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Abstract
Glioblastoma remains as the most common and aggressive malignant brain 
tumor, standing with a poor prognosis and treatment prospective. Despite the 
aggressive standard care, such as surgical resection and chemoradiation, median 
survival rates are low. In this regard, immunotherapeutic strategies aim to 
become more attractive for glioblastoma, considering its recent advances and 
approaches. In this review, we provide an overview of the current status and 
progress in immunotherapy for glioblastoma, going through the fundamental 
knowledge on immune targeting to promising strategies, such as Chimeric 
antigen receptor T-Cell therapy, immune checkpoint inhibitors, cytokine-based 
treatment, oncolytic virus and vaccine-based techniques. At last, it is discussed 
innovative methods to overcome diverse challenges, and future perspectives in 
this area.
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Core Tip: This study aims to review the ongoing status and improvement made in immunotherapy for 
glioblastoma, a malignant brain tumor. Thus, this review goes through the general concepts of the tumor 
microenvironment, standard treatment and its limitations and immune targeting promising methods, such 
as Chimeric antigen receptor T-Cell therapy, immune checkpoint inhibitors, cytokine-based treatment, 
oncolytic virus and vaccine-based techniques. Finally, it is explained some methods to surpass the various 
challenges, and future prospects in this field.

Citation: Rocha Pinheiro SL, Lemos FFB, Marques HS, Silva Luz M, de Oliveira Silva LG, Faria Souza Mendes 
dos Santos C, da Costa Evangelista K, Calmon MS, Sande Loureiro M, Freire de Melo F. Immunotherapy in 
glioblastoma treatment: Current state and future prospects. World J Clin Oncol 2023; 14(4): 138-159
URL: https://www.wjgnet.com/2218-4333/full/v14/i4/138.htm
DOI: https://dx.doi.org/10.5306/wjco.v14.i4.138

INTRODUCTION
Glioblastomas (GBM) are the most common type of malignant tumor affecting the central nervous 
system. It is more common among men and its incidence is significantly related to age, being rare 
among young people and more common among the elderly, especially those aged between 74 and 85 
years. It has a very poor prognosis, with survival of 12 to 15 mo after diagnosis, and, when untreated, of 
only 3 mo[1].

Regarding clinical manifestations, the symptoms are quite diverse and common to other types of 
brain tumors and include manifestations associated with intracranial hypertension such as intense 
headache, which can be accompanied by nausea and vomiting, focal neurological deficits, memory and 
personality changes, and seizures[2].

GBMs are tumors that originate from glial cells and are classified according to their histological 
characteristics as high-grade gliomas by the WHO, and the characteristics that define this denomination 
include hypercellularity, nuclear atypia and dysregulation of mitotic activity, besides microvascular 
proliferation and tumor necrosis[3]. So, they are classified as primary if there is no pre-existing 
involvement or secondary if they have progressed from low-grade astrocytomas; primary GBMs 
represent the majority of cases and secondary GBMs correspond to only 5 to 10% and usually affect 
young people[4].

In addition to histopathological analysis, molecular markers are essential for the understanding of the 
disease, since different genetic alterations can originate this type of tumor and determine subtypes that 
behave differently in terms of evolution and response to treatments used, which makes the identi-
fication of these factors essential for the establishment of therapeutic strategies. In this sense, GBMs can 
be grouped into 4 subtypes according to their molecular characteristics: classic, neural, pro-neural and 
mesenchymal[3,4].

Among the mutations related to the pathogenesis of GBM, we can cite 3 main pathways: receptor 
tyrosine kinase signaling, inhibition of the p53 pathway, and RB, and in most cases all three types of 
alterations are present. These mutations are associated with activation of oncogenes that act mainly in 
neoplastic proliferation, apoptosis disturbances, and cell cycle checkpoint failures that promote tumor 
cell survival[5]. Moreover, when compared to a normal brain, GBMs present a higher expression of 
genes related to immune cell infiltration, especially macrophages, and angiogenesis, noticing that 
hypoxia, which is characteristic of necrotic tumor regions, induces a higher expression of vascular 
endothelial growth factor (VEGF) and, consequently, a higher vascular proliferation[6].

Due to the characteristics of its pathogenesis, there is a diversity of cells that are found in the analysis 
of these tumors, including non-neoplastic components of the immune system. This is related to the 
tumor microenvironment of glioblastoma, since it has an inflammatory and pro-angiogenic charac-
teristic that affects the permeability of the blood-brain barrier and allows the infiltration of defense cells, 
especially tumor-associated macrophages (TAM). The immune system in the early stages of the disease 
is responsible for controlling the development of the cancer, however, as proliferation progresses, the 
tumor cells become able to escape this surveillance and the defense cells not only become unable to 
perform this control, but start contributing to the growth of the tumor[7].

The available treatment is complex and usually requires a combination of different approaches and is 
dependent on a number of factors. Although there are other options and studies for the development of 
new treatments, the therapeutic strategies are still controversial and the prognosis is unsatisfactory with 
a high recurrence rate[8].

In this review, we provide an analysis of the ongoing status and progress in immunotherapy for 
glioblastoma, going through the general information about the tumor microenvironment, fundamental 
knowledge on immune targeting to promising strategies like Chimeric antigen receptor (CAR) T-Cell 
therapy, cytokine-based treatment, oncolytic virus and vaccine-based approaches. Finally, we discuss 
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contemporary methods to prevail distinct challenges, and future perspectives in this field.

CURRENT STANDARD CARE LIMITATIONS
The treatment of primary brain tumors such as GBM is still quite limited and, therefore, a major 
challenge in oncology. Although the treatment is difficult, expensive and subject to therapeutic failure, 
management protocols for patients with GBM consider multimodal therapeutic strategies that act in 
synergy in order to destroy the tumor. For this, such strategies must be individualized based on each 
patient according to their functional status, imaging exam, speed of disease progression, quality of life 
and clinical diagnosis. However, for new methods to be developed and current ones to be improved, it 
is necessary to think about the limitations of existing treatments. The Figure 1 synthesizes the current 
GBM treatment strategies and its advantages and limitations.

Surgical method
The surgical method is based on the maximum safe resection of the tumor and currently comprises the 
backbone of therapy for GBM[9], as in addition to reducing the volume of the neoplastic mass and the 
symptoms associated with parenchymal compression, the histological diagnosis and genetic study of 
the tumor are also possible by surgical intervention[10]. The aim of surgical treatment is to achieve a 
gross total resection as completely and safely as possible without risking the patient's functional status. 
Complete resection has been associated with a greater chance of survival and no progression than 
partial resection or biopsy. In this sense, some tools were developed to maximize the surgical procedure 
and alleviate as much as possible the neurological deficits that may be associated with the method. 
Among these tools, monitoring using fluorescence of tumor tissue with 5-aminolevulinic acid in 
conjunction with functional magnetic resonance imaging shows beneficial results[10,11].

However, GBMs are not cured with surgery alone, as almost all are recurrent and the biological 
pleomorphism of each tumor influences the degree of resectability of the cancer, with less malignant 
brain tumors being the most resectable[12]. Furthermore, the surgical method is extremely complex, 
delicate and expensive, because it demands a qualified neurosurgeon and sophisticated imaging 
equipment, in addition to the fact that the patient has the possibility of developing a neurological deficit 
as a result of the intervention, which may even prevent the following steps of the standard treatment, 
such as radiotherapy and chemotherapy[13]. Thus, it is necessary to accurately weigh the risks and 
benefits of the surgical technique.

Radiotherapy
Radiotherapy (RT) became popular in the 1970s and 1980s and is currently a therapeutic strategy based 
on the use of radiation volumes focused on specific regions. This method has become standard for 
GBMs since 2005, as it was in that year that a phase III clinical trial solidified the role of radiotherapy 
and adjuvant chemotherapy in the postoperative period of GBM[14]. After the surgical diagnosis, the 
patient is submitted to doses of 2 Gy for 6 wk until reaching a dose of 60 Gy[13]. It is an effective 
method that increases patient survival in different types of doses provided, especially hypofractionated 
doses, which make this method viable in elderly people (over 65 years old) with glioblastoma[9].

The combination of radiotherapy for 6 wk and chemotherapy with adjuvant Temozolomide 75 mg/
m² for 6 wk and 150-200 mg/m² every 28 d for 6 mo is the gold standard treatment for young patients 
with glioblastoma. This combination of strategies significantly improved the survival of younger 
patients between 2 and 5 years[14].

RT has an important limitation in the sense that its use does not have much favorable evidence in 
recurrent gliomas, although it is extremely useful as a palliative therapy for small recurrent tumors[15]. 
In addition, it is necessary to be wise in the use of radiation, since the treatment protocol requires the 
patient's history of previous radiation, as well as the location of the tumor and the maximum dose for 
the structure in which it is allocated[16]. Finally, the therapeutic algorithm assesses the speed of disease 
progression and the patient's functional status. Thus, the use of chemoradiotherapy is not indicated for 
individuals over 70 years of age who do not have a good functional status, which is measured by the 
Functional Status Score for the Intensive Care Unit scale[15].

Chemotherapy
Temozolomide: Temozolomide (TMZ) is an alkylating agent that is cell cycle independent and is the 
most effective chemotherapy for GBM to current date. This efficiency is due to the ability to cross the 
blood-brain barrier and transportable cytosolic transformation to the cell nucleus[17]. The current 
standard of care in newly diagnosed GBM includes administration of 75 mg/m² of TMZ daily during 
the 6 wk of radiotherapy. Then, 150-200 mg/m² are maintained for 5 d at each 28-d cycle with 6 cycles of 
the drug[13].

However, this therapeutic strategy is variable based on the age of the patient, performance status 
according to the Karnofsky performance score, the promoter methylation status of the repair enzyme 
O(6)-Methylguanine-DNA-methyltransferase (MGMT) and the tumor recurrence[14], since TMZ does 
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Figure 1 Scheme about current glioblastomas treatment strategies and its advantages and limitations. GBM: Glioblastomas; OS: Overall 
survival; PFS: Progression-free survival; TMZ: Temozolomide; VEGF: Vascular endothelial growth factor;

not prevent this event. This enzyme can cause patient resistance to TMZ, and some patients who have 
MGMT gene promoter methylation in the tumor may benefit from reduced drug resistance.

About 55% GBMs[12] have innate or acquired resistance to chemotherapy due to non-methylation of 
the MGMT promoter. In this way, the alkyl groups are removed from the O6 position of the guanine, 
reducing the pharmacological efficacy of the alkylating agents[18]. Another important mechanism of 
resistance to chemotherapy is the reduction of TMZ cytotoxicity by the base excision repair pathway. 
This pathway, mainly composed of poly (ADP-ribose) polymerase-1, is capable of repairing the bases 
methylated by the alkylating agent in the DNA and, therefore, reducing the occurrence of apoptotic 
events in tumor cells[19,20]. Thus, the use of iniparib and velparib is promising, either alone or in 
combination with TMZ, to reduce drug resistance[20,21].

It is noteworthy that the MGMT promoter methylation status is not routinely evaluated for all 
patients with the discussed disease and, if evaluated, the result may not be taken into account for TMZ 
treatment decision making in some clinics, as there may be lower availability of treatment agents, 
presence of severe adverse reactions to chemotherapy, associated comorbidities and preference for 
treatment by the patient.

Carmustine wafers: Carmustine wafers are biodegradable chemotherapy intratumoral implants[22] 
used as an adjunct to surgical resection since 1995 in patients with recurrent GBM, since there is an 
improvement in overall survival (OS) of 7.2 mo in the carmustine group vs 5.4 mo in the placebo group
[23]. However, its combined use with TMZ still divides authors, since some scientists believe that 
concomitant use is associated with an increase in the occurrence of adverse effects[24]. Therefore, it is 
necessary to have a randomized controlled clinical trial to support or refute the safety and efficacy of 
simultaneous use of carmustine wafer with TMZ.

Biological agent: Bevacizumab, a drug containing antiangiogenic monoclonal antibodies that has been 
in use since 2009 against the progressive form of the disease, binds to the VEGF making it difficult for 
recurrent GBM and rapid neurological involvement associated with the tumor, being a well-tolerated 
drug and capable of reducing cerebral edema, which allows a reduction in the use of corticosteroids and 
associated adverse effects[25].

The aforementioned drug is recommended as monotherapy or in association with other 
chemotherapy drugs, such as irinotecan, carmustine, lomustine, carboplatin or temozolomide[26,27], in 
newly diagnosed or recurrent glioblastoma. Several clinical trials over the past decade in patients with 
newly diagnosed GBM have shown improvements in progression-free survival (PFS), although they 
have not shown significant improvement in overall survival (OS). A recent study evaluated the 
combination of lomustine and bevacizumab in recurrent GBM and concluded with a survival of 5.1 mo
[28].
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However, there are genetic variations of VEGF that can determine the success or failure of 
bevacizumab therapy, requiring great care in the administration of this biological agent. Moreover, as 
the anti-VEGF method did not convincingly show improvement in OS as a monotherapy, it is necessary 
to evaluate the combination of this type of drug with other known therapeutic options used in neuro 
oncology.

Alternating electric field therapy
Tumor treatment fields (TTFs) are a therapeutic method that uses alternating currents of low intensity 
(1-2 V/cm) and intermediate frequency through electrodes placed on the skin around the region of a 
malignant tumor to stop growth and to induce apoptosis of mitotically active cells[29,30], which is 
considered a safe method, as it does not affect non-dividing cells.

A 2015 study revealed that the combination of TTFs and TMZ significantly improves median PFS and 
OS compared to TMZ monotherapy during maintenance therapy with less occurrence of electrical 
device-related adverse effects[31]. Current treatment guidelines incorporate TFT into the therapeutic 
regimen of patients with newly diagnosed and recurrent GBM[13].

However, the device is expensive, must be used at least 18 h a day and requires hair shaving of users 
for proper application of electrodes[32]. This can affect the patient's self-esteem and quality of life, in 
addition to causing a possible low adherence to treatment.

PIVOTAL ROLE OF THE TUMOR MICROENVIRONMENT
The central nervous system as an immune-distinct site
The role of the tumor microenvironment in the modulation of antitumor immune responses is becoming 
clearer[33]. The central nervous system (CNS) is usually described as an immune-privileged site, which 
means that it shows attenuated responses to alloantigen challenges[34]. Classically, the property of CNS 
immune privilege has been attributed to two mechanisms: (1) The blood-brain barrier (BBB); and (2) the 
absence of classical lymphatic drainage of CNS antigens[35]. The BBB is a semi-permeable cellular 
barrier composed of specialized endo-thelial cells (non-fenestrated, firmly attached by tight junctions), 
astrocyte end-feet, and pericytes. Its main function is to tightly regulate the movement of ions, 
molecules, and cells (e.g., immune cells) between the blood and the brain[36,37]. The ability to block the 
entry of possibly neurotoxic molecules, primarily through ATP-binding cassette transporter-mediated 
efflux, is one of the main challenges posed to immunotherapy[38]. On the other hand, the lack of profes-
sional antigen-presenting cells in the CNS parenchyma, low expression of MHC class I and II, and the 
first apparent absence of classic CNS lym-phatic drainage also limit the ability of an immune response 
to CNS-derived antigens[39,40]. Given that efficient anti-tumor responses require not only that cancer-
specific T cells be generated, but also that these T cells come into direct contact with the tumor cells, it 
becomes evident that the CNS provides an immune-privileged microenvironment for tumor growth and 
proliferation.

Fortunately, increasing evidence has pointed to the CNS, not as an immune-privileged site, but rather 
as an immune-distinct site that remains accessible to the onset of antitumor immune responses and 
immunotherapy[35]. Recent studies suggest the existence of a functional meningeal lymphatic system 
that drains cerebrospinal fluid (CSF), macromolecules, and immune cells from the CNS into the deep 
cervical lymph nodes[41]. Investigating these antigenic presentation routes will be an important step in 
understanding the immune-distinct properties of the GBM microenvironment.

