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Abstract
The International Agency for Research on Cancer (IARC) and World Health Orga-
nization (WHO) collaboratively produce the 'WHO Blue Books' essential tools 
standardizing the diagnostic process for human cancers. Regular updates in this 
classification accommodate emerging molecular discoveries, advances in imm-
unohistochemical techniques, and evolving clinical insights. The 5th edition of the 
WHO/IARC classification of head and neck tumors refines the 'Oral Cavity and 
Mobile Tongue' chapter, including sections for non-neoplastic lesions, epithelial 
tumors, and tumors of uncertain histogenesis. Notably, the epithelial tumors 
section is rearranged by tumor behavior, starting with benign squamous 
papillomas and progressing through potentially malignant oral disorders to oral 
squamous cell carcinoma (OSCC). The section on OSCC reflects recent in-
formation on epidemiology, pathogenesis, and histological prognostic factors. 
Noteworthy is the specific categorization of verrucous carcinoma (VC) and 
carcinoma cuniculatum (CC), both associated with the oral cavity and distinct in 
clinical and histologic characteristics. This classification adjustment emphasizes 
the oral cavity as their predominant site in the head and neck. Designating 
specific sections for VC and CC aims to provide comprehensive insights into these 
unique subtypes, elucidating their clinical features, distinct histological character-
istics, prevalence, significance, and clinical relevance. By categorizing these 
subtypes into specific sections, the 5th edition of the WHO classification aims to 
provide a more nuanced and detailed account, enhancing our understanding of 
these specific variants within the broader spectrum of head and neck tumors.
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Core Tip: The collaboration between the International Agency for Research on Cancer (IARC) and the World Health Orga-
nization (WHO) has produced indispensable 'WHO Blue Books' crucial for standardizing cancer diagnostics. In the 5th 
edition of the WHO/IARC classification of head and neck tumors, the 'Oral Cavity and Mobile Tongue' chapter refines its 
structure, introducing sections for non-neoplastic lesions, epithelial tumors, and tumors with uncertain histogenesis. Notable 
adjustments in the epithelial tumors section highlight a reorganization based on tumor behavior, offering comprehensive 
insights into distinct subtypes.

Citation: Silveira FM, Schuch LF, Bologna-Molina R. Classificatory updates in verrucous and cuniculatum carcinomas: Insights from 
the 5th edition of WHO-IARC head and neck tumor classification. World J Clin Oncol 2024; 15(4): 464-467
URL: https://www.wjgnet.com/2218-4333/full/v15/i4/464.htm
DOI: https://dx.doi.org/10.5306/wjco.v15.i4.464

INTRODUCTION
The classification of tumors performed by the International Agency for Research on Cancer (IARC)/World Health 
Organization (WHO), commonly known as “WHO Blue Books”, serves as a tool to standardize the diagnostic process by 
establishing a consistent nomenclature for human cancers. This classification is based on the application of analytic 
criteria supported by evidence critically assessed by experts in the field. Regular updates of this classification facilitate the 
enhancement of tumor classifications and the inclusion of novel entities, driven by advancements in molecular dis-
coveries, progress in immunohistochemical techniques, and evolving clinical insights. Traditionally, cancer classification 
predominantly relied on histopathological consensus, with minimal consideration for molecular pathology. However, 
recent technological advancements have significantly accelerated the evolution of pathology. Understanding cancer's 
molecular intricacies has reached a pivotal stage, underscoring the imperative inclusion of this knowledge for precise 
diagnostic evaluations. The content of this classification has recently been updated to its 5th edition, comprising a total of 
14 volumes in the series. In addition, the latest update includes two volumes dedicated to cytopathology, titled WHO 
Reporting Systems for Cytopathology[1].

In the 5th edition of the WHO/IARC classification of head and neck tumors, the 6th chapter titled "Oral Cavity and 
Mobile Tongue" is now divided into non-neoplastic lesions, epithelial tumors, and tumors of uncertain histogenesis[1]. 
This classification is more concise compared to the previous version, which encompassed categories such as malignant 
surface epithelial tumors, oral potentially malignant disorders and oral epithelial dysplasia, papillomas, tumors of 
uncertain histogenesis, soft tissue and neural tumors, oral mucosal melanoma, salivary type tumors, and hemato-
lymphoid tumors[2]. These changes are linked to modifications in this new edition, notably the collective grouping of 
tumors common to multiple systems. In the previous edition, various soft tissue neoplasms were included in this section, 
but they now find their place in the soft tissue tumor chapter. The relocation of oral melanoma to the melanocytic tumors 
chapter and the addressing of intraoral salivary gland lesions in the salivary gland chapter exemplifies the reorganization 
in this edition.

Epithelial tumors
Squamous cell carcinomas (SCC), previously collectively described in the 4th edition, along with all its histological 
subtypes under the subsection titled “Malignant Surface Epithelial Tumors”[2], now receive specific attention in the latest 
edition of the WHO/IARC classification of head and neck tumors. The epithelial tumors section is reorganized based on 
tumor behavior starting, with squamous papillomas, followed by oral potentially malignant disorders, oral epithelial 
dysplasia, proliferative verrucous leukoplakia, submucosal fibrosis, and HPV-associated dysplasia. Oral squamous cell 
carcinoma (OSCC) is now positioned last in this section, following a presentation based on biological behavior. In this 
classification[1], OSCC is defined as “a malignant neoplasm arising from the mucosal epithelium of the oral cavity and 
showing variable squamous differentiation” and is identified as the 16th most prevalent cancer, registering an annual 
incidence surpassing 377000 cases, data based on the Global Cancer Statistics/2020[3]. This definition of OSCC is more 
objective compared to the one presented in the 4th edition of the WHO Blue Book, which also included demographic 
characteristics and the presentation of associated risk factors. These alterations involve a classification reorganization. 
Considering the behavior of pathological entities, it is logical to begin with the presentation of squamous papilloma, a 
benign epithelial neoplastic lesion, then progress to oral potentially malignant disorders, and finally, address OSCC, a 
malignant epithelial neoplasm.

The alterations in the new section on OSCC have been updated to reflect the most recent information regarding the 
epidemiology, pathogenesis, and histological prognostic factors of this entity. Regarding its clinical features, in the 5th 
Edition of the Blue Book, the occurrence of OSCC is reported to predominantly affects male individuals with the potential 
to manifest at any location within the oral mucosa, presenting as lesions characterized by diverse colorations (white, red, 
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or mixed) and varied configurations (flat, nodular, or mass) in terms of size. The pathogenesis of OSCC is characterized to 
distinguished by most cases arising in regions featuring pre-existing epithelial dysplasia or in correlation with oral 
potentially malignant disorders. OSCC, for the most part, exhibits genetic instability, marked by notable chromosomal 
alterations and a heightened burden of somatic mutations. In this latest edition, the described chromosomal losses are 
observed in 3p, 8p, 9p, and 17p, and the gains in 3q, 5p, 8q, and 11q. The somatic mutations reported are documented in 
the following genes: TP53, CDKN2A, FAT1, NOTCH1, KMT2D, CASP8, AJUBA, NSD1, HLA-A, TGFBR2, USP9X, MLL4, 
HRAS, UNC13C, ARID2, and TRPM3. It is noteworthy to observe that in the penultimate version of this classification[2], 
under the Etiology section, several etiological factors of OSCC were well described, including tobacco use, alcohol 
consumption, smokeless tobacco, HPV, ultraviolet radiation, and the association with poor oral health – this last one 
being reported as not proved as an independent risk factor. A diet rich in fruits and vegetables was also cited as a 
protective effect against oral cancer.

Histopathology and subtypes of oral squamous cell carcinoma
In latest WHO classification of head and neck tumors[1], it is specified that the majority of cancers affecting the oral cavity 
and mobile tongue belong to the category of conventional keratinizing SCC. The classification also recognizes the 
potential occurrence of rare histological subtypes within this malignant epithelial neoplasia. The histological subtypes of 
OSCC comprise the following six distinct variants according to the WHO: Spindle cell carcinoma variant manifests as a 
biphasic tumor, comprising a SCC and a malignant spindle cell component with a mesenchymal appearance. This 
subtype is recognized for its aggressive behavior and rapid growth[4]. The Basaloid SCC variant is typified by a basaloid 
cell population and a diminished presence of squamous cells. This type tends to demonstrate a propensity for local 
relapse and regional lymph node metastasis[5]. The Acantholytic SCC variant is characterized by a disruption of cellular 
cohesion. This subtype may present with a clinical course marked by increased aggressiveness[6]. Adenosquamous 
carcinoma variant exhibits dual differentiations-both squamous and glandular. This particular subtype is acknowledged 
for its heightened aggressiveness[7]. The Papillary SCC variant is identified by finger-like projections or papillae. In 
contrast to the other subtypes, it may carry a more favorable prognosis[8]. The Lymphoepithelial Carcinoma variant 
showcases a pronounced lymphoid stroma and is comparatively rare within the oral cavity[9].

As noted, in the 5th edition of the WHO Blue Book, the histological subtypes of OSCC remain unchanged being spe-
cified in the Subtype(s) section as: Spindle cell, basaloid, acantholytic, adenosquamous, papillary, and lymphoepithelial. 
Notably, an alteration from the previous classification is here observed, wherein verrucous carcinoma (VC) and 
carcinoma cuniculatum (CC) variants are now described in specific sections. VC is often linked to prolonged tobacco use, 
presents with a well-differentiated, warty appearance, and tends to display a less aggressive nature[10]. CC stands out as 
a distinct subtype, characterized by a gradual, endophytic growth pattern featuring crypt-like structures[11]. This 
adjustment recognizes the oral cavity as the primary site in the head and neck for both entities, each with distinct clinical 
and histologic characteristics that set them apart from the conventional type. The choice to designate specific sections for 
these entities likely originates from the imperative to provide comprehensive and focused information about these 
particular subtypes. This involves elucidating their unique clinical features, distinct histological characteristics, 
prevalence, and significance, as well as their clinical relevance.

Verrucous carcinoma and carcinoma cuniculatum
In the previous edition, VC was discussed in the chapter covering the hypopharynx, larynx, trachea, and parapharyngeal 
space. Given the distinctive manifestation of VC in the oral cavity, accounting for more than half of all VC cases in the 
head and neck, a specialized section has been included in the most recent edition. The current classification[1] defines VC 
as a well-differentiated, non-metastasizing SCC with a warty keratinized surface and distinctive architecture, lacking 
significant cytologic features of malignancy. VC is reported as a rare entity, comprising 2%-16% of oral carcinomas, 
predominantly affecting older individuals. The use of terminology such as “Ackerman tumor” and “verrucous 
hyperplasia” is not endorsed in the latest classification. The oral mucosa is the primary site, representing 50%-75% of 
cases in the head and neck. Etiologically linked to the use of chewing tobacco or snuff, VC clinically presents as a slowly 
growing, slightly exophytic white tumor. Left untreated, VC can lead to bone erosion and extensive destruction. While 
the pathogenesis is not fully understood, the molecular signature distinguishes VC from other oral SCCs. Morpholo-
gically, VC is characterized by a well-differentiated, broad-based squamous epithelial proliferation with marked keratin-
ization. Invasion into the stroma is uniform with well-defined borders, lacking substantial cytologic features of 
malignancy. VC has an excellent prognosis, with surgery as the preferred treatment; irradiation is considered for select 
cases.

CC is defined an infrequent, well-differentiated squamous cell carcinoma characterized by local invasiveness without 
metastatic potential[1]. Typically observed in individuals aged seven to eight decades, CC shows no gender bias, with the 
gingival-alveolar complex of the mandible being the primary site, followed by the maxilla. Clinical manifestations include 
pain, swelling, mucosal ulceration, tooth mobility, and induration. The etiology of CC remains undefined in this classi-
fication, and its pathogenic mechanisms and potential association with HPV are unknown. Morphologically, CC exhibits 
an endophytic growth pattern, forming a labyrinthine network of well-differentiated squamous epithelium with intercon-
necting keratin-filled crypts reaching the surface. Cytological atypia is mild, and the presence of intraepithelial and 
stromal neutrophils, along with keratin microabscesses, is common. Microsequestra are frequently associated with bone 
invasion. Prognosis following complete excision is excellent, with local recurrence uncommon following accurate 
preoperative diagnosis. Notably, metastases do not develop in cases of CC despite multiple interventions.



Silveira FM et al. Verrucous carcinoma and carcinoma cuniculatum classification

WJCO https://www.wjgnet.com 467 April 24, 2024 Volume 15 Issue 4

CONCLUSION
Recent advances in unraveling the molecular pathogenesis of oral squamous cell carcinoma have significantly enhanced 
the understanding of the tumor's genesis and evolutionary processes, influencing diagnostic criteria. Due to the dynamic 
nature of this field, classifications and terminologies undergo continuous refinement. Therefore, keeping abreast of the 
most up-to-date insights is essential, requiring regular reference to the latest World Health Organization classification 
edition and contemporary literature. Anticipating future discoveries, ongoing updates, and reclassifications within the 
Blue Books will be imperative to maintain the precision and relevance of oral cancer diagnostics.

FOOTNOTES
Author contributions: Silveira FM contributed to conceptualization, investigation, writing – original draft; Schuch LF contributed to 
investigation, writing – original draft; Bologna-Molina R contributed to supervision, writing/review & editing; all authors have read and 
approved the final manuscript.

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. 
It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to 
distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the 
original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Uruguay

ORCID number: Lauren Frenzel Schuch 0000-0002-0993-936X; Ronell Bologna-Molina 0000-0001-9755-4779.

S-Editor: Gong ZM 
L-Editor: A 
P-Editor: Zhao S

REFERENCES
1 WHO Classification of Tumours Editorial Board.   Head and neck tumours (WHO classification of tumours series. 5th ed. Lyon (France): 

International Agency for Research on Cancer 2022
2 WHO Classification of Tumours Editorial Board.   Head and neck tumours (WHO classification of tumours series. 4th ed. Lyon (France): 

International Agency for Research on Cancer 2022
3 Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of 

Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71: 209-249 [PMID: 33538338 DOI: 
10.3322/caac.21660]

4 Yamazaki M, Maruyama S, Abé T, Sumita Y, Katsumi Y, Nikkuni Y, Hayashi T, Tanuma JI. Spindle cell squamous cell carcinoma exhibiting 
prominent neutrophil phagocytosis: a case report. J Med Case Rep 2021; 15: 438 [PMID: 34452644 DOI: 10.1186/s13256-021-03066-z]

5 Chicrala GM, Caminha RG, Filho SAJF, Oliveira DT, Santos PSS. A rare case of basaloid squamous cell carcinoma in the labial commissure 
region with literature review. Oral Oncol Rep 2023; 6: 100027 [DOI: 10.1016/j.oor.2023.100027]

6 Sharma G, Devi A, Kamboj M, Narwal A. Acantholytic oral squamous cell carcinoma with clear cell change - a rare amalgamated variant. 
Autops Case Rep 2023; 13: e2023450 [PMID: 38034517 DOI: 10.4322/acr.2023.450]

7 Abé T, Yamazaki M, Maruyama S, Ikeda N, Sumita Y, Tomihara K, Tanuma JI. Adenosquamous Carcinoma with the Acantholytic Feature in 
the Oral Cavity: A Case Report and Comprehensive Literature Review. Diagnostics (Basel) 2022; 12 [PMID: 36292088 DOI: 
10.3390/diagnostics12102398]

8 Fitzpatrick SG, Neuman AN, Cohen DM, Bhattacharyya I. Papillary variant of squamous cell carcinoma arising on the gingiva: 61 cases 
reported from within a larger series of gingival squamous cell carcinoma. Head Neck Pathol 2013; 7: 320-326 [PMID: 23620148 DOI: 
10.1007/s12105-013-0444-1]

9 Emfietzoglou R, Pettas E, Georgaki M, Papadopoulou E, Theofilou VI, Papadogeorgakis N, Piperi E, Lopes MA, Nikitakis NG. 
Lymphoepithelial Subtype of Oral Squamous Cell Carcinoma: Report of an EBV-Negative Case and Literature Review. Dent J (Basel) 2022; 
10 [PMID: 36135160 DOI: 10.3390/dj10090165]

10 Kristofelc N, Zidar N, Strojan P. Oral verrucous carcinoma: a diagnostic and therapeutic challenge. Radiol Oncol 2023; 57: 1-11 [PMID: 
36942907 DOI: 10.2478/raon-2023-0015]

11 Baz S, Amer HW, Wahed AA. Oral carcinoma cuniculatum: an unacquainted entity with diagnostic challenges-a case report. J Egypt Natl 
Canc Inst 2022; 34: 3 [PMID: 35037108 DOI: 10.1186/s43046-021-00101-4]

https://creativecommons.org/Licenses/by-nc/4.0/
http://orcid.org/0000-0002-0993-936X
http://orcid.org/0000-0002-0993-936X
http://orcid.org/0000-0001-9755-4779
http://orcid.org/0000-0001-9755-4779
http://www.ncbi.nlm.nih.gov/pubmed/33538338
https://dx.doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/pubmed/34452644
https://dx.doi.org/10.1186/s13256-021-03066-z
https://dx.doi.org/10.1016/j.oor.2023.100027
http://www.ncbi.nlm.nih.gov/pubmed/38034517
https://dx.doi.org/10.4322/acr.2023.450
http://www.ncbi.nlm.nih.gov/pubmed/36292088
https://dx.doi.org/10.3390/diagnostics12102398
http://www.ncbi.nlm.nih.gov/pubmed/23620148
https://dx.doi.org/10.1007/s12105-013-0444-1
http://www.ncbi.nlm.nih.gov/pubmed/36135160
https://dx.doi.org/10.3390/dj10090165
http://www.ncbi.nlm.nih.gov/pubmed/36942907
https://dx.doi.org/10.2478/raon-2023-0015
http://www.ncbi.nlm.nih.gov/pubmed/35037108
https://dx.doi.org/10.1186/s43046-021-00101-4


WJCO https://www.wjgnet.com 468 April 24, 2024 Volume 15 Issue 4

World Journal of 

Clinical OncologyW J C O
Submit a Manuscript: https://www.f6publishing.com World J Clin Oncol 2024 April 24; 15(4): 468-471

DOI: 10.5306/wjco.v15.i4.468 ISSN 2218-4333 (online)

EDITORIAL

Understanding the role of transmembrane 9 superfamily member 1 in 
bladder cancer pathogenesis

Venkata Krishna Vamsi Gade, Budhi Singh Yadav

Specialty type: Oncology

Provenance and peer review: 
Invited article; Externally peer 
reviewed.

Peer-review model: Single blind

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): B 
Grade C (Good): 0 
Grade D (Fair): 0 
Grade E (Poor): 0

P-Reviewer: Yang LY, China

Received: December 20, 2023 
Peer-review started: December 20, 
2023 
First decision: February 2, 2024 
Revised: February 16, 2024 
Accepted: March 6, 2024 
Article in press: March 6, 2024 
Published online: April 24, 2024

Venkata Krishna Vamsi Gade, Department of Radiotherapy & Oncology, Postgraduate Institute 
of Medical Education and Research, Chandigarh 160012, India

Budhi Singh Yadav, Department of Radiotherapy & Oncology, Regional Cancer Centre, 
Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India

Corresponding author: Budhi Singh Yadav, MD, Professor, Department of Radiotherapy & 
Oncology, Regional Cancer Centre, Postgraduate Institute of Medical Education and Research, 
Sector 12, Chandigarh 160012, India. drbudhi@gmail.com

Abstract
In this editorial we comment on the article by Wei et al, published in the recent 
issue of the World Journal of Clinical Oncology. The authors investigated the role of 
Transmembrane 9 superfamily member 1 (TM9SF1) protein in bladder cancer 
(BC) carcinogenesis. Lentiviral vectors were used to achieve silencing or overex-
pression of TM9SF1 gene in three BC cell lines. These cell lines were then subject 
to cell counting kit 8, wound-healing assay, transwell assay, and flow cytometry. 
Proliferation, migration, and invasion of BC cells were increased in cell lines 
subjected to TM9SF1 overexpression. TM9SF1 silencing inhibited proliferation, 
migration and invasion of BC cells. The authors conclude that TM9SF1 may be an 
oncogene in bladder cancer pathogenesis.

Key Words: Urinary bladder cancer; Transmembrane 9 superfamily member 1 gene cell 
line; Lentiviral vectors; Wound healing assay; Oncogene; Proliferation; Migration
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Core Tip: The scratch wound healing assay and transwell assay showed significantly 
improved cellular migration in the Transmembrane 9 superfamily member 1 (TM9SF1) 
overexpression group. TM9SF1 silencing inhibited proliferation, migration and invasion 
of bladder cancer (BC) cells. TM9SF1 can be used as a therapeutic molecular target. 
The importance of TM9SF1 as an oncogene and its use as a therapeutic target would 
ultimately depend on the prevalence of the mutation in BC tissues and replication of in 
vitro activity in tumour tissue.
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INTRODUCTION
In a novel basic study, Wei et al[1] investigated the role of Transmembrane 9 superfamily member 1 (TM9SF1) protein in 
bladder cancer (BC) carcinogenesis[1]. Lentiviral vectors were used to achieve silencing or overexpression of TM9SF1 
gene in three BC cell lines. These cell lines were then subject to Cell counting kit 8 (CCK8), wound-healing assay, 
transwell assay, and flow cytometry. Proliferation, migration, and invasion of BC cells were increased in cell lines 
subjected to TM9SF1 overexpression. Whereas TM9SF1 silencing inhibited proliferation, migration and invasion of BC 
cells. The authors concluded that TM9SF1 may be an oncogene in BC pathogenesis.

BC is the most common cancer of the urinary tract with more than 500000 cases diagnosed in 2020 worldwide[2]. Non 
muscle invasive BC (NMIBC) comprise around 60% of all cases. Although NMIBC has an estimated 5-year overall 
survival rate of 71%-90%, they have a 15%-30% recurrence rate and up to a 10% rate of progression to muscle invasive BC 
(MIBC)[3]. MIBC has a 5 year survival rate of 60%-70% with patients having an aggressive clinical course as compared to 
NMIBC[4]. Patients of MIBC develop distant metastases in up to 29% of cases[5]. However, systemic therapy protocols in 
BC have remained largely unchanged in the last 2 decades[6,7]. The development of immune checkpoint inhibitors has 
led to their use in advanced BC. Randomised trials however, have only demonstrated a modest survival advantage with 
the use of immune checkpoint inhibitors in advanced BC[8,9]. Therefore, there is a pressing need to identify new 
molecular targets in BC through basic research.

Increasing age, tobacco smoke, Schistosoma infection, exposure to aromatic amines and polycyclic hydrocarbons, 
ionizing radiation and phenacetin-containing analgesics are all proven risk factors for BC development[10]. A review of 
the genomic landscape of urinary BC shows that polymorphisms of N-acetyltransferase 2 and glutathione S-transferase-
μ1 genes confer an increased risk of BC[11,12]. Other genes suspected to play a role in the pathogenesis include MYC, 
TP63, TERT, FGFR3, PSCA, UGT1A1, TACC3 and APOBEC3A[13]. TM9SF1, first identified in 1997, is a transmembrane 
protein localised to the autophagosomal and lysosomal membranes in the cytoplasm. TM9SF1 was identified to be one of 
the 17 common differentially expressed genes in BC samples but its precise role in BC pathogenesis was unclear.

In this study by Wei et al[1], stable transfectants overexpressing TM9SF1 were successfully constructed in all three BC 
cell lines which was detected by quantitative real-time polymerase chain reaction. The CCK8 assay showed that the 
proliferation rate of BC cells in the TM9SF1 overexpression group was significantly higher than in the control group. The 
scratch wound healing assay and transwell assay showed significantly improved cellular migration in the TM9SF1 
overexpression group. Matrix gel testing and flow cytometry showed TM9SF1 cells were more likely to demonstrate cell 
invasion and transition to G2/M phase. When these tests were performed in transfectants with silenced TM9SF1, the 
authors noted reduced cellular proliferation, invasion, migration and G1 cell block. With these findings TM9SF1 has been 
proposed to be a novel oncogene in BC pathogenesis.

In addition to BC, TM9SF1 has been found to be overexpressed in esophageal and cervical cancer with a speculated 
link to poorer survival and recurrence rates in some preclinical studies[14,15]. Its role as an oncogene might be due to its 
effects on the G1 phase. The precise molecular interaction of TM9SF1 with cell cycle proteins needs further investigation. 
The synergistic interaction of TM9SF1 with proteins regulating the epithelial mesenchymal transition such as EBAG9 
might explain the increased invasion and migration in TM9SF1 overexpressed cells[16].

The inhibition of cellular proliferation, migration and invasion caused by TM9SF1 silencing hints at its pro-oncogenic 
role. Future directions might involve correlation of stage, grade and histology of BC patients with TM9SF1 overex-
pression. The prognostic and predictive value of TM9SF1 overexpression in BC would first need to be established in a 
retrospective study. For instance, while point mutation of the FGFR3 gene is observed in 60%-70% of NMIBC cases, it is 
only detected in 5%-10% of MIBC cases[17]. The upregulation of EGFR is observed in 20% of NMIBC cases, but it can be 
seen in up to 50% of MIBC cases[18]. Response of TM9SF1 overexpressing BC to standard chemotherapy regimens and 
radiation needs investigation.

The study also highlights the possible utility of TM9SF1 as a therapeutic molecular target. Since transfectants with 
silenced TM9SF1 had reduced cellular proliferation, invasion, migration and G1 arrest; therapeutic molecules inhibiting 
TM9SF1 might improve BC outcomes. The use of targeted therapy and immunotherapy is quickly gaining acceptance in 
BC treatment. Bacillus Calmette Guerin (BCG) is one of the oldest forms of immunotherapy used in BC treatment. Its 
intravesical use is recommended in intermediate and high-risk NMIBC after transurethral resection of bladder tumour. 
BCG acts on BC cells via direct and indirect effects. Direct cytotoxicity of BC cells occurs due to apoptosis mediated by 
TLR7 and cellular necrosis mediated by HMGB7. Indirect effects occur due to the internalization of BCG followed by 
signal transduction leading to cytokine release that ultimately results in modulation of innate and acquired immune 
response[19].

This study by Wei et al[1] was based on in vitro cell line experiments. In a large meta-analysis of genomic hybridisation 
studies, there was a high degree of correlation between mutation patterns in tissue and cell line groups of similar 
histology. However, quantitatively, cell lines showed higher locus-specific and cell line-specific aberrations when 
compared with tissue samples[20]. Microarray studies in other tumour types such as in cervical cancer have shown that 
though major pathogenic mutations are reflected in cell lines, there were also several notable discordant genes forming 

https://www.wjgnet.com/2218-4333/full/v15/i4/468.htm
https://dx.doi.org/10.5306/wjco.v15.i4.468


Gade VKV et al. TM9SF1 in bladder cancer

WJCO https://www.wjgnet.com 470 April 24, 2024 Volume 15 Issue 4

major clusters. The reason for such discordance has not been definitively established and has been speculated to be due to 
changes in the tumour microenvironment[21]. Therefore, TM9SF1 expression patterns and behaviour in BC tissue 
samples warrants further investigation.

The importance of TM9SF1 as an oncogene and its use as a therapeutic target would ultimately depend on the 
prevalence of the mutation in BC tissues and replication of invitro activity in tumour tissue.

CONCLUSION
The importance of TM9SF1 as an oncogene and its use as a therapeutic target would ultimately depend on the prevalence 
of the expression in BC tissues and replication of in vitro activity in tumour tissue.
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Abstract
In this editorial, we proceed to comment on the article by Chua et al, addressing 
the management of metastatic lateral pelvic lymph nodes (mLLN) in stage II/III 
rectal cancer patients below the peritoneal reflection. The treatment of this nodal 
area sparks significant controversy due to the strategic differences followed by 
Eastern and Western physicians, albeit with a higher degree of convergence in 
recent years. The dissection of lateral pelvic lymph nodes without neoadjuvant 
therapy is a standard practice in Eastern countries. In contrast, in the West, 
preference leans towards opting for neoadjuvant therapy with chemoradio-
therapy or radiotherapy, that would cover the treatment of this area without the 
need to add the dissection of these nodes to the total mesorectal excision. In the 
presence of high-risk nodal characteristics for mLLN related to radiological 
imaging and lack of response to neoadjuvant therapy, the risk of lateral local 
recurrence increases, suggesting the appropriate selection of strategies to reduce 
the risk of recurrence in each patient profile. Despite the heterogeneous and 
retrospective nature of studies addressing this area, an international consensus is 
necessary to approach this clinical scenario uniformly.

Key Words: Rectal cancer; Lateral pelvic lymph node metastases; Pelvic lymph node 
dissection; Total neoadjuvant therapy; Selective management of the lateral pelvic nodes; 
Prophylactic management of the lateral pelvic nodes; Chemoradiotherapy; Total me-
sorectal excision
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Core Tip: The lack of consensus in managing metastatic lateral pelvic lymph nodes in stage II/III rectal cancer patients below 
the peritoneal reflection, with differing medical strategies between East and West, generates uncertainty due to limited 
available evidence. Characteristics such as lymph node size, neoadjuvant treatment, and selective dissection of lateral pelvic 
lymph nodes are part of the strategies, but the first steps toward a solid and global consensus must be taken to resolve the 
uncertainties present in this field.

Citation: Romero-Zoghbi SE, López-Campos F, Couñago F. Management of lateral pelvic lymph nodes in rectal cancer: Is it time to 
reach an Agreement? World J Clin Oncol 2024; 15(4): 472-477
URL: https://www.wjgnet.com/2218-4333/full/v15/i4/472.htm
DOI: https://dx.doi.org/10.5306/wjco.v15.i4.472

INTRODUCTION
Localized and locally advanced rectal adenocarcinomas below the peritoneal reflection in stages II/III present locore-
gional recurrence rates of approximately 6.5% following the introduction of total mesorectal excision (TME)[1], with 
improved outcomes seen through the introduction of multimodal treatments such as radiotherapy and chemotherapy[2-
5]. However, recurrence in the lateral compartments of the pelvis is reported in 10% to 25% of patients with locally 
advanced rectal cancer[6,7], remaining a concern for those with rectal tumors located below the peritoneal reflection as 
these tend to drain along the middle and inferior rectal arteries towards the obturators, internal iliac, and external iliac, 
reaching the common iliac artery. These lateral nodes are precisely not encompassed in TME[8]. Some studies from 
Eastern countries advocate for lateral pelvic lymph node dissection (LPLND) for patients with clinical or radiological 
involvement and prophylactical[9-11]. Conversely, in Western countries, neoadjuvant treatment with radiotherapy (RT) 
with or without chemotherapy (ChT) followed by TME remains the standard treatment for these patients[2-4]. Other 
studies recommend selective LPLND if there are high-risk factors for nodal metastasis after neoadjuvant treatment[12-
15]. In the era of total neoadjuvant therapy (TNT), a significant reduction in lateral nodal metastasis is expected, favoring 
selective dissection only in selected cases with limited or absent response to neoadjuvant treatment. In this sense, we 
discuss the article by Chua et al[16], evaluating the available clinical evidence from various perspectives.

DIFFERENCES IN THE MANAGEMENT OF LPLND BETWEEN EASTERN AND WESTERN VIEWS
Prophylactic management of lateral pelvic lymph nodes
The randomized controlled trial 0212 by the Japanese Clinical Oncology Group (JCOG)[9], a multicenter, non-inferiority 
trial, enrolled 701 patients diagnosed with lower third rectal cancer, stage II or III, without enlarged lymph nodes [short-
axis diameter ≥ 10 mm on primary pelvic computed tomography (CT) or magnetic resonance imaging (MRI)]. Patients 
were randomized between TME with LPLND (n = 351) and TME alone (n = 350) without neoadjuvant treatment. The 
local recurrence rate was significantly lower in the TME plus LPLND group (7.4% vs. 12.6%; P = 0.024), with no 
significant differences in median follow-up of 7 years in relapse-free survival and overall survival curves between both 
groups. Subgroup analysis demonstrated improved relapse-free survival in clinically stage III patients undergoing TME 
with LPLND compared to TME alone[10]. These findings led the Japanese Society for Cancer of the Colon and Rectum 
(JSCCR) to recommend LPLND, even when lateral pelvic lymph nodes (LPLNs) with a short-axis diameter ≥ 10 mm are 
not detected by imaging[17]. However, the trial did not include patients with LPLNs ≥ 10 mm on initial radiological 
imaging, and only 7.3% of patients in the TME + LPLND group had pathological LPLNs[11]. Thus, these results indicate 
that prophylactic LPLND in patients without pathological LPLNs might be overtreatment for this patient subset. 
Additionally, this study demonstrates that the short-axis diameter (> 5 mm) of LPLNs is a predictive factor for positivity 
in pathological anatomy.

Regarding Western management in this disease scenario, neoadjuvant treatment includes radiotherapy in this area, 
which could effectively encompass the pelvic nodes. In this regard, the American Society for Radiation Oncology 
positioned itself in 2021, stating that in clinical stage II-III, there is strong evidence to recommend neoadjuvant 
radiotherapy[18]. Multiple clinical trials have shown that neoadjuvant radiotherapy decreases the risk of local recurrence, 
even in the era of TME[19-21], and the European Society for Medical Oncology guidelines[22] recommend neoadjuvant 
treatment with chemoradiotherapy (CRT) as superior to LPLND in terms of efficacy and morbidity. Lastly, the 2020 
guideline by the American Society of Colon and Rectal Surgeons considers that in the absence of clinically positive lymph 
nodes in the lateral pelvic compartment, routine dissection of LPLNs is generally not required, with a strong 
recommendation based on low-quality evidence[23].

Selective management of LPLN and the role of imaging studies
Detecting suspicious lateral pelvic lymph nodes in rectal cancer patients using imaging studies such as CT, MRI, or 
positron emission tomography/computed tomography (PET/CT) with 18F-fluorodeoxyglucose poses a challenge given 
the heterogeneity of available studies and discrepancies between imaging diagnosis and pathological diagnosis[24]. 
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Assessing not only the size of the nodes but also their morphological characteristics like shape, heterogeneous intensity, 
and borders is helpful in the initial diagnosis[25]. However, after neoadjuvant treatment with CRT/RT, it's advisable to 
evaluate node size in the short axis and their absence on MRI. A nodal size ≤ 2.5 mm in the short axis or a reduction of ≥ 
70% in size are predictors of a good response post-surgery[26]. Nevertheless, there's no uniform international consensus 
on what specific sizes of lateral pelvic lymph nodes could be considered suspicious for malignancy, both at the initial 
diagnosis and post-neoadjuvant treatment before surgery. The presence of metastatic lateral pelvic lymph nodes in nodes 
≤ 5 mm might remain hidden in up to 20% of nodes after neoadjuvant treatment[27]. A study by Ogura et al[28], in-
volving 741 rectal cancer patients, revealed that lymph node size impacts locoregional recurrence rates (LRR). Nodes > 7 
mm on primary MRI showed a 17.9% LRR after treatment. At 3 years, those with nodes < 4 mm had no recurrences. On 
the other hand, nodes > 7 mm on primary MRI and internal iliac nodes had a 52.3% LRR, considerably higher than those 
of similar size in the obturator compartment (9.5%). CRT with TME and LPLND in these nodes reduced LRR to 8.7% 
(hazard ratio, 6.2; 95%CI: 1.4-28.5; P = 0.007), proving significantly more effective than CRT and TME alone treatment. In 
this regard, the 2023 version of The Society of Abdominal Radiology's Colorectal and Anal Cancer Disease-Focused Panel
[29] updated the rectal cancer lexicon, highlighting a new suggested size threshold for lateral lymph nodes. It suggests 
nodes with short-axis diameter (SAD) > 7 mm at the internal iliac and obturator levels as suspicious at initial staging, 
while post-CRT treatment considers SAD > 4 mm for internal iliac nodes and > 6 mm for obturator nodes as suspicious. 
However, other features should be considered, such as heterogeneity, abnormal parenchymal signal, irregular borders, 
and tumor deposit, with the latter being the strongest indicator of poor prognosis in lymph node involvement. Therefore, 
the MERCURY study considers heterogeneity and irregular borders as suspicious features of preoperative MRI[30].

