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Abstract
Lysosomal acid lipase (LAL) cleaves cholesteryl esters 
(CE) and triglycerides (TG) to generate cholesterol 
and free fatty acid in lysosomes of cells. The down-
stream metabolic products of fatty acids are ligands 
for activation of peroxisome proliferator-activated re-
ceptor gamma (PPARγ). Accumulation of CEs and TGs 
is resulted from lack of functional LAL in lysosomes 
of cells, especially in myeloid cells. One characteristic 
phenotype in LAL knock-out (lal-/- ) mice is systemic 
elevation of myeloid-derived suppressive cells (MDSCs). 
MDSCs infiltrate into multiple distal organs, alter T cell 
development, and suppress T cell proliferation and lym-
phokine production in lal-/-  mice, which lead to severe 
pathogeneses in multiple organs. The gene transcrip-
tional profile analysis in MDSCs from the bone marrow 
has identified multiple defects responsible for MDSCs 
malformation and malfunction in lal-/-  mice, including G 
protein signaling, cell cycles, glycolysis metabolism, mi-

tochondrial bioenergetics, mTOR pathway etc. In a sep-
arate gene transcriptional profile analysis in the lung of 
lal-/-  mice, matrix metalloproteinase 12 (MMP12) and 
apoptosis inhibitor 6 (Api6) are highly overexpressed 
due to lack of ligand synthesis for PPARγ. PPARγ nega-
tively regulates MMP12 and Api6. Blocking the PPAR 
signaling by overexpression of a dominant negative 
PPARγ (dnPPARγ) form, or overexpressing MMP12 
or Api6 in myeloid or lung epithelial cells in inducible 
transgenic mouse models results in elevated MDSCs 
and inflammation-induced tumorigenesis. These stud-
ies demonstrate that LAL and its downstream effectors 
are critical for MDSCs development, differentiation and 
malfunction.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Lysosomal acid lipase; Myeloid-derived sup-
pressor cells; Immunosuppression; Myeloid-derived 
suppressive cell development; Hematopoiesis

Core tip: Neutral lipid metabolism is essential for my-
eloid cell proliferation and differentiation. This review 
summarizes the most recent discoveries that lysosomal 
acid lipase (LAL), an enzyme hydrolysing cholesteryl es-
ters and triglycerides in lysosomes, plays a critical role 
in myeloid-derived suppressive cells (MDSCs) develop-
ment, differentiation, and immune suppressive function. 
Both LAL knock-out and myeloid specific rescue of LAL 
knock-out mice are used in the studies. Doxycycline-in-
ducible bitransgenic mouse models of LAL downstream 
genes are also generated to study MDSCs malformation 
and malfunction. The molecular pathways/mechanisms 
to connect LAL and MDSCs are characterized by micro-
array analyses of gene transcriptional profiles. 
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HISTORY OF LYSOSOMAL ACID LIPASE
Lysosomal acid lipase (LAL) cleaves cholesteryl esters 
(CE) and triglycerides (TG) in cell lysosomes. Muta-
tion in the LAL gene results in Wolman disease (WD) 
of  early infantile onset, and cholesteryl ester storage 
disease (CESD) of  late onset. WD was first described 
by Dr. Wolman[1] in 1956 as severe malnutrition, hepa-
tosplenomegaly, calcified adrenal glands, and death of  
children within the first few months of  life. Affected 
WD infants display massive accumulations of  CE and 
TG in the lysosomes of  hepatocytes and Kupffer cells, 
as well as in macrophages throughout the viscera, which 
lead to liver failure, severe hepatosplenomegaly, steator-
rhea, pulmonary fibrosis[2,3], and adrenal calcification and 
insufficiency[4,5]. Lipid engorged macrophages in intes-
tinal villi lead to severe malabsorption and cachexia[2,4]. 
The average life span of  WD is 3.5 mo[6]. CESD was 
initially described by Fredrickson, Schiff, Langeron, and 
Infante and their colleagues in 1967[7-10] and named by 
Partin and Schubert based on phenotype that exhibited 
hepatomegaly with increased hepatic levels of  cholesteryl 
esters in 1969. CESD can be a more indolent progressive 
disease, which shows microvesicular steatosis leading to 
fibrosis and cirrhosis in the liver, increases atherosclerosis 
and premature demise[11-13]. Wolman disease and CESD 
result from allelic mutations at the LAL locus on human 
chromosome 10q23.2-q23.3 and are autosomal recessive 
traits. The gene spans 45 kb, has 10 exons, and contains 
no unusual structures, except for a large intron 3. The 
LIPA mutations found in Wolman disease include dele-
tions and insertions that lead to premature stop codons 
and the consequent loss of  LAL protein and activity[14]. 
The mutations found in CESD are usually missense mu-
tations, either heteroallelic or homoallelic with another 
mutant LIPA gene[14]. 

Recently, some evidence started to emerge, show-
ing altered mononuclear phagocyte differentiation [in-
creased CD14+CD16+ and CD14+CD33+ cells, subsets 
of  human myeloid-derived suppressive cells, or myeloid-
derived suppressive cells (MDSCs)] in humans that were 
heterozygote carriers of  LAL mutations[15]. Furthermore, 
patients with mutations in the LAL gene have been 
reported to be associated with carcinogenesis[16]. These 
clinical observations support the extensive characteriza-
tion in animal models as described below.

LAL PROPERTIES 
LAL is a key player in the modulation of  cholesterol 
metabolism in all cells. On the surface membranes of  
various cells, there are multiple receptors that can deliver 
LDL-bound cholesteryl esters/triglycerides to lysosomes, 
but LAL is the only lipase in the lysosomes that hydro-
lyzes cholesteryl esters and triglycerides. Once cleaved by 

LAL, the free cholesterol and fatty acids enter the cytosol 
from lysosome. In LAL deficiency, cholesteryl esters and 
triglycerides cannot be cleaved; therefore, free cholesterol 
and fatty acids cannot leave the lysosome[17,18]. Cells sense 
this as an intracellular (cytosolic) cholesterol deficiency, 
and the cholesterol biosynthetic pathway is up-regulated 
to compensate.

Synthesized in the rough endoplasmic reticulum, LAL 
is a typical soluble lysosomal hydrolase, which is co-trans-
lationally glycosylated when it emerges into the endo-
plasmic reticulum lumen[18,19]. Following the removal of  
the leader sequence (21 amino acids), LAL is decorated 
with oligosaccharides that are remodeled during transit 
through the Golgi apparatus. The N-linked oligosac-
charides are remodeled from high mannosyl to complex 
forms, with a mannose 6-phosphate being added, which 
serves as the lysosomal sorting targeting signal. The 
mannose 6-phosphate receptor system is used to deliver 
the newly synthesized LAL to the lysosome. LAL is not 
known to require cofactors for optimal hydrolysis, and it 
functions as a monomer. Unmodified mature protein (378 
amino acids) has a predicted molecular weight approxi-
mately 42.5 kDa. Different molecular weights have been 
reported for purified human LAL[20-24]. Occupancy of  the 
LAL N-glycosylation is essential for enzyme stability, i.e., 
protection from rapid degradation[25]. 

LAL has significant similarity to other acidic lipases, 
for example, lingual lipase and gastric lipases that cleave 
similar substrates in the stomach. However, LAL is dis-
tinct from other lipases, including hormone-sensitive 
lipase, pancreatic lysophospholipid lipase, lecithin cho-
lesterol acyl transferase, lipoprotein lipase, hepatic lipase, 
and pancreatic lipase[26]. All such lipases share a motif, 
Gly-X-Ser-X-Gly, that is an essential pentapeptide in the 
active site[27,28]. This pentapeptide occurs twice in LAL at 
serine 99 and serine 153, and specific mutation of  serine 
153 identified this residue as important to catalytic activ-
ity[23]. Like other lipases, LAL also has a catalytic triad of  
Ser153, Asp423 and His353

[27]. 

GENE KNOCK-OUT PHENOTYPES AND 
MDSCS IN MICE
A Lipa knock-out mouse (lal-/-) has been created to 
understand the functional roles of  LAL in disease patho-
physiology, lipid metabolism, and therapeutic approach-
es[29,30]. The lal-/- phenotype resembles human CESD. It’
s histopathologic and biochemical phenotypes are similar 
to human WD. The lal-/- mice are normal appearing at 
birth, but develop liver enlargement by 4 wk and have 
a grossly enlarged abdomen with hepatosplenomegaly, 
lymph node enlargement, and intestinal villus infiltration 
by foamy macrophages by 16 wk. Massive accumulation 
of  CE and TG and macrophage storage develops in these 
and other organs[29,31-34]. Enzyme therapy has been studied 
in this model using human recombinant LAL (rhLAL) 
produced in several different eukaryotic systems[24,35,36]. 
These studies clearly show the potential for correction of  
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the manifestations if  enzyme therapy is begun early in the 
course of  the disease[36,37]. 

Many phenotypes of  seemingly unrelated diseases in 
various organs co-exist in lal-/- mice. Therefore, these dis-
eases must share common cellular and molecular mecha-
nisms that link these pathological processes. Extensive 
characterization of  lal-/- mice shows that elevation of  
systemic MDSCs is a major manifestation in association 
with most of  the pathogenic conditions (e.g., > 70% in the 
bone marrow and > 40% in the blood), suggesting that 
MDSCs play a central role in mediating LAL deficiency-
induced pathogenic progression[29,31-34,36,38-41]. MDSCs 
was originally identified in tumor pathogenesis[42]. Recent 
studied have linked this cell population to many other 
chronic inflammatory diseases[43-50]. MDSCs are a mixture 
of  myeloid cells that express CD11b and Gr-1 antigens 
in mice. In certain disease conditions (cancer), MDSCs 
are categorized into granulocytic (CD11b+, Ly6G+) and 
monocytic (CD11b+Ly6C+) MDSC[51]. Interestingly, most 
gated lal-/- CD11b+ cells show Ly6C+ and Ly6G+ double 
positive, making them CD11b+Ly6C+ Ly6G+ cells[34]. Nor-
mally, healthy immature myeloid lineage cells differentiate 
into dendritic cells (DCs), macrophages, or granulocytes 
in response to environmental changes. However, this pro-
cess is blocked by LAL deficiency, leading to accumula-
tion and expansion of  MDSCs with immune suppressive 
function[51-53]. This is similar to what has been observed in 
the tumor environment[54]. It is conceivable that through 
paracrine and autocrine mechanisms, abnormally elevated 
MDSCs generate and secrete growth factors, chemokines 
and cytokines to influence cell differentiation, cell prolif-
eration, cell apoptosis and gene expression in residing or-

gan tissues, contributing to the physiological progression 
of  various diseases. Direct cell-cell contact by MDSCs and 
other cells through the juxtacrine mechanism also contrib-
utes to this pathogenic process.

The functional roles of  LAL in myeloid cells have 
been specifically evaluated by creating a myeloid-specific 
doxycycline-inducible c-fms-rtTA/(tetO)7-CMV-hLAL; 
lal-/- triple mouse model, in which human LAL is ex-
pressed in myeloid cells under the control of  the 7.2 kb 
c-fms promoter/intron2 regulatory sequence in lal-/- 
mice[32,34,55]. The hLAL expression in myeloid lineage cells 
in this triple mouse model significantly reduced systemic 
MDSCs accumulation[34], reversed aberrant gene expres-
sion, and ameliorated pathogenic phenotypes[32]. There-
fore, the normal biological function of  myeloid cells 
requires normal neutral lipid metabolism (Figure 1).

MDSCS DIFFERENTIATION AND 
DEVELOPMENT
The myeloid linage cells undergo the sequentially dif-
ferentiated and proliferated from hematopoietic stem 
cells through an increasingly lineage-restricted intermedi-
ate progenitors including common myeloid progenitors 
(CMPs) and granulocyte-macrophage progenitors (GMPs) 
in the bone marrow[56,57]. The number and frequency of  
primitive LSK (Lin-/Sca-1+/c-kit+), CMP, and GMP 
populations in the bone marrow, systemic myeloid cell 
distribution are changed in lal-/- mice, leading to an ex-
pansion in CD11b+/Gr-1+ MDSCs[41]. Both increased 
proliferation and decreased apoptosis contribute to the 
expansion of  MDSCs in lal-/- mice. Lal-/- mice also 
display increased numbers of  high proliferative potential 
colony-forming cells (HPP-CFC), colony-forming unite 
of  granulocyte and macrophage progenitor cells (CFU-
GM), colony-forming unite of  granulocytes (CFU-G) 
and colony-forming unite of  macrophages (CFU-M) col-
onies from cultured bone marrow cells. When lal-/- bone 
marrow cells are transplanted into wild type mice, the 
donor CD11b+/GR-1+ myeloid cells in the blood, spleen, 
lung and bone marrow of  recipient mice are increased, 
confirming that the MDSCs increase is primarily due to 
the intrinsic defect in myeloid lineage progenitor cells. In 
addition to the intrinsic progenitor problem, the environ-
ment in lal-/- mice also contributes to myeloid cell hyper-
expansion, since the donor CD11b+/GR-1+ myeloid cell 
population in lal-/- recipient mice that are transplanted 
with wild type bone marrow cells is expanded. There-
fore, the lal-/- environment does not normally support 
hematopoiesis. Deregulated bone marrow progenitor cell 
differentiation is a primary cause for expansion of  lal-/- 
MDSCs, which is attributed to both cell-autonomous and 
environmental factors. Taken together, LAL expression 
in myeloid lineage cells is critical to maintain hemato-
poiesis and myelopoiesis. After MDSCs infiltration into 
distal organs, at least two mechanisms can explain how 
the cell-autonomous defect and environmental factors 
influence each other. Firstly, MDSCs and other regional 
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Figure 1  The functional role of Lysosomal acid lipase in myeloid lineage 
cells. In the wild type mice, the CD11b+Ly6G+ cells are myeloid lineage precur-
sors for monocytes/macrophages, neutrophils, and dendritic cells, which partici-
pate in the normal physiological functions of the distal organs (e.g., lung, liver, 
etc.), such as clearance of invading pathogens. The lysosomal acid lipase (LAL) 
activity is essential for normal myeloid lineage cell development, differentiation 
and function. LAL deficiency leads to neutral lipid accumulation in myeloid cells 
and blocks CD11b+Ly6G+ cells from further differentiation into mature myeloid 
lineage cells. The accumulated CD11b+Ly6G+ cells possess various malfunc-
tions that participate in the pathogenic conditions in the residing organs. MD-
SCs: Myeloid-derived suppressive cells.
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the blockage of  T cell development initially occurs at 
the DN3 to DN4 transition (Figure 3)[33]. Decrease of  T 
cell development and maturation was also observed in 
lal-/- mice due to the defects in lymphoid progenitors in 
the bone marrow chimeras study. This notion has been 
supported by the bone marrow profile analysis, in which 
common lymphoid progenitor development is blocked in 
the bone marrow of  lal-/- mice[33,41]. 

In addition to the above intrinsic defect, extensive 
analyses have revealed a second mechanism that con-
tributes to systemic reduction of  T cell populations. 
Strikingly, LAL deficiency dramatically increases MDSCs 
expansion and infiltration in the thymus and the spleen 
of  lal-/- mice, leading to neutral lipid accumulation and 
abnormal organization of  the thymus and spleen[33]. In-
filtration of  MDSCs in these important T cell organs af-
fects T cell development, differentiation and maturation. 
Functional analyses have shown that MDSCs from lal-/- 
mice strongly inhibit proliferation and function of  T cells 
(Figure 3)[34,40,41].  

