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Abstract
Since its introduction in the 1970s, computed tomography 
(CT) has revolutionized diagnostic decision-making. One 

of the major concerns associated with the widespread 
use of CT is the associated increased radiation exposure 
incurred by patients. The link between ionizing radiation 
and the subsequent development of neoplasia has 
been largely based on extrapolating data from studies 
of survivors of the atomic bombs dropped in Japan in 
1945 and on assessments of the increased relative risk 
of neoplasia in those occupationally exposed to radiation 
within the nuclear industry. However, the association 
between exposure to low-dose radiation from diagnostic 
imaging examinations and oncogenesis remains unclear. 
With improved technology, significant advances have 
already been achieved with regards to radiation dose 
reduction. There are several dose optimization strategies 
available that may be readily employed including 
omitting unnecessary images at the ends of acquired 
series, minimizing the number of phases acquired, and 
the use of automated exposure control as opposed to 
fixed tube current techniques. In addition, new image 
reconstruction techniques that reduce radiation dose 
have been developed in recent years with promising 
results. These techniques use iterative reconstruction 
algorithms to attain diagnostic quality images with 
reduced image noise at lower radiation doses.

Key words: Computed tomography; Radiation dose; 
Iterative reconstruction; Neoplasia; Carcinogenesis

© The Author(s) 2016. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: The rapid increase in computed tomography 
(CT) utilisation has brought with it significant public 
concern with regards to the doses of ionising radiation 
delivered during scanning due to the fact that some 
experimental and epidemiological evidence has linked 
exposure to low-dose radiation to the development of 
solid organ cancers and leukaemia. It now seems that a 
threshold-model of risk might be more appropriate with 
the risk increasing exponentially once cumulative doses 
of 100 mSv or more are reached. Nevertheless, there is 
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an inherent responsibility on the medical community to 
keep radiation doses “as low as reasonably achievable”. 
Each imaging procedure needs to be justified and 
optimised and the minimum radiation dose possible 
used to obtain a diagnostic CT should remain the goal 
in each clinical scenario.

Power SP, Moloney F, Twomey M, James K, O’Connor OJ, 
Maher MM. Computed tomography and patient risk: Facts, 
perceptions and uncertainties. World J Radiol 2016; 8(12): 902-915  
Available from: URL: http://www.wjgnet.com/1949-8470/full/v8/
i12/902.htm  DOI: http://dx.doi.org/10.4329/wjr.v8.i12.902

INTRODUCTION
Since its introduction in the 1970s, computed tomo
graphy (CT) has revolutionized diagnostic decision 
making[1,2]. It has resulted in better surgery, better 
diagnosis and treatment of cancer, better treatment 
after injury and major trauma, better treatment of 
stroke and better treatment of cardiac conditions[3,4]. CT 
has many advantages over other imaging modalities 
in that it can be performed in minutes and is widely 
available which can allow physicians to rapidly confirm 
or exclude a diagnosis with improved conviction. It has 
had a major impact on the field of surgery where it 
has decreased the need for emergency surgery from 
13% to 5% and has almost made many exploratory 
surgical procedures extinct. The widespread uptake of 
CT in clinical practice has been shown to decrease the 
proportion of patients requiring inpatient admission[5,6]. 
The progressive year on year technological advances 
in CT have also helped to make it an increasingly 
appealing imaging modality with higher spatial resolu
tion and shorter scanning times leading to vastly 
increased number of clinical applications, e.g., CT colono
graphy, CT angiography, CT urography, etc. 

Given these advantages, it is no surprise that CT has 
seen an explosion in its utilization since its inception[7]. 
In 2007, it was estimated that around 62 million CT 
scans were being obtained each year in the United 
States, compared with around 3 million per year in 
1980[8]. One of the major concerns associated with the 
widespread uptake of CT is the associated increased 
radiation exposure incurred by patients. A United States 
study in 2009 found that CT is now responsible for 
75.4% of the effective radiation dose delivered from all 
imaging procedures, while it accounts for only 11% of 
Xray based examinations[9]. This increased reliance on 
CT scanning has resulted in the cumulative percapita 
effective radiation dose received from medical imaging 
in the United States to increase almost sixfold between 
the years 19802006[10] (from 0.5 mSv to 3.0 mSv) and 
medical imaging is now the largest source of radiation 
exposure to humans other than natural background 
radiation[11] (in 2009, it contributed to over 24% of the 
United States population’s radiation dose)[12]. Since 

the mid1990’s there has been an annual increase of 
almost 10% in the utilization of CT scanning[7]. The 
rapid expansion in the utilization of fluoroscopic and 
interventional radiologic procedures has also helped to 
contribute to the increases in ionizing radiation delivered 
by the medical community[13,14]. Combine these guided 
procedures with the potential advent of CTbased 
screening programs (e.g., CT colonography[15], CT 
lung screening[16]) and there is an expectation that 
the reliance on CT scanning could continue to increase 
further in years ahead (Figure 1). This reliance on 
CT scanning is often further exacerbated by a lack of 
alternative imaging modalities, especially in smaller 
centres[17].

RADIATION EXPOSURE AND CANCER 
RISK WITH CT SCANNING
The rapid increase in CT utilisation has brought with it 
significant public concern[18] with regards to the doses 
of ionising radiation delivered during scanning given 
that some experimental and epidemiologic evidence 
has linked exposure to lowdose radiation to the 
development of solid organ cancers and leukaemia[19]. It 
is widely accepted that large doses of ionising radiation 
increase the likelihood that an individual will go on to 
develop cancer during their lifetime but the association 
between lowdose radiation (of the order used in 
standard diagnostic examinations) and oncogenesis is 
unclear. The link between radiation and the subsequent 
development of neoplasia has been largely based on 
extrapolating data from studies of survivors of the 
atomic bombs dropped in Japan in 1945[20] and on 
assessments of the increased relative risk of neoplasia 
in those occupationally exposed to radiation within the 
nuclear industry[21]. Using this method of extrapolation 
where small hypothetical risks are multiplied by huge 
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Figure 1  Estimated number of computed tomography scans performed 
annually in the United States (Image directly from ref.[22]). CT: Computed 
tomography.
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patient numbers, Brenner et al[22] estimated that in the 
future 1%2% of all cancers in the United States would 
occur secondary to the effects of ionising radiation 
delivered by medical imaging, while a similar study by 
Berrington de González et al[23] in 2009 predicted that 
29000 additional cancers and 14500 additional deaths 
could be expected each year.

While there is little dispute that large exposures to 
ionizing radiation such as are seen in nuclear disasters 
place an individual at an exponentially increased risk 
of developing cancer (analysis of the fallout from the 
Chernobyl disaster has also highlighted an increased 
risk in thyroid cancer in those children exposed in 
utero downwind of Chernobyl)[24] there is widespread 
disagreement as to level of cumulative radiation dose 
delivered by medical imaging which increases the 
risk of cancer. While many authors argue that a linear 
nothreshold (LNT) model applies to the association 
between radiation and oncogenesis[22,25,26] others argue 
that a practical threshold exists below which the risks 
of cancer are no greater than an individual’s back
ground spontaneous risk[27,28]. A recent report has 
even suggested that exposure of individuals to low
dose radiation may elevate the immune response and 
thereby protect the individual from cancer, a concept 
known as hormesis[29,30]. The assertion that radiation 
induces cancer is a very broad statement. Particular 
organ systems are distinctly radiosensitive while others 
have more robust defences against the effects of ionising 
radiation. For example, organs such as the oesophagus, 
breast and bladder are particularly susceptible while 
organs such as the rectum, pancreas and prostate are 
much less sensitive[31].

The validity of the linear nothreshold model has 
come under even further scrutiny in more recent 
times[32]. An analysis of the Radiation Effects Research 
Foundation (REFR) data (which has followed the victims 
of the Hiroshima and Nagaskai attacks) compared 
cancer incidence in these cities with other Japanese 
cities which were not affected by the nuclear bombings. 
The group specifically looked at the incidence of colon 
cancer (commonly used as a cancer indicator in the 
Japanese population) and found that its incidence 
was not increased in those who received doses of 
radiation less than about 100 mSv[25]. It is suggested 
that ascribing cancer risks to radiation exposures of 
less than 100 mSv is confounded by other risk factors 
for malignancy within an individual population[28]. The 
REFR data was more consistent with the threshold
quadratic model of radiationinduced cancer than with 
a LNT model. Another issue in extrapolating experience 
of atomic bomb survivors in Japan to those exposed 
to ionising radiation in the medical setting is the 
inherent baseline differences in cancer risk amongst 
Japanese individuals vs populations of a different ethnic 
distribution (for example, stomach cancer is 10 times 
more prevalent in the Japanese community compared 
with United States subject, while breast cancer is three 
times more prevalent in the United States than in 

Japan)[25].
The linearnothreshold model was initially adopted 

to assess radiation risk not because it has a solid 
biological and scientific foundation but because of its 
simplicity and its conservative nature (i.e., the model 
is more likely to overpredict rather than underpredict 
the neoplastic risk associated with imaging)[33]. As far 
back as 1946, when Muller accepted his Nobel Prize for 
his work investigating genetic mutations in Drosphilia 
generated by the effects of Xray (proposing the LNT 
model as a basis for predicting oncogenesis), there 
has been disagreement with regards to this model[34]. 
International societies are beginning to doubt its validity. 
The Health Physics Society concluded that at doses 
below 50100 mSv “risks of health effects are either 
too small to be observed or are nonexistent”[35]. The 
American Association of Physicists in Medicine supported 
this view stating that at dosages less than 50 mSv for 
single procedures and less than 100 mSv for multiple 
procedures the “predictions of hypothetical cancer 
incidence and deaths in patient populations exposed 
to such low doses are highly speculative and should 
be discouraged”. Most tellingly, the United Nations 
Scientific Committee on the Effects of Atomic Radiation, 
one of the foremost international authorities on the 
effects of radiation in health, have also supported this 
position and have detailed that “statistically significant 
elevations in risk are observed at doses of 100 to 200 
mGy and above” and that at dose ranges less than this 
no definitive risk can be ascribed to ionising radiation[31]. 
Doses of ionizing radiation delivered by common 
radiological procedures are outlined in Table 1[36].

