantoms as well as in vivo. Throughout the experiments, 
CV values were consistently lower than 30% (Figure 8). 
The area under the curve and the area under the wash-out 
exhibited CV values below 15.79% both in vitro and in vivo.

Sources of variability
For each set of  experiments, conditions such as the probe, 
the phantom, the whole circuit and the settings of  the ul-
trasound scanner were maintained unchanged so that the 
assembly remained identical throughout the acquisitions.

The first source of  variation could come from the ultra-
sound contrast agent itself. Indeed, before each injection, So-
noVue® was reconstituted by manual agitation. Consequent-
ly, the solution may not have been identically homogeneous 
throughout the experiments. In addition, the precision of  
the syringe used to administer SonoVue® (within 0.01 mL)  
was low compared to the injected doses. Consequently, 
variations may have occurred even prior to any acquisition.

Table 2  Three intertwined pipe phantom: intra-operator vari-
ability of semi-quantitative perfusion parameters following 
five 0.03/0.06 mL bolus injections of SonoVue®

PI TPI Slope of 
the WI

FWHM AUC AUWI AUWO

0.03 mL/
CV (%)

3.16 7.69   9.65 5.56 2.33 8.55 5.32

0.06 mL/
CV (%)

7.85 8.60 11.62 7.53 6.73 9.52 6.12

CV: Coefficient of variation; PI: Peak intensity; TPI: Time to peak intensity; 
FWHM: Full width at half maximum; AUC: Area under the curve; AUWI: 
Area under the wash-in; AUWO: Area under the wash-out.

Table 3  Dialyzer: intra-operator variability of semi-quantita-
tive perfusion parameters following five 0.10 mL bolus injec-
tions of SonoVue®

PI TPI Slope of 
the WI

FWHM AUC AUWI AUWO

0.10 mL/
CV (%)

9.66 8.11 10.27 19.11 9.31 13.89 13.36

CV: Coefficient of variation; PI: Peak intensity; TPI: Time to peak intensity; 
FWHM: Full width at half maximum; AUC: Area under the curve; AUWI: 
Area under the wash-in; AUWO: Area under the wash-out.

Single pipe: 0.02 mL SonoVue®

Single pipe: 0.05 mL SonoVue®

Single pipe: 0.08 mL SonoVue®

Three pipes: 0.03 mL SonoVue®

Three pipes: 0.06 mL SonoVue®

Dialyser: 0.10 mL SonoVue®

Mouse 1: 0.10 mL SonoVue®

Mouse 2: 0.05 mL SonoVue®

Mouse 3: 0.02 mL SonoVue®

Mouse 4: 0.10 mL SonoVue®

Mouse 5: 0.10 mL SonoVue®
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Figure 8  This graph shows the variability of perfusion parameters involved in both the in vitro and in vivo experiments. Five injections were recorded for 
each of the three phantoms and three for each mouse. The results demonstrated less than 30% overall variability, whatever the perfusion parameter. CV: Coefficient 
of variation; PI: Peak intensity; TPI: Time to peak intensity; FWHM: Full width at half maximum; AUC: Area under the curve; AUWI: Area under the wash-in; AUWO: 
Area under the wash-out.
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The second source of  variation could come from the 
injection step. Manual injections were performed by the 
same operator and a mark was drawn on the injection 
site so that the same site was used throughout the experi-
ment. A new syringe was used for each injection. How-
ever, even if  the mark allowed us to maintain the same 
injection site, it did not provide information concerning 
the exact position of  the syringe within the pipe. In ad-
dition, even though the injection was administered by 
the same operator, variations could have occurred as it 
was performed manually (rate or angle of  the injection). 
Other errors may have affected the data analysis part. 
A region of  interest had to be selected to compute the 
TICs. It had to be the same for all TICs. However, as a 
new ROI was manually drawn for each injection, results 
may have been tarnished because of  mistakes. Additional 
sources of  variation can occur in vivo. Indeed, even if  
mice were maintained asleep, their physiological param-
eters were not entirely monitorable and variations may 
have occurred during the experiments.

The next step concerned TIC fitting. To ensure that 
no variations could come from the solver itself, a series 
of  ten fittings were performed on the same TIC. The pa-
rameters provided by the IGR mathematical model were 
exactly the same for all the curves which allowed us to 
conclude that only the first three steps mentioned above 
may have induced variations in the results.

