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Abstract
BACKGROUND 
It has been reported that deep learning-based reconstruction (DLR) can reduce 
image noise and artifacts, thereby improving the signal-to-noise ratio and image 
sharpness. However, no previous studies have evaluated the efficacy of DLR in 
improving image quality in reduced-field-of-view (reduced-FOV) diffusion-
weighted imaging (DWI) [field-of-view optimized and constrained undistorted 
single-shot (FOCUS)] of the pancreas. We hypothesized that a combination of 
these techniques would improve DWI image quality without prolonging the scan 
time but would influence the apparent diffusion coefficient calculation.

AIM 
To evaluate the efficacy of DLR for image quality improvement of FOCUS of the 
pancreas.

METHODS 
This was a retrospective study evaluated 37 patients with pancreatic cystic lesions 
who underwent magnetic resonance imaging between August 2021 and October 
2021. We evaluated three types of FOCUS examinations: FOCUS with DLR 
(FOCUS-DLR+), FOCUS without DLR (FOCUS-DLR−), and conventional FOCUS 
(FOCUS-conv). The three types of FOCUS and their apparent diffusion coefficient 
(ADC) maps were compared qualitatively and quantitatively.

RESULTS 
FOCUS-DLR+ (3.62, average score of two radiologists) showed significantly better 
qualitative scores for image noise than FOCUS-DLR− (2.62) and FOCUS-conv 
(2.88) (P < 0.05). Furthermore, FOCUS-DLR+ showed the highest contrast ratio 
(CR) between the pancreatic parenchyma and adjacent fat tissue for b-values of 0 

https://www.f6publishing.com
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and 600 s/mm2 (0.72 ± 0.08 and 0.68 ± 0.08) and FOCUS-DLR− showed the highest CR between cystic lesions and 
the pancreatic parenchyma for the b-values of 0 and 600 s/mm2 (0.62 ± 0.21 and 0.62 ± 0.21) (P < 0.05), respectively. 
FOCUS-DLR+ provided significantly higher ADCs of the pancreas and lesion (1.44 ± 0.24 and 3.00 ± 0.66) 
compared to FOCUS-DLR− (1.39 ± 0.22 and 2.86 ± 0.61) and significantly lower ADCs compared to FOCUS-conv 
(1.84 ± 0.45 and 3.32 ± 0.70) (P < 0.05), respectively.

CONCLUSION 
This study evaluated the efficacy of DLR for image quality improvement in reduced-FOV DWI of the pancreas. 
DLR can significantly denoise images without prolonging the scan time or decreasing the spatial resolution. The 
denoising level of DWI can be controlled to make the images appear more natural to the human eye. However, this 
study revealed that DLR did not ameliorate pancreatic distortion. Additionally, physicians should pay attention to 
the interpretation of ADCs after DLR application because ADCs are significantly changed by DLR.

Key Words: Deep learning-based reconstruction; Magnetic resonance imaging; Reduced field-of-view; Diffusion-weighted 
imaging; Pancreas

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This study evaluated the efficacy of deep learning-based reconstruction (DLR) for image quality improvement in 
reduced-field-of-view diffusion-weighted imaging (DWI) of the pancreas. DLR can significantly denoise images without 
prolonging the scan time or decreasing the spatial resolution. The denoising level of DWI can be controlled to make the 
images appear more natural to the human eye. However, this study revealed that DLR did not ameliorate pancreatic 
distortion. Additionally, physicians should pay attention to the interpretation of apparent diffusion coefficients (ADCs) after 
DLR application because ADCs are significantly changed by DLR.

Citation: Takayama Y, Sato K, Tanaka S, Murayama R, Goto N, Yoshimitsu K. Deep learning-based magnetic resonance imaging 
reconstruction for improving the image quality of reduced-field-of-view diffusion-weighted imaging of the pancreas. World J Radiol 
2023; 15(12): 338-349
URL: https://www.wjgnet.com/1949-8470/full/v15/i12/338.htm
DOI: https://dx.doi.org/10.4329/wjr.v15.i12.338

INTRODUCTION
Diffusion-weighted imaging (DWI) is a widely adopted magnetic resonance imaging (MRI) technique in clinical practice
[1-3]. DWI is useful for detecting and characterizing malignant and non-malignant tumors[2,4]. The detection of 
pancreatic cancer using DWI has been reported to be equivalent to that using dynamic contrast-enhanced computed 
tomography when DWI is added to magnetic resonance cholangiopancreatography (MRCP)[5,6]. DWI can be used to 
predict the histological grade of pancreatic neuroendocrine tumors and differentiate malignant from benign intraductal 
papillary neoplasms (IPMNs)[7-9].

The diagnosis of abdominal lesions based on DWI can be difficult due to artifacts such as motion, ghosting, and 
distortion; the pancreas is especially susceptible to these artifacts because it exists deep in the abdomen. Reduced-field-of-
view (reduced-FOV) DWI is one solution to reduce artifacts in DWI[8,10-13]. In particular, imaging of the pancreas has 
been shown to improve image quality, such as visualization of anatomical structures, contrast-to-noise ratio (CNR), and 
lesion conspicuity, and reduce artifacts, such as ghosting, susceptibility, motion, and aliasing artifacts, compared to full-
FOV DWI[8,10,14]. Further improvements in the image quality of pancreatic DWI would allow radiologists to detect 
pancreatic tumors earlier, especially small pancreatic lesions, and help predict tumor malignancy or aggressiveness.

Recently, deep learning (DL) has been applied to radiology for the detection of lesions, evaluation, and image 
segmentation[9,15,16]. DL is a subcategory of machine learning; therefore, a subset of artificial intelligence[17,18]. DL-
based reconstruction (DLR) can reduce image noise and truncation artifacts, improving the signal-to-noise ratio (SNR) 
and the sharpness of anatomical structures and lesions[9,15,16]. We hypothesized that a combination of reduced-FOV 
DWI and DLR would improve the DWI image quality of the pancreas without prolonging scan time. To the best of our 
knowledge, no previous studies have evaluated this hypothesis. This study aimed to evaluate the efficacy of DLR in 
improving the image quality in reduced-FOV DWI of the pancreas.

https://www.wjgnet.com/1949-8470/full/v15/i12/338.htm
https://dx.doi.org/10.4329/wjr.v15.i12.338
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Figure 1 A summary flowchart of the patient selection. MRI: Magnetic resonance imaging; MR: Magnetic resonance; DLR: Deep learning-based 
reconstruction.

MATERIALS AND METHODS
Patients
This study was approved by the Institutional Review Board of our hospital. The requirement of written informed consent 
was waived because this was a retrospective analysis of image post-processing of clinical magnetic resonance (MR) data. 
Between August 2021 and October 2021, 157 consecutive patients who underwent pancreatic MRI at our institute were 
investigated. The inclusion criteria were as follows: (1) Patients undergoing annual MRI studies for follow-up of 
pancreatic cystic lesions; (2) whose MR examinations were performed using an assigned MR scanner; and (3) previous 
pancreatic MR images were scanned before the advent of DLR, but the latest pancreatic MR images were performed 
using DLR. Patients were excluded if the pancreas could not be evaluated due to severe distortion. Ultimately, 37 patients 
[15 females, 22 males; median age (range), 66 years (41–85 years)] were enrolled. Figure 1 shows a flow chart of the 
patient selection process. Among the 37 patients, 21 were suspected to have IPMN on endoscopic retrograde cholan-
giopancreatography and/or MRI. The other 16 patients were diagnosed with unspecified pancreatic cystic lesions, such 
as IPMN and lymphoepithelial cysts, but their diagnosis was not confirmed.

MRI
All examinations were performed using a clinical 3.0-Tesla MR system (Discovery MR750w 3.0T; GE Healthcare, 
Waukesha, WI, United States). In addition to routine MRI, such as T1-weighted imaging, T2-weighted imaging, full-FOV 
DWI, and MRCP, each patient underwent reduced-FOV DWI with field-of-view optimized and constrained undistorted 
single-shot (FOCUS).

The DLR, i.e., AIR™ Recon DL (GE Healthcare), is a vendor-supplied MRI reconstruction algorithm based on a deep 
convolutional network trained on a database of more than 10000 pairs of artifact-free, high-SNR, high-spatial-resolution 
image, plus the corresponding low SNR, low-spatial-resolution images[19]. It converts truncation artifacts into improved 
image sharpness while simultaneously denoising the images[19]. The AIR™ Recon DL was already trained before being 
installed on the assigned MRI machine, so it was ready to integrate into our MRI reconstruction pipeline. Our motivation 
for introducing DLR was to improve the image quality of FOCUS of the pancreas, because it suffers from a low SNR and 
the limitation of not providing good results at higher b-value settings.
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Table 1 Details of imaging parameters

Parameters FOCUS-DLR+/– FOCUS-conv

Repetition time, ms 3000–10000 3500–15000

Echo time, ms 60 60

Flip angle, degree 90 90

FOV, mm2 220 × 110 220 × 110

Matrix 120 × 64 130 × 40

FOV reduction Anterior-posterior Anterior-posterior

Slice thickness, mm 3 4

Slice gap, mm 3 5

Number of slices 20–30 15–20

Number of excitations 4 8

b-values, s/mm2 0 and 600 0 and 600 

Band width, Hz/pixel 1950 1300

Respiratory compensation Respiratory-triggered with navigator echo Respiratory-triggered with or without navigator 
echo

Deep learning reconstruction factor Moderate N/A

Scan time, min 2–5 3–10

The repetition time, number of slices and scan time varied depending on the patients' condition. DLR: Deep learning-based reconstruction; FOCUS: Field-
of-view optimized and constrained undistorted single-shot; FOCUS-conv: Conventional field-of-view optimized and constrained undistorted single-shot; 
FOV: Field of view; N/A: Not applicable.

In this study, three types of FOCUS were evaluated. First, two types of FOCUS images are generated from a single set 
of raw FOCUS scanning data. One type of FOCUS was reconstructed with the use of DLR; it is referred to hereafter as 
“FOCUS-DLR+.” The other type of FOCUS was reconstructed without DLR (“FOCUS-DLR−”). Furthermore, all enrolled 
patients had undergone a previous MR examination that included a conventional FOCUS (“FOCUS-conv”), which was 
widely used in clinical practice before the advent of DLR, and before other improvements that are currently standard on 
the MR scanner. The average difference (range) in the length of time between FOCUS-DLR+/− and FOCUS-conv was 
842.8 (181–2007) d.

The details of the imaging parameters of FOCUS-DLR+/− and FOCUS-conv are shown in Table 1. A two-dimensional 
(2D) spatially selective echoplanar radiofrequency (RF) excitation pulse was used for FOCUS. This reduces the excitation 
volume in the phase-encoding and slice-selective directions[11]. In a 2D RF pulse, the displacement between fat and water 
is designed such that the excited fat profile is completely outside the excited water profile; therefore, a fat-suppression 
technique is unnecessary[11]. A b-value of 600 s/mm2 was used as the maximum b-value in this study, because FOCUS-
conv with a b-value of 600 s/mm2 provided acceptable image quality to visualize the pancreatic parenchyma. We also 
obtained an apparent diffusion coefficient (ADC) map for each type of FOCUS based on the signal intensity (SI) decay of 
each pixel on DWI with b-values of 0 and 600 s/mm2.