Direct connection between LAL in MDSCs and T 
cell abnormalities comes from the c-fms-rtTA/(tetO)7-
CMV-hLAL;lal-/- triple mouse study. MDSCs expansion 
and infiltration into the thymus and spleen are reduced 
in this mouse model. This leads to restoration of  T cell 
proliferation in the spleen and normal T cell develop-
ment in the thymus[34]. Stat3 and NFκB p65 signaling 
play a critical role in lal-/- MDSCs immune suppressive 
function[34]. The above observations are further proved 
by an MDSCs depletion study, in which anti-Gr-1 
antibody treatment recovers T cell numbers in lal-/- 
mice[34]. lal-/- MDSCs also inhibits T cell lymphokine 
production, which is resulted from inactivation of  the 
pZAP-70/Syk intracellular signaling, loss of  expression 
of  TCR ξ chain and CD69, a failure to respond to TCR 
stimulation[33]. These defects can also be reversed by my-
eloid hLAL expression[34]. Lastly, Treg cells inhibit CD4+ 
T cell lymphokine production and proliferation[60]. LAL 
deficiency substantially increases CD4+FoxP3+ Treg cells 
in lal-/-mice[33].

cells in distal organs influence each other by the paracrine 
mechanism as both sides secrete cytokines and chemo-
kines. Secondly, MDSCs and other cells can influence 
each other by direct contact (juxtacrine mechanism). 
Starting at the GMP stage, hLAL expression in myeloid 
cells reverses abnormal myeloid development in the bone 
marrow, and reduces systemic expansion of  MDSCs in 
c-fms-rtTA/(tetO)7-CMV-hLAL; lal-/- triple mice. In 
addition, differentiation from Lin- progenitor cells to 
CD11b+GR-1+ cells is abnormally increased in lal-/- mice 
(Figure 2). This further supports that the cell-autono-
mous effect of  MDSCs expansion in lal-/- mice. Myeloid 
hLAL expression in c-fms-rtTA/(tetO)7-CMV-hLAL; 
lal-/- triple mice successfully reverses this abnormality[32]. 
The environmental effects on MDSCs malformation are 
further supported by an observation that when the Stat3 
pathway is overly activated in lung epithelial cells[58], se-
cretion of  Stat3-induced pro-inflammatory cytokines in 
epithelial cells reversed mature myeloid lineage cells to 
MDSCs[59]. 

MDSCS IMMUNOSUPPRESSION
In contrast to myeloid lineage cells, T cells are systemi-
cally decreased in lal-/- mice. Lal-/- T cells behave abnor-
mally. In response to stimulation of  anti-CD3 plus anti-
CD28 antibodies, or phorbol-12-myristate-13-acetate 
(agonist to activate PKC) and ionomycin (calcium iono-
phore), there is severely diminished T cell proliferation, 
decreased CD69 expression, and decreased expression 
of  T cell lymphokines. LAL deficiency does not drive 
effector T cells into either Th1 or Th2 status[33]. The thy-
mus is the most important organ for T cell development, 
which is divided into different developmental stages that 
are marked by CD4

-CD8
- double negative (DN) 1 to 4 

stages, CD4
+CD8+ double positive (DP) stage and CD4+ 

or CD8+ single positive (SP) stage. The earliest stage for 
thymocyte paucity appears at the DN4 (CD25-CD44-) 
stage in the lal-/- thymus. After this developmental point, 
thymocytes are declining at all stages, suggesting that 

Lin- CMP GMP
CD11b/
Ly6G

Mac

PMN

DCsLAL KO

Figure 2  Lysosomal acid lipase is required for normal myeloid lineage 
cell development and differentiation. Lysosomal acid lipase (LAL) deficiency 
leads to increased myeloid-derived suppressive cells differentiation from Lin- 
progenitor cells in the bone barrow, and decreased differentiation to mature 
macrophages, neutrophils, and dendritic cells in other compartments. Lin-: 
Lineage negative progenitor; CMP: Common myeloid progenitor; GMP: Gran-
ulocyte-macrophage progenitor; Mac: Macrophage; PMN: Polymorphonuclear 
cell, or neutrophil; DC: Dendritic cell.
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Figure 3  Lysosomal acid lipase is required for normal T cell development 
and differentiation. Lysosomal acid lipase (LAL) deficiency can cause the 
intrinsic defect in T cell development, starting at the double negative 3 (DN3) 
stage. In addition, myeloid-derived suppressive cells infiltrate into the thymus 
and spleen, resulting in blockage of normal T cell development, differentiation, 
and maturation. DN: CD4 and CD8 double negative; DP: CD4 and CD8 double 
positive; SP: CD4 or CD8 single positive.
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GENE PROFILES IN LAL DEFICIENCY-
INDUCED MDSCS 
Since LAL controls homeostasis and development of  
MDSCs, which have profound pathogenic impact on 
various disease development, it is essential to identify 
the intrinsic defects that are involved in the MDSCs ho-
meostasis and function for future targeting. In a compre-
hensive gene transcriptional profile study by Affymetrix 
GeneChip microarray analysis, multiple pathways have 
been revealed in lal-/- bone marrow MDSCs. Below are 
lists of  some major (but not limited) changed pathways 
in lal-/- MDSCs.

Genes of G-protein superfamily 
Expression changes of  both large and small GTPases 
have been detected in lal-/- MDSCs, which have diverse 
functions in cells[61,62]. They include: (1) Rab GTPases, 
which control vesicle formation, receptor internaliza-
tion, and trafficking to the nucleus, lysosome and plasma 
membrane. Rab GTPases regulate cellular proliferation, 
apoptosis and migration by integrating signaling path-
ways; (2) Rho GTPases, which organize actin cytoskel-
eton, cell adhesion and cell motility[63]; and (3) Ras GT-
Pases mediate cell-cycle entry, cell growth, cell survival, 
cell growth and cellular metabolism by phosphorylating 
transcription factors through activation of  the Raf/Mek/
Erk pathway. Activation of  Erk and p38 phosphorylation 
has been observed in lal-/- MDSCs[41].

Histone cluster genes and cell cycle genes
Cell cycle regulating genes are upregulated in lal-/- MD-
SCs. They include: (1) Histone-variants cluster genes, 
which favor the epigenetic microenvironment change 
to promote MDSCs expansion. Histone-variants ex-
change also contributes to formation of  centromeric 
and telomeric chromatin during cell cycles. Indeed, G1/
M phases of  lal-/- MDSCs are increased in a cell cycle 
analysis[64]; (2) Cell cycle related genes[65], including Cdk1, 
Cdk2, Cdk5, Cdk9, and all Cdk regulatory cyclins (A, B, 
D, E-type), suggesting constitutive mitogenic signaling 
and defective responses to anti-mitogenic signals; and (3) 
Ubiquitination and proteasome enzymes/protein factors, 
which direct proteins to proteolysis within proteasome 
for recycling[66].

Metabolism and bioenergetics
Bioenergetic and metabolic genes are abnormally up-
regulated in lal-/- MDSCs, which control mitochondrial 
oxidative phosphorylation and energy (ATP production) 
for cellular activities. These include: (1) lactate dehydroge-
nase A and B, which produce large quantities of  secreted 
lactate, suggesting that lal-/- MDSCs use an aerobic gly-
colysis; (2) nitric oxide/reactive oxygen species (ROS) 
production genes, glutathione peroxidase/glutathione 
reductase genes, and glucose 6-phosphate dehydrogenase 
gene, which are involved in production of  ROS. The 
concentration of  ROS is significantly increased in lal-/- 

MDSCs; (3) enzymes and proteins in glycolysis and citric 
acid cycles; and (4) respiratory chain proteins (NADH 
dehydrogenases, cytochrome proteins, ATPases and mi-
tochondrial ribosomal proteins).

The mTOR pathway in LAL deficiency induced MDSCs
PI3K/thymoma viral proto-oncogene (AKT)/mam-
malian target of  rapamycin (mTOR) is activated in lal-/- 
MDSCs[64]. mTOR is a lysosomal membrane-bound 
protein, which controls apoptosis, promotes influx of  
glucose and amino acids into the cells, stimulates ATP 
production[67], contributes to cell growth, cell cycle en-
try, cell survival, and cell motility[68,69]. Lack of  the LAL 
activity changes lipid composition and dynamics on the 
lysosomal membrane that potentially influence endo-
membrane trafficking and stimulate the mTOR activity, 
which in turn coordinates the cellular metabolism[64,69,70]. 
It has been demonstrated that mTOR plays a critical role 
in modulating cellular immune functions[71,72], activation 
of  the mTOR pathway contributes to lal-/- MDSCs pro-
duction and function[40]. mTOR is the catalytic subunit of  
two distinctive complexes; mTOR complex 1 (mTORC1) 
and mTOR complex (mTORC2). mTORC1 contains 
unique regulatory associated proteins of  mTOR (RAP-
TOR) while mTORC2 contains rapamycin-insensitive 
companion of  mTOR (RICTOR)[67,72-75]. Inhibition of  
mTOR and associated proteins (Raptor, Rictor, and 
Akt1) corrects lal-/- MDSCs development, increased cell 
proliferation, decreased cellular apoptosis, and immune 
suppression in association with decreased ROS produc-
tion, recovery from impairment of  the mitochondrial 
membrane potential, increased ATP synthesis, and in-
creased cell cycling. Potentially, the mTOR pathway can 
serve as a target to modulate the emergence of  MDSCs 
in various pathophysiologic states where these cells play 
an immunosuppressive role (Figure 4).

The Stat3 and NFκB pathways
Although upregulation of  Signal Transducer and Activa-
tor of  Transcription (Stat) family members and NFκB 
family members are not detected by microarray analysis, 
phosphorylation of  Stat3 and NFκB has been detected in 
expanded lal-/- MDSCs[34,41]. Activation of  Stat3 directly 
leads to MDSCs expansion in vivo[58,59].

STUDY OF LAL DOWNSTREAM GENES
The gene profile study in the lung of  lal-/- mice by Af-
fymetrix GeneChip microarray analysis has also been 
performed. This is because the lung is a lipid rich organ 
and highly responsive to inflammation. Neutral lipids 
account for 10% of  the composition of  pulmonary sur-
factant that protects alveoli from collapse during respira-
tory cycles[76]. LAL deficiency results in massive myeloid 
cell infiltration, hyperplasia and emphysema in the lal-/- 
lung[32,39]. Comparison between the changed gene lists of  
bone marrow MDSCs and the whole lung by Affymetrix 
GeneChip microarray analyses reveals a few overlapping 
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genes. Therefore, LAL performs differential roles in dif-
ferent compartments. LAL exerts its biological effects 
through its downstream genes. In order to fully under-
stand the LAL functions, it is necessary and essential to 
characterize its downstream genes. From the whole lung 
gene list, the two most up-regulated genes matrix metal 
proteinase 12 (MMP12) and apoptosis inhibitor 6 (Api6) 
are characterized extensively. The functional role of  LAL 
downstream effector peroxisome proliferator-activated 
receptor gamma (PPARγ) has also been studied in depth. 
Figure 5 shows the relationship between LAL and its 
downstream effectors.

PPARγ  
Involvement of  the receptor network in the metabolic 
programming of  myeloid lineage cells is essential to 
the innate immune system[77,78]. PPARγ is of  high inter-
est for several reasons. Firstly, the metabolites of  LAL 
hydrolysis, 9-hydroxyoctadecanoic acids (9-HODE) or 
13-HODE from linoleic acid, serve as ligands for PPARγ. 
Upon binding to the ligands, PPAR interacts with the 
retinoid X receptor (RXR) to form the PPARγ/RXR di-
mer on target genes. Secondly, PPARγ plays an important 
role in anti-inflammation of  various tissues[77,79,80]. It has 
been shown that PPARγ agonists suppress gene expres-
sion of  inflammatory cytokines[79]. In the lal-/- lung, these 
pro-inflammatory cytokines are up-regulated (Figure 5)[39]. 
Therefore, LAL deficiency causes inactivation of  PPARγ 
by depleting ligand production. Using the lung as a 
model system, reintroduction of  LAL downstream meta-
bolic derivative 9-HODE (a natural occurring ligand for 
PPARγ) and a synthetic ligand compound ciglitazone for 
PPARγ improves the inflammatory status and pathogen-

esis in the lal-/- lung. Therefore, the ligands/PPARγ axis 
controls inflammation-triggered elevated gene expression 
and pathogenesis in the lal-/- mice[31]. 

To directly evaluate functional role of  LAL down-
stream effector PPARγ in myeloid cells, dominant nega-
tive PPARγ (dnPPARγ) is overexpressed in a myeloid-
specific c-fms-rtTA/(TetO)7-CMV-dnPPARγ bitransgenic 
mouse model[81]. In this bitransgenic system, total num-
bers and frequencies of  LK, LSK, CMP and GMP pro-
genitor cells in the bone marrow are abnormally elevated. 
DnPPARγ overexpression leads to up-regulation of  IL-
1β, IL-6 and TNFα in the blood plasma. MDSCs from 
this bitransgenic mouse model inhibit the proliferation 
and lymphokine production of  wild type CD4+ T cells 
in vitro. Both CD4+ and CD8+ T cell populations are 
decreased in doxycycline-induced dnPPARγ expressed 
mice. Bone marrow transplantation reveals that a myeloid 
autonomous defect is responsible for MDSC expansion, 
immunosuppression and tumorigenesis in this myeloid-
specifically expressed dnPPARγ bitransgenic mice. Mul-
tiple forms of  carcinoma and sarcoma in various organs 
(the lung, liver, spleen and lymph nodes) are observed 
in this mouse model. Therefore, the LAL/hormonal li-
gands/PPARγ axis is critical to control inflammation and 
the induction of  various tumors. Disruption of  this path-
way in myeloid cells, either by blocking ligand synthesis 
(as in lal -/- mice), or inhibition of  PPARγ (as in c-fms-
rtTA/(TetO)7-CMV-dnPPARγ bitransgenic mice) can 
initiate up-regulation of  inflammatory molecules which 
cause hematopoietic progenitors skewing towards my-
eloid lineage expansion to form MDSCs.