Study limitations
First, in vitro, the fluid used was water at ambient tem-
perature which did not exhibit the same ultrasound 
properties as blood[35-37] (Table 5). In addition, none of  
the phantoms contained tissue-mimicking material[38,39]: 
the first two were composed of  silicone pipes leading to 
the same remark as with the fluid: the ultrasound proper-
ties of  the silicone are different from those of  vessels. 

The properties of  the third phantom were more similar 
to those of  the microvascularization due to its dimen-
sions. However, the parallelism with the capillaries did 
not reflect the complex and irregular structure of  tumor 
microvascularization. Consequently, the three increasingly 
complex phantoms we worked with were mainly used for 
intra-operator variability evaluations and their properties 
tend to mimic only some in vivo properties which might 
induce difficulties in transferring in vitro results to in vivo 
ones. Moreover, in vivo, variability measures were based 
on three injections. Having more injections to interpret 
might have provided us with a better statistical analysis: 
this last limitation was offset by the number of  mice 
we worked on. Another limitation might concern the 
stability of  the ultrasound contrast agent. Indeed, each 
experiment duration was less than 2 h on account of  
the stability of  SonoVue® over time which is 6 h after its 
reconstitution as described by Schneider[11]. However, re-
cent studies reported a significant incidence of  spontane-
ous gas diffusion phenomena on temporal evolution of  
contrast microbubble size[40-42]. In the following study, gas 
diffusion phenomena occurring for 2 h from initial for-
mation of  contrast agent was neglected: this assumption 
might impact the results. Finally, as previously mentioned, 
the precision of  the syringe was a source of  variability 
and the absence of  any measurements performed to ac-
curately evaluate microbubble concentration at the injec-
tion time might be a limitation.

Intra-operator variability studies using MRI, CT, PET and 
US
Several intra-operator variability studies using MRI, CT 
and PET have been described in the literature. These re-
ported an overall intra-observer variability ranging from 
3% to 30%[43-50]. The ranges of  the semi-quantitative 
perfusion parameters we evaluated were consistent with 
those reported in the literature. Evelhoch et al[45] analyzed 
CV for the initial area under the gadolinium diethylenetri-
aminepentaacetate uptake vs time curve (IAUC) in 19 pa-
tients examined with two scans. The CV was found to be 
18%. Wells et al[47] evaluated regional flow and the volume 
of  tissue distribution of  the contrast agent in tumor and 
normal tissue in 5 patients who underwent two PET-CT 
using inhaled C15O2 1 wk apart. They obtained CV values 
ranging from 9% to 14% (11% in the tumor) for the flow 
and from 3% to 13% (6% in the tumor) for the volume 

Table 4  In vivo  studies: intra-operator variability of semi-quantitative perfusion parameters following three 0.02/0.05/0.1 mL bolus 
injections of SonoVue®

Mouse PI TPI Slope of the WI FWHM AUC AUWI AUWO

0.02 mL/
0.05 mL/ 
0.1 mL/ 
CV (%)

Chemical anaesthesia 1 18.99 14.04 23.85 28.87 15.79 18.43 15.46
2 27.60   8.33 25.75 18.90   9.06 28.39   8.12
3 11.39   4.41   1.48 18.44 10.76 14.73 13.58
4 27.88   5.68 28.82 29.97 11.21 26.22 12.42

Gaseous anaesthesia 5   1.90 17.63 10.09 24.96 12.32 12.43 12.79

CV: Coefficient of variation; PI: Peak intensity; TPI: Time to peak intensity; FWHM: Full width at half maximum; AUC: Area under the curve; AUWI: Area 
under the wash-in; AUWO: Area under the wash-out.

Table 5  Acoustic properties of different media

Density 
(kg/m3)

Velocity 
(m/s)

Attenuation coefficient 
(dB/cm at 1 MHz)

Impedance 
(MRayl)

Blood 1057 1575 0.18 1.61
Water 1000 1480      0.00221 1.51 (50℃)

1Quadratic frequency dependence of this attenuation coefficient. Sources: 
Hedrick et al[36], Gupta et al[35], Goldstein et al[37].
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distribution. Myocardial perfusion values using CT imag-
ing were determined by Groves et al[49] using two different 
approaches: the maximum-slope method and the peak 
method. CV values ranging from 12.6% to 23.7% for 
intra-observer agreement were observed. No published 
studies on intra-operator variability using DCE-US were 
found in the literature. Our results are concordant with 
these previous findings since the overall intra-operator 
variability of  the semi-quantitative parameters observed 
both in vivo and in vitro ranged from 1.48% to 29.97%.