ADVANTAGES OF SURGICAL TECHNIQUES AND ASSOCIATED COMORBIDITIES
LPLND is considered a relatively complex surgery in colorectal cancer, associated with longer surgical times, more 
significant blood loss, and a moderate risk of sexual and urinary dysfunction, although it doesn't appear to increase these 
risks inherent to surgery alone[7]. Studies indicate that preserving autonomic nerves during LPLND can enhance 
functional outcomes, especially in reducing urinary retention[31]. Comparisons among open, laparoscopic, and robotic 
surgery suggest the advantages of laparoscopy and robotic surgery. Robotic surgery involves less blood loss (25 mL vs 
637 mL; P < 0.0001) and fewer complications, albeit with longer operating times (455 vs 410 min; P < 0.007) compared to 
open surgery[32]. Robotic surgery can offer improved visualization in the deep pelvis and enhanced precision in 
identifying vessels and nerves[32]. Despite these advancements, oncological outcomes do not differ among surgical 
approaches, demonstrating that both laparoscopy and robotic surgery can be equally effective in the short term for 
treating colorectal cancer with LPLND[33].

CURRENT CHALLENGES AND FUTURE PERSPECTIVES
The surgical approach for advanced rectal cancer with TME and LLND is common in Eastern medical societies, while the 
Western focus prioritizes neoadjuvant with CRT or TNT followed by TME. A Western study compared patients treated 
with CRT followed by TME and LPLND with those treated only with CRT and TME, reporting a local recurrence rate of 
3% with LPLND vs 11% without LPLND (P = 0.13), with similar survival figures and identifying LPLND as a significant 
independent factor for local recurrences in multivariable analysis (P = 0.01). In patients with long-duration neoadjuvant 
and adjuvant chemotherapy, LPLND showed a lower LRR (3% vs 16% without LPLND; P = 0.04), although disease-free 
survival and overall survival were similar between groups (P = 0.10 and P = 0.11, respectively)[34]. These results suggest 
a potential shift in the therapeutic approach, assessing the role of systemic treatment in this therapeutic strategy. Indeed, 
the presence of mLLN should be considered locally advanced disease and treated with CRT or TNT within the Western 
approach. The OPRA trial[35] evaluated 324 stage II/III rectal cancer patients. After TNT treatment, those achieving 
complete or near-complete clinical response could adopt a wait-and-watch protocol (W&W), while others underwent 
TME. At 5 years, the TME-free survival was 39% vs 54% (P = 0.01), distant metastasis-free survival was 82% vs 79% (P = 
0.66), and local recurrence-free survival was 94% vs 90% (P = 0.27), respectively, with similar 5-year overall survival data. 
These results support the safety of the W&W strategy for patients with complete or near-complete clinical responses and 
the use of TNT as a treatment approach in these patients. This W&W approach has gained more acceptance due, in part, 
to improvements/intensification in neoadjuvant treatments, where neoadjuvant systemic treatment alongside 
radiotherapy contributes to optimizing outcomes in these patients. Regarding radiotherapy treatment, proper coverage of 
the posterior compartment volume in all high-risk patients is crucial. If there are suspicions of affected lateral lymph 
nodes, the upper border of the mesorectal clinical target volume should be at the S1-S2 level, raising doubts about 
whether the radiotherapy dose coverage is adequate in routine clinical practice. In this regard, a Dutch study analyzed 
the coverage of internal iliac and obturator lymph nodes in standard radiotherapy treatment for rectal cancer according to 
volumes set by major international clinical guidelines. They observed that out of 223 patients with nodes ≥ 5 mm, 80.7% 
were within the treatment area, but only 33.3% were included as macroscopic tumor volume. Despite receiving adequate 
doses, notable local recurrence rates at 4 years were observed, especially when nodes were outside the treatment area or 
received lower doses. These findings suggest the need for improved techniques to locally control affected nodes[36].

For this purpose, the predictive capability of radiomic features in pre-CRT MRI images to forecast the treatment 
response of lymph nodes in locally advanced rectal cancer is another area of research. In a recently published study 
involving 78 patients who received neoadjuvant radiotherapy, five radiomic characteristics accurately discriminated 



Romero-Zoghbi SE et al. Pelvic lymph nodes in rectal cancer

WJCO https://www.wjgnet.com 475 April 24, 2024 Volume 15 Issue 4

responses in the training [area under the curve (AUC) 0.908] and validation (AUC 0.865) cohorts were identified. A 
nomogram combining these features and morphological aspects of lymph nodes exhibited good calibration and discrim-
ination (AUC 0.925 in training, AUC 0.918 in validation). The authors suggest that this model could personalize treatment 
plans and guide W&W strategies in locally advanced rectal cancer patients, offering a promising tool to enhance care and 
therapeutic approach[37].

Several studies explore immunotherapies such as nivolumab or toripalimab in locally advanced rectal cancer, showing 
high complete responses[38,39]. KRAS mutation and circulating tumor DNA (ctDNA) are biomarkers predicting 
recurrence and prognosis[40,41]. The GALAXY study[42] indicates that molecular residual disease detected by ctDNA is 
a robust indicator of recurrence. However, prospective clinical trials evaluating molecular and radiomic determinations in 
predicting the recurrence of LPLN are needed.

CONCLUSION
The difficulty in achieving a global consensus on the ideal treatment of LPLN in rectal cancer due to the variability of 
available data requires adopting an Intermediate Agreement between Western and Eastern approaches. In a context 
involving CRT treatment, the selective dissection of lateral pelvic lymph nodes seems to be more beneficial as part of an 
optimal strategy. The size of LPLN evaluated by MRI with a SAD of ≥ 7 mm, or the presence of suspicious characteristics, 
could be a crucial predictor of recurrence and should be considered in selective lymph node dissection. It's noteworthy 
that laparoscopic and robotic surgeries entail less bleeding and reduced need for transfusions, emphasizing nerve preser-
vation to lower dysfunction risks. CRT, TNT, and surgery with selective lymph node dissection should be considered, but 
establishing optimal selection criteria for each therapeutic approach is necessary.
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Abstract
This editorial will focus on tumor immunity and the factors that alter the tumor 
immune micro-environment. The role of tumor infiltrating lymphocytes (TILs) 
will also be discussed in detail, including the types, mechanism of action, and 
role. Gastric cancer (GC) often presents in the advanced stage and has various 
factors predicting the outcomes. The interplay of these factors and their cor-
relation with the TILs is discussed. A literature review revealed high intra-
tumoral TILs associated with higher grade, HER2-, and Helicobacter pylori 
negativity. Moreover, stromal (ST) TILs correlated with lower grade and lesser 
recurrence risk in GC. High TILs in ST and invasive border also correlated with 
mismatch repair deficiency status. Further characterization of the CD3+, CD8+, 
and other cells is also warranted. In the future, this complex correlation of cancer 
cells with the immune system can be explored for therapeutic avenues.

Key Words: Tumor infiltrating lymphocytes; Gastric cancer; Helicobacter pylori; HER-2-
neu
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Core Tip: Tumor infiltrating lymphocytes (TILs) are an essential component of the tu-
mor microenvironment. The association of TIL levels with outcomes of malignancies is 
an upcoming field. This correlation may be utilized to explore the new immuno-
oncological therapeutic avenues.
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INTRODUCTION
Gastric cancer (GC) often presents at an advanced stage, making successful treatment a daunting challenge. Immuno-
therapy is considered for treating GC because of the high tumor mutation burden[1]. Hence, a more in-depth 
understanding of tumor immunity in GC is needed. The tumor cells may be eliminated by these immune cells or escape 
detection. In the elimination phase, the cells, like natural killer cells, with the help of dendritic cells and CD4+ T-cells, 
recognize and eliminate tumor cells. However, the less immunogenic tumor cells can escape the immuno-surveillance.

Based on the presence of immune cells, tumors can be classified into inflamed and non-inflamed[2]. These inflam-
matory cells may contribute to pro- or anti-tumor activities. Amongst these cells, the tumor-infiltrating lymphocytes 
(TILs) are the significant determinants of the host immune response to tumor cells. TILs have recently gathered much 
attention because of their presumed role in carcinogenesis and therapeutics[3]. The “Hallmarks of Cancer” proposed by 
Hanahan et al[4] now include inflammatory infiltrates into the tumors as one of the components. This is because of their 
roles in tumor progression and escape from the host immunity. The new technological advancements mean improved 
assessment of tumor infiltrates and identification of genetic signatures expressed in the tumor micro-environment (TME). 
TILs and their functions have now become a leading topic of research. We can discover the prognostic relevance of TILs, 
which can help predict outcomes and guide therapy. The complex correlation of cancer cells with the immune system can 
be explored for therapeutic avenues.

TILS IN GC
The magnitude of TIL infiltration is thought to be related to the control of cancer growth, progression, and metastasis. In 
addition, it may be predictive of the response to cytotoxic treatment[5]. Still, various studies have shown conflicting 
results[6,7]. The prognostic role of TILs in GC needs further clarification. TILs, as a natural component of the immune 
system, can offer a tailored approach to battling GC. It is critical to understand the heterogeneity of TILs and their 
interaction with the tumor microenvironment. TILs differ according to their location in the tumor. These include intrat-
umoral (IT), stromal (ST), and invasive border (IB)[8]. An analysis of the studies of IT TILs revealed robust hazard ratios 
(HRs) for overall cancer survival (OCS) than for other TILs. Studies of the pan-T-cell IT TILs, such as CD3/TIL, CD4, and 
CD8, in GC tissues revealed association with survival (CD3: HR = 0.65, 95%CI: 0.5-0.8; CD4: HR = 0.7, 95%CI: 0.55-0.9; 
CD8: HR = 0.65, 95%CI: 0.5-0.85). Higher CD8+ cells demonstrated the greatest overall survival (OS) improvement. In 
contrast, TILs with high FOXP3+ expression significantly correlated with decreased OCS (HR = 1.89, 95%CI: 1.5-2.3). The 
transcription factor FOXP3, presenting with the CD4+, CD25+, and FOXP3+ phenotype, is responsible for the T 
regulatory (Treg) cells. Treg cells promote immune tolerance in the TME by suppressing the anti-tumor T-cells. This can 
explain this association of decreased OCS with high FOXP3+ cells[9,10]. A meta-analysis of around 2900 cases 
demonstrated a significant association between higher pan T-cell marker (+ve) TILs and better survival[11]. It implies the 
role of adaptive immunity in the anti-tumor response. TILs have also shown apoptosis in GC models[12]. Interestingly, a 
higher number of TILs in patients with microsatellite instability (MSI) or Epstein Barr virus (EBV) associated GC 
correlated with better treatment outcomes and longer OS, prompting the association of TILs with other factors[13-15].

ASSOCIATION WITH OTHER FACTORS
Recent advances in cancer research have shed light on the intricate relationships between Helicobacter pylori (H. pylori) 
infection, mismatch repair (MMR) status, HER2 amplification, and TILs in the context of GC. These connections have 
brought a deeper understanding of this complex disease and are opening new avenues for targeted therapies and 
precision medicine.

H. pylori: A pervasive culprit
H. pylori is a bacterium that colonizes the stomach lining and has long been implicated as a significant risk factor for GC. 
Chronic H. pylori infection can lead to the development of chronic gastritis, which, over time, may progress to atrophic 
gastritis, intestinal metaplasia, dysplasia, and ultimately GC. This journey from infection to malignancy underscores the 
need for early detection and eradication of H. pylori in at-risk individuals. H. pylori infection triggers an inflammatory 
response in the stomach lining, contributing to the initiation and progression of GC. This chronic inflammation damages 
DNA and leads to the recruitment of TILs, which are a part of the immune system's response to the infection.
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MMR status: A genetic determinant
In the realm of GC, MMR status is a crucial genetic determinant. MMR proteins are responsible for correcting DNA rep-
lication errors and ensuring genomic stability. Deficiencies in MMR (dMMR), typically characterized by MSI, can result in 
genetic mutations and increased susceptibility to cancer development.

The association between MMR status and GC is multifaceted. Individuals with MSI-high gastric tumors tend to have a 
more favorable prognosis due to the increased presence of TILs. These TILs, often enriched in MSI-high tumors, are 
believed to have a more potent anti-tumor effect.

HER2 amplification: A target for therapy
HER2, a member of the epidermal growth factor receptor family, is known for its role in several cancers, including breast 
and GC. HER2 amplification or overexpression in GC represents a specific subset of cases that can be targeted with 
precision therapies.

Trastuzumab, a monoclonal antibody targeting HER2, has been approved to treat HER2-positive GC. Notably, HER2-
positive tumors often exhibit increased TIL infiltration, pointing to the interplay between HER2 and the immune 
response.

The path forward: Precision medicine and targeted therapies
Understanding the interplay between H. pylori infection, MMR status, HER2 amplification, and TILs in GC is vital for 
tailoring therapies to individual patients. Precision medicine in GC is evolving, with targeted therapies like trastuzumab 
for HER2-positive cases and immunotherapies that aim to enhance TIL activity showing promise. Hoilat et al[16] 
reviewed the association between H. pylori infection, mismatch repair, HER2, and TILs in GC. The study addresses the 
critical question of the TIL-associated predictive factors. They included 503 surgically treated stage I-III GC patients. 
Analysis of the TILs was done following standardized international TILs working group recommendations to determine 
IT, ST, and IB compartments. Immunohistochemistry (IHC) stained tissue tumor arrays were utilized to calculate immune 
cell density (CD3, CD8, and CD163). They also determined dMMR and HER2-status by IHC. H. pylori infection was 
evaluated by histology and by quantitative polymerase chain reaction in a subset. dMMR was found in 34.4%, HER2+ 
status in 5%, and H. pylori infection in 55.7%. TILs were subdivided into the IB, IT, and ST compartments. Median TIL 
levels were higher in IB and ST than in the IT compartment. They also found a correlation with the grade of the tumor. 
Grade 3 tumors were associated with high IT TIL (P = 0.038), whereas ST-TIL with grade 1 (P < 0.001). ST and IB TILs 
were seen to be higher in dMMR tumors. dMMR was also associated with high CD3 and CD8 densities. HER2- was 
associated with high IT-CD8. Also, H. pylori negative status correlated with higher IT-TIL (P = 0.009). It was also 
associated with high CD8 density in IT and ST compartments (P = 0.001). High TIL levels were associated with dMMR 
and H. pylori-negative status. Low CD8/CD3 (P = 0.001 in IT and P = 0.002 in ST compartment) and high CD3/CD163 (P 
= 0.002) predicted lower recurrence and longer survival.

These studies demonstrate that further research is required to identify H. pylori infection status because of the effect on 
the immune microenvironment, which can predict immunotherapy response. Molecular profiling and IHC can help 
determine the molecular subtypes of GC, guiding personalized treatment plans. The complex relationships between 
MMR status, HER2 amplification, and TILs in GC pave the way for more precise, effective, and individualized treatment 
approaches. While challenges remain in optimizing therapies for different subsets of patients, these insights represent a 
significant step towards conquering this relentless disease. As research progresses, we can look forward to a future where 
TILs may be used as prognostic and predictive factors in not only GC but also other malignancies. This warrants further 
studies on TILs.

CLINICAL IMPLICATIONS
TILs and their subtypes can be used in GC for predictive and prognostic purposes. The complex interplay of TILs with 
factors like MMR, HER2, and H. pylori infection demonstrates that they form an integral part of the immune response to 
the tumor cells. Further studies will clarify these factors’ role in predicting response to therapy.

CONCLUSION
In conclusion, TILs represent a promising avenue in the battle against GC. It is incumbent upon the medical and scientific 
communities to come together and realize the full potential of TILs, ensuring that their immense promise becomes a 
reality for all those affected by this devastating disease and other malignancies.
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Abstract
This comprehensive review delves into the current updates and challenges 
associated with the management of low-grade gliomas (LGG), the predominant 
primary tumors in the central nervous system. With a general incidence rate of 
5.81 per 100000, gliomas pose a significant global concern, necessitating advance-
ments in treatment techniques to reduce mortality and morbidity. This review 
places a particular focus on immunotherapies, discussing promising agents such 
as Zotiraciclib and Lerapolturev. Zotiraciclib, a CDK9 inhibitor, has demonstrated 
efficacy in glioblastoma treatment in preclinical and clinical studies, showing its 
potential as a therapeutic breakthrough. Lerapolturev, a viral immunotherapy, 
induces inflammation in glioblastoma and displays positive outcomes in both 
adult and pediatric patients. Exploration of immunotherapy extends to Pembrol-
izumab, Nivolumab, and Entrectinib, revealing the challenges and variabilities in 
patient responses. Despite promising preclinical data, the monoclonal antibody 
Depatuxizumab has proven ineffective in glioblastoma treatment, emphasizing 
the critical need to understand resistance mechanisms. The review also covers the 
success of radiation therapy in pediatric LGG, with evolving techniques, such as 
proton therapy, showing potential improvements in patient quality of life. Surgi-
cal treatment is discussed in the context of achieving a balance between preser-
ving the patient’s quality of life and attaining gross total resection, with the extent 
of surgical resection significantly influencing the survival outcomes. In addition to 
advancements in cancer vaccine development, this review highlights the evolving 
landscape of LGG treatment, emphasizing a shift toward personalized and target-
ed therapies. Ongoing research is essential for refining strategies and enhancing 
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outcomes in the management of LGG.
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Core Tip: Our manuscript explores the dynamic landscape of glioma treatment, emphasizing the urgent need for innovative 
therapies to combat this prevalent central nervous system malignancy. We delve into the promising realm of immuno-
therapies, highlighting novel agents like zotiraciclib, pembrolizumab, and lerapolturev, offering insights into their mecha-
nisms and clinical efficacy. Furthermore, we discuss the evolving role of radiation therapy, emphasizing recent advance-
ments in reducing treatment-related toxicities while improving outcomes. Surgical strategies, including subtotal resection 
and intraoperative radiotherapy, are also explored, showcasing their potential to enhance survival while minimizing neurolo-
gical morbidities.

Citation: Lucke-Wold B, Rangwala BS, Shafique MA, Siddiq MA, Mustafa MS, Danish F, Nasrullah RMU, Zainab N, Haseeb A. 
Focus on current and emerging treatment options for glioma: A comprehensive review. World J Clin Oncol 2024; 15(4): 482-495
URL: https://www.wjgnet.com/2218-4333/full/v15/i4/482.htm
DOI: https://dx.doi.org/10.5306/wjco.v15.i4.482

INTRODUCTION
Gliomas represent the most prevalent primary tumors in the central nervous system (CNS) across various age groups[1,
2]. Gliomas have a general incidence rate of 5.81 per 100000 people, with older individuals having a threefold higher 
frequency than young children. Gliomas account for 29%-35% of all central nervous system tumors in the adolescent and 
young adult demographic (ages 15-39 years), with an incidence of 3.41 per 100000[3-5]. Gliomas continue to be a global 
concern, emphasizing the vital need to improve treatment techniques for lowering both mortality and morbidity, 
elevating it to the top of the neuro-oncology priority list[6,7].

Clinical care, therapeutic response, and outcomes differ significantly between pediatric and adult glioma patients. 
Children with high-grade gliomas (HGGs) have poor prognosis, with frequently limited long-term survival ranging from 
months to a few years after diagnosis[8,9]. In contrast, pediatric patients with low-grade gliomas (LGG) have good overall 
survival (OS)[10,11], despite significant tumor- and treatment-related morbidity[12] (Table 1). The increased likelihood of 
malignant transformation, which is extremely rare in children) adds to a less favorable prognosis in adults with low-
grade gliomas[13,14].

IMMUNOTHERAPIES
Despite advancements in surgery, radiotherapy, and chemotherapy for LGG, the disease remains incurable and often 
progresses to secondary malignant transformation. Immunotherapeutic strategies have demonstrated success in various 
cancers, including lung, skin, colon, and blood-related cancers (Figure 1). Given that low-grade gliomas, particularly in 
younger patients, exhibit slower growth compared to high-grade gliomas, there is a suggestion that immunotherapies 
may be more effective due to the healthier immune systems of younger individuals, potentially leading to better 
treatment responses. Immunotherapies, including Zotiraciclib and Lerapolturev, exert their effects through distinct 
mechanism (Table 2).

Zotiraciclib
Zotiraciclib, a potent CDK9 inhibitor, exhibits efficacy against glioblastoma by suppressing transcription and disrupting 
cellular energy production. Preclinical studies, both in vitro and in vivo, have revealed its synergistic effect with temozo-
lomide. In clinical trials, Zotiraciclib demonstrated the ability to cross the blood-brain barrier and suppress CDK9 activity 
in tumor tissues[15]. This promising mechanism, targeting multiple glioblastoma survival pathways, positions 
Zotiraciclib as a potential therapeutic breakthrough[16-19].

A two-stage, two-arm, randomized phase 1 clinical trial further investigated the potential of zotiraciclib in recurrent 
high-grade gliomas. This study included a comprehensive evaluation of pharmacokinetics, patient-reported outcomes, 
and a detailed examination of rapid-onset neutropenia. Despite this observed neutropenia, a thorough analysis concluded 
that it did not compromise patient safety, allowing the research and development of this novel CDK9 inhibitor to 
progress[19].

Pembrolizumab or nivolumab
Immunotherapy has garnered significant interest as a potential treatment for glioblastoma (GBM). Nevertheless, a recent 
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Table 1 World Health Organization classification of gliomas

Grade Name Description and characteristics

I Pilocytic astrocytoma Well-differentiated, often cystic, slow-growing, generally benign

II Diffuse astrocytoma Infiltrative, moderately cellular, tends to recur, can progress to higher grades

II Oligodendroglioma Composed of oligodendrocyte-like cells, often associated with 1p/19q co-deletion

II Mixed oligoastrocytoma Combination of features of oligodendroglioma and diffuse astrocytoma

III Anaplastic astrocytoma Higher grade astrocytoma with increased cellularity and mitotic activity

III Anaplastic oligodendroglioma Higher grade oligodendroglioma with increased cellularity and atypia

III Anaplastic oligoastrocytoma Higher grade mixed tumor with features of both anaplastic astrocytoma and anaplastic oligodendroglioma

IV Glioblastoma Highly aggressive, necrosis, endothelial proliferation, molecular heterogeneity

clinical study focusing on recurrent glioblastoma and employing PD-1 immune checkpoint inhibitors revealed that a 
minority of patients (8%) exhibited noticeable improvements in their condition[20]. The mechanistic underpinnings of the 
variability in response patterns remain unclear.

Enhanced T cell infiltration in the tumor microenvironment and elevated mutational burdens in various cancer types 
have been associated with improved responses to anti-PD-1 therapy[21-23]. However, GBM presents a more immunosup-
pressive tumor microenvironment and a lower burden of somatic mutations than melanomas or non-small cell lung 
cancer[24]. Immunosuppression in GBM is facilitated by the expression of PD-1 ligands (PD-L1/2) in tumor cells, leading 
to T cell exhaustion and apoptosis. The binding of PD-1 to the surface of cytotoxic T cells hampers their ability to mount 
an effective anti-tumor response. PD-1 inhibitor therapy disrupts this immune checkpoint, reinforcing the immune 
response against tumors[23].

PD-1 inhibitors, such as pembrolizumab and nivolumab, have gained attention for glioblastoma treatment. However, 
recent clinical studies have revealed variable responses, necessitating deeper understanding of the underlying 
mechanisms. Glioblastoma’s immunosuppressive microenvironment and lower mutation burden compared to other 
cancers pose challenges. Molecular-tailored strategies hold promise for optimizing patient selection for immunotherapy, 
although further testing is required to validate their efficacy[25].

Lerapolturev
Lerapolturev, a viral immunotherapy, operates via a unique mechanism. As a polio-rhinovirus chimera, it induces 
persistent type-I interferon-dominant inflammation in glioblastoma, leading to polyfunctional antitumor CD8+ T-cell 
responses. Clinical trials involving Lerapolturev for recurrent adult glioblastoma demonstrated a 16% survival rate of at 
least 36 months, with a manageable safety profile[26-29].

In pediatric high-grade gliomas, Lerapolturev showed promise, with no grade 3 or 4 toxicity observed in early trials. 
The safety of treatment at this dose allows for further trials, including patients as young as 9 years of age. Ongoing 
research is crucial to understand the immunological factors influencing the efficacy of Lerapolturev in pediatric versus 
adult high-grade gliomas[30]. Our group’s previous research in adults gained additional support from the inclusion of 
patients as young as 9 years old, including one individual with WHO grade 3 glioma[30]. Moreover, pediatric high-grade 
gliomas typically exhibit significantly different molecular profiles compared to adult high-grade gliomas[31]. However, 
whether immunological factors affecting viral immunotherapies, such as Lerapolturev, vary between pediatric and adult 
high-grade gliomas remains uncertain[30].

Depatuxizumab
Depatuxizumab (formerly ABT-806) is a humanized monoclonal antibody developed against epidermal growth factor 
receptor variant III (EGFRvIII) that also binds to wild-type EGFR at elevated levels[32,33]. The antibody-drug conjugate 
(ADC) Depatuxizumab mafodotin (formerly ABT-414) connects the depatux to the cytotoxic payload monomethyl 
auristatin F (MMAF or mafodotin). Upon binding to activated EGFR, ADC is internalized, degraded in acidic compart-
ments, and releases the toxin, causing cell death. Unlike other treatments, this direct cytotoxic effect does not rely on 
inhibition of EGFR signaling and avoids typical toxicities[34]. Although unconjugated depatux is ineffective against 
GBMs, depatux-m demonstrates efficacy in GBM cell lines and models with EGFR amplification or EGFRvIII, showing 
effectiveness alone and in combination with radiotherapy and temozolomide[35]. ADCs, including depatux-m, show 
promise in various cancers[36], surpassing unconjugated monoclonal antibodies in efficacy, with numerous ADCs under 
investigation under diverse conditions[37].

Despite promising preclinical and early clinical data, depatux-m has proven ineffective in treating GBM. This 
disappointing outcome may result from the emergence of resistant clones over time, negating any overall survival benefit
[38]. Limited penetration of depatux-m into large tumors and challenges in reaching intracranial tumors[39], especially in 
the non-enhancing tumor region, underscore crucial lessons for future studies involving large molecules[38]. Safety 
concerns with depatux-m were reversible, with adverse events, such as sensitivity to light and thrombocytopenia, being 
the most frequently observed.
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Table 2 List of Immunotherapy

Ref. Completion 
year Demographics Study 

phase Identifier Experimental drug Sample 
size Primary endpoint/outcomes Results for primary outcome

BRAF/MEK 
inhibitors

Nicolaides et al
[107], 2020

2023 Pediatrics Phase 2 NCT01748149 (Ongoing 
Trial)

Vemurafenib 40 Safety and pharmacokinetics Not yet reported 

Hargrave et al
[108], 2019

2020 Pediatrics Phase 
1/2a

NCT01677741 Dabrafenib 32 Objective response rates and safety Objective response rate was 44% and 91% 
experienced adverse effects

Kaley et al[109], 
2018 

2016 Adults Phase 2 NCT01524978 Vemurafenib 24 Confirmed objective response rate, 
PFS, OS and safety

Confirmed objective response rate was 25% and 
median PFS was 5.5 months

FGFR inhibitors

Lassman et al[110], 
2022 

2018 Adults Phase 2 NCT01975701 Infigratinib 26 6-month PFS 6-month PFS rate was 16.0%

Bahleda et al[111], 
2019 

2017 Adults Phase 1 NCT01703481 Erdafitinib 187 Safety Most common treatment-related adverse events 
were hyperphosphatemia, dry mouth, and asthenia, 
generally grade 1/2 severity

HDAC inhibitors 

Wood et al[112], 
2018

2018 Pediatrics Phase 1 ACTRN12609000978268 Panobinostat 9 Safety and pharmacokinetics 2 patients experienced Grade 3-4 thrombocytopenia, 
1 experienced Grade 3 anemia, and 2 experienced 
Grade 3 neutropenia

Imipridone

Arrillaga-Romany 
et al[113], 2020 

2023 Phase 2 NCT02525692 (Ongoing 
Trial)

ONC201 89 6-month PFS Not yet reported

PI3K/mTOR 
inhibitors

Wen et al[114], 2022 2023 Adults Phase 2 NCT03522298 Paxalisib 32 Safety and pharmacokinetics Well-tolerated with adverse events consistent with 
other PI3K inhibitors

Wen et al[115], 2020 2020 Adults Phase 1 NCT01547546 GDC-0084 47 Safety and pharmacokinetics Well-tolerated with adverse events consistent with 
other PI3K inhibitors

Franz et al[116], 
2015 

2014 Adults/Pediatrics Phase 
1/2

NCT00411619 Enviroximes 28 6-month change in the volume of 
sub ependymal giant-cell 
astrocytoma 

Statistically significant reduction in the volume of 
the primary sub ependymal giant-cell astrocytoma at 
6 months

NTRK/ALK 
inhibitors

Phase NCT02637687 (Ongoing NCT02637687[117] 2026 Pediatrics Larotrectinib 155 Objective response rates Not yet reported
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1/2 Trial)

NCT02576431[118] 2025 Adults/Pediatrics Phase 2 NCT02576431 (Ongoing 
Trial)

Larotrectinib 204 Objective response rates, PFS, OS, 
Safety

Not yet reported

Desai et al[119], 
2022 

2025 Adults/Pediatrics Phase 
1/2

NCT02650401 (Ongoing 
Trial)

Entrectinib 69 Maximum Tolerated Dose and 
Objective response rates

Not yet reported

IDH inhibitors

NCT05588141[120] 2029 Adults Phase 
1/2

NCT05588141 (Ongoing 
Trial)

Zotiraciclib 96 12-months PFS Not yet reported

Mellinghoff et al
[121], 2023

2027 Adults Phase 3 NCT04164901 Vorasidenib 340 PFS Significantly improved PFS

Mellinghoff et al
[122], 2019

2024 Adults Phase 1 NCT03343197 AG-120, AG881 49 2-hydroxyglutarate concentrationin 
resectedtumors

decreased tumorcell proliferationand immune 
cellactivation

EGFR inhibitors

Weller et al[123], 
2017 

2016 Adults Phase 3 NCT01480479 Rindopepimut/Temozolomide 745 OS Median OS was 20.1 months in the Rindopepimut 
group versus 20.0 months in the control group

Lassman et al[124], 
2023 

2022 Adults Phase 3 NCT02573324 Depatuxizumab mafodotin 691 OS No OS benefit for depatux-m in treating EGFR-amp 
newly diagnosed GBM

PFS: Progression-free survival; OS: Overall survival.

Entrectinib
Entrectinib, approved by both the United States Food and Drug Administration and European Medicines Agency for 
tumors containing TRK or ROS1 fusions[40], encounters a challenge in treating brain neoplasms due to the blood-brain 
barrier (BBB)[35]. Effective targeted therapies for leptomeningeal disseminated tumors depend on their ability to 
penetrate this barrier. Although entrectinib, designed to cross the BBB, has demonstrated promise with a 79% objective 
response rate in various solid tumors, including CNS tumors, information on its cerebrospinal fluid penetrance in brain 
tumor patients is currently lacking[41].

The potential therapeutic efficacy of entrectinib, a selective pan TRK inhibitor, has been explored in patients with 
leptomeningeal disseminated pediatric high-grade gliomas (pHGG) harboring NTRK or ROS1 fusions[42,43]. The 
STARTRK-NG trial reported positive radiographic responses in four pHGG patients treated with entrectinib, indicating 
promise for CNS tumors[44,45]. This study investigated the in vitro sensitivity of pHGG cell models to entrectinib and 
suggested potential combination therapies[46]. The need for further studies to understand resistance mechanisms is 
emphasized, along with the generally well-tolerated nature of entrectinib. The observed CNS penetrance of entrectinib in 
a gliosarcoma patient has been discussed, highlighting its ability to cross the blood-brain barrier[47]. The text also 
considers the combination of entrectinib with radiotherapy and suggests the importance of intrathecal therapy in cases of 
leptomeningeal dissemination[41]. This conclusion underscores the need for comprehensive investigations and 
prospective clinical studies to establish the role of entrectinib and potential combination therapies in pHGG with ROS1/
NTRK fusions.
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Figure 1 Illustrates a flow chart with drugs according to mutation.

ONC201 and paxalisib
ONC201, an oral small-molecule imipridone anticancer therapy, has demonstrated early clinical success in patients with 
diffuse intrinsic pontine glioma (DIPG)[48] and recurrent H3K27M-mutant diffuse midline gliomas[49]. Investigations 
across various cancer types have shown that ONC201-induced apoptosis in cancer cells, independent of p53, occurs 
through an atypical integrated stress response involving the expression of the antitumor protein TRAIL. This mechanism 
has shown promise in hematological[50], colorectal[51], breast[52], uterine cancers[53], and glioblastoma[54]. A sustained 
positive response was observed in a patient with secondary glioblastoma carrying an H3.3K27M mutation, prompting 
further exploration in patients with similar mutations, including those with DIPG[54].

Studies have discussed the therapeutic benefits of combining ONC201, a dopamine receptor D2 antagonist[55], with 
the blood-brain barrier-penetrant PI3K/Akt inhibitor, paxalisib, for treating DIPG. Mechanistic insights indicate that 
ONC201, by decreasing tyrosine hydroxylase expression, exhibits global DRD2 antagonism, with ClpP identified as a 
crucial target that causes mitochondrial dysfunction and oxidative stress[56]. The combination of paxalisib shows 
promising results in preclinical and preliminary clinical trials, leading to symptom resolution and tumor regression. 
Challenges related to immunologically cold tumor microenvironments in DIPG have been acknowledged, but potential 
changes in the epigenetic landscape and metabolic plasticity following ONC201 treatment may enhance immunogenicity
[57,58]. The observed link between H3K27M mutations, metabolic changes, and the immune response highlights the 
complexity of DIPG treatment, presenting a potential avenue for the effective administration of therapy for glioblastoma
[59].

