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Abstract
Cholangiocarcinoma (CCA) is a type of cancer with increasing prevalence around 
the world that originates from cholangiocytes, the epithelial cells of the bile duct. 
The tumor begins insidiously and is distinguished by high grade neoplasm, poor 
outcome, and high risk for recurrence. Liver transplantation has become broadly 
accepted as a treatment option for CCA. Liver transplantation is expected to play 
a crucial role as palliative and curative therapy for unresectable hilar CCA and 
intrahepatic CCA. The purpose of this study was to determine which cases with 
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CCA should be subjected to liver transplantation instead of resection, although 
reported post-transplant recurrence rate averages approximately 20%. This review 
also aims to highlight the molecular current frontiers of CCA and directions of 
liver transplantation for CCA.

Key Words: Cholangiocarcinoma; Liver transplantation; Primary sclerosing cholangitis; 
Neoadjuvant chemoradiotherapy
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Core Tip: Currently, there are many controversial hypotheses concerning liver 
transplantation in cholangiocarcinoma (CCA) and risk factors and molecular 
pathogenesis of CCA, with a focus on primary sclerosing cholangitis. Here, we mainly 
review the current advances in classification and treatment of CCA.
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INTRODUCTION
Cholangiocarcinomas (CCA), also known as bile duct cancer, constitute a diverse 
group of biliary epithelial tumors affecting the intrahepatic CCA (iCCA), perihilar 
CCA (pCCA), and distal bile duct CCA (dCCA)[1]. CCA is the second leading cause of 
liver malignancy after hepatocellular carcinoma (HCC), and the overall incidence and 
mortality rates of CCA have increased progressively worldwide in the last 4 decades
[2]. Primary sclerosing cholangitis (PSC) as a chronic liver disease can increase the risk 
for CCA reaching approximately 10% or 398-fold vs with the general population[3,4]. 
CCA has remained the common cause of death at the global level among PSC patients, 
whereby 30% of all CCAs are recognized annually after diagnosing PSC[5,6]. CCA is 
generally considered to be one of the contraindications in relation to liver 
transplantation characterized by poor prognosis. CCA patients have a median survival 
of 2 years following diagnosis. The only potentially curative treatment chance is 
surgery, depending on the stages of disease[7]. It has been shown that neoadjuvant 
therapy with liver transplantation as a novel treatment exhibits better survival rates 
with fewer recurrence in comparison with conventional resection for localized, node-
negative hilar cholangiocarcinoma (hCCA)[8]. CCAs are a highly aggressive epithelial 
malignancy, and many patients represent advanced stages of disease[9]. Early 
detection of CCA still remains a challenge owing to its ‘silent’ clinical feature (most 
patients in the initial stage at the time of diagnosis are asymptomatic) and difficult to 
reach anatomical sites[10]. It seems that the use of liver transplantation for the 
treatment of CCA can influence clinical outcomes in patients around the world. This 
class of tumor driving from the bile duct epithelial cells is clinically malignant, and its 
occurrence and prognosis are mostly associated with its anatomic location within the 
biliary tree and its chance to achieve complete resection with negative margins[11]. 
This review summarizes the risk factors and molecular pathogenesis of CCA, with a 
focus on PSC and liver transplantation along with advances in classification and 
treatment.

CCA CLASSIFICATION
CCA may be originated from the different cell types of the biliary tract, including 
cholangiocytes, the epithelial cells lining of the biliary surface epithelium, the 
epithelial cells of the peribiliary glands, hepatic progenitor cells, or any other mature 
hepatocytes that have become malignant. In this regard, CCA could also be classified 
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in terms of anatomical, histological, and molecular aspects[12].

Anatomical classification of CCA 
According to anatomical location of the tumor, CCA will most commonly be classified 
into three sub-groups: (1) iCCA; (2) pCCA; and (3) dCCA (Table 1)[12,13]. Given the 
tumor location, iCCA typically arises from the intrahepatic biliary tract including 
segmental bile ducts to smaller branches of the intrahepatic biliary system. Thus, this 
subtype of CCA occurred in the periphery of the second-order bile ducts[13]. Also, 
iCCA represents approximately 20% of all CCA reported cases[14]. pCCA arises 
around the hepatic ducts and their junctions[15]. Finally, dCCA refers to the 
malignancy that occurs in the common bile duct, i.e. originated from Vater’s ampulla
[14,16].

Histological classification of CCA
From the histological point of view, characteristics of pCCA and dCCA that can be 
considered as extrahepatic CCA (eCCA) subtypes are conventionally mucin-producing 
adenocarcinomas or papillary tumors. On the other hand, iCCAs are more hetero-
geneous than two other subtypes of CCA. Histological studies showed that the 
adenocarcinoma is formed by columnar to cuboidal epithelial cells in the tubular 
structures, acini formation, and micropapillary architecture with variable morpho-
logical aspects, which are the most common types of iCCA[12].

Moreover, it has been suggested that, according to the level or size of the displayed 
bile duct, iCCA is classified into two main histological subtypes. First, the small bile 
duct iCCA that presents as small-sized tubular or acinar adenocarcinoma. These 
tumors commonly originated from small intrahepatic bile ducts, progenitor cells, and 
mature hepatocytes[17]. In contrast, large bile ducts iCCA derive from large 
intrahepatic bile ducts and/or associated peribiliary glands. Moreover, depending on 
the origin of the large bile duct iCCA, the histological aspects of this subtype of iCCAs 
are partly similar to pCCA and dCCA. However, the gross examination is not 
sufficient for accurate tumor classification, and further histological, molecular, and 
clinical investigation is required[18].

Molecular classification of CCA
First, it needs to be explained that, due to some differences in the characteristics of the 
existing studies, including different molecular detection methods and diversity in the 
selection of populations, there is still no consensus on the molecular characteristics of 
CCA classification[17]. However, it is possible to establish an acceptable relationship 
between the anatomical and molecular aspects of CCA subtypes. Integrative molecular 
analyses not only provided the functional information for CCA classification but also 
were used to understand the pathogenesis and signaling pathways underlying the 
CCA carcinogenesis and progression[14].

Mutation-based classification is the main approach of CCA molecular classification. 
For instance, the isoforms 1 and 2 of isocitrate dehydrogenase (IDH1 and IDH2) and 
NRAS mutations are the main molecular manifestation of iCCA, whereas eCCA 
typically showed TP53, KRAS, and BRAF mutations[14,19]. Also, it has been reported 
that IDH1/2 and BAP1 mutations and fibroblast growth factor receptor 2 (FGFR2) 
fusions are the main molecular characteristics of iCCA, while protein kinase CAMP-
activated catalytic subunit alpha (PRKACA) and AT-rich interactive domain-
containing protein 1B mutations are more common in eCCA. Besides, KRAS, GNAS, 
and TP53 mutations are shared between iCCA and eCCA[19]. Interestingly, FGFR2 
pairs with PRKACA in iCCA, as well as PRKACB in eCCA[20]

On the other hand, previous molecular studies also have attempted to connect the 
morphological CCA subtypes with specific molecular-based patterns. In this regard, 
the large-duct type iCCAs have a specific molecular property such as high mutation 
frequency of oncogenes and tumor suppressor genes and lack other gene mutations 
that are typically seen in small-duct iCCA. It has been reported that KRAS and TP53 
are two prominent genes with high mutation frequency in the large-duct type iCCAs 
as well as lack of IDH1/2 mutations and FGFR2-fusions, which are molecular charac-
teristics of small-duct iCCA[21].