While previously it had been insisted that even 
low doses of radiation were associated with risk of 
oncogenesis with a linear increase in risk with increased 
exposure, it now seems that a thresholdmodel of risk 
might be more appropriate with the risk increasing 
exponentially once cumulative doses of 100 mSv or 
more are reached[37]. This, however does not negate the 
danger associated with radiation or allow complacency 
when deciding on the validity of an indication for a 
particular scan. In patients with longterm chronic 
medical conditions, for instance, the requirement for 
repeated imaging makes them more likely candidates for 
incurring radiation exposure in the range of > 100 mSv. 
In a study of Crohn’s patients (this patient subgroup 
have an increased risk of small bowel lymphoma at 
baseline)[38] over a 15year period, it was shown that 
16% of these patients had radiation exposure of > 
75 mSv[39] and a similar study assessing maintenance 
haemodialysis patients found that 13% of this popu
lation experienced a cumulative dose of > 75 mSv 
over a median followup of 3.4 years[40]. In critically ill 
trauma patients the cumulative effective dose delivered 
to each patient averages 106 ± 59 mSv[41] (although in 
this patient group the risks of avoiding imaging usually 
far outweigh the potential risk of future malignancy). 
Given that most CT studies can average at two to three 
imaging phases per study the doses incurred by each 
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individual exam can quickly accumulate, especially in 
the patient with chronic medical complaints requiring 
ongoing radiologic investigation. 

PAEDIATRIC AND FETAL SPECIFIC 
ISSUES
A simple dismissal of the linearnothreshold model has 
engendered controversy since the recent publication 
of prospective data involving a large cohort study of 
paediatric patients in the United Kingdom who had 
undergone at least once CT scan between 1985 and 
2002, when they were younger than 22 years of age. 
This data, albeit within the paediatric population, has 
been the first to suggest that medical imaging and the 
associated radiation exposure does indeed predispose 
to the development of cancer[42] and that the link is 
not just a speculative one based on extrapolation from 
prior disasters or occupational exposure in the nuclear 
industry. Pearce et al[42] and his team highlighted a 
linear association between the radiation dose to the 
brain and brain tumour risk and a similar association 
between doses received by the bone marrow and the 
development of leukaemia[43,44]. The authors chose 
to follow the incidence of these tumours following 
radiation therapy as these have been the malignancies 
which have been observed in irradiated children. These 
data were validated by the work of Mathews et al[45] 
who found a 24% increase in cancer incidence in a 
paediatric population exposed to a CT scan at least 
one year before a cancer diagnosis and followed up for 
9.5 years. While these reports have helped to clarify 
the situation in the paediatric population the effects of 
radiation exposure in the adult population is less clear 
and whether or not this data can be directly applied 
to adult patients is ambiguous given that: (1) for any 
given CT examination, the doses delivered to adults 
is smaller than their paediatric counterparts[46,47]. The 
effective dose delivered to a neonate when assessing a 
particular anatomic site can be double those which an 
adult will receive for the same investigation[48]; and (2) 
children have been shown to have an inherently higher 
sensitivity to the effects of ionising radiation[20,48,49].

What is particularly concerning about the findings 

of these investigators is that it is within the paediatric 
population the expansion in CT utilisation is increasing 
at the most significant rate[50,51]. For example, between 
the years of 19911994 there was an increase of 63% 
in the utilisation of CT examinations in children less 
than 15 years of age[52]. This has been driven by a 
decrease in the scanning time for CT which reduces 
the need for sedation in younger or uncooperative 
children[53]. Conversely, despite the risks of radiation 
exposure in this sensitive cohort, the use of CT has 
had dramatic benefits in the paediatric population. 
Between 19902007, the expansion in utilisation of CT 
decreased the negative appendectomy rate from 23% 
to 1.7% with an associated decrease in the number of 
operations performed[54].

While the dangers of radiation exposure in the 
extremely young have been highlighted by recent popu
lation studies the situation with regard to the foetus in 
pregnant patients remains uncertain. While physicians 
have been demonstrated to have a poor understanding 
regarding the risks of imaging in pregnancy[55,56], this 
is likely due to the fact that there is no solid scientific 
evidence regarding the exact dangers. Data in animal 
studies has demonstrated teratogenicity but the doses 
used in these studies were much higher than those used 
in diagnostic scanning[57]. Studies of individuals exposed 
in utero at Hiroshima and Nagasaki have demonstrated 
growth restriction, microcephaly, mental retardation 
and increased risk of seizures from high dose radiation 
exposure[58,59]. While protocols exist which direct the 
need for scanning in pregnant or potentially pregnant 
patients these are primarily based on the linear no
threshold model rather than a specifically defined 
carcinogenic risk[6062]. These protocols advocate 
minimising the radiation dose to which the foetus is 
exposed and concentrating the dose on the anatomy of 
interest; for example in suspected appendicitis, the scan 
volume should be restricted to include only potentially 
diagnostic areas and dual pass studies should be 
avoided[63,64]. Clearly, the use of imaging in pregnancy 
and particularly the use of CT always evokes enormous 
anxiety and is usually met with reluctance among 
radiologists and radiographers/radiology technologists. 
However, as in all clinical situations balancing of risk 
vs benefit is required based on best available evidence 
and considering how diagnostic information which 
may be gained by imaging may change management 
and improve clinical outcome vs potential risk to fetus 
and mother as a result of radiation exposure. The use 
of ultralow dose protocols in pregnancy is therefore 
vital, until higher level evidence is available to inform 
decisions regarding imaging in pregnancy.

PERCEPTION OF RISK ASSOCIATED 
WITH DIAGNOSTIC SCANNING
Patient perception
While we know that ionising radiation confers certain 

  Examination Average effective 
dose (mSv)

Values reported in 
literature

  Posterioranterior study of chest        0.02 0.007-0.05
  Head CT   2   0.9-4.0
  Thorax CT   7     4.0-18.0
  CT Pulmonary angiogram 15   13.0-40.0
  Abdomen CT   8  3.5-25
  Pelvic CT   6  3.3-10
  Coronary angiography 16  5.0-32

Table 1  Doses of common radiological procedures 

Annual effective dose from natural background radiation = 3 mSv. CT: 
Computed tomography.
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risks to a patient, news media can sensationalise and 
exaggerate the potential adverse effects of radiation 
on carcinogenicity[65] which can induce anxiety in 
patients, particularly parents of children undergoing 
investigation[66,67]. In most instances the benefits of 
performing CT completely outweigh the potential risks. 
Medical doctors are increasingly encountering difficult 
situations when patients refuse CT scanning in clinical 
scenarios when CT scanning is clearly required; an 
example of this would be when a patient with newly 
diagnosed cancer who requires a CT for staging, 
declines the exam based on perceived risks associated 
with radiation exposure. Despite media coverage, 
patient understanding of the exact risks associated 
with CT scanning can, at times, be poor. Popular media 
have a tendency to focus on perceived and sometimes 
sensationalized dangers associated with radiation 
exposure associated with CT scanning while ignoring the 
enormous benefits in terms of expeditious and accurate 
diagnosis. Occasionally, excessive focus or lack of 
balance in the reporting of very rare incidences of error 
leading to extremely excessive radiation exposures 
from CT scanning as happened when it was discovered 
that one centre had been erroneously exposing patients 
to radiation doses eight times of normal during CT 
perfusion scanning[68]. 

On the other hand, patients have been shown to 
underestimate the relative amount of radiation delivered 
by CT scanning and, surprisingly given media coverage, 
underestimate the carcinogenic potential of exposure 
to ionizing radiation. In fact, one study has shown 
that patients will often have a higher degree of faith 
in their treating physician if they undergo computed 
tomography scanning as part of their workup[69]. 

There is no question that there is a requirement for 
better patient education by imaging providers prior to 
the performance of CT scans. For example, it has been 
shown that 93% of adults referred for abdominal CT 
did not receive any information regarding the potential 
risks of this procedure and that only 3% of adult emer
gency patients are even aware of the potential associa
tion between CT and carcinogenesis[70]. Despite the 
inherent risks associated with paediatric CT[71] there is 
often reluctance on the part of physicians to convey the 
dangers associated with radiation for fear of confusing 
or upsetting parents with this information[72]. Striking 
a balance is difficult as the exact risk associated with 
radiation exposure in the range associated with CT 
scanning to patients, and particularly in children is 
unclear. However, informing parents about the slight 
risks associated with CT has not been shown to 
affect their willingness to allow their child to undergo 
scanning[73]. A balanced discussion of risks vs benefits 
with parents about the risks is paramount[74,75] as 
pressure is often exerted on physicians by parents 
encouraging the utilisation of CT in order to expedite 
diagnosis[76], without a thorough awareness of the 
dangers associated with this scanning. There is a need 

for multidisciplinary discussion involving experts in 
many disciplines (including radiology, radiation biology, 
medical physicist, public health physicians) so that a 
consensus can be agreed to guide physicians in pro
viding advise to patients of varying ages with regard 
to risk associated with CT scanning. Proper counselling 
and education can help parents become more willing 
to accept a more conservative strategy[73]. Despite 
limited knowledge amongst some physicians regarding 
the carcinogenic potential of CT scanning there are 
concerted efforts amongst radiologists and physicists to 
reduce radiation exposure through imaging to patients. 
Using newer technologies, and strategies such as 
iterative reconstruction, radiation exposures associated 
with CT scanning are diminishing incrementally[77]. 

PHYSICIAN AND MEDICAL STUDENT 
PERCEPTION 
Difficulty arises when balancing the immediate need for 
diagnosis with the unlikely potential for harm associated 
with a CT scan. To this effect, there tends to be a 
reliance on the individual health care providers to be 
cognisant of potential dangers and to minimize patient 
exposure to “as low as reasonably achievable”. There 
can be a lack of recognition from health care workers, 
however, regarding potential dangers associated with 
CT. A United States study of health care providers 
found that less than 50% of radiologists and only 9% 
of emergency department personnel were aware that 
there was a potential association between CT and the 
development of malignancy[70]. Data have also shown 
that many physicians are also unaware of the doses of 
radiation associated with individual examinations[78,79]. A 
systematic review on physicians’ knowledge of radiation 
exposure and risk found that there was often a “low 
level of knowledge and radiation risk awareness”[80]. An 
assessment of American paediatric surgeons found that 
53% of all respondents thought that the lifetime risk of 
cancer was increased from exposure to one abdomino
pelvic CT scan, although 75% underestimated the dose 
delivered by this scan compared with a chest Xray. 
The report also found that the majority of paediatric 
surgeons did not discuss the potential risks associated 
with these scans with their patients[81]. 