Image assessment
We conducted qualitative and quantitative comparisons among the three FOCUS types and their ADC maps. The 
comparison between FOCUS-DLR+ and FOCUS-DLR− was aimed at evaluating DLR by comparing the efficacy of DLR to 
improve DWI image quality and assessing ADC maps. We also conducted a comparison between FOCUS-DLR+ and 
FOCUS-conv and between FOCUS-DLR− and FOCUS-conv. This was because the differences between FOCUS-DLR+/− 
and FOCUS-conv included not only the use of DLR but also updates to the MR scanner, including the update of the MR 
console to include the AIR™ Recon software.

A study coordinator (Takayama Y, with 23 years of experience in interpreting abdominal MRI) searched and displayed 
the patients’ MRI datasets using a picture archiving and communication system (PACS) (Rapideye, Canon Medical 
Systems, Tokyo). For qualitative comparison: (1) Sharpness of the pancreatic contour; (2) image noise; (3) distortion of the 
pancreas; (4) visualization of pancreatic cystic lesions; and (5) visualization of the main pancreatic duct (MPD) were 
independently evaluated by two radiologists (R1: Tanaka S and R2: Sato K, with 7 and 6 years of experience in 
interpreting abdominal MRI, respectively), who were blinded to imaging information and the patient’s clinical data. (1), 
(2), (3), and (4) were evaluated using each type of FOCUS with a b-value of 600 s/mm2, and (5) was evaluated using ADC 
maps. Qualitative assessments were performed using a 4-point scoring system. The image-quality scores are listed in 
Table 2.
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Table 2 Image-quality scores in the qualitative assessment

Qualitative 
assessment 1 2 3 4

Sharpness of the 
pancreas contour

Entire pancreas contour 
is unclear

< 50% of the pancreas contour is clear ≥ 50% of the pancreas contour is 
clear

Entire pancreas contour is 
clear

Image noise Severe noise; no visual-
ization of any organs

Moderate noise; compromised 
diagnostic capability of FOCUS is 
more than ≥ 50% of the image

Mild noise; compromised the 
diagnostic capability of FOCUS is 
< 50% of the image

No or slight noise on the 
image

Distortion of the 
pancreas

Severe distortion; no 
visualization of the whole 
pancreas

Moderate distortion; no visualization 
is ≥ 50% of the pancreas

Mild distortion; no visualization 
is < 50% of the pancreas

No distortion of the 
pancreas

Visualization of 
pancreas cystic 
lesion 

No visualization of 
pancreas cystic lesion

Pancreas cystic lesion is visible, but 
its SI is low

Pancreas cystic lesion is visible 
with high SI, but its contour is 
unclear

Pancreas cystic lesion is 
clearly visible with high SI 
and clear contour

Visualization of 
MPD on ADC map

No visualization of MPD Visible MPD is < 50% of the pancreas Visible MPD is ≥ 50% of the 
pancreas

Whole MPD is visible

MPD: Main pancreatic duct; ADC: Apparent diffusion coefficient; SI: Signal intensity; FOCUS: Field-of-view optimized and constrained undistorted single-
shot.

For quantitative comparison, we calculated the following: (1) Contrast ratios (CRs) between the pancreatic parenchyma 
and adjacent fat tissue, hereafter referred to as “CRpancreas-fat”; (2) CRs between pancreatic cystic lesion and pancreatic 
parenchyma (“CRlesion-pancreas”); (3) the ADC of pancreatic parenchyma (“ADCpancreas”); and (4) the ADC of pancreatic cystic 
lesions (“ADClesion”) for the three types of FOCUS and their ADC maps after drawing polygonal regions of interest (ROIs) 
on the pancreatic parenchyma, adjacent fat tissue and pancreatic cystic lesion. CRs were calculated for each type of 
FOCUS, with b-values of 0 and 600 s/mm2. CRs and ADCs were evaluated by the same two radiologists (R1 and R2) 
using the same PACS after completion of the qualitative assessments. CRpancreas-fat and CRlesion-pancreas were calculated instead 
of SNR or CNR because: (1) FOCUS does not include background air within the imaging area; and (2) a parallel imaging 
technique was used for the scan; thus, it was impossible to measure background air noise. CRs were calculated using the 
following formula:

CRpancreas-fat = (SIpancreas – SIfat)/ (SIpanceras + SIfat)
CRlesion-pancreas = (SIlesion – SIpancreas)/ (SIlesion + SIpancreas)
SIpancreas is the SI of the pancreatic parenchyma, SIfat is the SI of adjacent fat tissue, and SIlesion is the SI of the pancreatic 

cystic lesion. In this study, all CRs are presented as absolute values.
Regarding the calculation of CRs and ADCs, the routine MRI findings of the patients were used for the localization of 

MPD and pancreatic cystic lesions. To calculate CRpancreas-fat and ADCpancreas, three as-large-as-possible polygonal ROIs were 
drawn for each patient on the head, body, and tail of the pancreas to avoid MPD, lesions, and artifacts on the FOCUS 
images using b-values of 0 and 600 s/mm2. Three additional large-as-possible polygonal ROIs were drawn near the head, 
body, and tail of the pancreas to avoid vessels, lesions, air, and artifacts for each patient. For CRlesion-pancreas and ADClesion, as-
large-as-possible polygonal ROIs were drawn within the pancreatic cystic lesion and the adjacent pancreatic parenchyma 
on the same axial slice where the lesions showed the maximum diameter. If there were several lesions in the pancreas, the 
largest lesion was selected for the calculation.

The same ROIs were duplicated for the FOCUS-DLR+, FOCUS-DLR−, and ADC maps. ROIs of similar size for FOCUS-
conv and its ADC map were drawn as those of FOCUS-DLR+/−. In addition to qualitative and quantitative comparisons, 
we compared the scan time between FOCUS-DLR+/− and FOCUS-conv.

Statistical analysis
To compare image-quality scores, CRs, and ADCs among the three types of FOCUS, the Friedman test was performed. 
When the Friedman test showed a significant result, the Bonferroni post-hoc test was performed for pairwise 
comparisons among the three types of FOCUS.

The inter-reader agreement between the image-quality scores of the two radiologists was analyzed using weighted 
kappa statistics. The kappa values are interpreted as follows: < 0: No agreement; 0–0.20: Slight agreement; 0.21–0.40: Fair 
agreement; 0.41–0.60: Moderate agreement; 0.61–0.80: Substantial agreement; and 0.81–1.00: Almost perfect agreement.

Comparisons of CRs and ADCs among the three types of FOCUS were analyzed after the measurement results of the 
two radiologists were combined because it was difficult for them to draw the same ROIs at the same locations of the 
pancreatic parenchyma, adjacent fat tissue, and pancreatic cystic lesions. Finally, the paired t-test was performed for the 
comparison of scan time between FOCUS-DLR+/− and FOCUS-conv. All statistical analyses were performed with IBM 
SPSS Statistics 25.0 (IBM Japan, Tokyo). For the Friedman test and paired t-test, P values <0.05 were considered 
significant and P < 0.0167 (0.05/3) for the Bonferroni post-hoc test was considered significant.
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Table 3 The results of the two radiologists' qualitative assessments

P value
Mean image-quality score Friedman 

test Bonferroni post-hoc testQualitative 
assessment Reader

FOCUS-
DLR+

FOCUS-
DLR-

FOCUS-
conv

FOCUS-DLR+ 
vs FOCUS-
DLR-

FOCUS-DLR+ 
vs FOCUS-
conv

FOCUS-DLR- 
vs FOCUS-
conv

R1 3.32 3 2.24 < 0.0011 0.31 < 0.0011 0.0011Sharpness of pancreas 
contour

R2 3.32 3.03 2.05 < 0.0011 0.49 < 0.0011 < 0.0011

R1 3.65 2.7 2.86 < 0.00 11 < 0.0011 < 0.0011 1Image noise

R2 3.59 2.54 2.7 < 0.0011 < 0.0011 < 0.0011 0.97

R1 3.16 3.11 3.05 0.05 N/A N/A N/ADistortion of pancreas

R2 3.11 3.18 3.05 0.73 N/A N/A N/A

R1 3.7 3.49 2.89 < 0.0011 0.67 0.0161 0.35Visualization of 
pancreas cystic lesion

R2 3.62 3.32 2.7 < 0.0011 0.24 0.0011 0.17

R1 2.97 2.54 2.19 < 0.0011 0.17 0.0031 0.49Visualization of MPD 
on ADC map

R2 2.73 2.24 1.99 < 0.0011 0.11 0.0011 0.35

1A significant difference.
DLR: Deep learning-based reconstruction; FOCUS: Field-of-view optimized and constrained undistorted single-shot; FOCUS-conv: Conventional field-of-
view optimized and constrained undistorted single-shot; ADC: Apparent diffusion coefficient; MPD: Main pancreatic duct; N/A: Not available.

RESULTS
Qualitative image assessments
The detailed results of the qualitative assessments by the two radiologists are shown in Table 3. Radiologists obtained 
similar results. The Friedman test showed significant differences between the three types of FOCUS in image-quality 
scores for pancreatic contour sharpness, image noise, visualization of pancreatic cystic lesions, and visualization of MPD 
on the ADC map (P < 0.05). There were no significant differences in the image-quality scores for pancreatic distortion 
among the three types of FOCUS (P > 0.05).

The Bonferroni post-hoc test revealed that FOCUS-DLR+ and FOCUS-DLR− showed significantly higher image-quality 
scores for the sharpness of the pancreas contour than FOCUS-conv (P < 0.0167), but there were no significant differences 
between FOCUS-DLR+ and FOCUS-DLR− (P > 0.0167). Regarding image-quality scores of the image noise, FOCUS-DLR+ 
showed significantly higher scores than FOCUS-DLR− and FOCUS-conv (P < 0.0167), but there were no significant 
differences in scores between FOCUS-DLR− and FOCUS-conv (P > 0.0167). FOCUS-DLR+ showed significantly higher 
image-quality scores for visualization of the pancreatic cystic lesion and visualization of MPD on the ADC map compared 
to FOCUS-conv (P < 0.0167), but there were no significant differences between FOCUS-DLR+ and FOCUS-DLR− or 
between FOCUS-DLR+ and FOCUS-conv (P > 0.0167).

Inter-reader agreements
Table 4 provides the results of the inter-reader agreement between the two radiologists. All qualitative assessments 
showed significant agreement (P < 0.001).

Quantitative image assessments
The average (range) of the ROIs of the pancreatic parenchyma, the adjacent fat tissue, and the cystic lesion of the pancreas 
drawn by the two radiologists were the following: R1, 170.9 mm2 (57.3–325.0 mm2), 235.3 mm2 (50.2–791.75 mm2) and 92.7 
mm2 (22.2–457.6 mm2); R2, 236.3 mm2 (72.4–676.53 mm2), 151.5 ± 38.2 mm2 (70.9–253.66 mm2) and 104.6 mm2 (22.2–551.0 
mm2), respectively.

The detailed results of the quantitative assessment are presented in Table 5. The Friedman test showed significant 
differences between the three types of FOCUS regarding CRpancreas-fat using b-values of 0 and 600 s/mm2, CRlesion-pancreas using 
b-values of 0 and 600 s/mm2, ADCpancreas and ADClesion (P < 0.05).

The Bonferroni post-hoc test revealed that FOCUS-DLR+ showed significantly higher CRpancreas-fat using b-values of 0 
and 600 s/mm2 compared to FOCUS-DLR− and FOCUS-conv, and FOCUS-DLR− showed significantly higher CRpancreas-fat 
than FOCUS-conv (P < 0.0167).

