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Abstract
Osteoclast differentiation depends on receptor activa-
tor of nuclear factor-κB (RANK) signaling, which can 
be divided into triggering, amplifying and targeting 
phases based on how active the master regulator nu-
clear factor of activated T-cells cytoplasmic 1 (NFATc1) 
is. The triggering phase is characterized by immediate-
early RANK signaling induced by RANK ligand (RANKL) 
stimulation mediated by three adaptor proteins, tu-
mor necrosis factor receptor-associated factor 6, Grb-
2-associated binder-2 and phospholipase C (PLC)γ2, 
leading to activation of IκB kinase, mitogen-activated 
protein kinases and the transcription factors nuclear 
factor (NF)-κB and activator protein-1 (AP-1). Mice 
lacking NF-κB p50/p52 or the AP-1 subunit c-Fos (en-
coded by Fos ) exhibit severe osteopetrosis due to a 
differentiation block in the osteoclast lineage. The am-
plification phase occurs about 24 h later in a RANKL-
induced osteoclastogenic culture when Ca2+ oscillation 
starts and the transcription factor NFATc1 is abundant-
ly produced. In addition to Ca2+ oscillation-dependent 
nuclear translocation and transcriptional auto-induction 
of NFATc1, a Ca2+ oscillation-independent, osteoblast-
dependent mechanism stabilizes NFATc1 protein in dif-

ferentiating osteoclasts. Osteoclast precursors lacking 
PLCγ2, inositol-1,4,5-trisphosphate receptors, regulator 
of G-protein signaling 10, or NFATc1 show an impaired 
transition from the triggering to amplifying phases. 
The final targeting phase is mediated by activation of 
numerous NFATc1 target genes responsible for cell-cell 
fusion and regulation of bone-resorptive function. This 
review focuses on molecular mechanisms for each of 
the three phases of RANK signaling during osteoclast 
differentiation.

© 2012 Baishideng. All rights reserved.

Key words: Receptor activator of nuclear factor-κB li-
gand; Tumor necrosis factor receptor-associated factor 
6; c-Fos; Nuclear factor of activated T-cells cytoplasmic  
1; Immunoreceptor tyrosine-based activation motif; 
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INTRODUCTION
Osteoclasts are bone-resorbing cells derived from hema-
topoietic precursor cells[1-3]. Macrophage-colony stimulat-
ing factor (M-CSF) stimulation up-regulates expression of  
receptor activator of  nuclear factor-κB (RANK, encoded 
by Tnfrsf11a) in the osteoclast precursor cell[4]. RANK, a 
type Ⅰ transmembrane receptor with a C-terminal cyto-
solic tail, is responsible for osteoclast differentiation and 
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function. RANK signaling is induced by RANK ligand 
(RANKL, encoded by Tnfsf11), which is a type Ⅱ trans-
membrane protein (i.e., with a cytoplasmic N-terminus 
and an extracellular C-terminus). Mice with genetic dele-
tion of  Tnfrsf11a or Tnfsf11 lack osteoclasts and exhibit 
severe osteopetrosis[5,6]. In humans, mutations in genes 
encoding RANK or RANKL are associated with osteo-
clast poor, autosomal recessive osteopetrosis[7,8]. RANK 
signaling is also modified by osteoprotegerin (encoded by 
Tnfrsf11b), a soluble decoy receptor of  RANK that blocks 
RANKL binding to RANK[9,10]. 

RANK is a member of  the tumor necrosis factor 
receptor (TNFR) superfamily consisting of  616 and 625 
amino acid residues in human and mouse, respectively[11]. 
RANKL is produced by osteoblasts and osteocytes[12,13] 
and binds in a trimeric form to RANK, initiating signal-
ing[14,15]. Like other TNFR superfamily members, RANK 
lacks intrinsic enzymatic activity and transduces intra-
cellular signals by recruiting adaptor proteins including 
TNFR-associated factors (TRAFs), activating nuclear 
factor (NF)-κB and downstream mitogen activated pro-
tein kinase (MAPK) and Akt signaling[16-18]. RANK ex-
hibits one of  the longest cytoplasmic tails of  any TNFR 
superfamily protein, and this domain is responsible for 
the osteoclast-specific signaling pathway[19,20].

Spatio-temporal control of  signaling downstream 
of  RANK[21] is divided into three phases in this review 
(Figure 1). In the triggering phase, NF-κB, activator pro-
tein-1 (AP-1), and MAPKs are rapidly activated within 
an hour of  RANKL stimulation in a culture system[22]. 
Then, during the amplifying phase, nuclear factor of  
activated T-cells cytoplasmic 1 (NFATc1, encoded by 
Nfatc1) begins to accumulate approximately 24 h after 
RANKL stimulation as cytosolic Ca2+ levels begin to os-
cillate[23]. Finally, in the targeting phase, RANK signaling 
regulates multinucleation and bone resorptive function 
mainly through activation of  NFATc1 target genes. Con-
certed action of  RANK and its adaptor proteins as well 
as immunoreceptors and other co-stimulatory molecules 
drive these phases. Here we review literature relevant to 
the molecular mechanism of  RANK signaling at each 
phase during osteoclast differentiation.

TRIGGERING PHASE
Once homotrimeric RANKL forms complex with its 
receptor RANK[14,15], a cascade of  downstream signaling 
is initiated. RANK recruits adaptor proteins to specific 
motifs in its C-terminal cytoplasmic tail, which contains 
three TRAF6 binding sites near the transmembrane do-
main, the a highly conserved domain in RANK (HCR) 
motif, and two binding sites for TRAF2 or TRAF5 near 
the C-terminus[20] (Figure 2). These motifs have been 
analyzed using various mutant RANK proteins[16,22]. In-
oue and colleagues generated a CD40/RANK chimeric 
receptor carrying the N-terminal extracellular domain 
of  human CD40 (TNFRSF5) and the cytoplasmic tail 
of  mouse RANK (Tnfrsf11a), which can be specifically 

activated by anti-CD40 antibody and found that TRAF6 
binding sites, but not the HCR, are essential for RANK 
signaling in the immediate-early phase[16,22]. At least 
three molecules, TRAF6, Grb-2-associated binder-2 
(Gab2) and phospholipase C (PLC)γ2, function as adap-
tor molecules for RANK. TRAF6 is a really interesting 
new gene (RING) E3 ubiquitin ligase and Lys63-linked 

Figure 1  Three phases of receptor activator of nuclear factor-κB signaling 
during osteoclast differentiation. Osteoclast differentiation downstream of re-
ceptor activator of nuclear factor-κB (RANK) signaling is divided into triggering, 
amplifying and targeting phases, based on the nuclear factor of activated T-cells 
cytoplasmic 1 activation state. ITAM: Immunoreceptor tyrosine-based activation 
motif; TRAF6: Tumor necrosis factor receptor-associated factor 6; Gab2: Grb-
2-associated binder-2; PLCγ2: Phospholipase C γ2; RANKL: RANK ligand; Ig: 
Immunoglobulin.
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Figure 2  Triggering phase. Trimerization of receptor activator of nuclear 
factor-κB (RANK) by binding of RANK ligand (RANKL) immediately activates 
mitogen-activated protein kinases (MAPKs), nuclear factor (NF)-κB, and activa-
tor protein-1 (AP-1). An adaptor molecule complex including tumor necrosis 
factor receptor-associated factor 6 (TRAF6), Grb-2-associated binder-2 (Gab2) 
and phospholipase C (PLC)γ2 on TRAF6 binding sites of RANK is essential to 
induce the triggering phase. HCR: Highly conserved domain in RANK; JNK: 
c-Jun N-terminal kinase; Erk: Extracellular signal-regulated kinase.
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auto-ubiquitination is necessary for the signal transduc-
tion to activate IκB kinase and NF-κB during osteo-
clast differentiation[24]. Mutational analysis of  PLCγ2 
revealed that catalytic activity of  PLCγ2 is dispensable 
at the triggering phase but necessary for the amplifying 
phase of  RANK signaling[25] (see below). These adaptor 
proteins activate diverse signaling molecules, phosphati-
dylinositol-3 kinase, Akt kinase, and MAPKs including 
c-Jun N-terminal kinase, p38, and extracellular-regulated 
kinase, leading to activation of  the dimeric transcription 
factors NF-κB and AP-1[20,25,26]. Production of  reactive 
oxygen species via a RANKL-TRAF6-Rac1-nicotinamide 
adenine dinucleotide phosphate oxidase-dependent 
pathway is also required for MAPK activation and osteo-
clastogenesis[27]. In osteoclast lineage cells, NF-κB and 
AP-1 are composed of  two molecules among p65, RelB, 
p50 and p52 for NF-κB, and c-Fos (also Fra-1, Fra-2 or 
FosB) and c-Jun (also JunB or JunD) for AP-1. Double 
knockout mice lacking both p50 and p52 and single 
knockout mice lacking c-Fos lack osteoclasts and exhibit 

severe osteopetrosis[28-32]. Mice overexpressing dominant 
negative c-Jun also develop osteopetrosis[33]. These stud-
ies demonstrate the importance of  NF-κB and AP-1 ac-
tivation by RANK signaling in osteoclast differentiation.

TRANSITION TO THE AMPLIFYING 
PHASE
The transition from triggering to amplifying phase re-
quires induction of  Nfatc1 transcription, which allows 
cooperation with signaling downstream of  immune re-
ceptors. NFAT was first identified in nuclear extracts of  
activated T-cells as a transcription factor that binds to 
the interleukin-2 (IL-2) promoter[34]. NFAT regulates not 
only differentiation and activation of  immune cells but 
also the development of  tissues such as skeletal muscle, 
cardiac valve, and bone[35]. Since the promoter of  the 
osteoclast-specific tartrate-resistant acid phosphatase 
(TRAP) gene carries an evolutionarily conserved AP-1/
NFAT binding element similar to the cooperative AP-1/
NFAT binding site in the IL-2 promoter, it was hypoth-
esized that c-Fos/AP-1 is required for NFAT function 
in osteoclasts[36]. It was demonstrated that Nfatc1 itself  
is a major c-Fos target gene during osteoclast differen-
tiation[37-39]. In cells lacking c-Fos, NF-κB activity is un-
expectedly elevated[40], supporting the idea that Fos and 
Nfatc1 induction is downstream of  NF-κB p50 and p52 
activation in RANK signaling[41]. It is likely that NF-κB, 
c-Fos/AP-1 and NFATc2 mediate basal expression of  
Nfatc1 in preparation for the amplification phase[42].

In concert with RANK signaling, immunoglobulin-
like receptors such as osteoclast-associated receptor (OS-
CAR) and the triggering receptor expressed in myeloid 
cells (TREM)-2 transduce Nfatc1 induction signals[43,44]. 
Both are associated with adaptor proteins containing the 
immunoreceptor tyrosine-based activation motif  (ITAM), 
such as DNAX-activation protein 12 or the Fc receptor 
common γ subunit[45]. After ITAM tyrosine phosphoryla-
tion, a complex containing the tyrosine kinases Bruton’s 
tyrosine kinase and Tec and the adaptor molecules B cell 
linker protein and Src homology 2 domain-containing 
leukocyte protein of  76 kD may facilitate cooperation 
between RANK and ITAM signaling (Figure 3)[46]. This 
combined signaling selectively leads to PLCγ phosphory-
lation, suggesting that integration of  RANK and ITAM 
signaling is required for efficient activation of  PLCγ dur-
ing the amplifying phase. Furthermore, following eleva-
tion of  intracellular Ca2+ levels, prior to the beginning of  
Ca2+ oscillation, Nfatc1 transcription is enhanced by Ca2+/
calmodulin-dependent kinase Ⅳ, which phosphorylates 
the cAMP response element-binding protein, inducing 
Fos expression[47].