In addition to mutation and sequence alterations, epigenetic study based on the 
methylation profiles of CCA subtypes can be used for CCA classification. For example, 
CCA has been related to hypermethylation at the promoter of tumor suppressor genes, 
such as DAPK, P14 (ARF), and ASC[22]. Moreover, despite the different patterns of 
methylation in GC-rich regions (CpG islands) in the CCA subtypes-related genes, it 
has been revealed that there is an alteration in CpG methylation that belonged to 
WNT, transforming growth factor-β, phosphatidylinositol 3 kinase, mitogen-activated 
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Table 1 Summary of anatomical, histomorphological, and molecular characteristics of cholangiocarcinoma subtypes

Anatomical classification Histomorphological classification Molecular specification (gene alterations)

Small intrahepatic bile ducts 
iCCA 

Mass forming tumors[17] IDH1/2, FGFR2, EPHA2, BAP1[14,19]iCCA

Large intrahepatic bile ducts 
iCCA

Mass forming, periductal, or intraductal 
mucinous tumors[17,18]

EPHA2, BAP1, KRAS, TP53, GNAS, NRAS, 
MRAS, SMAD4[12,14,21]

Perihilar CCA Intraductal mucinous tumors[12,17] KRAS, TP53, GNAS, NRAS, MRAS, SMAD4, 
ARID1B, PRKACA, BRAF[14,19,24]

eCCA

Distal CCA Periductal mucinous tumors[12,17] KRAS, TP53, GNAS, NRAS, MRAS, SMAD4, 
ARID1B, PRKACB, BRAF[14,19,24]

CCA: Cholangiocarcinomas; iCCA: Intrahepatic CCA; eCCA: Extra-hepatic CCA; EPHA2: Ephrin type-A receptor 2 precursor; FGFR2: Fibroblast growth 
factor receptor 2; BAP1: BRCA1 associated protein-1; NRAS: Neuroblastoma RAS viral [v-ras] oncogene homolog; KRAS: Kirsten rat sarcoma virus; TP53: 
Tumor protein; PRKACA: Protein kinase cAMP-activated catalytic subunit alpha.

protein kinase, and NOTCH signaling pathways[14]. Furthermore, the results of 
various studies showed that molecular characteristics of CCA subtypes consisting of 
sequence and copy number alterations, gene expression, and DNA methylation can be 
categorized into different clusters, but the details of this issue are beyond the scope of 
this article[23].

In addition to the mentioned above, another recent large cohort of CCA suggested 
that according to whole-gene expression data, chromosomal aberrations, and signaling 
pathway activation, CCA can be divided into two molecular subgroups: (1) inflam-
mation class; and (2) proliferation class, which accounts for 38% and 62% of CCA 
cases, respectively[24]. The inflammation class of CCA has been characterized by the 
activation of inflammatory response and overexpression of T helper 2)-related 
cytokines and down-regulation of Th1-related cytokines. Moreover, it has been 
reported that several oncogenic pathways were enriched in the proliferation class that 
is accompanied by activation of receptor tyrosine kinase pathways (i.e. epidermal 
growth factor, RAS, AKT, MET, angiogenesis-related vascular endothelial growth 
factor, and platelet-derived growth factor) and Kirsten rat sarcoma viral oncogene 
homolog mutations[14,24].

Despite all of the before-mentioned data about molecular CCA classification, many 
other studies provide more useful information about molecular characteristics of CCA 
subtypes, such as the information derived from the noncoding RNA alteration, 
proteomics, and radiogenomic studies, which should be discussed in a separate article 
focusing on molecular classification of CCA[24].

Molecular pathogenesis of CCA
Cholangiocarcinogenesis is linked not only with genetic and epigenetic alterations but 
also with major changes in the microenvironment of the tumor. These modifications 
contribute to the triggering of different signaling pathways that are able to drive the 
initiation and progression of tumors[25]. Chronic inflammation contributes to 
increased exposure of cholangiocytes to Wnt inflammatory mediators, interleukin-6, 
cyclo-oxygenase-2, and tumor necrosis factor-alpha, leading to progressive mutations 
in some critical cancer-related genes including tumor suppressors, proto-oncogenes, 
and DNA mismatch-repair[26]. Increased apoptosis, decreased pH, and activation of 
extracellular signal-regulated kinase 1/2, Akt, and nuclear factor-kappa B signaling 
pathways following the accumulation of bile acids from cholestasis lead to promotion 
of survival, cell proliferation, and migration. Vascular endothelial growth factor, 
transforming growth factor-β, hepatocyte growth factor, and other microRNAs 
(miRNAs) are other mediators that are upregulated in CCA. Tumor development, 
angiogenesis, and migration are triggered by increased expression of the glucose 
transporter protein type 1, the cell surface receptor c-Met, and the sodium iodide 
symporter. The composition of the extracellular matrix and macrophage/fibroblast 
recruitment result in stromal shifts that establish a microenvironment to promotes cell 
survival, invasion, and metastasis[25,27-29]. The major signaling pathways involved in 
CCA are illustrated in Figure 1.

Genetic factors in the pathogenesis of CCA
Few studies have described chromosomal abnormalities in CCA, and, due to the 
limited number of samples and large genetic variation between the population groups 
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Figure 1 Major signalling pathways involved in cholangiocarcinoma. The major signaling pathways involved in cholangiocarcinomas could be 
categorized into three main class: (1) Microenvironment and inflammation-related pathways; (2) Pathways related to proliferation/survival/death; and (3) 
Development-related pathways. TGF-β: Transforming growth factor-β; CCA: Cholangiocarcinoma; IL: Interleukin; FGFR2: Fibroblast growth factor receptor 2; PI3K: 
Phosphatidylinositol 3 kinase; ERK: Extracellular signal-regulated kinase; JAK/STAT: Janus kinase and signal transducer and activator of transcription.

examined, the findings have been difficult to interpret. Data have revealed gains at 1q, 
7p, 8q, 17q, and/or 20q and losses at 1p, 3p, 4q, 6q, 8p, 9pq, 13q, 14q, 17p, 18q, and/or 
21q[24,30]. Curiously, genetic heterogeneity may be correlated with CCA in cells other 
than cholangiocytes. Natural killer cells and T-lymphocytes, for instance, express the 
natural killer group 2D receptor that plays an important role in cytotoxicity and tumor 
surveillance regulated by cells. One study indicated that the risk of experiencing CCA 
ranged significantly in patients with PSC, according to the patient's natural killer 
group 2D alleles; some were protective and others more than doubled the risk[31]. As 
potential risk factors for CCA, host genetic factors, alone or combined with environ-
mental factors, have been investigated. For polymorphic variants that may be 
correlated with greater vulnerability to CCA, genes coding for xenobiotic detoxi-
fication, multidrug resistance, enzymes responsible for carcinogen metabolism, DNA 
repair, folate metabolism, and inflammation have been investigated. However, due to 
the inclusion of gallbladder and ampullary cancers in their evaluation in some of these 
reports and the lack of replication in separate cohorts, no conclusive conclusions can 
be taken. Multiple gene polymorphisms have been correlated with greater and 
reduced danger of experiencing CCA in many hospital-based, case-control studies. 
Due to the different populations of the sample and the lack of replication of the study 
in separate cohorts, it is hard to draw definite conclusions about these results. Table 2 
summarizes genetic mutations and polymorphisms associated with CCA.