Poor physician awareness has also been observed 
in the United Kingdom and other parts of the EU[79], 
where appreciation of the consequences of radiation 
exposures was similar to the United States with most 
underestimating the dose of radiation delivered by 
common radiological investigations[78,82]. Similarly, in 
an Australian cohort of doctors, it has been shown that 
the “knowledge of radiation exposure from medical 
imaging is poor[83]”. It has also been highlighted that 
not only is there deficient knowledge amongst doctors 
regarding radiation dose incurred through imaging but 
that radiation dose is often not considered to be an 
important consideration when referring for radiological 
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investigation[84]. The reasons why there is such a poor 
understanding amongst clinicians regarding the dangers 
associated with radiation could be explained by a lack of 
training at undergraduate and postgraduate level[85]. It 
has clearly been shown that there is a lack of awareness 
at undergraduate level[86].

Research in the postgraduate population has found 
that there is often limited focus on radiation safety and 
radiation protection within training programmes and 
have highlighted the importance of increased education 
initiatives in this area, both within radiology and other 
specialities[87]. Teaching of radiology at an undergraduate 
level and delivery of dedicated radiation protection 
education improves student’s awareness. 

DOSE REDUCTION STRATEGIES
While we may not be certain as to the exact oncogenic 
potential of ionising radiation there is an inherent respon
sibility on the medical community to keep radiation 
doses “as low as reasonably achievable (ALARA)”. Each 
imaging procedure needs to be justified and optimised 
and the minimum radiation dose possible used to obtain 
a diagnostic CT should remain the goal in each clinical 
scenario. With improved technology, significant advances 
have already been achieved with regards to radiation 
dose reduction. The dosage delivered from a combined 
CT study of the abdomen and pelvis has declined by a 
factor of between two and three since the 1980s due 
to a number of different technological innovations[88]. 
However despite these technological advances and 
emphasis on the ALARA principle, radiation exposure 
has been shown to vary over a tenfold range in clinical 
practice for the same investigation, depending on 
variable parameters[23]. This type of variation can exist 
both within and between different institutions with 
wide discrepancies in average dose reported[89]. While 
standards and limits exist for health care workers and 
those routinely exposed to radiation occupationally (e.g., 
nuclear workers) there is currently no legal requirement 
for routine monitoring of cumulative effective radiation 
dose which patients may be exposed to during the 
diagnostic process[9092].

Integration of hospital PACS systems on a national 
and international level would help to allow cumulative 
radiation exposure for each patient to be tracked. This 
type of database is currently being developed by the 
scanning industry (GE healthcare’s Dosewatch® system 
being an example of this). These platforms also allow 
optimisation tools which can be utilised by both radio
graphers and radiologists to try to minimise radiation 
exposure while, at the same time, maximising the 
clinical information which will be attained by each scan 
and limiting the risk of duplicating scans which have 
already been carried out at other institutions. Defined 
exposure limits can be stipulated for each type of scan 
and the technology will inform the physician if these 
pre-defined limits are exceeded. This would also allow 
departments the opportunity to audit and streamline 

their practices. Also, this online collection of radiation 
dose data associated with imaging procedures, will 
alert individual departments to sporadic incidences of 
high radiation exposures and allow immediate action 
to prevent large cohorts of patients from suffering 
very high radiation exposures as a result of diagnostic 
imaging. 

Scanning techniques can be optimally adjusted (Table 
2) in order to try to achieve an acceptable image at 
lower exposure level. Dose reduction can be achieved 
via a wide variety of means[93] as below.

Tube current modulation and automatic exposure 
control[94]

Different patients, depending on their size, will all 
require different radiation doses and the most basic 
feature which can be modulated in each patient is the 
tube current[76]. For example, the amperage utilised in 
paediatric scanning should be significantly lower than 
that utilised in their adult counterparts[95] (and needs to 
be higher in obese patients). The tube current should 
be modulated based on the overall attenuation of the 
anatomic area being assessed[96]. Other techniques, 
such as ECG based current modulation can be used to 
help reduce the dose during cardiac CT[94,97]. Automatic 
exposure control, is a relatively new technique, which 
modulates the tube current during an individual scan 
based on the different attenuations of different anatomic 
regions. This also has the added advantage of delivering 
the optimal dose to achieve the optimal diagnostic 
image[98]. Radiologists can define the quantity of noise, 
which is acceptable to individual clinical scenarios, prior 
to the scan thus aiding the difficult task of balancing of 
image quality and radiation exposure.

Strategies to design an ideal tube potential for indivi
dual patient sizes and different diagnostic tasks have 
been published and these have been demonstrated to 
reduce doses by 70% for the chest and by 40% for the 

  Current dose reduction 
  strategies in CT scanning

Dose reduction strategies gaining 
interest[92]

  Solid state scintillating 
  detectors

Manual/automated adjustment of 
scanner output according to patient size 

via:
Tube current modulation;

Selection of the most dose-efficient tube 
potential

  Electronic circuits with lower 
  levels of background noise

Iterative reconstruction methods

  Multi-detector row arrays Increased spiral pitch or non-spiral 
methods in cardiac CT

  More powerful X-ray tubes 
  and generators
  Beam shaping filters which 
  vary the X-ray intensity across 
  the patient cross section

Table 2  Methods to try to optimise dose delivered during 
computed tomography scanning[3]

CT: Computed tomography.
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abdomen[99]. In the case of cardiac CT, electrocardio
graphic based tube current modulation can allow doses 
to be reduced by levels of between 30%90%[97]. Further 
advances using a dual source CT system allows dose 
reductions by a factor of up to 1012[100].

Iterative reconstruction
Iterative reconstruction has been one of the most 
significant advances in dose reduction technology in 
CT scanning in recent times. This type of technology, 
when used in conjunction with or in place of filtered 
back projection, may improve noise and spatial qualities 
within the image[101]. Iterative reconstruction techniques 
allows images of improved quality to be acquired at 
significantly lower radiation doses[102]. As technology and 
software continues to improve it is likely that iterative 
reconstruction algorithms will progress concurrently[103].

Noise reduction filters
This technique has the potential to optimise quality 
of acquired image by eliminating noise and have 
been demonstrated to substantially reduce radiation 
dose[104,105].

Low dose protocols[106,107]

Low dose strategies for abdominal CT scanning in 
children and young adults have been shown to be non
inferior to standard dose CT with respect to negative 
appendectomy rates[108,109]. These low dose strategies 
can use up to four times less radiation than the standard 
dose protocol.

Spacing of CT slices
Using a large number of thin adjacent CT slices can 
result in significant increases in radiation dose to the 
patient. Multislice CT scanners also deliver considerably 
more radiation dose due to scan overlap, positioning of 
the CT scanner in closer proximity to the patient and 
increased scatter radiation[110]. There is therefore an 
important balance to be met when selecting a slice small 
enough to achieve the optimal diagnostic image and 
large enough to ensure that the radiation dose delivered 
is acceptable[111].

Maintaining the limits of radiation field within anatomy 
of interest
All too often during image acquisition in CT the area 
being scanned includes extra images which are outside 
the field of original interest. For example, one study 
found that when assessing the utilisation of abdomino
pelvic CTs that extra images above the diaphragm were 
obtained in 97% of cases and that images below the 
symphysis pubis were obtained in 94% of patients[112]. 

This equated to an additional 1280 images in 106 
patients and while the images provided additional radia
tion exposure in each patient there was little additional 
diagnostic information in the majority of these cases. 
Maintaining the field to only the area of interest can 

allow smaller cumulative dosing and potentially improved 
images via focused imaging[113].

Decision support at the time of ordering a scan
Automated prompts and advice as part of online radio
logy ordering systems can help to reduce the number 
of low utility examinations carried out[114] (one study 
demonstrated that this type of system can reduce the 
number of low utility examinations threefold)[115].

Split bolus techniques for urological studies 
Typical CT urography protocols have required multiple 
image acquisitions to obtain the unenhanced, contrast
enhanced nephrographic, and contrastenhanced excre
tory phase images. This method of multiple image acqui
sition requires a significant radiation burden (quoted 
between 1535 mSv)[116,117]. However, the utilisation 
of split bolus protocols can significantly reduce this 
burden and exposes the patient to doses similar to 
that experienced in standard unenhanced and contrast 
enhanced abdominopelvic CT[118]. 

Virtual non contrast CT from dual energy CT
Rational scanning: The strategies outlined above can 
play a huge role in minimising the dose administered 
to the patient during various scanning procedures. 
However, the best dose reduction strategy is to avoid 
needless scanning. Unfortunately, it has been shown 
that large numbers of scans are undertaken each year 
which are lacking in a valid clinical indication[119]. In fact, 
it has been suggested that perhaps 20%40% of all CT 
scans could be avoided if decisions to scan were based 
on available guidelines[120,121]. In the paediatric population 
it has been shown that one third of all CT scans could 
be replaced by alternative approaches or not performed 
at all[122] and questions have also been raised regarding 
the routine use of CT for diagnosing appendicitis within 
the same population, despite its impressive results in 
reducing negative appendectomy rates[123]. There is 
scope for replacing or reducing CT in favour of other 
diagnostic modalities. Magnetic resonance imaging and 
ultrasound have the benefit of not exposing the patient 
to any ionizing radiation but their utility is compromised 
by availability [in the case of magnetic resonance 
imaging (MRI)][124,125] and image quality (in the case 
of ultrasound[126]. Also in some clinical scenarios, MRI 
does not offer equivalent diagnostic information when 
compared to CT. Decision support software programmes 
which rate the appropriateness of a CT scan as it is 
ordered by a physician, are difficult to develop, but 
have shown impressive reductions in the expansion 
of CT scanning[114]. Given that between 20%40% of 
CT scans are ordered inappropriately as per evidence 
based guidelines[127], the introduction of these types 
of initiatives to encourage physicians to reassess the 
clinical necessity for each scan is encouraging. The 
American College of Radiologists have recognised the 
need for thorough guidelines to assist physicians in 
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deciding when particular scans should be utilised[128]. 
However, a caveat to the introduction of these types of 
decision support is that the application of a nodenial 
policy on radiological imaging, surprisingly, did not result 
in increased utilisation of imaging modalities[129].

Of course when imaging is clinically indicated then 
the benefit-risk balance is almost always overwhelmingly 
in favour of imaging[128,130]. However, all too often the 
decision to image is based on time constraints, medico
legal concerns or patient preference. There is, as yet, 
no study which attempts to quantify and assess the 
riskbenefit ratio for radiological investigations and 
responsibility lies with the referring physician and radio
logist[131]. The need to optimise clinical decision making 
with regards to imaging therefore needs to be guideline 
based as this alone has the potential to reduce the 
influence of convenience factors[132]. The risk/benefit 
ratio is individual to each patient. The following factors 
contribute to oncogenic risk from radiation.