RADIATION THERAPY
Radiation therapy (RT) is a successful management method for pediatric low-grade gliomas using both initial and salvage 
treatment approaches. Historically, RT was the chosen initial therapy for quickly progressing or unresectable tumors, 
with 10-year progression-free survival (PFS) and OS rates of 70% and 80%, respectively[60-62]. Furthermore, RT has been 
used as an adjuvant therapy, particularly when surgery is limited to partial resection or biopsy, particularly for tumors in 
the optic system, hypothalamus, deep midline tissues, and brainstem[63,64]. Adjuvant RT is suggested in cases of partial 
resection because PFS is greatly reduced[65,66]. However, there is a lack of agreement on its use, which is attributable in 
part to the paucity of randomized prospective studies[67,68].

For older children who have not responded to numerous systemic medications, RT is preferred as part of the care plan. 
Historically, postponing RT was motivated by concerns about RT-related toxicities such as cognitive impairment[69,70], 
endocrine dysfunction[71], secondary malignancies[72], vascular damage[72,73], and growth abnormalities[74]. The 
severity of these symptoms is directly related to the location of the tumor and the patient’s age, particularly in patients 
under the age of 10[69,72].

An institutional evaluation covering a median follow-up of 11 years found 8-year PFS and OS rates of 83% and 100%, 
respectively[75]. Overall neurocognitive performance did not deteriorate in the trial; however, significant cognitive 
impairment was noted in young children (under 7 years old) and in patients who received high doses to the left temporal 
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lobe or hippocampus. Higher dosages to the hypothalamus or pituitary caused endocrine disruption, and two patients 
developed Moya disease. The 5-year PFS and OS rates in a recently published prospective research including 174 
pediatric patients with LGG who received proton treatment were 84% and 92%, respectively, with a median follow-up of 
4.4 years[76]. Four patients experienced severe late toxicities, including brainstem necrosis, symptomatic vasculopathy, 
radiation retinopathy, and fatal secondary cancers. While acknowledging the relevance of radiation-related damage, it is 
vital to emphasize that recent research has yielded promising outcomes. The extended latency of toxicity should be 
considered in light of the rapid developments in the field[77].

Concerns about RT-related toxicity originate mostly from long-term data collected from studies conducted during the 
1970s and the 1990s using 2-dimensional RT methods that did not allow for accurate radiation dose administration. 
Significant technical progress has been achieved in reducing the radiation dose that reaches the normal structures 
surrounding the tumor. This began with the use of 3-dimensional conformal external beam RT (3D-CRT) and progressed 
in the 2000s with the advent of intensity-modulated RT (IMRT). Significantly, the introduction of proton therapy has 
reduced radiation exit dosage[78,79], contributing to its growing role in pediatric patients. Several studies have suggested 
that proton therapy might improve both patient quality of life and the cost-effectiveness of pediatric brain tumor 
treatment[80,81].

SURGICAL TREATMENT
The primary objective of glioma treatment is to strike a balance between preserving the patient’s quality of life and 
improving PFS and OS[82,83]. The choice between oncological and surgical treatment depends on factors such as tumor 
size, location, and individual patient characteristics, including age and comorbidities[82,84,85]. Patients aged > 40 years at 
diagnosis, those with incomplete resection, and those with wild-type isocitrate dehydrogenase (IDH) status are typically 
considered to be at increased risk. The conventional treatment approach involves cytoreductive surgery to achieve gross 
total resection (GTR), followed by a combination of chemotherapy and/or radiation therapy[86,87].

The prognosis for gliomas, encompassing both LGG and HGG, is significantly influenced by the extent of surgical 
resection (EOSR) (Table 3). In LGG, EOSR is measured by the percentage of the FLAIR signal that is excised, whereas in 
HGG, it is determined by the removal of the percentage of enhancing tissue and the necrotic center. Extensive research on 
EOSR in LGG consistently shows that achieving GTR significantly improves survival rates, particularly among younger 
patients, classifying them as low-risk individuals compared to those who undergo only partial resection[82-84].

Similarly, investigations into EOSR in HGG consistently demonstrated a strong correlation between the extent of 
resection and survival outcomes, assuming no surgery-related neurological morbidities[88-90]. In most studies, the 
surgical goal is unequivocally defined as achieving GTR or complete tumor removal, typically amounting to 100% 
resection[91].

Recent clinical investigations have explored the concept of subtotal resection for gliomas[92]. This surgical approach 
aims to achieve GTR while simultaneously eliminating the FLAIR signal surrounding the necrotic and enhancing tumor 
mass in high-grade gliomas. Low-grade gliomas involve complete removal of the FLAIR signal along with additional 
radiographic extraction of the normal brain tissue adjacent to the tumor. Subtotal resection in LGG surgery was 
confirmed by observing that the resection cavity exceeded the initial FLAIR volume on the postoperative MRI at the 
three-month mark. Subtotal resection is considered justifiable when minimal neurological risks are involved, with the aim 
of eliminating invasive cells near the radiographic boundary[93-95]. Evidence from clinical case series of glioblastoma 
multiforme and HGG presents a conflicting picture, as performing supra total resection may entail an increased risk of 
neurological function decline, despite potential improvements in PFS and OS[92,96]. Additionally, there has been 
increased focus on the utilization of laser interstitial thermal (LIT) treatment for brain tumors. Recent trials investigating 
LIT have shown that achieving a greater level of ablation, including subtotal ablation, can lead to improved progression-
free survival and overall survival outcomes in patients with HGG[97,98].

Intraoperative radiotherapy with a single high radiation dose administered following tumor resection, intraoperative 
radiotherapy (IORT), a novel and non-conventional form of radiotherapy, can eradicate any remaining tumor cells[99]. A 
wide range of cancers, including breast, pancreatic, lung, and colon cancers, have been treated with IORT[100-102]. The 
lack of a discernible increase in survival in IORT treatment reports for primary malignant gliomas has been ascribed to 
angle errors, low electrons, and small electron cones, which result in inadequate coverage of the target volume[103]. A 
mobile IORT unit, INTRABEAM (Zeiss, Oberkochen, Germany), can deliver an equal dose of low-energy radiation in all 
directions within a tumor cavity, along with spherical irradiation. According to research, IORT with low-energy X-rays 
increases glioblastoma patients’ survival rates without causing new problems[104].

Vaccine development
Cancer vaccines targeting high-grade gliomas, predating coronavirus disease 2019, are gaining momentum. Strategies 
include peptide-based vaccines, dendritic cells, viral vectors, and personalized neoantigen vaccines. They are also being 
explored for the treatment of LGG. For IDH-mutant LGG, adjuvants such as poly (I:C) and poly-ICLC enhance immune 
responses, collectively reflecting a determined push for glioma immunotherapy[105]. To bolster the weak immune 
response in LGGs, synthetic double-stranded RNA molecules, such as polyinosinic acid homopolymers annealed to a 
polycytidylic acid homopolymer, have demonstrated potential[106]. They mimic viral infections and promote the release 
of interferon type 1 and other immune-boosting substances. Safely used as adjuvants with dendritic cells or peptide 
vaccines, they enhance therapeutic responses[106,107].
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Table 3 Supratentorial surgical treatment options for glioma, n (%)

Ref. Study 
origin Study design

Total 
number of 
patients

Supratotal 
resection 
sample

Male, 
%

Age 
atresection

Permanent 
neurological 
deficits

Progression-
free survival

Overall 
survival

Gajjar et al
[63], 1997

United 
States

Cohort study 142 48 (68/142) 61 7 median 
(0.17-19)

Not reported 70 ± 5 at 4 years 90 ± 3 at 4 
years

Fisher et al
[67], 2008

United 
States

Cohort study 278 19 (52/278) 58 9.1 ± 0.3 Not reported 55 ± 3 at 5 years 87 ± 2 at 5 
years

Wisoff et al
[125], 2010

United 
States

Prospective trial 518 64 (332/518) 54 7.9 median 
(0.6-20.5)

Not reported 78 ± 2 at 8 years 96 ± 0.9 at 8 
years

Yordanova 
et al[93], 
2011

France Case series 15 100.00 53.3 36.4 (24-59) 2, 13.3 73.3 at 38 
months

100 at study 
end

Youland et al
[11], 2013 

United 
States

Retrospective 
cohort

351 67 (235/351) 55 10.9 (0.05-
19.6)

Not reported 75.8 at 5 years 94.9 at 5 
years

Lima et al
[126], 2015

France Case series 21 19.0 (4/21) 28.57 35 (18-57) 0, 0 100 at study end 100 at study 
end

Duffau et al
[127], 2016

France Cohort study 16 100.00 43.75 41.3 (26-63) 0, 0 50 relapse rate 
(avg 70 months)

100 at study 
end

Lima et al
[92], 2017

France Two-center 
prospective 
study

19 26.3 (5/19) 42.1 31.2 (19-51) 0, 0 100 at study end 100 at study 
end

Rossi et al
[86], 2019

Italy Case series 449 32 (145/449) 53.1 37.9 (median 
36.5)

1, 0.69 (SupTR 
group)

Not reported Not 
reported

Ng et al
[128], 2020

France Case series 74 28 (21/74) 41.89 35.7 (18-66) 0, 0 Not reported 100 at 5 
years

Ng et al
[129], 2020

France Case series 47 26 (12/47) 34.04 39.2 ± 11.3 0, 0 Not reported 100 at study 
end

Goel et al
[130], 2021

India Cohort study 74 34 (25/74) 62.16 33 (21-55) 0, 0 98.7 at 2 years 100 at study 
end

Rossi et al
[94], 2021

Italy Case series 319 35 (110/319) 61.1 38.9 (18-75) 6, 1.9 94 at 92 months 
(SupTR group)

100 at 80 
months 
(SupTR 
group)

Ius et al
[131], 2022

United 
States, 
Canada, 
France, and 
Italy

Four center 
retrospective 
review

267 9 (24/267) 41.9 39.2 (18-71) 8, 3.1 Not reported 100 at 100 
months 
(SupTR)

CONCLUSION
In conclusion, advancements in LGG treatment span immunotherapies, targeted therapies, radiation, surgery, and 
vaccine strategies. Immunotherapies like Zotiraciclib and Lerapolturev show promise, while targeted therapies such as 
Entrectinib and ONC201/Paxalisib combination demonstrate early success. Radiation therapy, evolving with proton 
therapy, remains crucial, and surgical approaches aim to achieve gross total resection. Cancer vaccines including 
synthetic RNA adjuvants have emerged. The evolving landscape underscores a shift toward personalized and targeted 
therapies, with ongoing research being essential for refining strategies and improving outcomes in LGG treatment.
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Abstract
Endometriosis is an estrogen-dependent inflammatory disease, defined by the 
presence of functional endometrial tissue outside of the uterine cavity. This 
disease is one of the main gynecological diseases, affecting around 10%-15% 
women and girls of reproductive age, being a common gynecologic disorder. 
Although endometriosis is a benign disease, it shares several characteristics with 
invasive cancer. Studies support that it has been linked with an increased chance 
of developing endometrial ovarian cancer, representing an earlier stage of 
neoplastic processes. This is particularly true for women with clear cell carcinoma, 
low-grade serous carcinoma and endometrioid. However, the carcinogenic 
pathways between both pathologies remain poorly understood. Current studies 
suggest a connection between endometriosis and endometriosis-associated 
ovarian cancers (EAOCs) via pathways associated with oxidative stress, inflam-
mation, and hyperestrogenism. This article aims to review current data on the 
molecular events linked to the development of EAOCs from endometriosis, 
specifically focusing on the complex relationship between the immune response 
to endometriosis and cancer, including the molecular mechanisms and their 
ramifications. Examining recent developments in immunotherapy and their 
potential to boost the effectiveness of future treatments.

Key Words: Ovarian neoplasms; Endometriosis; Endometriosis-associated ovarian cancers; 
Immune response; Immunotherapy
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Core Tip: Current investigations imply a relationship between endometriosis and endometriosis-associated ovarian cancers 
(EAOCs) through pathways involving oxidative stress, inflammation, and hyperestrogenism. This article endeavors to 
examine the current data on the molecular events associated with the development of EAOCs from endometriosis, with a 
particular emphasis on the intricate relationship between the immune response to endometriosis and cancer, including the 
molecular mechanisms and their implications.

Citation: Calmon MS, Lemos FFB, Silva Luz M, Rocha Pinheiro SL, de Oliveira Silva LG, Correa Santos GL, Rocha GR, Freire de 
Melo F. Immune pathway through endometriosis to ovarian cancer. World J Clin Oncol 2024; 15(4): 496-522
URL: https://www.wjgnet.com/2218-4333/full/v15/i4/496.htm
DOI: https://dx.doi.org/10.5306/wjco.v15.i4.496

INTRODUCTION
Endometriosis, an estrogen-dependent inflammatory disease, is defined by the presence of functional endometrial tissue 
(stromal cells and gland) outside of the uterine cavity. It involves ectopic implantation of endometrial cells, marked by 
heightened proliferation, infiltration, and migration. This condition is one of the main gynecological diseases, affecting 
around 10%-15% women and girls of reproductive age. It can reach 50% of women facing infertility and often correlates 
with dysmenorrhea and pelvic pain[1,2]. Notably, more than 52% of women diagnosed with endometriosis are between 
18-29 years[3].

Regrettably, there is a substantial delay of almost 6 years between the onset of symptoms and diagnosis in primary 
care, which has a detrimental impact on the quality of life of many women and the subsequent treatment of a large 
number of patients[4]. Currently, there is no definitive cure for endometriosis, and available treatments primarily focus 
on symptom management, lacking measures to prevent recurrence of the disease. Risk factors for endometriosis include 
early menarche, nulliparity, dysfunctional uterine bleeding, aberrant estrogen levels, and low body mass index[5-7].

The underlying mechanisms of this disease have yet to be determined, despite numerous theories attempting to clarify 
their nature. The most widely accepted theory posits that retrograde menstruation allows endometriotic cells to evade the 
apoptotic pathway, leading to a disruption of the immune balance in the surrounding endometrioid tissue and triggering 
an immunological cascade that produces a mixture of pro- and anti-inflammatory factors[8]. However, the precise nature 
of these alterations remains unclear and is the subject of ongoing research.

Although endometriosis is a benign disease, more and more studies support that it has been linked with an increased 
chance of developing ovarian cancer, representing an earlier stage of neoplastic processes[9-11]. The first histological 
correlation between endometriosis tissue and ovarian cancer specimens was first presented by Sampson (1925), proposing 
that endometrial ovarian cancer may develop from endometriotic tissue, creating some criteria for diagnosis: (1) Evidence 
of coexisting tumor and endometriosis in the same ovarian location; (2) exclusion of a second malignancy elsewhere; and 
(3) histological pattern that resembles endometrial origin[12]. Later on, in 1953, Scott added a fourth criteria: Histological 
demonstration of benign lesions of endometriosis adjacent to malignant tissue[13].

Ovarian cancer ranks as the fifth leading cause of cancer-related death among women, surpassing other female 
reproductive system cancers. Ovarian epithelial tumors are divided into two categories: Type I tumors, which include 
clear cell carcinoma, low-grade serous carcinoma, endometrioid, and mucinous carcinoma; and Type II tumors, 
represented by high-grade serous carcinomas[14]. Endometrioid and clear cell tumors are linked to endometriosis and are 
classified as endometriosis-associated ovarian cancers (EAOCs), exhibiting a crescent correlation as they progress from 
endometriotic cyst epithelium through various stages of tumor development[15]. Both endometriosis and cancer share 
certain characteristics, such as the ability to evade apoptosis, form new blood vessels, and metastasize to distant sites, as 
well as the capability to create a supportive microenvironment that promotes growth and immune system mobilization
[11].

Our review focuses on the intricate relationships between the immune response to endometriosis and cancer, partic-
ularly on the molecular mechanisms and their consequences. We designed this article by following a chain of thought, 
starting with the characteristics of the diseases, the immune alterations found in both pathologies, followed by the correl-
ations between endometriosis and ovarian cancer, and how the immune response of endometriosis can lead to the onset 
of ovarian cancer, or at least favor its development. We explore how the microenvironment and imbalances due to 
endometriosis can trigger the development of ovarian cancer. Furthermore, we provide an overview of recent 
advancements in immunotherapy and their potential to enhance the efficacy of future treatments of these pathologies 
until the new findings for treatment and the current hurdle this field faces.

OVERVIEW ON OVARIAN CANCER THAT CORRELATES WITH ENDOMETRIOSIS
Despite being a benign disorder, numerous epidemiological studies consistently identify endometriosis as a risk factor for 
ovarian cancer, which is the most lethal among gynecological malignancies and rank as the third most prevalent[16-18]. 
Several mechanistic theories are linked to endometriosis, such as the reflux of endometrial tissue through the fallopian 
tubes during menstruation, coelomic metaplasia, embryonic cell rests, and lymphatic and vascular dissemination[12,19,
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20]. However, the etiology of endometriosis is generally considered multifactorial due to factors like genetics, hormones, 
and immunity. Remarkably, endometriosis can also develop in postmenopausal women, and although rare, it carries the 
risk of malignant transformation[21-24]. Hence, the observation of the occurrence and malignant transformation of 
endometriotic lesions in a hypoestrogenic environment with the absence of menstrual cycles emphasize the need for a 
more comprehensive understanding of the underlying mechanisms in the disease’s pathogenesis, that goes beyond 
classical theories centered on estrogen and retrograde menstrual flow[25,26].

The invasive potential of endometriosis and the persistent maintenance of ectopic tissue are characteristics that 
resemble cancer[27]. Notably, a significant association has been established between a history of endometriosis and an 
increased risk of developing specific subtypes of epithelial ovarian carcinoma, namely, endometrioid carcinoma, clear cell 
carcinoma, and low-grade serous tumors[19].

It is estimated that endometriosis increases the risk by approximately 3-fold for endometrioid and clear cell carcinomas
[28,29]. Through histopathological analysis, it has been observed that the carcinogenesis of these cancer subtypes can 
originate from cysts and other endometriotic lesions that progress to a phase of endometriosis with higher oncogenic 
potential, known as atypical endometriosis[30-32]. In this condition, two main histological findings are noteworthy and 
may be present simultaneously or independently: Cellular atypia (cytologic atypia) and architectural atypia (hyperplasia)
[33]. Furthermore, a subsequent prospective histological study found that endometriosis displaying architectural atypia, 
and consequently exhibiting higher proliferative activity, is most strongly linked to endometriosis-associated ovarian 
cancer[34].

From a molecular perspective, atypical endometriosis and clear cell carcinoma share mutations in hepatocyte nuclear 
factor-1β and the AT-rich interactive domain-containing protein 1A gene (ARID1A), which encodes the tumor suppressor 
protein BAF250. Therefore, absence of the BAF250a protein can be a useful early biomarker indicating malignant 
transformation of endometriosis[35,36]. In contrast, endometrioid adenocarcinoma primarily exhibits mutations in 
CTNNB1 (catenin beta 1), phosphatase and tensin homolog (PTEN), and ARID1A[35].

The association between endometriosis and low-grade serous tumors is relatively recent. Previously, epidemiological 
studies were primarily conducted alongside the high-grade serous tumor subtype, which does not exhibit an association 
with endometriosis[19]. The two histological subtypes may differ in terms of etiology, with low-grade typically 
originating from a malignant transformation process of borderline serous tumor, while high-grade tumors often arising 
from intraepithelial tubal carcinoma, with rarely observed progression from low-grade to high-grade serous tumors[37,
38].

Genetically, TP53 mutations are more restricted to high-grade serous carcinomas[39], whereas low-grade serous 
carcinomas typically exhibit mutations in Kirsten Rat Sarcoma (KRAS) and B-type Raf kinase (BRAF), along with overex-
pression of hormone receptors (estrogen and/or progesterone)[38]. It’s worth noting that KRAS mutations are generally 
associated with a worse prognosis compared to exclusive BRAF mutations[40]. This underscores the need for additional 
genetic research in this field.

IMMUNE DYSREGULATION IN ENDOMETRIOSIS AND ESTROGEN DEPENDENCY ON  
MICROENVIRONMENT DYSRUPTION
Endometriosis has garnered significant attention in the field of reproductive health due to its elusive etiology. While 
several theories have been proposed to explain its origin, the most widely accepted among them is Sampson's theory of 
retrograde menstruation[41]. According to this theory, during menstruation, endometrial cells retrograde into the 
fallopian tubes and subsequently into the peritoneal cavity[42,43]. In healthy females, these displaced cells typically 
undergo programmed cell death and are efficiently cleared by phagocytes and natural killer (NK) cells—a phenomenon 
known as immune surveillance[44,45]. However, in the context of endometriosis, compromised cell-mediated immune 
responses can disrupt this natural clearance process. Consequently, eutopic endometrial cells can adhere to the peritoneal 
wall, where they proliferate and eventually form endometriotic lesions[45,46].

Immune surveillance evasion: Dysregulated apoptosis signaling
The precise mechanisms responsible for the evasion of immunosurveillance by ectopic endometrial cells (EECs) remain 
poorly understood. Several hypotheses have been proposed to elucidate this phenomenon, including the possible dysreg-
ulation of programmed cell death pathways[47]. The FAS (CD95) and FAS ligand (FASL) extrinsic apoptosis signaling 
system, which is well-documented for its significant role in immune modulation[48-50], appears to hold a pivotal position 
in the context of endometriosis[51,52]. In response to the peritoneal microenvironment, specially elevated interleukin(IL)-
8 levels, a conspicuous increase in the expression of FASL is detected within EECs[53-55]. This heightened FASL 
expression seems to initiate apoptotic processes through the FAS-mediated pathway in immune cells expressing FAS, 
including T cells and NK cells[55].

In a parallel manner, alterations in tumor necrosis factor (TNF)-α-mediated cell death signaling contribute to the 
advancement of endometriosis. In retrograde menstruation, the entry of menstrual tissues into the peritoneal cavity 
stimulates macrophages to release cytotoxic cytokines, including TNF-α, thereby initiating apoptosis signaling in the 
extrauterine endometrial fragments that need to be eliminated[56]. However, in individuals with endometriosis, estrogen-
dependent molecular alterations in retrograde menstrual tissues enable them to evade TNF-α-mediated apoptosis[57]. In 
their pioneering research, Han et al[58] presented compelling evidence showcasing elevated expression levels of Estrogen 
Receptor β (ERβ) within endometriotic tissues. Erβ exerts regulatory influence over cellular apoptotic processes by 
impeding apoptosis initiated by TNF-α. Furthermore, ERβ engages in interactions with cytoplasmic inflammasome 
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constituents, consequently stimulating heightened production of interleukin-1β (IL-1β)[58]. This augmentation, in turn, 
amplifies cellular adhesion and proliferation characteristics.

Concurrently, within endometriotic lesions, there is a notable increase in the abundance of the nuclear receptor co-
activator 1 (NCOA1) isoform[59]. NCOA1, also known as Steroid Receptor Coactivator 1, plays a pivotal role in the 
regulation of gene expression in response to hormonal signals[60-62] functioning as a coactivator for nuclear receptors, 
which are transcription factors related with physiological processes, including cell growth, differentiation, and 
metabolism. In endometriosis, within these specific lesions, the NCOA-1 isoform engages in an interaction with caspase 8, 
thereby impeding the TNF-α-triggered apoptosis process through disruption of the assembly of apoptosis complex II[59]. 
Altogether, it’s possible to perceive that those alterations contribute to the complex mechanisms underlying the deve-
lopment and persistence of endometriosis. Figure 1 depicts a simplified schematic illustrating how ectopic endometrial 
cells evade immune surveillance.

Within the framework of endometriosis, perturbation of the intrinsic apoptotic pathway carries substantial ramific-
ations. The B-cell lymphoma/Leukemia-2 gene (Bcl-2) represents a novel class of proto-oncogenes characterized by their 
ability to inhibit apoptosis independently of cell proliferation stimulation[63,64]. In the context of endometriosis, an 
upregulation of Bcl-2 protein expression was observed in the proliferative eutopic endometrial tissue of affected patients
[65,66]. Conversely, Bax expression was notably absent in the proliferative endometrial phase, but displayed increased 
expression during the secretory phase in both patients and control subjects[66]. Accordingly, research findings 
demonstrate that the utilization of Gonadotropin Releasing Hormones analogs elicits an upregulation in the expression of 
the proapoptotic protein Bax[67], a putative antagonist protein, concomitant with a downregulation in the expression of 
the antiapoptotic protein Bcl-2 which can suggest potential targets for therapeutic interventions in this condition.

Dysregulation of the mitogen-activated protein kinase (MAPK) signaling pathway also seems to exert a significant 
influence on the advancement of the disease[68]. In tandem with the conveyance of antiapoptotic signals to endometriotic 
tissues, this intricate cascade promotes the recruitment of immune cells, intensifies the inflammatory response, and 
augments the expression of growth factors[69,70]. This coordinated synchronization of cellular processes seems to 
promote the initiation and progression of endometriotic lesions, while concurrently fostering a microenvironment 
conducive to the development of endometriosis.

Macrophages and their influence
Increasing evidence suggests that the peritoneal fluid features macrophages as the most predominant immune cells, 
within physiological parameters, and that they may be related to the pathogenesis of endometriosis[71]. The ectopic 
growth of endometriotic tissue within the peritoneal cavity leads to the onset of an inflammatory response, which, in 
turn, results in increased recruitment of these cells, a phenomenon mediated by colony stimulating factor-1 (CSF-1), 
monocyte chemoattractant protein-1 (MCP-1/CCL2), interleukin (IL)-8, and RANTES (CCL5)[72-74].

Upon recruitment, macrophages undergo activation, thus adopting specific functional profiles (M1/M2) that can either 
intensify inflammatory processes or contribute to tissue repair and immune regulation. In this sense, the polarization of 
macrophages into the M2 phenotype seems to be beneficial to the angiogenesis of endometriotic lesions, through 
secretion of vascular endothelial growth factor (VEGF)[75]. Additionally, the secretion of factors such as IL-10 and 
transforming growth factor-beta (TGF-β) by M2-polarized macrophages contributes to the growth of endometriotic 
lesions, since it impairs the cytotoxicity of NK cells[76-78]. Interestingly, there is also growing interest in the role of IL-
17A in endometriosis, as it appears to be associated with macrophage recruitment, triggering M2 phenotype polarization, 
angiogenesis and maintenance of the inflammatory cascade[79,80].

In addition to the intricate interplay involving macrophages and the aforementioned mechanisms, it is essential to 
address the role of fibrosis in this context. In this sense, TGF-β secreted by M2 macrophages induces fibrosis, as it 
promotes the differentiation of fibroblasts into myofibroblasts and stimulate the synthesis of collagen and fibronectin[81-
83]. On the other hand, Barcz et al[84] suggests that increased levels of VEGF are negatively associated to endometriosis-
related pelvic fibrotic adhesions.

Macrophages also play a role in neurogenesis and, consequently, in the onset of endometriosis-associated pain[85]. 
Overall, nerve fibers originating from endometriotic lesions have the capacity to secrete chemokines such as CCL2 and 
CSF-1, which, as previously discussed, are pivotal in the recruitment of macrophages[81,86]. As a result, macrophages 
release neurotrophic factors, including brain-derived neurotrophic factor and neurotrophin-3, thus contributing to the 
heightened sensitivity and pain experienced by individuals with endometriosis[86].

Furthermore, iron accumulation into the peritoneal cavity, stemming from retrograde menstruation, holds a particular 
interplay with macrophages and plays a role in the pathogenesis of endometriosis[87]. Macrophages in the pelvic cavity 
carry out erythrocyte phagocytosis and iron metabolism, thereby resulting in elevated iron concentrations within the 
peritoneal fluid[88]. As a result, iron overload can trigger oxidative stress and contribute to chronic inflammation, thus 
leading to increased proliferative capacity of endometriotic lesions[89].

Finally, it is crucial to acknowledge that the phenotypic distinction between M1 and M2 macrophages is currently 
viewed as oversimplified[87]. Indeed, emerging evidence underscores the plasticity of macrophages, suggesting the 
potential for a hybrid M1/M2 profile or a dynamic switch between these phenotypes[87,88]. This adaptability appears to 
be influenced by the specific microenvironment to which these cells are exposed[88]. Such complexity in the interplay 
between macrophages and the pathogenesis of endometriosis emphasizes the need for further studies to thoroughly 
elucidate these intricate mechanisms.

Natural Killer cells dysfunction
Natural Killer cells play a crucial role in the immune system's surveillance and defense against endometriosis. These 
immune cells are capable of identifying and eliminating abnormal endometrial cells, thereby contributing to the body's 
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Figure 1 Depiction of immune surveillance evasion mechanisms in endometriosis. A: Illustration of FAS/FASL-mediated apoptosis in cytotoxic 
lymphocytes and TNF-α-induced ectopic endometrial cell apoptosis resistance; B: Key molecular factors contributing to dysregulated apoptosis signaling in 
endometriosis. CD8+ T cell: Cytotoxic T-cells; ECC: Ectopic Endometrial Cells; Erβ: Estrogen receptor β; FAS (CD95): Cluster of Differentiation 95; FASL: FAS 
Ligand; IL-1β: Interleukin-1β; IL-8: Interleukin-8; MΦ: Macrophage; NCOA-1: Nuclear receptor coactivator 1; NK cell: Natural killer cell; TNF-α: Tumor necrosis factor-
alpha.

efforts to combat this condition[90,91]. Additionally, NK cells help regulate inflammation, modulate angiogenesis, and 
assist in maintaining immune tolerance within the endometrial environment[92,93].

In individuals with endometriosis, the peripheral circulation is characterized by a predominance of CD16+/CD56dim NK 
cells, which are well-known for their heightened cytotoxic capabilities. In contrast, the endometrium and peritoneal fluid 
(PF) predominantly harbor CD16-/CD56bright NK cells, renowned for their robust production of cytokines[94]. 
Accordingly, among females diagnosed with endometriosis, there is a noteworthy decrease in cytotoxicity observed in 
NK cells present within the peritoneum and PF[95]. Reduced cytotoxicity in the context of endometriosis may result from 
a complex interplay of cytokines within the intricate microenvironment of endometriotic lesions.

For instance, Yang et al[76] recently proposed that the interaction between macrophages and endometrial stromal cells 
(ESCs) could downregulate NK cell cytotoxicity. This downregulation might occur through the induction of cytokine 
secretion, including IL-10 and TGF-β, by the interacting cells. Such an interaction could potentially facilitate immune 
evasion by ectopic fragments and contribute to the development of endometriosis. Building on this idea, Kang et al[96] 
demonstrated that an increased level of IL-6 in the PF of patients with endometriosis might also suppress NK cell activity 
via regulation of SHP-2 expression. Likewise, elevated IL-15 levels were demonstrated to foster the proliferation and 
invasive behavior of ESCs while concurrently suppressing the cytotoxic capabilities of NK cells in individuals with 
endometriosis[97]. These cytokines, each wielding a distinct mechanism, collectively contribute to the precise regulation 
of NK cell responses in various immunological contexts.
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The NK cell detection system employs a set of receptors on the surface of NK cells, including activating receptors like 
NKG2D and CD16 (FcgRIIIa), to regulate NK cell activities. This system is crucial for the immune system's ability to 
identify and eliminate abnormal cells—such as ECCs. In comparison to healthy women, the PF of individuals with 
endometriosis exhibited decreased levels of various markers associated with NK cell cytotoxicity. These markers include 
the natural receptors NKp46, NKp44, and NKG2D, as well as CD16 and CD107a, which are indicative of NK cell 
activation, and CD69[98].

Conversely, González-Foruria et al[99] demonstrated that there is a notable rise in soluble NKG2D ligands in the PF of 
endometriosis patients, indicating reduced expression of these ligands on the surface of ectopic endometrial cells[99]. 
These soluble NKG2D ligands serve as decoy receptors, contributing to increased evasion from NK cell recognition[100]. 
Notably, several studies have also reported elevated levels of Inhibitory Receptor Tyrosine-based Inhibition Motif-Killer 
Immunoglobulin-like Receptors, including KIR2DL1, Natural Killer Cell Inhibitory Receptor NKB1, EB6, soluble 
intracellular adhesion molecule-1, and Human Leukocyte Antigen class I in the PF of endometriosis patients[101-104].

Thus, the immune dysregulation associated with endometriosis involves intricate interactions between NK cells, 
various immune cells, and cytokines, ultimately impacting NK cell function and contributing to the development and 
persistence of this condition.

Altered T-cell-mediated cytokine profiling and cytotoxicity in endometriosis
In the context of endometriosis, there is a notable reduction in the Th1/Th2 cell ratio within the peritoneal fluid (PF) 
when compared to women with a healthy condition[105]. This shift is accompanied by increased concentrations of IFN-γ 
and IL-10, resulting in elevated IL-4/IFN-γ, IL-4/IL-2, IL-10/IFN-γ, and IL-10/IL-2 ratios within endometriotic lesions
[106]. Furthermore, individuals with endometriosis show a substantial reduction in the T-bet/GATA-3 protein ratio 
compared to their healthy counterparts[107].

To our current understanding, T-bet regulates the expression of the Th1-specific cytokine IFN-γ while inhibiting the 
production of the Th2-specific cytokine IL-4[108-110]. Conversely, GATA-3, a transcription factor specific to Th2 differen-
tiation, orchestrates the differentiation of Th2 cells and promotes the production of Th2 cytokines, including IL-4, IL-6, 
and IL-10[111-113]. Within endometriotic lesions, there is a significant upregulation of GATA-3 protein mRNA levels 
influenced by estrogen, a hormone central to GATA-3 regulation[107]. Consequently, the interplay between GATA-3 and 
estrogen signaling governs the production of Th2-type cytokines in affected endometrial cells[114]. This dynamic 
contributes to the elevated levels of Th2-type cytokines in endometriotic lesions—despite the increase in IFN-γ concen-
trations—ultimately promoting the progression of endometriosis.

Recent research conducted by Xia et al[115] underscores the diagnostic significance of serum cytokine concentrations in 
the context of endometriosis-associated pelvic pain (EAPP). Specifically, the study identifies IFN-γ and IL-2 as 
independent protective factors against EAPP, while recognizing IL-4 and IL-10 as independent risk factors for the 
condition[115]. Notably, IL-4, a hallmark cytokine associated with the Th2 immune response, is shown to elevate 
localized estrogen levels, thereby facilitating the estrogen-dependent progression of endometriosis[116]. Furthermore, 
this cytokine enhances the proliferation of endometriotic stromal cells through the activation of pathways such as p38 
MAPK, stress-activated protein kinase/c-Jun kinase, and p42/44 MAPK, thereby leading to the advancement of the 
disease[117].

Apart from Th2 cells, T-helper-17 (Th17) cells and Regulatory T (Treg) cells may also be involved in endometriosis
[118]. Khan et al[118] recently demonstrated that CD4+IL-17A+ Th17 cell percentage was consistently reduced in both 
peripheral blood and PF of individuals with early and advanced endometriosis. In contrast, Gogacz and colleagues 
reported an elevated proportion of Th17 cells in PF when compared to peripheral blood in individuals with endomet-
riosis[119]. Their findings further indicated that the percentage of Th17 cells in PF was associated with the severity of 
endometriosis[119].

Zhang et al[120] pioneered the empirical validation of elevated IL-17 levels in the PF of individuals with endometriosis. 
Their research provided substantial evidence of statistically significant increases in IL-17 concentrations in individuals 
with minimal/mild endometriosis compared to those with moderate/severe disease and healthy individuals[120]. 
Subsequent to their groundbreaking work, multiple other authors have also confirmed elevated IL-17 levels in the PF of 
women diagnosed with this condition[121].