Epigenetic alterations in CCA
By the advent of array-based and deep sequencing techniques, technological advances 
have taken epigenetics into the omics-age, emphasizing the role of the epigenome in 
the human carcinogenesis process, including DNA CpG methylation, histone modific-
ations, and non-coding RNA organisms. Only few systematic CCA epigenomic reports 
have been conducted, and data on abnormal CpG promoter methylation have mainly 
focused on individual genes in the CCA regulation[32]. In various important cancer-
associated genes in CCA, abnormal epigenetic modulation such as promoter 
hypermethylation, was reported[32,33]. Studies examining these modifications to 
existing prognostic and predictive gene signatures have not yet been investigated in 
CCA to predict the therapeutic benefits of agents targeting the cancer epigenome. In 
CCA, the well-studied epigenetic process is DNA methylation. The promoter regions 
of tumor suppressor genes are highly methylated (promoter hypermethylation) in 
CCA tumorigenesis, which contributes to gene silencing. The promoter 
hypermethylation of genes involved in the repair of DNA, cell cycle, apoptosis, 
metabolism of carcinogen/drugs, and cell adhesion has been documented in CCA[33,
34]. Some of the most frequent epigenetic events reported in CCA by methylation is 
summarized in Table 3.
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Table 2 Genetic mutations and polymorphisms associated with cholangiocarcinoma

Gene (Full name) Protein (Full name) Normal function(s) Ref.

ATP8B1 (ATPase Phospholipid 
Transporting 8B1)

FIC1 (Familial Intrahepatic Cholestasis type 1) Transmembrane phospholipid transfer Wadsworth et 
al[88], 2011

ABCB11 (ATP Binding Cassette Subfamily 
B Member 11)

BSEP (Bile Salt Exporter Pump) Transport of cholate conjugates from 
hepatocytes to bile

Wadsworth et 
al[88], 2011

ABCC2 (ATP Binding Cassette Subfamily 
C Member 2)

MRP2 (Multidrug resistance-associated protein 
2)

Transport of endogenous and xenobiotic 
compounds from hepatocytes to bile

Hoblinger et al
[89], 2009

ABCB4 (ATP Binding Cassette Subfamily 
B Member 4)

MDR3 (MHC class I polypeptide-related 
sequence A)

Transport of lipids from hepatocytes to 
bile

Khabou et al
[90], 2019

COX-2 (Cyclooxygenase 2) COX-2 (Cyclooxygenase 2) Inflammatory cytokine Kim et al[91], 
2002

CYP1A2 (Cytochrome P450 1A2) CYP1A2 (Cytochrome P450 1A2) Xenobiotic metabolism Prawan et al
[92], 2005

KLRK1 (Killer Cell Lectin Like Receptor 
K1)

NKG2D (NKG2-D type II integral membrane 
protein)

Tumor surveillance Melum et al
[93], 2008

MTHFR (Methylenetetrahydrofolate 
Reductase)

MTHFR (5,10-Methylenetetrahydrofolate 
reductase)

DNA methylation Ko et al[94], 
2006

NAT2 (N-Acetyltransferase 2) ARY2(Arylamine N-acetyltransferase 2) Drug and carcinogen metabolism Prawan et al
[92], 2005

PTGS2 (Prostaglandin-endoperoxide 
synthase 2)

PTGS2 (Prostaglandin G/H synthase 2) The key enzyme in prostaglandin 
biosynthesis, and acts both as a 
dioxygenase and as a peroxidase

Sakoda et al
[95], 2006

XRCC1 (X-ray repair cross 
complementing 1)

XRCC1 (DNA repair protein XRCC1) Involved in DNA single-strand break 
repair by mediating the assembly of 
DNA break repair protein complexes

Huang et al
[96], 2008

GSTO1(Glutathione S-transferase omega-
1)

GST01 (Glutathione S-transferase omega-1) Detoxification of endogenous and 
xenobiotic compounds

Marahatta et al
[97], 2006

MICA (MICA PERB11.1) MICA (MHC class I polypeptide-related 
sequence A)

Stress-induced self-antigen and Ligand 
for the KLRK1/NKG2D receptor

Melum et al
[93], 2008

NR1H4(Nuclear Receptor Subfamily 1 
Group H Member 4)

BAR (FXR) (Bile acid receptor (Farnesoid X 
receptor)

Negative feedback inhibitor of bile acid 
synthesis

Wadsworth et 
al[88], 2011

TYMS (Thymidylate Synthetase) TYMS (Thymidylate synthase) DNA repair Razumilava et 
al[61], 2014

XRCC1 (X-Ray Repair Complementing 
Defective Repair in Chinese Hamster Cells 
1)

XRCC1 (DNA repair protein XRCC1) DNA repair Gong et al[98], 
2015

APC (Adenomatous polyposis coli) APC (Adenomatous polyposis coli) Tumor suppressor Kang et al[99], 
1999

ARID1A (AT-Rich Interaction Domain 
1A)

ARID1a (AT-rich interactive domain-containing 
protein 1A)

Transcription factor Razumilava et 
al[61], 2014

BAP1 (BRCA1 Associated Protein 1) BAP1 (Ubiquitin carboxyl-terminal hydrolase 
BAP1)

Regulates cell growth Yoshino et al
[100], 2020

BCL-2 (B cell Lymphoma-2) Bcl-2 (B-cell lymphoma 2) Regulates apoptosis Fingas et al
[101], 2010

BRAF (B Rapidly Accelerated 
Fibrosarcoma)

B-Raf (B-Rapidly Accelerated Fibrosarcoma) Proto-oncogene Sia et al[24], 
2013

BRCA1 (Breast Cancer 1) BRCA1 (Breast cancer type 1 susceptibility 
protein)

Tumor suppressor and DNA repair

BRCA2 (Breast Cancer 2) BRCA2 (Breast cancer type 2 susceptibility 
protein)

DNA repair

Paradiso et al
[102], 2020

CCND1(Cyclin D1) CCND1 (G1/S-specific cyclin-D1) Regulates cell growth Yoshino et al
[100], 2020

CDH1(Cadherin 1) E-cadherin (Epithelial cadherin) Tumor suppressor, cell adhesion