LAL KO
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mTORC2

Cell cycle entry

Aerobic glycolysis

ATP production

ROS production
Mitochondrial

oxidative
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Glucose up-take Mitochondrial
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Figure 4  Lysosomal acid lipase deficiency induces overactivation of the 
mTOR pathway in myeloid-derived suppressive cells. Lysosomal acid lipase 
(LAL) is a lysosome-associated enzyme. LAL deficiency increases mTOR com-
plexes anchoring on lysosomes and stimulates the mTOR1 activity to influence 
the cellular metabolism and proliferation of lal-/- myeloid-derived suppressive 
cells (MDSCs). These include an increased influx of glucose through aerobic 
glycolysis, an increased mitochondrial oxidative phosphorylation and ATP pro-
duction, an impairment of the mitochondrial membrane potential in association 
with increased reactive oxygen species (ROS) production, and an increased cell 
cycle entry in lal-/- MDSCs.
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Figure 5  Lysosomal acid lipase and its downstream effector genes. Lyso-
somal acid lipase (LAL) cleaves cholesteryl esters (CE) and triglycerides (TG) 
to produce free cholesterol (FC) and fatty acids (FFA) in lysosomes of cells. 
The lipid derivatives (9-HODE, 13-HODE) of FFA serve as ligands for PPARg 
in coupling with retinoid X receptor a (RXRa, which suppresses gene expres-
sion of a variety of pro-inflammatory cytokines. The LAL/PPARg axis serves as 
an anti-inflammatory pathway. LAL deficiency blocks this metabolic pathway to 
provoke up-regulation of pro-inflammatory cytokines (e.g., Api6, MMP12).  TGF: 
Transforming growth factor beta; IL: Interleukin; MCP: Monocyte chemotactic 
protein; TNF: Tumor necrosis factor; NF: Nuclear factor.
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Matrix metalloproteinases12
Zinc-dependent MMPs act as modulators for inflamma-
tion and innate immunity by activating, deactivating or 
modifying the activities of  signaling cytokines, chemo-
kines and receptors through proteolytic and nonproteo-
lytic functions[82-84]. Among MMPs, MMP12 is a 22-kDa 
secretory proteinase that is predominantly expressed in 
macrophages as previously reported[85]. MMP12 degrades 
extracellular matrix components, such as type IV col-
lagen, fibronectin, laminin, gelatin, vitronectin, entactin, 
heparin, and chondroitin sulphates, to facilitate tissue re-
modeling[86]. The expression of  MMP12 in macrophages 
is induced in the lung of  cigarette smokers[87]. Inactivation 
of  the MMP12 gene in knock-out mice demonstrates a 
critical role of  MMP12 in smoking-induced chronic ob-
structive pulmonary disease (COPD)[88], a disease highly 
related to lung cancer. From clinical studies, MMP12 
correlates with early cancer-related deaths in non-small 
cell lung cancer (NSCLC), especially with those associ-
ated with tobacco cigarette smoke exposure[89,90]. In the 
lal-/- lung, MMP-12 is the highest upregulated gene[31]. In 
the lal-/- lung, both macrophages and lung epithelial al-
veolar type Ⅱ (AT Ⅱ) cells are responsible for MMP-12 
increase[31,91,92]. Both myeloid-specific and lung epithelia-
specific MMP12 bitransgenic mouse models have been 
created to study the functional roles of  this LAL/PPARγ 
downstream molecule. 

In the myeloid-specific c-fms-rtTA/(TetO)7-CMV-
MMP12 bitransgenic mouse model, induction of  MMP12 
abnormally elevates numbers and frequencies of  CMP 
and GMP populations in the bone marrow, similar to that 
observed in lal-/- mice. Addition of  activated MMP12 
is able to stimulate wild type Lin- progenitor cells to dif-
ferentiate into the MDSC population, suggesting that 
MMP12 directly exerts its effect on hematopoietic pro-
genitor cells. The MDSCs are systemically increased in 
multiple organs of  MMP12 bitransgenic mice. MDSCs 
from MMP12-overexpred bitransgenic mice suppress T 
cell proliferation and function. MMP12 directly stimu-
lates differentiation of  CD11b+Gr-1+ cells from Lin- 
progenitor cells. In the lung, the concentration of  IL-6 
is increased, which aberrantly activates oncogenic Stat3 
and increases expression of  Stat3 downstream genes in 
epithelial tumor progenitor cells. As a result, spontaneous 
emphysema and lung adenocarcinoma are sequentially 
developed in MMP12-overexpressive bitransgenic mice, 
suggesting a critical role of  MMP12 in the transition 
from emphysema to lung cancer. 

In epithelial-specific CCSP-rtTA/(TetO)7-CMV-
MMP12 bitransgenic mice, MMP12 overexpression 
induces regional MDSCs infiltration and increases epi-
thelial growth. Again, spontaneous emphysema and 
bronchioalveolar adenocarcinoma are developed sequen-
tially. Importantly, MMP12 upregulation is highly asso-
ciated with COPD and lung cancer in human patients. 
Together, these studies support that LAL/PPARγ down-
stream MMP12 plays a critical role in emphysema to 
lung cancer transition that is facilitated by inflammation. 

Clinically, it has been reported that there is a pathophysi-
ological connection between emphysema/COPD and 
lung cancers[93,94]. 

Apoptosis inhibitor 6
Apoptosis inhibitor 6 (Api6) belongs to the macrophage 
scavenger receptor cysteine-rich domain superfamily 
(SRCR-SF)[95,96]. Api6 expression is the second highest 
induced gene in the lal-/- lung. Api6 is regulated by LAL 
metabolic derivatives (e.g., 9-HODE) and PPARγ[31]. In 
a myeloid-specific c-fms-rtTA/(TetO)7-CMV-Api6 bi-
transgenic mouse model, many phenotypes are similar to 
those observed in lal-/- mice. Overexpression of  Api6 
abnormally elevates MDSCs in the bone marrow, blood 
and lung with increased cell proliferation and decreased 
apoptotic activities. Api6 overexpression activates Stat3, 
Erk1/2 and p38 in myeloid lineage cells. Persistent in-
flammation in myeloid-specific Api6 bitransgenic mice 
causes lung adenocarcinoma[97].

Pathogenic overexpression of  Api6 is also observed 
in lal-/- AT Ⅱ cells. In an epithelial-specific CCSP-
rtTA/(TetO)7-CMV-Api6 bitransgenic mice, Api6 over-
expression in AT Ⅱ cells increases pro-inflammatory 
cytokine/chemokine levels in bronchoalveolar lavage 
fluid and serum, activates oncogenic signaling and inhib-
its apoptosis, promotes expansion of  MDSCs in lung and 
blood but not in the bone marrow or spleen. Lung MD-
SCs from this bitransgenic mouse model suppress T cell 
proliferation and function, which results in occurrence of  
emphysema and adenocarcinoma.

CONCLUSION
MDSCs play vital roles in various inflammation-induced 
chronic diseases. Elimination or reduction of  MDSCs 
populations can slow down disease formation and pro-
gression. It is important to identify the molecular path-
ways in order to effectively block MDSCs homeostasis 
and function. Extensive studies outlined in this review 
have shown that the role of  LAL in controlling neutral 
lipid metabolism is a key player in MDSCs development, 
homeostasis and function, therefore, providing a new av-
enue to develop therapeutic or immunologic approaches 
for clinical application. Through studies of  the LAL 
function, defective gene expression patterns have been 
mapped in lal-/- MDSCs. These provide novel targets for 
controlling MDSCs and associated diseases by design-
ing small molecule inhibitors. Clinically, small molecule 
inhibitors for c-kit have been tested to target MDSCs[98]. 
Using the gene profile list from LAL deficiency-induced 
MDSCs, more small molecule inhibitors can and will be 
identified to inhibit MDSCs pathogenic functions in vari-
ous disease conditions. 
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Abstract
Hepatitis C virus (HCV) is an important etiologic agent 
of hepatitis and a major cause of chronic liver infection 
that often leads to cirrhosis, fibrosis and hepatocel-
lular carcinoma. Although, HCV is a hepatotropic virus, 
there is strong evidence that HCV could replicate extra-
hepatic in the gastrointestinal tissue which could serve 
as a reservoir for HCV. The outcome of HCV infection 
depends mainly on the host innate and adaptive im-
mune responses. Innate immunity against HCV includes 
mainly nuclear factor cells and activation of IFN-related 
genes. There is an immunologic link between the gut 
and the liver through a population of T-cells that are ca-
pable of homing to both the liver and gut via  the portal 
circulation. However, little is known on the role of Gut 
immune response in HCV. In this review we discussed 
the immune regulation of Gut immune cells and its as-
sociation with HCV pathogenesis, various outcomes of 
anti-HCV therapy, viral persistence and degree of liver 
inflammation. Additionally, we investigated the relation-
ship between Gut immune responses to HCV and IL28B 

genotypes, which were identified as a strong predictor 
for HCV pathogenesis and treatment outcome after 
acute infection. 

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Hepatitis C virus; Colonic Treg; Mucosal; Im-
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Core tip: Chronic hepatitis C (CHC) is a global world-
wide health problem with approximately 200 million 
people worldwide infected with hepatitis C virus (HCV). 
It is also a major cause of chronic liver infection that 
often leads to chronic hepatitis which may progress to 
cirrhosis, fibrosis and finally hepatocellular carcinoma. 
In CHC, immune responses play an important role in 
HCV pathogenesis and responses to therapy. Intra-
hepatic immune responses to HCV are highly regulated. 
There is a clear relationship between hepatic immune 
responses and mucosal immune response in the gut. 
Additionally, genetic immunological markers have been 
proposed to predict response to HCV treatment, and 
outcome of infection.
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INTRODUCTION
Hepatitis C virus (HCV) was first identified by Harvey 
Alter in 1978 and named non-A, non-B hepatitis[1], and 
cloned by Houghton in 1986[2]. HCV is a single-stranded, 
positive sense RNA virus belonging to Hepacivirus group 
in the family Flaviviridae[3]. There are 6 HCV genotypes. 
Due to the low fidelity and lack of  proofreading of  HCV 
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polymerase enzymes used for viral genome amplification, 
multiple mutations occur within a genotype to produce 
quasi-species[4,5].

Chronic hepatitis C infection (CHC) is a global world-
wide health care problem with an increasing burden year-
by-year[6-8]. The World Health Organization estimates that 
approximately 200 million people worldwide are infected 
with HCV[9]. It is also a major cause of  chronic liver in-
fection that often leads to chronic hepatitis which may 
progress to cirrhosis, fibrosis and finally hepatocellular 
carcinoma[3,10]. 

HCV is one of  the most important etiologic agents 
of  post transfusion hepatitis. HCV is usually spread by 
sharing infected needles with a carrier, from receiving 
infected blood, and from accidental exposure to infected 
blood. Some people acquire the infection through non 
parenteral means that have not been fully defined, but 
include sexual transmission in persons with high risk 
behaviors[11]. It is not reported that HCV can spread 
orally by food, water, breast feeding, or by normal social 
contact as sneezing, coughing, hugging, sharing eating 
utensils or drinking glasses[12]. Mother-to-baby transmis-
sion is rare and needs a high viremia as found in HIV co-
infection[13]. 

HCV VIROLOGY
HCV is a single stranded RNA virus which produces 
negative strand RNA as a replicative intermediate. The 
HCV genome is about 9.6 kb in length. During HCV rep-
lication cycle, one large precursor protein is synthesized 
from an open reading frame then cleaved to produce 10 
proteins including three structural proteins which are 
Core, two envelope proteins (E1 and E2)[3], and P7 which 
results from cleavage of  E2 protein[14]. The other six pro-
teins that are not in the viral particle called non-structural 
proteins (NS) including NS2, NS3, NS4A, NS4B, NS5A, 
and NS5B[3]. Non-structural (NS) proteins are not found 
in the virion, therefore, presence of  NS proteins inside 
cells suggests that HCV replication occurred in those 
cells[3]. Replication of  HCV involves converting the viral 
genomic positive strand into a negative strand, and then 
back to the genomic strand. Thus, the presence of  the 
negative strand strongly suggests that replication[15].	

HCV REPLICATION
HCV is primarily a hepatotropic virus[15]. However, a 
broad spectrum of  extra-hepatic manifestations may 
be associated with HCV infection, including mixed 
cryoglobulinemia, non-Hodgkin’s lymphoma, arthral-
gia, paresthesia, myalgia, pruritis, cutaneous vasculitis, 
glomerulonephritis, neuropathy and lymphoproliferative 
disorders[16,17].

HCV was believed to infect only hepatocytes[3]. How-
ever, recent studies have reported HCV infection of  
other cell types[15,18-21]. In fact, viral replication has been 
reported in B cells, T cells, monocytes, macrophages, and 

macrophage-like cells such as Kupffer cells, dendritic cells 
(DCs), renal cells, thyroid cells, and gastric cells. There 
is mounting evidence that these cells could represent 
replicative compartments for the virus[3,22,23]. In addition, 
it has been proposed that peripheral blood monocytes 
(PBMC) could be the source of  recurrent HCV infection 
after liver transplantation[24]. Despite these reports, extra-
hepatic replication of  HCV is still controversial by some 
investigators. However, the importance of  extra-hepatic 
HCV replication in HCV pathogenesis is clear. Extra-
hepatic compartments might serve as reservoirs for HCV, 
and hence HCV persistence, reactivation after antiviral 
therapy and also may contribute to the HCV extra-hepat-
ic manifestations[24].

HCV IN THE GUT
There is a molecular evidence that HCV may infect and 
replicate in oral mucosa and gastric cells[23]. Moreover, 
HCV seems to be involved in development of  B-cell 
non-Hodgkin’s lymphoma of  the gastric mucosa[25]. Mi-
glioresi et al[26], reported that Gut mucosa may serve as 
possible reservoir for HCV relapse after viral clearance. 
They analyzed HCV gastric localization in 15 patients 
and compared their levels of  viremia with the status of  
HCV in gastric biopsy specimens and PBMCs. In that 
study, all 15 patients with positive viremia were positive 
for HCV RNA on Gut tissue and PBMCs. In 2 patients, 
HCV RNA was positive on serum, negative at Gut bi-
opsy but their PBMCs were positive. Two patients with 
negative viremia and PBMCs after antiviral treatment 
were positive for HCV RNA on gastric sample and 
eventually relapsed (after 6 and 18 wk). The finding of  a 
positive hidden compartment for HCV and simultane-
ous negative viremia had previously reported in HCV 
infected liver without detectable viremia[27]. Replication 
of  HCV in gastrointestinal tissue represents a continuous 
new source as an extra-hepatic reservoir of  viral particles 
for re-infection of  hepatocytes[26].

IMMUNE RESPONSE TO HCV
Systemic immune responses
The immune response against HCV involves innate and 
adaptive immunity[9]. Innate immunity against HCV is 
mediated by several innate immune effector cells such 
as NK cells, and activation of  the interferons-stimulated 
genes (ISGs) response[28]. Recent studies have revealed 
that the IL28B gene locus, which codes for a type Ⅲ 
interferon is a critical locus for outcome after acute infec-
tion[29], and response to therapy[29,30]. However, HCV may 
develop several strategies to overcome these responses. 
For example, viral NS3 and NS4a protease can cause dis-
ruption of  important components of  type Ⅰ interferon 
activation cascade through inactivation of  several 
ISGs[31,32]. 