Genetic considerations: Certain populations and 
individuals may be more radiosensitive and have more 
of a propensity to develop cancers post radiation expo
sure[133]. For example, some patient groups with a 
genetic abnormality which predisposes to cancer have 
been shown to be more sensitive to the effects of 
radiation[134,135].

Age at exposure: The BEIR VII report demonstrated 
the relationship between the lifetime attributable risk 
of cancer incidence and age at exposure, showing 
that the risks of carcinogenesis was much higher 
the earlier that patient was exposed to high doses of 
radiation[21]. Older patients undergo the majority of 
medical imaging but limited life expectancy reduces risk 
of radiation induced cancers[21]. Criteria for imaging in 
these patients should not necessarily be the same as for 
those for younger patients with curable disease[136]. The 
longer postradiation life expectancy in the paediatric 
population allows greater scope for the generation of 
malignancy and this fact has been borne out by recent 
population based studies from the United Kingdom[42] 
and Australia[45]. 

Sex: There appears to be a trend towards a higher 
incidence of cancer in females post exposure to radiation 
as opposed to men (even with similar exposures to 
radiation)[137].

Illness: Many patients who undergo repeated imaging 
while being treated for illness likely to reduce life 
expectancy. Oncogenic effects of this imaging radiation 
are unlikely to to materialise[136]. 

Fractionation and protraction of exposure: In 
general, it is believed that there is a greater risk from 
high doses of radiation delivered over a short time 
period in comparison with the same (or lower doses) 

delivered over a protracted course due to the influence 
of DNA damage repair[138]. However, the influence of the 
cumulative dose being delivered over a longer period 
has been suggested to be, surprisingly, small[139,140].

The reality is that rational scanning will rely on the 
appropriate knowledge base amongst physicians and 
trainees. Therefore, the role of education of medical 
staff, both at undergraduate, postgraduate and even 
more senior level cannot be underestimated given 
the shortcomings in knowledge of radiation exposure 
identified above. These types of educational initiatives 
have previously shown to be successful in reducing 
scanning numbers when implemented appropriately[141].

CT SCANNING: RECOMMENDATIONS 
FOR THE FUTURE
Clarity regarding the association between radiation 
exposure and oncogenesis is, as yet, not fully eluci
dated. However, despite this, the goal when imaging 
patients should always be to use a dose that is “as 
low as reasonably achievable”. Imaging, irrespective 
of the risk, should only be used when the potential 
clinical benefit outweighs the potential risk. The three 
fundamental principles of radiation which are laid out by 
the International Commission of Radiologic Protection 
include[142]: (1) justification; (2) dose optimization; and 
(3) dose limitation.

There is a responsibility to adhere to these funda
mental principles. Given that it has been shown that 
lowdose protocols do not impact diagnostic yield, such 
protocols need to become the standard[108]. Recent 
data has shown that a single scan has low risk but 
given CT expansion cumulative doses can escalate. 
The extrapolation of small carcinogenic risks in the 
individual to cumulative cancer figures in the population 
is often sensationalized by the popular media resulting 
in significant distress and anxiety amongst the public, 
which can make patients and their families reluctant to 
undergo scans which may be in their best interests. 

The future of radiation optimisation will include 
education of physicians and patients. Such initiatives 
include the Image Gently® and Image Wisely® cam
paigns. Image Gently® provides information regarding 
paediatric population radiation safety to parents and 
physicians and guides dose optimisation[143,144]. The 
Image Wisely® campaign promotes radiation safety in 
the adult population and has developed an honour roll 
for facilities and associations who have pledged to “image 
wisely” within their practice[145]. The Image Gently® 
initiative has been further developed to include specific 
guidance on paediatric interventional procedures under 
the title of Step Lightly®[146,147], In response to the Cedar
Sinai controversy in the United States, the Food and Drug 
Administration has also launched a national initiative to 
reduce unnecessary radiation exposure to patients[148]. 
It is apparent that physicians are not effectively dis
cussing the potential risks of radiation exposure with 
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their patients, however small[149]. When potential 
radiation dose exposure is substantial, for example, 
during interventional procedures, radiation risk needs to 
be a component of consent prior to the procedure. With 
increased prevalence of radiologic investigations, patient 
education regarding the risks of radiation exposure 
needs to be tackled by the medical community in order 
to accurately convey potential risk. The Interventional 
Radiology Patient Safety Program among others have 
issued guidelines resulting in practice modifications 
where excessive radiation doses were being delivered 
intraprocedurally[150,151]. Incorporating audit as standard 
into radiology departments can also help to decrease 
the dose delivered to each patient[152,153] and will also 
help when discussing these scans with our patients. The 
establishment of national reference levels for specific 
CT examinations will allow audit at a local, national and 
international level[154157]. While controversy still exists 
regarding the exact oncogenic risk associated with CT 
scanning simply ignoring the issue is not acceptable but 
audit, education and reassessment are key to improved 
understanding and safer practices.
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Abstract
AIM
To evaluate brain metastases volume control capabilities 
of stereotactic radiosurgery (SRS) through serial 
magnetic resonance (MR) imaging follow-up. 

METHODS
MR examinations of 54 brain metastases in 31 patients 
before and after SRS were reviewed. Patients were 
included in this study if they had a pre-treatment MR 
examination and serial follow-up MR examinations at 6 
wk, 9 wk, 12 wk, and 12 mo after SRS. The metastasis 
volume change was categorized at each follow-up as 
increased (> 20% of the initial volume), stable (± 20% 
of the initial volume) or decreased (< 20% of the initial 
volume). 

RESULTS 
A local tumor control with a significant (P  < 0.05) 
volume decrease was observed in 25 metastases at 
6-wk follow-up. Not significant volume change was 
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observed in 23 metastases and a significant volume 
increase was observed in 6 metastases. At 9-wk follow-
up, 15 out of 25 metastases that decreased in size at 
6 wk had a transient tumor volume increase, followed 
by tumor regression at 12 wk. At 12-wk follow-up there 
was a significant reduction in volume in 45 metastases, 
and a significant volume increase in 4 metastases. At 
12-mo follow-up, 19 metastases increased significantly 
in size (up to 41% of the initial volume). Volume tumor 
reduction was correlated to histopathologic subtype.

CONCLUSION
SRS provided an effective local brain metastases volume 
control that was demonstrated at follow-up MR imaging.

Key words: Brain metastases; Stereotactic radiosurgery; 
Magnetic resonance imaging; Pseudo-progression; 
Radiation therapy

© The Author(s) 2016. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Stereotactic radiosurgery (SRS) provided 
an effective long-term local volume control of brain 
metastases during 12-mo magnetic resonance (MR) 
imaging follow-up. A significant reduction of the tumor 
volume by 6 wk post-SRS was associated with long-
term volume control suggesting that the timing for MR 
imaging follow-up at 6 wk, 9 wk, 12 wk and 12 mo after 
SRS, could be considered the most effective to provide 
useful information to make the best treatment decisions. 

Sparacia G, Agnello F, Banco A, Bencivinni F, Anastasi A, 
Giordano G, Taibbi A, Galia M, Bartolotta TV. Value of serial 
magnetic resonance imaging in the assessment of brain meta
stases volume control during stereotactic radiosurgery. World J 
Radiol 2016; 8(12): 916-921  Available from: URL: http://www.
wjgnet.com/1949-8470/full/v8/i12/916.htm  DOI: http://dx.doi.
org/10.4329/wjr.v8.i12.916

INTRODUCTION
Brain metastases account for 20%-40% of adult 
cancer and affect survival and quality of life[1]. The two 
most commonly used treatments for brain metastases 
are whole-brain radiation therapy and stereotactic 
radiosurgery (SRS), which extend survival from 3 mo to 
5 mo and from 7 mo to 13 mo, respectively, depending 
on tumor type. Surgical resection remains a valuable 
approach for patients with larger symptomatic meta-
static tumors[2]. 

SRS is an increasingly used procedure for the 
treatment of primary and metastatic intracranial brain 
tumors. Indications include patients with few, well-
defined, and small intracranial brain tumors. In SRS, 
radiations are directly delivered into a brain tumor, 
thus reducing radiation dose of surrounding normal 

brain tissue and side effects such as neurotoxicity, skin 
damage, nausea and vomiting[3-5]. The damage to the 
peritumoral brain is further reduced by a step dose 
gradient at the target periphery of the tumor[3]. 

The objectives of SRS include local tumor control, 
defined as the absence of a substantial (< 25%) 
increase in tumor volume at follow-up magnetic reson-
ance (MR) imaging, improved quality of life, and pro-
longed survival[6,8]. Metastatic lesions are particularly 
well-suited for the treatment with SRS because they are 
usually small (< 3 cm), well-circumscribed, and have 
well-defined margins[6]. 

Studies have demonstrated that SRS is an effective 
alternative to traditional surgical resection and whole 
brain radiotherapy in patients with single or few well-
defined brain metastases[1,7-9]. 

Knowledge of natural history of brain metastases 
treated with SRS is crucial to prevent management 
dilemmas, and reduce patient anxiety. For instance, 
radiation toxicity can sometimes cause a pseudo-
progression of brain metastases, which usually resolves 
with time[1,7,9,10].

The purpose of this study is to evaluate volume 
tumor control capabilities of SRS in the treatment of 
brain metastases trough serial MR imaging follow-up. 

MATERIALS AND METHODS
Patient population
This was a retrospective study approved by the 
Institutional Review Board of our institution. All patients 
were referenced with the diagnosis of brain metastases 
and were treated with Gamma Knife-SRS (Leksell 
Gamma Knife, model 4C, GammaPlan 5.3; Elekta 
Instruments, Stockholm, Sweden) at a single academic 
medical center from January 2015 to January 2016. All 
patients had given written consent for this retrospective 
study. Patients were included in this study if they had 
a pre-treatment MR examination and serial follow-up 
MR examinations within 6 wk, 9 wk, 12 wk, and 12 mo 
post-SRS.

Patients were excluded if SRS was performed 
for consolidation to a surgical resection bed only. 
Additionally, patients in whom lesions required salvage 
surgery due to symptomatic local failure, were 
excluded.

The SRS dose delivered to the tumor margins 
ranged from 18 to 24 Gy prescribed to the 40%-70% 
isodose surface. Radioresistant tumors (melanoma, 
renal cancer) received a median marginal dose of 23.7 
Gy (range, 20-24 Gy), and radiosensitive tumors (lung 
and, breast cancer) received a median marginal dose of 
21.3 Gy (range, 18-24 Gy). 