AMPLIFYING PHASE
During the amplifying phase starting approximately 24 h 
after RANKL stimulation in osteoclastogenic cultures, 

Figure 3  Amplifying phase. Both Ca2+ oscillation-dependent and -indepen-
dent nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) amplification are 
induced. Highly conserved domain in receptor activator of nuclear factor-κB 
(RANK)-mediated RANK signaling and immunoreceptor tyrosine-based activa-
tion motif (ITAM) signaling lead to continuous phospholipase C (PLC)γ2 activa-
tion. Regulator of G-protein signaling 10 (RGS10) determines the Ca2+ oscilla-
tion pattern through control of PLCγ2 by competitive binding of Ca2+/calmodulin 
and phosphatidylinositol 3, 4, 5-trisphosphate (PIP3). Sustained Ca2+ oscillation 
contributes to NFATc1 amplification mediated by transcriptional auto-induction. 
In the Ca2+ oscillation-independent pathway, Cot kinase enhances NFATc1 
stabilization through direct phosphorylation and contributes to its accumulation. 
ER: Endoplasmic reticulum; BLNK: B cell linker protein; SLP76: Src homology 
2 domain-containing leukocyte protein of 76 kD; TRAF6: Tumor necrosis factor 
receptor-associated factor 6; Gab2: Grb-2-associated binder-2; IP3R: IP3 recep-
tor; CaM: Calmodulin; Btk: Bruton's tyrosine kinase.
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intracellular Ca2+ levels oscillate, and activate the Ca2+/
calmodulin-dependent phosphatase calcineurin, which 
dephosphorylates NFATc1 and induces its nuclear trans-
location. On the HCR of  the RANK C-terminal tail, 
PLCγ2 forms a complex with the TRAF6 and Gab2 
adapter proteins in a stimulation-dependent manner[20]. 
An HCR deletion mutant of  CD40/RANK chimeric 
receptor does not alter NF-κB and MAPK activation in 
the triggering phase but abolishes Ca2+ oscillation, indi-
cating that HCR-mediated signaling is indispensable for 
continuous PLCγ2 activation.

Both HCR-dependent RANK signaling and ITAM 
signaling lead to long-term induction of  PLCγ2 cata-
lytic activity. PLCγ2 increases intracellular Ca2+ levels by 
producing inositol-1,4,5-trisphosphate (IP3). Since Ca2+ 
oscillation during osteoclast differentiation is abolished 
in IP3 receptor (IP3R) knockout cells, Ca2+ release from 
endoplasmic reticulum (ER) via IP3Rs is required to 
generate Ca2+ oscillation[48]. The PLCγ family consists of  
PLCγ1, which is widely distributed, and PLCγ2, which 
is primarily limited to hematopoietic cells[49]. PLCγ2 null 
mice exhibit an osteopetrotic phenotype[25], indicating 
that PLCγ2, independent of  PLCγ1, is required for os-
teoclastogenesis. 

Intracellular Ca2+ levels (approximately 100 nmol/L) 
are 20 000-fold lower than outside the cell (approximately 
2 mmol/L)[50]. Ca2+ oscillation in osteoclasts is tightly 
controlled by the regulator of  G-protein signaling 10 
(RGS10)[51]. RGS10 is competitively bound by phosphati-
dylinositol 3, 4, 5-trisphosphate (PIP3) and Ca2+/calmod-
ulin, and intracellular Ca2+ concentration shifts the bal-
ance between RGS10-PIP3 and RGS10-Ca2+/calmodulin 
complexes[51] (Figure 3). PIP3 is required for membrane 
localization and subsequent activation of  PLCγ2. As the 
first peak formation of  Ca2+ oscillation, PLCγ2 activation 
induces transient release of  Ca2+ from the ER, elevating 
intracellular Ca2+ concentration (Figure 3, arrows 1 and 
2). RGS10 forms a complex with the Ca2+/calmodulin 
complex and increases levels of  free PIP3, further acti-
vating PLCγ2 until the intracellular Ca2+ level reaches its 
peak (Figure 3, arrow 1 and 3). Empty ER Ca2+ stores 
reload through sooth endoplasmic reticular Ca2+ ATPase, 
decreasing intracellular Ca2+, increasing RGS10-PIP3, and 
reducing PLCγ2 activity (Figure 3, arrows 4-6). A repeat 
of  these processes may generate Ca2+ oscillation through 
oscillatory regulation of  PLCγ2 activation[51]. RGS10 
knockout mice exhibit severe osteopetrosis caused by a 
defect in osteoclasts in vivo, indicating that Ca2+ oscilla-
tion is a crucial mechanism underlying NFATc1 activa-
tion and amplification during osteoclast differentiation[51].

NFATc1 is also activated by an osteoblast-induced 
Ca2+ oscillation-independent pathway. When osteoclast 
precursors are co-cultured with osteoblasts, osteoblasts 
increase NFATc1 levels in osteoclast precursors, and 
promote osteoclast differentiation even in the presence 
of  the calcineurin inhibitor FK506. Furthermore, wild-
type osteoblasts induce differentiation of  osteoclast 

precursors derived from IP3R type 2 and type 3 double 
knockout mice without detectable RANKL-induced Ca2+ 
oscillation[48]. Indeed, Cot (cancer osaka thyroid) serine/
threonine kinase, also known as tumor progression locus 
2, is activated by cell-cell interaction of  osteoclasts with 
osteoblasts and promotes Ca2+ oscillation/calcineurin-
independent osteoclastogenesis[52]. Furthermore, Cot 
increases NFATc1 protein levels through phosphoryla-
tion-dependent protein stabilization thereby amplifying 
NFATc1 activity in the absence of  Ca2+ oscillation. Cot 
likely phosphorylates residues that differ from those 
targeted by calcineurin-mediated dephosphorylation 
required for nuclear translocation. At present, the iden-
tity of  osteoblast-derived molecules that activate Cot in 
osteoclasts is unknown, but Cot-mediated NFATc1 sta-
bilization clearly contributes to osteoclastogenesis in vivo. 
Collectively, NFATc1 amplification is achieved by both 
upregulated expression and enhanced stability.

TARGETING PHASE
NFATc1 induction and amplification regulate mRNA 
levels of  target genes driving osteoclast differentiation, 
fusion and function. While forced NFATc1 expression 
directs osteoclast differentiation, NFATc1-deficient em-
bryonic stem cells fail to differentiate into osteoclasts 
following RANKL-stimulation[23,42]. 

In osteoclast differentiation, the immunoglobulin-like 
receptor OSCAR, but not TREM-2, is an NFATc1 tar-
get gene[53,54]. During differentiation, positive regulators 
of  NFATc1 are enhanced while negative regulators are 
suppressed. The transcriptional repressor B-lymphocyte-
induced maturation protein-1 (Blimp1) is induced by 
RANKL-stimulation and down-regulates three negative 
regulators: the v-maf  musculoaponeurotic fibrosarcoma 
oncogene family, protein B; interferon regulatory fac-
tor-8; and B cell lymphoma 6. All of  these proteins re-
press Nfatc1 transcription[55-58] (Figure 4). Evidence show-
ing that Blimp1 is a direct NFATc1 target[55] suggests that 
NFATc1 maintains expression of  itself  via NFATc1/
Blimp1 signaling.

NFATc1 target genes encode proteins crucial for 
osteoclast cell-cell fusion such as a dendritic cell-specific 
transmembrane protein (DC-STAMP), vacuolar proton 
pump subunit Atp6v0d2 and the c-Src substrate Tks5 
(tyrosine kinase substrate with five SH3 domains)[59-62]. 
Tks5 appears to be required not only for fusion but for 
circumferential podosome (actin ring or sealing ring) 
formation. Following Tks5 knockdown in osteoclasts, 
multinucleation is abolished although mononuclear os-
teoclasts still express and amplify NFATc1 in the pres-
ence of  M-CSF and RANKL[62]. Furthermore, defects 
of  c-Src knockout osteoclasts can be partially rescued by 
expression of  a form of  Tks5 carrying glutamate substi-
tutions that mimic constitutive phosphorylation at c-Src 
phosphorylation target tyrosines[62]. The c-Src-Tks5 axis 
illustrates an additional signaling pathway induced by 
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RANK signaling beyond NFATc1. In conjunction with 
ITAM-bearing proteins, c-Src also phosphorylates the 
tyrosine kinase Syk when integrin αVβ3 is activated by 
adhesion to bone matrix, in particular, vitronectin[63,64]. 
In these c-Src-Syk signaling components, integrin β3 and 
c-Src are NFATc1 target gene products[65,66], suggest-
ing that NFATc1 target genes include those critical for 
osteoclast-adhesion.

To resorb bone, osteoclasts secrete acid hydrogen 
chrolide and various hydrolases. Several NFATc1 target 
genes encode proteins required for acidification and 
proteolysis, such as the CLC-7 chloride channel (Clc7)[66], 
a late endosomal/lysosomal chloride channel localizing 
in ruffled borders, cathepsin K[67], which degrades colla-
gens, and TRAP[23,39], which dephosphorylates the bone 
matrix phosphoproteins osteopontin and bone sialo-
protein. Mice lacking Clc7 or the V0-ATPase subunit a3 
show severe osteopetrosis reminiscent of  osteoclast-rich 
osteopetrosis in humans[68,69]. These mice show TRAP-
positive osteoclasts with apparently normal NFATc1 
amplification. Expression of  the calcitonin receptor 
depends on NFATc1[23,39,53,70], and calcitonin receptor 
signaling inhibits both osteoclast formation and function 
independently of  transcriptional regulation by RANK 
signaling[71]. 

Finally, NFATc1 induces transcription of  ephrinB2[72]. 
Eph receptors and ephrin ligands are increasingly rec-
ognized as important in bone biology[73]. Reverse signal-
ing into ephrinB2-expressing osteoclast lineage cells 
suppresses osteoclast differentiation by downregulating 
c-Fos and NFATc1, while forward signaling into recep-
tor EphB4-expressing osteoblast lineage cells enhances 
osteoblastic differentiation and bone formation. There-

fore, ephrinB2 is considered as a coupling factor induc-
ible by RANK signaling[73].

In conclusion, RANK signaling appears to be a strai-
ghtforward transcriptional cascade of  “NF-κB/c-Fos 
induces NFATc1 induces target genes”. Numerous sig-
naling molecules including receptors, adaptors, kinases 
and lipases reinforce this cascade. Oscillation of  intracel-
lular Ca2+ levels drives the cascade, but a Ca2+ oscillation-
independent mechanism also contributes to amplifica-
tion of  NFATc1 activity. RANK signaling stimulates the 
cell-cell fusion machinery (specifically, DC-STAMP and 
Tks5) and activates proteins located on or secreted from 
the osteoclast ruffled border (CLC-7 and cathepsin K, 
respectively). Numerous questions remain unanswered 
about RANK signaling, such as whether and how RANK 
signaling is connected to microRNA control[74-77] or to 
long noncoding RNAs (such as competing endogenous 
RNAs, or ceRNAs)[78]. Components of  the RANK sig-
naling pathway will continue to provide not only topics 
for investigation but novel therapeutic targets to prevent 
osteoporosis and other bone loss diseases.
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Abstract
Bone-resorbing osteoclasts are formed from a mono-
cyte/macrophage lineage under the strict control of 
bone-forming osteoblasts. So far, macrophage colony-
stimulating factor (M-CSF), receptor activator of 
nuclear factor-κB ligand (RANKL), and osteoprotegerin 
(OPG) produced by osteoblasts play major roles in the 
regulation of osteoclast differentiation. Recent studies 
have shown that osteoblasts regulate osteoclasto-
genesis through several mechanisms independent of 
M-CSF, RANKL, and OPG production. Identification of 
osteoclast-committed precursors in  vivo  demonstrated 
that osteoblasts are involved in the distribution of 
osteoclast precursors in bone. Interleukin 34 (IL-34), 
a novel ligand for c-Fms, plays a pivotal role in main-
taining the splenic reservoir of osteoclast-committed 
precursors in M-CSF deficient mice. IL-34 is also able 
to act as a substitute for osteoblast-producing M-CSF 
in osteoclastogenesis. Wnt5a, produced by osteo-
blasts, enhances osteoclast differentiation by upregu-
lating RANK expression through activation of the non-
canonical Wnt pathway. Semaphorin 3A produced by 
osteoblasts inhibits RANKL-induced osteoclast differ-
entiation through the suppression of immunoreceptor 

tyrosine-based activation motif signals. Thus, recent 
findings show that osteoclast differentiation is tightly 
regulated by osteoblasts through several different 
mechanisms. These newly identified molecules are ex-
pected to be promising targets of therapeutic agents 
in bone-related diseases.
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INTRODUCTION
Bone is continuously destroyed and reformed in verte-
brates to maintain bone volume and calcium homeos-
tasis. Osteoblasts and osteoclasts are specialized cells 
responsible for bone formation and bone resorption, re-
spectively. Osteoblasts produce bone matrix proteins and 
take charge of  mineralization of  the tissue. Osteoclasts 
are multinucleated cells responsible for bone resorption. 
It has been well established that osteoclasts are formed 
from monocyte/macrophage lineage precursors under 
the strict regulation of  osteoblasts, osteocytes, and bone 
marrow stromal cells (referred to as “osteoblasts” in this 
review).