Adaptive immunity against HCV is mediated by both 
humoral and cellular immune responses. Most HCV-
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infected individuals develop antibodies against HCV, 
regardless of  the outcome of  infection. Few of  these 
antibodies can neutralize viral particles and may limit 
viral spread[33]. However, neutralizing antibodies have a 
limited role in most of  the infected patients due to the 
high replication and mutation rate of  HCV[34]. In fact, 
HCV clearance had been observed in some patients in 
the absence of  neutralising antibodies[35]. Therefore, 
despite the potential protective role of  innate and hu-
moral immunity in the outcome of  infection, it is clear 
that protection and viral clearance depend primarily on 
cellular adaptive immune responses through a complex 
interplay between CD4+ and CD8+ T-cell responses[9]. 
Unfortunately, in some patients, cellular immune re-
sponses are inadequate and fail to clear the infection 
with a subsequent viral persistence[9]. Fully functional 
virus-specific CD4+T-cell responses are detectable in 
patients who cleared infection[9,36-38]. The role of  HCV-
specific CD4+T-cell was further supported by the finding 
of  in vivo depletion of  CD4+T cells from HCV-recovered 
chimpanzees was associated with viral persistence[38]. 
Moreover, several studies have shown that HCV-specific 
CD8+T-cells derived from the peripheral blood or liver 
are functionally impaired and display a reduced abil-
ity to proliferate or secrete anti-viral cytokines such as 
IFN-γ [39-41]. The mechanisms contributing to CD8+T cell 
exhaustion in HCV are not fully understood, however, 
it may be partially explained by the intrinsic regulatory 
pathways such as signals mediated by the inhibitory re-
ceptor PD-1[40,42-45] and extrinsic regulatory pathways as 
regulatory T cells (Treg) or secretion of  immunoregulato-
ry cytokines such as IL-10[46-51]. Ultimately, the outcome 
of  HCV infection, viral persistence or clearance, is de-
termined by the host immune response[9,52,53]. Addition-
ally, sustained HCV-specific cytotoxic T cell responses in 
the liver have been associated with the development of  
hepatic immunopathology and liver necrosis which may 
lead to liver cirrhosis[52,53]. The mechanisms that medi-
ate liver inflammation and damage in CHC are not yet 
fully elucidated[9,54]. One of  the potential mechanisms 
that might modulate HCV-specific immune responses is 
Treg cells which are a subtype of  T cells that play a fun-
damental role in maintaining immune homeostasis and 
the balance between the tissue-damaging and protective 
effects of  the immune response[54-56]. It is characterized 
by the expression of  a unique transcription factor Fork-
head box protein P3 (FoxP3), which is highly expressed 
in the nucleus of  Treg cells and is generally accepted as 
the single best marker to quantify Treg cells[53,56-58]. In 
cases with CHC, it was reported that the frequency of  
Treg cells were negatively correlated with the degree of  
necro-inflammatory scores and their frequency is higher 
than that in healthy individuals[47,59,60]. Thus, Treg cells ap-
pear to assist in the maintenance of  chronicity by inhibi-
tion of  anti-HCV immune responses and consequently 
attenuate the intrahepatic tissue-damaging response to 
infection[49,53].

MUCOSAL (GUT) IMMUNE RESPONSE IN 
HCV
The mucosal immune system is considered the first line 
of  defense that reduces the need for elimination of  ex-
ogenous invading antigens by pro-inflammatory immune 
response[61]. The mucosal immune system maintains ho-
meostasis through evolution of  two layers of  adaptive 
non-inflammatory defense; the first strategy is immune 
exclusion by secretory IgA (and IgM) antibodies to limit 
epithelial contact and penetration of  invading microor-
ganisms and other potentially dangerous antigens[61], and 
the second strategy is oral tolerance by development of  
immunosuppressive mechanisms to inhibit over-reaction 
against food antigens and commensal bacteria[62]. Oral 
tolerance depends mainly on the induction of  Treg cells in 
mesenteric lymph nodes to which mucosal DCs carry and 
present food and commensal microbial antigens[63]. Gut 
induced tolerance include other suppressive mechanisms 
to ensure that persistent food allergy is relatively rare[64].

Some pathogens and food antigens could enter the 
liver via the portal circulation[65] within 2 h of  ingestion[66] 
and presented on liver endothelial cells. The liver is criti-
cal in the regulation of  immune responses to pathogens 
entering via portal circulation[67]. It receives 75% of  its 
blood supply from the portal vein, which drains the gut. 
Oral tolerance is usually lost in case of  a portal-systemic 
shunt, which allows portal blood to bypass the liver and 
goes directly from the gut to the systemic circulation[67,68].

To understand the interactions between the immune 
responses in the Gut and the liver during HCV infec-
tion, we have to dissect the immune responses in each 
organ. The intestinal immune system can be divided into 
inductive and effector sites based upon their anatomical 
and functional properties[61,63]. Inductive sites include the 
gut-associated lymphoid tissues (GALT) such as Peyer’s 
patches (PP) and isolated lymphoid follicles and the mes-
enteric lymph nodes (mLNs). The GALT contains a wide 
variety of  cells, such as Microfold (M) cells, DCs, intraep-
ithelial lymphocytes (IEL), macrophages and Treg cells[61]. 
The main effector sites of  the intestinal immune system 
are the lamina propria (LP) and epithelium, which har-
bor large populations of  activated T cells and antibody-
secreting plasma cells. The LP may also contribute to the 
induction of  tolerance. It is a site of  antigen uptake and 
loading of  the migratory DCs that encounter naïve T 
cells in the mLNs[61]. Antigen are up-taken by absorptive 
epithelial and M cells in the mucosal inductive sites or 
directly captured by professional APCs (including DCs, 
Macrophage and B lymphocytes)[69]. M cells take up mol-
ecules and particles from the gut lumen by endocytosis 
or phagocytosis then sample them to the immune cells. 
Antigens are transported through M cells by the process 
of  transcytosis. The cell membrane at the base of  M cells 
is folded around lymphocytes and dendritic cells within 
the Peyer’s patches[69]. M cells present the antigen to con-
ventional CD4+ and CD8+ αβ T cells at the inductive site. 
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potential by cooperation with complement and lysozyme 
and also can act as opsonin. However, the role of  sIgA 
during HCV infection is limited.

The development of  IgA immune response against 
mucosal pathogens and soluble protein antigens is de-
pendent on T helper cells[76]. Mucosal T cells produce 
large amounts of  transforming growth factor (TGF)-β, 
interleukin (IL)-10 and IL-4 to promote B-cell isotype 
class switching to IgA[77,78]. Additionally, muco-epithelial 
cells, and Treg cells are the major sources of  TGF-β and 
IL-10, suggesting that cooperation between neighboring 
lymphocytes and epithelial cells in the mucosal microen-
vironment is pivotal to promote B-cell switch to IgA and 
differentiation into IgA-committed B cells[69].

One of  the important cellular immune defense at the 
gut mucosal surfaces is mainly mediated by cytotoxic T 
lymphocyte (CTL) responses[69]. It is reported that muco-
sal CTLs are crucial for the immune clearance of  patho-
gens in several animal models of  infection with enteric 
viruses like Rota virus[79] and intracellular parasites[80]. Be-
sides CTLs, induced IFN-γ producing CD4+ T cells, have 
been found to be important for mucosal immune defense 
to both viral and bacterial infections[69].

REGULATORY MECHANISMS OF 
GUT IMMUNE RESPONSE AND ORAL 
TOLERANCE
Gut immune response is controlled by the local micro-
environment, the nature of  the antigen and the type 
of  APCs. In case of  foreign food proteins and non-
pathogen antigens, the default pathway for mucosal DCs 
and other APCs is to generate TH2 and various regulatory 
T cell types of  responses mainly Treg

[81], and Th17 cells[82] 
which usually leads to down-regulatory or active suppres-
sion of  systemic immunity (oral tolerance). On the other 
hand, antigens, most pathogens harboring motifs which 
could bind to Toll-like receptor (TLR), and be sensed by 
mucosal APCs as ‘danger signals’ and pro-inflammatory 
conditions in general favor the development of  stronger 
and broader immune responses but do not lead to oral 
tolerance[81,83,84]. Oral tolerance can be achieved through 
different mechanisms, including anergy, activation-
induced cell death and most important, the induction 
of  regulatory T cells[69,85]. Anergy of  antigen-specific T 
cells has been reported after ingestion of  large quanti-
ties of  soluble proteins[86], and deletion of  specific T 
cells only after mucosal administration of  massive, non-
physiological antigen doses[87]. Induction of  regulatory T 
cells after mucosal delivery of  antigens has been reported 
and received major attention given the potential of  ma-
nipulating these regulatory cells as therapeutic agents in 
immune-mediated diseases[69].

Regulatory T cells includes: (1) CD4+CD45RBlow Tr1 
cells that function through the production of  IL-10 to 
suppresses antigen-specific T cell responses and actively 
down-regulates a pathological immune response[88]; (2) 

At the same time, epithelial cells may process and present 
certain antigens directly to neighboring intraepithelial T 
cells such as NKT cells and γδ T cells which are T cells 
with limited repertoire diversity[69]. Naive B and T cells 
enter GALT and are primed to become memory/effec-
tor B and T cells, then migrate from GALT to mesenteric 
blood and the liver or to the lymph nodes via lymph and 
then via thoracic duct to peripheral blood for subsequent 
extravasation at mucosal effector sites. A system of  Gut-
specific lymphocyte trafficking has been evolved to target 
lymphocyte to the area of  injury or infection through 
vascular adhesion molecules and chemokines. Thus, the 
endothelial cells act as a local gatekeeper for mucosal 
immunity[61]. Under normal physiological conditions en-
teric antigens are presented to naïve lymphocytes in the 
draining mesenteric lymph nodes. Lymphocytes activated 
by gut dendritic cells express a gut-homing phenotype 
characterized by expression of  the chemokine receptor 
CCR9 and the integrin α4β7 which direct the migration 
of  the activated lymphocytes back to gut tissue where 
their respective ligands CCL25 and MAdCAM-1 are 
expressed[67,70]. Lymphocytes that are primed to hepatic 
antigens acquire expression of  adhesion molecules that 
direct them to traffic to the liver by interacting with mol-
ecules expressed on hepatic endothelium such as VAP-1. 

EFFECTOR MECHANISMS OF THE GUT 
IMMUNE RESPONSES
Innate immune system in the gut includes the lining 
epithelium which provides barrier function, mechanical 
cleaning and defensins which act as chemical antimicro-
bial factors[71]. The gut mucosa contains a number of  
other cells as part of  the innate immune system, includ-
ing phagocytic neutrophils and macrophages, DCs, NK 
cells and mast cells. These cells contribute significantly to 
host defense against pathogens22 and also initiate adaptive 
mucosal immune responses[69,72].

The adaptive humoral immune defense at the gut mu-
cosal surfaces is mainly mediated by secretory IgA (sIgA) 
antibody, which is the ideal antibody for functioning in 
mucosal secretions due to its resistance to proteases[61]. 
sIgA plays a protective role against a variety of  foreign 
antigens such as food antigens, toxins, bacteria and virus-
es[72]. slgA blocks the access of  potentially allergenic mole-
cules derived from food or drugs[73]. Because some dietary 
antigen is clearly absorbed by normal subjects, the impor-
tance of  sIgA antibody may lie in reducing the amount of  
antigen that gains access to the lamina propria[73,74]. sIgA 
can neutralize biologically active antigens as bacteria, tox-
ins, enzymes and viruses. The effectiveness of  sIgA as a 
neutralizing antibody against viruses is shown for example 
in the responses to oral live-attenuated poliovirus vac-
cine where protection correlates with levels of  secretory 
antibody[75]. Additionally, sIgA is an efficient agglutinin 
that can prevent adherence of  pathogenic bacteria to the 
epithelial surfaces and enhance the antibacterial efficiency 
of  other effector immune system; sIgA has bactericidal 
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TH3 cell which are CD4+ or CD8+ T cells producing 
TGF-β with various amounts of  interleukin-4 and inter-
leukin-10[89]; and (3) Treg cells, a population of  naturally 
occurring CD4+CD25+ regulatory T cells that suppress 
proliferation through a cell contact-dependent mecha-
nism[90] followed by cell-contact-independent mechanism 
mediated by soluble factors such as IL-10 and TGF-β[91]. 
Induction of  tolerance is a contact-dependent mecha-
nism used by naturally occurring CD4+CD25+ Treg to 
confer suppressive activity upon conventional antigen-
specific CD4+ T cells through the expression of  the tran-
scription factor Foxp3 and/or the major histocompat-
ibility complex (MHC) class II-binding molecule LAG-3 
in such cells[69,91], and inhibit T cell activation via soluble 
mediators. CD4+CD25+ Treg cells expressing the muco-
sal α4β7 integrin, when co-cultured with conventional 
CD4+ T cells, induced Tr1-like IL-10-secreting T cells 
with strong suppressor activity on effector T cells. While 
α4β1-positive Treg induced TH3-like TGF-β secreting 
suppressor T cells[91]. Moreover, intraepithelial CD8+γδ T 
cells in the small intestine have been involved in mucosal 
tolerance and are the first T cells to encounter pathogens 
that have invaded an epithelial surface[92]. 

ROLE OF LIVER IN ORAL TOLERANCE
Although the liver is capable of  generating vigorous im-
mune responses to infections such as hepatitis A and 
hepatitis E viruses, both of  which enter via the gut, it is 
also characterized by immune tolerance in several set-
tings[93,94]. A vigorous intrahepatic immune response 

depends on activation of  T cells by fully activated DCs 
within secondary lymphoid tissues whereas direct activa-
tion within the liver by resident APCs including endothe-
lial cells and hepatocytes usually results in tolerance[95]. 
This is logic, as it allows the liver to tolerate soluble 
food antigens captured by liver endothelial cells and self-
antigens on hepatocytes that fail to cause damage whilst 
responding appropriately to infections that cause injury, 
inflammation and full activation of  DCs[67].

Regulatory T cells as well as NK and CD1-restricted 
NKT cells seem to contribute to the overall bias of  he-
patic immune responses toward tolerance. The tolerance 
microenvironment of  the liver may account for the sur-
vival of  liver allografts and the persistence of  certain liver 
pathogens such as hepatitis viruses[94]. 

LINK BETWEEN THE GUT AND LIVER 
IMMUNE RESPONSES DURING HCV 
INFECTION
The Gut and the liver share common embryological 
origins; the liver develops from the ventral floor of  the 
foregut as the liver diverticulum from the undifferenti-
ated gut endoderm[96]. Subsequently, the gut is populated 
by lymphocyte precursors derived from the developing 
liver[97] (Figure 1).

There is an immunologic link between the gut and 
the liver through a population of  T-cells that are capable 
of  homing to both the liver and gut via portal circula-
tion[96]. Additionally, the liver is considered an important 
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Figure 1  Link between Gut and hepatic immune responses in hepatitis C virus infection. Hepatitis C virus (HCV) replicates in the Gut B cells and macrophages 
and stimulates Treg cells. Colonic Treg cells migrate to the liver and inhibit immune responses to HCV infection, and inhibit liver inflammation and fibrosis.
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toleragenic organ for all of  foreign proteins we are eating 
that are probably mediated through the Treg cells, which in 
turn act as a link between the gut and the liver[67,96]. Most 
of  the infiltrating T-cells in the liver are primed cells sug-
gesting that trafficking of  memory T-cells through the 
liver might contribute to immune surveillance[98]. Evi-
dence, that supports such findings, comes from observa-
tions that the gut adhesion molecules and chemokine 
(such as CCL25) are also detected on liver endothelium[99] 
providing a mechanism for the recruitment of  mucosal 
lymphocytes to the liver[100]. 

Evaluation of  the gut immune cells for the intrinsic 
gut-liver immune axis of  the shared lymphocytes that 
recirculate between the gut and liver through the por-
tal circulation may be considered a useful image of  the 
intrahepatic micro-environment during HCV infection. 
Based on this relationship, the frequency of  Treg cells in 
colonic tissue and its association with the various out-
comes of  anti-HCV therapy, viral persistence and degree 
of  liver inflammation were examined in our laboratory. 
Our data indicated that the frequency of  colonic Treg in 
CHC patients is higher than control and our findings are 
in concordance with previous reports that demonstrated 
a higher number of  FoxP3+Treg cells in the liver of  HCV-
infected patients compared to healthy control[47,59,60]. 
These findings support that Treg plays a prominent role 
in maintaining the balance between tissue damaging and 
protective effects of  immune responses to HCV. 