There was a total of 31 patients (14 men, 17 
women; age: 32-77 years; mean age, 51, 5 years) that 
underwent serial MR imaging examinations at 6 wk, 9 
wk, 12 wk, and 12 mo after SRS. 

Brain metastases were confirmed by pathology. 
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There were 54 brain metastases: Non-small cell 
lung carcinoma n = 19 (36%), breast carcinoma n 
= 16 (29%), renal cell carcinoma n = 9 (16%), and 
melanoma n = 10 (19%). Patient population and 
primary cancer types are summarized in Table 1.

MR imaging
All MR examinations were performed with a 1.5T MR 
scanner (Signa Excite, GE Medical Systems, Milwaukee, 
United States). MR imaging protocol included axial 
and sagittal fast spin-echo (FSE) T2W [5100/110 (TR/
TE)] images, axial fluid-attenuated inversion-recovery 
(FLAIR) [8000/140/2400 (TR/TE/TI)] images, along with 
axial, sagittal, and coronal non-enhanced and contrast-
enhanced (0.1 mmol/Kg gadobutrol - Gadovist, Bayer, 
Germany) FSE T1W [650/15 (TR/TE)] images with a 
FOV of 22 cm, matrix 512 × 512, slice thickness 5 mm, 
intersection gap 1 mm, number of excitations 2. Follow-
up MR examinations were performed at 6 wk, 9 wk, 12 
wk, and 12 mo post-SRS.

Volume change analysis
Two experienced neuroradiologists evaluated in con-
sensus the maximum enhancing metastasis volume 
measured in 3 orthogonal planes at initial MR examina-
tions and at each follow-up. Tumor volume was calcu-
lated according to the following formula: Volume 
= length × width × height/2 as reported in other 
studies[7]. Metastases of at least 0.5 cm3 were included. 
Metastasis volume change was categorized at each 
follow-up as increased (> 20% of the initial volume), 
stable (± 20% of the initial volume) or decreased (< 
20% of the initial volume). This criteria was chosen 
taking in account a measurement error of 20%, as 
there are no validated categorization schemes for tumor 
response.

Statistical analysis
Statistical analysis was performed using the statistical 
software package SPSS (SPSS, Chicago, Ill). The 
Wilcoxon signed-rank test for continuous variables was 
used to evaluate the significance of volume change. 
A multivariate logistic regression analysis was used to 
determine the correlation between histopathology and 
volume changes. A P value of < 0.05 was considered 

statistically significant.

RESULTS
Primary cancer types and effective time point for MR 
imaging follow-up to identify significant phases of 
the response to the SRS therapy are summarized in 
Table 2. At 6-wk follow-up, a local tumor control with a 
significant volume decrease up of 63% was observed 
in 25 brain metastases (46%) (12 non-small cell lung 
carcinoma, 11 breast carcinoma, 1 renal cell carcinoma, 
1 melanoma). No significant volume change was 
observed in 23 metastases (43%) (6 non-small cell lung 
carcinoma, 5 breast carcinoma, 7 renal cell carcinoma, 
5 melanoma), and a significant volume increase was 
observed in 6 metastases (11%) (1 non-small cell lung 
carcinoma, 1 renal cell carcinoma, 4 melanoma). 

At 9-wk follow-up, 15 out of 25 radiosensitive brain 
metastases (28% of the total lesions) (8 non-small cell 
lung cancer, 7 breast metastases) that decreased in size 
at 6 wk had a transient tumor volume increase, followed 
by tumor regression at 12 wk with no clinical symptoms 
(pseudo-progression) (Figure 1). 

At 12-wk follow-up, there was a significant reduction 
in volume in 45 metastases (18 non-small cell lung 
carcinoma, 14 breast carcinoma, 7 renal cell carcinoma, 
6 melanoma), no significant volume change in 5 
metastases (1 non-small cell lung carcinoma, 1 breast 
carcinoma, 1 renal cell carcinoma, 2 melanoma), and 
a significant volume increase in 4 metastases (1 breast 
carcinoma, 1 renal cell carcinoma, 2 melanoma). 

At 12-mo follow-up, 19 (35%) metastases increased 
(true-progression) significantly in size (up to 41% of the 
initial volume) (1 non-small cell lung cancer, 4 breast 
cancer, 6 renal cell carcinoma, 8 melanoma) (Figure 2). 

The logistic regression analysis showed that volume 
tumor reduction correlates to histopathologic subtype: 
non-small cell lung carcinoma had a significant reduction 
of 38% of its initial volume; breast carcinoma had a 
significant reduction of 41% of its initial volume; renal 
cell carcinoma had a significant reduction of 14% of its 
initial volume; melanoma had a significant reduction of 
8% of its initial volume. Thus, higher tumor reduction 
was observed in the radiation sensitive carcinomas 
(breast and non-small cell lung carcinomas). 

Moreover, we evaluated the volume tumor variation 
of breast, non-small cell lung cancer, melanoma, and 
renal cell carcinoma metastases at 6 wk, 9 wk, 12 wk, 
and 12 mo post-SRS. Our results show that response 
categorization differences among these 4 primary types 
were not statistically significant, however melanoma 
and renal cell carcinoma metastases had less robust 
volume reduction than non-small cell lung cancer or 
breast metastases. 

Temporary or permanent clinical complications were 
evaluated during 12 mo follow-up of these patients. 
Transient headache related to intracranial edema was 
noted in 10 patients, with nausea (5 patients) and arm 
or leg weakness (2 patients). Permanent neurologic 

  No. of 
  patients

Gender Age (yr) Primary cancer 
type

No. of 
lesions, (%)

  11 7 men - 4 
women

50-70 Non-small 
cell lung 

carcinoma

19 (36)

  9 1 men - 8 
women

32-60 Breast 
carcinoma

16 (29)

  7 5 men - 2 
women

55-77 Renal cell 
carcinoma

9 (16)

  4 1 men - 3 
women

32-65 Melanoma 10 (19)

Table 1  Patient population and primary cancer types

Sparacia G et al . Imaging of brain metastases volume changes during SRS
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deficits were noted in 6 patients. 

DISCUSSION
Our results suggest that a significant early reduction 
of tumor volume is associated with a good long-
term volume tumor control as reported in previous 

studies[6,7,10-14]. Conversely, increased tumor volume at 
6-wk follow-up has a higher probability of a final increase 
in lesion size, thus in a poor tumor volume control. 

Transient volume growth at 9-wk follow-up occurred 
in 15 radiosensitive brain metastases (8 non-small cell 
lung cancer, 7 breast metastases) (28% of the total 
lesions), followed by tumor regression at 12 wk with no 

A B

C D

Figure 1  Follow-up axial enhanced T1-weighted magnetic 
resonance images of a brain metastasis from breast carcinoma 
treated with stereotactic radiosurgery in a 60-year-old woman. 
A: Pre stereotactic radiosurgery (SRS) magnetic resonance (MR) 
image; B: Initial follow-up MR image at 6 wk after SRS demonstrating 
an initial volume reduction; C: Follow-up MR image at 9 wk after SRS 
demonstrating a transient volume increase (pseudo-progression); D: 
Follow-up MR image at 12 wk demonstrating a final volume reduction. 

A B

C D

Figure 2  Follow-up axial enhanced T1-weighted magnetic 
resonance images of a lung carcinoma metastatic to the right cere-
bellum treated with stereotactic radiosurgery. A: Pre stereotactic 
radiosurgery (SRS) magnetic resonance (MR) image; B: Initial follow-up 
MR image at 6 wk after SRS demonstrating an initial volume reduction; 
C: Follow-up MR image at 9 wk demonstrating volume increase (true-
progression); D: Follow-up MR image at 12 wk with final volume 
increase.

Sparacia G et al . Imaging of brain metastases volume changes during SRS
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clinical symptoms (Figure 1 and Table 2). This transient 
growth must be careful interpreted as it could be 
misinterpreted as tumor recurrence, whereas it should 
be interpreted as a pseudo-progression[7]. 

The histopathology of pseudo-progression is probably 
related to treatment-induced tumor inflammation and 
necrosis[7,10-13]. Tumor volume variation trend in our 
series demonstrates that melanoma and renal cell 
carcinoma metastases showed less volume reduction 
than non-small cell lung cancer or breast metastases. 

However, response categorization differences among 
these 4 primary types were not statistically significant, 
thus suggesting that the most effective timing for MR 
imaging follow-up, regardless the type of primary 
tumor, could be considered at 6 wk, 9 wk, 12 wk and 
12 mo after SRS.

The observation that a small percentage of lesions 
may undergo a transient volume increase indicate that 
initial lesion growth does not necessary preclude local 
volume control. Conversely, there were a low number 
of metastases that exhibited initial volume growth and 
continued to grow with no volume control during SRS 
(Figure 2).

SRS has become the standard procedure for the 
treatment of brain metastases as it allows a longer 
survival and higher local control rates compared to 
whole-brain radiation therapy[6,7,9,14]. Compared to 
surgical resection, SRS is associated to lower morbidity 
and decrease cost[1]. 

To summarize, SRS is effective in treating brain 
metastases regardless of their histology, including those 
that are radio-resistant to conventional whole-brain 
radiation therapy, such as metastases that originates 
from melanoma and renal cell carcinoma.

Although initial consistent tumor volume reduction 
after SRS is predictive of long term volume control, 
initial tumor growth does not necessarily indicate 
tumor progression but radiation-induced inflammation 
and necrosis (pseudo-progression) and it should be 
taken into account to avoid to be misinterpreted as a 
recurrence. 

Limitations
This study was a retrospective, single-institution study 

with a relative small size population and these factors 
could be considered limitations. 

To prevent potential inaccuracies in the volume 
measurement of the intracranial lesion, we excluded 
lesions with an initial tumor volume of less than 0.5 cm3 
and a 20% cutoff for volume response categorization 
was chosen. 

In conclusion, effective long-term SRS local volume 
control of brain metastases can be demonstrated at 12 
mo follow-up. Significant tumor volume reduction by 
6 wk post-SRS was associated with long-term volume 
control suggesting that the timing for MR imaging 
follow-up at 6 wk, 9 wk, 12 wk and 12 mo after SRS, 
could be considered the most effective to provide useful 
information to make the best treatment decisions. 
Although it is necessary to validate these results in a 
larger, prospective series, the results are encouraging 
that an early local volume reduction after SRS is 
associated with significant local control for metastatic 
brain lesions.