Anti-angiogenesis therapies and DCE-US imaging
Anti-angiogenic treatments inhibit the formation of  neob-
lood vessels in tumors obstructing their dissemination 
because of  the lack of  a blood supply. Such drugs exert 
activity primarily on the microvascularization: they may 
be effective even if  no obvious change in tumor shape 
is observed after their administration. In order for func-
tional imaging to be efficient in assessing such treatments, 
the variability of  any semi-quantitative perfusion param-
eters should be lower than any reduction in perfusion. 
Thomas et al[51] found a decrease of  40% in AUC values, 
using DCE-MRI, at day 28 in 43 patients suffering from 
advanced cancers (24 colorectal, 1 breast, 2 mesothelioma, 
6 neuroendocrine, 2 renal and 8 others) and who received 
single-agent PTK/ZK. Other studies demonstrated that 
reductions in perfusion following anti-angiogenesis treat-
ments, using MRI, CT, PET or US, range from 30% to 
greater than 90%[26,52-55]. For example, Lavisse et al[26] stud-
ied the evolution of  the peak intensity (PI), the TPI and 
the FWHM after the administration of  AVE8062. They 
found that 6 h after the injection, the PI value represented 
7% of  the initial PI, TPI was three-fold higher than the ini-
tial TPI and FHWM was twice the initial FWHM.

In the light of  these data, the CV values found in 
the current DCE-US study justified its use as an imaging 
method for assessing anti-angiogenic treatments.

In addition, in this study, the AUC and AUWO ex-
hibited both in vitro and in vivo CV values below 15.79%. 
This is a major result considering the previous findings 
reported by Lassau et al[22,56,57] in different types of  tumors 
such as GIST or RCC: among the seven semi-quantitative 
perfusion parameters evaluated, the two parameters which 
always correlated with the RECIST response and overall 
survival were the AUC and the AUWO. These two com-
plementary observations highlight the reliability of  such 
parameters in assessing anti-angiogenic treatments: AUC 
and AUWO are associated to a good correlation to RE-
CIST response as well as to low intra-operator variability 
values. The TPI may also be considered a parameter of  in-
terest as it exhibited CV values in a range noticeably simi-
lar to AUC and AUWO: it ranged from 4.41% to 17.63%. 

Dynamic T1-weighted MRI and CT are commonly 
used in assessing tumor angiogenesis as DCE-US suf-
fers from some limitations. One of  its major drawbacks 
is its operator dependence. In addition, CV values might 
depend on the organ as some can be more challenging 
to image such as the liver suffering from respiration ar-
tifacts. There is also a limited depth penetration making 
imaging of  deepest regions difficult[50,58]. Finally, some 

anti-angiogenic treatments mainly involve change in tu-
mor vasculature permeability without tumor flow. Con-
sequently, as ultrasound contrast agents are purely intra-
vascular, DCE-US can only provide tumor blood flow 
information: no information concerning tumor perme-
ability can be determined[50].

On the other hand, further studies involving intra-
operator variability might support DCE-US as the imag-
ing method of  choice for the early evaluation of  anti-
angiogenic drugs because it also has many additional 
specific advantages. Contrast agents used in DCE-MRI 
are extracellular ones and no linear relationship exists, 
whatever the dose between the measured signal and the 
concentration of  the MRI contrast agents[50]. DCE-US 
involves working with purely intravascular contrast agents. 
In addition, within a certain range, the measured intensity 
exhibits a linear relationship with microbubble concentra-
tion making it possible to assess perfusion parameters. In 
spite of  the advantage of  a linear relationship between 
the change in CT intensity and the concentration of  the 
contrast agent as well as a high spatial resolution, DCE-
CT has a low sensitivity and high concentrations of  con-
trast agent can be toxic[50]. PET and SPECT modalities 
are highly sensitive to very low tracer concentrations but 
exhibit a poor resolution[50] compared to that of  DCE-US. 
In addition DCE-US has advantages linked to ultrasound 
imaging: it is non-invasive, easy to use, not expensive, 
rapid and widely available.

Further studies
In this study, intra-operator variability measurements 
were based on semi-quantitative parameters, i.e. param-
eters extracted from the measured TIC within phantoms 
or tumors. Such parameters are often determined to 
estimate physiological parameters but do not take into ac-
count variations linked to physiological effects[31]. Blood 
flow and blood volume could be determined using meth-
ods that take into account patient hemodynamic condi-
tions as well as the way the contrast agent is injected[31] 
which are elements included in the arterial input function. 
Consequently, further studies including the arterial input 
function will have to be performed to determine its influ-
ence on the DCE-US technique.