While attempting to limit viral replication, T-cells in-
advertently play a pivotal role in limiting hepatic necro-
inflammation and subsequent fibrosis[28,101-103] by sup-
pressing HCV-specific immune responses[48]. In our study, 
we found a significant inverse correlation between the 
frequency of  colonic Treg and liver pathology indicating a 
role of  colonic Treg in controlling the chronic inflamma-
tory response and limit liver damage in CHC infection. 

There is still an open question whether Treg cells are 
protective or harmful in CHC. The effective host anti-
HCV immune response may be associated with strong 
inflammatory reactions and liver damage. To minimize 
the damage to self, the activation of  the immune system 
also triggers anti-inflammatory pathways through Treg 
responses. Both inflammatory and anti-inflammatory re-
actions are normal components of  the immune response, 
which together, fight infections while preventing immu-
nopathology. 

TREATMENT OF HCV AND 
RELATIONSHIP TO IMMUNE RESPONSES
Until 2011, the standard of  care for chronic hepatitis 
C patients was combined treatment with Peginterferon 
(Peg-IFN) and ribavirin (RBV). The combination of  Peg-
IFN and RBV induced sustained virologic response (SVR) 
in 40%-50% of  genotype 1 and 80% or more in geno-
type 2 and 3 infections[104-106]. The lack of  effective regi-
mens across all genotypes and alternative therapeutics for 
patients who suffered serious side effects prompted basic 

science research and numerous clinical trials leading to 
the development of  direct-acting antiviral (DAA) agents. 
The US Food and Drug Administration approved Tela-
previr (TVR) and Boceprevir (BOC) for HCV genotype 1. 
They inhibit HCV nonstructural protein 3/4A (NS3/4A) 
serine protease, which is critical for HCV replication. 
TVR and BOC are approved for use in combination 
therapies with Peg-IFN-alpha and RBV as they improved 
SVR rates to 75% and 66% respectively for adult HCV 
genotype 1 patients with compensated liver cirrhosis[107]. 
However, these DAAs incur their own set of  severe side 
effects including anemia, rash, and hyperbilirubinemia. 
New drugs classified as second-wave protease inhibitors, 
second-generation protease inhibitors, and polymerase 
inhibitors are being developed and currently undergoing 
clinical trials[108]. The NS5B polymerase inhibitor, sofos-
buvir has been recently approved by the FDA for treat-
ment of  hepatitis C genotype 1, 2, and 3 patients[109].

Identifying patients that are likely to achieve SVR ver-
sus those that are likely to be non-responders is crucial 
for disease prognosis, providing optimal therapy, avoiding 
side effects, and reducing costs associated with Hepatitis 
C therapy. Since sequencing of  the human genome in 
2001, advancements along with decrease costs in geno-
typing technologies have led to investigation of  genomic 
markers associated with a response to Peg-IFN and RBV 
in patients with chronic hepatitis C. The rs12979860 SNP 
located on chromosome 19 upstream of  the IL-28B gene 
has been identified as a significant predictor of  SVR in 
HCV Genotype 1 chronically infected patients that un-
derwent standard therapy[110]. The same rs12979860 SNP 
has the ability to predict natural clearance of  the hepatitis 
C virus[30]. Genotype C/C at the rs12979860 SNP was 
associated with a higher likelihood of  natural clearance 
and therapy induced clearance of  hepatitis C genotype 
1, while T/T genotype was the most unfavorable[111]. 
Studies have confirmed that rs12979860 is the strongest 
predictor of  SVR and can effectively predict response 
to IFN/RBV based therapy[112]. The mechanisms by 
which the rs12979860 affects HCV pathogenesis are still 
unclear. However, it is well-known that the IL-28B gene 
codes for cytokine IL-28B also known as interferon (IFN) 
λ -3, which belongs to the type Ⅲ IFN family. IFN-λ is 
mainly produced by macrophages and DCs in response 
to viral proteins and plays an important role in antiviral 
responses to hepatitis C[30,113]. IFN λ receptors are pre-
dominantly expressed on hepatocytes, which may explain 
its ability to counteract hepatotropic viruses[114]. There-
fore, stimulation of  IFN λ receptors on hepatocytes by 
IFN-λ secreted by DCs induces ISGs[115] which have the 
ability to suppress viral replication and protein synthesis 
of  HCV[116]. Additionally, IFN-λ promotes differentia-
tion of  monocyte-derived dendritic cells (DCs) with high 
PD-L1 expression and further promoted expansion of  
Treg cells[117] locally and suppressed the inflammatory re-
sponses in the liver. Recent data by our laboratory (Hetta 
et al, 2014 submitted) as well as others[118] identified a cor-
relation between IL28B SNP rs12979860 genotype TT’
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s and Treg frequencies. The mechanism responsible for 
elevated Treg in patients with TT genotype may be related 
to the precise location of  rs12979860 in the promoter 
region of  the IL-28B gene. The promoter region plays an 
important role in gene expression, and the TT genotype 
might favor increased IL-28B expression in turn resulting 
in higher Treg frequencies. In support of  the relationship 
between IL-28B phenotypes, Treg frequency, and HCV 
pathogenesis, recent reports found elevated Treg in acute 
HCV as a predictor for viral persistence and CHC as well 
as increased levels of  IFN-λ, IL-28, and IL-29 in serum 
in chronic HCV patients[117]. 

The association between IL-28B polymorphism and 
SVR in genotype 2 and 3 infected patients has produced 
mixed results making its clinical utility less clear. For 
instance, one study found IL-28B polymorphism to be 
associated with SVR in patients infected by genotype 2/3 
HCV in whom RVR was not achieved[119]. On the other 
hand, in a study of  hepatitis C Genotype 3 infected pa-
tients, rs12979860 SNP genotype C/C did not correlate 
with SVR to PEG-IFN/ribavirin therapy[120]. The major-
ity of  studies to this point have focused on IL-28B SNPs 
in HCV Genotype 1, 2, and 3. The clinical utility of  IL-
28B testing is probably best served in HCV genotype 1 
infected-patients for prediction of  outcomes and to limit 
expenses and side effects associated with IFN-based 
therapy[110]. 
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Abstract 
Costimulatory signals are crucial for T cell activation. 
Attempts to block costimulatory pathways have been 
effective in preventing unwanted immune reactions. In 
particular, blocking the CD28/cytotoxic T lymphocyte 
antigen (CTLA)-4/B7 interaction (using CTLA-4Ig) and 
the CD40/CD40L interaction (using anti-CD40L antibod-
ies) prevents T cell mediated autoimmune diseases, 
transplant rejection and graft vs  host disease in experi-
mental models. Moreover, CTLA-4Ig is in clinical use to 
treat rheumatoid arthritis (abatacept) and to prevent 
rejection of renal transplants (belatacept). Under certain 
experimental conditions, this treatment can even result 
in tolerance. Surprisingly, the underlying mechanisms of 
immune modulation are still not completely understood. 
We here discuss the evidence that costimulation block-
ade differentially affects effector T cells (Teff) and regu-
latory T cells (Treg). The latter are required to control 
inappropriate and unwanted immune responses, and 
their activity often contributes to tolerance induction 
and maintenance. Unfortunately, our knowledge on the 
costimulatory requirements of Treg cells is very limited. 
We therefore summarize the current understanding of 

the costimulatory requirements of Treg cells, and elabo-
rate on the effect of anti-CD40L antibody and CTLA-4Ig 
treatment on Treg cell activity. In this context, we point 
out that the outcome of a treatment aiming at blocking 
the CD28/CTLA-4/B7 costimulatory interaction can vary 
with dosing, timing and underlying immunopathology. 

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Regulatory T cells; Tolerance; Cytotoxic T 
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Core tip: Costimulation blockade (e.g. , CD28/B7 and 
CD40/CD40L blockade) has been successfully used 
experimentally to induce tolerance to allo- or auto-
antigens. Several studies suggest that effector T cells 
(Teff) and regulatory T cells (Treg) have different re-
quirements regarding costimulation. While blockade 
of the CD40L receptor does not affect Treg cells and 
targets Teff cells, the effect of blocking the CD28/cy-
totoxic T lymphocyte antigen (CTLA)-4/B7 interaction 
(with CTLA-4Ig) is more difficult to predict and depends 
on the type, the strength and the stage of an immune 
process. Importantly, manipulating these costimulatory 
signals can therefore shift the Treg/Teff cell balance to-
wards dominant Treg cell activity.
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INTRODUCTION
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and the CD40/CD40L pathway, are essential for T cell 
activation. As a consequence, reagents that deliberately 
block those costimulatory signals (e.g., the CTLA-4Ig 
fusion protein or antagonistic anti-CD40L antibodies) 
can be used to prevent unwanted or inappropriate T 
cell activation. Blocking costimulation, therefore, has 
been used to treat T cell mediated autoimmune diseases, 
transplant rejection or graft vs host disease (GvHD). Al-
though anti-CD40L antibodies showed great potential in 
pre-clinical animal models and cytotoxic T lymphocyte 
antigen (CTLA)-4Ig is successfully used in clinical prac-
tice to treat rheumatoid arthritis and to prevent rejection 
of  renal transplants, the precise mechanisms underlying 
their efficacy are still not fully understood. While effector 
T cells (Teff) clearly depend on costimulation for their 
activation, the costimulatory requirements of  a suppres-
sive T cell population, the regulatory T cells (Treg), are 
not completely clear. Several studies suggest that Treg 
and Teff  cells have different requirements regarding co-
stimulation. Furthermore, it has been suggested that Treg 
cells play an important role in the process of  tolerance 
induction by costimulation blockade. In this review we 
discuss some possibilities to modulate costimulation in 
such a way that Teff  cells are blocked but Treg cells re-
main active and functional. In this context, we summarize 
the current understanding of  the costimulatory require-
ments of  Treg cells, and elaborate on the effect of  anti-
CD40L antibody and CTLA-4Ig treatment on Treg cells. 
We point out that CTLA-4Ig has a quite complex effect 
on Treg cells, which should be taken into account when 
interfering with the CD28/CTLA-4/B7 interaction.

MECHANISMS OF PERIPHERAL 
TOLERANCE
Immune tolerance refers to a state of  specific immune 
non-responsiveness of  the immune system to a particular 
antigen or a group of  antigens. Tolerance to self-antigens 
is a hallmark of  an effectively functioning immune sys-
tem and disabling tolerance to self-antigens can lead to 
autoimmune diseases. In a similar way, an inappropriate 
response to a harmless environmental antigen can result 
in allergies. To avoid such harmful reactions, the immune 
system has developed several sophisticated mechanisms 
to induce and maintain tolerance. 

During the maturation in the thymus, T cells undergo 
positive and negative selection. T cells which recognize a 
self-antigen presented by major histocompatibility com-
plex (MHC) molecules, can be eliminated (negative selec-
tion)[1]. In this process, the signal strength with which the 
T cell receptor (TCR) recognizes its antigen determines 
the fate of  the T cell. A strong signal and definite recog-
nition of  the auto-antigen leads to immediate deletion 
of  the responding cell. A weak signal often leads to igno-
rance and migration to the periphery[2]. This is reasonable 
in order to maintain a pool of  variable TCRs in the pe-
riphery. However, these cells might regain self-reactivity 
later on. Furthermore, some T cells escape thymic selec-

tion. Under these circumstances, peripheral tolerance 
induction should come into action. 

Peripheral tolerance is maintained by mechanisms 
such as anergy (which results from a lack of  sufficient 
activation signals)[3], deletion by apoptosis[4,5] and control 
by regulatory T (Treg) cells. The role of  regulatory T 
cells, as well as the importance of  costimulation for the 
induction and maintenance of  peripheral tolerance, will 
be discussed in the following section.

Costimulatory signals
Naïve T cells need two distinct signals in order to get 
fully activated[6]. The first signal is transmitted through 
the TCR, which recognizes an antigen presented by spe-
cialized antigen-presenting cells (APCs) on MHC mol-
ecules. This signal determines the specificity of  the T cell 
response. The second (or accessory) signal is provided 
by the ligation of  costimulatory receptors on the cell 
surface[7]. Without proper costimulation, T cells fail to 
become fully activated and enter a state of  hypo-respon-
siveness (anergy)[8]. Up to now, many costimulatory sig-
nals and pathways have been identified, among which the 
best characterized are the CD28/CTLA-4/B7 pathway 
and the CD40/CD40L pathway.

The CD28/CTLA-4/B7 interaction: Mice deficient in 
CD28 are unable to mount an effective immune response 
to foreign antigens, pathogens or allografts. The CD28 
receptor is a disulfide-linked homodimer, which is con-
stitutively expressed on T cells and is engaged by both 
the CD80 (B7-1) and CD86 (B7-2) molecule on activated 
APC[9]. The monomeric CD86 ligand is constitutively 
expressed in low amounts on professional APC and up-
regulated upon activation, while CD80 is expressed as 
a dimer on activated APC. The up-regulation of  CD86 
occurs rapidly after activation and reaches its maximum 
18 to 24 h after stimulation, while the up-regulation of  
CD80 is delayed and reaches a maximum after 48 to 72 
h[10,11]. Studies with knock-out (KO) mice have shown 
that CD86 is more important for initiating an immune 
response than CD80. Otherwise the functions of  the 
two B7 molecules are largely overlapping[12]. Signalling 
via CD28 is mediated through the phosphatidylinositol 
3-kinase-protein kinase B (PKB/Akt) and the growth 
factor-receptor-bound protein 2 (Grb2) pathways and 
promotes IL-2 production[13] and T cell proliferation[14] by 
decreasing the threshold for activation via the TCR[15]. In 
addition, T cell survival is strengthened by up-regulation 
of  the anti-apoptotic factor Bcl-xL[16]. CD28 engagement 
also up-regulates or induces the expression of  additional 
costimulatory receptors such as ICOS and CTLA-4[17]. 
While CD28/B7 signalling is crucial for the activation of  
naïve T cells, previously activated cells are less depend-
ent on costimulation. After priming and differentiation 
are completed, the production of  effector cytokines (e.g., 
IL-4 or IFNγ) does not require further costimulation. 
Only IL-2 production depends on continuous costimula-
tory signalling[12]. 
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Another receptor molecule, which binds to both B7 
molecules and is structurally homologous to CD28, is the 
“cytotoxic T lymphocyte antigen 4” (CTLA-4) or CD152. 
It is up-regulated on T cells upon activation with a peak 
at 24-48 h after initial priming[18]. However, its expression 
on the surface is not stable and the CTLA-4 molecule 
is continuously internalized in a clathrin dependent way, 
degraded in lysosomes and recycled to the cell surface[19]. 
CTLA-4 binds CD80 and CD86 with a 10-20 fold higher 
affinity compared to CD28[20] and consequently out-
competes CD28 mediated activation[21]. Furthermore, 
CTLA-4 has an advantage in engaging to B7 molecules 
as it binds divalently, while CD28 binds monovalently[22]. 
In contrast to CD28 signalling, the CTLA-4 pathway 
has a suppressive character, and CTLA-4 deficient mice 
develop severe lymphoproliferative disease and die 3 to 
4 wk after birth[23]. Of  note, CTLA-4 KO mice deficient 
in B7-1 and B7-2, as well as CTLA-4 KO mice with a 
defective CD28 receptor are protected from this fatal dis-
ease[24,25]. This suggests that CTLA-4 selectively regulates 
CD28 mediated activation. Binding of  CTLA-4 to its 
ligands recruits phosphatases (SHP-1, SHP-2 and PP2A), 
which inhibit TCR phosphorylation and several other 
pathways such as the PKB/Akt activation as well as the 
phosphorylation of  extracellular-signal-regulated kinases 
(ERK) and c-Jun N-terminal kinases (JNK)[26]. This re-
duces the production of  IL-2 and its receptor, inhibits T 
cell proliferation, and consequently results in termination 
of  the immune response[18,27]. 