Immunosuppressive mechanisms in GBM
Although revolutionary in the treatment of cancer patients, immunotherapy is critically dependent on 
the availability of preexisting anti-tumor immunity[42,43]. GBM is widely recognized to induce local 
and systemic immunosuppression, which is a hindrance to the use of immune-modulating therapies
[44].

GBM cells can evade immune surveillance through the release of various soluble mediators that exert 
a variety of immunosuppressive effects[45]. The best-characterized GBM-derived immunomodulatory 
factors are the transforming growth factor β (TGF- β), interleukin 10 (IL-10), and prostaglandin E2 (PGE-
2)[45-48]. In the presence of TGF-β, CD4+ T cells upregulate FoxP3 and differentiate into Treg cells with 
potent immunosuppressive potential. These converted suppressor cells not only do not respond to TCR 
stimulation and produce neither Th-1 nor Th-2 cytokines, but also express TGF-β and inhibit normal T 
cell proliferation in vitro[49,50]. It has also been shown that this cytokine inhibits the expression of five 
cytolytic gene products - specifically, perforin, granzyme A, granzyme B, Fas ligand, and interferon 
(IFN)-γ - which are co-responsible for CD8+ T cell-mediated tumor cytotoxicity[51]. Additionally, there 
is a TGF-β1-mediated downregulation of activating receptor NKG2D on the surface of CD8+ T cells and 
natural killer (NK) cells, thereby precluding cytotoxicity against GBM cells[52]. On the other hand, TGF-
β2 can prevent neoantigen presentation and facilitate immune escape from T lymphocytes through the 
down-regulation of HLA-DR antigen expression on tumor cells[53]. Altogether, these immunosup-
pressive stimuli of T or NK cell activity prevent the effective immune-mediated clearance of tumor cells
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[54,55].
IL-10 also plays a pivotal role in modulating the activity of resident and infiltrating immune cells and 

tumor cells in GBM, predominantly inducing an immunosuppressive phenotype[47]. Upon activation 
by GBM cell-derived IL-10, tumor-microglia and macrophages are then elicited to produce most of the 
IL-10 in the tumor microenvironment[56]. Increased secretion of IL-10 was associated with enhanced 
expression of other anti-inflammatory cytokines, such as IL-4, CCL2, and TGF-β[57]. In the presence of 
IL-10, TAMs downregulate the expression of antigen-presenting molecules, thereby impairing CD4+ T 
cell activation[58]. Along with TGF-β, IL-10 is also able to exert FOXP3-expressing naive T cells differen-
tiation into Treg cells, hence leading to Treg-driven immunosuppression[59-61]. Conversely, recent data 
have shown that a subset of IL-10-releasing HMOX1+ myeloid cells, spatially localizing to 
mesenchymal-like tumor regions, also in-duce T-cell exhaustion and thus contribute to the tumor 
microenvironment[62].

In turn, PGE-2 has been shown as a key mediator of immunosuppressive activity through the 
expansion of myeloid-derived suppressor cells (MDSCs)[48,63]. VEGF, on the other hand, is the most 
important mediator of angiogenesis in glioblastoma, which has made it one of the main therapeutic 
targets in GBM treatment[64]. Finally, through the activation of hypoxia-inducible factor 1- α, hypoxia 
regulates the expression levels of the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), 
programmed death-ligand 1 (PDL-1), and other immunomodulatory surface ligands, which hinder 
effective anti-tumor immune responses[65].

GBM cells can attenuate anti-tumor responses through the expression of a plethora of cell surface 
immunosuppressive factors, including the so-called immune Checkpoint molecules (ICs). Coupled with 
programmed cell death-1 (PD-1) located on the surface of activated T-cells, GBM and immunosup-
pressive (e.g., Treg) cells membrane-bound PDL-1 can exert T-cell exhaustion and anergy[66,67]. Hence, 
PDL-1 upregulation in the tumor microenvironment propitiates resistance against T cell-mediated 
killing, in a protective process termed a “molecular shield”[68]. Conversely, the expression of the CD95 
(Fas) ligand by GBM cells can also attenuate immune attack through the induction of CD95-Dependent 
apoptosis in infiltrating lymphocytes[69]. In turn, CTLA-4 is also an important ICs due to its capacity to 
compete with CD28 for binding to costimulatory molecules (CD80 and CD86) on antigen-presenting 
cells, thereby precluding the activation of T cells[67,68,70,71]. Lastly, indoleamine 2,3-dioxygenase 1 
(IDO) and Lectin-like transcript-1 (LLT-1), are known to increase intratumoral Treg and myeloid-
derived suppressor cells, and to repress NK cell activity, respectively[72,73].

Increasing evidence has reaffirmed the pivotal role of immunosuppressive monocytes, including 
MDSCs, and tumor-derived extracellular vesicles (EVs) in GBM-induced local and systemic immun-
osuppression[74]. EVs are defined as biologically active particles that carry both GBM-derived soluble 
factors and membrane-bound receptors that can be functionally delivered to target cells[74]. In 
combination with the tumor milieu, these particles can induce the conversion of monocytes to an 
immunosuppressive phenotype[75]. The role of EVs in direct T-cell inhibition has also been 
demonstrated. Ricklefs et al[76] recently showed that glioblastoma EVs block T cell activation and prolif-
eration in response to T cell receptor stimulation. This mechanism of immunosuppression and its local 
and systemic effects have great potential for exploration in the context of immunotherapy. The Figure 2 
synthesizes the GBM-induced immunosuppressive microenvironment.

CYTOKINE THERAPY
Cytokine therapy in the treatment of GBM is based on the use of pro-inflammatory cytokines, in order 
to promote reversal of the immunosuppressive microenvironment triggered by this tumor and 
subsequent activation of the immune response[76,77]. Mainly, IFN-α, TNF-α and IL-12 have been 
assessed as possible therapeutic options for glioblastoma[78,79]. In this sense, IFN-α is related to 
increased activity and reduced exhaustion of T cells and macrophages, besides inhibiting tumor 
angiogenesis and immune suppression-related gene expression[79]. On the other hand, TNF-α promotes 
dendritic cells maturation and, consequently, T cell stimulation, while IL-12 is related to enhanced CAR-
T cell efficacy, increased infiltration of CD4+ T cells and decreased frequency of T-regulatory cells in the 
tumor microenvironment[80,81]. Nevertheless, the therapy with IFN-α presents high toxic systemic 
potential and low efficiency in maximum tolerated doses[82]. The possibility of collateral effects implies 
a damage to the user, clinical trials reveal hyperthermia, shivering, headaches, gastrointestinal 
symptoms, decline in systolic and diastolic blood pressure and associated orthostatic hypotension[83]. 
This means that the therapy is a resource with limited use at least at this moment. It is expected that, in 
the future, this route will be used in conjunction with other therapeutic forms, such as inhibitors of anti-
apoptotic proteins, to increase efficacy and tolerability[84]. In another perspective, glioma cells infected 
by a vector capable of transducing TNF-α decreased tumor growth rate in a mouse animal model, which 
constitutes a different therapeutic strategy for the treatment[82]. Additionally, the administration of 
TNF-α is also a problem to solve because the intravenous administration is known for the capacity to 
induce toxicities for the patients[76]. Recently, the discover of a interleukin-7 agonist had shown the 
ability to repair the lymphopenia caused by the standard treatment for GBM and also improved the 
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Figure 2 Simplified scheme of glioblastomas-induced immunosuppressive microenvironment. MDSCs: myeloid-derived suppressor cells; NK: 
Natural killer. The Figure was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.

immune system by elevating the CD8 serial lymphocytes in murine models, but this discover needs 
more studies to be apply for patients with this primary glioma[85].

IMMUNE CHECKPOINT INHIBITORS
Immune checkpoints are molecular receptors that perform an inhibitory function in order to control 
exacerbated immune activity and prevent uncontrolled activity of this system[86]. These receptors are 
found on T cells (CD4 and CD8), dendritic cells (DC), NK cells and B cells[87].

Cancer cells have some mechanisms that allow them to reduce the effectiveness of the immune 
system during the attack on mutated cells[88]. One of these mechanisms is the expression of molecules 
that interact directly with the immune checkpoint receptors resulting in reduced immune activity from 
the inhibition of essential cells of the protection system. Thus, immune checkpoint inhibitors have 
emerged as a therapeutic alternative, in order to prevent the occurrence of inhibition of immune cells 
from the interaction of receptors of these cells and molecules produced by glioblastoma cancer cells[87].

In this regard, studies have identified the main receptors of immune checkpoints and that have 
physiological importance in glioblastoma. PD-1, T cell immunoglobulin and mucin domain 3 (TIM3), 
CTLA4, lymphocyte activation gene 3 (LAG3), T-cell immunoglobulin and ITIM domain (TIGIT) and 
CD96 are inhibitory receptors expressed on immune system cells, such as lymphocytes (T and B) and 
NK, and have corresponding ligands produced by cancer cells[87].

Thus, studies aimed at blocking the immune checkpoint in glioblastoma have been initiated[89,90]. A 
study conducted in murines, associated anti-PD-1 and temozolomide (chemotherapeutic agent used in 
the treatment of GBM) in the treatment of glioblastoma and obtained a good antitumor efficacy[89]. 
However, the response in humans did not show the same efficacy, as evidenced by the randomized 
phase III clinical trial of 369 patients diagnosed with GBM who were treated with nivolumab (anti-PD-1) 
and did not show improved survival compared to the control group[90]. However, the preclinical trials 
are promising and the therapeutic model is still recent. This means that therapy based on blocking ICIs 
may yet yield an important efficiency in the lives of patients diagnosed with GBM. In Figure 3, there is a 
representation of immune checkpoint inhibition targets: TIM-3/Galactin 9 (GAL-9), PD-1/PDL-1, and 
CTL-4/CD80 or CD86.

PD-1/PD-L1
The PD-1 receptor is expressed on T cells, B cells, TAMs, MDSCs and NK cells[91]. For inhibition of 
these cells to occur the PD-1 receptor interacts with PD-L1, which is expressed on GBM tumor cells. This 
interaction results in T-cell apoptosis, inhibition of T-cell cytotoxicity, and blockage of inflammatory 
mediator production. Thus, immunotherapy aims to target the PD-1/PD-L1 pathway and generate an 
antitumor response[87].
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Figure 3 Immune checkpoint inhibition targets: T cell immunoglobulin and mucin domain 3/ Galactin 9, programmed cell death-
1/programmed death-ligand 1, and cytotoxic T-lymphocyte-associated protein 4 /CD80 or CD86. A: T cell immunoglobulin and mucin domain 3/ 
Galactin 9; B: programmed cell death-1/programmed death-ligand 1; C: cytotoxic T-lymphocyte-associated protein 4/CD80 or CD86. TIM-3: T cell immunoglobulin 
and mucin domain 3; GAL-9: Galactin 9; PD-1: Programmed cell death-1; PDL-1: Programmed death-ligand 1; CTLA-4: Cytotoxic T-lymphocyte-associated protein 4. 
The Figure was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.

The anti-PD-1/PD-L1 class is a category that includes pembrolizumab, nivolumab, durvalumab and 
atezo-lizumab[92]. These ICIs have shown good results in some types of cancer, such as melanoma and 
non-small cell lung cancer[93,94], but for GBM, the overall efficacy is not yet optimal, especially in 
monotherapy, since GBM is a disease with unique peculiarities. However, studies using combination 
therapy with other ICIs are ongoing and have brought positive preliminary results, despite difficulties 
that still need to be overcome[92]. One of these challenges is the need for these ICIs to cross the blood 
brain barrier, which is very peculiar to brain tumors and makes chemical therapy of this type of cancer 
difficult[95].

TIM3/GAL9
TIM3 is a membrane protein, normally found on CD4+ and CD8+ T lymphocytes, and is also an 
inhibitory receptor for antitumor T cell activity[11]. GAL9 is a binding protein to TIM3. This binding 
results in the activation of the TIM3/GAL9 pathway, which induces T cell apoptosis, a fact that directly 
impacts antitumor immune activity[96,97].

The expression of GAL9 is higher in tissues from glioma patients and the TIM3/GAL9 interaction is 
involved with a higher malignancy of this type of CNS tumor. Thus, TIM3 has also become a potential 
target of immune checkpoint inhibitors in an attempt to boost immune activity against tumor invasion 
and result in a better prognosis for the patient[97].

CTLA4
CTLA4 is an inhibitory receptor expressed on T cells and has relevance when dealing with GBM and a 
worse prognosis of this disease from the activation of this receptor[70]. The process is based on the 
interaction of T cells with antigen-presenting cells in the peripheral lymphatic tissue through co-
stimulatory and coinhibitory receptors, such as CTLA4[98]. CTLA4 binds to CD80/CD86 receptors on 
antigen-presenting cells. Thus, this receptor is involved with the initial process (antigen presentation) of 
immune activity and its activation reduces the activation and proliferation of antigen-specific T cells 
that will act directly on the CNS and tumor cells[87].

CTLA4 has a higher expression in more serious gliomas and is related to a worse disease prognosis, 
as it is related to reduced antitumor immune activity[71].

Based on this, in 2011, the Food and Drug Administration approved the use of ipilimumab in the 
therapy of some tumors. Ipilimumab is a monoclonal antibody that binds to CTLA4 receptors and 
blocks the inhibition of T cells that occurs through this molecule[87].
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LAG3
LAG3 is a regulatory protein expressed on the membrane of T cells and when activated by specific 
ligands, it generates an inhibitory effect on immunity. It is believed that one of these ligands is FGL1 
and that it is expressed by cancer cells and induces a decrease in antitumor activity, but this mechanism 
is still not well known, especially in relation to gliomas[99].

In addition, it is possible that LAG3 generates immunosuppression by acting in conjunction with 
other immune checkpoints, such as PD-1[99]. A process that has already been reported in breast cancer 
studies, which identified a co-expression of LAG3 and PD-1 in the tumor process, generating T-cell 
inhibition[100].

TIGIT/CD96
TIGIT and CD96 are co-inhibitory receptors[87]. TIGIT is expressed on various immune cells such as T 
cells, regulatory T cells (Tregs) and natural killer (NK) cells[101]. CD96, on the other hand, has been 
found mainly on conventional T cells, NK cells and NKT cells[87].

High expression of PD-1 and TIGIT was found in CNS infiltrating lymphocytes, acting at the site of 
GBM[101]. Thus, a combined blockade therapy for PD-1 and TIGIT has shown improved efficacy and 
survival for patients with GBM[101].

CD96 is directly linked to the inflammatory response in GBM and additionally, a direct and 
synergistic correlation of this receptor with other immune checkpoints such as PD-1, CTLA-4, TIGIT and 
TIM-3 has been described[102]. With this, it was found that a simultaneous blockade of CD96 and other 
ICIs results in enhanced antitumor immunity and better prognosis[102].

CAR T-CELL THERAPY
Chimeric antigen receptors are synthetic receptors capable of redirecting the immune functions of T 
lymphocytes to a specific target antigen and thus, T cells exert short and long-term effects by triggering 
complex antitumor responses[103]. CAR-Ts have an extracellular domain with a tumor binding site as 
the single-chain variable fragment (scFv), a flexible hinge, a transmembrane region, and an intracellular 
signaling domain of T cells. In addition, CARs can be subdivided, according to the amount of CD3ζ 
stimulatory domains, into first, second and third generation, and the most modern CARs have two 
costimulatory domains linked to CD3ζ in order to potentiate its ability of signaling activation[104]. Since 
CAR-Ts has been used effectively against hematological tumors, the objective is to adapt the method for 
solid tumors such as GBM so that the activation of T cells in the tumor microenvironment promotes 
targeted immunological mechanisms of cell death to specific targets in the tumor, achieving the same 
success as the treatment in non-solid tumors, regardless of the presentation of the peptide by histocom-
patibility complexes[105]. The most promising studies addressing T cell therapy against GBM have 
explored CAR-T cells targeting human epidermal growth factor receptor 2 (HER2), variant epidermal 
growth factor receptor III (EGFRvIII) and alpha receptor 2 of IL-13 (IL-13 Rα2) mainly, as well as 
evaluating the different forms of therapy administration (local or systemic)[106-108].