Osteoblasts express two cytokines essential for os-
teoclast differentiation, macrophage colony-stimulating 
factor (M-CSF) and receptor activator of  nuclear factor-
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κB ligand (RANKL)[1,2] (Figure 1). Experiments using 
an osteopetrotic op/op mouse model have established 
that the osteoblast product M-CSF is crucial for os-
teoclast differentiation[3]. The M-CSF gene in op/op 
mice cannot code functionally active M-CSF protein[4]. 
Administration of  recombinant M-CSF to op/op mice 
restores impaired bone resorption[5]. RANKL is a mem-
ber of  the tumor necrosis factor (TNF) family (TNF 
superfamily member 11)[6,7]. The expression of  RANKL 
by osteoblasts is inducible. Osteoblasts express RANKL 
as a membrane-associated form in response to stimuli 
of  bone resorption-stimulating factors such as 1α,25-
dihydroxyvitamin D3 [1α,25(OH)2D3], parathyroid 
hormone, prostaglandin E2, and interleukin (IL)-11[2]. 
Osteoclast precursors express c-Fms (M-CSF receptor) 
and RANK (RANKL receptor) and differentiate into 
osteoclasts in the presence of  M-CSF and RANKL. 
RANKL stimulation strongly induced the expression 
of  nuclear factor of  activated T-cells, cytoplasmic 1 
(NFATc1), a pivotal transcription factor for osteoclast 
development, in osteoclast precursors[8]. Osteoblasts 
also produce osteoprotegerin (OPG, TNFRSF11B), a 
soluble decoy receptor for RANKL[9,10]. OPG inhibits 
osteoclastogenesis by blocking the RANKL-RANK 
interaction[1,2]. Both RANKL-deficient mice[11] and 
RANK-deficient mice[12] develop severe osteopetrosis 
with no osteoclasts in bone. In contrast, OPG-deficient 
mice[13,14] exhibit severe trabecular and cortical bone po-
rosity with enhanced osteoclastic bone resorption.

Discovery of  the RANKL-RANK signal in osteocla-
stogenesis has clarified the cause of  some bone diseases 
in humans. Loss-of-function mutations in the OPG gene 
cause Juvenile Paget’s disease and idiopathic hyperphos-
phatasia[15-17]. Gain-of-function mutations in the RANK 
gene induce familial expansile osteolysis, familial Paget’
s disease of  bone, and expansile skeletal hyperphospha-
tasia[18]. Osteopetrosis due to few osteoclasts is caused 
by loss-of-function mutations in the RANK gene[19] 
and RANKL gene[20]. The phenotypes of  these bone 
diseases in humans support the concept that RANKL 
expressed by osteoblasts stimulates osteoclast differenti-
ation of  precursors through the receptor RANK. Thus, 
the RANKL-RANK axis is the central pathway for os-
teoclastogenesis. Recent in vivo studies have also shown 
that osteoblasts regulate osteoclastogenesis through sev-
eral mechanisms independent of  M-CSF, RANKL and 
OPG production.

In this review article, we focus on the new roles of  
osteoblasts in osteoclast differentiation. First, osteo-
blasts are involved in the distribution of  osteoclast pre-
cursors in bone. Second, osteoblast-producing M-CSF 
can be replaced by IL-34 in osteoclastogenesis. Third, 
osteoblasts produce Wnt5a, which enhances osteoclast 
differentiation through the upregulation of  RANK ex-
pression. Lastly, osteoblast-producing semaphorins reg-
ulate osteoclast formation in the presence of  RANKL 
signaling. Overall, these findings remind us of  the im-
portance of  osteoblasts in osteoclast development.

CHARACTERISTICS OF OSTEOCLAST 
PRECURSORS IN VIVO
Recent attempts to identify osteoclast precursors in vivo 
established a new role of  osteoblasts in osteoclast dif-
ferentiation. Mizoguchi et al[21] showed that cells express-
ing both RANK and c-Fms detected near osteoblasts in 
bone directly differentiated into osteoclasts without cell 
cycle progression (Figure 2). To clarify the relationship 
between differentiation and proliferation of  osteoclast 
precursors, BrdU and M-CSF were simultaneously ad-
ministrated to op/op mice. M-CSF administration in-
duced many osteoclasts in bone in op/op mice. Most of  
the nuclei of  osteoclasts induced by M-CSF were BrdU 
negative. Similarly, when BrdU and RANKL were ad-
ministrated to RANKL-deficient mice, osteoclasts were 
also induced in bone. Most nuclei of  RANKL-induced 
osteoclasts were BrdU negative. These results suggest 
that both M-CSF and RANKL induce the differentia-
tion of  osteoclast precursors into osteoclasts without 
cell cycle progression. In these experiments, M-CSF and 
RANKL were intraperitoneally injected into op/op mice 
and RANKL-deficient mice, respectively. Nevertheless, 
osteoclasts were observed only on the surface of  calcified 
bone, not in the surrounding soft tissues. These results 
also suggest that neither RANKL nor M-CSF expressed 
by osteoblasts is involved in the determination of  the 
correct site for osteoclast formation. Using immuno-
histochemistry, RANK and c-Fms double-positive cells 
as osteoclast precursors were detected along the bone 
surface in RANKL-deficient mice. RANK and c-Fms 
double-positive cells were always observed near osteo-
blasts, did not express Ki67, a marker of  cell prolifera-
tion, and possessed a relatively long life span. Therefore, 
RANK and c-Fms double-positive cells were named “cell 
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Figure 1  Regulation of osteoclast differentiation by osteoblasts through 
macrophage colony-stimulating factor, receptor activator of nuclear 
factor-κB ligand, and osteoprotegerin production. Osteoblasts express two 
cytokines essential for osteoclast differentiation, macrophage colony-stimulating 
factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). Os-
teoblasts constitutively express M-CSF. On the other hand, osteoblasts express 
RANKL as a membrane-associated form in response to bone resorption-stimu-
lating factors such as 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], parathyroid 
hormone (PTH), prostaglandin E2 (PGE2), and interleukin 11 (IL-11). Osteoclast 
precursors express c-Fms (M-CSF receptor) and RANK (RANKL receptor) and 
differentiate into osteoclasts in the presence of M-CSF and RANKL. Osteo-
blasts also produce osteoprotegerin (OPG), which inhibits osteoclastogenesis 
by blocking the RANKL-RANK interaction.
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cycle-arrested quiescent osteoclast progenitors (QOPs)” 
(Figure 2). QOPs were also isolated from bone marrow 
and peripheral blood[22]. Bone marrow-derived QOPs 
failed to express macrophage-associated markers such as 
F4/80 and CD11b. Bone marrow-derived QOPs showed 
no phagocytic activity and did not proliferate in response 
to M-CSF. They differentiated into osteoclasts, but not 
into dendritic cells. Therefore, it has been concluded that 
QOPs are committed osteoclast precursors[22]. 

ROLE OF IL-34 IN OSTEOCLASTOGENESIS
Recently, Lin et al[23] discovered IL-34 as a new ligand 
for c-Fms. The amino acid sequence of  IL-34 was quite 
different from that of  M-CSF, but IL-34 promoted mac-
rophage colony formation similar to M-CSF. Chihara 
et al[24] reported that M-CSF and IL-34 used different 
signaling to induce the expression of  several chemokines 
and suggested that they differentially regulated macro-
phage function. However, IL-34 as well as M-CSF, in 
combination with RANKL, induced osteoclast forma-
tion in mouse and human cell culture systems[25]. IL-34 
was specifically expressed in splenic tissues, predomi-
nantly in the red pulp region. Recently, Nakamichi et al[26] 
showed that RANK and c-Fms double-positive QOPs 
did not exist in bone, but existed in the spleen of  op/op 
mice (Figure 2). IL-34 was highly expressed in vascular 
endothelial cells in the spleen. Vascular endothelial cells 
in bone also expressed IL-34, but its expression level 
was much lower than that in the spleen, suggesting a 
role of  IL-34 in the splenic maintenance of  QOPs. In-
deed, removal of  the spleen (splenectomy) completely 
blocked M-CSF-induced osteoclast formation in op/op 
mice. Osteoclasts appeared in aged op/op mice with up-
regulation of  IL-34 expression in the spleen and bone. 
Splenectomy also blocked the age-associated appear-
ance of  osteoclasts[26]. These results suggest that IL-34 
plays a pivotal role in maintaining the splenic reservoir 
of  QOPs, which are transferred to bone in response to 
M-CSF administration in op/op mice (Figure 2). Recent-
ly, sphingosine-1-phosphate, a lipid mediator regulating 
immune cell trafficking, was shown to regulate the mi-
gration of  osteoclast precursors[22,27]. Osteoblasts appear 
to help homing of  QOPs to bone. Thus, osteoblasts 

determine the distribution of  QOPs, which decide the 
correct sites of  osteoclast formation. 

WNT5A-RECEPTOR TYROSINE KINASE-
LIKE ORPHAN RECEPTOR 2 SIGNALING 
AND OSTEOCLASTOGENESIS
Immunohistochemical analysis revealed that RANK 
expression in osteoclast precursors was much stronger 
than that in bone marrow and the spleen[21,28]. Recently, 
Maeda et al[29] reported that Wnt5a produced by osteo-
blasts promoted RANK expression in osteoclast precur-
sors (Figure 3).

Wnt binds to two distinct receptor complexes: a 
complex of  Frizzled and low density lipoprotein recep-
tor-related protein 5/6 (LRP5/6) and another complex 
of  Frizzled and receptor tyrosine kinase-like orphan 
receptors (Rors)[30]. The binding of  Wnts to these Wnt 
receptors activates two classes of  signaling pathways: a 
β-catenin-dependent (canonical) pathway and β-catenin-
independent (non-canonical) pathway. The importance 
of  the canonical pathway in bone metabolism has been 
emphasized by the identification of  a link between bone 
mass and mutations in the LRP5 gene. Loss-of-function 
mutations in LRP5 reduced the number of  osteoblasts 
and caused osteoporosis[31]. Glass et al[32] developed mice 
expressing a stabilized form of  β-catenin in osteoblasts 
(β-catenin mutant mice) and reported that β-catenin 
mutant mice developed severe osteopetrosis due to the 
up-regulation of  OPG expression. Thus, Wnt/β-catenin 
signaling is crucial in osteoblastogenesis and osteoclas-
togenesis. However, the role of  the non-canonical Wnt 
pathway in bone resorption remains largely unknown.

Maeda et al[29] showed that Wnt5a-receptor tyrosine 
kinase-like orphan receptor 2 (Ror2) signaling between 
osteoblasts and osteoclast precursors enhanced osteo-
clastogenesis. Ror2-deficient mice exhibited impaired 
osteoclastogenesis. A deficiency in Wnt5a, a ligand of  
Ror2, caused a similar defect in mice. Osteoblasts ex-
pressed Wnt5a, while osteoclast precursors expressed 
Ror2, a co-receptor of  Wnt5a. Wnt5a enhanced RANK 
expression in osteoclast precursors through co-receptor 
Ror2 signaling. RANK promoter-driven luciferase activi-
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Figure 2  In vivo dynamics of osteoclast precursors. Cells 
expressing both receptor activator of nuclear factor-κB (RANK) 
and c-Fms are cell cycle-arrested quiescent osteoclast pre-
cursors (QOPs) in vivo. QOPs are detected in hematopoietic 
organs such as the spleen and bone. macrophage colony-
stimulating factor (M-CSF) and/or interleukin 34 (IL-34) appear 
to be involved in the differentiation of hematopoietic progenitor 
cells into QOPs. Some QOPs circulate to find bone. Osteo-
blasts play a role in the homing of QOPs to bone. QOPs in 
bone differentiate into osteoclasts without cell cycle progression 
in response to M-CSF/IL-34 and RANK ligand.
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ty was upregulated by Wnt5a-Ror2 signaling via the c-Jun 
N-terminal kinase pathway (Figure 3). Wnt5a-induced 
recruitment of  c-Jun to Sp1 sites up-regulated RANK 
expression in osteoclast precursors[29].