CDK6 (Cyclin-Dependent Kinase 6) CDK6 (Cyclin-Dependent Kinase 6) Controls cell cycle and differentiation

Ross et al[103], 
2014
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CTNNB1 (Catenin Beta 1) Β-catenin Proto-oncogene

EGFR (ERBB1) (Epidermal Growth Factor 
Receptor)

EGFR (ErbB-1) (Epidermal Growth Factor 
Receptor)

Proto-oncogene

ERBB2 (HER2) (Avian Erythroblastosis 
oncogene B2)

ErbB-2 (HER2) (Receptor tyrosine-protein kinase 
erbB-2)

Proto-oncogene

O'Dell et al
[104], 2012

FBXW7 (F-Box and WD Repeat Domain 
Containing 7)

FBXW7 (F-box/WD repeat-containing protein 7) Component of proteasomal protein 
degradation pathway

FGF19 (Fibroblast Growth Factor 19) FGF19 (Fibroblast Growth Factor 19) Regulation of bile salt synthesis

FGFR2 (Fibroblast Growth Factor 
Receptor 2)

FGFR2 (Fibroblast Growth Factor Receptor 2) Cell surface receptor regulating cell 
proliferation, differentiation, migration 
and apoptosis

Ross et al[103], 
2014

IDH1 (Isocitrate dehydrogenase 1) Isocitrate de-hydrogenase 1 (Isocitrate 
dehydrogenase (cytoplasmic))

Glucose metabolism, indirectly mitigates 
oxidative stress

IDH2 (Isocitrate dehydrogenase 2) Isocitrate de-hydrogenase 2 (Isocitrate 
dehydrogenase (mitochondrial))

Glucose metabolism, indirectly mitigates 
oxidative stress

Nabeshima et 
al[105], 2020

Keap1 (Kelch-like ECH-associated protein 
1)

KEAP1 (Kelch-like ECH-associated protein 1) Prevents Nrf2-driven transcription Ma et al[106], 
2020

KRAS (Kirsten Rat Sarcoma) K-Ras (Kirsten Rat Sarcoma) Proto-oncogene Tannapfel et al
[107], 2000

MDM2 (Mouse Double Minute 2) Mdm2 (E3 ubiquitin-protein ligase Mdm2) Proto-oncogene, p53 inhibitor Ross et al[103], 
2014

MYC (Avian myelocytomatosis virus 
oncogene cellular homolog)

Myc (Myc proto-oncogene protein) Proto-oncogene Zhou et al
[108], 2019

NF1 (Neurofibromin 1) NF1 (Neurofibromin) Stimulates Ras activity Ross et al[103], 
2014

PBRM1 (Polybromo 1) PBRM1 (Protein polybromo-1) Negative regulator of cell proliferation Luchini et al
[109], 2017

PIK3CA (Phosphatidylinositol-4,5-
Bisphosphate 3-Kinase Catalytic Subunit 
Alpha)

PIK3CA (Phosphatidylinositol 4,5-bisphosphate 
3-kinase catalytic subunit alpha isoform)

Generates PIP3 that activates signalling 
cascades for cell growth, survival and 
motility

Xu et al[110], 
2011

PTEN (Phosphatase and Tensin Homolog) PTEN (Phosphatidylinositol 3,4,5-trisphosphate 
3-phosphatase and dual-specificity protein 
phosphatase PTEN)

Tumor suppressor Zhu et al[111], 
2014

RAD51AP1 (RAD51 Associated Protein 1) RAD51AP1 (RAD51 Associated Protein 1) DNA damage repair Liu et al[112], 
2021

RASSF1A (Ras association domain family 
1 isoform A)

RASSF1A (Ras association domain-containing 
protein 1 isoform A)

Tumor suppressor Chen et al[113], 
2005

SMAD4 (Small Mothers Against 
Decapentaplegic 4)

SMAD4 (Small Mothers Against 
Decapentaplegic 4)

Tumor suppressor, transcription factor Yoshino et al
[100], 2020

SOCS3 (Suppressor of Cytokine Signaling 
3)

SOCS3 (Suppressor of Cytokine Signaling 3) Signal transduction inhibitor Andersen et al
[114], 2012

TP53 (Tumor Protein 53) p53 (Protein 53) Tumor suppressor O'Dell et al
[104], 2012

NKG2D: Natural killer group 2D.

Non-coding RNAs changes in CCA
MiRNAs are a type of small non-coding RNA that is involved in the post-transcrip-
tional regulation of gene expression. The upregulation/downregulation in multiple 
miRNAs have been reported in CCA, wherein dysregulated miRNAs led to mitosis, 
increased cell survival, and metastasis[35]. However, whether the alteration in miRNA 
expression in CCA is part of the process of carcinogenesis or the consequence of 
established CCA remains to be fully understood[36]. Long non-coding RNAs 
(lncRNAs) widely transcribed in the genome are evolving as key cancer regulators and 
play crucial roles in almost every facet of cell biology, including tumorigenesis. Via 
their association with DNA, proteins, and RNA, lncRNAs control cells' malignant 
transformation. The molecular mechanisms of lncRNA involved in CCA tumori-
genesis may therefore be promising targets for therapeutic intervention and diagnostic 
applications in the battle against cancer[37,38]. The majority of upregulated genes are 
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Table 3 DNA methylation in the genomic sequences of specific genes that are associated with the pathogenesis of cholangiocarcinoma

Gene 
(location) Function Epigenetic modification/effect Outcome Ref.

p16INK4A or 
CDKN2A (9p21)

Tumor suppressor gene Regulates 
cell proliferation and oncogenesis

Promoter region hypermethylation of the p16
INK4A results in gene inactivation. Common 
event in PSC-associated CCA 

More frequent in ECC cases. More 
commonly observed in tumors with 
vascular invasion. Poor clinical 
outcome 

Ueki et al
[115], 2004

p14ARF (9p21) Encoded by the β transcript of 
CDKN2A (p16/CDKN2A)

Methylation of p14ARF MF = 38 and 25% 
(32.35); 40.2% liver fluke CCA (37)

Increased tumorigenesis in CCA Kim et al
[116], 2007

p15INK4b or p15 
(9p21)

Effecter of TGF-β-mediated cell 
cycle arrest

Promoter hypermethylation of p15 gene Increased tumorigenesis in CCA

p73 gene (1p36.3) Tumor suppressor gene and 
related to the p53 gene

Promoter region hypermethylation increased 
tumorigenesis 

Increased tumorigenesis in CCA

Yang et al
[117], 2005

TMS1/ASC 
(16p11.2)

Tumor suppressor gene Aberrant methylation of the TMS1/ASC cause 
inactivation of gene 

Associated with CCA Liu et al
[118], 2006

FHIT (3p14.2) Tumor suppressor gene Promoter hypermethylation of the FHIT gene 
results in epigenetic silencing of the FHIT 
promoter region 

Development of intrahepatic CCAs Foja et al
[119], 2005

RASSF1A 
(3p21.3)