EGFRvIII consists of an oncogenic mutation pattern existing in human tumors that allows the identi-
fication of specific tumor antigens by the immune system. EGFRvIII is relatively common, especially 
when it comes to GBM, in which the mutation is present in approximately 30% of scenarios[109]. 
EGFRvIII expression in patients with GBM is considered a marker of poor prognosis probably because 
the receptor enhances tumor oncogenic signaling[110]. In this sense, the first clinical study that invest-
igated CAR-Ts therapy directed at EGFRvIII was conducted by O'Rourke et al[107] and evaluated 10 
patients with recurrent EGFRvIII + GBM. The results demonstrated that the administration of CAR-Ts 
Cells by infusion is a safe route to be used, as there was no evidence of toxicity outside the tumor 
microenvironment or cytokine release syndrome. Although the study did not have the objective of 
evaluating the effectiveness of the therapy, it was observed that no patient had GBM regression and one 
patient remained in stable disease for more than 18 mo. Therefore, the assay also revealed a consistent 
response with immunological checkpoints and immunosuppressive molecules such as IDO 1, PD-L1, 
TGF–β and IL-10 and this indicated that EGFRvIII+ led to an antitumor response[107]. Comple-
mentarily, a recent study evaluated apheresis and infusion products from the previous study to explore 
EGFRvIII as a therapeutic target for GBM and concluded that PD1 is a predictive marker of peripheral 
graft and progression-free survival in transduction products of patients with targeted CAR-Ts to 
EGFRvIII. Furthermore, it was also observed that PD1 was expressed concomitantly with ICIs (CTLA4, 
TIM3, LAG3) and activation markers (GRZB, HLA-DR) suggesting that PD1 is the protagonist of these 
correlations with the clinical response surrogates in the study. However, the aforementioned correl-
ations were not present before the generation of CAR-Ts. Therefore, it has been proposed that the PD1 
marker may predict better response to therapy against recurrent GBM and that the preparation of the 
infusion product is responsible for the differences in therapeutic results found in the study[111].

HER2 is also a tumor-associated antigen that is expressed by about 80% of GBM, however, the 
receptor is also expressed in physiological host cells and this gives HER2 the potential to generate 
autoimmunity when used as a specific target antigen[112]. An early trial involving HER2 CAR T Cells in 



Rocha Pinheiro SL et al. Immunotherapy in glioblastoma treatment

WJCO https://www.wjgnet.com 147 April 24, 2023 Volume 14 Issue 4

cancer patients did not produce positive effects. The study was associated with acute toxicity with fatal 
outcome in one patient[113]. However, a subsequent preclinical study yielded a more favorable 
outcome as CD28-costimulated HER2-CER T cells were tolerated by 17 patients with GBM without 
dose-associated toxic effects. Trial findings showed that one patient had a partial response to therapy for 
9 mo, 7 remained with stable disease for 8 wk to 29 mo, and 8 had tumor progression. Additionally, 
patients had an overall survival of about 11 mo from T cell infusion (95%CI: 4.1–27.2 mo) and HER2 
CAR T cells were present in blood at up to one year of follow-up[106]. IL-13Rα2 is another tumor-
associated antigen that is expressed in up to 50% of GBM and despite being expressed in normal tissue, 
it is not expressed at significant levels in normal brain tissue[114,115]. Interestingly, the first trial that 
evaluated the safety and feasibility of CAR-T-s targeting IL-13Rα2 for the treatment of recurrent GBM 
was done by Brown et al[116] and included three patients with the malignancy. Among the three 
patients included, one had reduced global expression of IL-13Rα2 in the tumor after treatment and 
another patient showed an increase in the necrotic portion of the tumor where IL-13-zetacin + T cells 
had been administered. Despite the small sample, the findings of the work were favorable and were 
fundamental for the advancement in knowledge about the therapeutic method[116]. In this regard, new 
initial studies, albeit promising, have emerged with the aim of improving the CAR-Ts. Some works, for 
example, such as that of Muhammad et al[117], validated a new TanCAR [IL-13 (4MS) and EphA2 scFv] 
that proved effective in destroying GBM cancer cells recognizing IL-13Rα2 or EphA2 receptors and did 
not damage normal IL-13Rα1/ IL-4Rα. Therefore, it proved to be an option with the potential to remedy 
difficulties in current therapy by preventing antigen escape and reducing extra tumor toxicity[117]. In 
addition, another initial work constructed an IL-13Rα2 directed to humanized third-generation CAR 
and evaluated its efficacy against GBM in vitro and reported that the receptor achieved satisfactory 
results that support its use in clinical trials[118].

Therefore, CAR-T-s therapy targeting specific antigens is very promising and has the potential to 
become a therapeutic option for solid malignancies with poor prognosis such as GBM. However, the 
evidence is still limited, which creates a series of challenges to be overcome by the therapeutic method. 
The main obstacles to a safe and effective CAR-Ts therapy are the access of immune cells to the CNS and 
the heterogeneity of the tumor microenvironment. The first is mainly due to the existence of the 
endothelial blood-brain barrier and the epithelial blood-brain barrier[119]. The second occurs because 
GBM is characterized by a complex and active tumor microenvironment capable of evading the 
functionality of CAR-T-s, as well as hindering the recognition of a single specific target antigen[120]. In 
this regard, one way to improve access to the CNS would be to add property to CAR-T cells through 
gene editing. The development of innovative CAR-Ts that can target different tumor-associated antigens 
or program different CAR-Ts to recognize a single tumor-associated antigen is a possible solution to 
immune escape or target antigen escape. A recent study targeted 3 antigens using a single universal 
tricistronic (U) transgene product of CAR-T-s specific for HER2, IL-13Rα2 and EphA2 showing an 
effective alternative to the interpatient variability that is one of the obstacles to therapy. The in vitro test 
of the study showed an improvement in the survival of the animals, corroborating the initial hypothesis
[121]. The work by Muhammad et al[117], cited above, starts from the same premise that the new 
TanCAR destroyed tumor cells by recognizing both IL-13Rα2 and EphA2 alone or together, also corrob-
orating for a more effective therapy by avoiding immune escape and recognition of non-target antigens. 
Another possibility to deal with difficulties in therapy with CAR-Ts cells is the remodeling of immune 
cells in the tumor microenvironment. This technique is based on the use of CAR-T cells with the 
objective of recruiting pro-inflammatory cytokines, mainly OL-7, IL-8 and IL-12, enhancing the death of 
GBM cells[122-124]. In addition, the blocking of immune suppression signals through chimeric decoy 
and switch receptors has also been explored. For example, Liu et al[125] added genetically modified 
switch receptors including the extracellular domain of PD1 and the transmembrane and cytoplasmic 
signaling domains of CD28 in order to stimulate the performance of CAR-T cells in solid tumors and the 
study data revealed a strategy potentially efficient therapy. Finally, the expansion of the use of bispecific 
T cell couplers (BiTE) in combination with CAR-T cells as a new artifice for the recognition of multiple 
antigens has also been discussed[126]. Bearing in mind that EGFRvIII-specific CAR-T cells may not be 
satisfactorily efficient in view of the heterogeneity of the GBM tumor microenvironment, Choi et al[127] 
proposed the use of CARBiTE cells capable of secreting wild-type EGFR-specific BiTEs. The results of 
the initial study were positive and showed that BiTE cells annihilated heterogeneous GBM tumors in 
mice and did not promote toxicity against human skin grafts in vivo.

ONCOLYTIC VIRUSES
Over the last few years, oncolytic viruses (OVs) have gained prominence in tumor treatment, including 
GBM. OVs are particularly suitable for GBM therapy due to its privileges, such as lack of distant 
metastasis and tumor’s limitations, allowing the use of viruses at this site as a promising form of 
immunotherapy[128]. They are administered intravenously or intratumorally to achieve its neutralizing 
effects.
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OVs can be defined as weakly pathogenic viruses that can selectively infect, replicate in, and kill 
cancer cells without damaging normal cells and leading to tumor cells apoptosis[129]. This occurs 
through antitumor reactions of tumor-specific cell killing and the induction of the host's systemic 
antitumor and/or antiviral immunity. Thus, OVs activate the innate immune system via pattern 
recognition receptors and pathogen-associated molecular patterns, leading to a physiological response 
of immune cells recruitment, such as neutrophils, natural killer cells, macrophages, Th1 cells and its 
associated cytokines that promotes cell lysis[128,130]. Moreover, this response induces an adaptive 
immune reaction to new cancer antigens and may possibly develop a long-term immunotherapy 
repercussion[131]. Besides this, OVs can also be used as non-replicating viral vectors to deliver 
therapeutic genes, serving as vehicles to efficiently achieve tumor cells[104]. In Figure 4, there is a 
graphical representation of how OV therapy for GBM works.

Currently, OVs are being tested for their effectiveness against GBM in leading clinical trials using 
over 20 distinct viral strains like herpes simplex virus[132], adenovirus[133], measles virus[134], 
parvovirus[135], Newcastle disease virus[136], reovirus[137], poliovirus[138] and zika virus[139]. In 
Table 1, the clinical trials using virotherapy for GBM are summarized.

As aforementioned, the cooperation of the innate and adaptive immune systems is crucial in oncolytic 
virotherapy response, and matching it with other immunotherapy strategies such as checkpoint 
inhibitors increases the immunological response and tumor regression[140-142].

VACCINE-BASED THERAPY
In recent years, it has been discussed the great possibility of combating and stabilizing oncological 
conditions through immunotherapy, and the proposal of vaccine therapies is a remarkable point. In this 
sense, when thinking about GBM, the proposal of an alternative therapy that generates a more positive 
prognosis for patients, through vaccination, is a matter of much research and debate.

Many vaccines with a variety of immunological bases have been developed and tested in the 
treatment of GBM. There are four commonly used approaches to base GBM vaccines on: Peptide and 
DNA vaccines, which use genetic information from the tumor itself, and are more specific in their use. 
Cellular vaccines, based on dendritic cells prepared also with tumor antigens, and mRNA-based ones, 
with viral vectors[143]. In general, the principle behind this bet is on the immune response, thinking 
about the ability of the tumor to evade the individual immune response.

Thus, one of the ways found to "combat" this disease is to use the immune system itself, more 
specifically, a response coordinated by T lymphocytes capable of recognizing tumor antigens and 
reacting against them. In this sense, the initial proposal aims to use specific tumor antigens (TSAs) to 
obtain an immune response, having as a basis for this process peptides based on the tumor character-
istics that trigger an anti-tumor immune response by mimicking neoantigens in glioblastoma cells[144,
145].

Personalized neoantigen vaccines are a different approach to anti-tumor vaccine development, with 
trials already showing increased survival in patients with a recent diagnosis of GBM, demonstrating a 
potential to alter the immune environment in GBM[85].

However, there are some points of conflict within this vaccine therapy, since the tumor heterogeneity, 
with factors expressed differently among individuals, which would generate a high specificity in the 
manufacture of the vaccine, a need for customization, not being extremely effective on a large scale, 
hindering the inclusion of patients[146]. This treatment also has a limitation, generated by antigenic 
escape in the face of tumors that do not express this antigen. In addition, the collection of peptides for 
the vaccine base, meets a barrier, since the association of a disparate tumor profile, with possible 
formations of nonspecific epitopes - a tumor formation not from mutations, but from exacerbated 
expressions of factors that are expressed in normal tissues - raises a predisposition to responses beyond 
the tumor affection, such as autoimmune responses and inflammatory processes in other regions[146].

Another point of study that has been gaining prominence are DC vaccines, being considered one of 
the most promising at the moment. This is due to the role they play in immune regulation and in the 
GBM picture. Thus, they are extremely important for the induction of acquired immunity, also 
influencing the lymphocytic response, its differentiation, and antigen presentation. With this in mind, 
within GBM pictures, DCs are found with reduced function, being in an inhibited or immature state, 
which can be related to the severe tumor microenvironment, DCs are kept with low function due to the 
inhibitory effect of the immune microenvironment, and this status is problematic for body function, but 
reversed by DC vaccines[147]. This is due to the fact that the advantages of DCs vaccines are based on in 
vitro matured dendritic cells, usually from the affected individual himself, which can activate previously 
inhibited Ts lymphocytes, increasing the patient's adaptive response, increasing the expression of 
MHCs, cytokines and chemokines, and promoting an intense migration of immune cells to the 
immunosuppressive microenvironment found in GBM[147].

Currently, some studies have shown that DC vaccines can improve the picture of GBM, with some 
age-related factors seeing a better prognosis in younger patients. Another study, in phase II clinical trial, 
showed that the use of the vaccine after tumor resection, obtained a median overall survival of 23.4 mo, 
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Table 1 Ongoing and completed clinical trials of oncolytic virus therapy in glioblastoma

NCT 
Number Title Status Enrolled 

patients Interventions Country Phase

NCT03714334 DNX-2440 Oncolytic Adenovirus for 
Recurrent Glioblastoma

Unknown 
status

24 Drug: DNX-2440 injection Spain Phase 1

NCT03294486 Safety and Efficacy of the oncolytic virus 
Armed for Local Chemotherapy, 
TG6002/5- FC, in Recurrent Glioblastoma 
Patients

Unknown 
status

78 Drug: Combination of TG6002 and 5- 
flucytosine (5-FC, Ancotil®)

France Phase 1 
and 2

NCT02197169 DNX-2401 With Interferon Gamma (IFN-#) 
for Recurrent Glioblastoma or Gliosarcoma 
Brain Tumors

Completed 37 Drug: Single intratumoral injection of 
DNX-2401; Drug: Interferon-gamma

United 
States

Phase 1

NCT01956734 Virus DNX2401 and Temozolomide in 
Recurrent Glioblastoma

Completed 31 Procedure: DNX2401 and Temozo-
lomide

Spain Phase 1

NCT05095441 A Clinical Study of Intratumoral MVR-
C5252 (C5252) in Patients With Recurrent 
or Progressive Glioblastoma

Not yet 
recruiting

51 Biological: C5252 United 
States

Phase 1

NCT01174537 New Castle Disease Virus (NDV) in 
Glioblastoma Multiforme (GBM), Sarcoma 
and Neuroblastoma

Withdrawn 0 Biological: New castle disease virus Israel Phase 1 
and 2

NCT01491893 PVSRIPO for Recurrent Glioblastoma 
(GBM)

Completed 61 Biological: Recombinant 
nonpathogenic polio-rhinovirus 
chimera (PVSRIPO)

United 
States

Phase 1

NCT00028158 Safety and Effectiveness Study of G207, a 
Tumor-Killing Virus, in Patients With 
Recurrent Brain Cancer

Completed 65 Drug: G207, an oncolytic virus Not 
provided

Phase 1 
and 2

NCT03896568 MSC-DNX-2401 in Treating Patients With 
Recurrent High Grade Glioma

Recruiting 36 Biological: Oncolytic Adenovirus 
Ad5- DNX-2401; Procedure: 
Therapeutic conventional surgery

United 
States

Phase 1

NCT01582516 Safety Study of Replication competent 
Adenovirus (Delta-24-rgd) in Patients With 
Recurrent Glioblastoma

Completed 20 Biological: Delta-24- RGD adenovirus Netherlands Phase 1 
and 2

NCT03072134 Neural Stem Cell Based Virotherapy of 
Newly Diagnosed Malignant Glioma

Completed 13 Biological: Neural stem cells loaded 
with an oncolytic adenovirus

United 
States

Phase 1

NCT01301430 0 Parvovirus H-1 (ParvOryx) in Patients 
With Progressive Primary or Recurrent 
Glioblastoma Multiforme.