Interleukin-17A exhibits the capability to induce the secretion of IL-8 and the upregulation of cyclooxygenase-2 (COX-
2) expression, thereby instigating inflammatory reactions and fostering the proliferation of stromal cells associated with 
endometriosis[122]. In a similar vein, the research conducted by Ahn et al[79] has provided evidence that IL-17A also 
contributes to the pathogenesis of endometriosis by triggering the expression of angiogenic factors such as VEGF and IL-
8, as well as proinflammatory cytokines including IL-6 and IL-1β, along with chemotactic cytokines such as granulocyte 
colony-stimulating factor, C-X-C motif chemokine ligand 12 (CXCL12), C-X-C motif chemokine ligand 1 (CXCL1), and C-
X3-C motif chemokine ligand 1[79].

Subsequently, it was also observed that the presence of IL-10+Th17 cells significantly rises in the PF of females suffering 
from endometriosis[123]. Additionally, there is an upregulation of IL-27, IL-6, and TGF-β in this context. In comparison to 
peripheral CD4+ T cells, endometrial CD4+ T cells exhibit a pronounced expression of IL-27 receptors, particularly in the 
ectopic endometrium. Apparently, in later stages endometriosis, IL-27 seems to plays a role in suppressing the 
development of Th17 cells while stimulating the production of IL-10 within these cells through the c-Maf/RORC/Blimp-1 
complex—thereby contributing to the establishment of an immune tolerance pattern[123]. Consequently, these Th17 cells, 
which produce IL-10, enhance the growth, adhesion, invasion, and deep infiltration of endometrial stromal cells, thereby 
hastening the progression of endometriosis[123,124].
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In contrast to the CD4+IL-17A+Th17 cell subset, there is a substantial increase in the proportions of CD25+FOXP3+ 
Treg cells within the CD4+ T-cell population among patients with advanced endometriosis, as opposed to those with 
early-stage endometriosis or control subjects (P < 0.05 in both instances)[118]. The induction of Treg cells, characterized 
by the expression of the transcription factor FOXP3, may be facilitated by specific cytokines, notably TGF-β and IL-10
[125]. Consistent with these findings, heightened levels of TGF-β and IL-10 have been consistently documented in the PF 
of individuals afflicted with endometriosis[90,126]. Notwithstanding this, endometriosis is correlated with elevated PF 
concentrations of numerous cytokines, encompassing various chemotactic and activatory factors, such as RANTES and 
MCP-1, known as robust chemoattractants for Treg cells[127,128]. Hence, the heightened prevalence of the CD4+ T cell 
phenotype may arise from either local stimulation or represent a secondary occurrence associated with their chemotactic 
response due to the sustained presence of a local inflammatory response[118].

It is hypothesized that the abundance of Treg cells within the peritoneal cavity hinders the recognition and selective 
targeting of ectopic endometrial tissues—thereby contributing to the persistence of ectopic lesions.

B cell dysregulation in endometriosis
Notably, the role of B cells in endometriosis is an area of ongoing research, and the exact mechanisms underlying their 
dysregulation in the disease are not fully understood. One intriguing finding is the decreased B-cell leukemia lymphoma 
(Bcl)-6 and increased B lymphocyte inducer of maturation program (Blimp)-1—transcription factors that regulate B-cell 
function—in the peritoneal cavity of patients with endometriosis[129].

Blimp-1 serves as a pivotal regulator of plasma cell differentiation[130,131]. The pronounced elevation of Blimp-1 in 
individuals suffering from endometriosis implies a heightened commitment to the differentiation of B cells into plasma 
cells. This observation raises the intriguing possibility of an intensified antibody response occurring within the peritoneal 
cavities of these patients, potentially bearing significance for their immune function. Conversely, Bcl-6 functions as an 
antagonist to Blimp-1, primarily inhibiting the process of plasma cell differentiation[132]. The diminished levels of Bcl-6 
in endometriosis patients suggest a compromised ability to regulate the differentiation of B cells into plasma cells. This 
imbalance may contribute to an exaggerated antibody response or potentially exert influence over other facets of immune 
function.

The PF of individuals with endometriosis also seems to express high levels of the B lymphocyte stimulator (BLys)[133]
—a protein that plays a critical role in the development of B cells and their differentiation into plasma cells[134]. 
Increased BLys levels in endometriotic lesions, in turn, suggest that the local microenvironment within the peritoneal 
cavity of endometriosis patients may be conducive to enhanced B-cell activation and maturation.

Accordingly, the presence of autoantibody responses targeting endometrial antigens represents a prevalent charac-
teristic in endometriosis. In 1980, Startseva[135] was the first to report an elevated responsiveness of B cells in individuals 
with endometriosis. Since then, antibody responses directed against a range of both serum and tissue antigens, including 
alpha(2)-Heremans Schmidt glycoprotein (alpha(2)-HSG), transferrin, and carbonic anhydrase, have been discerned in 
this condition[136]. Nevertheless, additional research is required to gain a more comprehensive understanding of the 
connection between autoantibodies and the disease's onset and progression.

Estrogen and the immune microenvironment in endometriosis
The development of endometriotic lesions relies on estradiol—an estrogenic steroid hormone[137]. The heightened 
activity within the 17β-estradiol axis serves as a pivotal trigger for the activation of macrophages intricately associated 
with endometriosis pathogenesis[138-141]. In response to the escalated signaling of estradiol, the ectopic endometrial 
tissue, a hallmark feature of endometriosis, undergoes a noteworthy upregulation in the expression of ERβ. Indeed, 
higher ERβ levels, as opposed to ERα, have been observed in endometriotic tissues when compared to normal 
endometrial tissues[142]. An elevated ERβ-to-ERα ratio within endometriotic stromal cells is linked to the downregulation 
of progesterone receptors and an upsurge in cyclo-oxygenase-2 Levels, thereby playing a role in the development of 
progesterone resistance and inflammation[143,144].

Moreover, elevated prostaglandin levels hinder the immune system, enabling ectopic endometrial cells to evade 
immune surveillance and form endometriotic lesions. Additionally, ERβ engages in interactions with cytoplasmic inflam-
masome components and TNF-α-mediated programmed cell death pathways, resulting in increased production of IL-1β 
and enhanced cellular adhesion and proliferation[58]. This intricate modulation ultimately creates a cellular environment 
favoring enhanced cell survival and the sustained orchestration of the inflammatory response, both of which are pivotal 
factors in the perpetuation of endometriosis.

IMMUNE FACTORS DRIVING OVARIAN CANCER:
The correlation between chronic inflammation and development of tumors is not a unique feature of ovarian cancer. It 
has been described for many years, as various risk factors of cancer development are linked to inflammatory processes, 
such as viral infections, smoking and UV exposure[145]. The process of ovarian carcinogenesis is attributed to multiple 
factors, and while inflammation does not account for all of them, it serves as a pivotal element in the development of this 
particular disease[146]. Firstly, despite ovulation being a physiological process, multiple factors that alter the ovulation 
cycle, such as contraceptive pills, parity and age of menarche and menopause are related to a reduced risk of ovarian 
cancer development[147]. Fathalla proposed, in 1971, the theory of incessant ovulation, suggesting that the repetitive 
damage and subsequent repair of the ovarian epithelium may elevate the risk of neoplastic development and be the 
reason for the above-mentioned risk factors[147].



Calmon MS et al. Immune pathway: Endometriosis to ovarian cancer

WJCO https://www.wjgnet.com 503 April 24, 2024 Volume 15 Issue 4

Presently, it is well-established that ovulation is closely connected to the inflammatory cascade, as the ovarian 
population of immune cells play critical roles in various processes within the menstrual cycle. As an example, ovarian 
macrophages contribute to tissue repair and proliferation through the secretion of several growth factors, TGF-β and IL-
10, as well as apoptosis via the secretion of Reactive Oxygen Species (ROS), and IL-1β during physiological destruction, 
resulting in the necessary rupture of the follicle wall for ovum liberation and remodeling processes in the ovarian 
epithelium associated with the menstrual cycle phases[148].

The result of this is a chronic and periodic exposition of ovarian epithelial cells to a complex and dysregulated 
interplay of molecular events, involving both inflammation and tissue proliferation stimuli. These events encompass the 
nuclear factor-kappa B (NF-κB) activation, which has been reported to be an important element in tumorigenesis and 
further fueling the inflammatory milieu, as it enhances cytokine and growth factors production, induces cell proliferation 
and impedes cell apoptosis[149-151]. It is also important to note that the high levels of ROS may induce DNA damage 
that can facilitate the development of mutations that could induce the ovarian carcinogenesis process[152]. Ultimately, the 
complicated network of interacting events offers insights into its plausible involvement in instigating the mechanisms 
underpinning ovarian carcinogenesis.

Furthermore, various inflammatory conditions, including infections and reproductive system disorders, have been 
identified as risk factors for the development of ovarian cancer. Lin and colleagues, in 2011, found that women with 
Pelvic Inflammatory Disease exhibited an adjusted Hazard Ratio for ovarian tumor development almost twice as high as 
non-affected women[145]. Additionally, in 2012, a combination of results from 13 case-control studies demonstrated a 
significant association between the presence of clear-cell, low-grade serous, and endometrioid invasive ovarian cancers 
and a history of endometriosis among patients[19].

A determining factor in how ovarian cancer will progress, is the individual aspects of the tumor microenvironment. 
Increased number of Tumor infiltrating lymphocytes (TILs) with active CD3+ T cells have been associated with increased 
survival rate in patients with ovarian cancer[153,154]. On the other hand, the anti-tumor action of these cells can be 
rendered less effective by Tumor-infiltrating immune cells with immunosuppressive activity, such as M2 macrophages, 
regulatory T cells and Myeloid-derived Suppressive Cells, whose increased presence have been consistently related with 
poor prognosis of the disease[155,156].

Previous studies have evaluated the specific action of live Treg cells in this scenario. Initially, production of CCL22 
chemokine by cancerous cells and macrophages attracts CCR4 expressing Treg cells to tumor site. After reaching the 
tumor microenvironment, these cells highly express several immunosuppressive cytokines, such as IL-10, IL-35, and TGF-
β[157,158] and immune checkpoint inhibitors (CPI), such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), that 
binds to CD80/CD86 in Antigen presenting cells (APC), decreasing co-stimulation of T cells and inhibiting their activity
[157]. In summary, the interplay among all of these factors underscores a multifaceted tumor microenvironment that 
hinders immune surveillance and the fight against malignant cells.

Another important molecule for the immunomodulator properties of ovarian cancer microenvironment is T cell 
immunoglobulin and mucin domain-containing protein 3 (TIM3), associated with higher IL-10 production and inhibition 
of T cell action in multiple tumors[158]. Currently, it is being tested in preclinical settings as a possible target for 
monoclonal antibodies in cancer treatment in association with PD-1/PD-L1 inhibitors[159,160].

It is important to note that proinflammatory cytokines, such as IL-6 and TNF-α, can also exhibit high expression levels 
within the context of ovarian cancer[161]. The correlation between IL-6 and the tumor's progression is well-established, 
and it is believed to contribute to various functions, primarily through the JAK/STAT pathway, including angiogenesis, 
cell proliferation, differentiation, and resistance to chemotherapy[162]. This could explain why the overexpression of the 
IL-6 receptor (IL-6R) in ovarian tissue has been linked to a poor prognosis for the disease[163]. Regarding M2 
macrophages, in addition to playing an immunosuppressive role, they can induce angiogenesis and fibroblast prolif-
eration by secreting various growth factors that promote the replication of cancer cells[164]. This is particularly significant 
in the clinical context of ovarian cancer, as vasculogenesis driven by VEGF secretion is the primary target of 
bevacizumab, one of the immunotherapy drugs currently used in the treatment of this condition[165].

Another type of CPI is PD-1, whose ligands PD-L1 and PD-L2 (both members of B7 superfamily) can be expressed by 
both immune and cancerous cells in the tumor microenvironment. When the PD-1 receptor of T cells binds to its ligands, 
it causes a reduction in proliferation, cell activity, IFN-γ and IL-2 production, and may even induce apoptosis of these 
cells[157,166,167]. Given the pressing need for additional therapeutic targets to enhance outcomes in combined ovarian 
cancer treatment, current research focuses on investigating the potential roles of other B7 family members, specifically B7-
H3 (CD276) and B7-H4 (B7x) in TME immune suppression, as their expression relate to poor survival rates and treatment 
resistance[168-170].

Research suggests that B7-H3 and B7-H4 exhibit distinct expression patterns within the ovarian cancer microenvir-
onment, as B7-H3 has been shown to be present both in stromal and tumor cells in Epithelial Ovarian Cancer TME, 
whereas B7-H4 seems to be primarily restricted to tumor cells within the ovarian cancer[171]. Furthermore, the 
expression of B7-H4 by Tumor-Associated Macrophages is induced by IL-6 and IL-10 and B7-H4 expressing TAMs in the 
ovarian cancer microenvironment exhibit an enhanced suppressive effect on T cell responses[172]. B7-H4 is believed to 
trigger cell cycle arrest in T lymphocytes, leading to the inhibition of cell division and proliferation.

Additionally, it has been linked to reduced cytokine production and a decrease in the cytotoxic capabilities of these 
immune cells[173]. On the other hand, B7-H3 has a complex and conflicting role in the immune response, as it may 
function as both a co-stimulatory and immunoregulatory molecule. This dual role could explain why a study discovered 
a positive correlation between B7-H3 expression, CD8+ cell infiltration in the TME, and improved prognosis for patients 
with pancreatic cancer[174]. However, in most neoplasms, including ovarian cancer, high B7-H3 expression doesn't 
appear to be associated with a favorable prognosis. Instead, it is correlated with increased therapy resistance and 
enhanced proliferation of cancerous cells, both in vitro and in vivo[170].
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B7-H3 may be expressed in Antigen-Presenting Cells, and the knockout of its expression has been shown to induce 
enhanced cytolytic activity in tumor antigen-specific CD8+ cells among Tumor-Infiltrating Lymphocytes of mice, 
resulting from a higher production of IFN-γ and Granzyme B enzymes[175]. It is important to note, however, that the 
precise mechanisms and functions of B7-H3 and B7-H4 in immune cell activity are still areas of active research. Despite 
this, these proteins offer potential avenues for future tailored immunotherapies that can improve outcomes in ovarian 
cancer treatment.

ENDOMETRIOSIS AND OVARIAN CANCER: WHAT IS KNOW UNTIL NOW?
The presence of endometriosis leads to an increased risk of malignant tumors, and it is a well-documented finding that 
both pathologies appear together[176]. Suggesting some kind of transformation from endometriosis constituents into 
tumor cells[177]. Current molecular studies aim to establish links between endometriosis and EAOCs through pathways 
related to oxidative stress, inflammation, and hyperestrogenism[178]. Several researches have indicated that atypical 
endometriosis precedes clear cell or endometrioid ovarian cancers[31,32,179-181], suggesting a precancerous behavior
[182]. A study conducted by Kato et al[183] concluded that certain epithelial cells in ovarian endometriosis, including 
atypical endometriosis and endometriosis - with many inflammatory and regenerative changes - have already acquired a 
clear cell phenotype.

Thinking about the pathway through endometriosis to derived ovarian cancer, the first thing to point out is the 
common component of both pathologies, the inflammatory pattern and immune system mobilization[11]. Those 
alterations can lead to a disruption and tumor formation. Endometriosis patients may have an inflammation profile 
similar to those with EAOC, even present in patients with benign lesions[184], suggesting that tumor-like immune 
signatures may develop even earlier than imagined. Deep infiltrating endometriosis with infrequent occurrences exhibits 
a tumor-like behavior, and may even resemble a metastatic disease[185,186].

Suryawanshi et al[184], in 2014, demonstrated a correlation between upregulation of the complement pathway and the 
KRAS and PTEN-regulated pathways, those two frequently related in oncogenesis and maintenance of the cancer 
phenotype in vitro. Also, this study showed that 33% of the patients with endometriosis revealed a tumor-like inflam-
mation. Complement was previously linked with the support of tumor growth, being engaged in both chronic and acute 
inflammation[187,188].

It is crucial to comprehend the onset of the lesion and its connection to the inflammatory component. The development 
of endometriosis initiates with the implantation of ectopic tissue, which leads to bleeding. This is followed by inflam-
mation, which triggers fibrin deposition and adhesion formation, eventually leading to scarring and distortion of the 
affected surfaces[189]. It has been reported that eutopic endometrium has a significant decrease in apoptosis compared to 
women without endometriosis[190]. The inflammatory process of endometriosis is strongly correlated with the peritoneal 
space experiencing high levels of oxidative stress, this leads to the proliferation of endometriosis as well as increased 
angiogenesis[191].

Increased proliferation of endometrial tissue and the occurrence of retrograde menstruation result in elevated levels of 
hemoglobin, heme, and iron[192,193]. Intense hemolysis observed in endometriosis results in high levels of free heme and 
iron; these molecules have a prominent effect as proinflammatory factors[193]. Excessive exposure to iron in the context 
of endometriosis sustains a state of chronic inflammation, modulates several mechanisms for the progression of 
endometrial lesions, and generates intracellular reactive oxygen species, as well as activating neutrophil responses[194,
195].

These substances modify crucial structures, enhance adhesion of refluxed endometrial cells, result in cell damage and 
DNA methylation, and consequently lead to the development of fibrosis and progression of endometriosis[189,193,196]. 
Subsequent transcription activation occurs (NF-kB, AP-1, and SP-1), along with oxidative burst, production of ROS, and 
IL-8[197-199]. Iron overload worsens the activation of peritoneal macrophages. And help to maintain a state of chronic 
inflammation. The inflammatory is further accentuated by the increased expression and activity of COX- 2, interleukins, 
and oxidative stress that act through the MAPK pathways[190].

The peritoneal fluid in cases of endometriosis typically has elevated levels of activated cytokines and macrophages[200,
201]. Macrophage activation is implicated in the pathogenesis of endometriosis and its association with ovarian cancer. 
Primarily due to the trophic factors secreted by macrophages that promote the growth of neoplastic lesions while at the 
same time increasing the conditions of oxidative stress due to the production of lipid peroxides[202,203]. Macrophage 
proliferation can alter the immune response at the site of inflammation, M2 phenotype molecules attract additional 
proinflammatory mediators to the lesion site, amplifying the inflammatory microenvironment[204].

Tumor-associated macrophages (TAMS) are a key component of the tumor stroma, essential for angiogenesis and 
matrix remodeling[189], they spontaneously release large amounts of IL-10 to TGF47, and some chemokines induce IL-10 
in macrophages and the monocyte chemotactic protein-1 polarizes immunity in the Th2 direction[205,206].

Other than that, macrophages secrete many products such as TGF-beta, VEGF, IL-1, Prostaglandin E2 (PGE2) and 
macrophage migration inhibitory factor (MIF)[35]. Importantly, MIF sustains macrophage viability, which sustains 
inflammation through TAMS activation, and leads to tumor progression and the development of metastases[207]. Also, 
MIF upregulates COX-2 synthesis and PGE2 secretion in ectopic endometrial cells[208].

In a synergistic manner, IL-1 is associated with the induction of COX-2 and IL-8 expression, which facilitate migration, 
proliferation, and angiogenesis in endometriotic tissue[209]. And as a cytokine that promotes tumor growth, IL-1 triggers 
an ongoing chemical dialogue between the progressing tumor and its supportive stroma[210]. In the ovary, COX-2 is 
involved in the early events of neoplastic transformation; it is rarely found in normal ovarian epithelium, but is present in 
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endometriosis and in ovarian cysts considered to be premalignant[211].
In addition, other cytokines and chemokines are present in increased concentrations, on both ovarian CA and endomet-

riosis. These include TNF-α, IL-1β, IL-6, IL-8 and RANTES. The proinflammatory cytokines TNF-α and IL-1β are elevated 
in the peritoneal fluid of women with endometriosis[201]. IL-1β induces expression of RANTES more in endometriotic 
stromal cells than in normal endometrial stromal cells, functioning as a chemoattractant for monocytes, memory T cells, 
and eosinophils[193,201]. TNF also can be found in malignant and/or stromal cells in human ovarian and the expression 
of TNF-α is increased on clear cell ovarian carcinoma, when compared with normal ovarian tissue[205,211]. Elevated TNF 
network gene expression resulted in increased signaling related to angiogenesis, cell adhesion, cell cycle and inflam-
mation[211]. IL-8 increases ERα activity to induce ovarian cancer cell proliferation, it acts as an autocrine growth factor to 
promote proliferation of endometrial stromal cells in normal endometrioma and endometriotic cells.

Endometrial fragments are able to adhere to surfaces due to the presence of molecules that regulate cell-matrix and 
cell-cell interactions expressed by endometrial cells. These molecules include cadherins, integrins, proteoglycans such as 
the immunoglobulin superfamily, and CD44[212]. Cell-cell and cell-matrix adhesion molecules are engaged both in 
cancer tumors and endometriosis[213]. Endometriosis is reported to have an overall highly variable and aberrant integrin 
expression as compared with eutopic endometrium[190,214-216]. Endometrioid tissue may share molecular mechanisms 
of invasion and metastasis with carcinoma cells that are related to the level of E-cadherin expression[213,216].

The failure to remove fragments of menstrual effluent from the abdominal cavity induces excessive local inflammation
[217,218]. The chronic aberrant expression of proinflammatory cytokines alters regulatory signaling pathways, which 
may facilitate cancer growth, invasion and metastasis through DNA damage and inhibition of DNA repair via reactive 
oxygen, autocrine/paracrine growth, survival factors for malignant cells, induction of vascular permeability and 
extravasation of fibrin/fibronectin[205]. And, result in accumulation of genetic mutations in endometriotic cells, through 
the changing of physiological homeostasis and progressive transcriptional changes can drive sustained proliferation and 
increase the rate of DNA repair[189].

Another factor that has an imperative role on disruption of homeostasis, and inflammation, is the hormonal 
component. As previously mentioned, hormonal management, upregulation of estrogen and intolerance to progesterone, 
plays a fundamental role in the maintenance and development of endometriosis, as well as on the tumor development. 
This said, an important alteration is the estrogen role on endometriosis, and its intense presence on peritoneum of 
afflicted women, and the consequently exacerbation of the immune inflammatory pathway.

Endometriotic stromal cells contain numerous specific epigenetic defects that favor overproduction of E2 and overex-
pression of the steroid receptor ER-beta that mediates an intense and E2-induced inflammatory process involving 
overproduction of cytokines and prostaglandins[219-221]. Being a major regulator of all key pathological processes in 
endometriosis and enhances lesion survival and inflammation leading to pain[220]. And excess E2 can result in cellular 
proliferation through the stimulation of cytokine production, specifically IL-8 and RANTES[222]. In addition, E2 
stimulates the production of PGE2, the micro-environment in endometriotic tissue is marked by proliferative pressure 
with an enhanced level of reparative activity and thus, a higher chance for DNA damage and mutations[178]. Thus, PGE2 
is a central mediator of the inflammatory response on endometriosis, but it has also been shown to regulate vital 
processes related to tumor growth, including angiogenesis, proliferation and inhibition of apoptosis[223].

Moreover, massive concentrations of estrogen in the ovary may also stimulate the inflammatory process via ER-beta in 
endometriotic stromal cells, which may contribute to the carcinogenic process in neighboring epithelial cells[58,224]. Is 
speculated that intense inflammation, progesterone resistance, and high levels of E2 (unopposed by progesterone action) 
in the stromal component led to a high proliferative activity and enrichment of driver mutations (e.g., PIK3CA, KRAS, 
ARID1A) in attached endometriotic epithelial cells[68]. And it is associated with pro-inflammatory cytokines, which leads 
to (VEGF) expression, cell cycle activation, and activation of the anti-apoptotic gene Bcl-2[225,226]. Figure 2 depicts a 
simplified schematic illustrating of general immune response on endometriosis and ovarian cancer, and their similarities.

The dysregulation of apoptotic pathways and subsequent resistance to apoptosis contribute to the failure of immune 
clearance[45,227]. Accumulation of mutations in tumor suppressor genes and oncogenes is a crucial step during tumor 
development[228]. It is known that hormonal dysregulation in endometriotic implants, along with Inflammatory 
responses, may drive carcinogenesis[71]. Mutations secondary to endometriosis, is a fair finding. A study conducted by 
Koppolu et al[185], in 2021, showed that all the patients with endometriosis recruited on the study had no history or 
features of neoplastic disease, however the results revealed mutations in known cancer driver genes, especially in ectopic 
lesions. Some cancer-related mutations are found in endometriosis without cancer, in particular recurrent KRAS 
mutations[229]. Otherwise, some studies have shown confirmatory evidence that mutations found in endometriosis-
associated cancers are found in adjacent endometriosis[36,230-232], and has been reported to exhibit a high percentage of 
PIK3CA and KRAS activating mutations and ARID1A and PTEN inactivating mutations[232,233]. A study conducted in 
2023, with mice, was capable of successfully developed carcinoma by inducing the knockout (KO) of ARID1A and PTEN 
in the epithelium of endometriotic cysts, which were formed by the transplantation of small uterine pieces onto the 
peritoneum or ovarian surface, having a EAOC developed as early as 4 wk after the KO[232]. Helping to consolidate and 
bring up more data surrounding the intrinsic correlation between the dysfunctions caused by endometriosis and the 
onset of ovarian cancer.

IMPLICATIONS FOR CLINICAL MANAGEMENT
Immunotherapy in ovarian cancer and endometriosis
Unlike the traditional strategies of killing tumor cells, immunotherapy is a treatment approach that utilizes cells, viruses, 



Calmon MS et al. Immune pathway: Endometriosis to ovarian cancer

WJCO https://www.wjgnet.com 506 April 24, 2024 Volume 15 Issue 4

Figure 2 Overview of immune dysregulation similarities between on endometriosis and ovarian cancer. IL-1: Interleukin-1; IL-1B: Interleukin-1β; 
IL-4: Interleukin-4; IL-6: Interleukin-6; IL-8: Interleukin-8; IL-10: Interleukin-10; E2: Prostaglandin E2; ER-a: Estrogen Receptor Alpha; M1/M2: Macrophages; NK: 
Natural killer cell; TAM: Tumor-associated macrophages; Th1/Th2/Th17: T helper cells; TNF: Tumor Necrosis Factor; TNF-a: Tumor Necrosis Factor Alpha; TNF-B: 
Tumor Necrosis Factor Beta; ROS: Reactive oxygen species; VEGF: Vascular endothelial growth factor.

peptides, small molecules, or antibodies to activate or modulate the immune system to attack cancer cells[234]. This 
treatment has brought about a significant transformation in the approach of various solid tumors, including malignant 
melanoma, non-small-cell lung cancer, and renal cell carcinoma. It has become the leading choice for managing recurrent 
or metastatic solid tumors, surpassing conventional chemotherapy and targeted therapy[235].

Over the past few decades, immunotherapy has surfaced as a hopeful treatment alternative for gynecologic malig-
nancies, including ovarian cancer. The first line of treatment for ovarian cancer is usually cytoreductive surgery combined 
with chemotherapy[236]. However, chemoresistance is one of the most prevalent factors for the poor prognosis of this 
pathology, especially when associated with metastatic capacity and clinical course of the disease[237]. As ovarian cancer 
is a tumor with an extremely immunosuppressive microenvironment, the immunological approach shows great promise
[238]. Currently, immune strategies for the treatment of ovarian cancer are being tested in clinical trials, and include 
checkpoint inhibition, cancer vaccines, oncolytic virotherapy and adoptive cell therapy. Figure 3 depicts a simplified 
schematic illustrating of current possible immunotherapy approaches to ovarian cancer.

Immune checkpoint inhibitors
Effective immunotherapy for ovarian cancer hinges on activating antigen-presenting cells, reducing the immunosup-
pressive microenvironment, and enhancing the performance of effector T cells. The T cell-mediated immune response is 
controlled through both inhibitory and activating signals, and immune checkpoint receptors play a crucial role in 
restraining T cell activation to prevent excessive stimulation. Nonetheless, numerous types of tumors exhibit immune 
checkpoint expression, which results in immune evasion. Consequently, inhibitors targeting immune checkpoints play a 
significant role in immunotherapy[238]. Up until now, the most promising immune checkpoint inhibitors for solid tumors 
have been antibodies that hinder CTLA4, PD-1 and PD-L1, which are presented in some drugs approved by The Food 
and Drug Administration, such as CTLA4 antibodies (Ipilimumab), PD-1 antibodies (Pembrolizumab and Nivolumab), 
and PD-L1 antibodies (Avelumab, Atezolizumab and Durvalumab)[239,240]. However, the clinical application of 
checkpoint inhibitors in ovarian cancer has yielded limited success, with single-agent response rates in clinical trials 
typically hovering around 6%-15%[241-243]. As single agents, the results in ongoing clinical trials showed modest effects 
of immune checkpoint inhibitors (ICI) in ovarian cancer, limiting its approval for use in patients with ovarian cancer[244].

Another potential target of immune checkpoint blockade is B7-H3, which is an immunosuppressive molecule present 
on tumor cells but absent in host cells, and researchers have explored the therapeutic impacts of blocking B7-H3 and PD-1 
in the context of cancer[238]. The results indicate that, in ID8 tumor-bearing mice with ovarian cancer, it is B7-H3 
inhibition, not PD-1 blockade, that prolongs the median survival time[245].
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Figure 3 Some of the current immunotherapy approaches of treatment to ovarian cancer. Anti-CTLA-4: Cytotoxic T-Lymphocyte Associated Protein 
4 Antibody; Anti-PD1: Programmed Cell death Protein 1 Antibody; Anti PD-L1: Programmed Death-ligand 1 Antibody; CAR-T cells: Chimeric Antigen Receptor-T 
cells; PARP: Poly Adenosine Diphosphate-Ribose Polymerase; PD-1: Programmed Cell death Protein 1; PD-L1: Programmed Death-ligand 1.

Immune checkpoint inhibitors monotherapy has limited anti-tumor effects in ovarian cancer, and the efficacy of ICI 
depends on the condition of TILs and the expression of specific molecules. Hence, ideal candidates for this strategy 
should be well-chosen. To surpass these barriers, combining therapies are being tested to improve the anti-tumor activity 
in ovarian cancer[246].

PARP inhibitors
The poly (ADP-ribose) polymerase (PARP) is a well-acknowledged detector of DNA damage, renowned for its invol-
vement in repairing DNA base excision and single-strand breaks. PARP inhibitors have emerged as a novel targeted 
therapy for ovarian cancer, especially for women carrying BRCA1 and BRCA2 mutations or individuals lacking a 
functional homologous recombination repair pathway[247]. Cells with impaired homologous recombination are 
vulnerable to PARP inhibitors. BRCA1 and BRCA2 are tumor suppressor genes known for their essential involvement in 
DNA repair, as they create a complex responsible for homologous recombination repair[248]. The FDA has sanctioned 
various PARP inhibitors for use, and some of them are currently under investigation in clinical trials. These include 
olaparib, niraparib, rucaparib, veliparib, and talazoparib[249]. Despite the encouraging advantages offered by PARP 
inhibitors, numerous limitations persist, as shown in some studies[250-253]. Future research should prioritize exploring 
and developing combinations that can amplify the impact of PARP inhibitors, such as antiangiogenic agents and ICIs 
combining therapies[254].

Adoptive cell therapy
Adoptive cell therapy (ACT) primarily relates to the utilization of chimeric antigen receptor (CAR)-modified T cells, T-
cell receptor (TCR)-engineered T cells, natural tumor-infiltrating lymphocytes (TILs), CAR-NK cells, and CAR-
macrophages. ACT has brought about a significant breakthrough in treating blood-related tumors. However, when it 
comes to solid tumors like ovarian cancer, ACT appears to be inadequate in inducing substantial anti-tumor responses
[255]. Up until now, there has not been a notable therapeutic effectiveness. The primary challenges lie in the weak 
binding affinity and inconsistent presence of targetable surface antigens, as well as obstacles related to the infiltration and 
viability of CAR-T cells[256]. Therefore, additional clinical data is necessary to verify their effectiveness in individuals 
with ovarian cancer.
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Cancer vaccine
Vaccination plays a crucial role in immunotherapy, offering advantages to individuals affected by diverse forms of 
cancer, and there is extensive research into therapeutic vaccines in the context of ovarian cancer. The investigation into 
the potential of single application of a cancer vaccine for ovarian cancer is ongoing, and this includes the examination of 
various types of vaccines such as peptide vaccines, whole tumor cell vaccines, cancer stem cell vaccines, APC vaccines, 
DNA/RNA vaccines, bacterial vaccines, and more[255]. Many of these vaccines enhance the body's immune response 
against ovarian cancer, but clinical evidence has only demonstrated modest effectiveness in the majority of patients[257-
259]. It is feasible to assess the therapeutic potential in a broader group of patients. The use of dendritic cell-based 
vaccines is another treatment approach, which is also under investigation in patients with ovarian cancer, being shown 
that it can produce improved outcomes[236,246]. However, the evaluation of the clinical use of vaccines in cancer patients 
has certain limitations, such as the heterogeneity of antigen expression within a tumor[260,261].

Immunotherapy in endometriosis
The immune system has a significant role in endometriosis. Therefore, immune therapy holds promise as a potential 
treatment approach for this condition. The reduced macrophagic phagocytosis observed in the serum and peritoneal fluid 
of individuals with endometriosis is a significant contributor to the disruption of immune balance[262]. In this sense, the 
expression of CD47 is used by macrophages to distinguish “self” or “non-self” cells. The CD47 site inhibitor disrupts this 
signal, enabling macrophages to carry out regular phagocytosis[263]. Clinical observations have revealed a substantial 
elevation in CD47 Levels within the ectopic endometrial tissue of individuals with endometriosis[264]. Immunotherapy 
targeting the CD47-SIRPa signaling pathway appears to show promise in the management of endometriosis[265].

Furthermore, it has been reported that exosomes originating from endometriosis can induce a shift in macrophage 
phenotype toward M2 polarization, leading to a reduction in macrophage phagocytic activity both in laboratory settings (
in vitro) and within the body (in vivo)[262]. As a result, employing anti-exocrine therapy for individuals with endomet-
riosis appears to have a notable effect on attracting macrophages to ectopic lesions[266]. This therapy can decrease the 
presence of M2-type macrophages, leading to an overall enhancement in macrophage-mediated phagocytosis of ectopic 
endometrial cells[98].

Moreover, encouraging NK cell cytotoxic activity is a potential novel therapeutic approach for managing endomet-
riosis[267]. The treatment is based on NK inhibitory receptors that dampen their response to ectopic or malignant cells. 
The PD1, one such receptor that interacts with the PDL1 Ligand has already shown promise in cancer immunotherapy
[268]. This approach aims to potentially enhance the rescue of endometrial cells, counteract the suppression of NK cells' 
regulatory function, and enable the elimination of misplaced endometrial cells. The proposed immunotherapy strategy 
suggests utilizing existing medications, commonly employed for conditions like cancer, to aid in identifying and 
prompting the removal of endometrial cells through apoptosis[269].