Tumor suppressor gene induces 
cell cycle arrest by inhibiting the 
accumulation of cyclin D1

Hypermethylation of its CpG island promoter 
region results in inactivation 

Promoter methylation is more 
common in ECC than 

Wong et al
[120], 2002

hMLH1 (3p21.3) DNA mismatch repair gene Promoter methylation/hypermethylation of 
the hMLH1 gene

Methylation frequencies vary in 
sporadic CCA, biliary papillary, 
neoplasms, and liver fluke-related 
CCA. Associated with poorly 
differentiated subtype of CCA with 
vascular invasion 

Yang et al
[117], 2005

APC (5q21–q22) Tumor suppressor gene Controls 
cell division, cell-cell interactions 
and cell migration and invasion, 
and conservation of chromosomal 
number during cell division

APC gene hypermethylation Worse clinical outcome in CCA

RAR-β (or HAP, 
RRB2 and 
NR1B2) (3p24)

Mediates cellular signaling in 
embryonic morphogenesis, cell 
growth and differentiation by 
regulating gene expression

Gene silencing by promoter region 
hypermethylation Results in increased 
tumorigenesis 

Increased tumorigenesis in CCA

Yang et al
[117], 2005

Epithelial (E) 
cadherin gene 
(16q22.1)

Tumor suppressor gene Hypermethylation of the promoter region of E 
gene Results in loss of function and contribute 
to progression of cancer by increasing 
proliferation, invasion and metastasis

Development of intrahepatic CCA Lee et al
[121], 2002

DAPK (9q34.1) Tumor suppressor gene Positive 
mediator of interferon-γ (IFN-γ)-
induced programmed cell death

DAPK gene hypermethylation Associated with poorly 
differentiated CCAs and with a 
poor prognosis 

CHFR gene 
(12q24.33)

Tumor suppressor gene Delays the 
entry into the metaphase

Gene silencing by promoter hypermethylation Increased tumorigenesis in CCA

RUNX3 gene 
(Ip36)

Tumor suppressor gene Regulate 
proliferation of the biliary tract 
epithelium

Methylation of RUNX3 results in gene 
silencing 

Associated with poorer survival 

Tozawa et 
al[122], 
2004

GSTP gene (1q43) Regulate drug and xenobiotic. 
metabolism

Promoter region hypermethylation Hypermethylation more frequent in 
ICCA than in ECC 

Lee et al
[121], 2002

MGMT gene 
(10q26)

Responsible for repairing 
alkylation. DNA damage inhibits 
estrogen receptor-mediated cell 
proliferation

Methylation of discrete regions of the MGMT 
CpG island, results in heterochromatinization 
of the MGMT transcription start site and 
silencing of the gene

Increased frequency of GC to AT 
transitions in oncogenes and tumor 
suppressor genes and a poor 
prognosis 

Koga et al
[123], 2005

BLU gene 
(3p21.3)

Tumor suppressor gene Gene methylation Increased tumorigenesis in CCA

SEMA3B 
(3p21.3)

Tumor suppressor gene by 
inducing apoptosis. Plays a critical 
role in the guidance of growth 
cones during neuronal 
development

Methylation of SEMA3B gene Increased tumorigenesis in CCA

Tischoff et 
al[124], 
2005

TIMP3 gene Plays a role in the induction of Lee et alCpG island methylation of TIMP3 gene Associated with worse survival
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(22q12.3) apoptosis [121], 2002

RIZ1 Tumor suppressor gene Methylation of RIZ1 Results in chromatin 
compaction and gene silencing MF = 38% 
liver fluke CCA (47)

Increased proliferation and 
migration of CCA cell line

Khaenam 
et al[125], 
2010

OPCML Tumor suppressor gene Hypermethylation of OPCML Increased tumorigenesis in CCA Sriraksa et 
al[126], 
2011

GSTP1 Tumor suppressor gene Methylation of GSTP1 Increased tumorigenesis in CCA Yang et al
[117], 2005

COX-2/PTGS2 
(1q25.2–q25.3)

Acts both as a dioxygenase and as 
a peroxidase

Methylation of COX-2 gene Increased tumorigenesis in CCA Lee et al
[121], 2002

THBS1 gene 
(15q15)

Mediates cell-to-cell and cell-to-
matrix interactions and play roles 
in platelet aggregation, 
angiogenesis and tumorigenesis

Hypermethylation in the promoter region of 
THBS1 gene 

Increased tumorigenesis in CCA Tischoff et 
al[124], 
2005

SOCS3 responsible for sustained IL-
6/STAT-3 signaling and enhanced 
Mcl-1 expression in 
cholangiocarcinoma

Hypermethylation in the promoter region of 
SOCS3 gene 

Increased tumorigenesis in CCA Zhang et al
[127], 2012

TGF-β: Transforming growth factor-β; CCA: Cholangiocarcinomas; IL: Interleukin; TIMP3: Tissue inhibitors of metalloproteinase 3; SOCS3: Suppressor of 
cytokine signaling 3; STAT-3: Signal transducer and activator of transcription; THBS1: Thrombospondin 1; SEMA3B: Semaphorin 3B; GSTP1: Glutathione 
S-transferase pi gene; OPCML: Opioid binding protein/cell adhesion molecule-like gene; MGMT: O6-methylguanine DNA methyltransferase; RIZ1: 
Retinoblastoma protein-interacting zinc finger gene 1.

involved in carcinogenesis, diseases of the hepatic system, and transduction of signals. 
The miRNAs and lncRNAs related to the promotion of the pathogenesis of CCA are 
indicated in Tables 4 and 5.

EPIDEMIOLOGY
Several publications have shown that PSC has an annual incidence rate of 0.77 per 
100000 persons. PSC is more prevalent in adults between 25-years-old and 45-years-
old; the median age of diagnosis of PSC is 41 years. Patients with PSC have a consid-
erably higher risk of CCA, with an estimated incidence rate ranging from approx-
imately 0.5% to 1.5% annually and lifetime incidence of 20%[4,39,40]. The estimated 
prevalence of CCA in patients with PSC ranges from 6.5% to 13.3%[4,41,42]. A recent 
cohort study on 7121 patients from 37 countries showed the prevalence of CCA in 
patients with PSC to be 8.3%[43]. In high prevalence regions, such as Scandinavian 
countries, PSC is the most common indication for liver transplantation[44]. Death 
attributed to PSC is increased nearly four-fold as compared to the general population, 
in part because of end-stage liver disease; however, more than 40% of deaths in PSC 
patients have been attributed to cancer development[4].

In Western countries, PSC is the most common known predisposing factor for CCA. 
The risk of CCA development per year among patients with PSC is 0.5% to 1.5%, with 
estimated lifetime prevalence of 5%–10%[45]. Several potential risk factors for CCA in 
PSC patients have been evaluated; smoking and alcohol consumption are increasingly 
recognized as risk factors for CCA[46].