Other members of  the B7 and CD28 superfamilies: 
Other members of  the B7 superfamily, which have been 
studied extensively, are the inducible costimulator ligand 
(ICOSL, CD275, B7h or B7-PR-1), which binds to ICOS 
(CD278) and the programmed death ligands 1 and 2 
(PD-L1 and PD-L2) which binds to programmed death 
1 (PD 1). ICOS is structurally and genetically related to 
CD28 and up-regulated in the course of  activation[28]. 
ICOSL is expressed on APCs and some non-hematopoi-
etic cells (e.g., endothelial cells). Different from CD28/B7 
signalling, ICOS/ICOSL interaction is not essential for 
T cell activation, but rather acts by fine-tuning effector T 
cell differentiation and cytokine production[29]. Further-
more, ICOS is crucial for germinal centre formation and 
class switching in B cells[30,31]. 

PD-1 is a suppressive member of  the CD28 super-
family. Different from CD28 and CTLA-4, PD-1 is not 
expressed as a dimer and its expression is not limited 
to T cells. It can be found on activated T cells, but also 
on B cells and myeloid cells, which suggests a broader 
spectrum of  regulation compared to CTLA-4[32]. Ligation 
to PD-L1 and PD-L2, which are expressed on activated 
APCs, inhibits cytokine production and leads to cell cycle 
arrest[33,34]. Furthermore, PD-1 signalling was found to be 
involved in CD8+ T cell differentiation and regulation[35].

The CD40/CD40L interaction: CD40 (TNFRSF5) is a 
type I trans-membrane protein, which clusters upon en-

gagement to its ligand CD40L (CD154, TNFSF5, gp39, 
T-BAM, or TRAP)[36]. CD40 ligation further induces the 
recruitment of  adaptor proteins (TNF-associated fac-
tors), which then in turn trigger several possible pathways 
including the canonical and non-canonical nuclear factor 
κB (NFκB) signalling pathway, the mitogen activated 
protein kinases (MAPK), the phosphoinositide 3-kinase 
(PI3K) and the phospholipase Cγ (PLCγ) pathways[37]. 
CD40 is constitutively expressed on APC and on many 
other cell types including non-hematopoietic cells (e.g., 
fibroblasts and epithelial cells)[38]. CD40L forms a sand-
wich structure composed of  a β-sheet, an α-helix loop 
and another β-sheet and is expressed as a trimeric com-
plex on activated T cells and platelets[39]. Under inflamma-
tory conditions it can also be found on natural killer (NK) 
cells, mastocytes and eosinophils[38]. Its expression on T 
cells is mainly restricted to CD4+ T helper (Th) cells, but 
there is also a small population of  CD8+ T cells and γδ 
T cells which can express CD40L[36]. Furthermore, it has 
been shown that CD40L is expressed on CD8+ T cells in 
the presence of  IL-12 and that these cells potentially rep-
resent a CD8+ T helper cell subset[40,41]. 

Upon activation, CD40L is up-regulated as early as 5 
to 15 min after stimulation and reaches a maximum after 
6 to 8 h[36]. This fast up-regulation is made possible via 
preformed CD40L (pCD40L), which is stored in lyso-
somal compartments and can be mobilised in response to 
an activation signal[42]. 

The broad expression of  CD40 suggests involvement 
in many different immune modulatory mechanisms. In 
this context, CD40L engagement to CD40 results in in-
creased survival of  APC[43], production of  cytokines[44], 
up-regulation of  B7 molecules and nitric oxide (NO) pro-
duction[45] and is critical for full maturation of  dendritic 
cells (DC)[46]. Furthermore, CD40 signalling is crucial for 
B cell activation and differentiation, antibody production, 
immunoglobulin-class switching and germinal centre 
formation[47,48]. CD40/CD40L KO mice do not only 
show hyper-IgM syndrome, but also exhibit deficiency in 
priming of  T cells[36]. Signalling via CD40/CD40L results 
in enforcement of  the CD28-B7 interaction and antigen 
presentation and is crucial for expansion and matura-
tion of  effector T (Teff) cells[38,49]. Furthermore, CD40/
CD40L mediated contact between CD4+ T helper cells 
and professional APC (DC) is important to enable DC 
to subsequently prime CD8+ cytotoxic T lymphocytes 
(CTL)[50].

Other members of  the TNF and TNFR superfami-
lies: Other members of  the TNF/TNFR superfamily 
have gained importance during the last years. Among 
those are the interactions between the glucocorticoid-
induced tumour necrosis factor related receptor (GITR) 
and its ligand GITR-L, between OX40 (CD134 or 
TNFRSF4) and OX40 ligand (OX40L, CD252 or 
TNFSF4), between 4-1BB (CD137 or TNFRSF9) 
and 4-1BB ligand (4-1BBL or TNFSF9) and CD27 
(TNFRSF7) and CD70 (TNFSF7). In general, these 
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means of  a specific surface marker. Therefore, they are 
predominantly defined by their cytokine profile. Tr1 cells 
are characterized by a high IL-10 and TGF-β production, 
low levels of  IL-2, variable levels of  IL-5 and IFN-γ and 
no IL-4[73]. Th3 cells produce mainly TGF-β and variable 
levels of  IL-10 and IL-4[75]. 

Activation and expansion of  Treg cells requires a 
TCR signal in vitro[76,77] and in vivo[78,79] and is consequently 
antigen specific. Whether or not they suppress in an 
antigen-specific way is still a matter of  debate. A key mol-
ecule in suppression by Treg cells is CTLA-4. Mice which 
display a Treg-specific deficiency in CTLA-4 develop se-
vere autoimmune diseases, and Treg cells from these mice 
show reduced suppressive capacity in vitro[80]. In contrast 
to conventional T cells, Treg cells express CTLA-4 con-
stitutively[81] and therefore have a natural advantage over 
naïve T cells in terms of  CD80/CD86 engagement. In 
addition, CTLA-4 expressed by Treg cells also has a cell-
extrinsic mechanism of  action. It has been demonstrated 
by Qureshi and coworkers that CTLA-4 engagement to 
the B7 molecules leads to trans-endocytosis and degrada-
tion of  CD80 and CD86 on the surface of  APCs[82]. This 
effect can only be mediated by CTLA-4 expressed on the 
cell surface, but not by soluble CTLA-4. As a result, the 
availability of  B7 receptors and consequently the CD28 
mediated activation of  T cells are reduced. Moreover, 
CTLA-4/B7 interaction might lead to “reverse signalling” 
in APC. In the course of  CTLA-4 engagement, APC 
start to produce indoleamine 2,3-dioxygenase (IDO), 
which catalyses the degradation of  tryptophan and thus 
creates a local inhibitory environment for T cells[83]. This 
also induces the nuclear translocation of  the transcription 
factor Foxo3[84], which inhibits the production of  IL-6 
and of  tumor necrosis factor alpha (TNFα) but increases 
the secretion of  suppressive cytokines such as IL-10[85]. 
Apart from mechanisms mediated by direct cell contact 
to APCs, Treg cells also secrete suppressive molecules 
such as IL-10[86], TGFβ[87] and IL-35[88] and molecules 
which can directly kill Teff  cells, such as granzyme B and 
perforin[89]. Membrane-bound TGFβ[90] or production of  
cyclic adenosine monophosphate (cAMP), which can be 
transferred to Teff  cells via gap junctions, can suppress 
Teff  cells via direct cell-cell contact[91]. Other suppressive 
mechanisms involve CD39 and CD72 mediated degrada-
tion of  adenosine monophosphate (AMP) and adenosine 
triphosphate (ATP) to adenosine[92] or suppression by 
Galectin-1[93]. Finally, Treg cells are thought to suppress 
Teff  cells by IL-2 deprivation and subsequent apopto-
sis[94]. IL-2 is crucial for Treg cell generation, induction 
and maintenance[95], but, in contrast to Teff  cells, Treg 
cells lack the ability to produce IL-2 and are conse-
quently dependent on an external source[96]. Since Treg 
cells constitutively express the high affinity receptor for 
IL-2 (CD25)[55], they have an advantage over Teff  cells 
in terms of  binding IL-2. In an inflammatory setting, 
however, when Teff  cells also up-regulate CD25, this ad-
vantage is lost. Therefore, it was suggested that suppres-
sion by IL-2 consumption is predominantly important 

TNF/TNFR superfamily members are up-regulated or 
induced upon activation on T cells and their ligands on 
APCs. Signalling via these pathways regulates the frequen-
cy of  effector or memory cells, provides proliferation 
and survival signals and promotes cytokine production[51]. 
The expression of  OX40L, 4-1BBL and CD70 on non-
immune cells (e.g., endothelial cells or smooth muscle 
cells) further suggests a role in tissue inflammation in 
different disease settings[52,53]. In addition, TNF/TNFR 
superfamily members are expressed on natural killer (NK) 
and natural killer T (NKT) cells and signalling increases 
their effector function[51]. 

Regulatory T cells 
A subset of  CD4+ T cells has regulatory capacity. In a 
healthy individual they constitute about 10% of  circulat-
ing CD4+ T cells. Treg cells play a key role in dampening 
of  immune responses, prevention of  autoimmune and 
allergic diseases, as well as in tolerance after transplanta-
tion[54]. They are characterized by constitutive expression 
of  the IL-2 receptor α-chain CD25, CTLA-4 and the 
forkhead transcription factor Foxp3[55,56]. The latter one 
is crucial for the suppressive function of  Treg cells, as 
ectopic expression of  Foxp3 can induce regulatory func-
tion in naïve T cells[57]. Loss of  Foxp3 results in impair-
ment of  Treg cells and in autoimmune disorders in mice 
(Scurfy)[58] and humans (IPEX-syndrome)[59]. 

Two subgroups of  Foxp3 expressing Treg cells have 
been identified: the so called thymus derived Treg cells 
(tTreg) and induced Treg cells (iTreg), which are gener-
ated in the periphery from naïve CD4+ T cells. In vitro, 
iTreg cells can be induced by antigenic stimulation in the 
presence of  IL-2 and TGF-β[60,61]. Although the situation 
in vivo is less clear, iTreg cells are thought to be generated 
under non-inflammatory conditions in the presence of  
IL-2 and TGF-β by chronic sub-optimal antigen expo-
sure[62-64], e.g., by recognition of  an antigen on immature 
DC which do not provide costimulation[65]. Furthermore, 
a role for retinoic acid (RA), which increases TGF-β 
production and favors Foxp3 polarization, has been un-
raveled[66,67]. During an acute inflammation (e.g., in aller-
gic or autoimmune diseases or during the course of  an 
infection), in the presence of  high amounts of  inflam-
matory cytokines, the generation of  Teff  cells is favored 
over Treg cell induction[68]. 

Unfortunately it is not yet possible to distinguish 
tTreg and iTreg cells since both of  them express 
CTLA-4, CD25 and Foxp3. Helios (a member of  the 
Ikaros transcription factor family) and Neuropilin-1 (Nrp 
1) have been suggested as specific markers for tTreg cells, 
but controversial findings regarding their expression on 
tTreg vs iTreg cells limit their use as reliable markers[69-72].

There are also CD4+ Treg cell subtypes induced in 
the periphery which do not express Foxp3. Among those 
are T regulatory cells 1 (Tr1), which can be induced from 
naïve CD4+ T cells in the presence of  IL-10[73] and T 
helper cells type 3 (Th3), which require TGF-β[74]. Up to 
now, it is difficult to identify those Treg cell subsets by 
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in steady-state conditions as a feed-back mechanism to 
prevent Treg cell overgrowth and not in an inflammatory 
setting[97]. 

Since none of  the above described mechanisms re-
sults in a complete absence of  regulatory activity when 
deleted, there is most likely not one core-mechanism of  
suppression. In this context, Treg-specific CTLA-4 defi-
ciency resulted in systemic autoimmune diseases[80], but 
transfer of  CTLA-4 deficient Treg cells could prevent ex-
perimental colitis in vivo[98] and IL-10 deficient Treg cells 
are able to suppress auto-immunity, but cannot prevent 
experimental colitis[86,99]. Thus, Treg cells can compensate 
for defects and adapt to environmental circumstances.

THE EFFECTS OF BLOCKING 
COSTIMULATORY SIGNALS
Since the “second” or “costimulatory” signal is of  great 
importance for the activation and successful differentia-
tion of  naive T cells into fully functional Teff  cells[6], 
blocking these pathways presents a promising approach 
to treat T cell mediated autoimmune diseases (e.g., rheu-
matoid arthritis or multiple sclerosis), transplant rejec-
tions or graft vs host disease (GvHD). Compared to 
conventional immunosuppressive drugs, costimulation 
blockade provides the advantage of  selective inhibition 
of  T cell responses and has the potential of  inducing 
long-lasting antigen-specific tolerance[100]. The most 
promising and best studied candidates for such manipula-
tions are the CD28/B7 and CD40/CD40L pathways as 
they are both critical for T cell activation.

Blocking the CD28/B7 pathway using CTLA-4Ig
Up to now, the most promising candidate to achieve 
CD28/B7 costimulation blockade is the CTLA-4Ig fu-
sion protein. It consists of  the extracellular domain of  
the CTLA-4 molecule fused to the Fc-region of  IgG. 
CTLA-4-Ig binds both B7 molecules with the same high 
binding affinity as CTLA-4. The effect of  CTLA-4Ig has 
first been demonstrated in an animal model of  islet trans-
plantation, where CTLA-4Ig treatment led to long-term 
acceptance of  xenografts[101]. Also in systems of  alloge-
neic islet or cardiac transplantation or graft vs host disease 
(GvHD), CTLA-4Ig could prolong survival and reduce 
rejection[102-104]. Furthermore, CTLA-4Ig is a potent im-
munosuppressor in animal models of  autoimmunity such 
as experimental autoimmune encephalomyelitis (EAE)[105], 
diabetes[106] and systemic lupus erythematodes (SLE)[107]. 

CTLA-4Ig has also been used effectively in clinical 
trials. Davies and co-worker showed that tolerizing bone 
marrow cells ex vivo in the presence of  CTLA-4Ig prior to 
transplantation to a MHC-matched recipient reduces the 
incidence of  acute and chronic GvHD[108]. Furthermore, 
CTLA-4Ig (abatacept) treatment in combination with cy-
closporin and methotrexate prevents acute GvHD after 
hematopoietic cell transplantation from an unrelated do-
nor[109]. Since 2005, CTLA-4Ig (abatacept) is approved by 
the FDA for the treatment of  rheumatoid arthritis (RA)[110] 

and a second-generation molecule (belatacept) with higher 
binding affinity for B7-1 and B7-2 was approved in 2011 
to prevent rejection after renal transplantation[111]. 