As described above, QOPs detected on bone sur-
faces strongly express RANK. Wnt5a secreted by os-
teoblasts appears to be involved in the up-regulation 
of  RANK expression in QOPs through Ror2. The up-
regulation of  RANK by Wnt5a-Ror2 signals in osteo-
clast precursors must lower the threshold for RANKL-
induced osteoclastogenesis. Atkins et al[33] reported that 
human peripheral blood monocytes expressing high 
surface levels of  RANK were capable of  responding 
rapidly to RANKL stimulation. Under physiological 
conditions, the up-regulation of  RANK expression in 
osteoclast precursors must be an important requirement 
for RANKL-induced osteoclastogenesis.

IMMUNORECEPTOR TYROSINE-BASED 
ACTIVATION MOTIF SIGNALS AND 
SEMAPHORIN 3A
Koga et al[34] showed for the first time that osteoclasto-
genesis induced by RANKL also requires co-stimulatory 
receptor signaling through adaptors containing immu-
noreceptor tyrosine-based activation motifs (ITAMs), 
such as Fc receptor common γ (FcRγ) and DNAX-acti-
vating protein of  12 kDa (DAP12). RANK and ITAM 
signaling cooperated to induce NFATc1, the master 
transcription factor for osteoclastogenesis. FcRγ and 

DAP12 are adaptor molecules that associate with immu-
noglobulin-like receptors such as osteoclast-associated 
receptor (OSCAR) and triggering receptor expressed 
on myeloid cells 2 (TREM-2). OSCAR uses FcRγ, 
while TREM-2 associates with DAP12. Koga et al[34]  
showed that deficiencies in both FcRγ and DAP12 
caused osteopetrotic phenotypes in mice. Because this 
pathway is crucial for the robust induction of  NFATc1 
that leads to osteoclastogenesis, these signals are called 
co-stimulatory signals for RANK in osteoclastogenesis. 
Recently, Barrow et al[35] reported that OSCAR bound to 
a specific motif  of  collagen and stimulated osteoclasto-
genesis. These series of  experiments have established a 
new research area called “osteoimmunology”[36].

Recently, Hayashi et al[37] reported that semaphorin 
3A (Sema3A) produced by osteoblasts suppressed osteo-
clast differentiation (Figure 4). Sema3A, a secreted axon 
guidance molecule, is highly expressed by osteoblasts. 
Neurophilin-1 (Nrp1), the receptor of  Sema3A, is ex-
pressed by osteoclast precursors. Nrp1 usually forms 
a receptor complex with Plexin-A1 in bone marrow 
macrophages of  osteoclast precursors. Using Plexin-
A1-deficient mice, Takegahara et al[38] previously showed 
that Plexin-A1 interacted with TREM-2 and DAP12 to 
form the receptor complex for Sema6D, a transmem-
brane semaphorin. Sema6D stimulated osteoclast dif-
ferentiation through the receptor complex Pleixn-A1/
TREM-2/DAP12 in osteoclast precursors through 
ITAM signaling (Figure 4). These findings suggest that 
the Sema3A-Nrp1 axis inhibits osteoclast differentiation 
by sequestering Plexin-A1 from TREM-2 so as to sup-
press ITAM signaling. RANK-mediated signals rapidly 
down-regulated Nrp1 expression in osteoclast precur-
sors. In the absence of  Nrp1, Plexin-A1 easily forms 
the receptor complex for Sema6D or Sema6C. Thus, 
Sema3A produced by osteoblasts inhibits osteoclast dif-
ferentiation (Figure 4). Hayashi et al[37] also showed that 
Sema3A and Nrp1 binding stimulated osteoblast dif-
ferentiation through the canonical Wnt/β-catenin path-
way. Administration of  Sema3A to mice increased bone 
volume and expedited bone regeneration through the 
suppression of  bone resorption and enhancement of  
bone formation[37]. These results suggest that Sema3A is 
a new therapeutic agent in bone and joint diseases.

THERAPEUTIC TARGETS IN THE 
OSTEOBLAST-OSTEOCLAST 
INTERACTION
Secreted OPG acts as a decoy receptor of  RANKL to 
compete with RANK on the surface of  osteoclast lin-
eage cells. OPG is expressed in osteoblasts and inhibits 
both osteoclast formation and function. Therefore, bio-
logical agents such as an antibody against RANKL have 
been developed and successfully suppress bone loss. 
Denosumab, an anti-RANKL antibody, has achieved the 
most success in the treatment of  osteoporosis, tumor-
related bone disorders, and arthritis[39-41]. 
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Figure 3  Role of Wnt5a-receptor tyrosine kinase-like orphan receptor 2 
signaling in osteoclast precursors. Receptor activator of nuclear factor-κB 
(RANK) expression in osteoclast precursors is much stronger than that in bone 
marrow and the spleen. Osteoblasts express Wnt5a, while osteoclast precur-
sors express receptor tyrosine kinase-like orphan receptor 2 (Ror2), a co-
receptor of Wnt5a. Wnt5a produced by osteoblasts enhances RANK expression 
in osteoclast precursors through Ror2. Wnt5a up-regulates RANK expression 
through the recruitment of c-Jun to Sp1 sites of the RANK promoter. The up-
regulation of RANK expression in osteoclast precursors increases their sensitiv-
ity to RANK ligand. JNK: c-Jun N-terminal kinase.
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Expression levels of  Wnt5a and frizzled 5 are higher 
in the synovial tissue of  rheumatoid arthritis (RA) pa-
tients than in those of  osteoarthritis[42]. Wnt5a stimulated 
the production of  pro-inflammatory cytokines such as 
IL-6 and IL-8 in synoviocytes. Treatment of  RA patient-
derived synoviocytes with antibodies against frizzled 5, 
one of  the receptors for Wnt5a, diminished the produc-
tion of  RANKL[43]. These findings suggest that Wnt5a 
promotes pro-inflammatory cytokine production and 
enhances bone resorption through the production of  
RANKL in the pathogenesis of  RA. In addition, Ror2, 
another receptor for Wnt5a, is expressed in osteoclast 
progenitors and co-stimulated non-canonical Wnt signal-
ing[29]. Wnt5a enhanced osteoclast formation in mouse 
bone marrow macrophage cultures. Administration of  
glutathione-S-transferase-fused soluble Ror2 restored 
bone destruction caused by collagen-induced arthritis 
in mice[29]. These results suggest that Wnt5a is involved 
in bone destruction in chronic inflammatory diseases. 
Molecules involved in non-canonical Wnt signaling may 
be therapeutic targets for the treatment of  patients suf-
fering from RA and periodontitis.

The finding of  Sema3A has invented a new concept 
that osteoblasts themselves express a bifunctional factor 
that induces osteoblastogenesis and inhibits osteoclasto-
genesis. Sema3A may inhibit bone loss without affecting 
the coupling system between osteoblasts and osteoclasts. 
Takayanagi and his colleagues[37] have demonstrated that 
administration of  recombinant Sema3A increases bone 
volume and expedites bone regeneration in osteoporotic 
mice established by ovariectomy. Thus, Sema3A is a 
promising anabolic factor possessing an inhibitory activ-
ity on bone resorption. 

In conclusion, the discovery of  the RANKL-RANK 
interaction opened a new area in bone biology focusing 
on the molecular mechanisms of  osteoclast develop-
ment and function. This series of  experiments concern-
ing the RANKL-RANK interaction have established 
the concept that osteoblasts, through the expression of  
RANKL and M-CSF, tightly regulate the development 
of  osteoclasts. Recent in vivo studies also indicate other 
aspects of  osteoblasts in the regulation of  osteoclasto-

genesis. Osteoblasts are involved in the decision of  the 
place for osteoclast formation through taking care of  
osteoclast precursors. Osteoblasts produce some ligands 
for immunoglobulin-like receptors to induce ITAM-me-
diated co-stimulatory signals. Osteoblasts also produce 
Wnt5a, which stimulates RANK expression in osteoclast 
precursors though co-receptor Ror2 signaling. The up-
regulation of  RANK by Wnt5a-Ror2 signals in osteo-
clast precursors must enhance the sensitivity of  QOPs 
to RANKL. Osteoblasts also produce Sema3A, which 
inhibits ITAM signals in osteoclast precursors. These 
findings provide a new concept that osteoblasts play sev-
eral roles as an omnipotent conductor in osteoclastogen-
esis. In conformity with the new concept, we must come 
back to the osteoblast, which may be a promising target 
for therapeutic agents in the regulation of  bone resorp-
tion in the near future.
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Abstract
Postoperative surgical site infection (SSI) is a common 
complication after posterior lumbar spine surgery. This 
review details an approach to the prevention, diagnosis 
and treatment of SSIs. Factors contributing to the de-
velopment of a SSI can be split into three categories: 
(1) microbiological factors; (2) factors related to the 
patient and their spinal pathology; and (3) factors re-
lating to the surgical procedure. SSI is most commonly 
caused by Staphylococcus aureus . The virulence of the 
organism causing the SSI can affect its presentation. 
SSI can be prevented by careful adherence to aseptic 
technique, prophylactic antibiotics, avoiding myone-
crosis by frequently releasing retractors and preopera-
tively optimizing modifiable patient factors. Increasing 
pain is commonly the only symptom of a SSI and can 
lead to a delay in diagnosis. C-reactive protein and 
magnetic resonance imaging can help establish the 
diagnosis. Treatment requires acquiring intra-operative 
cultures to guide future antibiotic therapy and surgi-
cal debridement of all necrotic tissue. A SSI can usu-
ally be adequately treated without removing spinal 

instrumentation. A multidisciplinary approach to SSIs is 
important. It is useful to involve an infectious disease 
specialist and use minimum serial bactericidal titers to 
enhance the effectiveness of antibiotic therapy. A plas-
tic surgeon should also be involved in those cases of 
severe infection that require repeat debridement and 
delayed closure.

© 2012 Baishideng. All rights reserved.
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INTRODUCTION
Postoperative surgical site infection (SSI) in the lumbar 
spine is a relatively frequent complication of  invasive 
spine procedures. The management of  a SSI can be 
costly due to its potentially devastating consequences, in-
cluding lost productivity during prolonged treatment and 
recovery, increased morbidity, the need for subsequent 
reoperation and even death. With the rise in prevalence 
of  antibiotic-resistant organisms such as methicillin-
resistant Staphylococcus aureus (MRSA), the prevention 
and treatment of  SSIs has become even more difficult, 
particularly in those patients with spinal instrumentation. 
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This review describes the factors that contribute to the 
development of  a SSI and strategies for their prevention, 
the range of  presentations of  SSIs, and the challenges 
that arise during diagnosis and treatment.

PATHOGENESIS AND PREVENTION
Although multifactorial, the various risk factors that 
contribute to the development of  a SSI can be broadly 
divided into three categories: (1) microbiological; (2) 
patient/host; and (3) procedure-related. Understanding 
the contribution of  these risk factors to SSIs enhances 
measures aimed at the prevention of  this common yet 
dreadful complication.

Microbiological factors
The most common organism causing a SSI is Staphylococ-
cus aureus (S. aureus), although other reported causative 
organisms include Staphylococcus epidermidis (S. epidermidis), 
Enterococcus faecalis, Pseudomonas spp., Enterobacter cloacae, 
and Proteus mirabilis[1,2]. Trauma patients are more likely 
to present with infections due to gram-negative bacteria, 
which may result from hematogenous spread in the set-
ting of  urosepsis, frequently in patients with neurological 
injury related to their trauma[3]. Recently, a consecutive 
series of  3218 patients undergoing posterior lumbar-in-
strumented arthrodesis was reviewed by Koutsoumbelis 
et al[4]. In this series, 34% of  SSIs demonstrated positive 
cultures for MRSA, indicating an increasing prevalence 
of  this organism.