Epidemiologic data studies regarding CCA mortality risk indicate that age-adjusted 
death rate for iCCA is increasing while trend mortality from pCCA and dCCA is 
expected to decrease worldwide[47]. Although the recorded rise in the incidence of 
CCA during the past 30 years has been observed as an increase in iCCA, it might be 
due to potential misclassification of perihilar tumors as iCCAs[48]. The age-adjusted 
incidence rate according to the United States database for iCCA enhanced from 0.59 
per 100000 population in 1990 to 0.91 in 2001. Subsequently, the age-adjusted incidence 
rate decreased to 0.6 per 100000 population by 2007. Contrarily, the incidence rate 
among pCCA plus dCCA patients remained approximately 0.8 per 100000 population 
until 2001 then steadily increased to 0.97 until 2007. Perihilar CCA was identified as 
iCCAs before 2001 and subsequently was recognized as pCCA after releasing the 3rd 
edition of Classification of Tumors. This amendment plausibly affected the aforemen-
tioned alterations in specific incidence rates of both CCA subtypes[49].
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Table 4 Unique microRNAs that were identified to promote the pathogenesis of cholangiocarcinoma

miRNAs Target gene Correlation with CCA 
tumorigenesis Upregulated/downregulated Ref.

miR-26a GSK-3b Tumor growth Upregulated Zhang et al[127], 2012

miR-24 MEN1(11q13) Tumor suppressor gene Upregulated Ehrlich et al[128], 2017

miR-29b MCL-1 Tumor suppressor gene Downregulated

let-7a NF2 Tumor suppressor gene Upregulated

Stutes et al[129], 2007

miR-148a DNMT-1 Regulate methyltransferase Downregulated Braconi et al[130], 2010

miR-124 SMYD3 Migration and invasion of CCA 
cells

Downregulated Zeng et al[131], 2012

miR-21 PTEN Tumor suppressor gene Upregulated Meng et al[132], 2006

miR-152 DNMT-1 Regulate methyltransferase Downregulated Braconi et al[130], 2010

miR-200b PTPN12 Tumor suppressor gene Upregulated Meng et al[132], 2006

miR-429 CDH-6 Tumor suppressor gene Upregulated Goeppert et al[133], 
2016

miR-122, miR-145, miR-
200c, miR-221, and miR-
222

Multiple Associated with tumorigenesis of 
ICCA

Downregulated

miR-21, miR-31, and miR-
223

Multiple No association with clinic-
pathological parameters of CCA

Upregulated

Karakatsanis et al[134], 
2013

miR-370 MAP3K8 Tumor suppressor gene Downregulated Stutes et al[129], 2007

miR-141 CLOCK Tumor suppressor gene Upregulated Meng et al[132], 2006

miR-214 Twist Oncogene Downregulated Li et al[135], 2012

CCA: Cholangiocarcinoma; CXCR4: C-X-C chemokine receptor type 4; MAP3K8: Mitogen-Activated Protein Kinase Kinase Kinase 8; PTEN: Phosphatase 
and TENsin homolog deleted on chromosome 10; GSK-3b: Glycogen synthase kinase 3 beta; SMYD3: SET and MYN-domain containing 3; MCL-1: myeloid 
cell leukemia-1; NF2: Neurofibromatosis type 2.

iCCA is a primary carcinoma of the liver with rare entity, accounting for about 3% 
of global gastrointestinal cancers[50]. iCCA comprises 8%–10% of all CCA and has a 
distinguished disease course, incidence, and prevalence of disease from hilar and 
eCCA[51]. In addition, in spite of the fact that iCCA has been historically mistaken for 
other HCC[52], previous studies have shown that ICC accounts for 10%–20% of 
primary liver malignancies[53]. iCCA is uncommon in individuals under 40 years of 
age; it occurs primarily at an old age with the peak incidence in the 5th and 7th decade 
of life[54]. In the United States it is estimated a slight male predominance in iCCA 
cases (1.5 fold) over women[54].

Despite the low frequency of iCCA vs HCC, the incidence of iCCA appears to be 
increasing worldwide[55]. This increased risk of incidence rate is independent of 
tumor size and staging, and it is implausibly secondary to earlier diagnosis[55]. In the 
United States the incidence of iCCA during the past 30-year period enhanced 165% to 
0.95 cases/100000 population[55]. A similar rise in iCCA incidence rate has also been 
reported in the United Kingdom, Japan, and Crete[56].

Globally, there is a certain disparity incidence of iCCA, with markedly lower rates 
of iCCA reported in Western nations when compared to East Asian countries[50]. This 
demographic variation is explained mainly by the prevalence of risk factors for iCCA 
in these East Asian countries[57].

In addition, Hispanic-Americans (1.22 per 100000 population) were considered to be 
significantly susceptible to high incidence of iCCA compared to other ethnic groups; 
for instance, African-Americans have a low rate of incidence (0.3 per 100000 
population). The researchers have shown that this disparity may reflect genetic 
diversity, cultural differences, and socio-economic status in iCCA susceptibility[58].

Several risk factors implicated in iCCA pathogenesis have demographical 
prevalence. A previous report indicated that approximately 40% of iCCA patients will 
have no detectable risk factor, suggesting the need to be explored for further research 
in this regard[59].
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Table 5 Upregulated long non-coding RNAs that are reported in cholangiocarcinomas

LncRNA Possible mechanism Clinical relevance Ref.

AFAP1-AS1 (1) Decreasing the expression of c-Myc, Cyclin D1, MMP-2 and MMP-
9; and (2) Decreasing the AFAP1 expression and promoting cell stress 
filament integrity

Unfavorable prognostic biomarker; 
potential therapeutic target

Lu et al[136], 2017

CCAT2 - Unfavorable prognostic biomarker; 
potential therapeutic target

Xu et al[137], 2018

HULC Activating CXCR4 by sponging to miR-372/miR-373 as ceRNA Potential therapeutic target Wang et al[138], 2016

ASAP1-IT1 Interacting with hedgehog signaling pathway Unfavorable prognostic biomarker; 
potential therapeutic target

Guo et al[139], 2018

CPS1IT1 Coexpressed with host gene CPS1 Unfavorable prognostic biomarker; 
potential therapeutic target

Lu et al[136], 2017

EPIC1 Directly interacting with Mys - Li et al[140], 2018

H19 Activating IL-6 by sponging to let-7a/let-7b as ceRNA Unfavorable prognostic biomarker; 
potential therapeutic target

Xu et al[141], 2017

CCAT1 Sponging to miR-152 as ceRNA Independent prognostic factor; 
potential therapeutic target

Jiang et al[142], 2017

LINC01296 Modulating MYCN transcription by sponge miR-5095 as ceRNA Potential therapeutic target Jiang et al[142], 2017

PCAT1 Enhancing Wnt/β-catenin signaling through miR-122 repression and 
WNT1 expression

Potential therapeutic target Zhang et al[143], 2017

SNHG1 Modulating cancer-related gene like CDKN1A by co-operating with 
chromatin-modifying enzymes as EZH2