Besides this, vitamin D has been noted for its immunomodulatory properties in the medical management of endomet-
riosis[270]. In a recent animal model study focused on endometriosis, it was observed that the use of synthetic vitamin D 
derivatives significantly curbed the progression of both endometriosis and peritonitis[271]. Considering the role of 
inflammatory cytokines in the development of endometriosis, recent studies have suggested that the impact of 
1,25(OH)2D3 on the cytokine production within human endometrial stromal cells could be a contributing factor to the 
therapeutic benefits of this compound in treating endometriosis. Additionally, another investigation has shown that 
1,25(OH)2D suppresses the immune response of Th1 cells while promoting the response of Th2 cells. It achieves this by 
inhibiting the release of IL-12, IL-2, and TNF from T cells, macrophages, and DCs, respectively[272].

Targeting macrophages and inflammatory mediators
The direct involvement of tumor-associated macrophages (TAMs) in the oncogenesis and prognosis of ovarian cancer 
based on the imbalance in polarization between M1 (pro-inflammatory) and M2 (anti-inflammatory) macrophages has 
been previously established[273]. Thus, it was discovered that the presence of a majority of M2 (anti-inflammatory) 
macrophages in the ovarian environment is a determining factor for a worse cancer prognosis, through the interaction of 
specific receptors of these cells with the immune system and also through the stimulation of various cytokines, generating 
an environment more conducive to the establishment of ovarian cancer of all types, including EAOC[274]. In this way, 
investigation of new ways of interfering in this process using the specific receptors expressed on M2 macrophages and 
the cytokines produced can be a new approach in order to achieve better therapeutic results and greater survival[275].

CD47- SIRPα: CD47 is a glycoprotein that is very present in the tumor environment and exerts its inhibitory activity by 
binding to its counter-receptor, the signal regulatory protein-α (SIRPα), expressed in macrophages[276,277]. Liu et al[277] 
conclude that the impact of this inhibitory process is a reduction in phagocytosis by these macrophages (known as the 
"don't eat me signal"), which culminates in the progression of the tumor microenvironment, thus serving as one of the 
strategies for inhibiting immune activity by tumor cells[277].

Based on this principle, therapies based on blocking CD47 (anti-CD47) and SIRPα have emerged, which aim to interfere 
with the inhibitory process[278]. Son et al[278] demonstrated that these two therapies are promising in the treatment of 
solid cancers, such as ovarian cancer, and have shown good progress in terms of improved anti-tumor activity of 
macrophages based on the established blockade of inhibitory receptors.

Kaur et al[279] reported a series of preclinical studies in mice and humanized clinical studies of anti-CD47 therapy, 
bringing a positive result, since both the preclinical study and the humanized clinical studies showed promising data in 
relation to limiting tumor cell growth.
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Sikic et al[280] also demonstrated a promising result when they carried out a phase I study in humans using the anti-
CD47 antibody Hu5F9-G4, which showed safety, tolerability and also tumor regression in some patients undergoing 
therapy. It is also important to note that Tian et al[281] were able to demonstrate that anti-CD47 therapy has a promising 
future in improving the activity of innate immunity and the oncolytic process.

In addition, Li et al[264] also reported a study showing high CD47 expression in patients with endometriosis, in which 
CD47 blocking treatment resulted in an increase in the phagocytic process by macrophages and also in an increase in 
apoptosis of endometrial stromal cells, representing a protective effect against the development of EAOC. Figure 4 
depicts a simplified schematic illustrating of CD47- SIRP-based immunotherapy.

CSF-1/CSF-1R: The colony-stimulating factor-1 receptor (CSF-1R) is a receptor that exists in several human cells during 
homeostasis, but is overexpressed in tumor-associated macrophages in several types of cancer, including ovarian cancer
[282]. The specific ligand of this glycoprotein is CSF-1, which is found in high levels in tumor cells and the binding of 
these two receptors culminates in an oncogenic role through the release of growth factors and substances that stimulate 
the cellular differentiation of macrophages into M2[282]. In this way, the relationship between both glycoproteins has 
become the object of study for the development of new therapeutic techniques, based on the inhibition of these receptors, 
with the aim of reducing TAMs and tumor growth[283].

Based on this premise, Ries et al[284] used a monoclonal antibody directed at blocking CSF-1R in cancer patients, with 
the aim of manipulating the activity of TAMs, and the result was promising, since a reduction in tumor-associated 
macrophages was achieved in patients as well as an increase in the levels of TCD8/CD4 cells in animal models.

Lu et al[285] conducted a study in murine models of ovarian cancer and associated a CSF-1R inhibitor with docetaxel 
and concluded that treatment with the inhibitor alone resulted in increased cell apoptosis of tumor-associated 
macrophages due to the repolarization effect, transforming them into M1. Combined treatment resulted in a significant 
reduction in tumor growth, a reduction in TAMs and increased levels of TCD8+ cells[285].

Finally, Xiaocui et al[286] identified a significant presence of the glycoprotein CSF-1 in patients with endometriosis, 
which resulted in an elevated appearance of macrophages with an anti-inflammatory effect and, consequently, a 
depletion of the activity of the immune system in this environment, leaving it vulnerable to the appearance of possible 
ovarian cancer. This study also found that the use of an anti-CSF-1 antibody reduced these negative effects, 
demonstrating the promising activity of this immunotherapeutic field[286]. Figure 5 depicts a simplified schematic 
illustrating of CSF-1/CSF-1R-based immunotherapy.

CCL2/C-C motif chemokine receptor 2: The CCL2/C-C motif chemokine receptor 2 (CCR2) axis is involved in the 
recruitment of monocytes from the bloodstream to the tumor environment, since CCL2 is a chemokine that attracts 
CCR2+ monocytes, which will become M2 macrophages when they arrive in the tumor environment[287].

This axis has also become a therapeutic target, as demonstrated by Miyamoto et al[288] who based their study on 
blocking the CCL2/CCR2 interaction. The study achieved a positive result in mice by reducing M2 macrophages and 
increasing TCD8+ cells and IFNγ by inhibiting the CCL2/CCR2 relationship[288].

In addition, it is also necessary to highlight the relationship between CCL2 and endometriosis, as reported by Hogg et 
al[289], who reported that high levels of CCL2 are present in endometriosis, thus resulting in greater recruitment of 
macrophages that may impact on the inflammatory environment and contribute to the process of malignization of the 
lesion, generating ovarian cancer.

CXCR4-CXCL12: C-X-C receptor 4 (CXCR4) is a chemokine that functions through its binding to the CXCL12, derived 
from stromal cells, and the activation of this axis is closely linked to the initiation and progression of ovarian tumors from 
the invasion of ovarian cancer cells[290,291].

With this in mind, Xue et al[292] used an antagonist of the CXCR4 receptor in order to reduce the impacts derived from 
its activity and achieved promising results, which are the blocking of the activation of the NF-κB signaling pathway and, 
consequently, a reduction in tumor growth and a reduction in the possibility of metastasis.

Pharmacological modulation of TAMs: The polarization of macrophages and their influence on the oncogenesis and 
progression of ovarian cancer has also extended the discussion into the field of pharmacological modulation, with the 
clear aim of finding a way to revert M2 macrophages into M1, promoting anti-tumour activity and, consequently, 
regression of the already established tumour[293,294].

In their study, Bolli et al[295] used imidazoquinoline (IMDQ), an agonist of the Toll 7/8 receptor, which was coupled to 
an antibody and infused intravenously into patients with ovarian cancer with the aim of blocking the macrophage 
mannose receptor (MMR) and causing a repolarization of macrophages from M2 to M1. The results of the study were 
promising and showed a reduction in tumor growth, associated with an increase in the pro-inflammatory process derived 
from the change in the types of macrophages employed in the environment[295].

On the other hand, the study by Xiao et al[296] addressed the development of a nanodrug specific for tumor-associated 
M2 macrophages, from siRNA IKKβ (an activator of NF-kβ and STAT6, participants in the polarization process), with the 
clear objective of inhibiting STAT6, thus resulting in a safe conversion of macrophages and the reduction of tumor growth 
with the activation of the antitumor axis in an in vivo experiment.

Finally, Hsieh et al[297] presented a study based on the use of vorinostat in mice with EAOC, in which the result was a 
reduction in the tumor from the inhibition of the polarization of M2 macrophages.

Anti-inflammatory agents in the context of endometriosis and ovarian cancer
COX-2 is an enzyme directly linked to inflammatory processes from arachidonic acid and the consequent production of 
prostaglandins[298]. COX-2 has been described as an overexpressed marker in ovarian cancer, playing a direct role in the 
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Figure 4 Illustration of anti-CD47-based immunotherapy. CD47 is a glycoprotein that is very present in the tumor environment and exerts its inhibitory 
activity by binding to its counter-receptor, the signal regulatory protein-α (SIRPα), expressed in macrophages. It reduces phagocytosis by these, which culminates in 
the progression of the tumor microenvironment. It is highly expressed patients with endometriosis. A: CD47 binding to SIRPα inhibits phagocytosis; B: Anti-CD47 
blocks the binding between CD47 and SIRPα, allowing phagocytosis to occur. Anti-CD47: Integrin-associated protein Antibody; CD47: Integrin-associated protein; 
MΦ: Macrophage; OC cells: Ovarian Cancer cells; SIRPα: signal regulatory protein alpha.

Figure 5 Illustration of anti-CSF-1R-based immunotherapy. The colony-stimulating factor-1 receptor (CSF-1R) is a receptor that exists in several human 
cells during homeostasis, but is overexpressed in tumor-associated macrophages in ovarian cancer. The use of a monoclonal antibody directed at blocking CSF-1R 
in cancer patients, aims to manipulate the activity of TAMs, reducing tumor-associated macrophages in patients, as well as an increase in the levels of TCD8/CD4 
cells in animal models. Anti-CSF-1R: Colony-Stimulating Factor 1 receptor Antibody CSF-1: Colony-Stimulating Factor 1; CSF-1R: Colony-Stimulating Factor 1 
receptor; M2 TAM Φ: Tumor-associated macrophages M2; OC cell: Ovarian Cancer cells; TAM Φ: Tumor-associated macrophages.

poor prognosis of patients with this type of cancer, since it participates in the migration and invasion of tumor cells[299]. 
In addition, Zhang et al[300] and Lai et al[301] bring up the direct involvement of COX-2 in endometriosis, since, as found 
in the study, cyclooxygenase-2 promotes increased cell proliferation, reduced apoptosis and increased angiogenesis, 
factors that are also linked to oncogenesis.

Thus, studies such as that by Li et al[302] show the importance of investigating the impact of anti-inflammatory drugs 
on ovarian cancer, since, as reported in this analysis, a positive effect was found when associating a COX-1 inhibitor with 
Cisplatin or Taxol in order to reduce angiogenesis in ovarian cancer in murine models.

Therefore, the direct involvement of COX-1 and COX-2 in the oncogenesis and progression of ovarian cancer, as well as 
in the progression of endometriosis, has already been established. Therefore, new clinical studies with a large number of 
patients using COX inhibitors are still needed in order to establish an even more efficient treatment for ovarian cancer 
and endometriosis.
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CONCLUSION
Endometriosis and ovarian cancer are still underreported diseases. This means that much involved in their patho-
physiology and correlations still remains hazy. This is also due to the lack of feasible and efficient diagnostic resources in 
clinical practice. Especially with regard to the applicability of biomolecular resources to support the diagnosis and 
monitoring of those pathologies.

Future studies should aim to better elucidate the roles of oxidative stress, inflammation, and estrogen in EAOC 
development. Existing evidence suggests a shared microenvironment between endometriosis and EAOC in terms of 
cytokines and mediators, but further research is necessary to confirm a direct link between the two. Additionally, further 
research should focus on discovering biomarkers capable of identifying endometriosis cases with oncogenic potential, 
with the aim of detecting premalignant lesions, and consequently develop better interventions in order to decrease the 
incidence of EAOCs.

Research efforts should prioritize establishing model systems for endometriosis. These investigations could yield 
valuable knowledge about risk factors, molecular traits specific to subtypes, novel therapeutic testing, and the factors that 
contribute to the development of EAOCs. Additionally, it is crucial to emphasize the necessity of current interventions 
that lower the risk of ovarian cancer, including endometrioid carcinoma and clear cell carcinoma.

Moreover, non-invasive methods to help diagnose the disease should be a priority, as well as clarification of the 
genetics and genomics that control disease development, environmental contributions, and the involvement of the 
immune system. Other than that, well-designed clinical trials are essential to determine which therapies are safe and 
effective, and which markers and targets on the immune system may be useful in treatment and management. And 
confirmation of the veracity of these biomarkers can help in the development of true research, with larger populations, to 
understand endometriosis in particular.
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Abstract
Britanin is a bioactive sesquiterpene lactone known for its potent anti-inflam-
matory and anti-oxidant properties. It also exhibits significant anti-tumor activity, 
suppressing tumor growth in vitro and in vivo. The current body of research on 
Britanin includes thirty papers predominantly related to neoplasms, the majority 
of which are gastrointestinal tumors that have not been summarized before. To 
drive academic debate, the present paper reviews the available research on 
Britanin in gastrointestinal tumors. It also outlines novel research directions using 
data not directly concerned with the digestive system, but which could be 
adopted in future gastrointestinal research. Britanin was found to counteract liver, 
colorectal, pancreatic, and gastric tumors, by regulating proliferation, apoptosis, 
autophagy, immune response, migration, and angiogenesis. As confirmed in 
pancreatic, gastric, and liver cancer, its most commonly noted molecular effects 
include nuclear factor kappa B and B-cell lymphoma 2 downregulation, as well as 
Bcl-2-associated X protein upregulation. Moreover, it has been found to induce 
the Akt kinase and Forkhead box O1 axis, activate the AMP-activated protein 
kinase pathway, elevate interleukin-2 and peroxisome proliferator-activated 
receptor-γ levels, reduce interleukin-10, as well as downregulate matrix metallo-
proteinase-9, Twist family bHLH transcription factor 1, and cyclooxygenase-2. It 

https://www.f6publishing.com
https://dx.doi.org/10.5306/wjco.v15.i4.523
mailto:zaneta.kaluzinska@umed.lodz.pl


Kajdanek A et al. Counteracting gastrointestinal tumors using Britanin

WJCO https://www.wjgnet.com 524 April 24, 2024 Volume 15 Issue 4

also inhibits Myc–HIF1α interaction and programmed death ligand 1 transcription by interrupting the Ras/ 
RAF/MEK/ERK pathway and mTOR/P70S6K/4EBP1 signaling. Future research should aim to unravel the link 
between Britanin and acetylcholinesterase, mast cells, osteolysis, and ischemia, as compelling data have been 
provided by studies outside the gastrointestinal context. Since the cytotoxicity of Britanin on noncancerous cells is 
significantly lower than that on tumor cells, while still being effective against the latter, further in-depth studies 
with the use of animal models are merited. The compound exhibits pleiotropic biological activity and offers consid-
erable promise as an anti-cancer agent, which may address the current paucity of treatment options and high 
mortality rate among patients with gastrointestinal tumors.

Key Words: Britanin; Sesquiterpene lactones; Chemotherapeutics; Gastrointestinal tumors; In vitro; In vivo

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Natural compounds have settled in the development of novel drugs. Britanin is a sesquiterpene lactone whose 
effect on gastrointestinal tumors has not been summarized before. Our paper reviews the current state of knowledge and 
proposes novel research directions. Britanin was found to counteract liver, colorectal, pancreatic, and gastric tumors via the 
regulation of proliferation, apoptosis, autophagy, immune response, migration, and angiogenesis. Future research should 
examine the link between Britanin and acetylcholinesterase, mast cells, osteolysis, and ischemia. The compound holds 
promise as an anti-cancer agent and may overcome the paucity of treatment options or high mortality rate in gastrointestinal 
tumors.

Citation: Kajdanek A, Kołat D, Zhao LY, Kciuk M, Pasieka Z, Kałuzińska-Kołat Ż. Britanin – a beacon of hope against 
gastrointestinal tumors? World J Clin Oncol 2024; 15(4): 523-530
URL: https://www.wjgnet.com/2218-4333/full/v15/i4/523.htm
DOI: https://dx.doi.org/10.5306/wjco.v15.i4.523

INTRODUCTION
Natural compounds have long been established in the development of novel drugs. One such group, the sesquiterpene 
lactones, are organic terpenoids that exhibit a broad spectrum of biological activities, with their anti-cancer, anti-parasitic, 
and anti-inflammatory properties being the most prominent[1-3]. One of the representatives of this group is a compound 
termed Britanin (C19H26O7), a pseudoguaianolide-type sesquiterpene lactone present in various Inula species. It has 
been found to demonstrate anti-cancer agent activities by affecting tumor cell survival[3,4]. Although Britanin has been 
present in the PubChem database since 2005, the current body of research is limited to about thirty papers in total, mostly 
related to cancer. The vast majority of the literature concerns gastrointestinal tumors that have not been summarized 
before. Britanin has also been evaluated in leukemia[5-8] and tumors of the breast[9-12], head and neck[13], kidney[14], 
prostate[15], or lung[14]; however, insufficient data exists on each disease type to draw firm conclusions. Given its 
promising implications in oncology, Britanin is likely to be the subject of considerable research in the upcoming years. To 
drive academic debate, the present paper reviews and discusses available research on Britanin in gastrointestinal tumors. 
A literature search was performed via PubMed using the “britanin” and “britannin” terms, focusing on gastrointestinal 
tumors. Moreover, the present paper outlines novel research directions using data outside the scope of the digestive 
system, which could be adopted in future gastrointestinal research.

RESEARCH ON BRITANIN IS FOCUSED ON LIVER, COLORECTAL, PANCREATIC, AND GASTRIC  
TUMORS
The first report on the anti-proliferative properties of Britanin was published in 2012 by Moghadam et al[14] who 
extracted a compound from Inula aucheriana. A strong cytotoxic effect was noted on the liver cancer cell line HepG2 
based on MTT assay, i.e., utilizing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, with the half-maximal 
inhibitory concentration (IC50) of 2.2 μg/mL[14]. In the following year, Fischedick et al[16] found that 10 μmol/L of Inula 
britannica-derived Britanin inhibited cell growth by ~80%, as estimated on colorectal cancer cell line DLD1 and its multi-
drug resistant counterpart with P-glycoprotein overexpression.

In 2016, Piao et al[17] evaluated the activity of fourteen Inula japonica-derived compounds that inhibit DNA topoi-
somerases. Among them, Britanin exhibited better inhibitory activity against topoisomerase II (IC50 = 6.9 μmol/L) than 
against topoisomerase I (IC50 > 80 μmol/L). Interestingly, the inhibitory capabilities of Britanin directed at topoisomerase 
II were found to surpass those of Etoposide (IC50 = 26.9 μmol/L), a commonly used inhibitor. Moreover, Britanin showed 
low toxicity against liver hepatoblastoma (HepG2 cell line) and colon adenocarcinoma (HT-29 cell line), with IC50 values 
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of 35.5 μmol/L and 3.9 μmol/L, respectively[17].
In 2017, Moeinifard et al[18] assessed the chemotherapeutic potential of Britanin derived from Inula aucheriana in 

pancreatic cancer therapy. The results indicated that the compound induces apoptosis in human pancreatic cancer cell 
lines AsPC-1 and PANC-1 by simultaneously decreasing B-cell lymphoma 2 (BCL-2) expression and increasing that of 
Bcl-2-associated X protein (BAX). Additionally, Britanin increased the generation of reactive oxygen species (ROS) and 
activated the axis of Akt kinase and Forkhead box O1 (AKT-FOXO1), inducing the mitochondrial apoptotic pathway in 
both cell lines[18]. IC50 values for AsPC-1 and PANC-1 cell lines equaled 30 ± 4.61 μmol/L and 40 ± 5.63 μmol/L, res-
pectively.

In the following year, Cui et al[19] reported that Britanin extracted from Inula aucheriana could induce apoptosis and 
autophagy via ROS-driven activation of the AMP-activated protein kinase (AMPK) pathway in the liver cancer cell lines 
HuH-7, SMMC-7721, and HepG2. Britanin reduced the survival rate of the cells in a dose- and time-dependent manner, 
with respective IC50 values of 27.86 ± 1.35 μmol/L, 28.92 ± 1.09 μmol/L and 15.69 ± 1.58 μmol/L after 24-h treatment (8.81 
± 0.95 μmol/L, 8.12 ± 1.15 μmol/L, and 6.86 ±1.05 μmol/L after 48 h). Furthermore, the compound exhibited no 
cytotoxicity against normal human liver cells. Further in vivo tests on the most susceptible cell line (HepG2) found Bri-
tanin to suppress liver cancer proliferation in a dose-dependent manner[19].

In 2020, Shi et al[20] found Inula japonica-derived Britanin to inhibit the growth and progression of gastric cancer cells 
using in vitro and in vivo models. The in vitro study examined the influence of Britanin on the proliferation and migration 
of BGC-832 and SGC-7901 gastric cell lines, while the mouse xenograft model involving the BGC-823 allowed for real-
time tracking of tumor growth through bioluminescent imaging. Cytotoxicity testing indicated IC50 values of 4.999 μmol/
L for BGC-823 and 2.243 μmol/L for SGC-7901. Treatment with Britanin was associated with alterations in the nuclear 
factor kappa B (NF-κB) pathway which reduced the proliferation of gastric cancer cells. It also resulted in elevated 
interleukin-2 levels (activator of Natural Killer cells, B-cells, CD4+ and CD8+ T-cells) and decreased interleukin-10 levels 
(CD4+ T-cell inactivator), thus promoting the immune response and inhibiting cancer cell development[20].

A study by Li et al[21] found Britanin to have similar effects on hepatocellular carcinoma. The cytotoxicity and anti-
tumor effects were studied on HepG2 and BEL-7402 cell lines in vitro and a subcutaneous BEL-7402 tumor model in mice 
in vivo. The IC50 values were found to be 2.702 μmol/L in the BEL-7402 and 6.006 μmol/L in the HepG2 cells. Colony 
formation assay, transwell migration, and tumor size measurements showed that Britanin possesses a reliable anti-tumor 
effect. Additionally, Western Blotting indicated that Britanin inhibited p65 protein and modulated the BCL-2/BAX ratio
[21].

The effect of Britanin from Inula linearifolia on pancreatic cancer was examined by Li et al[22]. The anti-tumor effects 
were determined in vitro on three pancreatic cancer cell lines: PANC-1, MIA CaPa-2, and BxPC-3. Respective IC50 values 
equaled 1.348, 3.104, and 3.367 μmol/L. PANC-1 was utilized to establish a murine xenograft model. Britanin exhibited 
very low toxicity in vivo and excellent inhibitory effects against pancreatic cancer in vivo and in vitro. The compound 
diminished cell proliferation and migration by inhibiting the p50-p65/NF-κB pathway. The authors suggest that, due to 
its very low toxicity, Britanin could be safer for use than small molecule inhibitors[22].

In 2021, Zhang et al[23] investigated the potential of Britanin in cancer immunotherapy, specifically its impact on the 
Programmed death receptor 1 and ligand 1 (PD-1/PD-L1) immune pathway. The study used Hep3B liver cancer cells and 
HCT116 colorectal cancer cells, with the latter utilized to establish a mouse xenograft model. It was found that Britanin 
maintains the activity of T-cells and reduces proliferation and angiogenesis by inhibiting PD-L1 transcription; this was 
achieved by interrupting the Ras/RAF/MEK/ERK pathway and mTOR/P70S6K/4EBP1 signaling, ultimately affecting 
communication between myelocytomatosis oncogene (Myc) and hypoxia-inducible factor 1α (HIF-1α). Moreover, 
molecular docking data revealed that Britanin interacts with PD-L1, HIF-1α, and Myc[23]. A later docking analysis of 
Britanin, and fifteen of its analogues, to the PD-L1 protein was used in the design of novel molecules based on the 
structure of pseudoguaianolide-type sesquiterpene lactones[4].

The most recent gastrointestinal study was conducted by Abdolmohammadi et al[24] who evaluated the mode of action 
of Britanin from Inula aucheriana in gastric cancer. Growth inhibition and apoptosis induction were noticed in AGS and 
MKN45 cell lines, where Britanin suppressed the NF-κB pathway by increasing the mRNA and protein levels of 
peroxisome proliferator-activated receptor-γ (PPARγ). Upregulation of BAX and downregulation of BCL-2, matrix 
metalloproteinase-9 (MMP-9), Twist family bHLH transcription factor 1 (TWIST-1), and cyclooxygenase-2 (COX-2) were 
also noted. The authors concluded that Britanin is an encouraging anti-cancer agent that still requires further examination
[24].

The main biological and molecular findings from the above studies are briefly summarized in Figure 1, whereas 
available IC50 values are collected in Table 1. It is worth recapitulating a few aspects that make Britanin a promising anti-
cancer agent. Above data certify that the compound exhibits pleiotropic biological activity, providing a multimodal 
approach against gastrointestinal tumors. Combining these properties with the impact of Britanin on the PD-1/PD-L1 
pathway[4,23], it seems that the compound might be valuable for both chemotherapeutic and immunotherapeutic 
settings. Moreover, available studies report that the cytotoxic effect of Britanin on noncancerous cells is significantly 
lower than that on tumor cells, while still being effective against the latter[18,19,22]. Ultimately, it has been suggested that 
Britanin could be safer than small molecule inhibitors[22], which are currently used for targeting gastrointestinal tumors
[25,26].

FUTURE PROSPECTS
A wealth of data on the effect of Britanin has been obtained from studies other than those associated with liver, colorectal, 
pancreatic, and gastric cancer. Such information may suggest the direction of further research on gastrointestinal tumors.
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Table 1 Efficacy of Britanin from various plant sources in inhibiting gastrointestinal cancer cell lines

Gastrointestinal tumor Cell line Source of Britanin IC50 (μmol/L) Ref.

Liver cancer HuH-7 Inula aucheriana 27.86 ± 1.353 Cui et al[19]

Liver cancer SMMC-7721 Inula aucheriana 28.92 ± 1.093 Cui et al[19]

Liver cancer HepG2 Inula aucheriana 15.69 ± 1.583 Cui et al[19]

Liver cancer HepG2 Inula aucheriana 6.0041,4 Moghadam et al[14]

Liver cancer HepG2 Inula japonica 35.55 Piao et al[17]

Liver cancer HepG2 Unspecified2 6.0065 Li et al[21]

Liver cancer BEL-7402 Unspecified2 2.7025 Li et al[21]

Colorectal cancer HT-29 Inula japonica 3.95 Piao et al[17]

Pancreatic cancer MIA CaPa-2 Inula linearifolia 3.1044 Li et al[22]

Pancreatic cancer BxPC-3 Inula linearifolia 3.3674 Li et al[22]

Pancreatic cancer PANC-1 Inula linearifolia 1.3484 Li et al[22]

Pancreatic cancer PANC-1 Inula aucheriana 40 ± 5.633 Moeinifard et al[18]

Pancreatic cancer AsPC-1 Inula aucheriana 30 ± 4.613 Moeinifard et al[18]

Gastric cancer BGC-832 Inula japonica 4.9994 Shi et al[20]

Gastric cancer SGC-7901 Inula japonica 2.2434 Shi et al[20]

1Recalculated from μg/mL to μmol/L to standardize the unit (molecular weight of Britanin, i.e., 366.4 g/mol, was acquired from PubChem 2.1).
2Unspecified Britanin source (non-open access paper with no data in abstract).
324-h incubation time with Britanin.
472-h incubation time with Britanin.
5Unspecified incubation time with Britanin (non-open access paper or no data).
IC50: Half-maximal inhibitory concentration.

Figure 1 Influence of Britanin on biological processes and related proteins in gastrointestinal tumors. A red upward pointing arrow (“↑”) 
indicates biological process activation by Britanin, whereas a blue downward pointing arrow (“↓“) signifies biological process inhibition by the same compound. Similar 
applies to the level of proteins, the symbols of which are located in four multicolored areas representing liver, colorectal, pancreatic, and gastric cancer cells.

Firstly, Hajimehdipoor et al[27] discovered that three sesquiterpene lactones extracted from Inula aucheriana hold 
promise as inhibitors of acetylcholinesterase (AChE). While the research was primarily focused on Alzheimer’s disease, 
Britanin emerged as the second most potent inhibitor of AChE, exhibiting 25.2% inhibitory activity at a concentration of 
300 μg/mL. The researchers suggest that altering the structure of Britanin could enhance its AChE inhibitory potential 
and reduce its cytotoxicity[27]. This could be of value in cancer treatment, as the cholinergic system and AChE activity 
are known to play important roles in tumor development and microenvironmental alterations[28]. Modifying the 
structure of Britanin to reduce cytotoxicity is noteworthy since gastrointestinal toxicity remains a common complication 
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of cytotoxic anti-cancer chemotherapy[29].
Secondly, gastrointestinal research on Britanin should be directed at mast cells, which appear to play pro-tumorigenic 

and anti-tumorigenic roles[30]. Lu et al[31] assessed the anti-allergic activity of an Inula japonica extract in vivo and 
investigated its mode of action on mast cells in vitro. Britanin was found to be one of the most abundant sesquiterpenes. 
The extract attenuated the mast cell-mediated passive cutaneous anaphylaxis reaction and exhibited an anti-allergic effect 
by modulating eicosanoid generation and degranulation in vitro[31]. Park et al[32] found Inula japonica-derived Britanin 
to ameliorate mast cell-mediated pro-inflammatory responses, which they attributed to NF-κB activation. Similarly, Lu et 
al[33] found the mast cell-suppressing ability of Britanin to be associated with the inhibition of the spleen tyrosine kinase 
(Syk) pathway via Syk protein dephosphorylation, as well as deactivation of NF-κB and mitogen-activated protein 
kinases.

It has been observed that mast cell density appears to correlate with angiogenesis and progression in patients with 
gastric carcinoma[34]. Moreover, mast cells were found to be abundant in gastric cancer, which shorten patient survival
[35]. The latter study also revealed that cancer-derived tumor necrosis factor alpha induces PD-L1 overexpression in mast 
cells via activation of the NF-κB signaling pathway. PD-L1+ mast cells suppressed T-cell growth and function in a PD-L1-
dependent manner. Given that Britanin is associated with NF-κB, PD-L1, and T-cells, future gastrointestinal research 
should include Britanin and mast cells.

Thirdly, Britanin has been found to inhibit osteoclastogenesis and osteolysis. The compound inhibited osteoclast differ-
entiation by downregulation of B lymphocyte-induced maturation protein 1 and nuclear factor of activated T cells 1 in 
vitro, as well as protected bone from titanium-induced calvarial osteolysis in vivo[36]. Although osteolysis is a 
complication among patients carrying titanium-based implants after long-term usage[37], it also occurs as an outcome of 
bone metastasis in colorectal cancer. The mechanism by which colorectal cancer cells influence the differentiation of bone 
marrow-derived monocytes into osteoclasts has been described previously[38]. However, further studies are needed to 
confirm whether Britanin can prevent metastasis of colorectal cancer while also counteracting the tumor itself.

Lastly, Britanin was found to relieve ischemic injury, a phenomenon characterized by tissue damage due to the lack of 
perfusion and oxygenation. Although a higher risk of hypoxia is typically associated with organ transplantation, the 
tumor microenvironment is similar to ischemic tissue in this regard[39]. Outside the gastrointestinal context, Britanin was 
found to ameliorate cerebral and myocardial ischemia via pathways incorporating the nuclear factor erythroid 2-related 
factor 2, which is one of the most important defenders against oxidative stress[40,41]. Thus, Britanin might be an 
important protector against negative outcomes of oxidative stress, to which rapidly dividing cells of colonic mucosa are 
steadily exposed[42]. Moreover, subsequent research on gastrointestinal tumors is necessary, since ischemia mediates 
metastasis in liver, pancreatic, and colon cancer[43-45].

The novel research directions which could be adopted in future gastrointestinal research on Britanin are recapitulated 
in Figure 2. Regardless of the topic, any studies of the relationship between Britanin and its influence on signaling 
pathways or the proteome should be supported by molecular docking. Existing data indicates that Britanin interacts with 
such essential proteins as NF-κB, PD-L1, Myc, and HIF-1α[4,12,23,46], and it may also influence other important proteins 
and pathways, such as BCL-2, BAX, AMPK, MMP-9, TWIST-1, COX-2, or PPARγ.

Figure 2 Novel research directions which could be adopted in future gastrointestinal research on Britanin. The light-yellow rectangles represent 
data on Britanin obtained from studies other than those associated with liver, colorectal, pancreatic, and gastric cancer. Processes included therein are linked to 
various tumor-related phenomena, which are depicted in gray rectangles. Britanin was not yet investigated in these tumor-related phenomena, which was marked 
with solid red arrows and question marks (“?”). Such information may suggest the direction of further research on gastrointestinal tumors.

CONCLUSION
Britanin is a natural compound that counteracts liver, colorectal, pancreatic, and gastric tumors by regulating prolif-
eration, apoptosis, autophagy, immune response, migration, and angiogenesis. Its cytotoxicity on noncancerous cells is 
significantly lower than that on tumor cells, while still being effective against the latter, warranting further in-depth 
studies based on animal models. The ability to reduce the cytotoxicity of Britanin via structural modification may be 
useful in limiting gastrointestinal toxicity after cytotoxic anti-cancer chemotherapy. Outside the chemotherapeutic 
context, Britanin might also be valuable in an immunotherapeutic setting since it affects the PD-1/PD-L1 pathway. The 
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compound acts against negative outcomes of oxidative stress, to which rapidly dividing cells of colonic mucosa are 
steadily exposed. Given the pleiotropic biological activity, Britanin ensures a multimodal approach against gastr-
ointestinal tumors, which may provide additional treatment options or reduce the high mortality rate. However, it has yet 
to be included in clinical trials as no data on its use exists in the National Institutes of Health. Future research should 
incorporate molecular docking simulations and focus on the link between Britanin and acetylcholinesterase, mast cells, 
osteolysis, and ischemia, as considerable data on its potential already exists outside the gastrointestinal context.
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Abstract
Metastasis remains a major challenge in the successful management of malignant 
diseases. The liver is a major site of metastatic disease and a leading cause of 
death from gastrointestinal malignancies such as colon, stomach, and pancreatic 
cancers, as well as melanoma, breast cancer, and sarcoma. As an important factor 
that influences the development of metastatic liver cancer, alternative splicing 
drives the diversity of RNA transcripts and protein subtypes, which may provide 
potential to broaden the target space. In particular, the dysfunction of splicing 
factors and abnormal expression of splicing variants are associated with the 
occurrence, progression, aggressiveness, and drug resistance of cancers caused by 
the selective splicing of specific genes. This review is the first to provide a detailed 
summary of the normal splicing process and alterations that occur during meta-
static liver cancer. It will cover the role of alternative splicing in the mechanisms 
of metastatic liver cancer by examining splicing factor changes, abnormal splicing, 
and the contribution of hypoxia to these changes during metastasis.
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Core Tip: Metastatic liver cancer refers to tumors formed outside the liver that metastasize to the liver and colonize it. 
Abnormal alternative splicing is a molecular characteristic unique to almost all tumor types. Most tumors exhibit a wide 
range of splicing abnormalities compared to the surrounding healthy tissues. This review is the first to provide a detailed 
summary of the normal splicing process and alterations that occur during metastatic liver cancer by examining splicing 
factor changes, abnormal splicing, and the contribution of hypoxia to cellular changes.
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INTRODUCTION
Primary liver cancer, also known as hepatocellular carcinoma (HCC), originates in the liver and is often associated with 
chronic liver diseases such as cirrhosis, infections with hepatitis B or C viruses, or alcohol-related liver disease[1]. 
Conversely, metastatic liver cancer refers to tumors formed outside the liver that metastasize to the liver and colonize it. 
Owing to the dual blood supply from the hepatic artery and portal vein, the liver has become the most common 
parenchymal organ to which most malignant tumors metastasize[2]. Metastatic cancer has become a major clinical 
challenge because of its high incidence and poor prognosis. Metastatic liver cancer, or liver metastasis, is caused by the 
spread of cancer cells from other primary sites (such as the colon, rectum, stomach, and breast) to the live[3-6]. The 
prognosis of patients with liver metastasis varies depending on the type of primary cancer. Liver metastasis in some 
cancers, such as lung cancer, is associated with a poor prognosis[7].