FOCUS- DLR− showed a significantly higher CRlesion-pancreas using b-values of 0 and 600 s/mm2 compared to FOCUS-
DLR+ and FOCUS-conv, and FOCUS-DLR+ showed significantly higher CRlesion-pancreas than FOCUS-conv (P < 0.0167).
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Table 4 Inter-reader agreement between the two radiologists

Qualitative assessment Imaging κ value (95%CI) P value

FOCUS-DLR+ 0.73 (0.52–0.95) < 0.0011

FOCUS-DLR- 0.69 (0.45–0.93) < 0.0011

Sharpness of pancreas contour

FOCUS-conv 0.66 (0.43–0.89) < 0.0011

FOCUS-DLR+ 0.69 (0.46–0.92) < 0.0011

FOCUS-DLR- 0.70 (0.50–0.90) < 0.0011

Image noise

FOCUS-conv 0.64 (0.42–0.87) < 0.0011

FOCUS-DLR+ 0.61 (0.40–0.82) < 0.0011

FOCUS-DLR- 0.71 (0.53–0.89) < 0.0011

Distortion of pancreas

FOCUS-conv 0.61 (0.41–0.82) < 0.0011

FOCUS-DLR+ 0.80 (0.56–1.03) < 0.0011

FOCUS-DLR- 0.76 (0.60–0.93) < 0.0011

Visualization of pancreas cystic lesion

FOCUS-conv 0.71 (0.51–0.91) < 0.0011

FOCUS-DLR+ 0.67 (0.51–0.83) < 0.0011

FOCUS-DLR- 0.75 (0.60–0.90) < 0.0011

Visualization of MPD on ADC map

FOCUS-conv 0.74 (0.54–0.94) < 0.0011

1A significant difference. P values were obtained by the weighted κ statistic.
κ values: < 0, no agreement; 0–0.20, slight agreement; 0.21–0.40, fair agreement; 0.41–0.60, moderate agreement; 0.61–0.80, substantial agreement; and 
0.81–1.00, almost perfect agreement. 95%CI: 95% confidence intervals; DLR: Deep learning-based reconstruction; FOCUS: Field-of-view optimized and 
constrained undistorted single-shot; FOCUS-conv: Conventional field-of-view optimized and constrained undistorted single-shot; ADC: Apparent 
diffusion coefficient; MPD: Main pancreatic duct.

Table 5 The results of quantitative assessments

P values
mean ± SD

Friedman test Bonferroni post-hoc testQuantitative 
assessments FOCUS-

DLR+ FOCUS-DLR- FOCUS-conv
FOCUS-DLR+ 
vs FOCUS-
DLR-

FOCUS-DLR+ 
vs FOCUS-conv

FOCUS-DLR- 
vs FOCUS-
conv

CRpancreas-fat on FOCUS 
with b value of 600 s/mm
2

0.68 ± 0.08 0.49 ± 0.10 0.27 ± 0.11 < 0.0011 < 0.0011 < 0.0011 < 0.0011

CRpancreas-fat on FOCUS 
with b value of 0 s/mm2

0.72 ± 0.08 0.65 ± 0.08 0.40 ± 0.11 < 0.0011 < 0.0011 < 0.0011 < 0.0011

CRlesion-pancreas on FOCUS 
with b value of 600 s/mm
2

0.51 ± 0.26 0.62 ± 0.21 0.01 ± 0.26 < 0.0011 < 0.0011 < 0.0011 < 0.0011

CRlesion-pancreas on FOCUS 
with b value of 0 s/mm2

0.53 ± 0.21 0.62 ± 0.21 0.17 ± 0.19 < 0.0011 < 0.0011 < 0.0011 < 0.0011

ADCpancreas+ (× 10-3 mm2

/s)
1.44 ± 0.24 1.39 ± 0.22 1.84 ± 0.45 < 0.0011 < 0.0011 < 0.0011 < 0.0011

ADClesion (× 10-3 mm2/s) 3.00 ± 0.66 2.86 ± 0.61 3.32 ± 0.70 < 0.0011 < 0.0011 < 0.0011 < 0.0011

1A significant difference.
mean ± SD were calculated from the combined data of two radiologists' measurements. All CRs are presented in absolute values. 95%CI: 95% confidence 
intervals; DLR: Deep learning-based reconstruction; FOCUS: Field-of-view optimized and constrained undistorted single-shot; FOCUS-conv: Conventional 
field-of-view optimized and constrained undistorted single-shot; ADC: Apparent diffusion coefficient; MPD: Main pancreatic duct; CR: Contrast ratio.
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Figure 2 A 45-year-old male with an unspecified pancreas cyst. Reduced-field-of-view diffusion-weighted image [field-of-view optimized and constrained 
undistorted single-shot (FOCUS)] with b-values of 0 and 600 s/mm2, and apparent diffusion coefficient (ADC) maps of FOCUS-deep learning-based reconstruction 
(DLR)+ (A-C), FOCUS-DLR− (D-F), and conventional FOCUS (FOCUS-conv) (G-I). FOCUS-DLR+ provides reduced image noise and better contrast ratio between 
the pancreas parenchyma and adjacent fat tissue [contrast ratios (CR)pancreas-fat] compared to FOCUS-DLR- and FOCUS-conv. Both FOCUS-DLR+ and FOCUS-DLR- 
show better image-quality scores for sharpness of pancreas contour, CRpancreas-fat, and contrast ratio between the pancreas cystic lesion and pancreas parenchyma 
(CRlesion-pancreas) compared to FOCUS-conv. FOCUS-DLR- provides a better CRlesion-pancreas than FOCUS-DLR+, but there is no difference in the image-quality score for 
visualization of the cystic lesion of the pancreas between FOCUS-DLR+ and FOCUS-DLR-. The average image-quality scores from two radiologists for FOCUS-
DLR+, FOCUS-DLR- and FOCUS-conv are as follows: Sharpness of the pancreas contour, 3.5, 3.0, and 2.0; image noise, 3.5, 2.5, and 2.0; and visualization of 
pancreatic cystic lesion, 3.0, 2.5, 1.0, respectively. The average CRpancreas-fat and CRlesion-pancreas on FOCUS with a b-value of 600 s/mm2 from two radiologists for 
FOCUS-DLR+, FOCUS-DLR- and FOCUS-conv are 0.54 and 0.75, 0.38 and 0.81, and 0.23 and 0.10, respectively. The average ADCs of the pancreatic parenchyma 
and pancreatic cystic lesion of two radiologists for FOCUS-DLR+, FOCUS-DLR- and FOCUS-conv are 1.59 and 2.28, 1.49 and 2.26, and 1.93 and 4.01 (× 10-3 mm2

/s), respectively.

FOCUS-conv showed significantly higher ADCpancreas and ADClesion compared to FOCUS-DLR+ and FOCUS-DLR−, and 
FOCUS-DLR+ showed significantly higher ADCpancreas and ADClesion compared to FOCUS-DLR− (P < 0.0167).

The average scan time of FOCUS-DLR+/− (3 min 27 s) was significantly shorter than that of FOCUS-conv (6 min 28 S) (
P < 0.001). Figures 2 and 3 show representative images of FOCUS-DLR+, FOCUS-DLR−, and FOCUS-conv.

DISCUSSION
Our findings showed that FOCUS-DLR+ can significantly denoise images without prolonging the scan time or decreasing 
the spatial resolution compared to FOCUS-DLR− and FOCUS-conv. This result is consistent with studies that analyzed 
the effectiveness of DLR in brain, musculoskeletal, and prostate MRI examinations[8,16,20]. DLR has demonstrated 
superiority over other denoising methods. Filter-based noise reduction is commonly applied to data reconstruction 
pipelines to mitigate image noise[21]. However, this method removes image noise and degrades SIs of structural details, 
resulting in blurred images[9]. On average, an increased number of signals is also effective in obtaining higher-SNR 
images; however, this method requires longer scan times[4]. A decrease in spatial resolution can reduce image noise 
because the image SNR is proportional to the voxel size[11]. However, the decrease in spatial resolution is a disadvantage 
for diagnosis, especially for the depiction of small lesions.

Another benefit of DLR for denoising is that it can control the level of denoising of DWI to make the images appear 
more natural to the human eye. DLR can improve CRpancreas-fat on FOCUS using a b-value of 600 s/mm2, and CRpancreas-fat and 
CRlesion-pancreas on FOCUS using a b-value of 0 s/mm2. We speculated that a higher CR would clarify the pancreatic 
parenchyma and lesions. In fact, FOCUS-DLR− showed higher CRlesion-pancreas than FOCUS-DLR+ with a b-value of 600 
s/mm2. This result could be related to an increased in SIs of the pancreatic parenchyma on FOCUS-DLR+ compared to 
that on FOCUS-DLR−. However, the results of CRlesion-pancreas on FOCUS with a b-value of 600 s/mm2 did not indicate that 
the detection of pancreatic cystic lesions would be affected by the use of DLR. Instead, DLR is helpful to determine 
whether there is a lesion inside or outside the tissue.

FOCUS-DLR+ showed a higher image-quality score for the sharpness of the pancreas contour compared to FOCUS-
conv, but no significant differences were observed between FOCUS-DLR+ and FOCUS-DLR−. We suggest that FOCUS-
DLR+ may be effective in visualizing anatomical structures and lesions in the pancreas. DLR has been reported to be 
useful in improving image sharpness because it can effectively eliminate truncation artifacts, while denoising is 
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Figure 3 A 70-year-old male with an unspecified pancreas cyst. Reduced-field-of-view diffusion-weighted image [field-of-view optimized and constrained 
undistorted single-shot (FOCUS)] with b-values of 0 and 600 s/mm2, and apparent diffusion coefficient (ADC) maps of FOCUS-deep learning-based reconstruction 
(DLR)+ (A-C), FOCUS-DLR- (D-F), and conventional FOCUS (FOCUS-conv) (G-I). FOCUS-DLR+ provides reduced image noise and better contrast ratio between 
the pancreas parenchyma and adjacent fat tissue [contrast ratios (CR)pancreas-fat] compared to FOCUS-DLR- and FOCUS-conv. Both FOCUS-DLR+ and FOCUS-DLR- 
show better image-quality scores for sharpness of pancreas contour, CRpancreas-fat, and contrast ratio between the pancreas cystic lesion and pancreas parenchyma 
(CRlesion-pancreas) compared to FOCUS-conv. FOCUS-DLR- provides a better CRlesion-pancreas than FOCUS-DLR+, but there is no difference in the image-quality score for 
visualization of the cystic lesion of the pancreas between FOCUS-DLR+ and FOCUS-DLR-. The average image-quality scores from two radiologists for FOCUS-
DLR+, FOCUS-DLR- and FOCUS-conv are as follows: Sharpness of the pancreas contour, 4.0, 3.0, and 2.0; image noise, 4.0, 3.0, and 3.0; and visualization of 
pancreatic cystic lesion, 4.0, 4.0, 3.0, respectively. The average CRpancreas-fat and CRlesion-pancreas on FOCUS with a b-value of 600 s/mm2 from two radiologists for 
FOCUS-DLR+, FOCUS-DLR- and FOCUS-conv are 0.54 and 0.75, 0.38 and 0.81, and 0.23 and 0.10, respectively. The average ADCs of the pancreatic parenchyma 
and pancreatic cystic lesion of two radiologists for FOCUS-DLR+, FOCUS-DLR- and FOCUS-conv are 1.24 and 1.15, 1.20 and 1.15, and 1.98 and 1.60 (× 10-3 mm2

/s), respectively.

controlled independently[9,16]. Truncation artifacts are caused by incomplete sampling of high spatial frequencies in the 
Fourier domain (k-space), creating edge ringing in the final reconstructed image, which can be mitigated by increasing 
the spatial resolution[11,16]. Reduced-FOV DWI can provide a higher spatial resolution than full-FOV DWI[11]. Thus, 
reduced-FOV DWI may decrease truncation artifacts, regardless of the application of DLR. We speculated that the 
improvement in the sharpness of the pancreatic contour could be so subtle that it could be difficult for the human eye to 
recognize.