Unfavorable prognostic biomarker; 
potential therapeutic target

Yu et al[144], 2018

MALAT1 (1) Activating PI3K/Akt pathway; and (2) miR-204-dependent CXCR4 
regulation as ceRNA

Unfavorable prognostic biomarker; 
potential therapeutic target

Tan et al[145], 2017

PVT1 Binding to epigenetic modification complexes, adjusting the 
expression of ANGPTL4

Potential therapeutic target Yang et al[146], 2018

UCA1 (1) Facilitating apoptosis via Bcl-2/caspase-3 pathway; (2) Activating 
AKT/GSK-3β/CCND1 axis; and (3) Upregulating MMP-9

Unfavorable prognostic biomarker; 
potential therapeutic target

Xu et al[147], 2017

SPRY4-IT1 Recruiting EZH2, LSD1 or DNMT1 via sponging to miR-101-3p Unfavorable prognostic biomarker; 
potential therapeutic target

Xu et al[148], 2018

T-UCRs Downstream of Wnt pathway and sponging to miR-193b Unfavorable prognostic biomarker; 
potential therapeutic target

Carotenuto et al[149], 
2017

LncRNA: Long non-coding RNAs; ceRNA: competing endogenous RNAs; MMP9: Matrix metallopeptidase 9; EZH2: Enhancer of zeste homolog 2; PI3K: 
Phosphoinositide 3-kinase; LSD1: lysine-specific demethylase 1; DNMT1: DNA (cytosine-5)-methyltransferase 1; CCND1: cell cycle proteins, cyclin D1; 
ANGPTL4: Angiopoietin-like protein 4.

It is believed that PSC is a predisposing factor for the development of iCCA. Both 
biliary inflammation and subsequent chronic proliferative activation of hepatic stem 
cells potentially predispose to iCCA formation[60]. It has been reported that PSC 
patients possess a lifetime incidence of CCA from approximately 5%–10%, while 50% 
of cases are recognized during 2 years of the course of PSC[61]. Additionally, 
researchers showed a predisposing risk of iCCA (odds ratio: 2.2; 95% confidence 
interval: 1.2–3.9) in ulcerative colitis patients[59]. The iCCA arose in PSC patients 
earlier, despite most individuals diagnosed between the ages of 30 and 50.

Recent results indicated that cancer risk is higher among patients with primary 
biliary stones and chronic biliary tract inflammation. Furthermore, incidence risk of 
iCCA has been found to be approximately 7% in hepaticolithiasis patients[61]. Another 
Asian study demonstrated that hepaticolithiasis in CCA patients followed by surgical 
resection is nearly 70% in Taiwan[60].

Furthermore, congenital anomalies of biliary tree, like Caroli’s disease and 
fibrocystic hepatic disorder, reveal approximately 15% lifetime risk factors of iCCA 
following the 2nd decade of life[60]. Caroli’s disease is a rare inherited disorder charac-
terized by cystic widening of ducts in the liver, usually in a bilobar pattern. iCCA risk 
has been shown to be rising among subjects with bile stasis, cholangitis, and chronic 
inflammation[62].

CCA represents approximately 3% of all gastrointestinal cancers. The total incidence 
rate of CCA appears to have increased dramatically over the past 30 years[49]. The 5-
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year overall survival rates after diagnosis remained at 10% during this span of time
[46].

LIVER TRANSPLANTATION
CCA is a highly fatal malignancy tumor due to late clinical presentation[57]. While it is 
generally believed that standard of care is resection, most patients who present with 
metastatic disease are deemed unresectable[63]. The liver transplantation outcomes 
alone for unresectable conditions have been disappointing[64]. A previous study 
examined the effectiveness of a novel modality combining neoadjuvant chemoradio-
therapy followed by liver transplantation. Survival outcomes from a combination of 
neoadjuvant chemoradiotherapy and liver transplantation for CCA are considerably 
excellent in comparison with resection[65]. Thus, even if transplantation may be a 
useful cure for unresectable iCCA, survival output remains poor. Orthotopic liver 
transplantation utilization is increasing within the United States and appears 
promising because it may obviate complications to achieve surgical margins into the 
liver. Unfortunately, efforts during the past decades were poor. In addition, according 
to the registry between 1968 and 1997, researchers have reported a 28% 5-year survival 
rate with a 51% risk of tumor recurrence rate after liver transplantation[64]. Further-
more, during the first 2 years, 84% of recurrences were identified and can occur in up 
to 47% of candidates of liver allograft. Other surgery centers in Europe reported a 
similar result; the 3-year survival for 36 patients was 30%[66]. Accordingly, most liver 
transplant centers historically consider CCA a contraindication for liver 
transplantation[67].

There are many benefits for liver transplantation vs conventional resection to 
acquire complete elimination of tumor. There is some difficulty in evaluating hepatic 
duct tumor involvement before resection, and this is the most frequent reason for 
failure towards the achievement of an R0 resection. This problem is considerably 
obviated by liver transplantation. Liver transplantation promotes extirpation of all 
adjacent tissue and resection of the caudate. Liver transplantation facilitates arterial 
and portal venous inflow preservation to the remaining liver. Liver transplantation 
provides wide local excision and higher patient survival than what could be achieved 
with conventional resection[8].

Researchers conclude that neoadjuvant supportive treatment therapy in 
combination with liver transplantation presently appears to have fared far better than 
resection for selected patients with regional lymph node negative hCCA. Surgical 
staging information is essential; 23% of patients had localized lymph node metastases 
and concomitant extrahepatic disorder, which increased subsequent risk for 
transplantation. In a quarter of patients with underlying PSC, pancreatoduodenectomy 
may be required to obtain complete removal of the patient’s tumor with biliary tract 
involvement at the time of transplantation. Liver transplantation in combination with 
neoadjuvant treatment should be considered as an alternative option to surgical 
resection for patients with hCCA[8].

Liver transplantation as an important therapeutic option for iCCA is still debated. It 
has been reported that iCCA recurs within 5 years of liver transplantation among 70% 
of patients[68]. Locoregional interventions, such as radiofrequency ablation and 
transarterial chemoembolization, have garnered attention as a therapeutic alternative 
for localized, unresectable iCCA patients[69]. The standard treatment for patients with 
advanced-stage iCCA is the most common combinations, which includes systemic 
chemotherapy regimen of gemcitabine and cisplatin. According to a recent clinical 
study, liver transplantation could be a treatment choice for patients with early 
detected unresectable iCCA (i.e. ≤ 2 cm), with better survival results compared with 
those of HCC[70].

iCCA remains a contraindication for liver transplantation in most clinical centers 
around the world because of very poor prognosis, with a 2-year overall survival rate of 
approximately 30%[71]. The lack of standardization due to different patients’ selection 
and the absence of neoadjuvant treatments are expected to change outcomes[72]. The 
best survival was achieved in hCCA thanks to careful patient selection for neoadjuvant 
radiotherapy. Results from cohort studies after 2014 confirmed promising results after 
liver transplantation for iCCA[70]. The significance of proper patient selection criteria 
was first evaluated in a global multicentric report among iCCA patients who 
underwent liver transplantation[70]. The only curative treatments available for pCCA 
are surgical resection and neoadjuvant chemoradiation therapy after liver 
transplantation. Owing to the existence of parenchymal liver disease, PSC patients in 
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most cases need liver transplantation as the preferred choice when compared to 
surgical resection[1]. Besides this, recent studies confirm that in PSC patients, intense 
immunosuppression ensuing liver transplantation increased risk of disease recurrence
[73]. Liver transplantation for pCCA patients following neoadjuvant chemoradiation 
treatment establishes a proper long-term survival rate in a group of selected 
candidates with unresectable early stage pCCA and patients with PSC–related pCCA. 
Commitment to appropriate selection criteria, heavy neoadjuvant intervention, 
operative staging before liver transplantation, and specified technical procedures 
throughout the transplant process are required for success[74].