When addressing microbiological factors that con-
tribute to SSIs, it is important to emphasize that me-
ticulous adherence to aseptic technique is the key com-
ponent of  SSI prevention[5]. One intervention that the 
bulk of  available evidence has suggested may decrease 
the rate of  SSI after spinal surgery is the use of  prophy-
lactic antibiotics[6]. Antibiotic prophylaxis has brought 
the incidence of  SSI following lumbar discectomy down 
to < 1%[1,7-12]. In fact, one report by Transfeldt et al[13] 
showed a decrease in the SSI rate from 7% to 3.6% fol-
lowing elective spinal arthrodesis with the use of  routine 
antibiotic prophylaxis. When choosing an antibiotic, 
one with good efficacy against common strains of  S. 
aureus and S. epidermidis should be used due to the higher 
frequency of  infection with these bacteria. A first-gen-
eration cephalosporin such as cefazolin is popular, as it 
also quickly reaches peak serum concentrations and has 
a more benign side effect profile than other antibiotics. 
If  a patient is at high risk for colonization with MRSA, 
we recommend combining vancomycin with cefazolin, 
as vancomycin alone has relatively low efficacy against 
non-methicillin resistant strains of  Staphylococcus spp. Yet 
for those patients with allergies to penicillin or cephalo-
sporins, vancomycin alone can be used. Risk factors for 
colonization with MRSA include antibiotic use within 3 
mo before admission, hospitalization during the past 12 
mo, diagnosis of  skin or soft-tissue infection at admis-
sion, and human immunodeficiency virus infection[14,15]. 
Bacterial antibiotic resistance continues to be an evolv-

ing problem and these recommendations may need to be 
modified based on regional bacterial susceptibilities or 
if  common pathogens in SSIs develop widespread resis-
tance to these antibiotics in the future.

Patient/host factors
Several patient-related risk factors have been reported 
for SSIs including: diabetes mellitus, obesity, alcohol 
abuse, smoking, advanced age, corticosteroid use, mal-
nutrition and hospitalization greater than one week[16-40]. 
Koutsoumbelis et al[4] also identified coronary artery 
disease, osteoporosis and chronic obstructive pulmonary 
disease as independent risk factors for SSIs. Although 
the exact mechanism by which these factors increase the 
likelihood of  a SSI is not definitively known, it is clear 
that an inability of  the host to heal the surgical wound 
and mount an inflammatory response sufficient to 
eradicate the infectious organisms leads to their growth. 
Obese patients have a large layer of  adipose tissue with 
poor vascular perfusion that may become necrotic 
following wound closure, creating a nidus for infec-
tion[2,16,20,24,41,42]. Smoking and diabetes both predispose 
patients to infection through microvascular damage and 
subsequent induction of  tissue ischemia[23,24,41-43]. Ad-
vancing age increases the likelihood of  the presence of  
other comorbidities and is associated with immunose-
nescence, a phenomenon by which the immune response 
gradually wanes and becomes ineffective.

The pathology that patients present with also in-
fluences susceptibility to infection. Patients with trau-
matic spine injury, especially those with a concomi-
tant neurological injury, have infection rates of  up to 
10%[2-4,16-40,43-47]. Such patients may have additional inju-
ries to the viscera or appendicular skeleton and usually 
have a greater degree of  soft-tissue injury than patients 
undergoing elective surgery, which contributes to tis-
sue hypoxia. Trauma patients are in a catabolic state 
and are more likely to have protein-calorie malnutrition. 
Prolonged stays in intensive care units lead to increased 
exposure to antibiotic resistant bacteria, which may in-
crease the severity of  a SSI and make treatment more 
difficult. Those factors that cause trauma patients to 
have a higher risk of  developing SSIs also apply to pa-
tients with spinal neoplasms. In addition, these patients 
may also undergo systemic chemotherapy or radiation 
to the surgical site, leading to immunosuppression and 
delayed healing, and consequently increasing their sus-
ceptibility to infection.

Modifiable risk factors should be mitigated preop-
eratively to minimize the risk of  postoperative infection. 
A nutrition consult should be obtained in patients after 
significant polytrauma, with catabolic processes due to 
neoplasm, or otherwise at significant risk for malnutri-
tion. Blood sugar should be closely controlled in diabetic 
patients.

Procedure-related factors
The length and complexity of  the index surgical proce-
dure has a significant impact on the incidence of  SSIs. 
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Although the risk of  a SSI is < 1% for lumbar discec-
tomy, the risk is higher following spinal arthrodesis, 
particularly with posterior instrumentation. This is likely 
due to increased dead space, longer duration of  surgery 
and the potential for adherence of  biofilm to metal im-
plants. Following elective thoracic or lumbar spinal ar-
throdesis, reported rates of  SSI from individual surgeons 
or institutions ranges from 1.9% to 4.4% in the last ten 
years[41,42,48-50]. The most recent National Nosocomial 
Infections Surveillance report in 2004 cited the infec-
tion rate following spinal arthrodesis as 2.1%[51]. The risk 
of  SSI is less common after anterior spinal arthrodesis 
and is not greater for a combined anterior/posterior ar-
throdesis than for a posterior arthrodesis alone[44], except 
for when it is a staged procedure done under separate 
anesthesia[48]. Devices such as an operating microscope 
or headlamp and loupe magnification can create a source 
of  bacterial shedding onto the surgical field, although in-
creased contamination from these devices has not been 
shown to directly increase infection risk[8,9,52-54]. There is 
also some limited evidence that minimally invasive sur-
gery may decrease the risk of  a SSI. A recent systematic 
review of  single cohort studies comparing minimally 
invasive transforaminal interbody fusion (TLIF) to open 
TLIF showed a significant decrease in SSI rates from 4% 
to 0.6%[55-57]. In addition, it has recently been shown that 
the risk of  returning to the operating room (OR) to treat 
a SSI increases along with the surgical invasiveness index 
of  the primary spine surgery[58].

The study by Koutsoumbelis et al[4] reported an over-
all incidence of  SSIs of  2.6%. Their study identified four 
procedure related risk factors: (1) longer duration of  sur-
gery; (2) intra-operative blood loss/need for transfusion; 
(3) incidental durotomy; and (4) greater than ten people 
in the OR, specifically cautioning against extraneous 
nurses. Previous studies have also identified increased 
operative time, multilevel surgery, revision surgery, and 
an increased number of  people in the OR as important 
predisposing factors for a SSI[1,2,16,41,42,45,46,48,49]. However, 
this is the first time incidental durotomy has been iden-
tified as a risk factor for SSI[47]. It is unclear how and 
to what extent incidental durotomy and an increased 
number of  people in the OR increase the likelihood of  a 
SSI. Both may increase the risk of  contamination of  the 
surgical field directly, or be indicative of  a longer and/or 
more complex surgical procedure. 

Modifications to procedural technique can assist in 
the prevention of  a SSI. It is important to frequently 
release retractors to prevent myonecrosis, avoid exces-
sive use of  electrocautery during subperiosteal dissection 
of  muscle, and debride necrotic appearing muscle at the 
conclusion of  the case. This will prevent the retention 
of  devitalized necrotic tissue, which is a potential nidus 
for infection. Although the use of  this technique in the 
lumbar spine has not yet been investigated, the addition 
of  vancomycin powder to posterior cervical incisions 
prior to closure has been shown to decrease SSIs[59,60]. At 
our institution, patients undergoing multi-level decom-

pression and/or posterior spinal arthrodesis routinely 
receive antibiotic irrigation and closed suction drains 
postoperatively. Existing investigations have not shown 
that these interventions provide a significant benefit, al-
though they have been underpowered to detect a change 
in infection rate, a rare event[61-63]. Evidence for the use 
of  vertical laminar flow systems to decrease the risk of  
SSI in the OR is limited[64].

Recently, Dipaola et al[65] created a predictive model 
to stratify patients with spinal SSIs into those needing 
single vs multiple irrigation and debridements. To devel-
op the model, risk factors from all three categories (mi-
crobiological, patient/host and procedure related), were 
analyzed. It was found that positive MRSA cultures and 
concomitant infections at sites other than the spine or 
bacteremia were strong predictors of  the need for multi-
ple irrigation and debridements. In addition, diabetes, lo-
cation of  surgery in the posterior lumbar spine, presence 
of  instrumentation and the use of  bone graft material 
other than autogenous bone graft were also more likely 
to result in multiple irrigation and debridements. In the 
future, this predictive model may help stratify patients 
with SSIs, enabling surgeons to adapt their index surgery 
and SSI treatment strategies accordingly.

CLINICAL PRESENTATION AND 
DIAGNOSIS
The diagnosis of  a SSI requires the synthesis of  all avail-
able data, as there is no one pathognomonic sign or 
symptom to indicate its presence. The most common 
symptom of  a SSI in the early postoperative period is 
increasing pain at the surgical site. Signs on exam include 
tenderness to palpation, peri-incisional erythema, indura-
tion and drainage. A particular concern is a patient with 
constitutional symptoms such as fever and chills, and in 
the case of  a severe infection: hypotension, lethargy and 
confusion from sepsis. Such an infection is an absolute 
indication for emergent irrigation and debridement, but 
presents rarely. In the setting of  a revision surgery, latent 
infection from organisms such as Propionibacterium acnes 
must always be considered and routine cultures sent, as 
the presentation may be limited to vague complaints of  
pain with evidence of  hardware loosening or pseudoar-
throsis.

Imaging
Except in the setting of  latent infections or discitis, plain 
radiographs of  the spine are not particularly useful to 
diagnose an early SSI. Patients with latent infections 
may have lucency around instrumentation, while those 
with discitis may show loss of  disk height and end plate 
erosion. Along those lines, computed tomography (CT) 
can be used in these patients to assess bony destruction 
and implant loosening three-dimensionally. Bone scan 
is not useful in these patients, as it will commonly show 
increased uptake due to the reactive bone at the surgical 
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site post-operatively[66]. Gadolinium enhanced magnetic 
resonance imaging (MRI) is the best radiologic modality 
to use when a SSI is suspected. Progressive marrow sig-
nal changes, rim enhancing fluid collections, ascending or 
descending epidural collections and bony destruction are 
all indicative of  infection on MRI.

When interpreting MRI results, confounding factors 
such as time from index procedure should be taken into 
account, as tissue edema from a non-infectious cause 
can be confused with an infectious process. Infection 
typically occurs between three days and three months 
postoperatively and takes several days to become estab-
lished. In the immediate post-operative period (< 6 wk), 
it has been shown that diffuse, spotty, linear interverte-
bral disk enhancement, with two thin bands paralleling 
the endplates, as well as annular enhancement at the 
surgical curette site are common findings and do not in-
dicate that an infection is developing. Type 1 changes of  
adjacent endplates, such as decreased signal intensity on 
T1 imaging and edema of  the vertebral marrow adjacent 
to the disc, are also common post-operatively. Vertebral 
osteomyelitis is typically recognized by endplate changes 
similar to these Type 1 changes, and is described as a dif-
fuse, irregular area of  non-anatomic high signal intensity 
in the disc. Contrast is valuable in differentiating be-
tween the two entities, as osteomyelitis shows circumfer-
ential enhancement of  the disc, while the postoperative 
state will only produce subtle linear areas of  enhance-
ment[67,68].

Laboratory tests
Measurement of  acute phase reactants is very useful 
when diagnosing an infection. C-reactive protein (CRP) 
has been shown to be more sensitive than erythrocyte 
sedimentation rate (ESR) for detecting a SSI, as CRP 
levels only stay elevated for two weeks postoperatively 
before decreasing, while it may take up to six weeks 
for ESR levels to normalize. For this reason, time since 
index surgery is important when interpreting levels of  
acute phase reactants. Persistent elevation of  CRP is an 
early indicator of  an infection. In addition, preoperative 
measurement of  CRP levels in high-risk patients with 
associated medical co-morbidities that may confound a 
postoperative CRP measurement can be useful as a base-
line for detection of  early infection postoperatively[69]. 
White blood cell count, although routinely obtained, is 
an unreliable indicator of  a SSI. It may remain normal 
despite a SSI or may be normally elevated in the post-
operative period. When attempting to identify the caus-
ative organism in a SSI, intra-operative tissue cultures are 
the gold standard. Superficial cultures, from either the 
skin or drainage, are not reliable due to the likelihood of  
contamination by skin flora. Alternatively, some authors 
have proposed wound aspiration as a method for detect-
ing early infections[70].