Our results also revealed that DLR did not ameliorate pancreatic distortion. No previous study has concluded that 
DLR could be effective in improving image distortion; therefore, our current findings seem reasonable. We used the 
single-shot echoplanar imaging sequence, which is occasionally disturbed by distortion artifacts in the phase-encoding 
direction[8,10,14]. In the present study, the pancreas of some patients was distorted due to adjacent air in the 
gastrointestinal tract. We concluded that DLR could not modify the severe distortions of pancreatic images in the post-
processing pipeline after the scan. To reduce image distortion, air must be removed within the scan area or the parameter 
settings must be modified.

Regarding the comparison of ADCs, FOCUS-DLR+ showed higher image-quality scores for the visualization of MPD 
on an ADC map compared to FOCUS-conv, but no significant differences were observed between FOCUS-DLR+ and 
FOCUS-DLR− or between FOCUS- DLR− and FOCUS-conv. This result may be related to the differences in image noise 
and CRs among the three types of FOCUS. Generally, MPD shows a higher ADC than the pancreatic parenchyma. The 
high ADC of the MPD is easy for the human eye to recognize on the ADC map; therefore, the DLR might not influence 
the qualitative assessment of the visualization of MPD on ADC maps.

ADCpancreas and ADClesion acquired from FOCUS-DLR+ were significantly higher than those of FOCUS-DLR− and 
significantly lower than those of FOCUS-conv. ADCs can vary depending on the MRI apparatus, selection of b-values, 
and the existence of artifacts[13,22]. Image noise on DWI may also affect the calculation of ADC[23]. The ADC metrics 
derived from reduced-FOV DWI are controversial; both increased and decreased ADCs of reduced-FOV DWI have been 
reported compared to full-FOV DWI[13]. Our results indicated that ADCs could vary with the use of DLR due to 
differences in the SIs of the pancreatic parenchyma and pancreatic cystic lesions and in the level of image noise between 
the three types of FOCUS. Although ADC measurements may be helpful in differentiating malignancy from non-
malignancy as a supplement to other imaging modalities, the interpretation of ADCs after DLR requires further study. 
One limitation of this study is that we were unable to evaluate ADCpancreas or ADClesion by referring to standard references 
of pathological findings or larger patient populations. In summary, we could not estimate how DLR affected the 
calculation results of ADCs and lesion characterization.
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There are some limitations to this study. First, we analyzed a small number of patients from a single center. It may be 
difficult to avoid bias in our results and speculations. A large-scale, multicenter study would be necessary to validate our 
results. The retrospective design of this study is also a potential source of bias. Second, none of the patients enrolled had 
solid pancreatic tumors, such as pancreatic carcinoma or neuroendocrine tumors. The diagnosis of such lesions on the 
FOCUS and ADC maps is of great interest to radiologists. Unfortunately, it was impossible to evaluate these lesions by 
comparing FOCUS-DLR+/− with FOCUS-conv simply because no patients with such lesions presented for annual follow-
up MR examinations. The mechanism by which DLR affects lesion detectability, especially in small pancreatic 
carcinomas, remains unknown. Third, we used the vendor-supplied DLR that was already trained before being installed 
on MRI machine. On the other hand, the machine learning model is widely regarded as a black box. It meant that we 
could not know detailed processes of DLR to improve the image quality of FOCUS-DLR+. Although we evaluated our 
data using common analysis methods, it might be necessary to prove whether or not our methodology was appropriate to 
evaluate the effectiveness of DLR. Finally, the b-values used in the analyses of the reduced-FOV were 0 and 600 s/mm2 
for the aforementioned reasons. These b-values make it impossible to compare our findings with those of previous 
studies.

CONCLUSION
The use of DLR improved the image noise and CRs on FOCUS without prolonging the scan time. However, the 
interpretation of ADCs on FOCUS, with or without DLR, requires further study.

ARTICLE HIGHLIGHTS
Research background
A combination of these techniques would improve diffusion-weighted imaging (DWI) image quality without prolonging 
the scan time but would influence the apparent diffusion coefficient calculation.

Research motivation
The image quality of reduced-field-of-view DWI [field-of-view optimized and constrained undistorted single-shot 
(FOCUS)] of the pancreas suffers from a low signal-to-noise ratio and the limitation of not providing good results at 
higher b-value settings.

Research objectives
This study aimed to evaluate the efficacy of deep learning-based reconstruction (DLR) for image quality improvement of 
FOCUS of the pancreas.

Research methods
This was a retrospective study evaluated 37 patients with pancreatic cystic lesions who underwent magnetic resonance 
imaging between August 2021 and October 2021. We evaluated three types of FOCUS examinations: FOCUS with DLR 
(FOCUS-DLR+), FOCUS without DLR (FOCUS-DLR−), and conventional FOCUS (FOCUS-conv). The three types of 
FOCUS and their apparent diffusion coefficient (ADC) maps were compared qualitatively and quantitatively.

Research results
FOCUS-DLR+ (3.62, average score of two radiologists) showed significantly better qualitative scores for image noise than 
FOCUS-DLR− (2.62) and FOCUS-conv (2.88) (P < 0.05). Furthermore, FOCUS-DLR+ showed the highest contrast ratios 
(CRs) between the pancreatic parenchyma and adjacent fat tissue for b-values of 0 and 600 s/mm2 (0.72 ± 0.08 and 0.68 ± 
0.08) and FOCUS-DLR− showed the highest CR between cystic lesions and the pancreatic parenchyma for the b-values of 
0 and 600 s/mm2 (0.62 ± 0.21, and 0.62 ± 0.21) (P < 0.05), respectively. FOCUS-DLR+ provided significantly higher ADCs 
of the pancreas and lesion (1.44 ± 0.24 and 3.00 ± 0.66) compared to FOCUS-DLR− (1.39 ± 0.22 and 2.86 ± 0.61) and 
significantly lower ADCs compared to FOCUS-conv (1.84 ± 0.45 and 3.32 ± 0.70) (P < 0.05), respectively.

Research conclusions
DLR improved image noise and CRs on FOCUS without prolonging the scan time. However, caution should be exercised 
when interpreting the ADCs after DLR.

Research perspectives
This study revealed that DLR can significantly denoise images without prolonging the scan time or decreasing the spatial 
resolution. However, DLR did not ameliorate pancreatic distortion and physicians should pay attention to the 
interpretation of ADCs after DLR application.
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Abstract
BACKGROUND 
Gastrointestinal stromal tumor (GIST) is a rare gastrointestinal mesenchymal 
tumor with potential malignancy. Once the tumor ruptures, regardless of tumor 
size and mitotic number, it can be identified into a high-risk group. It is of great 
significance for the diagnosis, treatment, and prognosis of GIST if non-invasive 
examination can be performed before surgery to accurately assess the risk of 
tumor.

AIM 
To identify the factors associated with GIST rupture and pathological risk.

METHODS 
A cohort of 50 patients with GISTs, as confirmed by postoperative pathology, was 
selected from our hospital. Clinicopathological and computed tomography data of 
the patients were collected. Logistic regression analysis was used to evaluate 
factors associated with GIST rupture and pathological risk grade.

RESULTS 
Pathological risk grade, tumor diameter, tumor morphology, internal necrosis, 
gas-liquid interface, and Ki-67 index exhibited significant associations with GIST 
rupture (P < 0.05). Gender, tumor diameter, tumor rupture, and Ki-67 index were 
found to be correlated with pathological risk grade of GIST (P < 0.05). 
Multifactorial logistic regression analysis revealed that male gender and tumor 
diameter ≥ 10 cm were independent predictors of a high pathological risk grade of 
GIST [odds ratio (OR) = 11.12, 95% confidence interval (95%CI): 1.81-68.52, P = 
0.01; OR = 22.96, 95%CI: 2.19-240.93, P = 0.01]. Tumor diameter ≥ 10 cm, irregular 
shape, internal necrosis, gas-liquid interface, and Ki-67 index ≥ 10 were identified 
as independent predictors of a high risk of GIST rupture (OR = 9.67, 95%CI: 2.15-
43.56, P = 0.01; OR = 35.44, 95%CI: 4.01-313.38, P < 0.01; OR = 18.75, 95%CI: 3.40-
103.34, P < 0.01; OR = 27.00, 95%CI: 3.10-235.02, P < 0.01; OR = 4.43, 95%CI: 1.10-
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17.92, P = 0.04).

CONCLUSION 
Tumor diameter, tumor morphology, internal necrosis, gas-liquid, and Ki-67 index are associated with GIST 
rupture, while gender and tumor diameter are linked to the pathological risk of GIST. These findings contribute to 
our understanding of GIST and may inform non-invasive examination strategies and risk assessment for this 
condition.

Key Words: Gastrointestinal stromal tumors; Imaging findings; Tumor rupture; Pathological risk grades

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Gastrointestinal stromal tumor (GIST) biopsy is inconvenient, has a low yield, and easily leads to tumor metastasis. 
It is of great significance for the diagnosis, treatment, and prognosis of GIST if non-invasive examination can be performed 
before surgery to accurately assess the risk of tumor. The results of our study found that tumor diameter, tumor morphology, 
internal necrosis, and gas-liquid interface are related to the rupture of GIST, and sex and tumor diameter are related to the 
pathological risk of GIST. The results of this study provides ideas for non-invasive examination and risk assessment of 
GIST.

Citation: Liu JZ, Jia ZW, Sun LL. Factors associated with gastrointestinal stromal tumor rupture and pathological risk: A single-center 
retrospective study. World J Radiol 2023; 15(12): 350-358
URL: https://www.wjgnet.com/1949-8470/full/v15/i12/350.htm
DOI: https://dx.doi.org/10.4329/wjr.v15.i12.350

INTRODUCTION
Gastrointestinal stromal tumor (GIST), a rare mesenchymal tumor of the gastrointestinal tract, presents a potential for 
malignancy and constitutes 1%-3% of gastrointestinal malignancies[1,2]. Immunohistochemical analysis of GIST typically 
reveals positive expression of CD117, CD34, or DOG-1[3,4]. Due to its invasive nature and propensity for recurrence and 
metastasis, the clinical assessment of prognosis following GIST surgery heavily relies on pathological evaluation. 
However, preoperative selection of appropriate treatment methods lacks a foundation based on pathological assessment. 
Notably, imaging characteristics of GIST have been observed, and significant disparities in postoperative pathological 
risk grades have been identified between GISTs exhibiting distinct computed tomography (CT) features prior to surgery, 
thereby highlighting the crucial role of CT in GIST diagnosis[5,6].

GISTs display unpredictable and variable biological behavior, rendering the distinction between benign and malignant 
tumors challenging[2,7]. In the early stages, GISTs were classified as either benign or malignant; however, clinical 
experience has revealed that tumors initially determined as "benign" by histopathology may later metastasize. 
Consequently, many pathologists advocate for grouping based on pathological risk grades[8,9]. Once the tumor ruptures, 
irrespective of size and mitotic count, it can be classified into a high-risk group.