COMMENTS
Background
Brain metastases account for 20% to 40% of adult cancer and affect both 
survival and quality of life. Brain metastases volume reduction is associated 
with significant local control of the lesions and prolongation of patient’s survival. 
Stereotactic radiosurgery (SRS) is an increasingly used procedure for the 
treatment of primary and metastatic intracranial brain tumors to achieve local 
volume reduction. 

Research frontiers
Volume tumor control capabilities of SRS in the treatment of brain metastases 
is an important factor for post-treatment decision making and delivery salvage 
therapy. 

Innovations and breakthroughs
Volume tumor control capabilities of SRS could be demonstrated trough serial 
magnetic resonance (MR) imaging follow-up. Accurate determination of the 
timing for MR imaging follow-up is crucial for decision making and delivery timely 
salvage therapy. 

Applications
Serial MR imaging follow-up at 6 wk, 9 wk, 12 wk, and 12 mo is the most 
effective timing to demonstrate volume reduction of brain metastases after SRS. 
The information derived from serial MR imaging follow-up could affect clinical 

  Primary cancer type No. of lesions %4 Reduced in 
size at 6 wk1

%4 Pseudo-progression 
(9 wk)2

%4 True-progression (12 mo)3 %4

  Non-small cell lung 
  carcinoma

19 36 12 22   8 15   1   2

  Breast carcinoma  16 29 11 20   7 13   4   7
  Renal cell carcinoma   9 16   1   2   0   0   6 11
  Melanoma 10 19   1   2   0   0   8 15
  Total 54 100 25 46 15 28 19 35

Table 2  Primary cancer types and effective time point for magnetic resonance imaging follow-up to provide useful information for 
the treatment decision

1Number of lesions reduced in size at 6-wk follow-up; 2Number of lesions that presented a transient volume growth (pseudo-progression) at 9-wk follow-
up; 3Number of lesions that presented final volume growth (true-progression) at 12-mo follow-up; 4Percentage of lesions computed over the total number of 
lesions (n = 54).

 COMMENTS
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management and improve survival of these patients.

Terminology
SRS is a procedure for the treatment of primary and metastatic intracranial 
brain tumors. Indications include patients with few, well-defined, and small 
intracranial brain tumors. In SRS, radiations are directly delivered into a brain 
tumor, thus reducing radiation dose of surrounding normal brain tissue and side 
effects such as neurotoxicity, skin damage, nausea and vomiting. The damage 
to the peritumoral brain is further reduced by a step dose gradient at the target 
periphery of the tumor. The objectives of SRS include local tumor control, 
defined as the absence of a substantial (< 25%) increase in tumor volume at 
follow-up MR imaging, improved quality of life, and prolonged survival. 

Peer-review
This study is interesting. However the manuscript would be of higher value to the 
reader if the manuscript focuses on the pseudo-progression period, that period 
is confusing for the practicing physician and can lead to misinterpretation and 
additional or changes in treatment strategies. 
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Abstract
AIM
To show imaging results from application of four-
dimensional (4D) ultrasound lightening technique 
(HDlive™) in clinical obstetrics practice. 

METHODS
Normal and abnormal fetuses at second and third 
trimester of pregnancy undergoing routine scan 
with 4D HDlive™ (5DUS) in the rendering mode are 
described. Realistic features of fetal structures were 
provided by 5DUS in the rendering mode. Normal 
anatomy as well as pathology like cleft lip, hypoplastic 
face, micrognathia, low-set ears, corpus callosum, 
arthrogryposis, aortic arch, left congenital diaphragmatic 
hernia are highlighted in this study. Anatomical details 
of the fetuses were provided by 5DUS with higher 
quality imaging modality compared to those obtained 
using conventional 2D/3D ultrasound. 

RESULTS 
Realistic views of fetal anatomy details were displayed 
by means of 5DUS in the rendering mode, with high 
image quality obtained either in low-risk or in high-risk 
obstetrics population. Corpus callosum, esophagus, and 
aortic arch were obtained in normal fetuses. Cleft lip, 
cleft lip and palate, micrognathia, hypoplastic face, low-
set ears, arthrogryposis, left congenital diaphragmatic 
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hernia, exomphalos, and clitoris hypertrophy were 
clearly rendered by 5DUS application.

CONCLUSION
The use of 5DUS in the rendering mode, when clinical 
available, was diagnostic in a variety of congenital 
anomalies, aided understanding of the parents-to-
be and improved prenatal counseling and perinatal 
management.

Key words: Three-dimensional ultrasound; Four-dimen-
sional ultrasound; HDlive; Second trimester scan; 
Congenital anomalies

© The Author(s) 2016. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Four-dimensional ultrasound using HDlive™ 
allows realistic images of fetal anatomic structures 
in the second trimester of pregnancy. These images 
allow identifying fine details of fetal surface, with better 
understanding both multidisciplinary team and parents. 

Tonni G, Grisolia G, Santana EF, Araujo Júnior E. Assessment 
of fetus during second trimester ultrasonography using HDlive 
software: What is its real application in the obstetrics clinical 
practice? World J Radiol 2016; 8(12): 922-927  Available from: 
URL: http://www.wjgnet.com/1949-8470/full/v8/i12/922.htm  
DOI: http://dx.doi.org/10.4329/wjr.v8.i12.922

INTRODUCTION
The second trimester scan, also called anomaly scan, is 
usually performed between 18-23 wk, and is based on 
a systematic anatomical survey of the fetus, placenta 
and umbilical cord, in order to detect possible fetal 
abnormalities[1]. The ultrasound examination should 
be carried out according to international standard[2] 
and possibly by accredited sonographers who have 
completed appropriate training program by scientific 
societies[3].

The sensitivity and specificity for detection of 
congenital anomalies by means of conventional 2D 
ultrasound may be estimated around 83.5% and 99.8%, 
respectively[4,5]. The technologic advancement gained 
by real-time, high definition three- and four-dimensional 
ultrasound (3D/4DUS), enable acquisition of volume 
that can be analysed online or offline by “navigating” 
within the volume in the three orthogonal planes. 
3D/4DUS post-processing techniques allow anatomical 
details to be investigated in sagittal, axial and coronal 
planes, improving prenatal diagnosis of congenital 
malformations[6-8].

Hereafter, we present a pictorial editorial from 
normal and pathologic cases obtained during second 
and third trimester of pregnancy in low- and in high-risk 
pregnancy using 4D HDlive™ (5DUS) software.

MATERIALS AND METHODS
Ultrasound examinations were performed using 
Voluson E8 apparatus equipped with a transabdominal 
volumetric RAB4D ultrasound probe (GE, Milwaukee, 
WI). Fetal anatomical survey was performed using 
conventional 2D ultrasound, and 3D/4D HDlive™ (5DUS) 
applied both in low- and in high-risk pregnancy. The 
study was approved by the local Ethics Committee of 
both Guastalla Civil (AUSL Reggio Emilia) and “Carlo 
Poma” hospitals (AUSL Mantua), Italy. Four-hundred 
low-risk and seventy-six high-risk pregnant women 
entering the clinical trial gave written informed consent. 
Two consecutive volumes were acquired during transient 
maternal apnea and fetal rest to reduce motion 
artefacts. The sweep took less just than few seconds. 
Acquisition angle of 45-60 degree was used, depending 
on the gestational age. All 3DUS volumes were saved 
both onto the ultrasound equipment and onto a optical 
disk for post-processing analysis. 5DUS application was 
applied to the best 3DUS volume stored and different 

Figure 1  Normal fetal brain at 28 wk of gestation. A: 4DUS using HDliveTM 
shows, with impressive image quality resembling that of gross anatomy, the 
cerebral cortex (ccx), the corpus callosum (cc), the cavum septum pellucidum 
(csp), the thalamus (th) and brainstem (bs) in mid-sagittal plane; B: The same 
images using the conventional 3DUS in the rendering mode.

Figure 2  Normal fetal esophagus at 28 wk of gestation. A and B: 4DUS 
using HDliveTM application may be used to obtain a clear imaging of inner 
structure of esophagus (arrow) during fetal swallowing at the time of routine 
second trimester scan.
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lightening and shadowing adjustments were made 
to obtain the highest image quality rendering. Offline 
analysis was performed using a computer developed 
platform (4DView™, Zipf, Austria); HDlive™ (5DUS) 
software was applied after uploading the software onto 
a personal computer using a freely released flash-drive 
pen.

RESULTS
Realistic views of fetal anatomy details were displayed 

A B

AoA

AoA

DV sp

UV

Figure 3  Normal fetal aortic arch at 28 wk of gestation. 4DUS echocardio-
angiography using HDliveTM application to the study of the great artery and 
veins: the AoA (A, image is rotated), the UV and the DV (B) are rendered with 
an enhanced quality resembling that of an angiographic study (sp, fetal spine). 
AoA: Aortic arch; UV: Umbilical vein; DV: Ductus venosus; sp: Fetal spine.

A B

C D

Figure 4 4DUS using HliveTM (5DUS) lightening technique: Realistic 
rendering in a case (A) of left-sided cleft lip and palate and left-sided cleft 
lip (B). C and D: The same images using the conventional 3DUS in the rendering 
mode.

Figure 5  4DUS using HliveTM showing the right-sided cleft lip and palate 
(arrow) in a fetus with 21 wk-3 d.

Figure 6  4DUS using HDliveTM: Micrognathia (arrow) is clearly rendered.

Figure 7  4DUS using HDliveTM showing a hypoplastic face.

Tonni G et al . Fetus assessment using HDlive software
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by means of 5DUS in the rendering mode, with high 
image quality obtained either in low-risk or in high-
risk obstetrics population. Corpus callosum (Figure 1), 
esophagus (Figure 2), and aortic arch (Figure 3) were 
obtained in normal fetuses. 

Cleft lip (Figure 4), cleft lip and palate (Figure 
5), micrognathia (Figure 6), hypoplastic face (Figure 
7), low-set ears (Figure 8), arthrogryposis (Figure 
9), left congenital diaphragmatic hernia (Figure 10), 
exomphalos (Figure 11), and clitoris hypertrophy (Figure 
12) were clearly rendered by 5DUS application.