Currently, the treatment of metastatic liver cancer is completely different from that of the primary cancer. Although 
tumors grow in the liver, the biological activity of metastatic liver cancer is different from that of tumors at the primary 
site, and liver metastasis has the characteristics of multifocal and late-stage diseases[7]. The treatment of metastatic liver 
cancer usually involves systemic treatments such as chemotherapy and targeted therapy[3-6]. Therefore, initially 
determining the organ or tissue source of the primary cancer is necessary (to obtain pathology findings) and then use 
systemic treatment (choosing a plan based on the pathology of the primary cancer) and local liver resection, including 
surgical, ablation, and systemic treatment methods[7-10]. The combination of minimally invasive image-guided therapies, 
such as radioembolization and percutaneous liver-guided therapy, has expanded the treatment options for patients with 
obvious metastatic liver disease. However, further research is required to optimize the timing and safety of combining 
systemic and local regional therapies. Metastatic liver cancer presents a complex clinical environment with different 
primary cancer origins, prognostic impacts, and challenges in accurate diagnosis and management. Understanding the 
metastatic patterns, prognostic factors, and immune microenvironments of liver metastases is crucial for developing 
effective treatment strategies and improving patient prognosis[11-13].

Abnormal alternative splicing (AS) is a molecular characteristic unique to almost all tumor types[14]. Most tumors 
exhibit a wide range of splicing abnormalities compared to the surrounding healthy tissues, including frequent retention 
of normally excised introns, inappropriate expression of isoforms that are typically limited to other cell types or develop-
mental stages, splicing errors that damage tumor suppressor genes or promote oncogenic gene expression, and 
promotion of tumor development through various mechanisms, including increased cell proliferation, reduced apoptosis, 
enhanced migration and metastasis, drug-resistant chemotherapy, and evasion of immune monitoring[15,16]. Metastatic 
liver cancer undergoes significant changes over time. In cancer cells derived from the liver and bile ducts, abnormal 
proteins are synthesized due to abnormal splicing associated with cancer. This leads to the dysproliferation of these cells, 
ultimately transforming them into invasive, migratory, and multidrug-resistant phenotypes, resulting in a poor prognosis 
for these liver cancers[8,17,18].

In this review, we highlight the recent developments in AS events. We will also describe the regulation of AS in 
primary and metastatic liver cancers. In addition, this review integrates the biological functions of AS and splicing 
products as well as current efforts to develop their potential for clinical application in the diagnosis or treatment of 
cancer.

ALTERNATE SPLICING
Some genes have one mRNA precursor that produces different mRNA splicing isomers using different splicing methods 
(choosing different splicing sites) in a process known as variable splicing (or AS)[14,15,18-20]. Variable splicing is the 
most common and widespread type of splicing[14]. Variable splicing is an important mechanism for regulating gene 
expression and generating proteomic diversity and is an important reason for the large differences in the number of genes 
and proteins in eukaryotes[21]. In vivo, there are seven types of variable splicing: (1) Exon skip; (2) Retained intron; (3) 
Alternate Donor site; (4) Alternate acceptor site; (5) Alternate promoter; (6) Alternate terminator; and (7) Mutually 
exclusive exons[14,15,17] (Figure 1). During variable splicing, the different exons of a gene sequence are selectively linked 
to form multiple transcripts. Consequently, the same gene can encode many different proteins, thereby increasing the 
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Figure 1 Seven types of variable splicing in vivo. (1) ES: Exon skip; (2) RI: Retained intron; (3) AD: Alternate Donor site; (4) AA: Alternate acceptor site; (5) 
AP: Alternate promoter; (6) AT: Alternate terminator; (7) ME: Mutually exclusive exons.

functional diversity of the gene. This type of splicing is very common in mammals and is found in more than 90% of 
genes[22]. The development of metastatic cancer is influenced by multifactorial conditions, possibly due to: (1) Altered 
expression of the spliceosome; (2) mutations affecting genes encoding spliceosome components and related regulatory 
proteins; (3) disruption of splice site or splicing regulatory sites (enhancers or silencers); and (4) impaired signaling 
pathways involved in the regulation of splicing mechanisms[17,23,24].

ALTERNATE SPLICING IN PRIMARY LIVER CANCER
Primary HCC tumor tissue exhibits a high degree of differential splicing compared to normal liver tissue. A growing 
body of research has shown that alterations in the splicing program in HCC tumor cells generate novel protein subtypes 
that often have different and sometimes opposite functions to their classical counterparts[25]. These changes were 
significantly associated with patient survival[12]. These findings suggest that AS plays a crucial role in HCC progression 
and prognosis. Primary liver cancer includes various tumors such as HCC and intrahepatic cholangiocarcinoma (iCCA)
[26]. One study showed that differences between HCC and iCCA AS affected hundreds of genes[19]. Thus, alternative 
and tumor-specific subtypes caused by abnormal splicing are common during liver tumorigenesis[21,27].

AS disorder is also associated with the pathogenesis of liver cancer. For example: Loss of SRSF3 induces IGF2 
expression and altering INSR splicing to allow insulin-like growth factor II (IGF2) signaling to be conducted through 
insulin receptor (IR)-A in hepatocytes[28]. Hepatic IGF2 expression is a carcinogenic driver in aging-related HCC mouse 
models, causing DNA damage and supporting hepatocyte proliferation. This allowed for the accumulation of somatic 
mutations. EGFR regulates the selective splicing of IR pre-mRNA in HCC cells. After ligand binding, EGFR activation 
triggers an intracellular signaling cascade, which implies MEK activation. This stimulates the transcription of genes 
encoding different splicing factors, namely CUGBP1, hnRNPH, hnRNPA1, hnRNPA2B1, and SF2/ASF. hnRNPF expression 
is not regulated by the EGFR-dependent pathway. Interaction between splicing factors and IR pre-mRNA promotes the 
selective splicing of IR exon 11. Consequently, the expression of the IR-A subtype increases to the detriment of IR-B, 
which allows for the transmission of proliferative signals in response to insulin and IGF2, leading to HCC development
[29].

In summary, the dysregulation of AS in liver cancer has been shown to affect various molecular pathways, 
underscoring the influence of AS dysregulation on the molecular mechanisms of liver cancer development and its 
extensive involvement in the pathogenesis, progression, and prognosis of HCC. The replacement of gene products 
produced by abnormal splicing has been linked to positive effects in cancer, making AS a potential target for gene 
therapy[30]. These findings suggest that understanding AS in liver cancer may lead to the development of novel 
therapeutic interventions.

METASTASIS MECHANISMS IN METASTATIC LIVER CANCER
Pathogenesis of metastatic liver cancer involves a complex interplay of molecular mechanisms, including the role of 
splicing factors in cancer progression, AS, and hypoxia-induced splicing changes[31].
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Figure 2 During Epithelial-mesenchymal transition, epithelial splicing regulatory protein 1 expression is reduced, promoting the transition 
from variant CD44 to standard CD44, and can promote liver metastasis of lung, breast, stomach, and ovarian cancers. CD44s: Standard 
CD44; CD44v: Variant CD44; ESRP1: Epithelial splicing regulatory protein 1; EMT: Epithelial-mesenchymal transition.

Splicing factor changes in metastasis liver cancer
The role of splicing factors in metastatic liver cancer has attracted increasing interest in cancer research. Splicing factors, 
including those in metastatic liver cancer, play a direct role in cancer development[32]. Abnormal RNA splicing has been 
recognized as a driver of cancer development and changes in AS of RNA have been associated with liver cancer 
progression[26]. In addition, alterations in splicing are associated with liver cancer markers, including de-differentiation 
and genomic instability, which are the core processes of tumor transformation[16].

In liver cancer, the AS of specific genes has been shown to contribute to cancer progression and metastasis. For 
example, epithelial splicing regulatory protein 1 (ESRP1) plays a key role in the regulation of CD44 AS[33]. ESRP1 is an 
epithelium-specific splicing factor that regulates the AS of several genes, including fibroblast growth factor receptor 2 and 
CD44[34]. Epithelial-mesenchymal transition (EMT) is a specific biological process in which epithelial cells are 
transformed into stromal cells. It is important for epithelial cell-derived malignant tumor cells to acquire migration and 
invasion abilities. EMT plays a crucial part in embryonic development, chronic inflammation, tissue reconstruction, 
cancer metastasis, and various fibrotic diseases[35]. The main characteristics of EMT include reduced expression of cell 
adhesion molecules (such as E-cadherin), transformation of the cytoskeleton from keratin to vimentin, and altered 
morphological characteristics of mesenchymal cells. Through EMT, epithelial cells lose cell polarity, their connection to 
the basement membrane, and other epithelial phenotypes, while gaining higher interstitial phenotypes, such as migration 
and invasion, apoptosis inhibition, and degradation of the extracellular matrix[36]. During EMT, ESRP1 expression is 
sharply reduced, facilitating the transition from variant CD44 (CD44v) to standard CD44 (CD44s), mediating the 
expression of isoforms required for EMT. ESRP1 promotes liver metastasis in breast cancer cells by enhancing EMT[34]. 
ESRP1 regulates subtype conversion and determines gastric cancer metastasis[37]. ESRP1 drives AS of CD44, thereby 
enhancing invasion and migration of epithelial ovarian cancer cells[38]. ESRP1 has been identified as a favorable 
prognostic factor for pancreatic cancer[39], alleviating pancreatic metastasis. In contrast, the silencing of ESRP1 has been 
shown to drive the malignant transformation of human lung epithelial cells[40], suggesting that cancer progression is 
strongly influenced by splicing factors (Figure 2).

Abnormal splicing in metastatic liver cancer
AS events have been identified as prognostic factors for HCC, highlighting their potential impact on the development and 
prognosis of liver cancer[41]. Various AS events may also influence the development of metastatic liver cancer. Studies 
have shown that abnormal AS events promote malignant cancer progression[42].

In 2015, a team found that PC-3 and its derived cell lines crossed the transfer barrier in vitro and in vivo, providing an 
excellent, unbiased system for comprehensively characterizing AS events and identifying the key splicing factors that 
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Figure 3 Exons 6-14 of CD44 gene undergo alternative splicing in the membrane-proximal stem region, resulting in a variety of variable 
splicing variants (CD44 variant isoform, variant CD44; Including CD44v2-v10). CD44s: Standard CD44; CD44v: Variant CD44.

influence the splicing regulation of transfer. This suggests that partially selective splicing events are associated with 
metastatic colonization of cancer cells, suggesting a potential role in promoting metastasis[43]. Liver metastasis may 
occur in different tumors, and different splicing events may promote liver metastasis. For example, the splicing mediated 
by RBFOX2 shifts from an epithelial-specific event to a mesenchymal-specific event, leading to a higher degree of tissue 
invasion, which in turn leads to liver metastasis[44]. Different splicing subtypes of the same spliceosome, such as CD44, 
promote liver metastasis. CD44 is a cell surface glycoprotein involved in cancer progression and metastasis. AS of CD44 
mRNA produces various subtypes, including CD44s and CD44v (Figure 3), which are associated with cancer metastasis. 
The CD44-ZEB1-ESRP1 feedback loop can control the cell phenotype and prognosis of patients with cancer by 
determining the CD44 subtype expression[45]. Some splicing events that lead to liver cancer metastasis, such as the 
overexpression of IGF2 and decreased splicing activity of SRSF3, are considered major causes of DNA damage and 
drivers of liver cancer, indicating the importance of specific splicing factors in liver cancer development. While affecting 
the process of liver metastasis, it also affects changes in tumor drug resistance. The FUS/circEZH2/KLF5 feedback loop 
promotes liver metastasis of breast cancer by FUS promoting the reverse splicing process of circEZH2 by binding to the 
3’-lateral intron portion of pre-EZH2 to enhance the EMT, and may also influence drug resistance of liver metastases 
through this mechanism[46]. In summary, AS events are involved in the occurrence and development of metastatic liver 
cancer, highlighting the importance of splicing regulation in cancer progression and metastasis.

Hypoxia-induced splicing changes in metastasis liver cancer
Hypoxia is associated with changes in EMT, angiogenesis, local tissue invasion, endothelium, exocytosis, and pre-
metastatic niche formation[47]. Hypoxia, a hallmark of the tumor microenvironment, induces AS, thereby promoting the 
invasive behavior of cancer cells[31]. Hypoxia inhibits cancer cell differentiation and promotes cancer cell invasion and 
metastasis, emphasizing its role in promoting cancer cell metastasis[48]. Hypoxia-induced splicing changes play a crucial 
role in the occurrence and progression of cancer metastasis. Hypoxia-induced selective splicing is cell type-specific and 
has highly conserved universal target genes, indicating that hypoxia has a broad impact on splicing[49]. In the DNA 
damage response, hypoxia drives the selective splicing of genes towards non-coding subtypes by increasing intron 
retention[50]. Similarly, hypoxia promotes the expression of splicing subtypes of Myc-related factor X in endothelial cells, 
mediated by nonsense decay degradation, and another splicing subtype that encodes unstable proteins[51].

Hypoxia leads to significant changes in the selective splicing of prostate cancer cells and increased expression of CLK 
splicing factor kinase, leading to liver metastasis[52]. In addition, hypoxia regulates CD44 and its variant subtypes 
through HIF-1α in triple-negative breast cancer, highlighting the role of hypoxia in regulating various splicing events 
associated with cancer progression[48].

The effect of hypoxia on AS has been recognized as a powerful driving force for tumor pathogenesis and progression, 
and various studies have emphasized the important influence of hypoxia-induced splicing changes on the pathogenesis 
of metastatic liver cancer. Understanding the molecular mechanisms underlying hypoxia-induced splicing changes is 
essential for developing targeted therapeutic strategies to mitigate the invasive behavior of metastatic liver cancer cells 
and improve patient outcomes.
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DISCUSSION
The liver has a rich blood supply, so it provides fertile “soil” for metastasis to spread[53]. The liver is one of the largest 
blood vessel networks in the body. It receives blood from the gut, which contains a lot of nutrients. The blood vessels at 
the end of the liver also have high pressure, so it is easier to accommodate and colonize metastasized cancer cells[54]. The 
most common source of metastatic liver cancer is colorectal cancer, followed by pancreatic, breast, melanoma and lung 
cancer. The common ways of metastasis include direct invasion, lymphatic metastasis and blood-derived metastasis. 
Malignant tumors that directly invade the organs and tissues around the liver, such as gastric cancer, gallbladder cancer, 
pancreatic cancer, colon cancer and duodenal cancer. Lymphatic metastasis is more common in digestive system 
malignancies, pelvic or retroperitoneal malignancies, breast cancer, lung cancer and gallbladder cancer. Hematogenous 
metastasis can also be further subdivided into hepatic artery and portal vein metastasis. Any tumor cells entering the 
liver through these vessels can cause liver metastasis, such as esophageal and gastrointestinal tumors and some 
sarcomatoid tumors with higher malignant degree.

Metastatic liver cancer presents significant clinical challenges owing to its aggressiveness, poor prognosis, and limited 
treatment options. Studies based on the SEER database emphasize that patients with primary extrahepatic metastases 
have poor prognosis[55]. In 2020, a practical study of high-intensity focused ultrasound ablation in 250 patients, including 
a primary liver cancer cohort (n = 80) and metastatic liver cancer cohort (n = 195), yielded 1-year survival rates of 70.69% 
and 48.00%, respectively[56]. These findings highlight the need for innovative therapeutic modalities to address the 
adverse effects of metastatic liver cancer. Metastatic liver cancer is a serious detrimental condition. Addressing the 
challenges associated with metastatic liver cancer requires a comprehensive understanding of its harmful nature and 
development of targeted treatment strategies.

Mechanisms underlying liver cancer metastasis are complex. In 2012, Biamonti et al[57] explored the role of AS in EMT, 
elucidating the link between AS and the invasive abilities of cancer cells. Understanding the effects of AS on EMT is 
critical for elucidating the underlying mechanisms of cancer metastasis and drug resistance. Next, a systematic review of 
liver transplantation in patients with liver metastases from neuroendocrine tumors highlighted the challenges posed by 
high recurrence rates, underscoring the need for precise patient selection and new treatment strategies[58]. Breakth-
roughs in the understanding of variable splicing in metastatic liver cancer have the potential to revolutionize cancer 
treatment. A comprehensive analysis of tumor AS in 8705 patients showed that tumors had 30% more AS events than 
normal samples[59]. This highlights the importance of AS in cancer, including metastatic cancer, and illustrates the 
potential of targeting splicing events for therapeutic interventions. In addition, the 2021 study by Fish et al[60] identified a 
previously unknown structural splicing enhancer rich in near-box exons with increased inclusions in highly metastatic 
cells. These findings provide valuable insights into the molecular mechanisms of metastasis and offer potential targets for 
the suppression of cancer metastasis. Subsequently, 2022 revealed an FUS/circEZH2/KLF5 feedback loop that promoted 
liver metastasis of cancer by enhancing EMT[46]. These findings provide insights into the molecular pathways of liver 
metastasis and a potential target for therapeutic intervention.

Metastatic liver cancer is a complex and multifaceted disease, and AS has been identified as a key factor in its 
progression. Several themes regarding the role of AS in metastatic liver cancer have emerged in the literature. AS is 
associated with EMT, a key process in cancer metastasis[57]. In addition, the splicing of specific genes such as CD44 has 
been shown to enhance the metastatic potential of cancer cells[61-63]. In addition, regulatory strategies to control AS in 
cancers, including metastatic liver cancer, remain largely unknown, suggesting gaps in our understanding of the 
underlying mechanisms[37,60]. In addition, associations between AS and metastatic phenotypes have been studied in 
various types of cancers, including colorectal and prostate cancers, suggesting that AS has a broader relevance in cancer 
metastasis[64,65]. Despite these insights, the existing studies of AS for metastatic liver cancer have some shortcomings. 
The functional mechanisms of AS in cancer, particularly liver metastasis, remain unclear[46,66]. Although a link between 
AS and cancer metastasis has been established, the specific regulatory procedures governing this process remain unclear
[60]. In addition, the literature highlights the disappointing outcomes of liver transplantation for both primary and 
metastatic liver cancers, suggesting a lack of effective treatment strategies for metastatic liver disease[67]. This finding 
suggests that further research is needed to develop new treatment options for metastatic liver cancer. However, 
significant gaps exist in our understanding of the functional mechanisms and regulatory processes involved in AS in 
metastatic liver cancer. Addressing these gaps is critical for developing effective interventions for this challenging 
disease. This article is the first review of variable splicing in metastatic liver cancer, with the hope of providing new 
directions for future research.

CONCLUSION
In recent years, the importance of variable splicing in the development of liver metastases has been increasingly 
recognized. These breakthroughs underscore the potential of targeting AS events and related molecular pathways to 
inhibit the development and progression of metastatic cancers. Further research and clinical studies are essential to 
translate these findings into effective treatments for patients with metastatic liver cancer.
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Abstract
BACKGROUND 
Immunotherapy have demonstrated promising outcomes in patients with high 
microsatellite instability (MSI) (MSI-H) metastatic colorectal cancer. However, the 
comparative effectiveness of Immunotherapy and chemotherapy for patients with 
low MSI (MSI-L), and microsatellite stable (MSS) metastatic colorectal cancer 
remains unclear.

AIM 
To investigate immunotherapy vs chemotherapy for treatment of MSI-L/MSS 
metastatic colorectal cancer, and to evaluate the success of immunotherapy 
against chemotherapy in managing MSI-H metastatic colorectal cancer during a 
follow-up of 50 months.

METHODS 
We conducted a retrospective cohort study using the National Cancer Database 
(NCDB) to evaluate the overall survival (OS) of patients with metastatic colorectal 
cancer treated with immunotherapy or chemotherapy. The study population was 
stratified by MSI status (MSI-H, MSI-L, and MSS). Multivariable Cox proportional 
hazard models were used to assess the association between treatment modality 
and OS, adjusting for potential confounders.
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RESULTS 
A total of 21951 patients with metastatic colorectal cancer were included in the analysis, of which 2358 were MSI-H, 
and 19593 were MSI-L/MSS. In the MSI-H cohort, immunotherapy treatment (n = 142) was associated with a sig-
nificantly improved median OS compared to chemotherapy (n = 860). After adjusting for potential confounders, 
immunotherapy treatment remained significantly associated with better OS in the MSI-H cohort [adjusted hazard 
ratio (aHR): 0.57, 95% confidence interval (95%CI): 0.43-0.77, P < 0.001]. In the MSS cohort, no significant difference 
in median OS was observed between immunotherapy treatment and chemotherapy (aHR: 0.94, 95%CI: 0.69-1.29, P 
= 0.715).

CONCLUSION 
In this population-based study using the NCDB, immunotherapy treatment was associated with significantly 
improved OS compared to chemotherapy in patients with MSI-H metastatic colorectal cancer, but not in those with 
MSI-L/MSS metastatic colorectal cancer. Further studies are warranted to determine the optimal therapeutic 
approach for patients with MSI-L/MSS metastatic colorectal cancer.

Key Words: Immunotherapy; Chemotherapy; Metastatic colorectal cancer; Microsatellite instability; National cancer database

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Our population-based study demonstrates that immunotherapy treatment is associated with significantly improved 
overall survival in patients with high microsatellite instability (MSI-H) metastatic colorectal cancer. However, immuno-
therapy does not significantly benefit patients with microsatellite stable (MSS) metastatic colorectal cancer. The lower 
response rates to immunotherapy in MSS tumors can be attributed to the lower tumor mutational burden and reduced 
immunogenicity compared to MSI-H tumors. These findings indicate that while immunotherapy is a promising treatment for 
MSI-H colorectal cancer, its efficacy in MSS cases remains uncertain, warranting further investigation to develop targeted 
therapies for these patients.

Citation: Niu CG, Zhang J, Rao AV, Joshi U, Okolo P. Comparative effectiveness of immunotherapy and chemotherapy in patients 
with metastatic colorectal cancer stratified by microsatellite instability status. World J Clin Oncol 2024; 15(4): 540-547
URL: https://www.wjgnet.com/2218-4333/full/v15/i4/540.htm
DOI: https://dx.doi.org/10.5306/wjco.v15.i4.540

INTRODUCTION
Colorectal cancer is globally recognized as the third most widespread form of cancer and the second leading cause of 
death due to cancer[1,2]. The 2023 statistics from the American Cancer Society predict that there will be 153020 new cases 
of colorectal cancer in the United States, with an estimated death count of 52550[3]. The treatment of metastatic colorectal 
cancer poses a significant difficulty in clinical practice, with an overall 5-year survival rate of just 14%[4]. Conventional 
frontline therapies for this condition often consist of Fluoropyrimidine-based chemotherapy, complemented by targeted 
treatments including anti-vascular endothelial growth factor and anti-epidermal growth factor receptor agents[5-8]. A 
mounting body of evidence suggests that tumors with high microsatellite instability (MSI) (MSI-H) may not be ideally 
suited to standard chemotherapy treatments[9-11]. MSI-H colorectal cancers, known for their high mutation rate, generate 
neoantigens that activate the immune system[11]. The KEYNOTE-177 and CheckMate-142 trials have demonstrated that 
immunotherapy offers significant clinical benefit in the treatment of MSI-H/dMMR metastatic colorectal cancer[12,13]. 
While immunotherapy has shown enhanced effectiveness in treating metastatic colorectal cancers characterized by MSI-
H, it demonstrates limited success in microsatellite stable (MSS) variants, which account for the majority (95%) of these 
cases[14].

A thorough literature review highlights a significant data gap in immunotherapy application for MSS patients. 
Consequently, the majority of those with MSS metastatic colorectal cancer have yet to see the benefits of current immuno-
therapy methods[14]. Meanwhile, large-scale data evaluating the relationship between MSI-H metastatic colorectal cancer 
and immunotherapy is scarce. Hence, leveraging the National Cancer Data Base (NCDB)—which captures over 70% of 
new cancer diagnoses in the United States [15]—this research intends to: (1) Investigate immunotherapy vs chemotherapy 
for treatment of MSS colorectal cancer; and (2) Evaluate the success of immunotherapy against chemotherapy in 
managing MSI-H metastatic colorectal cancer during a follow-up of 50 months.
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MATERIALS AND METHODS
Data source and study population
Our research involved a retrospective cohort analysis utilizing the NCDB, a collaborative initiative between the American 
College of Surgeons and the American Cancer Society, encompassing over 70% of new cancer diagnoses in the United 
States[16]. Our research entailed a detailed retrospective analysis utilizing the NCDB, focusing on a cohort of adult 
patients diagnosed with stage IV colorectal adenocarcinoma on 2020. This study encompassed patients identified by 
primary tumor site codes C18 (malignant neoplasm of the colon) and C20 (malignant neoplasm of the rectum), which are 
ICD-10 codes. The analysis concentrated on key variables, including gender, age at diagnosis, and tumor size. Tumor size 
was categorized into two clinically relevant groups: ≤ 20 mm and > 20 mm. Furthermore, patient MSI status was a crucial 
variable, alongside the initial treatment strategy, categorized into immunotherapy and chemotherapy. Vital status was 
utilized to determine whether each patient in the study was deceased or alive. The present study was a database analysis 
using de-identified data; therefore, institutional review board approval was not required for this type of study.

Study population characteristics
In profiling the study population, we gathered demographic information and clinical characteristics. This included age at 
diagnosis, gender, race, socioeconomic background, and types of healthcare facilities where treatment was administered. 
The Charlson-Deyo Comorbidity score was employed to evaluate comorbid conditions, with scores truncated to 0, 1, 2, or 
3 (for scores ≥ 3). Data regarding treatment modalities, immunotherapy, chemotherapy, and additional supportive 
treatments, were analyzed with a primary focus on the initial course of therapy.

Outcome of interest
The focus of our research was on the initial systemic therapy administered to patients, divided into two categories: 
Immunotherapy and chemotherapy, including both single-agent and combination therapies. The primary outcome for 
evaluation was overall survival (OS), which we defined as the period from the diagnosis of metastatic colorectal cancer 
until death from any cause or the most recent follow-up. We tracked OS from the point of cancer diagnosis, monitoring 
up to the occurrence of death or the last recorded follow-up, and calculated both one-year, three-year, and 50 months 
survival rates. Our methodology and data analysis conformed to the Strengthening the Reporting of Observational 
Studies in Epidemiology guidelines.

Statistical analysis
All analyses were conducted using Stata version 17.0 (StataCorp, College Station, Texas 77845, United States). We 
calculated the median follow-up duration, with survival time measured from the date of diagnosis to either death or the 
last known contact. Descriptive statistics were employed to summarize the baseline characteristics of the patient cohort. 
The Kaplan-Meier method was used to estimate survival probabilities, and the log-rank test was applied to compare 
differences between prognostic factors. To assess the impact of various factors on five-year OS, Cox proportional hazards 
models were utilized. These models generated hazard ratios (HR) along with their 95%CI. Additionally, multivariate 
analysis was conducted to calculate the adjusted HR (aHR), accounting for variables like race, gender, and age. The 
proportional hazards assumptions of our models were graphically verified. Furthermore, the accuracy of the American 
Joint Committee on Cancer sixth edition staging system was evaluated by calculating a concordance index, complete with 
95%CIs. All statistical tests were two-sided, with a significance threshold set at P < 0.05.

RESULTS
Baseline characteristics of the study cohort
Our comprehensive study analyzed 21951 patients diagnosed with stage IV colorectal cancer, categorized based on MSI 
status. Within this cohort, 2358 patients were identified as MSI-H, and 19593 as MSS. The treatment breakdown revealed 
that in the MSI-H group, 142 patients opted for the novel approach of immunotherapy, while a significant portion, 860 
patients, underwent conventional chemotherapy. Similarly, in the MSS group, 88 patients received immunotherapy, 
compared to 8085 who chose chemotherapy. This distinction in treatment choices underscores the evolving landscape of 
cancer therapeutics. The average follow-up duration for patients receiving immunotherapy in the MSI-H group was 21.91 
± 12.23 months, and 19.83 ± 12.89 months for those receiving chemotherapy. The MSS group had a slightly longer mean 
follow-up of 18.48 ± 11.37 months for immunotherapy and 20.61 ± 11.71 months for chemotherapy. The median ages in 
these groups varied, with 77 years and 63 years for MSI-H patients on immunotherapy and chemotherapy, respectively, 
and 67.5 and 62 years for the MSS cohort, reflecting the demographic diversity of the study population (Table 1).

Survival outcomes based on MSI status
Analyzing the survival outcomes, MSI-H patients who received immunotherapy experienced a pronounced survival 
benefit with an aHR of 0.57 (95%CI: 0.43-0.77), suggesting a robust response to this treatment modality. This benefit 
contrasts with the MSS group, where immunotherapy did not provide a significant survival advantage (aHR = 0.94; 
95%CI: 0.69-1.29). The one-year survival rates further illustrate this difference: 71.96% for MSS patients on immuno-
therapy and 76.78% for those on chemotherapy, compared to 76.55% and 69.91% for MSI-H patients, respectively. A 
similar pattern was observed at the three-year follow-up, with survival rates of 48.06% for immunotherapy and 40.38% 
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Table 1 Basic characteristics

Microsatellite instability-high, n = 2358 Microsatellite stable, n = 19593

Immunotherapy, n = 142 Chemotherapy, n = 860 Immunotherapy, n = 88 Chemotherapy, n = 8085

Follow up duration (month)

mean ± SD 21.91 ± 12.23 19.83 ± 12.89 18.48 ± 11.37 20.61 ± 11.71

Median (Range) 22.46 (0.53-48.76) 18.58 (0.26-48.69) 18.88 (0.79-47.31) 30.52 (0-49.97)

Age (yr)

mean ± SD 72.32 ± 14.70 62.43 ± 14.42 66.10 ± 15.41 61.53 ± 13.38

Median (Range) 77 (27-90) 63 (21-90) 67.5 (27-90) 62 (19-90)

< 65, n (%) 34 (23.94) 465 (54.07) 39 (44.32) 4661 (57.65)

≥ 65, n (%) 108 (76.06) 395 (45.93) 49 (55.68) 3424 (42.35)

Sex, n (%)

Male 52 (36.62) 437 (50.81) 48 (54.55) 4466 (55.24)

Female 90 (63.38) 423 (49.19) 40 (45.45) 3619 (44.76)

Race, n (%)

White 9 (6.34) 47 (5.47) 76 (6.36) 6356 (78.61)

Black 123 (86.62) 679 (78.95) 8 (9.09) 1123 (13.89)

Other 9 (6.34) 125 (14.53) 0 8 (0.10)

Unknown 1 (0.70) 9 (1.05) 4 (4.41) 598 (7.4)

Charlson-Deyo Score, n (%)

0 9 (6.34) 644 (74.88) 65 (73.86) 6039 (74.69)

1 123 (86.62) 132 (15.35) 16 (18.18) 1260 (15.58)

2 9 (6.34) 43 (5.00) 6 (6.82) 400 (4.95)

≥ 3 1 (0.70) 41 (4.77) 1 (1.14) 386 (4.77)

Tumor size, n (%)

≤ 20 mm 107 (75.35) 623 (72.44) 61 (69.32) 5621 (69.52)

> 20 mm 35 (24.65) 237 (27.56) 27 (30.68) 2464 (30.48)

Tumor grade, n (%)

Well differentiated 0 0 0 0

Moderate differentiated 0 0 0 0

Poorly differentiated 0 0 0 0

Unknown 142 (100.00) 860 (100.00) 88 (100.00) 8085 (100.00)

SD: Standard deviation.

for chemotherapy in the MSS group, and 50.96% and 44.35% in the MSI-H group, indicating a more pronounced long-
term benefit for immunotherapy in the MSI-H category (Tables 2 and 3). The Kaplan-Meier survival curves for these 
groups are depicted in Figure 1A (MSS) and Figure 1B (MSI-H).

KRAS mutation and survival
The study also delved into the impact of KRAS mutation status on treatment outcomes. For KRAS wild-type patients, no 
significant difference in survival was observed between immunotherapy and chemotherapy (HR = 1.16; 95%CI: 0.86-1.56). 
However, in KRAS mutated patients, a trend toward improved survival was noted with immunotherapy (HR = 0.67; 
95%CI: 0.42-1.07), hinting at the potential effectiveness of personalized treatment based on genetic profiles. This trend, 
though not statistically significant, signals a possible avenue for enhancing patient-specific treatment strategies in the 
future (Table 4). The corresponding survival curves are shown in Figure 1C (KRAS wild type) and Figure 1D (KRAS 
mutated type).
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Table 2 Comparative analysis of survival outcomes

Survival analysis Microsatellite instability-high Microsatellite stable

Immunotherapy vs 
chemotherapy

Hazard ratio 
(95%CI)

Adjusted hazard ratio 
(95%CI)

Hazard ratio 
(95%CI)

Adjusted hazard ratio 
(95%CI)

Overall 0.75 (0.57-0.99) 0.57 (0.43-0.77) 1.05 (0.77-1.43) 0.94 (0.69-1.29)

One year 1.32 (0.92-1.92) 1.23 (0.84-1.81) 1.43 (0.95-2.14) 1.37 (0.91-2.06)

Three year 0.74 (0.56-0.98) 0.62 (0.46-0.82) 0.98 (0.72-1.34) 0.88 (0.65-1.21)

Table 3 Comparative analysis of survival rates

Microsatellite stable Microsatellite instability-high
Survival rate

Immunotherapy Chemotherapy Immunotherapy Chemotherapy

1 yr (%) 71.96 (61.14-80.25) 76.78 (75.83-77.70) 76.55 (68.64-82.72) 69.91 (66.65-72.91)

3 yr (%) 48.06 (35.30-58.70) 40.38 (39.01-41.74) 50.96 (39.83-61.04) 44.35 (40.38-48.24)

Table 4 Comparative analysis of survival analysis by KRAS status

Survival analysis KRAS wild type KRAS mutated type

Immunotherapy vs 
chemotherapy

Hazard ratio 
(95%CI)

Adjusted hazard ratio 
(95%CI)

Hazard ratio 
(95%CI)

Adjusted hazard ratio 
(95%CI)

Overall 1.16 (0.86-1.56) 1.01 (0.75-1.37) 0.67 (0.42-1.07) 0.70 (0.44-1.12)

One year 1.28 (0.88-1.87) 1.14 (0.78-1.68) 1.33 (0.71-2.49) 1.33 (0.71-2.50)

Three year 1.17 (0.87-1.58) 1.02 (0.76-1.37) 0.66 (0.41-1.07) 0.68 (0.42-1.09)

DISCUSSION
In our study, utilizing data from the NCDB, we observed that in patients with MSI-H metastatic colorectal cancer, immu-
notherapy significantly improved OS in long-term follow-up, aligning with some previous studies[12,13]. However, our 
results reveal no significant survival benefit with immunotherapy in MSI-L/MSS patients. These findings suggest that 
immunotherapy treatment should be considered for patients with MSI-H metastatic colorectal cancer, while further 
studies are warranted to determine the optimal therapeutic approach for patients with MSS metastatic colorectal cancer.