GIST biopsy is inconvenient and has a limited yield, and open biopsies can potentially induce tumor metastasis, 
precluding risk assessment in such cases. Risk assessment cannot be performed for biopsied cases. Therefore, needle 
biopsy is not recommended prior to surgery for GISTs that can be completely resected[10]. Given the divergent treatment 
and prognosis of GISTs compared to non-epithelial tumors like lymphoma and schwannoma, preoperative imaging 
diagnosis and evaluation assume paramount importance. The ability to perform non-invasive examinations before 
surgery to accurately assess tumor risk would hold significant implications for GIST diagnosis, treatment, and prognosis. 
In light of this, we postulated that imaging findings possess clinical utility in predicting GIST rupture and pathological 
risk. Consequently, this study aimed to offer insights into non-invasive examination strategies and risk assessment for 
GISTs by examining the correlation between imaging findings and GIST rupture and pathological risk.

MATERIALS AND METHODS
Patients
Fifty patients diagnosed with GISTs were included in this retrospective study, following confirmation of the diagnosis 
through postoperative pathology at our institution. The patients' clinicopathological and CT data were systematically 
collected. The study cohort consisted of individuals aged between 18 and 84 years, comprising 28 males and 22 females. 
In order to ensure the reliability and relevance of the data, specific inclusion and exclusion criteria were applied. The 
inclusion criteria encompassed patients who had undergone biopsy or surgery at our hospital, with complete and well-
documented pathological data, clear risk grading, and comprehensive clinical and CT data available. Furthermore, only 

https://www.wjgnet.com/1949-8470/full/v15/i12/350.htm
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primary tumors were considered. Patients who had not undergone CT examination prior to surgery or whose CT image 
quality was deemed inadequate were excluded. Additionally, cases with uncertain tumor pathological risk grading or 
those involving tumor relapse were also excluded from the study cohort.

Data collected
In this investigation, we meticulously gathered a comprehensive set of clinical and pathological data from a cohort of 50 
patients diagnosed with GISTs. The dataset encompassed crucial patient demographics such as age and gender, as well as 
pivotal pathological indicators including risk grade, tumor diameter, morphology, necrosis, rupture status, gas-liquid 
interface, tumor location, mitotic figures, and Ki-67 index. The assessment of pathological risk was meticulously 
categorized into four distinct levels, namely, very low, low, moderate, and high, enabling a comprehensive evaluation of 
the disease severity[8,11,12] (Supplementary Table 1).

CT scanning and indicators
Contrast-enhanced CT scanning was performed using a 256-slice computed tomography scanner (Brilliance iCT, Philips) 
with the following scanning conditions: Peak kilovoltage of 120 and tube current (mA) ranging from 138 to 458. The 
following parameters were assessed: (1) Tumor diameter: The maximum diameter of the tumor was measured on the 
coronal image; (2) Tumor morphology: The shape of the tumor was evaluated to determine if it exhibited a regular shape. 
A tumor with an elliptical or round shape was considered regular; (3) Boundary: The boundary of the tumor was 
assessed based on the presence of a clear boundary or an unclear boundary. An unclear boundary indicated a potential 
for invasion; (4) Primary tumor site: The primary tumor site was determined based on the location of the initial lesion; (5) 
Necrosis: The presence of a necrotic area was determined based on the CT results; and (6) Gas-liquid interface: The 
presence of a gas-liquid interface was assessed based on the imaging results. These parameters were evaluated to assess 
the risk factors associated with GIST rupture and pathological risk.

Criteria for tumor rupture
The criteria for tumor rupture included: (1) Tumor rupture or overflow; (2) Presence of bloody ascites; (3) Gastrointestinal 
perforation at the tumor site; (4) Microscopic infiltration of adjacent organs; (5) Intra-lesional dissection or segmental 
resection; and (6) Incisional biopsy[12,13].

Statistical analysis
SPSS 26.0 (IBM Corp, Armonk, NY) software was used for statistical analyses. Enumeration data are expressed as 
frequencies, and statistical analysis was performed by the χ2 test. Pearson correlation was used to analyze the correlation 
between age, gender, pathological risk grade, tumor diameter, tumor morphology, internal necrosis, tumor rupture, gas-
liquid interface, tumor site, mitotic figures, and Ki-67 index. P < 0.05 was considered statistically significant.

RESULTS
Analysis of related factors of GIST rupture
The results of the comparison of clinical data between the unruptured and ruptured GISTs are shown in Table 1. 
Statistical analysis showed that pathological risk, tumor diameter, tumor morphology, internal necrosis, and gas-liquid 
interface were associated with GIST rupture (P < 0.05). The differences in age, gender, primary site, mitotic count, and Ki-
67 index of the ruptured group and the unruptured group were not statistically significant (P > 0.05). GISTs with a high 
pathological risk grade, large tumor diameter, irregular shape, internal tumor necrosis, and gas-fluid interface were prone 
to rupture.

Analysis of risk factors in GIST patients
The pathological risk grade assessment of GISTs was carried out through various observation indicators of CT images. 
The results showed that there were 24 cases of low risk, 6 cases of intermediate risk, and 20 cases of high risk. The 
analysis results showed that gender, tumor diameter, tumor rupture, and Ki-67 index were associated with the 
pathological risk grade of GISTs (P < 0.05) (Table 2). We found that male GIST patients had a higher pathological risk 
grade, and the longer the tumor diameter, the higher the pathological risk of GISTs. GIST patients whose tumors were 
prone to rupture had a higher pathological risk grade, multiple gas shadows were common in the central necrotic area of 
ruptured tumors (Figure 1A), gas-liquid interface (Figure 1B) was visible in the tumor, and pus coating was formed next 
to the tumor (Figure 1C).

Logistic regression analysis of factors associated with pathologic risk grade of GISTs
The results of the logistic regression analysis of the factors associated with the pathological risk grade of GISTs are shown 
in Table 3. Multifactorial logistic regression analysis showed that male gender and tumor diameter ≥ 10 cm were 
independently correlated with a high pathological risk grade of GISTs [odds ratio (OR) = 11.12, 95% confidence interval 
(95%CI): 1.81-68.52, P = 0.01; OR = 22.96, 95%CI: 2.19-240.93, P = 0.01].

https://f6publishing.blob.core.windows.net/a6f546b9-691c-481d-bce6-0f87ccc22d9f/WJR-15-350-supplementary-material.pdf
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Table 1 Comparison of clinical data between unruptured and ruptured gastrointestinal stromal tumors

Unruptured group (n = 38) Rupture group (n = 12) Statistical value P value

Age (yr) 64.79 ± 9.75 57.17 ± 20.61 1.24 0.24

Gender 2.31 0.13

    Male 19 9

    Female 19 3

Pathological risk grade 8.47 0.02

    Low risk 21 3

    Intermediate risk 6 0

    High risk 11 9

Tumor diameter (cm) 3.25 (2, 5.25) 9.0 (4.5, 13.63) 2.60 0.01

Tumor shape 17.56 < 0.01

    Irregular 9 11

    Regular 29 1

Internal necrosis 15.35 < 0.01

    No 30 2

    Yes 8 10

Gas-liquid interface 23.68 < 0.01

    Absence 27 1

    Presence 11 11

Primary site 0.23 0.63

    Gastric 22 6

    Small bowel 16 6

Mitotic count (50/HPF) 6.11 ± 2.60 6.17 ± 1.64 0.08 0.94

Ki-67 index (%) 5.50 (4.75, 8.00) 7.50 (5.00, 14.25) 1.15 0.25

HPF: High-power field.

Logistic regression analysis of factors associated with GIST rupture
The results of the logistic regression analysis of the factors associated with the tumor rupture of GIST are shown in 
Table 4. Multifactorial logistic regression analysis showed that tumor diameter ≥ 10 cm, irregular shape, internal necrosis, 
gas-liquid interface, and Ki-67 index ≥ 10 were independently correlated with a high risk of tumor rupture of GISTs (OR = 
9.67, 95%CI: 2.15-43.56, P = 0.01; OR = 35.44, 95%CI: 4.01-313.38, P < 0.01; OR = 18.75, 95%CI: 3.40-103.34, P < 0.01; OR = 
27.00, 95%CI: 3.10-235.02, P < 0.01; OR = 4.43, 95%CI: 1.10-17.92, P = 0.04).

DISCUSSION
In this study, our findings indicated that certain factors are associated with the rupture of GISTs in the patients that we 
screened. These factors include tumor diameter, tumor shape, internal necrosis, and gas-liquid interface. Additionally, we 
found that being male and having a tumor diameter ≥ 10 cm are independent correlates of a high pathological risk grade 
of GISTs.

GIST is a gastrointestinal tumor that has seen a significant increase in the incidence and diagnosis rate in recent years. 
Rupture and bleeding of GISTs are considered to be serious and dangerous complications that require urgent attention[2,
14]. The clinical manifestations of spontaneous tumor rupture and hemorrhage are atypical, characterized by a rapid 
onset. Many patients are admitted to the hospital with acute abdomen, resulting in delayed surgery. Therefore, timely 
diagnosis and treatment are crucial for improving patient prognosis[15,16].

Tumor rupture is an important risk factor for recurrence after GIST resection and is also an indicator for adjuvant 
imatinib therapy[13]. Numerous studies have confirmed that tumor rupture is associated with an increased risk of 
recurrence. For example, Yanagimoto et al[17] identified that tumor size, mitotic count, tumor location, and tumor rupture 
were important prognostic factors for GIST. Hølmebakk et al[18] and Nishida et al[19] found that tumor rupture was an 
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Table 2 Analysis of related factors of pathological risk grade of gastrointestinal stromal tumors

Low risk (n = 24) Intermediate risk (n = 6) High risk (n = 20) χ2 value P value

Age (yr) 1.94 0.38

    < 60 5 2 8

    ≥ 60 19 4 12

Gender 8.10 0.02

    Male 9 3 16

    Female 15 3 4

Tumor diameter (cm) 10.47 0.01

    < 10 22 6 11

    ≥ 10 2 0 9

Tumor shape 2.26 0.32

    Irregular 9 1 10

    Regular 15 5 10

Internal necrosis 5.37 0.07

    No 18 5 9

    Yes 6 1 11

Tumor rupture 8.47 0.02

    No 21 6 11

    Yes 3 0 9

Gas-liquid interface 0.79 0.67

    Absence 15 3 10

    Presence 9 3 10

Primary site 3.46 0.18

    Gastric 16 4 8

    Small bowel 8 2 12

Mitotic count (50/HPF) 4.49 0.11

    < 5 8 3 3

    ≥ 5 16 2 17

Ki-67 index (%) 6.30 0.04

    < 10 21 5 11

    ≥ 10 3 1 9

HPF: High-power field.

independent prognostic factor for recurrence-free survival. These findings highlight the significance of tumor rupture in 
evaluating the prognosis of GIST patients and its association with the poor outcomes.