Blocking the CD40/CD40L pathway 
Antagonistic anti-CD40L monoclonal antibodies (mAb) 
have shown impressive effects in many animal models. 
Blocking CD40L prevents acute and chronic GvHD[112]. 
If  given at the time of  transplantation, anti-CD40L 
treatment prolongs graft survival in a model of  heart, 
islet, liver and limb transplantation[113-116]. Targeting the 
CD40L receptor proved to be efficient in animal models 
of  autoimmune diseases such as EAE, arthritis, SLE, 
colitis and arteriosclerosis[117]. However, clinical trials 
with an anti-CD40L mAb (Ruplizumab) in SLE patients 
have led to thromboembolic side-effects and had to be 
halted[118]. This effect was caused by the Fc-fragment 
of  the antibody bound to a receptor on platelets which 
also express CD40L. Nonetheless, the findings in animal 
systems are extremely promising and, consequently, it 
is attempted to find alternative ways to achieve CD40L 
blockade. mAb with an engineered, aglycosylated or 
mutated Fc-part were created[119-121]. The modifications 
alter the antibody in a way that Fc-receptor or comple-
ment mediated platelet aggregation and subsequent 
thromboembolic events are prevented. Furthermore, 
alternative blocking reagents such as small molecules or 
peptides are currently explored[122,123].

The CD40/CD40L interaction can also be inter-
rupted by targeting the CD40 receptor. A human antago-
nistic anti-CD40 antibody showed some effect in ex vivo 
studies[124,125] and proved to be safe in a Phase I clinical 
trial on lymphocytic leukaemia patients[126]. Another an-
tagonistic anti-CD40 antibody, chimeric 5D12, was tested 
successfully in an EAE model in marmoset monkeys[127]. 
Furthermore, we showed that 5D12 was well tolerated in 
a phase I clinical trial in patients with Crohn’s disease[128]. 
However, CD40 is expressed on many different cell types 
and consequently targeting this molecule might have 
broad and undesired effects. Additionally, most antibod-
ies directed against CD40 are stimulatory for APC and B 
cells by cross-linking the trimeric receptor. 

Combined blockade of the CD28/B7 and the CD40/CD40L 
pathway 
Although CTLA-4Ig and anti-CD40L antibodies show 
great potential in various disease models, the combination 
of  both is often superior. It is indeed possible that in the 
absence of  CD40L or CD28 triggering, the T cell can still 
receive sufficient activation signals from other costimula-
tory pathways[129,130]. Especially in animal models of  solid 
organ transplantation, combined blockade of  CD28/B7 
and CD40/CD40L is required for permanent tolerance 
induction in mice[131] and non-human primates[132]. Also, 
in animal models of  leukaemia[133] or autoimmune dis-
eases such as EAE[134] and SLE[135], the combination of  
CTLA-4Ig and MR1 (an anti-CD40L mAb) could more 
effectively reduce disease symptoms than both alone. 
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We made similar observations in a fully MHC mismatch 
model of  GvHD with allogeneic bone marrow transfer. 
In our study, only the combined blockade of  the CD28/
B7 pathway (using CTLA-4Ig) and the CD40/CD40L 
pathway (using MR1) prevented lethal GvHD and result-
ed in long-lasting tolerance and the induction of  stable 
mixed chimerism[136]. 

Mechanisms of suppression by CD28/CTLA-4/B7 and 
CD40/CD40L blockade
The mechanisms of  tolerance induction by costimulation 
blockade, in particular of  the CD28/CTLA-4/B7 and the 
CD40/CD40L interaction, have extensively been studied 
in allo-responses such as GvHD or transplant rejection. 
In these settings, deprivation of  necessary activation sig-
nals (CD28 and/or CD40 triggering) leads to T cell hypo-
responsiveness[8], which is followed by peripheral clonal 
deletion[136,137]. Elimination of  the hypo-responsive T cells 
is predominantly mediated by apoptosis[138-140]. In a fully 
miss-matched transplantation model, the tolerising effect 
of  combined CD28/B7 (using CTLA-4Ig) and CD40/
CD40L (using MR1) blockade can be reversed by the cal-
cineurin inhibitor cyclosporine A (CsA), which prevents 
apoptosis[138]. In contrast, rapamycin (which favours ap-
optosis) acts synergistically with costimulation blockade. 
While activation induced cell death (AICD) seems not to 
be essential, passive cells death is crucial for the induction 
of  tolerance under the cover of  CTLA-4Ig and MR1. 
Heart allografts were rejected in Bcl-xL deficient mice 
despite costimulation blockade[139], but Fas-deficiency was 
not able to break tolerance[140]. Additionally, CTLA-4Ig 
has been suggested to act via reverse signalling to APCs 
and to induce IDO production, which contributes to cre-
ating a suppressive environment[141]. 

THE ROLE OF TREG CELLS IN IMMUNE 
SUPPRESSION BY COSTIMULATION 
BLOCKADE
Although apoptosis of  Teff  cells after activation in the 
absence of  costimulatory has been demonstrated by 
many research groups, complete deletion of  responsive 
T cells takes several weeks[137] while tolerance can already 
be observed shortly after treatment[142]. In this context, it 
has been demonstrated by the group of  Waldmann that 
CD4+ cells, which have been tolerized to allo-antigens 
by CD40L blockade, are not only hypo-responsive but 
moreover display a suppressive function[143,144]. Therefore, 
it has been suggested that Treg cells, at least partially, 
mediate tolerance until Teff  cells have been eliminated. 
In line with this, it has been demonstrated that tolerance 
induction by CD40L or B7 blockade is abrogated when 
Treg cells are depleted. In a study performed by Taylor 
and co-workers, CD4+ cells were tolerized to allo-antigens 
ex vivo in the presence of  antagonistic anti-CD40L or 
anti-B7 antibodies. Transfer of  these cells to animals suf-
fering from GvHD did abrogate the disease. However, 

if  Treg cells were depleted prior to the transfer, GvHD 
was not suppressed[145]. Also, long-term acceptance of  
a skin or a heart allograft under the cover of  CD40L 
blockade could be abrogated if  recipient Treg cells were 
depleted[146,147]. However, Kurtz et al[148] showed that it 
is possible to induce mixed chimerism after allogeneic 
bone marrow transplantation under the cover of  CD40L 
blockade, but they did not find evidence for an involve-
ment of  Treg in this system. In line with this, we have 
previously shown in a model of  GvHD with allogeneic 
bone marrow transplantation that tolerance induction 
by combined CD40/CD40L and CD28/B7 blockade 
and the development of  mixed chimerism are still pos-
sible despite the absence of  donor Treg cells[136]. In both 
studies T cell hypo-responsiveness and deletion were 
the main mechanisms by which tolerance was achieved. 
The importance of  Treg cells for tolerance induction by 
costimulation blockade thus might depend on the disease 
model. The recipient Treg cells might be important in the 
setting of  a solid organ transplant, while in GvHD the 
presence of  Treg cells within the donor cell transplant 
might not be crucial for the outcome of  the disease. 

Costimulatory requirements of Treg cells
Involvement of  Treg cells in tolerance induction by co-
stimulation blockade implies that Teff  cells and Treg cells 
have different requirements regarding costimulation. Such 
different requirements could result in differential modula-
tion of  Teff  cells and Treg cells by costimulation block-
ade. Both cell types share the TCR-mediated recognition 
of  an antigen as the first signal for activation. However, 
the costimulatory requirements for Treg cells are less clear 
than those for Teff  cells (Figure 1). CD28/B7 signalling 
is crucial for thymic Treg cell generation and homeostasis 
since mice deficient in CD28 or B7 molecules have a sig-
nificantly reduced number of  Treg cells in the thymus as 
well as in the periphery[149,150]. CD40L and glucocorticoid-
induced tumour necrosis factor related receptor (GITR) 
signalling also play an important role during thymic de-
velopment of  Treg cells[151-153]. Whether CD28 and/or 
CD40L costimulation is equally important for the activa-
tion or the induction of  Treg cells in peripheral lymphoid 
organs as it is for Teff  cells, however, is still a matter of  
debate. We have shown that blocking the B7 molecules 
using anti-B7-1 and anti-B7-2 antibodies in combination 
with an antagonistic anti-CD40 antibody resulted in hu-
man T cell hypo-responsiveness in vitro. This effect was 
associated with the induction of  a T cell subset with sup-
pressive activity, which expressed high levels of  ICOS and 
produced IL-10[154]. Furthermore, we have shown that the 
beneficial effect of  combined CTLA-4Ig and MR1 treat-
ment in a mouse model of  GvHD is associated with an 
increase in the frequency of  Foxp3+ Treg cells between 
day 6 and 30 after T cell transfer[136]. Both findings argue 
for costimulation independent Treg induction and expan-
sion. We further conducted a more detailed examination 
of  the effect of  CTLA-4Ig and MR1 on murine Treg cells 
in vitro. Here, we showed that Treg cells can proliferate 
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and be activated if  CTLA-4Ig and MR1 were added to the 
cultures at a dose where Teff  cells are inhibited[155]. Also 
other laboratories, in which the blockade of  the CD28/
B7 and/or the CD40/CD40L interaction was studied, 
have observed an increase of  functional Treg cells in 
vitro[145,156]. Furthermore, a selective non-cross-linking 
CD28 antagonist induced tolerance to renal and cardiac 
allografts in non-human primates and this was associated 
with an increased frequency of  Foxp3+ Treg cells[157]. In a 
mouse model of  heart transplantation under the cover of  
an anti-CD40L mAb, Treg cell were functional and crucial 
to prevent rejection[147]. Altogether, these findings sug-
gests that Treg cells are less dependent on CD28/B7 and 
CD40/CD40L costimulation compared to Teff  cells and 
can therefore still be activated and expand in the presence 
of  CTLA-4Ig and MR1. 

However, Treg cells are probably not completely in-
dependent of  CD28/B7 and CD40/CD40L costimula-
tion. In this context, we showed that the increase in the 
Treg cell frequency in vitro observed in the presence of  
CTLA-4Ig and MR1 is dependent on the concentration 
of  the blocking agents. While a low dose of  CTLA-4Ig 
and MR1, ranging between 0.125 µg/mL and 4 µg/mL, 
resulted in a concentration dependent increase in the 
frequency of  Treg cells, a higher dose (between 8 µg/mL 
and 32 µg/mL) resulted in a concentration dependent 
decrease in the frequency of  the Treg cells (manuscript in 
preparation). Thus, at a very high dose of  costimulatory 
blocking agents, Treg cells also seem to be affected. We 
further explored this issue in a mouse model of  GvHD. 
A treatment regime using 500 µg (per mouse) of  CTLA-
4Ig (in combination with MR1) was equally effective as a 

10 times lower dose in preventing the disease. However, 
intermediate doses had no effect on survival. Again, the 
treatment with a low dose of  CTLA-4Ig, but not with 
a high dose, was followed by an increase in Treg cell 
frequency (manuscript in preparation). This observa-
tion can potentially be explained assuming two separate 
mechanisms of  action (Figure 2): treatment with a high 
dose blocks all the Teff  cells (but also the Treg cells) and 
therefore prevents the disease. At a low dose, however, 
not all the Teff  cells are blocked, but Treg cells remain 
activated and are able to suppress the remaining Teff  
cells. Intermediate doses are not effective, most likely be-
cause not all the Teff  cells are blocked while at the same 
time Treg cells are affected and therefore not able to 
suppress Teff  cells. It is possible that Treg cells need the 
same costimulatory signals as Teff  cells, but have a lower 
threshold for activation. Another possibility is that a low 
dose of  CTLA-4Ig and MR1 only partially blocks the 
Teff  cells, which produce low amounts of  IL-2. As Treg 
cells can take up IL-2 more efficiently than Teff  cells due 
to the constitutive expression of  the high affinity IL-2 re-
ceptor (CD25)[95], the low amounts of  IL-2 might be suf-
ficient to maintain Treg cells but not enough to allow for 
Teff  cell priming and activation. This issue will have to 
be examined more closely in the future. If  IL-2 and not 
costimulation is the limiting factor for Treg cell activa-
tion, expansion of  Treg cells can be facilitated by adding 
exogenous IL-2. 

Other costimulatory pathways have been suggested 
to be relevant for Treg cell activation and function. Trig-
gering GITR on Treg cells increases their proliferation 
and enforces their suppressive activity[158]. Blocking the 

CTLA-4
   Function (+)
   Activation?
   Peripheral induction? CD28:

   Thymic development/maintenance (+)
   Activation?
   peripheral induction?

CD40L:
   Thymic development/maintenance (+)
   Activation?
   Peripheral induction?

GITR:
   Thymic development/maintenance (+)
   Activation/proliferation!
   Peripheral induction?

OX40:
   Activation/proliferation!
   Peripheral induction?

TNF/TNFR family
CD28 family

ICOS:
   Function (+)
   Activation?
   Peripheral induction?

PD-1:
   Induction (+)
   Activation?
   Function?

Foxp3+ Treg

Figure 1  Costimulatory requirements of Foxp3+ Treg cells. Treg cells, similar to Teff cells, depend on T cell receptor (TCR)-mediated recognition of an antigen for 
activation (signal 1). The requirements of Treg cells regarding the second, costimulatory signal are less clear. The exact pathways and necessary signals are still a 
matter of debate. So far, it is well established that Treg cells depend on CD28 and CD40L for their thymic development. Also, glucocorticoid-induced tumour necrosis 
factor related receptor (GITR) is stabilizing Foxp3 expression during maturation in the thymus. In order to get properly activated and to proliferate, triggering of OX40 
and GITR, in concert with IL-2, was reported to be crucial. The induction of iTreg cells in the periphery is promoted by PD-1 signalling. The function of Treg cells de-
pends on cytotoxic T lymphocyte antigen (CTLA)-4 and ICOS. See text for more details and references.
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ICOS/ICOSL interactions in a model of  ovalbumin 
(OVA) induced airway inflammation[159] and EAE[30] ab-
rogated Treg activity in vitro and in vivo. An antagonistic 
anti-PD-1 antibody can prevent the induction of  Treg 
cells from naive CD4+ T cell in vitro, which suggests that 
PD-1 signalling is important in this process[160]. Defects 
in or blockade of  CTLA-4 leads to uncontrolled expan-
sion of  Treg cells, which suggests a cell-intrinsic effect 
of  CTLA-4 triggering on Treg cells and an important 
role for CTLA-4 in regulating Treg generation in the 
thymus and in the periphery[161,162]. Also, CTLA-4 regu-
lates the TCR specificity during thymic development as 
over-expression of  CTLA-4 leads to a self-skewed TCR 
repertoire whereas deficiency of  CTLA-4 prevents the 
development of  a self-skewed TCR repertoire[163]. There 
is also evidence that CTLA-4 signalling is involved in 
the induction of  Foxp3 in naïve T cells and promotes 
generation of  iTreg cells in the periphery[164]. In addition, 
CTLA-4 is a key mediator in suppression by Treg cells as 
described before. Recently, the OX40/OX40L pathway 
has come into focus with regard to Treg cell activation 
and proliferation. OX40 triggering acts in concert with 
IL-2 and leads to extensive Treg cell expansion. In the 
presence of  IL-2, these cells are stable and show potent 
suppressive activity[165].