TREATMENT OF SSI
The timing and location of  the infection dictates treat-

ment. The timing of  a SSI can be classified as early, late 
or latent, and location is either limited to the disc, or su-
perficial or deep to the fascia.

Posterior spinal infections 
Superficial extrafascial SSIs, such as cellulitis or subcuta-
neous abscesses, are usually managed with Ⅳ antibiotics 
and/or surgical incision and drainage, which can often 
be performed at the bedside. Subfascial wound infec-
tions rarely respond to antibiotic treatment alone and 
require surgical debridement and removal of  all necrotic 
tissue with closure over drains. Epidural abscesses can 
be managed medically when small. However, surgical 
drainage is typically required for large collections, small 
collections that progress despite antibiotic therapy, and 
decompression of  the dural sac in the event of  a neu-
rological deficit. Paraspinal epidural abscesses, such as a 
psoas abscess, may respond to medical treatment when 
small. However, CT-guided aspiration and drainage is 
often required for large collections[32]. A SSI in an im-
munocompromised host or with a particularly virulent 
organism may require multiple irrigation and debride-
ments.

Patients with a SSI and spinal instrumentation pres-
ent similarly to those without instrumentation, but pose 
unique challenges. The use of  MRI in patients with 
instrumentation requires specialized protocols for sup-
pression of  metal artifact, such as the metal artifact 
reduction sequence described by Chang et al[71], without 
which the MRI is of  limited value[72,73]. Thorough surgi-
cal debridement of  all necrotic tissue and irrigation with 
large amounts of  normal saline is crucial[74]. Loose bone 
graft material should be removed if  unincorporated, 
as dead bone will only serve as a nidus for continued 
infection. Loose pedicle screws and other non-essential 
spinal instrumentation should be removed, but essential 
instrumentation should be maintained if  possible to 
avoid the creation of  instability or the loss of  deformity 
correction. Interbody and posterior segmental instru-
mentation can usually be left in place early on, as several 
authors have reported high success rates using this hard-
ware-preservation strategy in the management of  early 
SSIs[1,4,75-78]. Patients with a late infection and solid fusion 
can have their instrumentation removed during surgical 
debridement to help clear the infection[79]. Unfortunately, 
these patients are at an increased risk of  developing a 
pseudoarthrosis and must be monitored with serial im-
aging studies[80].

As multiple debridements are often necessary when 
treating a SSI, involving a plastic surgeon early on can 
facilitate optimal wound management[81,82]. The debride-
ment of  soft tissue required to treat a SSI may result in 
a significant soft tissue defect. Such defects may be de-
finitively closed with a muscle flap, or heal by secondary 
intention using a vacuum-dressing. We recommend that 
patients who require multiple surgical debridements have 
antibiotic impregnated polymethylmethacrylate (PMMA) 
beads placed into the wound during early debridements, 
permitting high local antibiotic concentrations despite 
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poor tissue vascularity. PMMA beads have been shown 
to decrease the development of  infection after wound 
contamination, and have been documented to decrease 
both acute infection rates and osteomyelitis after com-
pound limb fractures[83-85].

Postprocedure discitis
With a reported incidence ranging from 0.2% to 2.75%, 
postprocedure discitis is an infrequent complication of  
spine surgery[86-89]. A vague complaint of  low back pain 
is commonly the only indication that a patient may be 
suffering from postprocedure discitis, which can lead 
to a delay in diagnosis. Especially concerning are those 
patients with a history of  increasing low back pain fol-
lowing surgery. For these patients, bracing can be used 
for comfort. Image guided percutaneous aspiration of  
the disc to identify the causative organism and guide an-
tibiotic treatment is very effective[90]. Most of  these cases 
can be treated with six weeks of  Ⅳ antibiotics, usually 
resulting in spontaneous fusion of  the disk space[91-93]. 

Surgery is indicated in those patients whose infection 
has progressed on MRI despite appropriate antibiotic 
therapy, with deformity due to progressive destruction 
of  the vertebral bodies, or with severe pain or neurologi-
cal deficits due to progression of  the infection into the 
spinal canal. For early postoperative discitis with minimal 
involvement of  the vertebral bodies, percutaneous trans-
foraminal endoscopic debridement is an effective and 
minimally invasive option that has been shown to bring 
immediate pain reduction and good clinical results[94]. 
Otherwise, anterior only or posterior only approaches 
for debridement and fusion may be sufficient, depend-
ing on the location of  the infection and the extent of  
debridement and resulting instability[95-97]. Many surgeons 
prefer to use autologous bone graft as an interbody 
spacer to minimize the risk of  recurrent infection. If  
performed, harvesting of  the bone graft should be per-
formed prior to opening the spinal wound to minimize 
the risk of  graft donor site SSI. When performing a sur-
gical discectomy, as much of  the disk as possible should 
be removed to prevent recurrent infection, as the adult 
intervertebral disk is avascular. 

Postoperative antibiotic therapy
Infectious disease specialists are routinely involved in 
the selection and monitoring of  antibiotic therapy at our 
institution. For implanted spinal instrumentation, the 
protocol our institution uses is based on previous expe-
rience with SSIs following total joint replacement[98-100]. 
Intravenous antibiotics are chosen based on the type of  
causative organism and its sensitivity profile. Dosage is 
monitored by the trough serum bactericidal titer (SBT), 
which indicates the amount of  bactericidal activity in 
the patient’s serum at the trough level between antibiotic 
doses. The trough SBT should be maintained at a mini-
mum of  1:2[101]. This ensures that at a trough level, there 
is at least twice the minimum concentration of  antibiotic 
in the serum that is required for bactericidal activity. Us-

ing the SBT to monitor antibiotic therapy improves its 
efficacy, even in cases with resistant organisms. Antibiot-
ics are continued for six weeks postoperatively, although 
recent recommendations advise eight weeks of  total Ⅳ 
antibiotic therapy for patients with resistant organisms 
such as MRSA[102]. Patients are subsequently maintained 
on oral suppressive antibiotics. The patient’s health 
status, success in achieving spinal fusion and causative 
organism influence the choice between lifetime oral an-
tibiotic suppression to prevent recurrent infection and 
removal of  instrumentation.

CONCLUSION
SSI is a common but challenging complication, par-
ticularly after instrumented spinal arthrodesis. Using 
meticulous aseptic technique, intra-operative irrigation, 
prophylactic antibiotics and optimizing patient factors 
preoperatively are key to preventing a SSI. In patients 
who still develop an infection despite efforts at preven-
tion, timely diagnosis and treatment is critical. Instru-
mentation can be retained while still successfully clearing 
an early infection, although following fusion, instrumen-
tation can be removed if  lifetime oral antibiotic suppres-
sion is either not indicated or undesirable. Involving a 
plastic surgeon early on in the process is useful for clo-
sure of  complex soft tissue defects.
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Abstract
The relation between bone remodelling and energy 
expenditure is an intriguing, and yet unexplained, chal-
lenge of the past ten years. In fact, it was only in the 
last few years that the skeleton was found to function, 
not only in its obvious roles of body support and pro-
tection, but also as an important part of the endocrine 
system. In particular, bone produces different hor-
mones, like osteocalcin (OC), which influences energy 
expenditure in humans. The undercarboxylated form of 
OC has a reduced affinity for hydroxyapatite; hence it 
enters the systemic circulation more easily and exerts 
its metabolic functions for the proliferation of pancre-
atic β-cells, insulin secretion, sensitivity, and glucose 
tolerance. Leptin, a hormone synthesized by adipo-
cytes, also has an effect on both bone remodelling and 
energy expenditure; in fact it inhibits appetite through 
hypothalamic influence and, in bone, stimulates os-
teoblastic differentiation and inhibits apoptosis. Leptin 
and serotonin exert opposite influences on bone mass 
accrual, but several features suggest that they might 
operate in the same pathway through a sympathetic 
tone. Serotonin, in fact, acts via  two opposite pathways 
in controlling bone remodelling: central and peripheral. 
Serotonin product by the gastrointestinal tract (95%) 
augments bone formation by osteoblast, whereas 
brain-derived serotonin influences low bone mineral 
density and its decrease leads to an increase in bone 

resorption parameters. Finally, amylin (AMY) acts as a 
hormone that alters physiological responses related to 
feeding, and plays a role as a growth factor in bone. 
In vitro  AMY stimulates the proliferation of osteoblasts, 
and osteoclast differentiation. Here we summarize the 
evidence that links energy expenditure and bone re-
modelling, with particular regard to humans.

© 2012 Baishideng. All rights reserved.

Key words: Leptin; Osteocalcin; Serotonin; Amylin; 
Bone mass; Energy metabolism

Peer reviewer: Belinda R Beck, PhD, Associate Professor, 
School of Physiotherapy and Exercise Science, Gold Coast Cam-
pus, Griffith University, Qld 4222, Australia

D'Amelio P, Panico A, Spertino E, Isaia GC. Energy metabo-
lism and the skeleton: Reciprocal interplay. World J Orthop 
2012; 3(11): 190-198  Available from: URL: http://www.wjg-
net.com/2218-5836/full/v3/i11/190.htm  DOI: http://dx.doi.
org/10.5312/wjo.v3.i11.190

INTRODUCTION
Every part of  the human body communicates and co-
operates with each other in a specific way, and with 
unique functions, and bone is not an exception. The 
skeleton was considered for a long time just a “stone” 
with movement function, a reserve of  minerals, and the 
home of  the hematopoietic system; only in recent years 
has the idea that it is in deep contact with other systems, 
such as the immune and cardiovascular systems, been de-
veloped[1,2]. More recently, the skeleton’s ability to regulate 
energy expenditure has been described, and bone is now 
also considered as an endocrine organ.

An important feature of  hormonal regulation is that 
there are some cells, controlled by a feedback loop, that 
produce hormones; these hormones send specific signals 
to other cells and are responsible for several functions 
in the human organism. Bone is a target for different 
hormones that regulate both bone metabolism and re-
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modeling through a central control. The fact that energy 
metabolism affects bone mass accrual by acting through 
a neuronal relay on one cell type, the osteoblasts, raised 
the testable hypothesis that, in turn, the osteoblasts might 
secrete one or more hormones affecting energy metabo-
lism[3].

The skeleton, in particular, secretes two hormones: 
fibroblast growth factor 23 and osteocalcin (OC); OC is 
an osteoblast-specific protein that influences pancreatic 
β-cell proliferation, insulin expression, secretion, sensitiv-
ity, and energy expenditure[4]. Mice knock-out for OC, 
created by Ducy et al[5], appear mildly hyperglycaemic 
and have slightly increased visceral fat; the opposite phe-
notype null for the Esp gene, which encodes a tyrosine 
phosphatase that hampers glucose metabolism by inhibit-
ing OC functions, instead displays improved glucose tol-
erance. An even more intimate relationship between skel-
eton and energy metabolism was demonstrated by recent 
genetic experiments that found that leptin, an adipocyte-
derived hormone, inhibits insulin secretion by decreasing 
the production of  undercarboxylated osteocalcin, and is 
also involved in osteoblast differentiation[6]. Moreover, se-
rotonin, which is produced by neurons of  the brainstem 
and by the enterochromaffin cells of  the duodenum, 
controls bone remodeling[7]. The relationship between 
energy expenditure and bone is still controversial; studies 
on humans are few, and the majority of  data have been 
derived by animal models. 

This review aims to summarize the evidence linking 
energy metabolism and skeleton, with particular attention 
to humans.