Completed 18 Drug: H-1PV Germany Phase 1 
and 2

NCT05084430 Study of Pembrolizumab and M032 (NSC 
733972)

Active, not 
recruiting

28 Drug: M032; Drug: Pembrolizumab United 
States

Phase 1 
and 2

NCT02031965 Oncolytic HSV-1716 in Treating Younger 
Patients With Refractory or Recurrent High 
Grade Glioma That Can Be Removed By 
Surgery

Terminated 2 Biological: Oncolytic HSV-1716; Drug: 
Dexamethasone; Procedure: 
Therapeutic conventional surgery

United 
States

Phase 1

NCT02798406 Combination Adenovirus + Pembrol-
izumab to Trigger Immune Virus Effects

Completed 49 Biological: DNX-2401; Biological: 
Pembrolizumab 

United 
States

Phase 2

NCT03657576 Trial of C134 in Patients With Recurrent 
GBM

Active, not 
recruiting

24 Biological: C134 United 
States

Phase 1

NCT03152318 A Study of the Treatment of Recurrent 
Malignant Glioma With rQNestin34.5v.2

Recruiting 62 Drug: rQNestin; Drug: Cyclophos-
phamide Procedure: Stereotactic 
biopsy 

United 
States

Phase 1

NCT03043391 Phase 1b Study PVSRIPO for Recurrent 
Malignant Glioma in Children

Active, not 
recruiting

12 Biological: Polio/ Rhinovirus 
Recombinant (PVSRIPO)

United 
States

Phase 1

NCT05139056 Multiple Doses of Neural Stem Cell 
Virotherapy (NSC-CRAdS-pk7) for the 
Treatment of Recurrent High-Grade 
Gliomas

Withdrawn 0 Biological: Neural Stem Cells 
expressing CRAdS-pk7; Procedure: 
Resection

Not 
provided

Phase 1

NCT02062827 Genetically Engineered HSV-1 Phase 1 
Study for the Treatment of Recurrent 
Malignant Glioma

Active, not 
recruiting

24 Biological: M032 (NSC 733972) United 
States

Phase 1

HSV G207 With a Single Radiation Dose in 
Children With Recurrent High-Grade 

NCT04482933 Not yet 
recruiting

40 Drug: Biological G207 United 
States

Phase 2
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Glioma

NCT02986178 PVSRIPO in Recurrent Malignant Glioma Active, not 
recruiting

122 Biological: PVSRIPO United 
States

Phase 2

NCT03911388 HSV G207 in Children With Recurrent or 
Refractory Cerebellar Brain Tumors

Recruiting 15 Biological: G207 United 
States

Phase 1

NCT02457845 HSV G207 Alone or With a Single 
Radiation Dose in Children With 
Progressive or Recurrent Supratentorial 
Brain Tumors

Active, not 
recruiting

13 Biological: G207 United 
States

Phase 1

NCT00528684 Safety and Efficacy Study of REOLYSIN® 
in the Treatment of Recurrent Malignant 
Gliomas

Completed 18 Biological: REOLYSIN® United 
States

Phase 1

NCT03973879 Combination of PVSRIPO and Atezol-
izumab for Adults With Recurrent 
Malignant Glioma

Withdrawn 0 Biological: PVSRIPO; Drug: Atezol-
izumab 

Not 
provided

Phase 1 
and 2

NCT00314925 Safety Study of Seneca Valley Virus in 
Patients With Solid Tumors With Neuroen-
docrine Features

Unknown 
status

60 Drug: Seneca Valley virus (biological 
agent)

United 
States

Phase 1
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Figure 4 Simplified scheme of oncolytic virotherapy for glioblastomas. GBM: Glioblastoma; OV: Oncolytic virus; PAMPs: Pathogen-associated 
molecular patterns; DAMPs: Damage-associated molecular patterns. The Figure was partly generated using Servier Medical Art, provided by Servier, licensed under 
a Creative Commons Attribution 3.0 unported license.

among some patients[85]. However, a meta-analysis of randomized controlled trials on the efficacy of 
DC vaccines demonstrated that the use of the vaccine in newly diagnosed glioblastoma patients did not 
show a substantial effect on overall patient survival[148]. Thus, it is still an area that needs more studies 
and trials with more advanced phases, and the ability to inhibit glioma is still a point to be better tested 
in future studies.

Some other vaccine ideas have already been proposed, such as using isocitrate dehydrogenase as the 
basis for the vaccine, since mutation in this enzyme occurs purely in tumor cells, making it an 
interesting tumor-specific antigen to use[146]. In addition, vaccines that inactivate tumors are also an 
attraction for research, given their success in other pathologies, not only in treatment but also in 
prevention, but there is still a low efficiency for the treatment of neoplasms, requiring more research for 
the development and application in GBM. More advanced research is needed for the use of these other 
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vaccine approaches.
Another alternative attempt for the treatment of GBM, are oncolytic virotherapies, using previously 

known viruses, which would be injected intratumorally, enabling an inflammatory reaction and an 
immune response against the tumor-virus unit. Many researches and vaccines have already been 
approved with this type of technology, and it is a promising therapy that acts both by selectively 
infecting tumor cells, replicating and leading to tumor death, and by being used to transport factors for 
gene therapy, through viruses with alterations in their replication[104]. Regarding GBM, some vaccines, 
such as DNX-2401, have already gone through initial testing phases and showed positive results. 
However, updates of the studies are needed to better understand the spectrum and efficiency of the 
action of this vaccine. In addition, other vaccines are under study such as ParvOryx, Toca 511, Reovirus, 
and HSV type 1, being tested in patients with GBM, but still in early stages of testing[86].

Furthermore, vaccination focused on eliminating EGFRvIII is also an important resource against 
GBM, as it is an important TSA in this pathology[146]. Thus, the EGFRvIII anti-tumor vaccine is another 
interesting therapy. Some late stage studies were able to observe a good humoral induction and 
cytotoxic T response with the use of this TSA, after good conduct in animal studies. However, the 
results were not as significant as expected in survival and remission rate, in human trials[146]. Besides 
that many adverse effects have been found such as seizures, edema, thrombocytopenia and pulmonary 
embolism, and these complications when coupled with the fact that not all GBM patients express 
EGFRvIII, become a limitation for this therapy, since not all patients could use this vaccine[140].

The benefits of vaccination are already found in some studies, demonstrating an increase in patient 
survival when compared to other measures used, including the surgical approach, demonstrating the 
advances in this research[148,149]. However, only 3 vaccination agents have reached phase III clinical 
trial: Rindopepimut, DCvax and PPV[143].

Thus, the key point for vaccine therapy is the choice of the appropriate immune target with a 
reduction of vaccine toxicity. The search for TSA and possible alternatives must take into account the 
immune alterations caused by the tumor microenvironment, the immune status of the affected 
individual and possible adverse effects, which need to be reduced to their maximum. Moreover, there is 
a very important factor, even with the momentary trend towards personalized vaccines, the questioning 
of how to make this new reality feasible, generates a need to search for a combination of antigens of 
greater spectrum, having in mind also, how the vaccine process will reverberate in the organism, 
thinking about a long-term immune response, and what are the predictions for the future, which makes 
the development of studies with more solid results indispensable[143]. In addition, the possibility of 
combining vaccines with other immunotherapies has shown considerable benefit when compared to the 
use of some vaccines alone, and needs to be further investigated as an approach to be considered in 
patient management[86,104].

IMMUNOTHERAPY LIMITATIONS AND CHALLENGES
Immunotherapy options currently available for the treatment of GBM are vast. These include vaccines, 
oncolytic viruses, immune checkpoint inhibitors, and genetically modified T cells[85]. In this sense, the 
various ongoing studies and clinical trials may provide favorable outcomes in expanding the use of 
these therapies in the near future, and, given the potential to manipulate or enhance the immune system 
apparatus to attack and kill tumor cells, immunotherapy has enlightened and generated a lot of 
excitement in the treatment of GBM. However, so far, there are some limiting factors that hinder the 
applicability of immunotherapy in the treatment of glioblastoma, whether related to individual 
anatomical and immunological factors or to routes of administration and adverse effects[140-142].

The blood-brain barrier is one of the major limitations to GBM immunotherapy. These specialized 
endothelial cells attached to astrocytes and pericytes hinder drug delivery, leading to inefficient 
therapeutic action[104,150]. Also, GBM is able to induce alterations in the BBB, forming a structurally 
different barrier (i.e., brain tumor barrier) that also contributes to poor penetration of therapeutic agents
[77]. Furthermore, intratumoral heterogeneity plays a pivotal role in immunotherapy resistance, given 
the rapid growth of resistant clones after the selective destruction of susceptible ones[151]. The 
immunosuppressive microenvironment of this tumor also poses a challenge in the immunotherapeutic 
approach[152]. Treg cell upregulation leads to inhibition of effector T cells, thus impairing the use of 
CAR-T cells[145]. Regarding cytokine therapy, despite its ability to modulate the microenvironment of 
GBM, leading to increased DC cells maturation, T cell infiltration and reduced exhaustion[81], its 
systemic use presents severe toxicity and poor absorption, which greatly hampers the use of this 
therapy[78]. In this regard, future studies on the topic might provide further options for these 
limitations to be overcome in the near future.

In order to increase the therapeutic effectiveness of the current immunotherapy approaches, various 
strategies have been developed to increase drug penetration and decrease the occurrence of adverse 
effects. Of note, we highlight (1) the use of combined therapies, for synergistic action[153]; (2) targeted 
drug delivery, which increases pharmacokinetic properties and reduces toxicity[79]; and (3) intrathecal 
administration, to overcome the blood-brain barrier[140-142].
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Furthermore, given the intrinsic heterogeneous nature of GBM and its ability to evade and resist 
single treatments, it is crucial that future interventions should explore the combination of biological 
(immunomodulators and cell based delivery systems), physical (ultrasound, 3D printed implants, heat) 
and chemical (delivery technologies, radiation, chemotherapy) approaches to not only treat GBM more 
adequately but also improve the patient’s prognosis, selecting ideal combination strategies to overcome 
the limiting barriers. In this regard, techniques using anti-PD-1/PD-L1 antibodies combined with 
antibodies targeting CTLA-4, TIM-3, LAG-3, 4-1BB, or OX-40 are under study[154]. Furthermore, anti-
PD-1/PD-L1 therapy combined with tumor-specific peptide vaccination or CAR-T cell therapy is also 
worth exploring, and can provide a harmonious combination approach to surpass the obstacles[155,
156].

Finally, exploring effective predictive biomarkers of clinical efficacy, combined with other therapeutic 
strategies, is a critical issue to avoid treatment delay and early mortality[157,158]. In this sense, there is a 
demanding need to incorporate the status of known biomarkers into daily clinical practice, which may 
assist not only in patient selection, but also in the adjustment of treatment schedule based on the 
patient-specific diagnosis.

With various ongoing clinical trials for new molecular targeted therapies, cancer vaccines and 
immune-modulators, it can be expected that in the near future more compelling interventions against 
GBM will become available.

CONCLUSION
In this way, it is possible to see that the treatment for GBM is advancing and discoveries are being made. 
However, the immunosuppressive nature of this primary glioma and the pleomorphism presented by 
the constitutional cells represents important challenges to implant a successful therapy with less harm 
for the patient. The need for resolutions to prevent the collateral damage caused by the current standard 
treatment and for the alternative immunotherapies, which are being developed, demonstrates potential 
to be the next stage in this field alongside the increase of searching for other approaches. The main 
objective is to better manage this aggressive malignant brain tumor to modify the current prognostic 
perspective. This review shows an overview of this reality and it is stated that, based on particular 
pathogenesis of GBM, it is necessary an individualized treatment according to the tumor progress 
follow-up.

The potential of the immunotherapy presented by previous and current clinical trials reveals a 
hopeful perspective for patients with GBM. It is expected that a combination of therapies would be used 
to avoid collateral damages and improve the recovery. Risks and costs of the surgical method, 
radiotherapy and chemotherapy suggest several issues that alternative approaches do not have and it is 
more favorable as a palliative therapy than as a healing mechanism, and still usage problems must be 
solved for them to be applied. Biological agents and Tumor treatment fields also have benefits, even 
though they are, respectively, susceptible to genetic variabilities and need expensive devices to put into 
practice as the Figure 1 illustrates. The intervention with cytokine therapy and agonists are a recently 
explored field and demonstrates the ability to use different inflammatory cytokines to remodel the 
immune response, nevertheless there are also problems with the form of administration and the doses 
due to systemic toxicity. Immune checkpoints inhibitors reveal the ability to curb the immunosup-
pressive strategies of GBM, but the response in humans has not shown yet the same efficacy 
demonstrated in animal models. Chimeric antigen receptor T cell therapy is also a hopeful route of 
treatment due to its potential to redirect the immune response for specific targets, however the difficult 
to transpass the BBB and the microenvironment possessed by the active tumor, which enables evasion 
and difficult to recognize, are also challenges to be solved for highly functional deployment. Vaccine-
based therapy is also being developed and four approaches are more currently discussed. In summary, 
the immunotherapy options display advantages and limitations. Thus, more advancements in ways to 
prevent toxic activity or/and ineffectiveness of the hopeful new recently discovered immunotherapies 
are fundamental to increase life expectancy and reduce suffering for the patients.
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Abstract
Diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) are the 
most common forms of aggressive and indolent lymphoma, respectively. The 
majority of patients are cured by standard R-CHOP immunochemotherapy, but 
30%–40% of DLBCL and 20% of FL patients relapse or are refractory (R/R). 
DLBCL and FL are phenotypically and genetically hereterogenous B-cell 
neoplasms. To date, the diagnosis of DLBCL and FL has been based on morp-
hology, immunophenotyping and cytogenetics. However, next-generation 
sequencing (NGS) is widening our understanding of the genetic basis of the B-cell 
lymphomas. In this review we will discuss how integrating the NGS-based 
characterization of somatic gene mutations with diagnostic or prognostic value in 
DLBCL and FL could help refine B-cell lymphoma classification as part of a 
multidisciplinary pathology work-up. We will also discuss how molecular testing 
can identify candidates for clinical trials with targeted therapies and help predict 
therapeutic outcome to currently available treatments, including chimeric antigen 
receptor T-cell, as well as explore the application of circulating cell-free DNA, a 
non-invasive method for patient monitoring. We conclude that molecular analyses 
can drive improvements in patient outcomes due to an increased understanding 
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of the different pathogenic pathways affected by each DLBCL subtype and indolent FL vs R/R FL.

Key Words: Next-generation sequencing; Prognosis; Molecular analysis; Targeted therapy; Chimeric antigen 
receptor T-cell therapy; Personalized medicine
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Core Tip: Molecular studies in the past decade have improved our understanding of the biological hetero-
geneity of B-cell lymphomas such as diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma. 
Next-generation sequencing studies are helping to reveal the different pathogenic pathways affected by 
each DLBCL subtype and identify new targets for directed therapy. Molecular analysis can also help 
predict therapeutic outcome to currently available treatments, including chimeric antigen receptor T-cell 
therapy, and identify candidates for clinical trials with targeted therapies, ultimately leading to 
improvements in patient outcomes. As such, the incorporation of precision medicine via the integration of 
molecular analyses in clinical practice can improve clinical outcomes in patients and thus contribute to a 
new standard of care for patients with B-cell lymphomas.

Citation: Stuckey R, Luzardo Henríquez H, de la Nuez Melian H, Rivero Vera JC, Bilbao-Sieyro C, Gómez-
Casares MT. Integration of molecular testing for the personalized management of patients with diffuse large B-cell 
lymphoma and follicular lymphoma. World J Clin Oncol 2023; 14(4): 160-170
URL: https://www.wjgnet.com/2218-4333/full/v14/i4/160.htm
DOI: https://dx.doi.org/10.5306/wjco.v14.i4.160

INTRODUCTION
B-cell lymphomas are classified into over 19 distinct entities, as defined by the 2022 World Health 
Organization (WHO) classification[1]. Diffuse large B-cell lymphoma (DLBCL) is the most common 
form of non-Hodgkin lymphoma (NHL), representing approximately 30% of lymphomas of mature B-
cells[2], while follicular lymphoma (FL) is the second most common NHL. However, both DLBCL and 
FL are phenotypically and genetically hereterogenous B-cell neoplasms. For example, the majority of 
DLBCL patients are cured by standard rituximab, cyclophosphamide, doxorubicin, vincristine, 
prednisone (R-CHOP) immunochemotherapy, but 30%–40% relapse or are refractory (R/R), while for 
FL, approximately 20% of patients treated with chemoimmunotherapy will progress within the first two 
years of diagnosis (POD24)[3]. Thus, improvements in patient outcomes will rely on an increased 
understanding of the different pathogenic DLBCL and FL pathways that lead to treatment failure and/
or progression.