The research evidence shows that neoadjuvant therapy for liver transplantation is 
an effective treatment for unresectable early stage pCCA and pCCA occurring in the 
setting of PSC[75]. Recently, programmed cell death protein 1 inhibitors are noticed as 
a promising therapeutic option for CCA. Chimeric antigen receptor T cells, oncolytic 
viruses cancer vaccines and bispecific antibodies, show a remarkable ability to achieve 
satisfactory results.

Furthermore, the combinations of immunotherapy with other immunotherapeutics 
such as conventional therapies display some efficacy, and various studies have 
provided new insights into their administration in antitumor therapy[76]. The main 
barrier to successful liver transplantation and effective treatment is the availability of 
donor organs[75]. According to data from the Mayo Clinic and several other centers, 
from the start of therapy, a promising survival rate between 5-10 years was reached
[77]. Post-transplant survival is approaching 50% at 5 years for both pCCA–related 
PSC and de novo pCCA, and these findings rationalize the use of both deceased and 
living donors.

After onset of this therapy in 1993, significant increases were observed in the time 
elapsed between the end of neoadjuvant treatment and liver transplantation. This 
interval can differ widely between patients by blood type compatibility, transplant 
center address, and availability of living donor organs. It has been shown that longer 
time elapsed between neoadjuvant therapy and liver transplantation results in 
reducing local recurrence[78]. Selection of patients with prolonged intervals and better 
oncologic biography, who are less susceptible to advancing the disease following 
neoadjuvant treatment, are less prone to develop recurrence post-transplantation. 
However, patients with radiation-induced fibrosis and longer intervals can 
significantly complicate the staging and transplant operations. Living donor liver 
transplant (LDLT) may solve these problems by removing the need to waitlist for a 
deceased donor and help physicians for optimal timing of liver transplantation. Recent 
findings based on clinical study demonstrated that LDLT and deceased donor liver 
transplant (DDLT) outcomes for pCCA-associated PSC are similar. In addition, LDLT 
for de novo pCCA shows a recurrence tendency and slightly worse patient survival 
outcomes vs DDLT. Despite these minor differences, researchers have been looking 
into possible mechanisms of disease progression following neoadjuvant treatment for 
a period to choose those patients who are at risk due to disease progression in order to 
prevent post-transplant disease recurrences[79]. A previous report indicated that liver 
transplantation is more effective and achieved better survival and less recurrence than 
surgical resection, and that the indications for liver transplantation and neoadjuvant 
treatment should advocate for resectable pCCA patients. According to these favorable 
findings, physicians have advocated for this viewpoint for patients with pCCA-
associated PSC and transplanted many such patients at many transplant centers.

The role of neoadjuvant chemoradiation therapy and liver transplantation remains a 
consideration though, especially in de novo pCCA patients. Earlier studies were 
equivocal and unable to detect whether a subset of patients with de novo pCCA may 
benefit from liver transplantation vs surgical resection[80]. In 2015, American Hepato-
Pancreato-Biliary Association recommended that surgical resection can be standard 
curative treatment for patients with resectable de novo pCCA[81]. Recent reports have 
suggested that liver transplantation vs surgical resection for hCCA patients who may 
need a liver transplant had better prognosis than those found after resection[82]. 
Analysis of results obtained from multicenter study between 2000 to 2015 showed that 
patients with pCCA not associated with PSC continued to show superiority of 
transplant compared to resection with promising post-transplant survival outcomes at 
3 and 5 years (54% vs 44%, P = 0.03; 54% vs 29%, P = 0.03)[82]. Additionally, 
researchers pointed out 5-year estimated overall survival of 41% for patients enrolled 
onto clinical trials of neoadjuvant treatment/transplant procedure vs 27% among those 
patients who underwent surgical resection[83]. This discrepancy (14%) is too minor to 
approve the use of a donor liver for resectable non-PSC related pCCA[83]. In France a 
multi-center randomized clinical trial evaluating neoadjuvant chemoradiation and 
liver transplantation in comparison with resection will further elucidate pivotal details 
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on these equivocal results.
In brief, over the past 2 decades liver transplantation has been currently considered 

the proven treatment of unresectable early stage pCCA and pCCA associated with 
PSC. Outstanding findings can be attained by stringent adherence to patient selection 
criteria and clinical management, application of high-dose neoadjuvant radiation 
therapy, and clinical staging before liver transplantation. Liver transplantation in 
combination with neoadjuvant treatment can obtain outcomes similar to surgical 
resection for unresectable early stage pCCA patients, and this is the treatment of 
choice administered for patients with pCCA arising in the setting of PSC[84]. Approx-
imately 5% of all cases affected by pCCA require liver transplantation under the Mayo 
eligibility criteria. If the liver does not work properly, without transplantation, a 
median survival time is approximately 1 year. pCCA is reported as the most common 
malignancy and aggressive type of the biliary duct and arises from biliary lining the 
liver hilum[85]. The Mayo Clinic and other international centers are recently selecting 
the optimal subgroup to treat patients with locally advanced pCCA by neoadjuvant 
chemoradiation in combination with liver transplantation[65,86]. Outcome of patients 
treated according to this guideline, a 5-year survival rate of 53%, marginally improves 
the survival rate of patients after surgery for resectable type of disease[86,87].

CONCLUSION
It is most important to understand oncological suitability, donor liver organ 
availability, as well as ability to obtain appropriate long-term results in patients with 
CCA with or without PSC. In pCCA not associated with PSC, liver transplantation 
seems to provide promising survival. In resectable types of pCCA patients, 
neoadjuvant chemoradiotherapy and liver transplantation by strict selection criteria 
may improve the survival rate of patients compared to unresectable early stage pCCA 
patients. Owing to the shortage of available organs, it still remains unknown whether 
liver transplantation and neoadjuvant chemoradiotherapy should be increasingly 
considered for other classifications of CCA. Imbalance between organ supply and 
demand further conducts a need for stringent indications and contraindications in 
recognizing liver transplantation proper status. It is also essential for doctors to stay 
up to date with the general indications for liver transplantation and to consider when 
it is suitable or unsuitable to refer patients for transplant evaluation.
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