Our findings echo those of Le et al[12] and Overman et al[13], underscoring the divergent responses to immunotherapy 
in MSI-H vs MSI-L/MSS metastatic colorectal cancers. Le et al’s research delves into the efficacy of programmed death-1 
(PD-1) blockade in mismatch repair-deficient tumors, showing significant positive responses in colorectal and other 
cancers with MSI-H – a notable advancement in immunotherapy for these patients[12]. Similarly, Overman et al’s study 
focuses on the use of Nivolumab, a PD-1 inhibitor, in treating metastatic colorectal cancer patients with mismatch repair 
deficiencies or MSI-H, adding to the growing body of evidence in this field[13]. Boland and colleagues highlighted the 
significant influence of MSI on colorectal cancer, particularly emphasizing the unique tumor characteristics and varied 
treatment responses associated with it[17]. These findings collectively underline the intricacies of tumor biology and the 
critical need to incorporate MSI status in devising treatment strategies.

Our research indicates that immunotherapy does not significantly benefit patients with MSI-L/MSS metastatic 
colorectal cancer, a finding that contrasts sharply with the substantial efficacy observed in MSI-H metastatic colorectal 
cancer. This notable difference may imply a potential resistance to immunotherapeutic strategies within the MSI-L/MSS 
subtype, hinting at a complex, yet unexplored aspect of its molecular profile. The lower response rates to immunotherapy 
in MSI-L/MSS tumors can be attributed to the lower tumor mutational burden and reduced immunogenicity compared 
to MSI-H tumors[17]. Nonetheless, several ongoing clinical trials are investigating combination strategies, such as the use 
of immunotherapy with chemotherapy, targeted therapies, to enhance the efficacy of immunotherapy in MSI-L/MSS 
metastatic colorectal cancer[18-21].

While at first glance these results in MSI-L/MSS metastatic colorectal cancer patients may seem like a setback, they 
actually represent a significant advancement in our understanding of metastatic colorectal cancer. They highlight the 
necessity of re-evaluating our current therapeutic approaches and underscore the importance of further investigation into 
the distinct molecular features of the MSI-L/MSS subtype. Our findings serve as a catalyst for this critical research, 
driving the development of more targeted and effective treatment strategies for metastatic colorectal cancer. Echoing the 
sentiments of Mármol et al[22], our study supports the push towards personalized medicine in the treatment of metastatic 
colorectal cancer. Tailoring treatments based on genetic markers such as MSI can potentially lead to more effective and 
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Figure 1 Survival analysis. A: Survival analysis among microsatellite instability-high population; B: Survival analysis among microsatellite stable population; C: 
Survival analysis among KRAS wild type population; D: Survival analysis among KRAS mutated type population.

targeted therapies.
In our study, the evaluation of OS benefits associated with immunotherapy, in comparison to chemotherapy, revealed 

no significant differences in both KRAS mutated and wild-type colorectal cancer populations. This outcome highlights 
the complex interplay between genetic profiles and tumor response to immunotherapeutic agents. Existing literature has 
consistently shown that KRAS mutations are a common feature in colorectal cancers, often correlating with a challenging 
prognosis and reduced responsiveness to certain treatments, such as anti-EGFR therapies. The lack of a distinct OS 
advantage in either KRAS cohort within our study may suggest a broader pattern of resistance or insensitivity to 
immunotherapy across these genetic variations. This observation emphasizes the critical need for developing more 
refined and individualized treatment strategies, especially for KRAS-mutated colorectal cancer, a substantial subset of the 
patient population.

Our study underscores the necessity of integrating genetic profiling into therapeutic decision-making, potentially 
improving patient outcomes in metastatic colorectal cancer. Such an approach aligns with the evolving paradigm of 
personalized medicine. However, this endeavor requires careful consideration of the metastatic colorectal cancer’s genetic 
heterogeneity, the development of sophisticated genomic analysis techniques, and a thorough understanding of the 
practicalities and challenges in implementing personalized treatment regimens, including economic and logistical factors.

Limits of the study
This study encountered several limitations that are important to acknowledge. Firstly, the retrospective nature of the 
study may have introduced selection bias, as the choice of treatment might have been influenced by unmeasured factors. 
Additionally, the NCDB lacks detailed information on treatment regimens, duration, and response to therapy, which 
precludes further exploration of the impact of different agents, combinations, or lines of therapy. Information on potential 
predictive biomarkers, such as tumor mutational burden and PD-L1 expression, was not available. Another significant 
limitation is the variability in data due to incomplete information on specific molecular characteristics of the colorectal 
tumors in some patients, which may impact the study's conclusions. Lastly, our study population included patients 
diagnosed till 2020, which may not reflect the most recent advances in metastatic colorectal cancer treatment. Given these 
limitations, it is crucial to undertake further research in this field to enhance our understanding of MSS metastatic 
colorectal cancer and to develop more effective treatment strategies.
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CONCLUSION
Our population-based study demonstrates that immunotherapy treatment is associated with significantly improved OS in 
patients with MSI-H metastatic colorectal cancer, but not in those with MSI-L/MSS metastatic colorectal cancer. These 
findings suggest that immunotherapy treatment should be considered for patients with MSI-H metastatic colorectal 
cancer, while further studies are warranted to determine the optimal therapeutic approach for patients with MSI-L/MSS 
metastatic colorectal cancer.
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Abstract
BACKGROUND 
Over the years, strides in colon cancer detection and treatment have boosted 
survival rates; yet, post-colon cancer survival entails cardiovascular disease 
(CVD) risks. Research on CVD risks and acute cardiovascular events in colorectal 
cancer survivors has been limited.

AIM 
To compare the CVD risk and adverse cardiovascular outcomes in current colon 
cancer survivors compared to a decade ago.

METHODS 
We analyzed 2007 and 2017 hospitalization data from the National Inpatient 
Sample, studying two colon cancer survivor groups for CVD risk factors, mor-
tality rates, and major adverse events like pulmonary embolism, arrhythmia, 
cardiac arrest, and stroke, adjusting for confounders via multivariable regression 
analysis.

RESULTS 
Of total colon cancer survivors hospitalized in 2007 (n = 177542) and 2017 (n = 
178325), the 2017 cohort often consisted of younger (76 vs 77 years), male, African-
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American, and Hispanic patients admitted non-electively vs the 2007 cohort. Furthermore, the 2017 cohort had 
higher rates of smoking, alcohol abuse, drug abuse, coagulopathy, liver disease, weight loss, and renal failure. 
Patients in the 2017 cohort also had higher rates of cardiovascular comorbidities, including hypertension, hyperlip-
idemia, diabetes, obesity, peripheral vascular disease, congestive heart failure, and at least one traditional CVD (P 
< 0.001) vs the 2007 cohort. On adjusted multivariable analysis, the 2017 cohort had a significantly higher risk of 
pulmonary embolism (PE) (OR: 1.47, 95%CI: 1.37-1.48), arrhythmia (OR: 1.41, 95%CI: 1.38-1.43), atrial 
fibrillation/flutter (OR: 1.61, 95%CI: 1.58-1.64), cardiac arrest including ventricular tachyarrhythmia (OR: 1.63, 
95%CI: 1.46-1.82), and stroke (OR: 1.28, 95%CI: 1.22-1.34) with comparable all-cause mortality and fewer routine 
discharges (48.4% vs 55.0%) (P < 0.001) vs the 2007 cohort.

CONCLUSION 
Colon cancer survivors hospitalized 10 years apart in the United States showed an increased CVD risk with an 
increased risk of acute cardiovascular events (stroke 28%, PE 47%, arrhythmia 41%, and cardiac arrest 63%). It is 
vital to regularly screen colon cancer survivors with concomitant CVD risk factors to curtail long-term cardio-
vascular complications.

Key Words: Colon cancer; Colorectal cancer; Cardiovascular diseases; Cardiovascular disease risk; Cardiac events; Stroke

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Colon cancer survivors hospitalized 10 years apart in the United States showed an increased cardiovascular disease 
risk with an increased risk of acute cardiovascular events (stroke 28%, pulmonary embolism 47%, arrhythmia 41%, and 
cardiac arrest 63%). Increased screening in this cohort is important.
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INTRODUCTION
Cardiovascular disease (CVD) and cancer remain the leading causes of death in the United States, with colon cancer being 
the third leading cause of all cancer-related deaths in both men and women. According to 2017 Global Burden of Disease 
data, there were 1.8 million incident colon cancer cases with an age-standardized incidence rate of 23.2 per 100000 person-
years[1]. However, with improvements in screening strategies, early detection and treatment, and better lifestyle modific-
ations, the survival rates have improved significantly[2].

Studies have shown increased CVD risk in cancer survivors which includes heart failure, stroke and coronary artery 
disease[3]. This is explained by the fact that CVD and colon cancer survivors both share risk factors such as age, obesity, a 
sedentary lifestyle, and smoking. Patients after cancer chemo and radiotherapy enter a chronic inflammatory state 
secondary to the cancer burden and the treatment effects. These lead to the development of new chronic conditions such 
as diabetes, hypertension, and hyperlipidemia, which in themselves increase adverse cardiovascular event risk[4-6]. 
There is also increased cardiotoxicity from these treatments, which is understudied in colon cancer survivors. The risk of 
CVD has been well described for breast[7], lung[8,9], lymphoma/leukemias[10] and prostate cancers[11] amongst various 
population groups however for colon cancer, it is understudied. There has been a paucity of data regarding the CVD 
burden and trend in colon cancer in the last decade. Hence, it is imperative to understand the CVD risk and how it has 
varied over time. We therefore performed a retrospective analysis of colon cancer survivors and compared the CVD risk 
and adverse cardiovascular outcomes in current colon cancer survivors compared to a decade ago.

MATERIALS AND METHODS
We conducted a retrospective analysis of hospitalizations among colon cancer survivors in the years 2007 and 2017 using 
the National Inpatient Sample (NIS) from the Agency for Healthcare Research & Quality-supported Healthcare Cost 
Utilization Project[12]. The records of NIS comprise demographics of patients, hospital characteristics, several diagnoses, 
procedures, and comorbidities with pertinent International Classification of Diseases Clinical Modification, Ninth 
Revision (ICD-9-CM), or Tenth Revision (ICD-10-CM) codes. As the datasets are publicly available and de-identified, they 
were exempt from institutional review board approval.

https://www.wjgnet.com/2218-4333/full/v15/i4/548.htm
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The study included patients from January 1st to December 31st in 2007 and 2017. Using the ICD-9-CM and ICD-10-CM 
code V10.05 and Z85.038 respectively, we identified patients aged 18 or older who were admitted to the hospital with a 
prior history of colon cancer. Hospitalization with information missing on age, race, gender, length of stay, cost of a stay, 
or in-hospital death were excluded. The primary outcomes were major adverse cardiovascular and cerebrovascular 
events and healthcare resource utilization. Secondary outcomes included the prevalence of CVD risk factors. The ICD-9 
and ICD-10 codes for complications are listed in Supplementary Table 1, and the comorbidities were determined using 
the Elixhauser software.

We performed multivariable regression analysis, adjusting for sociodemographic confounders such as age, sex, median 
household income, type of admission, teaching facility, and comorbid conditions, to assess the risk of cardiovascular 
events across these two cohorts a decade apart. We also compared the CVD risk factors and in-hospital outcomes, 
including all-cause mortality, PE, arrhythmia, atrial fibrillation/flutter, cardiac arrest, including ventricular tachyar-
rhythmias, stroke, and patient disposition (routine, short-term rehabilitation, including skilled nursing facilities, 
intermediate care facility, home health, and leaving against medical advice). Categorical and continuous data were 
assessed using Pearson’s chi-square test and the Mann-Whitney U test for non-normally distributed continuous data. 
Statistical significance was measured at a two-sided P value of 0.05. All analyses were conducted using weighted data 
and complex survey modules in IBM SPSS Statistics version 25.0 (IBM Corp., Armonk, NY, United States).

RESULTS
Of the total hospital admissions among colon cancer survivors in 2007 (n = 177542) and 2017 (n = 178325), the 2017 cohort 
often consisted of younger [median age: 76 (65-84) vs 77 (67-84) years], black (12.2% vs 9.6%), Asian or Pacific Islander 
(2.9% vs 2.2%), and Hispanic (7.3% vs 5.4%), males (50.2% vs 48.9%) (P < 0.001) and a lower median household income 
quartile (26.4% vs 25.6%). There were also more non-elective admissions (82.9% vs 76.9%) from urban teaching facilities 
(53.2%) vs 50.9% (P < 0.001) (Table 1).

Furthermore, the 2017 cohort had higher rates of smoking (40.9% vs 17.6%), alcohol abuse (2.2% vs 1.7%), drug abuse 
(1.5% vs 0.7%), coagulopathy (6.5% vs 3.2%), liver disease (3.8% vs 1.9%), weight loss (8.6% vs 3.4%), and renal failure 
(19.7% vs 10.9%). The 2017 cohort of colon cancer survivors also had higher rates of cardiovascular comorbidities, 
including hypertension (73.9% vs 61.8%), hyperlipidemia (43.5% vs 26.4%), diabetes (29.7% vs 25.0%), obesity (11.1% vs 
4.5%), peripheral vascular disease (6.7% vs 6.4%), congestive heart failure (14.3% vs 10.3%), and at least one traditional 
CVD (89.5% vs 77.9%) (P < 0.001).

Comparing colon cancer survivors from 2007 and 2017, the 2017 cohort had a significantly higher risk of PE (1.4% vs 
1.3%, OR: 1.47, 95%CI: 1.37-1.48), arrhythmia (30.6% vs 23.6%, OR: 1.41, 95%CI: 1.38-1.43), atrial fibrillation/flutter (25.2% 
vs 17.6%, OR: 1.61, 95%CI: 1.58-1.64), cardiac arrest, However, there was no significant difference in all-cause mortality 
(2.9% vs 3.0%, OR: 0.99, 95%CI: 0.95-1.04, P = 0.77) (Table 2).

DISCUSSION
In this nationwide study, we compare cardiovascular risk factors and outcomes among colon cancer survivors in 2017 
with those in 2007. Cardiovascular risk has been shown to be elevated in patients diagnosed with colon cancer in several 
studies[13-15]. However, CVD risk in survivors hasn’t been extensively studied[16]. In an era with an increasing pre-
valence of both colon cancer survivors and cardiovascular disease, it is paramount to explore cardiovascular morbidity 
and mortality. The key findings from our study were: (1) The number of colon cancer survivors has almost remained the 
same, but they are younger; (2) CVD risk factors were significantly higher in the 2017 cohort; (3) The 2017 cohort also had 
higher rates of in-hospital complications such as PE, atrial and ventricular tachyarrhythmias, cardiac arrest, and stroke; 
and (4) Despite increased complication rates and overall CVD morbidity, all-cause mortality was not significant in the 
2017 cohort.

With improvements in screening criteria and advancements in treatment modalities, colon cancer is being diagnosed 
earlier. In one of the studies from the National Cancer Database (2004-2015), it was found that cancer is being diagnosed 
at a much younger age compared to 2005[17]. This is also concerning, as there has been an increase in colon cancer 
incidence in the younger population (50 years old)[18]. This warrants further exploration to see if this is due to early 
diagnosis and effective therapeutics that has developed in the past decade[19], or if it is due to rising sedentary lifestyles, 
obesity, and alcohol use, which are co-existent with cardiovascular diseases[20]. It is already established that cardio-
vascular risk is high[13,14], and with the increased pool of colon cancer survivors cardiovascular disease risk factors 
would be expected to be high. Our study supported this by demonstrating that the 2017 cohort of colon cancer survivors 
had a higher prevalence of the current increase in CVD risk factors, such as obesity, hypertension, diabetes, and hyperlip-
idemia.

The rise in the prevalence of cardiovascular risk factors over time may help to explain why we are seeing an increase in 
complication rates for cardiovascular end-points like PE, cardiac arrhythmia, stroke, and cardiac arrests in our study. 
Colon cancer itself is a risk factor for the development of these complications, and it has been studied for other cancers as 
well. Hence, it is particularly important to identify at-risk population groups and control these risks to prevent worse 
outcomes.

https://f6publishing.blob.core.windows.net/0d296f96-ebf1-451d-b155-b539d2eee2d0/WJCO-15-548-supplementary-material.pdf
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Table 1 Demographics and comorbidities of hospitalizations among colon cancer survivors a decade apart: Propensity matched 
analysis

Variable 2007 (n = 177542) 2017 (n = 178325) P value

Age (yr) at admission, median (IQR) 77 (67-84) 76 (65-84) < 0.001

Sex, n (%)

Male 86792 (48.9) 89485 (50.2) < 0.001

Female 90750 (51.1) 88840 (49.8)

Race

White 142763 (80.4) 132770 (74.5) < 0.001

Black 16975 (9.6) 21750 (12.2)

Hispanic 9506 (5.4) 13045 (7.3)

Asian or Pacific Islander 3962 (2.2) 5140 (2.9)

Native American 836 (0.5) 830 (0.5)

Others 3499 (2.0) 4790 (2.7)

Median household income quartile, n (%) < 0.001

0th-25th 45378 (25.6) 47100 (26.4)

76th-100th 44838 (25.3) 41700 (23.4)

Urban teaching facility, n (%) 90450 (50.9) 94790 (53.2) < 0.001

Non-elective admission, n (%) 136359 (76.9) 147545 (82.9) < 0.001

Comorbidities, n (%)

Alcohol abuse 3069 (1.7) 3835 (2.2) < 0.001

Congestive heart failure 18256 (10.3) 25510 (14.3) < 0.001

Coagulopathy 5738 (3.2) 11535 (6.5) < 0.001

Hypertension 109779 (61.8) 131870 (73.9) < 0.001

Hyperlipidemia 46873 (26.4) 77505 (43.5) < 0.001

Diabetes 44331 (25.0) 52910 (29.7) < 0.001

Smoking 31260 (17.6) 72955 (40.9) < 0.001

Obesity 8031 (4.5) 19750 (11.1) < 0.001

At least 1 Traditional CVD risk factor 138285 (77.9) 159640 (89.5) < 0.001

Peripheral vascular diseases 11370 (6.4) 11890 (6.7) 0.001

Renal failure 19316 (10.9) 35075 (19.7) < 0.001

Liver disease 3369 (1.9) 6760 (3.8) < 0.001

Weight loss 5993 (3.4) 15405 (8.6) < 0.001

Drug abuse 1165 (0.7) 2650 (1.5) < 0.001

IQR: Interquartile range; CVD: Cardiovascular disease.

Despite increasing cardiovascular morbidity and complication rates, overall mortality was not found to be significantly 
higher in the 2017 cohort compared to 2007. This provides an opportunity to shed more light on the fact that in the past 
decade, the intensive management of cardiovascular issues has changed[23,24]. With improved cardiac critical care 
management, including the implementation of evidence-based protocols[25], rapid recognition of life-threatening 
conditions, and attention to patient safety, we have been able to reduce cardiovascular mortality in the past decade[24].

We used the data from a publicly accessible database, which has limited applicability since cancer-related information 
like the stage of colon cancer, any second incident malignancies, the exact type of chemotherapy, and the history of past 
treatment are not specified. Additionally, there was conflicting information regarding the number of years that patients 
survive after receiving a cancer diagnosis and whether they are still battling the disease or have it in remission. The 
cohorts were sampled from patients all over the United States, and our analysis requires external validation from other 
regions. Also, there is unclear data on whether these patients had any previous cardiovascular diseases before a diagnosis 
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Table 2 Hospitalization outcomes among colon cancer survivors a decade apart: Propensity matched analysis

Variable 2007 (n = 177542) 2017 (n = 178325) OR CI (UL-LL) Adjusted P value

All-cause mortality 5245 (3.0) 5165 (2.9) 0.32 0.99 (0.95-1.04) 0.77

Pulmonary embolism 2290 (1.3) 2470 (1.4) 0.013 1.47 (1.37-1.58) < 0.001

Arrhythmia 41948 (23.6) 54595 (30.6) < 0.001 1.41 (1.38-1.43) < 0.001

Atrial fibrillation/flutter 31280 (17.6) 44875 (25.2) < 0.001 1.61 (1.58-1.64) < 0.001

Cardiac arrest including ventricular tachyar-
rhythmias

609 (0.3) 1065 (0.6) < 0.001 1.63 (1.46-1.82) < 0.001

Stroke 4409 (2.5) 5675 (3.2) < 0.001 1.28 (1.22-1.34) < 0.001

Routine discharge 97712 (55.0) 86785 (48.7) < 0.001

Multivariable analysis was adjusted for demographics, hospital characteristics and all relevant comorbidities. IQR: Interquartile range; CVD: 
Cardiovascular disease.

of colon cancer. Apart from that, there might be inherent errors in coding. And lastly, no associations can be made 
between cardio-cerebrovascular outcomes and a previous history of colon cancer.

CONCLUSION
With increasing cardiovascular risk factors in the general population and increasing cancer survivorship, we have found 
that the prevalence of CVD and its complications is higher than ever. With improvements in acute cardiovascular 
treatment, we haven’t seen an improvement in mortality, which we would expect. Hence, we need better control of the 
cardiovascular risk factor from a primary care standpoint as well to prevent worse outcomes in colon cancer survivors. 
We need further studies comparing cardiovascular morbidity and outcomes in colon cancer survivors with other cancer 
survivors, which are more extensively studied, and how they have evolved in the past years.
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Abstract
BACKGROUND 
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy with a 
high morbidity and mortality rate. TMEM100 has been shown to be suppressor 
gene in a variety of tumors, but there are no reports on the role of TMEM100 in e-
sophageal cancer (EC).

AIM 
To investigate epigenetic regulation of TMEM100 expression in ESCC and the 
effect of TMEM100 on ESCC proliferation and invasion.

METHODS 
Firstly, we found the expression of TMEM100 in EC through The Cancer Genome 
Atlas database. The correlation between TMEM100 gene expression and the 
survival of patients with EC was further confirmed through Kaplan-Meier 
analysis. We then added the demethylating agent 5-AZA to ESCC cell lines to 
explore the regulation of TMEM100 expression by epigenetic modification. To 
observe the effect of TMEM100 expression on tumor proliferation and invasion by 
overexpressing TMEM100. Finally, we performed gene set enrichment analysis 
using the Kyoto Encyclopaedia of Genes and Genomes Orthology-Based Anno-
tation System database to look for pathways that might be affected by TMEM100 
and verified the effect of TMEM100 expression on the mitogen-activated protein 
kinases (MAPK) pathway.

RESULTS 
In the present study, by bioinformatic analysis we found that TMEM100 was 
lowly expressed in EC patients compared to normal subjects. Kaplan-meier 
survival analysis showed that low expression of TMEM100 was associated with 
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poor prognosis in patients with EC. Then, we found that the demethylating agent 5-AZA resulted in increased 
expression of TMEM100 in ESCC cells [quantitative real-time PCR (qRT-PCR) and western blotting]. Subsequently, 
we confirmed that overexpression of TMEM100 leads to its increased expression in ESCC cells (qRT-PCR and 
western blotting). Overexpression of TMEM100 also inhibited proliferation, invasion and migration of ESCC cells 
(cell counting kit-8 and clone formation assays). Next, by enrichment analysis, we found that the gene set was 
significantly enriched in the MAPK signaling pathway. The involvement of TMEM100 in the regulation of MAPK 
signaling pathway in ESCC cell was subsequently verified by western blotting.

CONCLUSION 
TMEM100 is a suppressor gene in ESCC, and its low expression may lead to aberrant activation of the MAPK path-
way. Promoter methylation may play a key role in regulating TMEM100 expression.

Key Words: Esophageal squamous cell carcinoma; TMEM100; Invasion; Mitogen-activated protein kinases pathway; 
Epigenetic

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: TMEM100 has been shown to be an oncogene in a variety of tumors, but there are no reports on the role of 
TMEM100 in esophageal cancer. In the present study, we found that TMEM100 was lowly expressed in esophageal 
squamous cell carcinoma (ESCC). Methylation may play a key role in regulating TMEM100 protein low expression. 
Overexpression of TMEM100 resulted in its increased expression in ESCC cells. Overexpression of TMEM100 also 
inhibited proliferation, invasion and migration of ESCC cells. Low expression of TMEM100 in ESCC may lead to aberrant 
activation of the mitogen-activated protein kinases pathway.

Citation: Xu YF, Dang Y, Kong WB, Wang HL, Chen X, Yao L, Zhao Y, Zhang RQ. Regulation of TMEM100 expression by 
epigenetic modification, effects on proliferation and invasion of esophageal squamous carcinoma. World J Clin Oncol 2024; 15(4): 
554-565
URL: https://www.wjgnet.com/2218-4333/full/v15/i4/554.htm
DOI: https://dx.doi.org/10.5306/wjco.v15.i4.554

INTRODUCTION
Esophageal cancer (EC) is a common malignant tumour of the digestive tract and is recognised for its high incidence and 
mortality rate[1,2]. The disease primarily manifests in two forms, namely squamous carcinoma and adenocarcinoma[2]. 
Esophageal squamous cell carcinoma (ESCC) represents the predominant subtype of EC and is particularly prevalent in 
Asia, while esophageal adenocarcinoma is more commonly observed in Europe[3]. China bears a significant burden, 
accounting for nearly 50% of ESCC cases worldwide and over 90% within Asia[4]. The predominant treatment approach 
for ESCC primarily involves surgical procedures. While outcomes are relatively favourable for early-stage patients with 
EC, those with intermediate to advanced disease face a more challenging prognosis, with a 5-year overall survival rate 
ranging from 10%–30%[5]. The emergence of immunotherapy brings a promising dimension to EC treatment[6]. 
However, the efficacy and safety of immunotherapy for patients with tumours require further validation. Anticipated 
advancements in identifying more clinical targets hold the potential to improve the effectiveness of immunotherapy.

TMEM100 is a gene that encodes a 134-amino-acid protein located at locus 17q32. This gene possesses two hypothetical 
transmembrane structural domains (amino acids 53–75 and 85–107)[7]. Initially identified as a transcription factor in the 
murine gene, TMEM100 is highly conserved and exhibits a structure dissimilar to any known protein family across 
various species[8]. In the context of TMEM100’s involvement with tumours, research findings indicate its association with 
a variety of malignancies. A study by Han et al[9] revealed a correlation between TMEM100 and the proliferation of lung 
cancer cells. Similarly, a study by Ou et al[10] suggested that TMEM100 exhibits low expression in hepatocellular 
carcinoma and is closely related to both its proliferation and invasion. A study by Ye et al[11] revealed that TMEM100 
exhibits low expression in patients with prostate cancer and is associated with tumour stage and metastasis. In a study 
conducted by Li et al[12], TMEM100 demonstrated significantly low expression in colorectal cancer, and the overex-
pression of TMEM100 inhibited the malignant progression of tumours through the regulation of the transforming growth 
factor β pathway.

Epigenetic modifications are heritable alterations in gene expression that do not stem from primary DNA sequence 
changes, playing a pivotal role in the development of tumours such as leukaemia. These modifications primarily 
encompass three regulatory mechanisms: DNA methylation, non-coding RNA regulation, and histone modification[13]. 
DNA methylation involves the transfer of a methyl to the 5' position of cytosine through the action of DNA methyltrans-
ferase. This process utilises S-adenosylmethionine as the methyl donor, resulting in the formation of 5'-methylcytosine
[14]. In the context of EC, multiple oncogenes, including EPB41L3/GPX3/TMEM176A, exhibit methylation in their 
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promoter regions[15-17]. Despite the critical role of epigenetics in gene regulation, the literature on the mechanisms 
governing the expression of TMEM100 in EC is limited. Nevertheless, the significance of epigenetic regulation cannot be 
overlooked. The impact of DNA methylation on TMEM100 expression in tumours remains unexplored.

In this study, our objective was to elucidate the function of TMEM100 in malignant growth and invasion in vitro within 
ESCC cells. We sought to investigate the expression of TMEM100 and its impact on the activation of the mitogen-
activated protein kinases (MAPK) signalling pathway in ESCC cells. Additionally, we aimed to explore the epigenetic 
regulation of TMEM100 expression in ESCC to provide a theoretical foundation for considering TMEM100 as a potential 
new therapeutic target for ESCC.

MATERIALS AND METHODS
Materials and reagents
Hieff Trans Liposomal Transfection Reagent and PAGE Gel Quick Preparation Kit (12.5%) were purchased from Yeasen 
(Shanghai, China). Penicillin-streptomycin solution (100 ×), RIPA lysis buffer, and crystal violet were sourced from 
Beyotime (Shanghai, China). Fetal bovine serum (FBS) and RPMI-1640 medium were obtained from Bio-Channel 
(Nanjing, China). TRIzol reagent and dimethyl sulfoxide were purchased from Biosharp (Hefei, China). 5-Azacytidine 
was acquired from Selleck (Houston, United States of America). Paraformaldehyde was obtained from Servicebio 
(Wuhan, China). Cell counting kit-8 (CCK-8) was sourced from topscience (Shanghai, China). Nitrocellulose filter (NC) 
membranes were purchased from PALL (New York, United States of America). TMEM100 and β-actin primers were 
procured from Tsingke (Beijing, China). TMEM100 monoclonal antibodies were purchased from Proteintech (Wuhan, 
China). Human monoclonal antibodies against extracellular regulated kinase 1/2 (ERK1/2), phosphorylated (p-) ERK1/2, 
the c-Jun N-terminal kinase (JNK), phosphorylated (p-)JNK, p38, phosphorylated (p-) p38, goat anti-rabbit horse radish 
peroxidase (HRP) IgG, goat anti-mouse HRP IgG, and GAPDH were purchased from Zen Bioscience (Chengdu, China).

Cell culture
Human ESCC cell lines KYSE-450 (Cobioer Biosciences, Nanjing, China) and KYSE-150 (Typical Culture Preservation 
Committee Cell Bank, Chinese Academy of Sciences, Shanghai, China) were used in this study. Both cell lines were 
cultured in RPMI-1640 medium supplemented with 10% FBS and 1% penicillin-streptomycin solution (100 ×). The culture 
conditions were maintained at 37 °C with 5% CO2.

Gene overexpression and transient transfection
The recombinant plasmid overexpressing TMEM100 was designed by General Biol (Chuzhou, China). Cells cultured at 
70% density in 6-well plates were transfected with recombinant plasmids using Hieff Trans Liposomal Transfection 
Reagent, following the manufacturer's protocol. After 24 h, cells were collected for quantitative real-time PCR (qRT-PCR), 
CCK-8 assay, colony formation assay, and western blotting.

qRT-PCR
Total RNA was isolated from K-150 and K-450 cells using TRIzol reagent, following the manufacturer's instructions. 
Subsequently, the RNA was reverse transcribed using a cDNA synthesis kit (Promega, Fitchburg, United States of 
America). The resulting cDNA was amplified through 42 cycles, and the initial reaction volume was 20 μL, comprising 1 
μL of reverse transcription product and 0.8 μL of primers. The housekeeping gene β-actin was used as a standardized 
internal control. Table 1 provides details on the gene-specific primers utilised in PCR amplification.

Western blotting
ESCC cells were lysed using RIPA lysis buffer. The resulting total cell lysates were then separated on a 12.5% sodium 
dodecyl sulfate polyacrylamide gel and transferred to NC membranes. After blocking in phosphate buffered saline with 
tween-20 containing 5% non-fat milk, membranes were incubated overnight at 4 °C with specific primary antibodies, 
followed by a 2 h incubation at 27 °C with HRP-conjugated specific secondary antibodies. Detection was achieved using 
the enhanced chemiluminescence western blotting detection system (Tanon, Shanghai, China). GAPDH was utilized to 
ensure equal protein loading on the gel.

Colony formation assay
For colony formation studies, ESCC cells were harvested following a 24-h treatment with transient transfection. These 
cells were then seeded at a density of 300 cells per 35 mm plate in RPMI-1640 medium with 10% FBS and cultured at 37 
°C for two weeks. Thereafter, the cells were treated with 4% paraformaldehyde for 20 min and dyed with 1 mL of 0.1% 
crystal violet for 30 min. Photographs were captured after the stain was removed.

CCK-8 assay
During the exponential growth phase, three thousand cells treated with transient transfection were seeded into each well 
of a 96-well plate (100 μL/well). At specified time points (day 1, day 2, day 3), 10 μL of CCK-8 solution was added to each 
well, and the optical density (450 nm) values were measured using a microplate reader after 1 h of incubation.
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Table 1 Primer sequences for quantitative real-time reverse transcription polymerase chain reaction

Gene Primer pair
TMEM100 F: 5-ACAGTCCCTCTGGTCAGTGAGA-3 R: 5-GGCGATGAAGACAACCACAGCA-3

β-actin F: 5-CACCATTGGCAATGAGCGGTTC-3 R: 5-AGGTCTTTGCGGATGTCCACGT-3

Bioinformatic analysis
The efficient channel attention transcriptional data, sourced from The Cancer Genome Atlas (TCGA) database, enco-
mpasses data from 161 patients and 11 normal subjects[18]. Differential expression analysis was conducted using the R 
package “Limma” applying the filtering criteria of |log FoldChange| ≥ 1, P value < 0.00001, and adjusted P value < 
0.0001 to identify differentially expressed genes (DEGs). Visualisation of DEG expression was accomplished through the 
generation of a volcano plot and heatmap using the R packages “ggplot2” and “pheatmap”. For a deeper insight into the 
functional implications of DEGs containing TMEM100, gene set enrichment analysis was performed using the Kyoto 
Encyclopaedia of Genes and Genomes (KEGG) Orthology-Based Annotation System database[19]. The top 69 enriched 
terms or pathways were selected and visualised using the R packages “gridExtra”, “grid”, and “ggplot2”. Additionally, 
boxplots were constructed using the gene expression profiling interactive analysis (GEPIA) tool, and Kaplan-meier 
survival analysis was performed using the online analysis tool[20,21].

Statistical analysis
Statistical analysis and data visualization were performed using R software and GraphPad Prism 9.0. A P value < 0.05 
was considered statistically significant unless otherwise specified. R software, comprising several packages, was 
employed for various analyses. When assessing differences between groups, statistical comparisons were conducted in 
GraphPad Prism 9.0 using the Student's t-test.