Furthermore, approximately half of GIST ruptures are spontaneous and cannot be prevented. Therefore, there is 
growing interest in studying factors related to tumor rupture[19-22]. Our study identified tumor diameter, tumor shape, 
internal necrosis, and the presence of gas-liquid interface as factors associated with GIST rupture. Previous research has 
also reported that larger tumor diameters are associated with a higher risk of rupture[19], and that larger tumors are 
more likely to experience necrosis in the central region[23]. Positive resection margins have also been strongly linked to 
tumor rupture[24]. Moreover, the clinical presentation of GISTs, such as an unclear tumor boundary, irregular tumor 
shape, and the presence of a gas-liquid interface in imaging scans, can indicate aggressive behavior and malignancy. Gas-
liquid interface detection in GISTs is currently uncommon, but researchers believe that it predicts severe disease in GIST 
patients[25-27]. Our study found that necrosis and rupture were more likely to occur when an air-liquid interface was 
present, and these factors were important indicators of poor prognosis in GIST patients. However, it is important to note 
that the definition of tumor rupture remains controversial, and consistent standards have yet to be established[18]. Some 
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Table 3 Logistic regression analysis of factors associated with the pathological risk grade of gastrointestinal stromal tumors

95%CI for Exp (B)
B S.E. Wald Sig. Exp (B)

Lower Upper

Age ≥ 60 yr 0.44 0.90 0.24 0.63 1.55 0.27 9.07

Male gender 2.41 0.93 6.75 0.01 11.12 1.81 68.52

Tumor diameter ≥ 10 cm 3.13 1.20 6.83 0.01 22.96 2.19 240.93

Irregular shape 0.50 1.12 0.20 0.65 1.65 0.18 14.92

Internal necrosis -1.40 1.21 1.35 0.25 0.25 0.02 2.62

Gas-liquid interface 0.50 1.26 0.16 0.69 1.64 0.14 19.48

Small bowel tumor -0.15 0.87 0.03 0.87 0.87 0.16 4.76

50/HPF ≥ 5 -0.33 0.87 0.14 0.71 0.72 0.13 3.96

Ki-67 index ≥ 10 2.18 1.15 3.56 0.06 8.82 0.92 84.49

95%CI: 95% confidence interval; HPF: High-power field.

Table 4 Logistic regression analysis of factors associated with rupture of gastrointestinal stromal tumors

95%CI for Exp (B)
B S.E. Wald Sig. Exp (B)

Lower Upper

Age ≥ 60 yr 0.21 0.71 0.08 0.77 1.23 0.31 4.93

Male gender -1.10 0.74 2.20 0.14 0.33 0.08 1.43

Tumor diameter ≥ 10 cm 2.27 0.77 8.72 < 0.01 9.67 2.15 43.56

Irregular shape 3.57 1.11 10.30 < 0.01 35.44 4.01 313.38

Internal necrosis 2.93 0.87 11.33 < 0.01 18.75 3.40 103.34

Gas-liquid interface 3.30 1.10 8.91 < 0.01 27.00 3.10 235.02

Small bowel tumor -0.32 0.66 0.23 0.63 0.73 0.20 2.67

50/HPF ≥ 5 -0.84 0.85 0.97 0.33 0.43 0.08 2.29

Ki-67 index ≥ 10 1.49 0.71 4.36 0.04 4.43 1.10 17.92

High pathological risk grade -1.31 0.74 3.12 0.08 0.27 0.06 1.16

95%CI: 95% confidence interval; HPF: High-power field.

researchers consider macroscopic damage of tumor pseudocapsule as tumor rupture[19].
In cases of GISTs with high pathological risk grades, CT signs of malignancy include invasive tumor growth, large size 

with uneven density and unclear boundaries, hemorrhage, liquefaction, necrosis or cystic degeneration, inhomogeneous 
enhancement on CT enhancement, and the presence of thick tumor blood vessels around the tumor in the arterial phase. 
Additionally, GISTs metastasizing to other organs and extra-GISTs located outside the gastrointestinal tract are prone to 
malignancy. Our study found that gender, tumor diameter, rupture, and Ki-67 index were closely associated with 
pathological risk grades. Lower pathological risk grades of GIST are characterized by slow tumor growth, smaller tumor 
diameters (usually less than 5.0 cm), round or oval shapes, uniform enhancement on scans, no invasion of surrounding 
tissues, and no distant organ metastasis. Conversely, higher pathological risk grades indicate worse growth and larger 
tumor diameters. These tumors are more likely to experience liquefaction and necrosis due to a relative lack of blood 
supply. Our study suggests that combining CT examination with tumor diameter, morphology, internal necrosis, gas-
liquid interface, and Ki-67 index can facilitate early non-invasive assessment of GIST tumor rupture risk, providing 
valuable information for clinical decision-making. Additionally, clinical diagnostic information can be used to predict the 
pathological risk grades of GISTs, aiding in further clinical diagnosis and treatment.

There are some limitations to this study that should be acknowledged. First, the small number of GIST samples 
included warrants further studies with larger sample sizes. Second, the study primarily focused on GIST cases occurring 
in the gastric and small bowel, which may not fully reflect the relationship between tumor location and tumor rupture 
and pathological risk grade. Therefore, it is necessary to include more GIST cases in uncommon sites. Lastly, the study 
lacks information on treatment modalities and the presence of metastases.
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Figure 1 Computed tomography images of ruptured gastrointestinal stromal tumors. A: Rupture of a giant gastrointestinal stromal tumor at the 
colosplenic flexure, with multiple gas shadows (arrow) seen in the central necrotic zone; B: Rupture of a small intestinal stromal tumor. The arrow points to the 
ruptured opening of the tumor, and the gas-liquid interface was seen in the abdominal cavity; C: A ruptured small intestinal stromal tumor. Gas can be seen in the 
tumor, and the arrow points to the formation of pus coating around the tumor.

CONCLUSION
In summary, our study has substantiated the association between tumor diameter, tumor shape, internal necrosis, and 
gas-liquid interface with the occurrence of GIST rupture. Furthermore, we have identified gender and tumor diameter as 
independent factors influencing the pathological risk grade of GISTs. By leveraging the power of CT detection and 
integrating the aforementioned factors, we have successfully demonstrated the potential of non-invasive early assessment 
for GIST rupture and pathological risk grade. These findings hold significant promise in enhancing the clinical decision-
making process by providing valuable insights.

ARTICLE HIGHLIGHTS
Research background
Gastrointestinal stromal tumor (GIST) is a rare gastrointestinal mesenchymal tumor. It is of great significance for the 
diagnosis, treatment, and prognosis of GIST if non-invasive examination can be performed before surgery to accurately 
assess the risk of tumor.

Research motivation
If accurate assessment of GIST tumor risk through non-invasive examination is the focus of this study, it can provide 
valuable insights into non-invasive examination strategies and risk assessment of GISTs.

Research objectives
To investigate the factors associated with GIST rupture and pathological risk, and provide insights into non-invasive 
examination techniques and risk assessment for GISTs.

Research methods
A cohort of 50 GIST patients was selected from our hospital. Clinicopathological and CT data of the patients were 
collected. Logistic regression analysis was used to evaluate factors associated with GIST rupture and pathological risk 
grade.

Research results
Male gender and tumor diameter ≥ 10 cm were independent predictors of a high pathological risk grade of GISTs [odds 
ratio (OR) = 11.12, 95% confidence interval (95%CI): 1.81-68.52, P = 0.01; OR = 22.96, 95%CI: 2.19-240.93, P = 0.01]. Tumor 
diameter ≥ 10 cm, irregular shape, internal necrosis, gas-liquid interface, and Ki-67 index ≥ 10 were identified as 
independent predictors of a high risk of GIST rupture (OR = 9.67, 95%CI: 2.15-43.56, P = 0.01; OR = 35.44, 95%CI: 4.01-
313.38, P < 0.01; OR = 18.75, 95%CI: 3.40-103.34, P < 0.01; OR = 27.00, 95%CI: 3.10-235.02, P < 0.01; OR = 4.43, 95%CI: 1.10-
17.92, P = 0.04).

Research conclusions
Tumor diameter, tumor morphology, internal necrosis, gas-liquid interface, and Ki-67 index are associated with GIST 
rupture, while gender and tumor diameter are linked to the pathological risk of GISTs. These findings contribute to our 
understanding of GISTs and may inform non-invasive examination strategies and risk assessment for this condition.
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Research perspectives
In later studies, we can further verify our conclusions in large-sample clinical studies to better guide clinical non-invasive 
examination and risk assessment of GISTs.
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Abstract
BACKGROUND 
Missing occult cancer lesions accounts for the most diagnostic errors in retro-
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spective radiology reviews as early cancer can be small or subtle, making the lesions difficult to detect. Second-
observer is the most effective technique for reducing these events and can be economically implemented with the 
advent of artificial intelligence (AI).

AIM 
To achieve appropriate AI model training, a large annotated dataset is necessary to train the AI models. Our goal in 
this research is to compare two methods for decreasing the annotation time to establish ground truth: Skip-slice 
annotation and AI-initiated annotation.

METHODS 
We developed a 2D U-Net as an AI second observer for detecting colorectal cancer (CRC) and an ensemble of 5 
differently initiated 2D U-Net for ensemble technique. Each model was trained with 51 cases of annotated CRC 
computed tomography of the abdomen and pelvis, tested with 7 cases, and validated with 20 cases from The 
Cancer Imaging Archive cases. The sensitivity, false positives per case, and estimated Dice coefficient were 
obtained for each method of training. We compared the two methods of annotations and the time reduction 
associated with the technique. The time differences were tested using Friedman’s two-way analysis of variance.

RESULTS 
Sparse annotation significantly reduces the time for annotation particularly skipping 2 slices at a time (P < 0.001). 
Reduction of up to 2/3 of the annotation does not reduce AI model sensitivity or false positives per case. Although 
initializing human annotation with AI reduces the annotation time, the reduction is minimal, even when using an 
ensemble AI to decrease false positives.

CONCLUSION 
Our data support the sparse annotation technique as an efficient technique for reducing the time needed to 
establish the ground truth.

Key Words: Artificial intelligence; Colorectal cancer; Detection

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Minimizing diagnostic errors for colorectal cancer may be most effectively performed with artificial intelligence 
(AI) second observer. Supervised training of AI-observer will require high volume of annotated training cases. Comparing 
skip-slice annotation and AI-initiated annotation shows that skipping slices does not affect the training outcome while AI-
initiated annotation does not significantly improve annotation time.

Citation: Grudza M, Salinel B, Zeien S, Murphy M, Adkins J, Jensen CT, Bay C, Kodibagkar V, Koo P, Dragovich T, Choti MA, 
Kundranda M, Syeda-Mahmood T, Wang HZ, Chang J. Methods for improving colorectal cancer annotation efficiency for artificial 
intelligence-observer training. World J Radiol 2023; 15(12): 359-369
URL: https://www.wjgnet.com/1949-8470/full/v15/i12/359.htm
DOI: https://dx.doi.org/10.4329/wjr.v15.i12.359

INTRODUCTION
Colorectal cancer (CRC) is the third most common cancer in the United States, developing in about 4.3% of men and 4.0% 
of women. It is the second highest cause of cancer-related deaths in the United States, responsible for about 53200 deaths 
per year[1]. Likewise, CRC has also become the third most common cancer in China and is increasing in incidence in 
major countries such as Brazil and Russia[2]. Although early detection of CRC through established screening can greatly 
increase survival probability, resistance to the various invasive and noninvasive forms of screening persists[3-5]. This is 
reflected in the fact that up to 40% of CRC is diagnosed in the emergency department[6]. The rise in CRC incidence in 
adults younger than 55 also indicates a need for improved detection through non-screening methods[7-9]. Therefore, 
cross-sectional imaging remains important in early incidental diagnosis of CRC. However, up to 40% of the features of 
early CRC can be missed by radiologists when analyzing these scans[10-13]. This indicates a need for a “second-observer” 
to assist the busy radiologist in order to minimize false negatives which can result in reduced survival due to a delay in 
diagnosis[10].