CENTRAL CONTROL OF BONE MASS: 
LEPTIN
Data in animals
Leptin, the protein product of  the obese gene (Ob or 
Lep), is a hormone synthesized by adipocytes that signals 
available energy reserves to the brain, and thereby influ-
ences development, growth, metabolism, and reproduc-
tion. In mammals, leptin functions as a signal for fat 
reserves: circulating leptin fluctuates in proportion to fat 
mass, and acts on the hypothalamus to suppress food in-
take[8].

When adipose tissue is abundant, leptin levels rise as 
a result energy expenditure and sympathetic activity in-
creases. In comparison, when adipocyte mass decreases, 
energy expenditure, temperature, and reproductive func-
tion are down-regulated. As proof  of  this fact, Ob-/Ob-
mice are obese, hypogonadal, and diabetic[9]. Ob genes 
were recently isolated from several fish and two amphib-
ian species. While vertebrate leptins largely differ in their 
primary amino acid sequences, they have similar tertiary 
structures and potencies when tested in vitro on heterolo-
gous leptin receptors (LepRs)[8,10-12]. Leptin acts through 
a leptin receptor that is a member of  the type Ⅰ cytokine 
receptor family[13]. There are different isoforms of  this 

receptor that are produced by alternative splicing of  
the transcript from the LepR gene, defined as: LepRa, 
LepRb, LepRc, LepRd and LepRf; these isoforms have in 
common an extracellular domain of  800 amino acids and 
a transmembrane domain of  34 amino acids, although 
the intracellular domain is variable and characteristic for 
each of  the isoforms; in particular, LepRb seems to be 
suitable for all leptin actions[13-15]. In fact, in mammals, 
LepRb is highly expressed in the hypothalamus and at 
lower levels in several other tissues, including the liver, kid-
ney, lung, stomach, pancreatic cells, and immune cells[16-20]. 
Leptin’s role in energy balance/body weight control is 
mediated by LepRb expressed in the brain[21,22]. Leptin 
binds to LepRs in the plasma membrane of  this specific 
cell, activating several intracellular signaling pathways[23]. 

Vertebrate LepRs signals via the Janus kinase (Jak) and 
signal transducer, and is the activator of  the transcrip-
tion (STAT) pathway. Three tyrosine residues located 
within the LepR cytoplasmic domain are phosphorylated 
by Jak2, and are constitutively associated with mouse 
LepRb at membrane-proximal residues located within the 
cytoplasmic domain and are required for the activation 
of  SH2-containing tyrosine phosphatase-2, STAT5, and 
STAT3 signaling[8]. These tyrosines are conserved from 
fish to mammals, demonstrating their critical role in sig-
naling by LepR. 

Leptin can also be considered as a growth factor, with 
the ability to directly enhance the development of  he-
mopoietic precursor cells, myoblast-like cells, and lung 
cells. Moreover, Kume et al[2] observed that leptin has an-
giogenic effects on vascular musculoskeletal endothelial 
cells. This could be critical during fetal development; in 
fact, leptin and its receptor are produced by the human 
placenta[1,24]. Both leptin and its receptors were found 
in murine cartilage and bone, especially in chondrocytes 
near the vascular system. This observation may explain 
the angiogenic properties of  leptin[2]. In addition, leptin 
increases both the proliferation and differentiation of  the 
chondrocyte population of  skeletal growth centers in or-
gan cultures through the insulin-like growth factors (IGF) 
and the regulation of  receptor IGF expression[25,26].

Dixit et al[27] showed that leptin is a potent stimulator 
of  growth hormone secretion, both at the central pitu-
itary level and at the peripheral level, from lymphocytes. 
Experimentally, leptin has a positive effect on bone mass 
when infused intravenously, but a negative one after in-
tracerebroventricular administration[28,29]. These opposite 
effects of  leptin were brilliantly demonstrated by Thom-
as[30] using a parabiosis experiment. Further experiments 
demonstrated that leptin inhibits appetite through the 
arcuate nucleus, and bone mass through the ventromedial 
hypothalamus nucleus. These experiments indicate that 
hypothalamic integrity is required in bone regulation[29,31]. 
Different studies, using a human stromal cell line, dem-
onstrated that cells of  osteoblastic lineage are targets for 
leptin action, as they actively expressed both forms of  
leptin receptors[32-35].
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Although leptin plays a critical role in starvation-
induced T-cell-mediated immunosuppression, little is 
known about its role in B-cell homeostasis under starva-
tion conditions. A Japanese study show the alteration of  
B-cell development in the bone marrow of  fasted mice, 
characterized by a decrease in pro-B, pre-B, and immature 
B cells, and an increase in mature B cells. Interestingly, 
an intracerebroventricular leptin injection was sufficient 
to prevent the alteration of  B-cell development in fasted 
mice[36].

Data in humans
In humans there are some reports linking leptin with 
bone mass, even if  studies in humans are biased by con-
founding factors. Some data obtained using animal mod-
els were confirmed by human studies, and it is generally 
accepted that body weight is a major determinant of  
bone density; in fact, obesity is generally accompanied by 
increased bone strength and obese persons have stronger 
bones and lose bone tissue at a slower pace[37]. Serum 
leptin levels positively correlate with the mass of  adipose 
tissue, and show a weak correlation with bone density in 
humans[38]. Clinical studies on animals and humans show 
that leptin access to the hypothalamic centre, which has 
a negative effect on appetite and bone mass, is limited by 
the blood brain barrier[37-39]. This access implies a satura-
ble transport system involving the LepRa receptors (with 
a shorter intracellular domain than that of  its effective re-
ceptor LepRb)[39]. Renal failure increases the leptin serum 
level above the concentration which may lead to satura-
tion of  leptin transport to the brain[38]. In fact, Ghazali 
et al[38] showed, in an hemodialysis population, that only 
when the serum leptin levels are above this threshold is 
there is a sparing effect in bone.

Stimulated by animal studies that describe the rela-
tionship between a lack of  leptin in mice and low sym-
pathetic tone, the pathway of  leptin’s indirect control of  
bone mass has also been investigated in humans[40]. Visit-
sunthorn et al[41] observed that human reflex sympathetic 
dystrophy is characterized by a rapid onset of  osteopo-
rosis in the affected region, with labile vasomotor activ-
ity, trophic skin changes, pain, and swelling, because of  
deregulated sympathetic tone. In some cases, β-blockers 
resolve reflex sympathetic dystrophy-associated symp-
toms and osteopenia. Outside the context of  reflex 
sympathetic dystrophy, people receiving β-blockers ex-
perience 24%-32% reductions in the risk of  fractures, as 
shown in several large studies[42-45]. Schlienger et al[46] sug-
gest that use of  β-blockers is associated with a reduced 
risk of  fractures, taken alone or in combination with 
thiazide diuretics. Thomas[30] observed that, in human 
cell cultures, leptin induced activation of  the mitogen-
activated protein kinase cascade could be critical, because 
it stimulated both osteoblastic differentiation from bone 
marrow precursors and phosphorylation of  peroxisome 
proliferator-activated receptor-γ, which has been shown 
to inhibit adipogenesis[47,48]. In addition, leptin could 

enhance osteoblastic activity by inhibiting apoptosis, 
stimulating mineralization, and inhibiting support of  os-
teoclastogenesis, as shown in primary human osteoblast 
cultures[49]. Through direct positive effects on osteoblast 
differentiation, leptin might modulate bone remodelling. 
It has also recently been shown in human stromal cells 
that leptin inhibits the expression of  the receptor activa-
tor of  nuclear factor-κB-ligand, the major downstream 
cytokine controlling osteoclastogenesis[50].

Leptin serum levels have different effects in differ-
ent human demographics. In premenopausal women, a 
higher proportion of  fat and a higher leptin concentra-
tion are negatively associated with bone mass[51]. Inter-
estingly, in postmenopausal women, leptin levels were 
significantly lower in women with vertebral fractures 
than those without, and an increase in fat mass negatively 
predicts fracture presence[52]. A recent study showed that 
obese children have altered bone turnover[53]. Conversely, 
Farooqi et al[54] reported in three obese children congeni-
tally deficient in leptin, that whole-body bone mineral 
content (BMC) and bone mineral density (BMD) were 
normal for their age and gender, despite very high weight 
and advanced bone ossification. After leptin therapy ad-
ministered for up to four years, BMC, BMD, and skeletal 
maturation increased normally, although weight and fat 
mass dramatically decreased, suggesting counteracting 
and beneficial effects of  leptin therapy on the skeleton[54]. 
Although these different studies converge to support the 
role of  leptin as a regulator of  bone metabolism, under-
standing the complexity of  its multiple pathways to the 
skeleton requires further investigation.

SEROTONIN AND ITS TWO IDENTITIES 
Production and secretion
Serotonin plays a major role in controlling bone remod-
elling via two distinctly opposite pathways; in fact, it is 
synthesized by two different genes and plays an antago-
nist function on bone mass[55]. The major site (95%) of  
serotonin production is the gastrointestinal tract by the 
tryptophan hydroxylase (Tph1) gene[56]. The importance 
of  gut-derived serotonin was identified recently, thanks 
to studies on the lipoprotein receptor-related proteins 5 
(Lrp5) receptor, a member of  the low density lipopro-
tein receptor family; the signal mediated by Lrp5 in an 
unknown cell type increase bone formation by osteob-
lasts[57]. Brain-derived serotonin produced by the Tph2 
gene also influences bone mass, and the severe low bone 
mass observed in the absence of  Tph2 results from an 
effect on both bone resorption and formation, mediated 
by an increased sympathetic tone. In the brain, synthesis 
of  serotonin by neurons which express the leptin recep-
tor is negatively controlled by leptin through its effects 
on Tph2 expression[58]. Patients taking synthetic serotonin 
reuptake inhibitors chronically (a class of  drugs increas-
ing extracellular serotonin concentration throughout the 
body) have reduced bone mass[59].
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Energy expenditure and serotonin
The signalling of  serotonin to bone is attributed to differ-
ent receptors: Htr1b signalling decreased bone formation, 
in contrast with Htr2c which inhibits the synthesis of  
epinephrine and has a decreased sympathetic tone; thus, 
this results in increased formation and decreased bone 
resorption[55]. The decrease in bone formation and the in-
crease in bone reabsorption in Tph2-/-mice mirrors the 
phenotype of  2 adrenergic receptor knocked-out mice. 
This feature suggested that the bone phenotype of  the 
mice lacking serotonin in the brain could be secondary to 
an increase in the sympathetic signal in osteoblasts[60].

Serotonin absence in the brain resulted in a phenotype 
with severe low bone mass, affecting axial and appen-
dicular skeleton, while bone length and width were unaf-
fected[7]. This was secondary to a decrease in bone forma-
tion parameters (osteoblast numbers and bone formation 
rate) and to an increase in bone resorption parameters 
(osteoclast surface and circulating levels of  deoxypridi-
noline, a degradation product of  type Ⅰ collagen and a 
biomarker of  bone resorption)[61]. Even if  leptin and se-
rotonin exert opposite influences on bone mass accrual, 
several features suggested that they might operate in the 
same pathway: for instance serotonin, like leptin, regu-
lates bone mass through their action on sympathetic tone 
and requires ventromedial hypothalamic neuron integrity 
to achieve its functions[7]. This fact raised the prospect 
that axonal projections emanating from Tph2- expressing 
neurons reach arcuate nuclei to regulate these functions[7]. 
Analysis verified that neurons of  the arcuate nuclei were 
target by serotoninergic innervation emanating from the 
brainstem, an observation confirmed in Tph2+/-mice 
by retrograde labelling of  the projections reaching the 
serotoninergic neurons of  the brainstem[7]. Experimental 
evidence supports the notion that the appetite phenotype 
of  the Tph 2-/-mice was caused, at least in part, by an 
increase in melanocortin signaling mediated through the 
Htr1a and Htr2b receptors, and involves melanocortin 
signaling[7]. Several reasons led us to ask whether the appe-
tite and energy expenditure phenotypes of  the Ob-/-mice 

were serotonin dependent: the first is that the conjunc-
tion of  a decrease in appetite and an increase in energy 
expenditure is the mirror image of  what is seen in mice 
lacking leptin signaling, the second is that leptin inhibi-
tion of  serotonin synthesis in the brainstem is the mecha-
nism used by this hormone to inhibit bone mass accrual, 
and the third is that no molecular mechanism has been 
identified so far to explain the common control of  bone 
mass and energy metabolism[7]. Figure 1 summarizes the 
relationships between leptin and serotonin. 