Next-generation sequencing (NGS) studies together with copy-number analysis are determining 
genes with recurrent alterations in DLBCL and FL, some of which can refine diagnosis and prognostic 
stratification. In this minireview, we will describe how molecular analyses are revealing differences in 
somatic mutations according to disease subtypes, helping with differential diagnosis, as well as 
determining new targets for the development of directed therapies. We will also explore the application 
of circulating cell-free DNA, a non-invasive method for patient monitoring. Finally, we will discuss how 
the incorporation of precision medicine can identify candidates for clinical trials with targeted therapies 
and help predict therapeutic outcome to currently available treatments in a drive towards a more 
personalized treatment approach.

We aim to convince the reader that the incorporation of molecular testing for somatic gene mutations 
can improve the diagnosis and prognosis of patients with DLBCL and FL as part of a multidisciplinary 
pathology work-up.

CONVENTIONAL CLASSIFICATION OF DLBCL
Currently, using immunohistochemistry (IHC), fluorescence in situ hybridization (FISH) and flow 
cytometry techniques, patients with DLBCL are divided into three subtypes depending on the stage of 
differentiation and maturation of the B cells of origin: germinal center B-cell like (GCB) or activated B-
cell like (ABC), with the remaining 10% to 20% “unclassified” or not otherwise specified (NOS). For 
example, IHC analysis of CD10, BCL6 and MUM1 markers helps determine the GCB and ABC subtypes 
according to the Hans algorithm[4]. Nevertheless, the Hans algorithm doesn’t distinguish the NOS 
DLBCL subtype and gives an incorrect classification in approximately 20% of cases[4].

https://www.wjgnet.com/2218-4333/full/v14/i4/160.htm
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DLBCL patients show distinct clinical outcomes according to the subtype: patients with the GCB 
phenotype have a more favorable outcome than ABC in terms of survival when treated with standard 
chemotherapy, 60% at 5 years vs 35% in ABC[5]. In addition, IHC of MYC and BCL2/BCL6 can identify 
tumors as double- or triple-expressor, associated with worse prognosis[6]. Studies involving FISH 
analysis of MYC rearrangements have shown that MYC rearranged with an immunoglobulin (IG) gene 
has worse prognosis compared to MYC with a non-IG partner, with MYC/IG double hits associated 
with an even poorer prognosis[7]. Thus, genomic tests used in routine clinical practice are already 
adding prognostic value. Even so, the diagnostic work-up and treatment are practically identical for all 
DLBCL patients despite the high genetic heterogeneity.

In terms of treatment, R-CHOP has been the standard of care for over two decades, and is still 
administered to the majority of DLBCL patients[8]. To improve treatment response, and predict which 
patients are likely to be R/R, elucidation of the molecular determinants related to treatment response 
will be fundamental. One advancement in this area is the observation that high EZH2 expression (> 
70%, detected by IHC) is associated with superior survival of DLBCL patients following R-CHOP[9].

CONVENTIONAL CLASSIFICATION OF FL
FL is characterized by the t(14;18)(q32;q21) translocation, present in 90% of FL patients, resulting in 
overexpression of BCL2 under the IGH promoter. In cases lacking t(14;18), BCL6 and CD10 expression 
patterns confirm FL diagnosis[10]. Rearrangement of BCL6 (3q27) may also be found in grade 3 FL, with 
or without t(14;18)[11].

Prognostic biological factors include age > 60 years and hemoglobin < 12 g/dL, as well as other 
biomarkers, such as LDH or β2-microglobin above normal, according to the FLIPI and FLIPI-2 scores, 
respectively[12,13].

Several first-lines of immunochemotherapy exist, including bendamustine + rituximab, rituximab 
alone, or R-CHOP, with choice largely down to the clinician’s preference. Treatment improvements are 
a necessity, given that POD24 is a predictor of overall survival (OS), with rates of just 50% for patients 
with POD24 vs 90% in those with no POD24 following R-CHOP treatment[3]. As highlighted in the 
recent editorial by Leonard[14], there is currently “no reliable way” to determine at diagnosis whether a 
patient with FL is likely to respond optimally to immunochemotherapy. The hope is that molecular 
analyses could help identify a subgroup of at-risk patients who would benefit from upfront treatment 
with a specific targeted therapy.

NGS APPLICATION IN LYMPHOMAS
According to the 2022 WHO and ICC classifications and the European Society for Medical Oncology’s 
2021 clinical guidelines, no molecular analyses are currently recommended at diagnosis for DLBCL or 
FL[1,15,16]. To date, only a few entities of lymphoid neoplasms are defined by genomic criteria. This is 
in stark contrast to other hematological malignancies, in particular myeloid neoplasms, where the use of 
NGS is well-established in diagnosis and risk-stratification[1,16,17]. For example, for acute myeloid 
leukemia a complete genomic evaluation, including NGS panel, is obligatory at diagnosis to define 
disease subtypes and to direct therapies[1,16,17]. Nevertheless, both international consortiums 
acknowledge that molecular analyses in B-cell lymphomas have identified genomic alterations “with 
diagnostic, prognostic, and predictive impact in different entities”[18] and explicitly state that it is 
highly probable that more entities will be defined by genomic criteria in the near future[1,16,18].

MOLECULAR ANALYSES IN DLBCL
In recent years, advances in next-generation sequencing (NGS) techniques are redefining our 
understanding of the genetic basis of lymphomas. Molecular studies are revealing recurrent genetic 
events and thus are helping to identify the key pathways that are important in DLBCL pathogenicity 
and evolution, and may even have prognostic impact[19].

Mutations in the genes MYD88, CARD11, EZH2 and CD79A/CD79B have been identified in approx-
imately 40% of DLBCL and are considered drivers of lymphomagenesis[20]. Moreover, NGS studies 
have revealed that GCB and ABC have a distinct profile of somatic mutations. For instance, mutations in 
GNA13 are found in GCB but are rare in other B-cell lymphoma subtypes[21], whereas the MYD88 
L265P mutation is found in ABC but is rarely identified in GCB DLBCL[21]. Thus, mutational 
information can assist in providing an accurate diagnosis, for example for the differential diagnosis of 
DLBCL from primary mediastinal large B-cell lymphoma (PMBCL, a relatively rare NHL with large B-
cell morphology)[22], mantle cell lymphoma, or grade 3 FL. In addition, relapse has been associated 
with mutations in certain genes, such as the B2M and CD58 immune surveillance genes[23].
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Recent findings suggest that tumor genotype also influences treatment response. For example, whole 
genome sequencing analysis of 20 patients with high-risk GCB DLBCL revealed that those with cryptic 
rearrangements of MYC or BCL2 (not detectable by FISH) had worse outcomes to R-CHOP[24]. 
Moreover, ABC tumors that harboured both a mutation in CD79B and the MYD88 L265P mutation were 
more sensitive to the BTK inhibitor ibrutinib, whereas NOS subtype tumors with the MYD88 L265P 
mutation and CD79B wild-type showed a poor response to ibrutinib[25].

Although NGS of DLBCL is not currently recommended in routine clinical practice[1,16], huge efforts 
are underway to characterize the prognostic value and thus functional impact of driver mutations, for 
instance via the whole-exome sequencing of 1001 DLBCL samples[26].

Such large-scale studies using NGS techniques together with copy-number analysis, to identify genes 
with recurrent alterations with prognostic value, have led to the proposition of new DLBCL classific-
ations. After studying 574 DLBCL biopsy samples Schmitz et al[27] proposed four genetic subtypes 
termed MCD (based on the co-occurrence of MYD88 and CD79B mutations), BN2 (based on BCL6 
fusions and NOTCH2 mutations), N1 (based on NOTCH1 mutations), and EZB (based on EZH2 
mutations and BCL2 translocations). These subtypes differed in their responses to immunochemo-
therapy, with favorable survival in the BN2 and EZB subtypes and inferior outcomes in the MCD and 
N1 subtypes[27], whereas MCD and N1 subtypes responded well to R-CHOP with ibrutinib[28]. 
Importantly, data on the BN2 subtype, with overlap with the NOS subgroup, revealed that patients are 
likely to be responsive to antagonists of B-cell receptor signaling such as the BTK inhibitors. Similarly, 
Chapuy et al[29] studied 304 DLBCL biopsies and identified six genetic subgroups. Of note, mutations in 
CD79B were associated with relapse independently of the subtype or International Prognostic Index 
(IPI) risk group[30].

MOLECULAR ANALYSES IN FL
Mutations in genes encoding epigenetic modifiers (and the resultant pattern of aberrant DNA 
methylation) are a molecular hallmark of FL (Table 1)[31,32]. Moreover, such mutations are likely to be 
early driver events[33].

NGS studies have revealed that the acquisition of additional mutations contributes to disease 
progression and the risk of transformation of FL to DLBCL. For example, TP53 mutations have been 
associated with shorter progression-free survival and OS[34,35], while the gain of mutations in genes 
such as EBF1, MYD88 and TNFAIP3 are associated with progression to a more aggressive disease[32]. 
Additionally, expression studies have revealed chromosome regions, such as 1p36 and 6q21 deletion 
associated with transformation[36]. Thus, genetic analyses can improve the prognostication of patients 
with FL[37].

In the case of FL, the mutational status of seven genes (EZH2, ARID1A, MEF2B, EP300, FOXO1, 
CREBBP and CARD11) was added to the preexisting Eastern Cooperative Oncology Group (ECOG) 
performance status, FL International Prognostic Index (ECOG PS and FLIPI) risk stratification 
algorithms to develop the m7-FLIPI risk score[38]. Application of the m7-FLIPI risk score defined a 
high-risk group with a significantly shorter failure-free survival after receiving first-line R-CHOP.

Specifically, mutations in EZH2 were associated with the low-risk m7-FLIPI group and with higher 
OS[38]. As such, the presence or absence of the EZH2 Y646 point mutation can help decide the 
chemotherapy regime in a patient-specific manner, since patients with such a mutation were shown to 
respond well to R-CHOP[38] (higher OS and lower relapse rate) while patients without this mutation 
responded better to bendamustine[39].

Although the m7-FLIPI was not prognostic for FL patients who received rituximab, patients with 
EZH2 mutations had longer time to treatment failure while EP300 mutations were associated with 
shorter time to treatment failure[40]. Therefore, it remains to be determined if the m7-FLIPI risk score is 
prognostic for FL patients treated with other chemotherapy regimes other than R-CHOP. Furthermore, 
the use of such risk scores in the routine clinical practice is not common, partly due to lack of 
availability of mutational studies in some centers[41].

TARGETED THERAPIES IN DLBCL
It is clear that improvements in DLBCL outcomes will rely on an increased understanding of the 
different pathogenic pathways affected by each DLBCL subtype. Indeed, an in silico drug discovery 
analysis showed that 46% of cases harbored at least one genomic alteration considered to be a potential 
drug response target (according to early clinical trials or preclinical assays in DLBCL or other B-cell 
lymphomas)[30].

But, to date, only one targeted therapy against a molecular driver has been approved for DLBCL – 
selinexor – although many others are in development. Selinexor is a specific inhibitor of the XPO1 
nuclear export transporter protein that was approved by the FDA in June 2020 for the treatment of 
adults with R/R DLBCL NOS, including DLBCL progressed from FL, after at least two previous lines of 
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Table 1 Frequent mutations detected in follicular lymphoma. Adapted from[32,37]

Gene Frequency in FL, %
KMT2D 82

CREBBP 65-70

HIST1H1C and/or HIST1H1E 28

EZH2 20-25

EP300 14

STAT6 12

CARD11 11

TNFAIP3 11

SOCS1 8

TP53 6

FL: Follicular lymphoma.

therapy[42].
Besides targeted agents, many immunotherapy strategies are in development, with the aim to 

promote the immune recognition and cytotoxic attack of T cells or macrophages. Some have achieved 
approval, such as rituximab, a monoclonal antibody against the common surface antigen CD20, and 
polatuzumab vedotin (Pola; Polivy™), an antibody-drug conjugate. Pola includes an anti-CD79B 
monoclonal antibody for cell targeting, which upon binding allows the antineoplastic agent 
monomethyl auristatin E to enter the cell and inhibit microtubule assembly, preventing cell mitosis and 
ultimately causing apoptosis[43]. Pola was approved by the FDA in June 2019 in combination with 
rituximab and bendamustine for the treatment of adults with R/R DLBCL after at least two previous 
lines of therapy. Such strategies have the advantage that the surface antigens they target are universally 
expressed on all DLBCL subtypes.

TARGETED THERAPIES IN FL
Genetic studies have identified epigenetic mechanisms in the pathogenesis of both DLBCL and FL, such 
as acetylation/deacetylation affected by CREBBP and EP300 mutations, or histone methylation changes 
affected by EZH2 mutations. Indeed, Tazemetostat (Tazverik™), an EZH2 inhibitor, was the first 
directed therapy to be approved by the FDA (in June 2020) for the treatment of R/R FL after two lines of 
previous therapy[44]. The EZH2 mutation is predictive of Tazemetostat response but, interestingly, this 
targeted agent was also shown to improve the outcome of patients without an EZH2 mutation[44].

Other FDA-approved agents for R/R FL include four PI3K signaling inhibitors: Idelalisib (July 2014), 
copanlisib (September 2017), duvelisib (September 2018), and umbralisib (February 2021)[45-48]. Further 
information on FL therapies in development can be found in this recent review[37].

CAR-T
Besides targeted therapies, an improved understanding of the genetic and immune biology of DLBCL 
and FL has led to the development of chimeric antigen receptor T-cell (CAR-T) therapies, considered a 
major scientific breakthrough and offering an alternative treatment option for patients with R/R B-cell 
lymphomas[49,50].

In 2020, our center obtained the license to provide the European Medicine Agency-approved anti-
CD19 CAR-T axicabtagene ciloleucel (Yescarta™) and Tisagenlecleucel (Kymriah™) for the treatment of 
adult patients with R/R DLBCL or PMBCL after two or more previous lines of treatment. As of 
February 2021, the third CAR-T lisocabtagene maraleucel (Breyanzi™) also obtained FDA approval for 
the treatment of R/R DLBCL[51].

CAR-T is also an option for the treatment of adult R/R FL patients after two or more previous lines of 
treatment[52,53], following the FDA approval of axicabtagene ciloleucel in March 2021.

The proliferation and persistence of CAR-T cells in the body is an important factor influencing 
therapy durability, with the loss of a CAR-T signal associated with progression of the disease[54]. A 
quantitative TaqMan PCR (qPCR) assay can be used to monitor the number of CAR-T cells circulating in 
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peripheral blood via detection of the quimeric CD19 recognition domain (FMC63)[55]. Flow cytometry is 
an alternative method for CAR-T cell monitoring, but has the disadvantage that it needs to be carried 
out on fresh samples and has lower sensitivity. Future studies are required to explore the correlation 
between the expansion/persistence of CAR-T cells and clinical outcomes including treatment efficacy 
and clinical symptoms.

CIRCULATING CELL-FREE TUMOR DNA
Surgical excision biopsies are the gold-standard technique used in the diagnosis and follow-up of 
patients with lymphomas, although core needle biopsies are a useful and viable alternative under 
certain conditions[56]. However, both surgical excision and core needle biopsies are resource intensive, 
can be painful, and impact negatively on patients, and surgical excision biopsies, in particular, have an 
associated risk of morbidity due to bleeding and infection. Additionally, some lymphomas may not be 
easily accessible which can limit the availability of tissue for genomic studies. Moreover, the extraction 
of genomic DNA from formalin-fixed, paraffin-embedded biopsies for downstream NGS applications is 
not ideal since chemicals used in the fixation can degrade nucleic acids, thus decreasing NGS sensitivity.