Artificial intelligence (AI) has the potential to improve early disease detection, as shown by the recently approved 
algorithm for detecting intracranial hemorrhage on computed tomography (CT) and has been proposed for similar 
application in gastric cancer[14,15]. This model can be trained with the relatively low 39000 cases because of the low 
variation in brain anatomy and the simpler disease pattern on CT. CRC varies significantly in location and appearance 
because of the heterogeneity in anatomy and disease. The model training could be accomplished by using supervised 

https://www.wjgnet.com/1949-8470/full/v15/i12/359.htm
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training (requires ground truth with potentially fewer training cases) rather than unsupervised training (uses more 
training cases without ground truth).

In supervised training, inputs with established ground-truth is important for training model. Although supervised 
training requires lower volume of data, the necessary volume of training data is quite large and would require significant 
amount of time to label the ground-truth by trained personnel[16-18]. Several potential methods for decreasing the time 
to establish the ground truth for supervised training have been evaluated. These methods include image level labeling, 
bounding boxes to localize the site of cancer, sparse labeling, and deploying an incompletely trained AI-model for first 
pass segmentation followed by human adjustment (AI-Init)[19,20]. Image level labeling and bounding box techniques 
consider different level of image information for localizing cancer and are expected to require significantly less human 
intervention. However, these may require more cases for training. For true supervised training, the level of annotation 
contains significantly more detail, which requires human interaction. This human interaction can be minimized with 
sparse annotation that skips slices during segmentation or having the rudimentarily trained AI algorithm perform the 
initial segmentation, which is subsequently modified by humans. In this report, we compared the improvement in 
amount of time spent on annotating the CRC between the last two techniques (sparse annotation by skip-slicing and AI-
Init).

MATERIALS AND METHODS
CRC cases
The CRC cases were obtained from our respective cancer centers, which are tertiary and quaternary referral centers, 
between the years of 2012 through 2018 as well as cases from The Cancer Imaging Archive (TCGA-COAD) public domain 
images which were used to compare the outcomes of the techniques[21]. Our training and validating cases included 58 
CRC cancer cases (27 males and 31 females) and 59 normal cases and consisted of CT scans of the abdomen and pelvis 
cases with a mixture of intravenous (IV) contrast enhanced and unenhanced studies. 51 of the cancer cases were used for 
training while 7 were retained for validation. The cases were retrieved from the picture archiving and communications 
system of the respective institutions and de-identified. The de-identified cases and their annotations were transferred 
between the research sites and the medical centers through the HIPPA compliant cloud server from Box.com. 20 of the 25 
cases (8 males and 12 female) from TCGA-COAD were used to test the outcome of the training using the two different 
training techniques. The 5 excluded cases did not have clearly identifiable CRC on CT scans. The imaging stage of the 58 
CRC cases and the 20 The Cancer Imaging Archive (TCIA) cases are listed in Table 1.

Cancer annotation
The location and slices of the cancer were identified on the CT images using ITK-SNAP (versions 3.6.0 and 3.8.0; www.
itksnap.org)[22]. For annotation, the CT axial slices containing the CRC from our cancer center and from TCGA-COAD 
were identified and a contour outlining the edges of the cancer was drawn using the drawing tool. All the CT slices 
containing the tumor were segmented. At the time of training, to simulate sparse annotation, the skip-slice training 
would evenly skip one or two annotated slices among those containing the tumor from being used in training AI methods 
for every annotated tumor slice used for training. For AI-Init technique, the TCGA-COAD cases were initially segmented 
by the trained AI-model after training with the 51 CRC and 59 normal cases described in the previous section. This 
segmented model was then viewed with ITK-SNAP and adjusted to the ground truth established by human 
segmentation. The time required to fully adjust the contour and to eliminate false positives and to correct the false 
negatives was recorded for each TCGA-COAD case.

AI algorithm
The AI algorithm used in the project is a 2D U-Net, which is a convolutional neural network (CNN). The U-Net is a 
popular image segmentation algorithm for medical image segmentation tasks because it requires less training inputs than 
other techniques and is more robust with small training dataset[23]. In addition, recent research findings show that 2D U-
Net has equivalent performance as that of 3D U-Net, but with lower computational requirement[24,25]. Inputs to the 
CNN consisted of 2D images with 512 × 512 pixels. The training dataset was augmented using the standard affine 
transformation with up to 30° rotation and up to 30% scale variation applied to the training patches. The CNN uses a 3 × 
3 kernel and has 5 encoding layers containing 32, 64, 128, 256, and 512 filters and 5 decoding layers with each layer 
containing 512, 256, 128, 64, and 32 filters, respectively. Adam optimizer was used for training the model, and the model 
with the best validation accuracy was chosen. The network was trained using all the training cases, treating each image of 
a subject’s study as a case, with 1 case per batch and trained with 200 epochs. The 7 validation cases were used to choose 
the optimal model parameters while the 20 TCGA-COAD cases were used to validate the final accuracy of the different 
techniques. For evaluating the effects of sparse-annotation, the AI model was trained with either all of the slices of 
annotation or evenly skipping either 1 or 2 slices of annotation for every slice used for training.

In order to determine how to improve the AI-Init technique in establishing the ground-truth, we also developed a 
simple ensemble model with each individual component of the ensemble being an independently trained 2D U-Net 
model with a random initiation. This was obtained to improve the specificity of the AI segmentation. To this end, we 
trained five randomly initialized U-Net models for voting-based model ensemble. Each of these five model is trained as 
described in the previous paragraph. The difference is that the final decision is based on the voter ensemble inference 
technique. For voting-based model ensemble, a voxel is labeled as tumor by the algorithm if and only if at least certain 
number of automatic segmentation models label the voxel as tumor. The U-Net models were also trained with the skip 

http://www.itksnap.org
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Table 1 Clinical and protocol details of training and test cases

Training cases (n = 58) Test cases (n = 20)

AJCC stage

Stage 1 0 5

Stage 2 15 5

Stage 3 14 7

Stage 4 29 3

T stage

T1 0 2

T2 0 4

T3 21 13

T4 37 1

Location

Right 39 17

Transverse 3 2

Left 16 1

CT slice thickness (mm)

7 0 1

5 29 17

3-4 25 0

2 or less 4 2

Contrast

IV+PO 27 18

IV 22 1

PO 4 1

None 5 0

AJCC: American Joint Commission on Cancer; CT: Computed tomography; IV: Intravenous; PO: Positive oral.

annotation technique (with skip 0, 1, and 2 slices). We then compared the accuracy and number of false positives per case 
to see how the ensemble method would influence the time required to adjust the segmentation results. For this approach, 
the model ensemble approach generated 3 unique segmentation algorithms (for each annotation technique) based on 
whether at least one, two, or three member(s) of the ensemble identified the same lesion. The segmentation was reviewed 
using ITK-SNAP.

Accuracy and sensitivity analysis
To analyze the algorithm’s accuracy, the AI-generated segmentations were compared to ground-truth annotations, which 
were established as described previously. The AI model generated a DICOM image series for each case with the number 
of slices for each case ranging from 60-400. The cancer segmented by the AI model was compared to the annotated 
ground truth in 3D to determine the false positives, false negatives, and the Dice coefficient (DSC). A false positive was 
considered any segmentation created by the algorithm that did not overlap any part of the ground-truth segmentation. A 
false negative was considered as any image series with human annotated tumor that was not identified by the algorithm’s 
segmentations. For true positive segmentation, DSC was visually estimated and categorized to be 0%-25%, 26%-50%, and 
> 50%. We obtained visual estimate as we do not have readily available software for full DSC calculation.

Time analysis for AI-Init and skip-slice annotation methods
In order to measure the amount of time saved by initiating annotation by the rudimentarily-trained AI model (as 
described earlier), we recorded the time required for annotating the CRC. The time required for initial, full annotation of 
CRC as well as the time required to adjust the AI produced model were acquired. For adjusting the AI-model, the 
obtained time included the time to adjust the boundary of the CRC and for erasing the false positives. We randomly 
selected 3 large, 3 medium, and 3 small CRC from the TCIA dataset and analyzed these times. The sizes of the CRC were 
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considered small, medium, or large if the lesion spanned ≤ 5 CT slices, 5-15 CT slices, and ≥ 15 CT slices, respectively. The 
median and average times were calculated. These same 9 cases were used for measuring the time needed to complete 
skip-slice annotation by annotating every other or every third slices of the tumor mass.

RESULTS
Comparison of training and TCIA datasets
The details of the location of the tumor and the scanning protocols from the training and TCIA testing datasets are listed 
in Table 1. The training dataset contains more higher stage cancers with 74 % of cases at stage 3 or 4 while the TCIA 
dataset has 50% of the cases at stage 3 or 4. All of the training cases is T3 or T4 in T-stage, while the TCIA dataset has 70% 
of the cases being T3 or T4. 67% of the training dataset has right-sided tumor (being defined as ascending colon) while the 
TCIA test dataset has 85% of the cases being right-sided. In terms of scanning protocol, 50% of the training dataset has 5 
mm slice thickness while 90% of the TCIA testing dataset has slice thickness being 5 mm or more. In terms of contrast 
administration, the training dataset has 47% of the cases with IV and positive oral (PO) contrast while the TCIA dataset 
has 90% of the cases with both IV and PO contrast. 38% of the training dataset has just IV contrast whereas TCIA data has 
5% of cases with IV contrast only.

Segmentations from skip-slice annotation trained AI-model
The AI-models generated by skip-slice annotation did not significantly alter the segmentation outcome of the AI-model. 
Figure 1 shows two separate cases segmented by the AI-models; although there is very subtle difference in the segment-
ations, the difference could not be detected by the measure that we chose (false positives per case, sensitivity, and DSC). 
For all three models, the sensitivity was 80% and the false positive lesions identified per case was 22. The DSC category 
distribution was 25% for 0-0.25, 60% for 0.26-0.5, and 15% for > 0.5.

Ensemble voting for decreasing false positives per case
Prior to obtaining the AI-initiated annotation, we aimed to minimize the number of false positives per case as the false 
positives could decrease the efficiency of this technique in establishing the ground-truth. To do this, we chose a simple 
voting-based ensemble method to reduce the number of false positives per case. When the number of votes required by 
the ensemble technique for determining tumor segmentation is increased, there is a corresponding drop in false positives 
per case while there is also a decrease in sensitivity, although the drop in false positives was much greater than the drop 
in sensitivity. The DSC distribution also shifts toward more cases being in 0 to 0.25 category. These data are shown in 
Tables 2 and 3. Figures 2 and 3 show an example of both agreement and disagreement between 1- and 2-voter models.

Time needed to adjust AI-Init segmentation and to complete skip-slide annotation
The models from the section above were used to generate the initial annotation of CRC which was then adjusted 
manually to fit the established ground truth. The amount of time required to modify these annotations to the ground 
truth was then recorded for 3 randomly selected cases from each of the large, medium, and small tumors. The complexity 
of these cases was determined as described in the methods section. The amount of time required to adjust these cases is 
listed in Table 4, along with the median and average. The measured time includes the time needed to remove the false 
positives as well as contouring the false negative lesions. The data show that AI-Init does decrease the time required to 
annotate the cases, although a statistical test of the distributions among the measured annotation time from the original, 
1-voter, and 2-voter model using the Friedman’s two-way analysis of variance by ranks did not yield statistical 
significance (P = 0.121). Some improvement is seen, primarily, with medium sized tumors.