DISCUSSION
This pictorial editorial displays a gallery of normal and 
pathologic cases obtained during second and third 
trimester of pregnancy by means of 5DUS in the 
rendering mode. 3D/4DUS with its technical applications 
has resulted in improved diagnostic accuracy compared 
with conventional 2DUS, especially when applied 
to the field of fetal medicine, where high definition 
3D/4DUS produces real-time reconstruction of the fetal 
anatomy[9-13]. HDlive™ imaging often looks like a picture 
taken inside the uterus[14] and may enable detection of 
subtle malformations that may go undiagnosed using 
conventional 2DUS. This may be particularly seen 
when dealing with surface abnormalities such as those 
involving the fetal face where 4DUS, especially with 
HDlive™ rendering mode, may offers a potential imaging 
enhancement. Previous observation has documented 

a role for 3DUS to provide additional information 
compared to 2DUS for the prenatal diagnosis of 
facial, skeletal and neural tube defect[15]. An extended 
review from Tonni et al[16] has described the technical 
advancements obtained over the past 20 years by 
3D/4DUS compared to conventional 2DUS in different 
fields of application, particularly in prenatal diagnosis. 
The study of the fetal face, palate and detection rate 
of cleft lip and cleft palates has resulted enhanced 
when 3D/4DUS has complemented 2DUS, either in 
the first as in the second trimester of pregnancy[17-23]. 
Undoubtedly, one of the main advantages of 3D/4DUS 
is represented by the possibility of volume acquisition 
compared with “flat” images obtained by 2DUS. Once 
a volume is acquired, it can be further manipulate 
by “navigating” online or offline within the volume. 
In addition, anatomical details can be displayed in all 
the three orthogonal planes. Furthermore, 3D/4DUS 
can be used in training program as the volume can 
be freely section on demand and send to expert at 
remote site using DICOM (digital communication in 
medicine) technology[16]. Moreover, observations have 
shown that 4DUS has been a valuable diagnostic 
investigation to assess fetal neurobehavioral state as it 
allows visualization of yawning, sucking, smiling, and 
blinking activity[13,14]. 5DUS differs from conventional 
rendering methods because it uses a fixed virtual light 
source that calculates the propagation of light through 
skin and tissue. Operators can freely select the light 
source at any angle relative to the ultrasound volume to 

A B

Figure 8  4DUS using HDliveTM enabled a clear snapshot 
of low-set ears in this case detected at 24 wk of gesta-
tion.

Figure 9  Arthrogryposis multiplex congenital. A: 4DUS 
using HDliveTM, note the characteristic muscular contractions 
causing fingers deviation; B: The same using the conventional 
3DUS in the rendering mode.

Tonni G et al . Fetus assessment using HDlive software
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enhance anatomical details[11]. 5DUS is a relatively easy 
technique to be applied and does not require specific 
clinical training for operators already confident with 
post-processing 3D/4DUS techniques. The time needed 
to obtain online the desired reconstructed image and 

display it on the ultrasound screen can be estimated 
usually in about 1 minute, depending upon experience 
gained and anatomical details that need to be rendered. 
For comparison analysis of image quality between 3DUS 
vs 4D HDlive™, it is advisable to save and stored the 
3DUS volumes on the ultrasound apparatus and to 
export them onto a flash-drive pen or onto an optical 
disk for further offline post-processing analysis. This is 
required because once HDlive™ is applied to a 3DUS 
volume, the rendered image will be saved automatically 
in this modality and previous 3DUS volume is lost. 
5DUS may represents a complementary diagnostic 
tool to confirm fetal abnormalities and to characterize 
anatomical details such as those seen in rare syndromes 
thus improving accurate prenatal diagnosis, genetic 
counseling and antenatal management in targeted 
cases. Importantly, these “life-like” images provided by 
HDlive™ may represent a technological improvement 
in 3D imaging that may strengthen the maternal-fetal 
bonding process[24,25]. HDlive™ software has shown 
limitations in conditions of poor imaging quality, such 
as in cases of increased maternal body mass index, 
presence of abdominal scar or uterine myomata as 
well as fetal positioning in utero. In the current clinical 
trial, unsuccessful volume acquisition for adequate 4D 
HDlive™ rendering has occurred in 6.75% of cases in 
low-risk and 3.9% in high-risk pregnancies. However, 
some of these clinical limitations may be overwhelm by 
transvaginal approach. Nonetheless, further studies will 
be needed to assess the role of 5DUS and its clinical 
validation before the use of this advanced lightening 
software may be included in obstetrics practice and be 
used at the time of routine scan in low-risk women or 
applied to the study of structural fetal malformations in 
high-risk pregnancies.

COMMENTS
Background
The second trimester scan, also called anomaly scan, is usually performed 
between 18-23 wk, and is based on a systematic anatomical survey of the fetus, 
placenta and umbilical cord, in order to detect possible fetal abnormalities. The 
ultrasound examination should be carried out according to international standard 
and possibly by accredited sonographers who have completed appropriate 
training program by scientific societies. The sensitivity and specificity for 
detection of congenital anomalies by means of conventional 2D ultrasound may 
be estimated around 83.5% and 99.8%, respectively.

Research frontiers
The technologic advancement gained by real-time, high definition three- and 
four-dimensional ultrasound (3D/4DUS), enable acquisition of volume that 
can be analysed online or offline by “navigating” within the volume in the three 
orthogonal planes. Previous observation has documented a role for 3DUS to 
provide additional information compared to 2DUS for the prenatal diagnosis of 
facial, skeletal and neural tube defect.

Innovations and breakthroughs
The authors present a pictorial editorial from normal and pathologic cases 
obtained during second and third trimester of pregnancy in low- and in high-risk 
pregnancy using 4D HDliveTM (5DUS) software.

Figure 10  4DUS using HDliveTM application in a case of left congenital 
diaphragmatic hernia. AoA: Aortic arch; L: Lung.

Figure 11  4DUS using HDliveTM application in a fetus with exomphalos 
(curved arrow) was diagnosed at early second trimester scan (15 wk-3 d).

Figure 12  4DUS using HDliveTM application in a case of clitoris hyper-
trophy (arrow) detected at 27 wk of gestation in an intersexual state (post-
natal chromosomal assessment resulted in 46,XY karyotype).
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L Stomach L
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Applications
3D/4DUS post-processing techniques allow anatomical details to be investigated 
in sagittal, axial and coronal planes, improving prenatal diagnosis of congenital 
malformations.

Peer-review
Well written manuscript, nice pictures.
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Abstract
This case study reports the successful outcome of 
horizontal root fractures of two different patients, which 
took place in permanent incisors. Report 1 describes a 
case of a 29-year-old patient who suffered a mandibular 
trauma affecting mainly the lower central incisors, 
caused by a car accident. A panoramic radiograph was 
taken right after the accident and showed a horizontal 
root fracture in the middle third of tooth 42, which went 
untreated. Report 2 illustrates a case of a 17-year-
old male patient who searched for orthodontic therapy 
and the periapical radiograph showed horizontal root 
fracture in tooth 11 caused by a previous trauma, which 
went untreated as well. There was healing through the 
reestablishment of pulp activity and dental coloration 
without professional intervention.

Key words: Horizontal root fractures; Pulpal vitality; 
Periapical radiograph

© The Author(s) 2016. Published by Baishideng Publishing 
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Core tip: The innovative arguments of this paper is 
the importance of the follow up procedure conceding 
the biological response of each patient facing root 
fractures; especially apex remodeling, calcification and 
root resorptions. Dentists must be aware that such 
biological responses may happen without professional 
interference, which, made previously, might have a 
complete different outcome.
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INTRODUCTION
Horizontal root fractures have been more frequently 
detected in the maxillary upper anterior region, affecting 
mainly the second life decade of the male patient 
group[1]. They usually occur in fully erupted teeth with 
complete root formation[2,3]; frequently seen in the 
middle third of the root followed by apical and coronal 
third fractures[4]. This paper aims to describe two cases 
of root fracture with pulpal vitality which healed without 
professional intervention.

CASE REPORT
Case report 1
A 29-year-old male patient searched for dental 
assistance on September 2009 for extraction of the 
tooth 42 by his own will. He had suffered a trauma 
caused by a car accident back in May 2008. A panoramic 
radiograph taken at the time of the accident showed 
a two fragment middle third horizontal root fracture 
in tooth 42 (Figure 1A). After intraoral examination, 
normal aspects were observed in tooth 42, including 
color, absence of mobility and positive response to 
pulp sensibility test (EndoFrost®) (Figure 1B and C); 
Tooth 41 was slightly grayish, responding negatively to 
sensibility test. Periapical radiograph (Figure 1D) and 
cone beam tomography showed hypodense image in 
the periapex in tooth 41. Tooth 42 showed a hypodense 
image in the middle third of the root confirming a 
fracture with no hypodense lesions in the periodontium. 
As the tooth 42 responded positively to pulp sensibility 
test, the hypodense line was interpreted as cicatricial 
fibrosis (Figure 2). Tooth 44 showed external dentinal 
root resorption plus remodeling of the apex, also 
showing a calcification spot in the apical third of the root 
canal, while tooth 43 had its apical third obliterated. The 
sensibility test to cold was negative. After the diagnosis 
the patient did not return for the accomplishment of the 
endodontic treatment.

Case report 2
A 17-year-old male patient’s periapical radiographic 
examination for orthodontic purposes showed a hori-
zontal radiolucent line in the root of tooth 11, suggesting 
root fracture. The pulp chamber and the cervical third 
showed normal aspects, as well as the periapex. The 
patient reported trauma in the region back in 2006. In 
2008 in a routine dental appointment the horizontal 
root fracture was then detected. The tooth was vital 
and thus a clinical and radiographic follow-up took place 

in September 2015. A cone beam tomography was 
then requested and confirmed horizontal root fracture 
in tooth 11 with fragments discreetly not aligned, 
showing no signs of resorption in the root and the 
periapical bone tissue around the fracture (Figure 3A). 
The root segments were juxtaposed and aligned in the 
mesio-distal direction (Figure 3B, D and F) and slightly 
misaligned in buccolingual direction (Figure 3C and D). 
In Figure 4, observed horizontally root fractured in the 
radiographic takings distoradial and ortoradial. Clinically, 
the tooth showed no crown mobility or discoloration 
and its vitality continued to be demonstrated by the 
sensibility test.

DISCUSSION
The outcomes for traumatized teeth can be altered by 
many situations, such as the stage of root formation, 
periodontal conditions and trauma type and intensity. 
Normally, when the patients search for dental care in 
the case of a trauma, current literature instructs to 
immobilize the tooth with a semi-rigid splint for 4 wk 
up to 4 mo (Table 1)[5-9]. Sensibility tests, immediately 
performed in the post trauma, are not indicated since 
they might worsen the clinical condition after the 
accident[2,5].