Liquid biopsy techniques are currently being explored as non-invasive methods for tumor diagnosis 
and disease monitoring[57]. Circulating cell-free DNA (ctDNA), consisting of highly fragmented DNA 
in plasma that is released by normal or tumor cells that undergo apoptosis or necrosis[58], may better 
reflect intratumoral heterogeneity than can be obtained from a single tissue biopsy. Indeed, in 
comparison with the sequencing of genomic DNA extracted from the diagnostic tissue biopsy, the 
sequencing of ctDNA can identify somatic mutations with a similar accuracy and identified additional 
clinically relevant mutations that were not detected in the diagnostic tissue biopsy[59]. Moreover, the 
analysis of ctDNA could overcome some other limitations of biopsies. For example, in the case of a 
biopsy at an extranodal site, it is not uncommon for the paraffin block to also contain other non-tumoral 
tissue.

Due to their easy accessibility through non-invasive procedures (such as a simple peripheral blood 
draw), ctDNA analyses can be repeated regularly to track lymphomas over time, such as to monitor 
treatment response. Indeed, studies have shown that changes in ctDNA quantification correlated with 
positive responses to chemotherapy and could even detect relapse, months earlier than conventional CT 
scan monitoring[60]. Thus they may also be useful as “surveillance” methods in patients who have 
completed treatment but may be at risk of relapse, e.g. those with mutations in CD79B or those with a 
high pretreatment ctDNA quantitative burden for early relapse detection[32,59].

Future studies are required to optimize the application of ctDNA analyses in the management of 
patients with B-cell lymphomas. Nevertheless, ctDNA is currently used in the clinic in some fields of 
oncology, such as in the molecular profiling of patients with non-squamous non-small cell lung cancer 
at diagnosis, as recommended by the National Comprehensive Cancer Network[61].

IMPLEMENTATION OF MOLECULAR TESTING IN CLINICAL PRACTICE
The application of NGS, together with other molecular techniques, is key to the integration of person-
alized medicine approaches into healthcare services. The use of NGS targeted panels, which focus on a 
limited and relevant set of genes or gene regions that have known associations with a particular 
pathology, produce large quantities of genetic information with diagnostic, prognostic and theranostic 
value with a high sensitivity. The simultaneous analysis of an elevated number of genes (15-200) is more 
resource efficient as it drastically reduces the cost and time required to obtain such genetic information 
enabling a more precise diagnosis and prognosis. Furthermore, the use of NGS permits the detection of 
emerging clones which can help inform disease follow-up and may be associated with treatment 
resistance, thus providing data that can help guide individualized patient therapeutic plans.

In 2016 our team implemented NGS into the routine diagnosis and prognosis of patients with acute 
myeloid leukemia[62]. Since then, the use of NGS has expanded to include a targeted myeloid panel for 
the diagnosis of patients with myeloproliferative neoplasms and myelodysplastic syndromes, a chronic 
lymphocytic leukemia-specific panel, and a panel for the detection of germline hematologic 
malignancies. However, the molecular analysis of B-cell lymphoma samples in our center is currently 
limited to the qPCR-based analysis of several individual genes with prognostic value (including 
MYD88, TP53, and EZH2) to complement the conventional cytometry, IHC and FISH tests used in 
routine clinical practice.

Several commercial gene panels are currently available on the market for the detection of mutations 
with diagnostic, prognostic or theranostic value in DLBCL and FL, given the considerable overlap of 
genetic alterations between GCB DLBCL and FL[32], including Oncomine™ Lymphoma (Ther-
moFisher), FusionPlex® Lymphoma (Archer) and Lymphoma Solution® (SOPHiA).
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Incorporating a comprehensive NGS-based characterization of somatic gene mutations as a precision 
medicine strategy for B-cell lymphomas would assist in the daily practice by refining DLBCL and FL 
classification and prognosis. Importantly, it would also facilitate individualized therapeutic decision-
making for patients and increase treatment opportunities by identifying candidates for clinical trials 
with targeted therapies. However, feasibility studies would be required to determine the clinical utility 
and added value of incorporating an NGS panel in the multidisciplinary diagnostic work-up, since 
“while many stakeholders believe that personalized medicine can provide benefits to patients and the 
healthcare system, payer and providers are often reluctant to change policies and practices without 
convincing evidence of clinical and economic value”[63].

It is also important to consider the limitations of introducing such molecular analyses for B-cell 
lymphomas into routine hematology laboratories. Difficulties arise in interpretation of the results 
generated by extensive NGS panels due to the data’s complexity and uncertainty about the biological 
relevance as not all molecular variants are clinically actionable. For this reason, it is essential to have 
highly trained staff with experience in the interpretation of the clinical impact of tumor variants. Other 
limitations include the economic cost of molecular analyses and the turnaround time, which has a large 
impact on the applicability of genomic tests to clinical decision-making. The potential to multiplex 
lymphoma samples with other targeted panels in the same sequencing run would help optimize the 
resources dedicated to library preparation and sequencing, and minimize the time required to analyze 
patient samples and report results to guide clinical decision-making. This is essential for aggressive B-
cell lymphomas where immediate treatment is frequently required.

CONCLUSION
The incorporation of molecular testing into the routine clinical management of patients with B-cell 
lymphomas via the implementation of a targeted NGS panel would help improve disease subtype classi-
fication, allow the prediction of therapeutic outcome to currently available treatments, and identify 
patients for personalized treatment. Moreover, the optimization of non-invasive ctDNA analysis could 
allow for closer patient monitoring and earlier relapse detection.
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Abstract
Along with the discovery and refinement of serrated pathways, the World Health 
Organization amended the classification of digestive system tumors in 2019, 
recommending the renaming of sessile serrated adenomas/polyps to sessile 
serrated lesions (SSLs). Given the particularity of the endoscopic appearance of 
SSLs, it could easily be overlooked and missed in colonoscopy screening, which is 
crucial for the occurrence of interval colorectal cancer. Existing literature has 
found that adequate bowel preparation, reasonable withdrawal time, and 
awareness of colorectal SSLs have improved the quality and accuracy of detection. 
More particularly, with the continuous advancement and development of 
endoscopy technology, equipment, and accessories, a potent auxiliary tool is 
provided for accurate observation and immediate diagnosis of SSLs. High-
definition white light endoscopy, chromoendoscopy, and magnifying endoscopy 
have distinct roles in the detection of colorectal SSLs and are valuable in 
identifying the size, shape, character, risk degree, and potential malignant 
tendency. This article delves into the relevant factors influencing the detection 
rate of colorectal SSLs, reviews its characteristics under various endoscopic 
techniques, and expects to attract the attention of colonoscopists.
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Core Tip: Because of its unique endoscopic patterns and behavior, sessile serrated lesions (SSLs) are easily 
missing during colonoscopy. SSL is a critical cause of interval colorectal cancer, so it is necessary to 
summarize the endoscopic features of the sessile serrated lesion to help endoscopists make a better identi-
fication and diagnosis.

Citation: Wang RG, Wei L, Jiang B. Current progress on the endoscopic features of colorectal sessile serrated 
lesions. World J Clin Oncol 2023; 14(4): 171-178
URL: https://www.wjgnet.com/2218-4333/full/v14/i4/171.htm
DOI: https://dx.doi.org/10.5306/wjco.v14.i4.171

INTRODUCTION
Colorectal cancer (CRC) is a common gastrointestinal malignancy with the third-highest incidence and 
the second-highest mortality rate. In China, more than 550000 new cases were diagnosed and 280000 
deaths took place in 2020[1], severely threatening people's lives and health. With the improvements in 
awareness concerning colonoscopic screening, the occurrence of interval CRC has garnered significant 
attention. Interval CRC refers to the CRC that is not detected during colorectal screening but discovered 
prior to the next recommended screening date[2]. The incidence of interval CRC is a vital indicator in 
assessing the quality of colonoscopic screening. Interval CRC detection in the proximal colon goes 
beyond being merely a test of the patient's bowel preparation since the colonoscopist’s experience is also 
highly relevant.

Colorectal sessile serrated lesions (SSLs) are poorly defined and pale, covered with mucus, and 
hardly distinguishable from the surrounding mucosa. For endoscopists who lack awareness of the 
features of colorectal SSLs, missing or overlooking them becomes inevitable, resulting in the incidence 
of interval CRCs[3]. Related research observed that the occurrence of interval CRCs three years after 
colonoscopy was 3.4%-9.0%[2,4].

Colorectal SSLs may proceed to CRCs through the pathways of BRAF mutation, microsatellite 
instability, CpG island methylation, and the deletion gene of DNA damage repair[5]. It has been 
exhibited that a 15%-30% incidence of CRCs occurs via the serrated pathway, which is known as the 
vital cancer pathway[5,6].

UPDATE ON THE PATHOLOGICAL CLASSIFICATION OF SERRATED LESIONS
During the previous decade, related studies have generated a more accurate description of the 
pathogenesis of intestinal adenocarcinoma. Population-based screening for CRCs has led to a compre-
hensive understanding of precancerous lesions and established a foundation for investigating the 
molecular pathways and biological behaviors of cancerous lesions. Accordingly, WHO renamed the 
sessile serrated adenoma/polyp as SSLs, as these may be flat rather than polypoid, and the association 
with BRAF or KRAS mutation delineates two separate neoplastic pathways.

Currently, the categorization of gastrointestinal tumors classifies serrated lesions as Hyperplastic 
Polyps (HP), SSL, SSL with dysplasia (SSL-D), Traditional serrated adenomas (TSA), and serrated 
tubular villous adenoma (STVA)[7-9].

HP is a benign lesion, and the pathological features are primarily epithelial hyperplasia in the upper 
2/3 of the saphenous fossa, forming small papillae protruding into the lumen of the saphenous fossa, 
which then gives the luminal surface a serrated shape. Based on the cell composition and molecular 
genetic alterations, the two types of HP are the Microvesicular type of Hyperplastic Polyp and the 
Goblet Cell-rich type of Hyperplastic Polyp. Generally, the TSA is pedicled and has villous structures 
but is potentially malignant[10-12]. In contrast to the conventional tubulovillous adenoma, STVA 
usually presents histological changes in advanced adenomas, and the glands are frequently serrated 
when high-grade dysplasia and invasive carcinoma appear.

The histological diagnosis of SSLs necessitates the detection of at least one abnormal crypt. By way of 
illustration, the entire saphenous fossa is serrated and grows horizontally along the mucosal muscular 
layer, the basal expansion, abnormal maturation, and asymmetric proliferation, in which asymmetric 
proliferation causes structural changes in the entire saphenous fossa. This is the fundamental difference 
from the HP[8]. Moreover, SSL-D is histologically heterogeneous. Its abnormal crypt structures—being 
its core feature—differ from the surrounding glands like the appearance of villous structures, which are 
longer and more crowded, complex branching, sieve-shaped crypt, and increased or decreased serration 
compared with the background SSL. The morphology of SSL-Ds is often tanglesome and mixed with 
different subtypes, making it challenging to distinguish the degree of heterogeneous hyperplasia.

https://www.wjgnet.com/2218-4333/full/v14/i4/171.htm
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COLORECTAL SSL-RELATED RISKS
It has been widely recognized that colorectal SSLs essentially differ from HPs, both with regard to 
morphological and pathological characteristics analysis, and instead behave comparably to neoplastic 
lesions with malignant potential.

Meta-analyses have demonstrated that SSLs are associated with an increased risk of concurrent 
progressive tumors. Patients with larger proximal colorectal serrated lesions are at significant risk and 
may require closer monitoring and further completion of a colon examination[13,14]. In light of this, a 
population-based, case-control study from Danish revealed that having an SSL was associated with 3-
fold increased odds for CRC, while having SSL-D was associated with a nearly 5-fold increased odds for 
CRC[15,16].

Reports have confirmed that the risk of developing CRCs in cases with SSL-D is 4.4% within a decade, 
which is higher than that of conventional adenoma (2.3%). This highlights a significantly increased long-
term risk of CRC in patients with SSL[16]. Similarly, correlative studies have found that SSLs have a 
mean duration of 7-15 years before developing SSL-Ds. Then, 3.03%-12.5% of SSLs develop into CRCs 5-
7 years after follow-up[17,18]. However, SSL-Ds progress to CRCs at a much faster rate, and there are 
reports of SSL-Ds rapidly aggravating submucosal invasive carcinomas within one or two years[19-21].

FACTORS AFFECTING THE DETECTION OF COLORECTAL SSLS
As a critical influencing factor in the occurrence of interval CRCs, the detection rate of SSLs can 
effectively evaluate the quality of colonoscopy and assess the level of colonoscopists. A retrospective 
study that included more than 10000 colonoscopies found that bowel preparation, exit time, polyp 
diameter, and adenoma detection rate were linked to the SSL detection rate. Equally important, a 
multivariate analysis underlined that adenoma detection rate was an independent predictor of SSL 
detection rate, implying that patients who developed colorectal adenomas were at higher risk of 
complicating SSL[22].

Additionally, a colonoscopist’s professional experience is vital to the timely and accurate detection of 
colorectal SSLs. Li et al[23] noted that different colonoscopists are independent risk factors for the 
detection rate of proximal colonic serrated lesions. It underscores that inexperienced colonoscopists 
detected serrated lesions at only 16%-83% compared with their experienced counterparts. They also 
found that proximal serrated polyps are more common in men over 50 years old.

ENDOSCOPIC FEATURES OF COLORECTAL SSLS
The development of an endoscopic technique delivers a reliable tool for detecting colorectal SSLs, which 
are not easily distinguishable from the background mucosa. To effectively prevent the incidence of 
interval CRCs, an early diagnosis and treatment of SSLs are crucial, thereby improving the quality of life 
and disease prognosis of patients.

Colorectal SSL characteristics under white light endoscopy
Colorectal SSL and SSL-D are prevalent in the proximal colon, usually > 5 mm in size, accounting for 
approximately 20%-25% of all serrated lesions. Additionally, colorectal SSLs often present with faint 
borders and a pale surface under white light endoscopy. Consequently, distinguishing them from the 
surrounding mucosa is difficult, making them prone to adverse events like missed or delayed diagnoses 
and incomplete resections. Most colorectal SSLs are accompanied by a mucus cap (Figure 1A), which, 
when flushed is not easily differentiated from HP. A further study also uncovered that inconspicuous 
borders and cloud-like surfaces are two independent diagnostic features of colorectal SSL in white light 
endoscopy[24-26]. Meanwhile, colorectal SSL-Ds are often associated with pedicled, bimodal 
appearance, central depression, and reddish color (Figure 1B), which can differentiate SSLs from SSL-
Ds, with one of such features having a sensitivity of 97.7% and a specificity of 85.3% for the diagnosis of 
SSL-Ds[27].

Colorectal SSL characteristics under chromoendoscopy
Both HPs and SSLs are generally challenging and complex to identify when small (< 5 mm). To address 
this issue, the chromoendoscopy technique is adopted.

During endoscopy, chemical dyes (indigo carmine, crystalline violet, acetic acid, among several 
others) spray on the surface of the lesions, so the particles of the stains are deposited within the folds of 
the colorectal SSL lesion and surrounding mucosa. Then, the outlining of the lesion border and surface 
microstructure facilitates the assessment of SSL size and character.

It is important to note that acetic acid spray plays an important role in showing the borders and 
diameter of colorectal SSLs (Figure 2A). The surface morphology of the SSL is clearer and more easily 
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Figure 1 White light endoscopic features of colorectal sessile serrated lesion cases. A: The sessile serrated lesions (SSLs) case with mucus cap 
under white light endoscopy; B: The borders of SSLs are not clearly distinguishable from the surrounding mucosa, and the morphology are cloud-like surface under 
white light. The above figure shows a case of SSL-D which has a reddish surface and a central depression.