RESULTS
Low TMEM100 expression is associated with reduced overall survival in patients with EC
Analysis of TCGA data extracted from GEPIA revealed that the TMEM100 gene exhibited underexpression in EC 
specimens compared to adjacent normal tissue (Figure 1A). The correlation between TMEM100 gene expression and the 
survival of patients with EC was further confirmed through Kaplan-Meier analysis. Patients with high TMEM100 
expression demonstrated a significantly higher overall survival rate compared to those with low expression of this gene 
(Figure 1B).

Elevated expression levels of TMEM100 in ESCC cell lines treated with 5-AZA
To validate the impact of decreased DNA methylation on TMEM100 expression, ESCC cell lines were treated with 5-
AZA. Both qRT-PCR and western blotting analyses revealed upregulation of TMEM100 at both mRNA and protein levels 
(Figure 1C). These findings suggest that changes in DNA methylation levels affect the expression levels of TMEM100.

Overexpression effect of TMEM100 in ESCC
To ascertain the impact of TMEM100 overexpression, recombinant plasmids were transfected into K-150 and K-450 cell 
lines using Hieff Trans Liposomal Transfection Reagent. Examination of TMEM100 expression through qRT-PCR and 
western blotting analyses revealed a significant increase in both mRNA and protein levels upon transfection with the 
recombinant plasmid (Figure 2A and B).

Effect of TMEM100 overexpression on the proliferation and invasion ability of ESCC
In order to explore the long-term effects of TMEM100 on cancer cell growth, the colony-forming capacity was evaluated. 
TMEM100 overexpression was observed to significantly inhibit the colony-forming ability of both K-150 and K-450 cells 
(Figure 2C).  Additionally, the impact of altered TMEM100 expression on the proliferation of K-150 and K-450 cells was 
examined using the CCK-8 assay (Figure 2D). These results indicate that the overexpression of TMEM100 exerts 
inhibitory effects on the proliferation and invasive ability of ESCC.

Identification and enrichment analysis of DEGs containing TMEM100
An analysis of the TCGA database resulted in the identification of a total of 50940 differential genes between EC tissue 
and normal tissue. Further screening narrowed down the list to 3720 differential genes containing TMEM100 (Figure 3A 
and B). Subsequently, the KEGG pathway enrichment analyses were conducted (Figure 3C and D), revealing a significant 
enrichment in the MAPK signalling pathway (P < 0.0005).

Effect of TMEM100 on the activity of the MAPK signalling pathway in ESCC
The MAPK signalling pathway plays a pivotal role in various cellular physiological activities, including cell growth, 
development, differentiation, and apoptosis. Given its significant involvement in tumourigenesis, we investigated 
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Figure 1 Relationship between low TMEM100 expression in esophageal cancer and patient survival and the effect of 5-AZA on TMEM100 
expression in esophageal squamous cell carcinoma lines. A: Expression profile of TMEM100 in EC samples compared with normal samples, showing 
reduced expression of TMEM100 in EC tissues; B: Overall survival of patients with high vs low TMEM100 expression levels. Survival was poorer for those with low 
TMEM100 expression (P = 0.041); C: 5-AZA induced a dose-dependent expression of TMEM100 in K-150 cells. Real-time PCR and western blotting results showed 
that after 24 h of treatment, TMEM100 expression increased with increasing 5-AZA concentration. aP < 0.05, bP < 0.01. DMSO: Dimethyl sulfoxide; EC: Esophageal 
cancer; ESCA: Esophageal cancer; HR: Hazard Ratio.

whether TMEM100 mediated the cascade of the classical MAPK pathway. Western blotting results demonstrated a 
significant reduction in the expression of phosphorylated ERK, phosphorylated JNK, and phosphorylated p38 following 
transfection with the TMEM100 overexpression plasmid (Figure 4). These findings suggest that the impact of TMEM100 
on ESCC cell proliferation may be regulated through the ERK/MAPK, JNK/MAPK, and p38/MAPK signalling pa-
thways.

DISCUSSION
The prognosis for ESCC remains challenging, partially due to the absence of prognostic biomarkers capable of identifying 
high-risk patients and facilitating the assignment of risk-appropriate monitoring and treatment regimens. TMEM100 is 
well established as an oncogene, as demonstrated by its inhibitory role in colorectal cancer progression through the 
promotion of ubiquitin/proteasome degradation of hypoxia-inducible factor-1 alpha[22]. The downregulation of 
TMEM100, mediated by histone deacetylase 6, expedites the development and progression of non-small cell lung cancer
[23]. However, the expression and function of TMEM100 in ESCC have yet to be elucidated.

In our study, we initially identified TMEM100 as a DEG between patients with EC and individuals without the con-
dition by analysing gene expression data obtained from the TCGA database. Using online bioinformatics tools, we 
observed that TMEM100 exhibited low expression in patients with EC and that individuals with higher expression levels 
demonstrated a better prognosis. This suggests that TMEM100 may serve as a novel biomarker for EC. Given that over 
70% of EC cases occur in China, with ESCC being the predominant subtype (80%)[24,25], we hypothesised that TMEM100 



Xu YF et al. Role of TMEM100 in ESCC

WJCO https://www.wjgnet.com 559 April 24, 2024 Volume 15 Issue 4

Figure 2 Overexpression effect of TMEM100 in esophageal squamous cell carcinoma lines and the inhibitory effect of TMEM100 over-
expression on proliferation, migration, and invasion of esophageal squamous cell carcinoma cells in vitro. A and B: K-150/K-450 cells 
transfected with TMEM100-oe were assayed using real-time PCR and western blotting, and the results showed that the expression of TMEM100 was significantly 
upregulated in the transfected cells compared to that in the control group; C: Colony formation viability of K-150/K-450 cells after transient transfection treatment for 
14 d was analysed by staining with 1% crystal violet; D: Cell counting kit-8 assay results show that overexpression of TMEM100 inhibits the proliferation of K-150/K-
450 cells. cP < 0.0001.

functions as an oncogene suppressor in ESCC. In further experiments, we observed that the overexpression of TMEM100 
inhibited the proliferation and invasion of ESCC cells, supporting our conjecture. Additionally, we conducted a preli-
minary investigation into the mechanisms regulating TMEM100 expression in ECSS and observed that TMEM100 
expression was significantly higher in ESCC cells treated with methylation inhibitors compared to that in normal ESCC 
cells. This suggests that DNA methylation in epigenetics may be involved in the regulation of TMEM100 expression in 
ESCC.

To explore the underlying mechanisms of ESCC, we performed a KEGG enrichment analysis to identify potential 
pathways. The analysis revealed that TMEM100 may be involved in signalling pathways, including p53, interleukin-17, 
and MAPK. We chose to focus on the MAPK signalling pathway in our research, as it has been extensively shown to be 
associated with tumour cell proliferation, differentiation, apoptosis, and stress response compared to other pathways[26-
29]. This choice aligns with the results of our CCK-8 and clone formation experiments. Subsequent investigations 
revealed that the phosphorylation levels of ERK, p38, and JNK were significantly inhibited in ESCC cells overexpressing 
TMEM100. These results suggest that TMEM100 exerts an inhibitory effect on ESCC proliferation and invasion by 
negatively regulating the ERK, p38, and JNK pathways.

This study has several limitations. First, the robustness of TMEM100 as a prognostic indicator for ESCC requires 
further validation in large or prospective cohort studies. Second, the in vivo effects of TMEM100 overexpression on ESCC 
proliferation need additional clarification. Third, the regulation of DNA methylation for TMEM100 expression in ESCC 
requires further investigation. Nevertheless, this study provides initial insights into the role of TMEM100 in the 
development of ESCC and its specific mechanism of action. These findings lay the foundation for further understanding 
the mechanism of action of TMEM100 in other malignant tumours, carrying important theoretical and clinical 
significance.
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Figure 3 Identification of differentially expressed genes and functional enrichment analysis. A: In the volcano plot, upregulated genes are 
indicated by red dots, and downregulated genes are indicated by green dots; B: The heatmap represents the expression levels of the genes, with the blue to red 
spectrum indicating low to high expression; C and D: The top 69 enriched Kyoto Encyclopedia of Genes and Genomes pathways.
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Figure 4 Effect of TMEM100 overexpression on mitogen-activated protein kinase pathway activation in KYSE-150/KYSE-450 cells. A: K-150 
cells were harvested 24 h after transfection with TMEM100-oe, and total proteins were extracted for western blotting analysis. Phosphorylated-extracellular regulated 
kinase (p-ERK) and ERK, phosphorylated-c-Jun N-terminal kinase (p-JNK) and JNK, and p-p38 and p38 were analysed. The result demonstrated a reduction in the 
expression of p-ERK, p-p38, and p-JNK in K-150/K-450 cells transfected with TMEM100-oe; B: The experiment was repeated again with K-450 cells. p-ERK: 
Phosphorylated-extracellular regulated kinase; p-JNK: Phosphorylated-c-Jun N-terminal kinase.

CONCLUSION
TMEM100 functions as a suppressor gene in ESCC cells, and its low expression in ESCC may contribute to aberrant 
activation of the MAPK pathway. Promoter methylation likely plays a crucial role in regulating the low expression of 
TMEM100.

ARTICLE HIGHLIGHTS
Research background
TMEM100 is associated with multiple malignancies but its role in esophageal squamous cell carcinoma (ESCC) remains 
unknown.

Research motivation
This study aimed to investigate the regulatory mechanism of TMEM100 expression in ESCC and its effect on ESCC cell 
growth and proliferation.

Research objectives
This study hopes to clarify the role of TMEM100 in ESCC as well as to preliminarily investigate the epigenetic regulation 
of TMEM100 expression.

Research methods
We used R software and online analysis databases to analyze the expression, prognosis and pathway of TMEM100 in 
esophageal cancer (EC). Utilization of real-time PCR and western blotting to probe the expression of TMEM100 and 
pathway proteins in ESCC. In addition, the effects of TMEM100 overexpression on the proliferation, invasion and 
migration of ESCC cells were assessed by CCK-8 and clone formation assays.
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Research results
Kaplan-meier survival analysis revealed that low expression of TMEM100 correlated with poor prognosis in patients with 
EC. Further, treatment with the demethylating agent 5-AZA resulted in increased TMEM100 expression in ESCC cells. 
Additionally, TMEM100 overexpression exhibited inhibitory effects on the proliferation, invasion, and migration of ESCC 
cells. Enrichment analysis highlighted significant enrichment in the mitogen-activated protein kinases (MAPK) signalling 
pathway, which was validated using western blotting, confirming TMEM100’s involvement in the regulation of the 
MAPK signalling pathway in ESCC cells.

Research conclusions
TMEM100 is highly expressed in normal subjects and lowly expressed in EC patients, and patients with high TMEM100 
expression in EC patients have a better prognosis. The expression of TMEM100 was increased in ESCC cells treated with 
the methylation inhibitor 5-AZA. Overexpression of TMEM100 gene inhibited the growth and proliferation of ESCC cells 
and negatively regulated the MAPK signaling pathway.

Research perspectives
The robustness of TMEM100 as a prognostic indicator for ESCC needs to be further validated. Further clarification of the 
in vivo effects of overexpression of TMEM100 on the proliferation of esophageal squamous carcinoma is needed.
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Abstract
BACKGROUND 
Low-grade myofibroblastic sarcoma (LGMS) is an extremely rare tumor charac-
terized by the malignant proliferation of myofibroblasts. LGMS most commonly 
develops in adults, predominantly in males, in the head and neck region, oral 
cavity, especially on the tongue, mandible, and larynx. This article presents 2 
cases of LGMS localized to the maxillary sinus and provides an overview of the 
available literature.

CASE SUMMARY 
Two patients with LGMS located in the maxillary sinus underwent surgery at the 
Department of Head and Neck Surgery. Case 1: A 46-year-old patient was 
admitted to the clinic with suspected LGMS recurrence in the right maxillary 
sinus (rT4aN0M0), with symptoms of pain in the suborbital area, watering of the 
right eye, thick discharge from the right nostril, and augmented facial asymmetry. 
After open biopsy-confirmed LGMS, the patient underwent expanded 
maxillectomy of the right side with immediate palate reconstruction using a 
microvascular skin flap harvested surgically from the middle arm. The patient 
qualified for adjuvant radiotherapy for the postoperative bed, with an additional 
margin. Currently, the patient is under 1.5 years of observation with no evidence 
of disease. Case 2: A 45-year-old man was admitted to our clinic with facial 
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asymmetry, strabismus, exophthalmos, and visual impairment in the right eye. Six months earlier, the patient had 
undergone partial jaw resection at another hospital for fibromatosis. A contrast-enhanced computed tomography 
scan revealed a tumor mass in the postoperative log after an earlier procedure. An open biopsy confirmed low-
grade fibrosarcoma (rT4aN0M0). The patient qualified for an extended total right maxillectomy with orbital 
excision and right hemimandibulectomy with immediate microvascular reconstruction using an anterolateral thigh 
flap. The patient subsequently underwent adjuvant radiotherapy to the postoperative area. After 9 months, 
recurrence occurred in the right mandibular arch below the irradiated area. The lesion infiltrated the base of the 
skull, which warranted the withdrawal of radiotherapy and salvage surgery. The patient qualified for palliative 
chemotherapy with a regimen of doxorubicin + dacarbazine + cyclophosphamide and palliative radiotherapy for 
bone metastases. The patient died 26 months after surgical treatment. The cases have been assessed and compared 
with cases in the literature.

CONCLUSION 
No specific diagnostic criteria or treatment strategies have been developed for LGMS. The treatment used for 
LGMS is the same as that used for sinonasal cancer radical tumor excision; adjuvant radiotherapy or chemoradio-
therapy should also be considered. They have low malignant potential but are highly invasive, tend to recur, and 
metastasize to distant sites. Patients should undergo regular follow-up examinations to detect recurrence or 
metastasis at an early stage. Patients should be treated and observed at the highest referral centers.

Key Words: Head and neck cancer; Paranasal sinuses; Maxillary sinus; Sarcoma; Low-grade myofibroblastic sarcoma; Case 
report

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Low-grade myofibroblastic sarcomas are tumors of low malignant potential; however, they are highly invasive and 
a high tendency to recur and metastasize to distant sites. Since only 55 cases of low-grade myofibroblastic sarcoma have 
been described, it is impossible to establish guidelines. As there are no specific diagnostic criteria, it is necessary to consider 
the occurrence of myofibroblastic sarcoma more often than reported in the literature.
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INTRODUCTION
Low-grade myofibroblastic sarcoma (LGMS) is characterized by malignant proliferation of myofibroblasts. LGMS is 
extremely rare and most commonly presents on the tongue in the head and neck region. According to the literature, 
LGMS may also be present in the limbs, abdominal cavity, pelvis, and long bones and pelvis. Sarcomas are histologically 
atypical with infiltrating myoepithelial cells and morphological, immunochemical, and ultrastructural features of myofi-
broblast origin.

Myofibroblasts, also called modified fibroblasts, are myoepithelial cells or stellate cells of mesenchymal origin, disco-
vered in 1971 during the healing of granulation tissue[1]. These cells have contractile properties, have characteristics of 
both fibroblasts and smooth muscle cells, and are present in almost every tissue[2]. In adults, myofibroblasts have also 
been discovered in the periodontium and around the seminiferous tubules in the testicle[3].

Myofibroblasts have an irregular, hyperchromatic, enlarged nucleus with moderate atypia in amphophilic cytoplasm
[4]. They are characterized by the expression of α-Smooth muscle actin (SMA), vimentin and extra domain A of the fibr-
onectin domain; however, they do not express smooth muscle markers Desmin and Smooth muscle myosin, differen-
tiating them from other cells. These cells play a crucial role in physiological and pathological processes such as fibrotic 
diseases (lungs, kidney, intestine, and liver) and the etiopathogenesis of bronchial asthma. Myofibroblasts are particularly 
important during wound healing[5]. It is suspected that the transformation of fibroblasts to myofibroblasts occurs under 
the influence of transforming growth factor-B and extra domain A of fibronectin or the mesenchymal transformation of 
fibrocytes from bone marrow[1,6].

LGMS most frequently occurs in men and is extremely rare in children. It is highly malignant and characterized by 
metastasis to distant sites. To the best of our knowledge only 5 cases of maxillary sinus LGMS are available[2,7,8]. 
Patients rarely report symptoms, and the primary complaint is painless edema. Radiologically, LGMS can present a 
destructive growth pattern.
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CASE PRESENTATION
Chief complaints
Case 1: A 46-year-old male previously treated at another hospital was admitted to the outpatient clinic of the Maria 
Sklodowska-Curie National Research Institute of the Oncology Department of Head and Neck Oncology. The patient 
presented with right-sided pain in the suborbital area, watering of the right eye, and thick discharge from the right nostril 
with augmented facial asymmetry.

Case 2: A 45-year-old male was admitted to Maria Sklodowska-Curie National Research Institute of Oncology presenting 
with strabismus, exophthalmos, and visual impairment.

History of present illness
Case 1: The patient had previously undergone surgery at another hospital for LGMS. The patient underwent resection of 
the maxilla using a lateral rhinotomy. A second operation was performed because of the positive surgical margins. 
Histopathological examination confirmed radical resection and the patient qualified for observation. Thirty months after 
the surgery, clinical examination confirmed an advanced tumor infiltrating the right nasal cavity, hard palate, and soft 
palate.

Case 2: Six months earlier, the patient underwent partial resection of the maxilla because of fibromatosis.

History of past illness
Case 1: Generally healthy, did not report chronic diseases, allergies, or medications taken regularly. At the age of 4 years, 
there was an electric burn on the index finger of the left hand and subsequent amputation.

Case 2: Overall healthy. He does not take medications regularly. Allergy to penicillin.

Personal and family history
Case 1: Professional driver by profession. No family history of malignancy.

Case 2: No family history of malignancy.

Imaging examinations
Case 1: Computed tomography (CT) (Figure 1) and magnetic resonance imaging (MRI) (Figure 2) of the head and neck 
region revealed extensive soft tissue masses in the right maxillary sinus, nasal cavity, nasopharynx, ethmoid cells, and 
frontal sinus. Infiltration and partial osteolysis were observed in the bone structures on the right side, including the sinus 
walls, hard palate, medial and suborbital bones, and pterygoid plates.

Case 2: CT, with contrast scan (Figure 3), revealed a tumor mass in the postoperative lobe after the first surgery.
Tumor infiltration was observed in the pterygopalatine and right temporal fossa. Infiltration also involved the lateral 

pterygoid and masseter muscle, the lateral wall of the nasal cavity and the oral cavity.
Soft tissue mass protruding from the tumor into the posterior orbit through the superior orbital fossa.
Tumor progression and rapid recurrence after primary surgery. The histopathological examination results were 

verified at the Maria Sklodowska-Curie National Research Institute of Oncology. After additional examinations and 
multispecialty consultation, the primary diagnosis was changed from fibromatosis to inflammatory myofibroblastic 
tumor.

Laboratory examinations
Case 1: Laboratory tests without deviations.

Case 2: Laboratory tests without any significant deviations.

Physical examination
Case 1: Facial asymmetry, highlighting of the right cheek. Eyeball movement was preserved, and the patient denied 
diplopia or any other deviation from the norm. On intraoral examination, an exophytic tumor of the hard palate reached 
the midline. Lymphadenopathy was not present during the physical examination.

Case 2: Facial asymmetry, swelling of the right cheek. Scars on the right cheek from previous surgery. Strabismus and 
exophthalmos of the right eye, significant visual impairment, preserved response to light.

During intraoral examination, a palpable tumor on the palate on the right side was observed. Palpable cervical bulb on 
the right in group 2.
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Figure 1 Case 1 computed tomography scan with contrast and 3D reconstruction. Solid contrast-enhancing tumor filling the maxillary sinus and 
eroding the bony plate is shown. A: Sagittal section; B: Coronal section; C: Axial section; D: 3D reconstruction.

Figure 2 Case 1 T2 magnetic resonance imaging illustrating the extent of the tumor to the right maxilla sinus. A and C: Sagittal sections; B and 
D: Coronal sections.

FINAL DIAGNOSIS
Case 1
Histological examination confirmed the recurrence of LGMS (rpT4aN0M0) (8th Edition, American Joint Committee on 
Cancer) of the right maxilla, 8 cm in size. Neoplasms with spindle-cell proliferation and moderate cellular atypia.

Mitotic activity was low [four mitoses per 10 high power field (HPF)], without atypical mitosis. The collagenous stroma 
was partially myxoid and contained an increased number of thick-walled capillaries; no necrosis was observed. Bone 
destruction was also observed.

Immunohistochemistry staining performed: SMA (+, in parts of cell population), reaction type "tram truck", cytokeratin 
AE1 and AE3 (CKAE1/3) (-/+, insufficient focal reaction), Mucin 4 (MUC4) (-), CD34 (-), Desmin (-), SOX10 (-), S100 
protein (-), Ki-67 protein (5%), hHf35 (-), Epithelial membrane antigen (EMA) (-) (-/+), Caldesmon (-/+, trace), H3K27me3 
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Figure 3 Case 2 computed tomography with contrast scan. Solid contrast-enhancing tumor filling the maxillary sinus is shown. A: Sagittal section; B: 
Coronal section; C: Axial section.

(+, expression prohibited), ALK (-), ROS1 (-), HMB45 (-), Melan-A (-), Myogenin (-), MyoD1 (-).

Case 2
Histopathological examination confirmed LGMS. The tumor was poorly demarcated, cream-gray in color, macroscop-
ically without necrosis, and 8 cm in diameter with endophytic growth (rpT4aN0M0) (8th Edition, American Joint 
Committee on Cancer).

Microscopic examination revealed proliferation of spindle cells with moderate cellularity and focal moderate cellular 
atypia; mitotic activity was low (four mitoses per 10-HPF) without atypical mitosis. The collagen stroma was partially 
edematous without necrosis. Natural invasion was also observed.

Immunohistochemical staining performed: SMA (+), Desmin (-), CD34) (-), EMA (-), CKAE1/3 (-), Caldesmon (-), 
MUC1 (-), S100 protein (-), ALK1 (-), Signal transducer and activator of transcription 6 (+/-), B-creatinin (-).

TREATMENT
Case 1
Based on the physical, histopathological, and radiological examinations, the patient qualified for an expanded maxill-
ectomy of the right side with immediate palate reconstruction using a microvascular skin flap harvested surgically from 
the middle arm. An intraoperative photograph was captured (Figure 4A) after buccal flap creation. The right lymph 
nodes were selectively resected for vascular anastomosis. Because infiltration was present within the tissues, exenteration 
was performed on the right side with a partial right-sided sphenoethmoidectomy (Figure 4B). Figure 5 shows the post-
resection lodges. Fastened preparation of blocks. During the procedure, leakage of cerebrospinal fluid from the olfactory 
filament area and right sphenoid sinus was observed. Duraplasty was performed using the latae of the tensor fascia, a 
mucoperiosteal flap, and a topical fibrin sealant patch. The patient did not experience any complications peri- or posto-
peratively.

The patient qualified for adjuvant radiotherapy radiation therapy (IMRT) and cone beam CT for postoperative 
treatment, with additional margins. The patient received a fractional dose of 200 centiGray (cGy) for a total dose of 6600 
cGy.

Case 2
Open biopsy confirmed recurrence of low-grade myofibrosarcoma. Based on clinical, histopathological, and radiological 
results, the patient qualified for expanded complete right-sided maxillectomy and right-sided hemimandibulectomy with 
immediate microvessel reconstruction using an anterolateral thigh flap and selective resection of the lymph nodes on the 
right side. Because of infiltration of the orbital tissues, right-sided exenteration was performed.



Mydlak A et al. Low-grade myofibrosarcoma of the maxilla sinus

WJCO https://www.wjgnet.com 571 April 24, 2024 Volume 15 Issue 4

Figure 4 Case 1 intraoperative photo and post-resection lodge. A: Intraoperative photo; B: Post-resection lodge.

Figure 5  Case 1 fastened preparation in block.

The patient qualified for adjuvant radiation therapy (IMRT) of the postsurgical bed with a fraction dosage of 200 cGy to 
a total dose of 6600 cGy.

OUTCOME AND FOLLOW-UP
Case 1
Currently, the patient is under observation with no evidence of disease.

Case 2
After 9 months of observation, recurrence appeared in the right mandibular arch below the irradiated area. CT confirmed 
the progression in both the irradiated and the previously irradiated areas. The lesion is located at the base of the skull.

There were increasing postoperative risks, which justified refrainment from radiotherapy and salvage surgery.
The patient qualified for palliative chemotherapy with doxorubicin + dacarbazine + cyclophosphamide regimen. Due 

to pathological L1 and L5 fractures, metastases to L1 and L2, and metastasis to the right hip bone, the patient was eligible 
for Radiation Therapy [fractions of 3 Gray (Gy) to a total dose of 36 Gy] and second-line chemotherapy (gemcitabine + 
docetaxel). The patient died 26 months after surgical treatment.

A comparison of the immunohistochemical studies of Case 1 and Case 2 is shown in Table 1.
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Table 1 Comparison of immunohistochemical results in Cases 1 and 2

Case Vimentin SMA CK AE 1/3 Desmin h-Caldesmon CD 34 S100 protein EMA ALK 1

1 + + -/+ - -/+ trace - - -/+ -

2 + + - - - - - - -

+: Positive reaction; -: Negative reaction. ALK 1: Anaplastic lymphoma kinase 1; CD 34: Cluster of differentiation 34; CKAE 1/3: Cytokeratin AE1 and AE3; 
EMA: Epithelial membrane antigen; SMA: Smooth muscle actin.

DISCUSSION
LGMS
LGMS is a recently discovered and extremely rare malignant tumor. The first such case was diagnosed in the 1998s. In 
2002, the World Health Organization made the LGMS a separate unit in the pathology and genetics of soft tissue and 
bone tumors[9]. Clinically, it manifests as a slow-growing and infiltrating tumor. LGMS is a low-grade malignant tumor 
with a high tendency for recurrence and distant metastases, even after several years[10,11].

LGMS most commonly develops in adults, predominantly in males, and in the head and neck. The tumor most often 
appears in the oral cavity, especially in the tongue, mandible, and larynx[6]. Other localizations include the limbs, 
abdominal cavity, pelvis, and long bones[12].

LGMS of the maxillary sinus is extremely rare, and only five cases have been described so far. Here, we present two 
more cases (Table 2)[2,7,8,13]. In cases of soft tissue sarcomas of the head and neck, MRI with contrast and/or CT with 
contrast should be performed (NCCN Guidelines version 2. 2022)[14]. Radiologic imaging typically shows a well-limited 
tumor with visible margins of destructive growth[6,10].

Histology
Histologically, the tumor is composed of spindle and stellate cells collected in clusters of different lengths, with a focal 
herringbone, spiral, or no pattern[13]. Cancerous cells are composed of a mild to moderate amount of pale eosinophilic 
cytoplasm and a spindle nucleus, which can be spiral or circular, and vesicles with cavities.

In most cases, focal atypia of the nucleus is observed; however, this is usually benign with enlarged hyperchromatic 
nuclei. Additionally, larger atypical cells can sometimes be observed[11].

Microscopic Figure 6A shows spindle cell infiltration, hypocellularity with mild atypia, and stromal collagen. Hyper-
cellular proliferation and bundles of spindle cells are observed with hematoxylin and eosin staining (Figure 6B). 
Figure 7A shows focal expression of SMA and Figure 7B shows no expression of ALK.

Immunophenotype
Neoplastic cells in LGMS have a variable immunophenotype: Actin positive (+)/Desmin negative (-), Actin negative (-)/
Desmin positive (+), and Actin positive (+)/Desmin (+) positive. In addition, tumor cells may stain positively for fib-
ronectin. Focal expression of CD34 and Cluster of differentiation 99 has been reported, while S100 protein, epithelial 
markers, laminin, and h-Caldesmon are negative (-)[2,15].

Differential diagnosis
The differential diagnosis of LGMS includes both malignant and benign tumors such as nodular fasciitis, myofibroblastic 
tumors, fibromatosis, myofibroma, myopericytoma, monophasic synovial sarcoma, malignant peripheral nerve sheath 
tumors, spindle cell rhabdomyosarcoma, fibrosarcoma, leiomyosarcoma, and melanoma[5,6,16].

Procedure
The gold standard procedure in cases of sarcoma infiltrating bones is radical excision of the tumor[12,17]. In cases of 
positive margins, the radicalization procedure should be primarily considered. When radicalization is impossible, soft 
tissue margins are narrow and large. If tumors infiltrate the blood vessels or nerves, radiotherapy or chemoradiotherapy 
should be considered[12,18,19]. The LGMS head and neck recurrence rate is 25%-40% and is the highest when the tumor 
is in the nasal cavity or paranasal sinuses. A higher frequency of recurrence was observed in patients who underwent 
adjuvant radiation therapy. This is probably a result of the qualification of patients with unfavorable prognostic factors. 
The most important prognostic factor was the resection state. Positive margins, regional lymph node involvement, and 
age > 60 years[12].

The clinical cases presented above were characterized by characteristics specific to the described type of sarcoma, 
which enabled the identification of certain groups of tumors. As shown in Table 2, males are mostly affected (57%), which 
is also indicated in previous literature. The average age of the patients is 41 ± 17.2 years (females 45 ± 25.8 years, males 38 
± 10.6 years). The most common symptoms are nasal congestion, rhinorrhea, edema, and pain. Exophthalmos was present 
in two patients; however, visual impairment was present in one patient.

LGMSs are tumors of low malignancy; however, they are highly invasive, with a high tendency for recurrence and a 
high risk of distant metastases[6]. Several factors may contribute to this paradox of LGMS. Tumors with a low grade of 
malignancy may have a lower mitotic index, but this does not necessarily reflect their invasive potential or likelihood of 
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Table 2 Clinical features of reported cases of low-grade myofibrosarcomas of the maxillary

Ref. Age Sex Size in 
cm Side Main symptoms Necrosis Mitotic rate, 

10/10 HPF scale
Follow up in 
months IHC Results

Meng et al[7], 
2007

33 F 6.5 Left Nasal obstruction and 
leakage

Yes 10/10/HPF 12 Vimentin (+); SMA (+); Fibronectin (+); Calponin (+); Desmin (-); h-
Caldesmon (-); Laminin (-); Type IV collagen (-); CD34 (-); CD68 (-); 
ALK1 (-)

Diagnostic testing 
of 1 yr

Meng et al[7], 
2007

28 F 3 Left Nasal obstruction and 
leakage

Yes 8/10 HPF 21 Vimentin (+); SMA (+); Fibronectin (+); Calponin (+); Desmin (-); h-
Caldesmon (-); Laminin (-); Type IV collagen (-); CD34 (-); CD68 (-); 
ALK 1 (-)

Recurrent at 0.5 yr

Ghosh et al[2], 
2019

35 M No data Left Exophthalmos No data < 2/10 HPF 72 α-SMA (+); MIC-2 (+); Desmin (-); CD 34 (-); S100 protein (-); 
Cytokeratin (-); EMA (-); Calponin (-); Bcl-2 (-)

Recurrent at 6 yr

Bisceglia et al
[13], 
2001  
 

24 M 4 Left Pain, swelling of the 
midface

No data 1/10HPF 40 Vimentin (+); α-SMA (+); MSA (+); CD34 (-); Desmin (-); S100 protein (-
); Cytokeratin (-)

Observation 3 yr

Gómez-Oliveira 
et al[8], 2015

75 F No data Left Pain, swelling Yes No data 12 Vimentin (+); SMA (+); CD10 (+); Cytokeratin (+); h-Caldesmon (+); 
Desmin (-); CD34 (-); ALK (-); EMA (-); S100 protein (-)

After 1 yr 
metastasis-left 
femur

Current article 46 M 8 Right Pain, swelling of the 
midface, nasal obstruction 
and leakage

No 4/10HPF 15 SMA (+) in some cells; tram truck type reaction; CK AE1/3 (-/+) focal 
weak reaction; MUC4 (-); CD34 (-); Desmin (-); SOX10 (-); S100 (-); Ki-67 
5%; hHf35 (-); EMA (-/+) trace; Caldesmon (-/+) trace; H3K27me3 (+) 
preserved expression; ALK (-); ROS1 (-); HMB45 (-) Melan-A (-); 
Myogenin (-); MyoD1 (-)

Observation 1.5 yr

Current article 45 M 8 Right Exophthalmos, strabismus, 
visual impairment

No 4/10HPF 26 SMA (+); Desmin (-); CD34 (-); EMA (-); CKAE1/3 -; Caldesmon (-); 
MUC1 (-); S100 (-); ALK1 (-); STAT6 (+/-); B-catenin (-)

Recurrent

α-SMA: α-Smooth muscle actin; ALK: Anaplastic lymphoma kinase; ALK1: Anaplastic lymphoma kinase 1; Bcl-2: B-cell lymphoma 2; CD34: Cluster of differentiation 34; CD68: Cluster of differentiation 68; CKAE1/3: Cytokeratin AE1 
and AE3; EMA: Epithelial membrane antigen; F: Female; H3K27me3: Trimethylation of lysine 27 on histone H3; HMB45: Human melanoma black-45; HPF: High power field; M: Male; MIC-2: Monoclonal intestinal cancer-2; MSA: 
Muscle specific actin; MUC1: Mucin 1; MUC4: Mucin 4; MyoD1: Myogenic differentiation 1; ROS1: Receptor tyrosine kinase 1; SMA: Smooth muscle actin; SOX10: Sex determining region Y-box 10; STAT6: Signal transducer and 
activator of transcription 6.

metastasis. It is suspected that these tumors may show infiltrative growth patterns, making complete surgical removal 
difficult, and allowing residual microscopic disease left after surgery to cause recurrence.

Even within a specific histological subtype, tumors can be significantly heterogeneous in terms of biological behavior. 
Some cells may have more aggressive features. Tumor behavior is also influenced by genetic and molecular character-
istics. Some low-grade tumors may contain genetic changes or mutations that contribute to their ability to recur or 
metastasize.
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Figure 6 Hematoxylin and eosin staining. A: Spindle cell infiltration, hypocellular with mild atypia, stromal collagen; hematoxylin and eosin (H&E) 20 ×; B: 
Hypercellular proliferation, fascicles of spindle cells; H&E 20 ×.

Figure 7 Focal expression of smooth muscle actin and no expression of anaplastic lymphoma kinase (magnification 20 ×). A: Focal 
expression of smooth muscle actin (magnification 20 ×); B: No expression of anaplastic lymphoma kinase (magnification 20 ×).

CONCLUSION
LGMSs are tumors of low malignant potential; however, they are highly invasive and have a high tendency to recur and 
metastasize to distant sites. A standard treatment strategy has not been developed yet for LGMS patients. Because of its 
low frequency of occurrence, it is impossible to establish guidelines. Therefore, the treatment used for LGMS is the same 
as that used for sino-nasal carcinoma.

It is important that LGMS patients be closely monitored by a multidisciplinary healthcare team to determine the most 
appropriate treatment plan and follow-up. Regular follow-up examinations are crucial to detect recurrence or metastasis 
at an early stage. Considering the lack of precise diagnostic criteria, LGMS occurs more often than the literature indicates 
and may include various clinicopathological forms.
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