For skip-slice annotation, the actual timed annotation revealed significant reduction in time needed to complete the 
annotation (Table 4). Although the reduction is not proportional, the differences are significant between full annotation 
and either skip-1 or skip-2 slice methods, using the Friedman’s two-way analysis of variance by ranks. The P-values for 
univariate analysis between fully-annotated and skip-1, fully-annotated and skip 2, and skip-1 and skip-2 annotation 
style are 0.034, < 0.001, and 0.034. When using multivariate analysis, the same P-values are 0.102, < 0.001, and 0.102. This 
suggests that skipping slices can reduce the labor necessary for establishing the ground-truth for supervised or semi-
supervised training of AI models, and in multivariate analysis, the time different is statistically significant when higher 
number of slices are skipped.

DISCUSSION
Our results provide a direct comparison of annotation techniques for supervised training of AI models as second observer 
for detecting CRC. Supervised AI-model training by skipping-slices of CRC did not appreciably influence the outcome of 
segmentation. There were very subtle visual differences, but these were not detectable with the measures used. No 
significant segmentation difference could be detected when skipping up to 2 slices. For AI-initiated annotation, the model 
does not improve the time spent annotating large and small cancers, but does show some improvement for medium sized 
tumors. These methods allow for time-reduction in annotating the ground truth so supervised training of AI-models 
could be more efficient and allow greater participation by busy radiologists.
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Table 2 Sensitivity and false positives/case for ensemble technique

Single voter 2 voter 3 voter

Sensitivity 0.8 0.6 0.3

False positives/case 21.95 7.55 3.7

Table 3 Dice coefficient distribution for ensemble technique

Estimated dice coefficient
Percentage of cases

0 0-0.25 0.25-0.5 > 0.5

Single voter 20 5 60 15

2 voter 40 35 20 5

3 voter 70 15 10 5

Table 4 Amount of time needed to annotate the tumor

Annotation time based on technique (Min:Sec ± min)
Lesion size

Manual (n = 3 each) AI-single voter (n = 3 each) AI-2-voter (n = 3 each) Skip-1 (n = 3 each) Skip-2 (n = 3 each)

Large 22:09 ± 0.18 21:00 ± 0.23 20:29 ± 0.22 8:58 ± 1.22 5:34 ± 1.19

Medium 15:06 ± 0.4 10:37 ± 0.25 9:13 ± 0.15 4:58 ± 2.57 1:14 ± 1.38

Small 5:54 ± 0.07 6:26 ± 0.03 5:44 ± 0.02 2:23 ± 0.14 1:24 ± 0.28

AI: Artificial intelligence.

Figure 1 Artificial intelligence segmentation by models with skipped slice training. A-C: Artificial intelligence (AI) segmented lesion by model trained 
without skipping slices (A), with skipping 1 slice (B), and with skipping 2 slices (C). There is slight difference in the segmentation, but insufficient to modify the Dice 
coefficient. The cancer is in the descending colon, only a small portion of which was segmented by AI model. The slightly larger false positive lesion may be due to 
slightly different slice level.

Skip-slice annotation is similar to a sparse-annotation technique, which has been explored in the literature. This 
technique was tested in confocal images of Xenopus kidney segmentation[19]. Cicek et al[19] showed that the DSC 
equivalent (intersection of union) improved with increasing slices in each axis, starting with one slice in each direction. 
Increasing the annotated slices was equivalent to increasing the number of ground-truth pixels based on their study. The 
authors achieved their annotation goal using up to 9% of all the available pixels as ground truth for training. With this 
training, the network achieved segmentation with 85% overlap with the ground truth. Our data also support this finding 
that not all ground truth needs to be presented to an AI-algorithm to train the algorithm properly. The difference between 
Cicek et al[19] and our study is that they began with the minimal number of slices while we evaluated from the maximum 
number of slices. Increasing from the minimum showed that minimalist approach may underfit the algorithm, while 
maximal approach may over-fit the network. The minimum necessary amount of established ground truth pixel for 
optimal network training is yet to be identified so that the amount of human effort in establishing ground truth can be 
minimized while maintaining optimal AI model training.
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Figure 2 Examples of lesion agreement by 1- and 2-voter ensemble technique. A and B: 1- (A) and 2- (B) voter(s) model agreeing on the same tumor 
mass, although 2-voters mark less of the mass.

Figure 3 Example of lesion disagreement by 1- and 2-voter ensemble technique. A and B: 1- (A) voter model marks a false positive in the liver which 
is rejected by 2- (B) voter model.

The literature reports multiple techniques for minimizing false positives, particularly regarding pulmonary nodule 
reduction which can be categorized into ones that use single modes of information (imaging only) or multimodal 
technique (combines imaging with clinical information). Jin et al[26] constructed a false-positive reduction algorithm for 
pulmonary nodule detection. This is constructed as a separate algorithm that could serve as add on to a nodule detector. 
They combined several methods to avoid the traps that cause false-positives. First, they deployed a 3D residual CNN 
which minimizes the effect of diminishing gradient in the stochastic gradient descent algorithm during training, so as to 
avoid local minima that may trap the algorithm. They also combined spatial pooling and cropping which provides multi-
scale contextual information to improve the learning process. A similar technique uses multiscale contextual information 
where variable amount of the pulmonary nodule and surrounding normal lung is included for training[27,28]. The 
multiple levels of information are integrated and significantly lower the false positives[27,28]. Lastly, online hard sample 
selection training was chosen to maximize training of hard-to-discern examples so that the network can learn from its 
own failures. This technique replaces a portion of correctly detected training cases with ones that were previously missed 
so that the network can learn the features of the missed cases to improve its outcome[29].

The multimodal technique is a broad category of AI technique where different aspects of a patient’s clinical 
information are integrated to improve the classification and prediction algorithm. The additional information restricts the 
bias and variance of the model to improve the accuracy of the outcome[30]. For our algorithm, we employed the 
simulated multimodal technique with ensemble voting by integrating information from different instances of the AI 
model. This is similar to selecting 5 different models from the same model space to restrict bias and variance[30]. By 
generating 5 models from the base CNN technique, we chose a lesion to be cancer only if 2 or 3 of the 5 models agreed on 
a pixel being cancerous. This allowed us to dramatically decrease the number of false positives per case. This, however, 
also decreased sensitivity of the model. This trade-off is also seen with ensemble techniques trained with clinical data in 
predicting diabetic retinopathy[31]. Other studies have shown that the information contains different degree of relevance
[32,33]. In the study by Boehm et al[32], applying all available information regarding a patient (clinical, genetic, histo-
logical, and radiological) resulted in less accurate outcome than one that deployed a limited dataset (genetic, histological, 
and radiological). Likewise the study by Iseke et al[33] which used both clinical and imaging information to predict 
hepatocellular carcinoma recurrence after treatment did not achieve a better prediction than using imaging alone. 
Multimodal AI can provide better outcomes, but only with the appropriate dataset; overloading the AI system with lower 
relevance data may over-fit the system to a less than optimal parameter space.
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The findings that skip-slice annotation may reduce the time required for establishing the ground-truth for AI model 
training can significantly impact the development of AI models in imaging research. Annotating the ground truth 
requires trained personnel capable of identifying normal and abnormal structures on CT images, who are typically 
physicians or physicians in training. As we have shown in Table 4, full annotation of a case will require anywhere from 5-
20 min, which can be reduced significantly with skip-slice annotation. This will significantly reduce the time of the highly 
trained personnel, who are involved in busy clinical work. Minimizing the time spent in establishing the ground-truth 
should theoretically improve participation of these highly trained personnel in assisting AI research in medical imaging.

There are several limitations to the present study. The first is the small size of the training and testing dataset. These 
training and testing dataset is also unbalanced and unmatched in both stage of the disease and the scanning protocol. 
Table 1 showed that the training dataset consists of higher stage disease than the testing dataset which may limit 
detection of the earlier stage disease in the testing dataset. In addition, the training dataset also has lower proportion of 
the cases containing both IV and PO contrast and has thinner slice images. It is uncertain if the blur from the thicker slices 
may influence the decision of the model, but the trained model have been exposed to thicker slices with IV and PO 
contrast. It will be interesting to evaluate the dilutive effect on model performance when the model is trained with a 
broader range of protocols and stages of the disease. The current model with limited training dataset is not generalizable, 
but it does show the potential of the second observer with better trained model[34]. Another limitation of the study is the 
lack of full software for calculating the precision, F1 score, and DSC of the model outcome. The sensitivity provided in the 
present study is equivalent to the recall measure of the model.

CONCLUSION
In comparing the different techniques for reducing annotation time to establish the ground truth, we developed a U-NET 
model in detecting CRC. This pilot model has the potential to serve as a second observer with further research. In order to 
accelerate AI second observer training, we compared different techniques of annotation in minimizing this data 
preparation work. Our results showed that skip slice annotation may lead to the most time reduction as there was 
minimal effect on model outcome when slices are skipped, leading to proportional decrease in time needed to annotate. 
Although AI-initiated segmentation may lead to reduced annotation time, it tends to reduce time for medium sized lesion 
while large complex and small lesions do not benefit. At this time, skipping slices may result in the most time efficient 
method for annotating cancer on training images.

ARTICLE HIGHLIGHTS
Research background
Up to 40% of colorectal cancer (CRC) goes undetected on initial computed tomography (CT) scan performed in either the 
emergency department or outpatient imaging setting. This delay in diagnosis significantly impacts the overall survival of 
the patients. The ultimate goal is to develop an artificial intelligence (AI)-based second observer for clinical integration so 
as to improve the clinical diagnosis of CRC on CT studies.

Research motivation
The development of deep learning has shown that AI can potentially serve as a second observer to assist busy radiologist 
at a reasonable cost, as second reader has been shown in past research to improve imaging diagnosis. However, to 
develop an AI second observer, large number of training cases with annotated ground truth is required necessitating 
significant time commitment on the part of the research radiologists.

Research objectives
Our main objective in this research is to compare skip-slice annotation with AI-initiated annotation in time savings for 
annotating the ground truth for training dataset preparation. Saving annotation time will help improve the efficiency in 
dataset preparation. Our secondary objective was to evaluate whether ensemble technique could help improve false 
positive rate for AI-initiated annotation technique. Decreasing false positives per case will make the model more 
acceptable by clinical radiologist.

Research methods
The dataset was manually annotated for the entire tumor as well as skipping annotation by one or two slices was 
measured; 9 total cases were randomly selected to measure the time required to annotate these tumors. These datasets 
were used to train 2D U-Net model with 5 encoding and 5 decoding layers, using the Adam optimizer. The model 
accuracy consisting of sensitivity, Dice coefficient estimate, and false positive per case were used to evaluate the model 
accuracy. The rudimentary AI model was also used to annotate the ground truth; the times required to adjust the 
annotation for the 9 cases from manually annotation were also measured.

Research results
We found that the model trained on skip-slice annotation did not have significant difference in tumor segmentation as a 
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fully annotated dataset and which is statistically significant, thus showing that skip slice annotation can reduce the data 
preparation time. Although AI-initiated annotation also reduces time, the difference was not statistically significant. 
Ensemble technique is shown to reduce false positive per case, but at decreased sensitivity.

Research conclusions
This study proposes that skip-slice annotation can improve the efficiency in data preparation for AI model training. The 
significance is that it will reduce the time commitment of highly trained medical personnel in participating in AI medical 
imaging research.

Research perspectives
The future direction of the present research is that this should improve the efficiency in training dataset development 
given the decreased annotation time.
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