Figure 2 Endoscopic features of the colorectal sessile serrated lesion case after acetic acid spray. A: The border of the sessile serrated lesions 
(SSLs) is clearly revealed under acetic acid spray; B: The combined application of acetic acid spray and narrow band imaging can clearly show the borders and 
surface microstructure of SSLs, which is more conducive to endoscopic treatment.

described after acetic acid spray, and its useful in better delineation of the recurrent colorectal SSL[28-
30]. In addition, it has been demonstrated that acetic acid spray can help endoscopists perform cold 
resection of colorectal SSLs more accurately[31] (Figure 2B).

One study classified the chromoendoscopy images of the surface glands of more than 300 SSLs and 
indicated that open Type II (Pit II-O) structures, compared with the conventional Pit II type glands 
opening pattern, were endoscopic characteristics in colorectal SSLs[24]. Moreover, the opening pattern 
of the Pit II-O gland is similar to that of Pit II, and the former is typically surrounded by the latter, but 
the former features an expanded and more rounded shape, reflecting the expansion of the SSL crypt 
(Figure 3).

The image enhanced endoscopy (IEE) is the most common mode of electronic staining used in 
colonoscopy. Narrow band imaging (NBI) is a widely used IEE, which utilizes a filter to screen the 
broadband spectrum of the red, blue, and green light emitted by the light source, leaving only the 
narrowband spectrum for the diagnosis of various digestive disorders. Linked color imaging and blue 
laser imaging (BLI) are the next-generation IEEs, considering that their imaging principle is founded on 
light absorption and reflection by the mucosa of the digestive tract. Then, the lesions appear in a 
different color from the surrounding tissues, yielding a clear distinction between the superficial mucosal 
microvasculature and microstructure. It is also worth noting that the IEE has a brighter and higher 
resolution and is known as the "electron chromatography" technique given that the image observed by 
the IEE resembles a dye-stained image.

Furthermore, the NBI pattern enhances the visibility of colorectal SSLs with a mucus cap and gives it 
a concentrated red color that contrasts more prominently with the background mucosa[32] (Figure 4A). 
Also, both the NBI and BLI generally feature small black spots within the glandular opening of SSLs 
(Figure 4B), which is a critical histological feature within dependent diagnostic value that aids the 
endoscopist to differentiate SSLs from HPs during colonoscopy[25,33]. It has been confirmed that 
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Figure 3 Endoscopic features of the colorectal sessile serrated lesion case after indigo carmine spray. The opening pattern of the Pit II-O gland, 
features an expanded and more rounded shape, dilation of the colorectal sessile serrated lesion surface crypt.

Figure 4 Endoscopic features of colorectal sessile serrated lesion cases under narrow band imaging mode. A: The mucus cap of sessile 
serrated lesions (SSLs) shows a brick-red appearance under narrow band imaging (NBI); B: The expansion of the surface crypt in the SSLs shows a black spot under 
NBI.

dilated and branching vessels in NBI endoscopy differs from the vascular surrounding superficial 
mucosal glands, and irregular capillaries may be observed at sites of colorectal SSL that show dysplasia
[3,34,35].

Additional research showed that the multivariate analysis of the location (proximal colon), size (≥ 10 
mm), glandular opening, and microvascular morphology of the serrated lesions exhibited more than 
90% positive diagnosis of the SSL, which was 2.3 times more advantageous than its single factor 
diagnosis[36,37].

Colorectal SSL characteristics under magnified endoscopy
In identifying neoplastic and non-neoplastic lesions, the value of magnified endoscopy combined with 
chromoscopy has been extensively evident. Close observation of the surface pattern of lesions with a 
specific combination can effectively predict its pathological characteristics and even the depth of 
invasion. Relevant literature has demonstrated that Type II-O glands can be used as an indicator to 
differentiate between SSLs and HPs. The Pit II-O glands also suggest histological variation in the 
morphology of colorectal SSL glands, significantly boosting the accuracy of diagnosing SSLs[38]. For 
large colorectal SSLs, magnified endoscopic findings of not only Type II-O glands but also those 
possibly mixed with Types IIIL, IV, Vi, and Vn glands at the same time often prompt SSL-Ds or cancers
[24,27] (Figure 5A).

Magnified endoscopy combined with IEE can further develop the visualization of microvessels 
(Figure 5B). The varicose microvessels, running through the deep layer of mucosa, on the lesion surface 
of colorectal SSL, differ from those around the mucosal glands[37]. A similar study in China pointed out 
a statistical difference between magnified endoscopy and chromic endoscopy for varicose microvessels 
in predicting colorectal SSLs and HPs[35].
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Figure 5 Endoscopic features of the colorectal sessile serrated lesion case under chromoscopy combined with magnified endoscopy. A: 
Crystalline violet spray makes the surface glandular structure of colorectal sessile serrated lesions (SSLs) more visible, and combined with magnified endoscopic 
observation is useful for inferring the pathological characteristics of the lesion; B: Blue light imaging combined with magnified endoscopic observation of the 
microstructure of the SSL surface revealed that the SSL-D case have a Pit III and/or Pit IV type of glandular duct opening pattern based on Pit II-O, and varicose 
microvessels on the surface of the lesion are found.

CONCLUSION
Colorectal SSL is potentially malignant and has a higher risk of malignancy than conventional tubular 
adenomas, thereby making an immediate diagnosis or early detection in colonoscopic screening 
especially important. However, the current diagnosis of SSLs in screening colonoscopy is undeniably 
insufficiently high and often depends on the histopathological diagnosis post-biopsy or resection. With 
advances in endoscopy equipment and imaging techniques, we have witnessed the role of cytoen-
doscopy in diagnosing gastrointestinal tract tumors[39]. In the future, we hope to discover a more 
objective and accurate factor in order to characterize the endoscopic presentation of colorectal SSLs, 
which can swiftly and efficiently identify lesions, reduce missed or delayed diagnoses, and effectively 
decrease the incidence of interval CRCs.

For colorectal SSLs, good bowel preparation is the foundation, and the endoscopist's knowledge and 
experience play an essential role. Ultimately, combining all the predictive factors in colonoscopy 
screening to generate an immediate diagnosis can improve the detection rate.
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Abstract
BACKGROUND 
Extramedullary multiple myeloma (MM) (EMM) is a rare and aggressive sub-
entity of MM that can be present at diagnosis or develop anytime during the 
disease course. There is a paucity of data on the clinical characteristics and overall 
epidemiology of EMM. Furthermore, there is a scarcity of data on how the 
interaction of age and gender influences the survival of EMM.

AIM 
To evaluate the clinical characteristics of patients with EMM over the past 2 
decades and to identify epidemiologic characteristics that may impact overall 
prognosis.

METHODS 
A total of 858 patients diagnosed with EMM, between 2000 and 2017, were 
ultimately enrolled in our study by retrieving the Surveillance, Epidemiology, and 
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End Results database. We analyzed demographics, clinical characteristics, and overall mortality 
(OM) as well as cancer-specific mortality (CSM) of EMM. Variables with a P value < 0.1 in the 
univariate Cox regression were incorporated into the multivariate Cox model to determine the 
independent prognostic factors, with a hazard ratio (HR) of greater than 1 representing adverse 
prognostic factors.

RESULTS 
From a sample of 858 EMM, the male gender (63.25%), age range 60-79 years (51.05%), and non-
Hispanic whites (66.78%) were the most represented. Central Nervous System and the vertebral 
column was the most affected site (33.10%). Crude analysis revealed higher OM in the age group 
80+ [HR = 6.951, 95% confidence interval (95%CI): 3.299-14.647, P = 0], Non-Hispanic Black 
population (HR = 1.339, 95%CI: 1.02-1.759, P = 0.036), Bones not otherwise specified (NOS) (HR = 
1.74, 95%CI: 1.043-2.902, P = 0.034), and widowed individuals (HR = 2.107, 95%CI: 1.511-2.938, P = 
0). Skin involvement (HR = 0.241, 95%CI: 0.06-0.974, P = 0.046) and a yearly income of $75000+ 
(HR = 0.259, 95%CI: 0.125-0.538, P = 0) had the lowest OM in the crude analysis. Crude analysis 
revealed higher CSM in the age group 80+, Non-Hispanic Black, Bones NOS, and widowed. 
Multivariate cox proportional hazard regression analyses only revealed higher OM in the age 
group 80+ (HR = 9.792, 95%CI: 4.403-21.774, P = 0) and widowed individuals (HR = 1.609, 95%CI: 
1.101-2.35, P = 0.014). Multivariate cox proportional hazard regression analyses of CSM also 
revealed higher mortality of the same groups. Eyes, mouth, and ENT involvement had the lowest 
CSM in the multivariate analysis. There was no interaction between age and gender in the 
adjusted analysis for OM and CSM.

CONCLUSION 
EMM is a rare entity. To our knowledge, there is a scarcity of data on the clinical characteristics 
and prognosis factors of patients with extramedullary multiple myeloma. In this retrospective 
cohort, using a United States-based population, we found that age, marital status, and tumor site 
were independent prognostic factors. Furthermore, we found that age and gender did not interact 
to influence the mortality of patients with EMM.

Key Words: Multiple myeloma; Age; Gender; Mortality; Plasmacytoma

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Very little is known about extramedullary multiple myeloma (EMM), owing to its rarity and 
scarcity of data on the subject. So far it was found that advanced age was the single most important 
prognostic value for poor outcome in EMM. However, how age interacts with gender to affect mortality in 
EMM remains unknown. We found that age did not interact with gender to affect mortality in EMM.
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INTRODUCTION
Multiple myeloma (MM) is a rare cancer with the hallmark of monoclonal plasma cell proliferation in 
the bone marrow[1]. MM accounts for approximately 1%-2% of all cancers. A subclone can thrive and 
grow independent of the bone marrow microenvironment resulting in extramedullary MM (EMM) 
which is an aggressive subentity of MM[2]. Affecting up to 30% of patients with MM, EMM can be 
present either at diagnosis or anytime during the disease process[1,2].

EMM is frequently associated with high-risk cytogenetics. As evidenced by a pilot study, which 
revealed an association of chromosome 1 abnormalities in bone marrow myeloma cells with 
extramedullary progression. Optical mapping showed the potential for refining the complex genomic 
architecture in MM and its phenotypes[3]. Only few studies in the literature have addressed the clinical 
characteristics of patients with EMM[4-8]. Age at the diagnosis of MM and the site of extramedullary 
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disease have been shown to be independent prognostic factors[4,9]. Furthermore, there is some data 
associating the male gender with MM[5]. However, to the best of our knowledge, there is a lack of 
studies addressing the interaction between age and gender in EMM, which makes our study the first of 
its kind.

To fill in the gaps in the literature, we conducted a retrospective cohort study amongst patients with 
EMM using the Surveillance, Epidemiology, and End Results (SEER) database, to evaluate the 
interaction of age and gender in regard to mortality of EMM as well as independent prognostic factors 
of patients with EMM over the past 2 decades.

MATERIALS AND METHODS
Study design
A population-based retrospective cohort study of patients with EMM was conducted using the SEER 
research. In addition, 18 registries in the November 2020 submission database were also utilized (http:/
/www.seer.cancer.gov). The SEER Program is one of the largest and most authoritative sources of the 
cancer-related dataset in the United States, which is sponsored by the United States National Cancer 
Institute. The SEER 18 database collects cancer incidence, patients’ clinicopathological features, and 
survival data from 18 population-based cancer registries and covers nearly 28% of the United States 
population[9]. This dataset is de-identified and publicly available, thus, the study is exempt from an 
Institutional Review Board’s review. A detailed description of the database and data collection can be 
found elsewhere[10].

Patient selection
Inclusion criteria: All patients with EMM diagnosed from 2000 to 2017 were identified following 
criteria from previous studies[11]. We used site and morphology ICD-O-3 histology/behavior, 
malignant variables codes 9731/3 (i.e., solitary plasmacytoma of bone) and 9734/3 (i.e., extraosseous 
plasmacytoma) to identify patients with EMM. We also restricted our cohort to patients with 2 tumors 
and diagnostic confirmation through positive histology, immunotherapy, or genetic studies. Thus, 
increasing the accuracy of our findings and eliminating possible false-positive diagnoses.

Exclusion criteria: We excluded patients with unknown age at diagnosis, tumor stage, tumor site, or 
race. Lastly, we excluded patients diagnosed through autopsy.

Study variables
Main exposures: Gender (male and female), age (0-39, 40-59, 60-79, and 80+), and their interaction were 
the main exposures of interest.

Sociodemographic and tumor characteristics: Gender, year of diagnosis, extramedullary site of the 
tumor, location, annual salary, Civil status, year of diagnosis, surgical resection, as well as 
chemotherapy, were assessed for the purpose of the study.

Statistical analysis
We performed a crude and adjusted Cox proportional hazard regression to investigate the impact of the 
interaction between age and gender on EMM mortality. Variables with a value < 0.1 in the univariate 
Cox regression model were incorporated into the multivariate Cox proportional analysis to determine 
the independent prognostic factors associated with overall mortality (OM) and cancer-specific mortality 
(CSM), with a hazard ratio (HR) > 1 representing adverse prognostic factors. All tests were two-sided, 
with a confidence interval set as 95% and P value < 0.05 deemed statistically significant. All statistical 
tests were performed by using Software STATA16.1.

RESULTS
We enrolled 858 patients with EMM in our study. The baseline characteristics of our study are 
summarized in Table 1. The male gender (63.25%), age range 60-79 at diagnosis (51.05%), Non-Hispanic 
Whites (66.78 %), and married patients (66.32%) were the most represented groups. The Central 
Nervous System and vertebral column were the most affected location (33.10%). Most patients were 
living in metropolitan areas with a population of at least 1 million people (56.06%). Most patients did 
not receive chemotherapy (81.47%).

A crude analysis of factors associated with all-cause mortality and EMM-related mortality among 
United States patients between 2000 and 2017 is demonstrated in Table 2. Crude analysis revealed 
higher OM in the age group 80+ [HR = 6.951, 95% confidence interval (95%CI): 3.299-14.647, P = 0], 
Non-Hispanic Black population (HR = 1.339, 95%CI: 1.02-1.759, P = 0.036), other bones (HR = 1.74, 
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Table 1 Demographic and Clinicopathologic characteristics of United States patients with extramedullary multiple myeloma between 
2000 and 2017

Characteristics n %
Total 858 100

Gender

Female 311 36.25

Male 547 63.25

Age at diagnosis, yr

0-39 41 4.78

40-59 309 36.01

60-79 438 51.05

80+ 70 8.16

Race

Non-Hispanic white 573 66.78

Non-Hispanic black 133 15.50

Hispanic 110 12.82

Other 42 4.90

Extramedullary site

CNS and vertebral column 284 33.10

Bones, subcutaneous tissues, connective tissues, and soft tissues of the trunk 108 12.59

Bones, soft tissues, subcutaneous tissues, and connective tissues of the pelvis and sacrum 97 11.31

Bones, soft tissues, subcutaneous tissues, connective tissues, and lymph nodes of the upper extremities 64 7.46

Bones, soft tissues, subcutaneous tissues, and connective tissues of the lower extremities 45 5.24

Bones, soft tissues, subcutaneous tissues, connective tissues, and lymph nodes of the face and skull 60 6.99

Other bones, NOS 37 4.31

Eyes, mouth, and ENT 101 11.77

Lung, breast, and mediastinum 26 3.03

Gastrointestinal tract 18 2.10

Skin 12 1.40

Kidney, suprarenal glands, and retroperitoneum 6 0.70

Living area 

Counties in metropolitan areas of 1 million persons 481 56.06

Counties in metropolitan areas of 250000 to 1 million persons 173 20.16

Counties in metropolitan areas of 250000 persons 76 8.86

Nonmetropolitan counties adjacent to a metropolitan area 77 8.97

Nonmetropolitan counties not adjacent to a metropolitan area 51 5.94

Income per year 

< $35000 12 1.40

$35000-44999 74 8.62

$45000-54999 154 17.95

$55000-64999 232 27.04

$65000-74999 183 21.33

$75000+ 203 23.66
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Marital Status 

Married 569 66.32

Single 106 12.35

Divorced/separated 79 9.21

Widowed 62 7.23

Unknown 42 4.90

CNS: Central Nervous System; NOS: Not otherwise specified.