It is also possible that, in the cases described in 
this paper, the connective tissue of the pulp has not 
been ruptured at all, although a cleavage has affected 
the root. Particularly in report 1, the initial radiograph 
suggests that the traumatized tooth was free of mech-
anical forces by the absence of the antagonist tooth. 
The apex was closed, and its potential entrance for 
blood vessels no longer existed. Therefore, the only 
possible entrance available was the connective tissue 
from the periodontal ligament accessed by the fracture.

A similar situation took place in report 2. The impact 
seems to have been greater so that the fragments 
became apart, and a new blood supply seems to 
have been independently formed in both fragments. 
Paradoxically, it was the fracture itself that was the likely 
responsible for the existence of an additional blood 
supply in both cases. Another interesting fact is that 
in both cases, the fractured teeth were not the main 
cause that made the patients visit the dentist. In report 
1, tooth 41 was the one with the best prognosis, and 
had a final completely paradoxal outcome, presenting a 
periapical lesion and the need of endodontic treatment 
due to pulp necrosis. On the other hand, patient in 
report 2 had no complaint at all. It is worth mentioning 
that in both cases the teeth remained untreated and 
were not splinted[10].

The study of orthodontics combined with root fra-
ctured teeth orthodontic movement is crucial because 
pressure applied on traumatized teeth displays small 
risks of resorption when pulp condition is normal. How-
ever, whether treating or not teeth with root fractures is 
still an endodontic clinical dilemma[11].
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According to Brin et al[11] previously traumatized 
teeth are most prone to developing root resorptions, 
although in a moderate way, followed by the group of 

patients with intact incisors and the group of children 
who underwent traumatic history in the upper incisors, 
and they concluded that the combination of trauma and 

Figure 1  Radiographic and clinical as immobilize the tooth with a semi-rigid splint for 4 wk up to 4 mo. A: Panoramic radiograph taken at the moment of the 
accident; B: Close at the fractured tooth at the time of the accident; C: Intraoral view. Tooth 41 was slightly grayish while tooth 42 had normal color and no mobility was 
present; D: Periapical radiograph, tooth 41 with a radiolucent lesion compatible with periapical lesion; tooth 42 with a thin radiolucent line at the fractured line.

Figure 2  Cone beam tomography images. A: Cone beam computed tomography (CT) shows apex remodeling and root canal apical third obliteration of teeth 44 
and 43, as well as fracture line in tooth 42; B: Cone beam CT shows oblique fracture line along the middle third of tooth 42. LH: Horizontal line.

  Time Root fracture Alveolar fracture

  4 wk Splint removal1, clinical and radiographic control Splint removal and clinical and radiographic controls
  6-8 wk Clinical and radiographic control Clinical and radiographic control
  4 mo Splint removal2 and radiographic control Clinical and radiographic control
  6 mo Clinical and radiographic control Clinical and radiographic control
  1 yr Clinical and radiographic control Clinical and radiographic control
  Yearly for 5 yr Clinical and radiographic control Clinical and radiographic control

Table 1  Procedures Suggested by the American Association of Endodontics for fractured permanent teeth and alveolar fractures

1Splint removal in apical third and mid root fractures; 2Splint removal with a root fracture near the cervical area.

A B

C D

A B

LH
LH

LH LH

4.87

5.14

15.8314.54HP/RBS

44 42 76 78

LH

Silva L et al . Horizontally fractured teeth - case reports



931 December 28, 2016|Volume 8|Issue 12|WJR|www.wjgnet.com

orthodontic tipping is more susceptible to complications, 
being the most common root resorption and loss 
of vitality. When roots are fractured there may be 
the formation of hard, connective or granulomatous 
tissues in the fracture line, which is related to the kind 
of injury[12]. As for what concerns orthodontics, it is 
possible to move a fractured tooth, since due care and 
follow ups are taken[13-15].

In order to offer the patient a better chance of 
healing, an appropriate plan of treatment is essential 
after an injury, basically because dentoalveolar traumatic 
outcomes must be assessed with the aid of clinical and 
imaginological sources[15,16]. 

Healey et al[15] presented 2 case reports concerning 

orthodontic movement of two teeth with root fractures, 
showing that it is possible to accomplish the movement 
but suggested a period of rest for the teeth affected 
because of the real possibility of increased root resorp-
tion risks. They added that such rest period is necessary 
for the dissipation of the stress inflicted to the periodon
tal ligament, in order to achieve the recovery of the 
inflamed tissues.

When a tooth undergoes trauma, the composing 
tissues may respond to it in different ways or with 
associations, such as those detected in the cone beam 
tomography of report 1, in which teeth 44 and 43 
responded with partial pulp calcification; in tooth 44 
it can also be observed external root resorption with 
apex remodeling, being possible the visualization of 
hypodense area suggestive of the periodontal ligament 
maintenance. In tooth 44, it can also be observed 
external root resorption with apex remodeling. Tooth 41 
showed hypodense image in the periapex suggestive of 
apical radioluscence, while tooth 42 showed hypodense 
image suggestive of fracture and due to the vital 
response of the pulp it can be interpreted as cicatricial 
fibrosis. Electrical pulp test, as well as thermal tests 
are indicated right after an injury, and the absence 
of a positive result in the first weeks does not mean 
that a tooth needs treatment[5,7,9,17]. Therefore, our 
paper concludes that only clinical evaluation with visual 
inspection, pulp sensibility tests and periodical image 
assessment are able to direct the conduct and/or 
treatment to be taken for traumatized teeth.

Figure 3  Cone beam tomography. A: Panoramic coronal reconstruction of the maxilla; B: Periapical Radiograph, showing horizontal root fracture in the middle 
third of tooth 11; C and D: Sagital reconstructions of tooth 11, from mesial to distal sequence; E: Coronal reconstructions of the upper incisors, from buccal to lingual 
direction; F: 3D reconstructions (buccal and lingual views).

Figure 4  Digital periapical radiography. A: Distoradial incidence; B: 
Ortoradial incidence. Horizontally root fractured observed in the tooth 11.
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Case characteristics
A 29-year-old and a 17-year-old patients with no significant history presented 
horizontal root fractures detected by routine clinical examination, which went 
untreated, and undetected until the moment of the dental appointment.

Clinical diagnosis
Both patients were asymptomatic and the fractures were detected by routine 
examinations.

Differential diagnosis
Root perforation, periodontal disease, pulpitis.

Imaging diagnosis
Panoramic radiograph in case one taken at the moment of the accident showed 
horizontal fractures in the middle third of tooth 42. Periapical radiograph at the 
moment of the appointment showed a thin radiolucent image and cone beam 
tomography showed oblique fracture with signs of healing.

Pathological diagnosis
Horizontal root fractures.

Related reports
Horizontal root fractures are more common in anterior teeth and may heal 
spontaneously or under professional intervention.

Term explanation 
Horizontal and vertical fractures are the most common traumatic dental injuries 
whereas crown fractures are the second most commonly reported. 

Experiences and lessons
Horizontal root fractures usually offer bad prognosis for the teeth involved; which 
may result in dental extractions. When the professional is aware of the fracture 
at the time it happened he may interfere endodontically or by splitting the teeth 
together to stimulate healing. This article shows that sometimes not interfering 
professionally may be a choice when dealing with root fractures.

Peer-review
This is a well-structured case report.
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Abstract
This letter is a commentary on the article titled “Evaluation 
of variations in sinonasal region with computed tomo-
graphy”, published in the January 2016 issue of World 
Journal of Radiology. The authors definition of the 
secondary middle turbinate is incorrect. The authors 

stated that the secondary middle turbinate is an 
accessory turbinate that is seen between the superior 
and middle turbinates. It should originate from the middle 
meatus posterosuperior to the ethmoid infundibulum.

Key words: Anatomic variations; Secondary middle 
turbinate; Concha; Paranasal sinus; Tomography
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Core tip: This letter is a commentary on the article 
titled “Evaluation of variations in sinonasal region 
with computed tomography,” published in the January 
2016 issue of World Journal of Radiology. The authors 
evaluated the paranasal sinus tomography of 400 
patients to determine the frequency of 39 anatomic 
variations. Their study required a great deal of time and 
effort. Unfortunately, their definition of the secondary 
middle turbinate and the figure that showed its 
structure are incorrect. It should originate, however, 
from the middle meatus posterosuperior to the ethmoid 
infundibulum, not from between the middle and 
superior turbinates. 

Çağıcı CA. Commentary on: “Evaluation of variations in 
sinonasal region with computed tomography”. World J Radiol 
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TO THE EDITOR
I read the article by Dasar et al[1] with great interest. 
The authors evaluated the paranasal sinus tomography 
of 400 patients to determine the frequency of each of 
39 possible anatomic variations. Their study required 
a great deal of time and effort. Unfortunately, their 
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definition of the secondary middle turbinate and the 
figure that showed its structure are incorrect.

The authors stated that the secondary middle turbi
nate is an accessory turbinate that is seen between the 
superior and middle turbinates[1]. It should originate, 
however, from the middle meatus posterosuperior 

to the ethmoid infundibulum, not from between the 
middle and superior turbinates[2]. The secondary middle 
turbinate is not part of the middle turbinate. The 
appearance of a secondary middle turbinate is probably 
due to the partial absence of the anterior wall of the 
ethmoidbulla[2].

Their figure 3D, which was used to illustrate the 
secondary middle turbinate, is also not appropriate. 
A sagittal cleft on the middle turbinate is seen in this 
figure, which is not an appropriate example for the 
secondary middle turbinate. The secondary middle 
turbinate is actually a bony prominence that extends 
from the lateral nasal wall to the middle meatus, as 
shown in Figure 1[2].

REFERENCES
1 Dasar U, Gokce E. Evaluation of variations in sinonasal region 

with computed tomography. World J Radiol 2016; 8: 98-108 [PMID: 
26834948 DOI: 10.4329/wjr.v8.i1.98]

2 Khanobthamchai K, Shankar L, Hawke M, Bingham B. The 
secondary middle turbinate. J Otolaryngol 1991; 20: 412-413 
[PMID: 1774799]

P- Reviewer: Chandra R, Lobo D, Rapidis AD, Shen J, Sali L, 
van Beek EJR    S- Editor: Kong JX    L- Editor: A    

E- Editor: Wu HL

mt

smt

Figure 1  Secondary middle turbinate is apparent on the right side of the 
figure. smt: Secondary middle turbinate; mt: Middle turbinate. 
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