This work performed using in vitro and in vivo models 
demonstrated that among the seven semi-quantitative 
perfusion parameters, two (the AUC and the AUWO) 
linked to the blood volume and blood flow[9,10] exhibited 
an intra-operator variability value below 15.79% and 
could be the most reliable for early evaluation of  anti-
angiogenic treatments.
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commonly recognized as a functional imaging technique able to evaluate such 
therapies as it is a sensitive and highly available modality allowing early predic-
tion of tumor response to treatments based on changes in vascularity before 
any morphological ones occur. 
Research frontiers
Microbubble contrast agents for DCE-US have developed during the past 10 years 
and are currently approved in Europe, Asia and Canada. Nowadays, ultrasound 
provides an ideal imaging modality for angiogenesis: it is widely available, not 
ionizing, low cost and provides real time imaging. However, until now, informa-
tion on intra-operator variability in perfusion parameter measurements performed 
using DCE-US is lacking. In this study, the authors evaluated such variability and 
highlighted values similar to previous findings using other imaging modalities.
Innovations and breakthroughs
DCE-US is supported by the French National Cancer Institute which is currently 
studying the technique in several pathologies to establish the optimal perfusion 
parameters and timing for quantitative anticancer efficacy assessments: cur-
rently 400 patients with 1096 DCE-US demonstrated that the area under the 
curve quantified at 1 mo could be a robust parameter to predict response at 
6 mo. The following study is the first one analyzing intra-operator variability in 
perfusion parameter measurements performed using DCE-US. Our study would 
suggest that DCE-US technique has comparable intra-operator variability than 
other functional imaging modalities that are currently used in routine. 
Applications
By evaluating intra-operator variability in perfusion parameter measurements 
performed using DCE-US, this study may confirm the interest of dynamic 
contrast enhanced-ultrasonography as functional imaging in anti-angiogenic 
therapy evaluations.
Terminology
DCE-US involves the use of microbubble contrast agents and specialized imag-
ing techniques to evaluate blood flow and tissue perfusion. Intra-operator vari-
ability studies aim to determine the variation in measurements performed by a 
single operator and instrument on the same item and under the same conditions.
Peer review
This is an interesting study and may draw the readers’ attention because the 
authors evaluated the feasibility and reproducibility of DCE-US through in vitro 
and in vivo. Moreover, I think that this study would guide the readers about the 
methods of basic research in the areas of radiology. Unfortunately, strength of 
reported findings is limited by some experimental constraints and manuscript 
presentation needs several improvements before publication.
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Abstract
We describe a case of worsening paraparesis induced 
by spinal cord compression at T6-T7 levels associated 
with compensatory extramedullary haematopoiesis from 
a compound heterozygote for haemoglobin E and for 
β-thalassemia. An emergency T3-T9 laminectomy was 
performed with excision of the masses and complete 
rehabilitation of the patient.

© 2011 Baishideng. All rights reserved.
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INTRODUCTION
Extramedullary haematopoiesis (EMH) is a physiologic re-
sponse to chronic anemia, observed in various hematologic 
disorders such as thalassemias[1], myelofibrosis and poly-
cythemia. Since the first description by Gatto et al[2], several 
cases of  EMH at different sites have been reported.

The EMH, as a tumor-like mass, is commonly seen 
in the liver, spleen and lymph nodes. Involvement of  the 
epidural space causing spinal cord compression has rarely 
been reported[3].

Because of  its rarity, there are no evidence-based guide-
lines for the treatment of  paraspinal pseudotumors caused 
by EMH. Management options include hypertransfusion, 
radiotherapy, surgery or a combination of  these modali-
ties. Recently, hydroxyurea or erythropoietin in combina-
tion with radiotherapy as treatment was described[4-6], but 
management still remains controversial.

Decompressive laminectomy, as in our case, has been 
used in patients with rapid neurological deterioration[7].

We hereby present a case of  EMH in a 21-year-old man 
with thalassemia presenting with paraplegia due to a spinal 
cord compression that was treated successfully with surgery.

CASE REPORT
A 21-year-old man with a not well defined history of  
transfusion-dependent microcytic anemia in his native 
country, Bangladesh, presented to the emergency depart-
ment with worsening paraparesis.
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Computed tomography (Figures 1-3) and magnetic res-
onance imaging (MRI, Figures 4-6) revealed bilateral para-
vertebral soft-tissue masses at T4-L1 levels and a mass with 
the same features was seen inside the vertebral canal induc-
ing spinal cord compression at T4-T9 levels. Furthermore, 
a marked medullary expansion of  the bony structures was 

present. Laboratory analyses showed a haemoglobin (Hb) 
level of  8.5 g/dL and mean corpuscular volume (MCV) of  
68 fL. Hb electrophoresis revealed HbE at 45%, HbF at 
30% and HbA2 at 20%.