Lrp5 and bone formation
One of  the most studied regulators of  bone remodelling 
is low-density lipoprotein (LDL)-Lrp5, which a loss of  
function mutation causes osteoporosis pseudoganglioma 
(OPPG), a rare disease characterized by decreased bone 
formation and blindness[62], while activating mutations 
causing high bone mass syndrome[57]. Lrp5 can enhance 
Wnt (the vertebrate homolog of  Wingless in Drosophila) 
and canonical signaling in cultured cells. The blindness 
observed in OPPG patients and Lrp5-/-mice is caused 
by the deregulation of  Wnt canonical signaling during eye 
development[63]. Binding of  Wnt to Frizzled (Fz) recep-
tors, expressed by osteoblasts, causes intracellular β-catenin 
stabilization. In cooperation with lymphoid enhancer fac-
tor/T cell factor transcription factors, β-catenin activates 
transcription of  osteoprotegerin (OPG), a cytokine se-
creted by osteoblasts that decreases bone resorption.

Inactivation of  Lrp5 and activation of  β-catenin, 
the molecular node of  Wnt signalling, affects different 
transcriptomes in osteoblasts[63]. Lastly, inactivation of  
Lrp5 in osteoblast progenitors does not influence bone 
homeostasis, whereas inactivation of  canonical Wnt sig-
naling does[64]. Taken together, these observations sug-
gest that Lrp5 and canonical Wnt signaling use different 
mechanisms to regulate osteoblast functions. It is as-
sumed that Lrp5 is a coreceptor for Wnt proteins[65]; as a 
result, OPPG and high bone mass syndrome are viewed 
as Wnt-related diseases[66]. Some observations, however, 
change this view. Firstly, there is no overt skeletal defect 
in Lrp5-/- embryos; secondly, a function gain muta-
tion in Lrp5 does not cause bone tumors as the activa-
tion of  Wnt signaling does in other organs[67]; and lastly, 
osteoblast-specific loss and a function gain mutation in 
β-catenin, the molecular node of  canonical Wnt signaling, 
does not affect either bone formation or the expression 
of  genes deregulated upon Lrp5 inactivation. Analyses of  
a microarray experiment comparing bones from Lrp5-/- 
and wild type littermate mice provided the completely 
unexpected clue that the gene most highly overexpressed 
in Lrp5 deficient bone was Tph1, for which expression in 
the gut is increased in the absence of  Lrp5, as are serum 
serotonin levels in Lrp5 deficient patients or mice[68].

The only genes whose expression was decreased in 
Lrp-/-mice bones were the regulators of  cell prolifera-
tion CicD1, D2 and E1[69]. Lrp5-/-osteoblasts prolifer-
ated as well as wild-type cell ex vivo, and the discrepancy 
between the in vivo and ex vivo proliferation abilities of  the 
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Lrp5-/-osteoblasts indicated that Lrp5 loss of  function 
mutations affected osteoblast proliferation through ex-
tracellular signals that can not originate from osteoblasts; 
in other words Lrp-5 related bone diseases may not origi-
nate from bones[69].

HOW BONE CONTROLS ENERGETIC 
METABOLISM: OC
OC is a 5 kDa protein produced by the skeleton and is 
the most prevalent non-collagenous protein in bone[70]. It 
has several features as a hormone, but moreover it rep-
resents one of  the most important links between bone 
tissue and energy metabolism. OC is one of  the very few 
osteoblasts-specific proteins, and it is subject to post-
translational carboxylation on three or four glutamic resi-
dues, depending on the species.

Vitamin K is a co-factor for the enzyme glutamate 
carboxylase, required for carboxylation of  the Gla-
containing proteins in the coagulation cascade and for 
carboxylation of  OC[71]. Lower dietary levels of  vitamin 
K are associated with increased levels of  undercarboxyl-
ated osteocalcin (ucOC), and vitamin K supplementation 
reduces ucOC[72]. Warfarin, an anti-coagulant which ac-
tion is based on inhibition of  the vitamin K dependent 
carboxylase, also regulates mRNA expression of  OC, and 
this fact makes interpretation of  warfarin treatment stud-
ies more complex[73]. Decarboxylation allows the molecule 
to tightly bind the calcium ions in hydroxyapatite[74-76]; 
ucOC has a reduced avidity for hydroxyapatite, and so 
it enters the systemic circulation more easily[77]. There is 
a feed forward regulation loop that links insulin, bone 
resorption, and OC. Insulin signaling in OPG expression 
and the decrease in the OPG/receptor activator of  the 
nuclear factor-kappa B ligand ratio results in an increased 

acidification of  the resorption lacunae. The acidic pH is 
sufficient to activate the OC molecules stored in the bone 
extracellular matrix. The ucOC promotes insulin sensitiv-
ity in peripheral organs and stimulates insulin secretion 
by pancreatic β-cells (Figure 2).

Work by Karsenty et al[77] suggested that bone could 
influence glucose homeostasis by acting as an endocrine 
organ; this concept came from the observation that mice 
which were OC deficient were not only fat, but  also 
had higher blood glucose, lower serum insulin, impaired 
glucose-stimulated insulin secretion, and poor glucose 
tolerance as compared to wild type mice. These observa-
tions remained unexplained for some years until the same 
investigators, in the course of  experiments in which they 
were ablating bone-specific proteins in mice, noted the 
opposite phenotype in mice null for Esp gene[78], which 
encodes an osteotesticular protein tyrosine phosphatase 
(OST-PTP) that hampers glucose metabolism by inhibit-
ing OC endocrine functions.

When Esp-/- were bred, a considerable number of  
deaths in newborns were observed, which resulted from 
severe hypoglycemia[77]. Studies of  surviving mice showed 
increased pancreatic cell size, β-cells number, circulat-
ing insulin levels and sensitivity, decreased body fat, and 
increased expression of  insulin target genes in the liver 
and muscles[77]. This phenotype was identical in global 
knock-out and osteoblast specific Esp knock-out mice, 
and opposite to OC null mice. OC-/-mice have increased 
visceral fat and glucose intolerance, decreased insulin 
levels, islet cell proliferation, and insulin content, similarly 
to mice over-expressing OST-PTP in osteoblasts. These 
findings suggest osteoblasts as a source of  a humoral fac-
tor that influences energy metabolism[77]. In vivo, OC can 
favor proliferation of  pancreatic β-cells, insulin, adipo-
nectin expression in β-cells, and adipocytes[77]. In humans, 
the insulin receptor is a substrate of  OST-PTP, the pro-
tein encoded by Esp. This raised the testable hypothesis 
that PTP-1B expressed in human osteoblasts could be 
the functional human homologue of  the Esp gene[77]. El-
evated levels of  both carboxylated and undercarboxylated 
forms of  OC were associated with improved glucose tol-
erance in healthy men given an oral glucose load[77].

In older healthy men, serum OC concentrations were 
inversely associated with blood markers of  the dysmeta-
bolic phenotype and measures of  adiposity[79]. There is no 
univocal explanation of  how parathyroid hormone (PTH) 
influences glucose metabolism in humans and mice, but it 
has been observed that hyperparathyroidism could impair 
glucose tolerance through a different mechanism, such 
as an increased intracellular free calcium concentration 
(which decreases insulin sensitivity by decreasing insulin-
dependent glucose transport)[80,81], or decreased plasma 
phosphate levels (which decrease insulin sensitivity, as 
insulin-dependent glucose uptake is closely related to 
phosphate uptake)[82], or down regulation of  insulin re-
ceptors, or PTH per se[83]. The administration of  intermit-
tent subcutaneous PTH (1-34 Teriparatide or 1-84) has 
been recently available for osteoporosis treatment[84,85].
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The intermittent administration of  this molecule 
in osteoporotic patients has an anabolic effect on the 
skeleton in contrast with the catabolic effect of  continu-
ous PTH excess in hyperparathyroidism. It has been 
previously reported that there is either an acute, sub-
clinical adverse effect of  PTH 1-34 on stimulated glucose 
levels[86] or no effect of  this hormone on glucose toler-
ance[87].

It is known the ability of  the treatment with inter-
mittent PTH is to modify the secretion of  OC from 
the osteoblasts and, at the time of  writing, many stud-
ies been set to established if  the secretion of  ucOC is 
influenced by the therapy and if, consequently, therapy 
with PTH can interfere with the ability of  the skeleton to 
regulate energetic metabolism. Schafer et al[88] investigated 
whether changes in ucOC during osteoporosis treatment 
with PTH are associated with changes in metabolic pa-
rameters. They found that not only the median total and 
undercarboxylated levels increased with PTH 1-84 treat-
ment, but also the body weight and fat mass decreased, 
and this change was positively correlated with a change 
in adiponectin. Pittas et al[79] reported that in older adults, 
total serum OC was inversely associated with body fat, 
fasting glucose, and fasting insulin. In a cohort of  men 
and postmenopausal women with type 2 diabetes mel-
litus, undercarboxylate osteocalcin inversely correlated 
with percentage trunk fat and haemoglobin A1c[89].

AMYLIN IN THE PERIPHERY
Amylin (AMY) is a 37-amino acid peptide that belongs to 
the calcitonin (CT) family and has evolutionary links with 
insulin. It is co-secreted with insulin by pancreatic β-cells 
and has been considered a partner peptide in the etiology 
of  diabetes-associated complications and related condi-
tions[90]. While the soluble monomeric form of  AMY acts 
as a hormone that alters physiological responses related 
to feeding and acts as a growth factor, the less soluble 
and insoluble polymeric forms may contribute to the 
establishment of  a pathophysiological pathway to overt 

diabetes[90]. Research into the potential effect of  AMY 
on BMD followed the observation that a large number 
of  diabetic people are osteopenic. In vitro AMY acted 
as a grow factor in bone for the proliferation of  osteo-
blasts[91], and recently it was demonstrated that it also acts 
in osteoclast differentiation[92].

In foetal rat osteoblasts, intact AMY and 1-8 AMY 
stimulates cell proliferation, but AMY 8-37, COOH termi-
nally deaminated AMY and reduced AMY, by acting in an 
antagonist manner[93]. In osteoblasts, AMY acts through 
a increase of  cyclic adenosine monophosphate and the 
activation of  mitogen-activated protein kinase and protein 
kinase C[93]. Data on humans are lacking in the literature; 
it is known that aging is associated with impairment of  
AMY release from pancreatic beta cells, but further stud-
ies are needed to verify this[94]. It is also known that aging 
is associated with an impairment of  AMY release from 
pancreatic β-cells[95]. In previous studies it was demon-
strated that there were significantly lower unreduced AMY 
plasma levels in patients with osteoporosis than in those 
with type Ⅱ DM and healthy controls[96].

More recently, the analyses of  calcitonin-related gene-
deletion mouse models have demonstrated that AMY 
is a factor that inhibits osteoclastogenesis and reduces 
the rate of  osteolysis[97-99]. CT was shown to decrease 
osteoclast acidification and is also able to inhibit acid 
phosphatase secretion[100]. CT gene-related peptides a 
and β, produced by alternative splicing of  the CT gene, 
have dual roles: prevention of  bone reabsorption in hy-
percalcemic states and regulation of  bone formation. On 
the other hand, there is an increase in the rate of  bone 
formation that seems to contradict previous findings 
concerning the activity of  osteoclasts[90].

CONCLUSION
Here we summarize numerous studies that demonstrate 
a deep interaction between the skeleton, glucose, and en-
ergy metabolism (Figure 3). Many studies show that bone 
shares hormonal and molecular pathways with glucose 
and fat metabolism. The skeleton is subjected to various 
influences from fat tissue and glucose metabolism and 
is able to regulate these two systems in turn. Bone must 
therefore be considered as an endocrine organ with mul-
tiple functions, and not only a support for muscles. In 
the recent years this role has been confirmed in humans, 
and some studies, although controversial, demonstrate a 
correlation between bone endocrine function, body fat 
distribution and percentage, and glucose metabolism.
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