95%CI: 1.043-2.902, P = 0.034), and widowed individuals (HR = 2.107, 95%CI: 1.511-2.938, P = 0). Skin 
involvement (HR = 0.241, 95%CI: 0.06-0.974, P = 0.046) and a yearly income of $75000+ (HR = 0.259, 
95%CI: 0.125-0.538, P = 0) had the lowest OM in the crude analysis. Crude analysis revealed higher CSM 
in age group 80+ (HR = 10.111, 95%CI: 3.083-33.159, P = 0), Non-Hispanic Black (HR = 1.446, 95%CI: 
1.017-2.055, P = 0.04), other bones (HR = 1.887, 95%CI: 1.044-3.411, P = 0.035) and widowed individuals 
(HR = 2.463, 95%CI: 1.612-3.765, P = 0).

Multivariate cox proportional hazard regression analyses of factors affecting all-cause mortality and 
EMM-related mortality among United States patients between 2000 and 2017 are demonstrated in 
Table 3. Multivariate cox proportional hazard regression analyses only revealed higher OM in the age 
group 80+ (HR = 9.792, 95%CI: 4.403-21.774, P = 0) and widowed individuals (HR = 1.609, 95%CI: 1.101-
2.35, P = 0.014). Multivariate cox proportional hazard regression analyses of CSM showed similar 
findings revealing higher mortality in the age group 80+ (HR = 13.672, 95%CI: 3.915-47.746, P = 0) and 
widowed individuals (HR = 2.085, 95%CI: 1.275-3.409, P = 0.003). Involvement of eyes, mouth and ENT 
sites (HR = 0.425, 95%CI: 0.235-0.768, P = 0.005) had the lowest CSM in the multivariate analysis. 
Importantly, the study also revealed that the interaction between age and gender was not a statistically 
significant predictor of mortality in patients with EMM as shown in Table 4.

DISCUSSION
In this large SEER data-based retrospective cohort study, we demonstrated that EMM was associated 
with a higher OM and CSM in patients greater than 80 years of age and those patients who had been 
widowed. However, interestingly, the interaction between age and gender was not found to be statist-
ically significant in predicting mortality in EMM patients.

EMM is a highly aggressive entity of MM, with clinical behavior distinct from marrow-restricted 
myeloma[12]. EMM is historically known to bear a worse prognosis compared to marrow-restricted 
myeloma[13]. Several studies have been carried out to investigate clinical characteristics and prognostic 
factors of EMM[4-8,12]. However, there is a paucity of data investigating the interaction of age and 
gender in regard to the mortality of EMM.

The interaction between gender and race and its influence on survival disparities in head and neck 
cancers has been well-documented[13]. Furthermore, gender was found to be the most important 
predictor with young and middle-aged females having the most favorable prognosis in non-smokers 
with oral squamous cell carcinoma[14]. However, no study has evaluated the impact of these 
interactions in the EMM population subgroup.

Our study did not reveal any interaction between age, gender, and race in regard to adjusted 
mortality in patients with EMM. Age was found to be the single most important prognostic factor for 
OM and CSM. Age was also found to be an important prognostic factor for the survival of EMM in a 
study by Li et al[5]. Gender and race were not of prognostic value in our cohort reaffirming the similar 
results found in the Li series[5].

Several retrospective studies have found marital status to be an independent prognostic factor in the 
survival of oncologic patients[15-19]. Patients that were married had better survival compared to their 
nonmarried counterparts[20-24]. This was also true in our study, where widowed patients had the 
highest OM and CSM, followed by single and divorced patients. This is perhaps due to the lack of 
psychological and emotional support as well as the increased incidence of depression and other mood 
disorders amongst these individuals, which could directly, or indirectly influence the treatment and 
regular oncology follow-up.

We hope that the results of this study will shed some light on the clinical presentation of this rare and 
aggressive manifestation of MM. In better understanding EMM, we hope to inspire larger prospective 
studies on the management of this subset of patients, which is particularly important in the era of novel 
agents including immunomodulatory agents, proteasome inhibitors, monoclonal antibodies, and, more 
recently, the advent of chimeric antigen receptor T-cell therapy and bispecific agents. This can be 
especially important with the new emergence of microRNAs that help prevent drug resistance when 
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Table 2 Crude analysis of factors associated with all-cause mortality and extramedullary multiple myeloma; related mortality among 
United States patients between 2000 and 2017

Overall mortality EMD MM mortality
Characteristics Crude proportional-hazard ratio (95% confidence 

interval)
Gender

Female 1 (reference) 1 (reference)

Male 1.02 (0.826-1.259) 0.804 (0.611-1.056)

Age at diagnosis, yr

0-39 1 (reference) 1 (reference)

40-59 1.683 (0.82-3.452) 2.409 (0.754-7.696)

60-79 3.271 (1.615-6.627)c 4.918 (1.565-15.461)c

80+ 6.951 (3.299-14.647)c 10.111 (3.083-33.159)c

Race

Non-Hispanic white 1 (reference) 1 (reference)

Non-Hispanic black 1.339 (1.02-1.759)b 1.446 (1.017-2.055)b

Hispanic 0.991 (0.719-1.365) 0.791 (0.495-1.263)

Other 1.016 (0.63-1.639) 1.209 (0.67-2.179)

Extramedullary site

CNS and vertebral column 1 (reference) 1 (reference) 

Bones, subcutaneous tissues, connective tissues, and soft tissues of the trunk 1.53 (1.113-2.102)c 1.187 (0.774-1.82) 

Bones, soft tissues, subcutaneous tissues, and connective tissues of the pelvis and sacrum 1.027 (0.716-1.475) 1.15 (0.746-1.772) 

Bones, soft tissues, subcutaneous tissues, connective tissues, and lymph nodes of the 
upper extremities

1.036 (0.682-1.573) 0.718 (0.391-1.32)

Bones, soft tissues, subcutaneous tissues, and connective tissues of the lower extremities 1.668 (1.058-2.63)b 1.466 (0.814-2.642)

Bones, soft tissues, subcutaneous tissues, connective tissues, and lymph nodes of the face 
and skull

1.135 (0.756-1.702) 0.919 (0.529-1.598)

Other bones, NOS 1.74 (1.043-2.902)b 1.887 (1.044-3.411)b

Eyes, mouth, and ENT 0.929 (0.668-1.293) 0.451 (0.259-0.783)c

Lung, breast, and mediastinum 1.588 (0.895-2.816) 1.278 (0.589-2.773)

Gastrointestinal tract 0.787 (0.367-1.688) 0.55 (0.174-1.745)

Skin 0.241 (0.06-0.974)b 0.195 (0.027-1.403)

Kidney, suprarenal glands, and retroperitoneum 1.861 (0.591-5.86) 0.907 (0.126-6.531)

Living area 

Counties in metropolitan areas of 1 million persons 1 (reference) 1 (reference)

Counties in metropolitan areas of 250000 to 1 million persons 1.021 (0.789-1.322) 0.803 (0.556-1.158)

Counties in metropolitan areas of 250000 persons 0.794 (0.538-1.17) 0.8 (0.482-1.327)

Nonmetropolitan counties adjacent to a metropolitan area 1.099 (0.775-1.559) 0.937 (0.578-1.518)

Nonmetropolitan counties not adjacent to a metropolitan area 1.191 (0.798-1.779) 1.105 (0.647-1.888)

Income per year 

< $35000 1 (reference) 1 (reference)

$35000-44999 0.457 (0.213-0.984)b 0.412 (0.167-1.014)a

$45000-54999 0.356 (0.17-0.745)c 0.33 (0.139-0.782)b

$55000-64999 0.358 (0.174-0.737)c 0.236 (0.101-0.554)c
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$65000-74999 0.328 (0.158-0.681)c 0.292 (0.124-0.685)c

$75000+ 0.259 (0.125-0.538)c 0.24 (0.102-0.563)c

Marital status 

Married 1 (reference) 1 (reference)

Single 1.305 (0.967-1.763)a 1.515 (1.027-2.236)b

Divorced/separated 1.531 (1.094-2.142)b 1.681 (1.084-2.605)b

Widowed 2.107 (1.511-2.938)c 2.463 (1.612-3.765)c

aP < 0.1.
bP < 0.05.
cP < 0.01.
EMD: Extramedullary disease; MM: Multiple myeloma; CNS: Central Nervous System; NOS: Not otherwise specified.

Table 3 Multivariate cox proportional hazard regression analyses of factors affecting all-cause mortality and extramedullary disease 
multiple myeloma related mortality among United States patients between 2000 and 2017

Overall mortality EMD MM mortality
Characteristics

Adjusted proportional hazard ratio (95% confidence interval)
Gender

Female 1 (reference) 1 (reference)

Male 1.256 (0.989-1.594)a 1.022 (0.748-1.397)

Age at diagnosis, yr

0-39 1 (reference) 1 (reference)

40-59 2.206 (1.047-4.647)b 3.154 (0.957-10.395)a

60-79 4.129 (1.974-8.635)c 5.667 (1.738-18.48)c

80+ 9.792 (4.403-21.774)c 13.672 (3.915-47.746)c

Race

Non-Hispanic white 1 (reference) 1 (reference)

Non-Hispanic black 1.315 (0.96-1.802)a 1.34 (0.884-2.03) 

Hispanic 1.034 (0.734-1.457) 0.833 (0.506-1.371) 

Other 1.25 (0.743-2.104) 1.741 (0.916-3.308)a

Extramedullary site

CNS and vertebral column 1 (reference) 1 (reference)

Bones, subcutaneous tissues, connective tissues, and soft tissues of the trunk 1.401 (0.996-1.972)a 1.046 (0.664-1.649)

Bones, soft tissues, subcutaneous tissues, and connective tissues of the pelvis and 
sacrum

0.98 (0.671-1.432) 1.091 (0.689-1.729)

Bones, soft tissues, subcutaneous tissues, connective tissues, and lymph nodes of 
the upper extremities

1.024 (0.661-1.586) 0.672 (0.353-1.279)

Bones, soft tissues, subcutaneous tissues, and connective tissues of the lower 
extremities

1.488 (0.909-2.436) 1.382 (0.733-2.605)

Bones, soft tissues, subcutaneous tissues, connective tissues, and lymph nodes of 
the face and skull

0.99 (0.641-1.53) 0.76 (0.414-1.394)

Other bones, NOS 1.195 (0.694-2.058) 1.199 (0.629-2.284)

Eyes, mouth, and ENT 0.902 (0.631-1.29) 0.425 (0.235-0.768)c

Lung, breast, and mediastinum 1.187 (0.628-2.246) 0.959 (0.392-2.346)

Gastrointestinal tract 0.677 (0.303-1.512) 0.383 (0.114-1.283)

Skin 0.327 (0.08-1.34) 0.325 (0.044-2.394)
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Kidney, suprarenal glands, and retroperitoneum 3.055 (0.881-10.601)a 0.865 (0.108-6.901)

Living area 

Counties in metropolitan areas of 1 million persons 1 (reference) 1 (reference) 

Counties in metropolitan areas of 250000 to 1 million persons 0.957 (0.715-1.282) 0.778 (0.512-1.181)

Counties in metropolitan areas of 250000 persons 0.819 (0.523-1.282) 0.85 (0.47-1.539)

Nonmetropolitan counties adjacent to a metropolitan area 0.997 (0.653-1.522) 0.836 (0.461-1.516)

Nonmetropolitan counties not adjacent to a metropolitan area 0.877 (0.533-1.442) 0.757 (0.379-1.512)

Income per year 

< $35000 1 (reference) 1 (reference)

$35000-44999 0.48 (0.21-1.095)a 0.381 (0.14-1.036)a

$45000-54999 0.452 (0.196-1.04)a 0.375 (0.135-1.044)a

$55000-64,999 0.446 (0.192-1.036)a 0.275 (0.096-0.788)b

$65000-74999 0.413 (0.173-0.983)b 0.381 (0.129-1.121)a

$75000+ 0.324 (0.134-0.783)b 0.29 (0.095-0.878)b

Marital status 

Married 1 (reference) 1 (reference)

Single 1.5 (1.079-2.086)b 1.668 (1.089-2.556)b

Divorced/separated 1.49 (1.037-2.139)b 1.463 (0.908-2.355)

Widowed 1.609 (1.101-2.35)b 2.085 (1.275-3.409)c

aP < 0.1.
bP < 0.05.
cP < 0.01.
EMD: Extramedullary disease; MM: Multiple myeloma; CNS: Central Nervous System; NOS: Not otherwise specified.

Table 4 Joint test analysis of the predictors of extramedullary multiple myeloma and overall mortality among United States 
extramedullary multiple myeloma patients, 2000-2017

MM mortality Overall mortality
Variables

DF χ2 P value χ2 P value

Race/ethnicity 3 5.7436 0.1248 3.2403 0.3560

Age at diagnosis 3 21.2193 < 0.0001 49.2869 < 0.0001

Gender 1 0.5044 0.4776 0.5168 0.4722

Extramedullary Site 11 16.6070 0.1200 15.6578 0.1543

Living area 4 2.1023 0.7169 0.8175 0.9361

Income 5 7.3539 0.1956 7.4157 0.1915

Marital status 3 10.8183 0.0128 11.7967 0.0081

chemotherapy 1 2.3104 0.1285 1.4536 0.2280

Year of diagnosis 17 25.3142 0.0879 16.1848 0.5108

Interaction between age and gender 3 2.1285 0.5462 1.0296 0.7941

DF: Degree of freedom; MM: Multiple myeloma.

combined with anti-MM drug regimens and improve the patient’s management[25].
Our study has several strengths. Firstly, the database used is the largest cancer database in the United 

States. The sample size of the study is non-negligible. Also, owing to the stringent inclusion criteria and 
the fact that we used patients with only confirmed EMM for our diagnosis, we eliminated false positive 
results which increase the accuracy of our study findings. However, a few limitations should be 
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considered in our study. Information could not be obtained on radiotherapy and Hematopoietic Stem 
Cell Transplant. The information on chemotherapy was unfulfilled. Furthermore, the SEER database 
publicly available lacks information on comorbidities, which could lead to missing data on potential 
confounders owing to the retrospective nature of the study.

CONCLUSION
EMM is a rare entity of MM that can be present at diagnosis or develop during the disease course. In 
this large retrospective SEER database-based study, we found that age and gender do not interact to 
influence the mortality of patients with EMM. Age was the single most important prognostic factor. We 
hope that the results of this study will shed light on this important non-significant interaction between 
age and gender in regard to mortality amongst EMM patients and perhaps inspire larger prospective 
studies on this subject.

ARTICLE HIGHLIGHTS
Research background
Age has been established as the single most important prognostic factor of extramedullary multiple 
myeloma (EMM). However, the interaction between age and gender in the mortality of EMM has yet to 
be studied.

Research motivation
The main motivation of this study was to identify independent predictors of outcomes, as well as how 
age and gender interact to affect mortality in EMM.

Research objectives
This study has the objective to establish the overall epidemiology of EMM, as well as the interaction 
between age and gender on mortality.

Research methods
This is a retrospective study involving 858 patients diagnosed with EMM, between 2000 and 2017 using 
the Surveillance, Epidemiology, and End Results database.

Research results
Patients older than 80 years and widowed had higher overall mortality (OM) and cancer-specific 
mortality (CSM). Eyes, mouth, and ENT involvement were protective factors regarding CSM. There was 
no interaction between age and gender in the adjusted analysis for OM and CSM.

Research conclusions
Although age is the single most important prognostic value of mortality in EMM, it does not interact 
with gender to affect mortality in patients with EMM.

Research perspectives
Future prospective studies are needed to better understand the impact of newer agents in the 
management of this aggressive subset of MM.
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