Molecular analysis showed the patient was a com-
pound heterozygote for HbE (β-26 glutamine → lysine) 
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Figure 1  Pre-operative computed tomography scan of the chest without con-
trast media showing the large bilateral costal masses (white arrows) and an 
intracanalicular extradural mass (black arrow).

Figure 2  Pre-operative “bone window” computed tomography scan of the 
chest without contrast media shows large bilateral, well circumscribed 
lobulated soft tissue masses that cause widening of the ribs (short arrows) 
and periosteal reaction, without interruption of cortical bone (thin long 
arrow). Coexisting involvement of the sternum body (thick long arrow).

Figure 3  Pre-operative “bone window” computed tomography scan with-
out contrast media: the vertebral body is devoid of bony erosion and has a 
lacey appearance.

Figure 4  Preoperative axial magnetic resonance imaging, T2 weighted, 
shows paravertebral and intracanal masses, isointense with the spinal 
cord, widening the ribs (short arrows) and causing cord compression (long 
arrow).

Figure 5  Preoperative sagittal MRI, T2 weighted, shows masses extending 
from  T4 to T9 with cord compression (white arrows), embedded within the epi-
dural fat  and isointense with the spinal cord.

Figure 6  Preoperative sagittal magnetic resonance imaging, T1 weighted, 
without contrast media (A) (long arrows), and after Gadolinium administra-
tion (B) (short arrows) shows poor and homogeneous contrast enhance-
ment of the masses.
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and for β-thalassemia (β+IVS1-nt5). All these findings 
appeared to be associated with compensatory extramedul-
lary haematopoiesis. 

An emergency T3-T9 laminectomy was performed 
with a complete excision of  the masses. A morphological 
and immunohistochemical analysis was then carried out. 
The masses were composed of  a heterogeneous cellular 
population resembling physiological haematopoiesis in all 
its components. 

The patient received a rehabilitation cycle and five 
months after the surgery, with continuing red blood cell 
transfusions, remains free of  symptoms.

DISCUSSION
HbE (β26Glu → Lys) is the most common Hb variant in 
Southeast Asia and the second most prevalent worldwide.

HbE, when associated with β thalassemia (HbE/β-tha
lassemia) in a compound heterozygous state, results in a 
clinically severe condition. HbE activates a cryptic splice 
site that produces non-functional mRNAs. Hb IVS1-1 is 
a Mediterranean mutation that affects mRNA processing 
giving rise to β (o)-thalassemia. HbE/β thalassemia has a 
very variable clinical phenotype. HbE/β-thalassemia gen-
erally manifests with severe anemia where individuals ex-
hibit β-thalassemia major with regular blood transfusions 
or β-thalassemia intermedia with periodic blood transfu-
sions. Extramedullary haematopoiesis is a consequence of  
insufficient bone marrow function that is unable to meet 
circulatory demands. Thalassemia major or intermedia, 
congenital spherocytosis, congenital haemolytic anemia 
and sickle cell anemia account for most cases of  EMH. It 
is rarely seen in myelofibrosis and Gaucher’s disease.

Intrathoracic EMH is most often visualized on the 
chest roentgenogram or the chest computed tomography 
(CT) scan as single or multiple paravertebral mass lesions. 
While a paravertebral mass may represent EMH, other 
disorders of  the posterior mediastinum, such as neuro-
genic tumor, lymphoma, primary and metastatic malig-
nancy, paravertebral abscess, lateral meningocele, and 
extrapleural cyst, must be considered.

The characteristic features observed in the chest roent-
genogram and the chest CT scan were helpful in recogniz-

ing intrathoracic EMH. These included the following8]: (1) 
Widening of  the ribs by expansion of  the medullary cavity 
or by periosteal elevation, without bony erosion; (2) The 
presence of  a unilateral or bilateral well-circumscribed lob-
ulated, paravertebral mass lesion usually located caudal to 
the sixth thoracic vertebrae; and (3) The absence of  calcifi-
cation and the presence of  adipose tissue within the mass.

MRI is currently the technique of  choice in evaluating 
spinal EMH. On MRI, EMH is usually characterized by 
lobular masses with increased signal intensity compared to 
that of  the red marrow in the adjacent vertebral bodies[7]. 
The lack of  gadolinium enhancement allows its differen-
tiation from other epidural masses such as abscesses or 
metastases.
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