The effect of CD40/CD40L blockade on Treg cells
A large body of  evidence including our own studies sug-
gests that Treg cells are not affected by CD40/CD40L 
blockade[120,136,143-147,155]. Although Treg cells require 
CD40L signalling during their development in the thy-
mus[152,153], only about 4%-9% of  Treg cells express 

CD40L in the periphery[166]. Up-regulation of  CD40L 
in Treg cells upon activation is delayed compared to 
Teff  cells, which express CD40L within the first 5 to 15 
min after activation[36]. This fast up-regulation is made 
possible through the storage of  preformed CD40L 
(pCD40L). Treg cells, on the other hand, are incapable 
of  storing pCD40L and consequently have to generate 
it de novo[42,166]. Altogether this suggests that Treg cells are 
indeed not dependent on CD40L signalling concerning 
their activation. Therefore, CD40L blockade provides a 
promising target to modulate the balance between Treg 
cells and Teff  cells in favour of  Treg cell activity. 

The effect of CTLA-4Ig on Treg cells
CTLA-4Ig has been proven to be very effective as an im-
munosuppressive treatment in various animal models and 
is successfully used in the clinic to treat rheumatoid ar-
thritis (abatacept) and rejection after renal transplantation 
(belatacept)[110,111]. However, recent findings have raised 
concern about the use of  CTLA-4Ig in systems where 
Treg cells are crucial for the success of  the therapy. Ri-
ella and co-workers showed that CTLA-4Ig accelerates 
transplant rejection in a MHC class Ⅱ mismatch model, 
in which tolerance induction and graft survival is crucially 
dependent on Treg cell function[167]. Furthermore, in a 
study in which rejection of  a skin transplant could be pre-
vented by expansion of  Treg cells using IL-2/anti-IL-2 
complexes, simultaneous administration of  CTLA-4Ig 
could break tolerance induction[168]. As mentioned before, 
we have observed a dose dependent effect of  CTLA-4Ig 
on Treg cells (manuscript in preparation). It is possible 
that the amount of  CTLA-4Ig applied was indeed high 
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enough to interfere with the Treg cells. Especially in a 
model where Treg cells are crucial for the outcome of  
the disease, a high dose might be less effective than a low 
dose which spares the Treg cells. 

The differential sensitivity of  Treg cells vs Teff  cells 
to CD28/CTLA-4/B7 blockade is certainly not the only 
problem that might arise from CTLA-4Ig treatment. An-
other factor that has to be considered is that CTLA-4Ig 
does not only interfere with the CD28/B7 signaling but 
also with the CTLA-4/B7 signaling (Figure 3). CTLA-4 
is expressed on activated Teff  cells and constitutively on 
Treg cells, and triggering of  membrane CTLA-4 leads to 
suppression of  the corresponding T cell[18,20]. This holds 
true for Teff  cells as well as for Treg cells[169]. Since Treg 
cells express CTLA-4 constitutively, CTLA-4Ig adminis-
tration during priming will presumably prevent CTLA-4 
mediated cell-intrinsic suppression of  Treg cells and will 
therefore enhance their activity. In addition, CTLA-4Ig 
engagement to the B7 ligands leads to reverse signalling 
to the APCs, which results in IDO production[141]. Both 
mechanisms thus result in the creation of  a suppressive 
environment. However, CTLA-4 is a also key molecule 
for Treg cell function[81]. Our above mentioned data argue 
against interference of  CTLA-4Ig with Treg cell activa-
tion, but do not exclude interference with Treg function 
or induction. In this context, blockade of  the B7 mol-
ecules with CTLA-4Ig prevents CTLA-4 mediated trans-
endocytosis and degradation of  the B7 molecules by 
Treg cells as well as “reverse signalling” via CTLA-4/B7 
signalling and IDO production. Moreover, if  CTLA-4Ig 
is given after T cell priming, Teff  cells will also have up-

regulated CTLA-4 and by blocking B7 molecules, the 
cell-intrinsic suppression of  Teff  cells might be blocked. 
This is not relevant in a setting of  transplantation, when 
it is exactly known when T cell priming occurs. However, 
for patients with autoimmune diseases such as multiple 
sclerosis (MS), the situation is different. It is not possible 
to predict disease onset or a relapse episode and therefore 
it is not known when auto-reactive T cells are primed 
and activated. In such settings it might be dangerous to 
apply CTLA-4Ig treatment. Indeed, we have found in a 
model of  experimental autoimmune encephalomyelitis 
(EAE), the mouse model for the human disease MS, 
that treatment with CTLA-4Ig after T cell priming leads 
to exacerbation of  the disease. This is most likely due 
to interference with the CTLA-4/B7 mediated suppres-
sion (manuscript in preparation). Further studies will be 
required to examine if  this exacerbation is a result of  
missing cell-intrinsic suppression of  the Teff  cells, inter-
ference with Treg cell function and de novo induction or 
both. 

CONCLUSION
Based on the above discussed studies and our own results 
we believe that it can be possible to modulate costimula-
tion in such a way that Teff  cell activation is prevented 
but Treg cells can still be activated. Especially blockade 
of  the CD40/CD40L pathway provides a promising 
target to manipulate the Teff/Treg cell balance in favor 
of  Treg cell activity. However, blockade of  the CD40/
CD40L interaction alone is not always sufficient to guar-
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antee full protection. Therefore, CD40/CD40L blockade 
must be combined with CTLA-4Ig in order to prevent 
CD28 mediated activation. Several factors have to be 
taken into account when using CTLA-4Ig as a treatment 
option. First, if  CTLA-4Ig is given before T cell priming 
(e.g., in a transplant setting), the dose of  the reagent is 
an important factor. A high dose of  CTLA-4Ig can also 
affect the Treg cells. Careful titration is required to find 
the optimal dose that blocks Teff  cells but spares the 
Treg cells (Figure 2). This might be of  great importance 
if  Treg cells are crucial for the success of  the therapy. 
Second, it has to be considered whether CTLA-4Ig is 
given before or after T cell priming. CTLA-4Ig treatment 
after T cell priming might be dangerous as it can interfere 
with CTLA-4 mediated suppression (Figure 3). This can 
affect cell-intrinsic suppression of  the Teff  cells and/or 
affect Treg cell function and induction. Third, knowing 
the pathophysiology of  the disease (especially concern-
ing involvement of  Treg cells) is crucial in order to find a 
balance between maximal suppression of  Teff  cells and 
minimal interference with Treg cells. 

It will be important to more closely study the co-
stimulatory requirements of  Treg cells and the effect of  
blocking those signals on their activity. This will help to 
improve the success of  a therapy involving costimulation 
blockade. Especially when using CTLA-4Ig, it will be 
necessary to know exactly which effect the treatment has 
in the corresponding disease setting in order to prevent 
undesired effects. Furthermore, the finding that Treg 
cells and Teff  cells respond differently to costimulation 
blockade can potentially be exploited in a context of  Treg 
cells based therapy. Treg cells can be expanded in vitro or 
perhaps even in vivo, while the outgrowth of  Teff  cells is 
prevented under the cover of  costimulation blockade. 
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Abstract
Reactive arthritis (ReA), also known as sterile postin-
fectious arthritis, belongs to the group of related ar-
thropathies known as spondyloarthritis (SpA). ReA can 
arise 1-4 wk after a gastrointestinal or genitourinary 
infection, but once arthritis develops, the microorgan-
ism is not found in the joint. The classical microbes as-
sociated with ReA development include Gram-negative 
aerobic or microaerophilic bacteria containing LPS in 
their outer membrane. The immunopathogenic mecha-
nisms involved in ReA development are still unknown. 
A hypothesis suggested that the bacteria probably 
persist outside the joint, at sites such as gut mucosa 
or lymph nodes, and bacterial antigens might then be 
transported to the joints. On the other hand, an altered 
immune response and the unbalanced production of cy-
tokines have been reported in subjects with ReA. Cur-

rently, there is increased evidence to suggest that both 
mechanisms would operate in the immunopathogenesis 
of ReA. In this review we highlight recent advances on 
the role of cytokines in the ReA. Particularly, we discuss 
the roles of some pro- and anti-inflammatory cytokines 
involved in the immunopathogenesis of ReA.
 
© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: The immunopathogenic mechanisms involved 
in reactive arthritis (ReA) development are still un-
known. However, in the last years, increased evidence 
suggests that the immune response in particular cer-
tain cytokines could be involved in the pathogenesis of 
ReA. Currently, the use of biological agents that block 
the action of certain cytokines has contributed to im-
proving the treatment of some rheumatic pathology. 
Understanding the role of cytokines in the pathogenesis 
of ReA could contribute to the development of future 
treatments. In this review, we highlight recent advanc-
es on the role of certain cytokines in the pathogenesis 
of ReA. 

Eliçabe RJ, Di Genaro MS. Immunopathogenesis of reactive ar-
thritis: Role of the cytokines. World J Immunol 2014; 4(2): 78-87  
Available from: URL: http://www.wjgnet.com/2219-2824/full/
v4/i2/78.htm  DOI: http://dx.doi.org/10.5411/wji.v4.i2.78

INTRODUCTION
Reactive arthritis (ReA), also known as sterile postinfec-
tious arthritis, belongs to the group of  related arthropa-
thies known as spondyloarthritis (SpA)[1]. This group 
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also includes undifferentiated SpA, psoriatic arthritis 
(PsA), arthritis associated with inflammatory bowel dis-
ease and ankylosing spondylitis (AS). The SpA arthropa-
thies have common several epidemiological, pathologi-
cal, clinical and radiological features. ReA, as with other 
SpA, exhibits an absence of  rheumatoid factor and has a 
genetic association with the molecule HLA-B27[1-3]. ReA 
can arise 1-4 wk after a gastrointestinal or genitourinary 
infection, but once arthritis develops, the microorganism 
is not found in the joint[2]. The ReA symptoms were rec-
ognized and studied in 1942 by Bauer and Engelmann, 
who associated these symptoms with those described 
in 1916 by the German physician Hans Reiter. At that 
time, Reiter described the clinical triad: arthritis, non-
gonococcal urethritis and conjunctivitis in a German 
soldier after an episode of  bloody diarrhea. So, Bauer 
and Engelmann coined the term Reiter’s syndrome to 
describe this new pathology[2]. However, most patients 
do not have the complete triad of  symptoms. These 
observations drove Ahvonen to propose the name of  
ReA as the term most adapted to describe the “arthritis 
that happens during or after an infection in another site 
of  the body without evidence of  microorganisms in the 
joint”[4]. Yet, this operational definition of  ReA has led 
to uncertain diagnosis in different clinical settings. Thus, 
several attempts have been made to create classification 
criteria; however, lack of  consensus has led to a failure 
to achieve any universally validated diagnostic criteria. 
Based on discussions at the 4th International Workshop 
on ReA, this term should be used only in patients with 
clinical features of  ReA and in cases where a pathogen 
known to cause ReA is implicated[5].

CLINICAL FEATURES
ReA most commonly affects young adults aged 20 to 
40 years old and is rare in children[6-8]. Both sexes are 
equally affected by ReA after a gastrointestinal infec-
tion, while ReA is more frequent in men when triggered 
by a urogenital tract infection[3]. The presence of  the 
HLA-B27 allele does not seem to be related to the onset 
of  ReA; however, HLA-B27 positive patients have more 
severe arthritis with a tendency to progress to a chronic 
stage and they also have a greater chance of  developing 
extra-articular symptoms. One hypothesis suggests that 
this molecule favors the cross-reaction between antigen 
and host, or it might be itself  a target of  the immune 
response[9].

The symptoms of  ReA typically start between 1 to 
4 wk after the gastrointestinal infection. However, the 
triggering infection could be asymptomatic, such as Chla-
mydia-induced ReA, resulting in underdiagnosis[2]. Clinical 
features of  ReA are characterized by asymmetrical oligo-
arthritis, often in large joints of  the lower extremities or 
in the upper extremities. A mild polyarticular form, par-
ticularly in the small joints, can also occur. Patients can 
have dactylitis. The typical extra-articular manifestations 

are enthesitis, tendinitis and bursitis. ReA share these clin-
ical characteristics and inflammatory back pain with other 
members of  SpA, such as AS and PsA[1]. Other extra-
articular features include eye disease, where conjunctivitis 
is most prevalent, followed by acute anterior uveitis, and 
skin changes, such as erythema nodosum, keratodermia 
blennorrhagica and circinate balanitis[3].

The clinical diagnosis is made based on the clinical 
symptoms. Evidence for infection triggering the arthrop-
athy is most convincing when microbe isolation or anti-
gen detection is successful. In this respect, fecal culture 
of  enteric pathogens associated with ReA or the finding 
of  Chlamydia trachomatis nucleic acids in urine, cervical or 
urethral swabs are secondary criteria used to confirm the 
diagnosis.

Animal models
Animal models of  ReA have complemented studies in 
human materials. However, these animal models are lim-
ited since even when they are developed after bacterial 
infection as in human ReA, in some of  them the route of  
infection was intravenous instead of  oral. Table 1 shows 
animal models of  ReA similar to the human form of  the 
disease[10-17]. We have described an experimental model 
useful for studying the pathogenesis of  Yersinia enterocoliti-
ca (Y. enterocolitica) ReA. In our model, TNFRp55 deficient 
mice develop ReA after oral infection with Y. enterocolitica 
O: 3, the most common serotype associated with human 
ReA. TNFRp55-/- mice exhibited macroscopic signs of  
severe and progressive arthritis with significantly higher 
clinical score compared with wild-type mice from d 14 
to 56 after infection[14]. Extensively, increased scores for 
inflammation and bone/cartilage degradation resulted 
when histopathological changes were analyzed in the 
joints. In these animals, we observed luminal disorga-
nization of  the synovial membrane, which was densely 
infiltrated with various types of  leucocytes, sometimes 
concomitant with follicle formation. The articular carti-
lage and bone were degraded. Proliferation of  synovial 
lining cells was also detected[14,15]. This evidence and the 
data presented in Table 1 indicate ReA development 
in animal models that resemble this disease in humans. 
Nevertheless, the convergence of  these models with hu-
man studies will contribute to understand the pathogenic 
mechanisms of  ReA.

TRIGGERING BACTERIAL AND 
PATHOPHYSIOLOGY
The classical bacteria associated with gastrointestinal ReA 
are Yersinia, Salmonella, Shigella and Campylobacter, while C. 
trachomatis is by far the most common cause of  ReA as-
sociated with genital infection[3,18]. All these pathogens are 
Gram-negative aerobic or microaerophilic bacteria con-
taining LPS in their outer membrane.

The immunopathogenic mechanisms involved in ReA 
development are still unknown. Even when bacterial 
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cultures of  synovial fluids are negative in ReA, bacterial 
antigens have been found in the joints of  patients. In 
Chlamydia-induced ReA, bacterial DNA and RNA have 
been detected in the joint, suggesting that live Chlamydia 
are present[19-21]. Positive reaction of  antibodies specific 
to Salmonella and Yersinia antigens in synovial fluid cells of  
ReA patients suggests the presence of  bacterial antigen in 
the joint[22,23]. Based on these findings, some authors have 
suggested that the bacteria probably persist outside the 
joint at sites such as gut mucosa or lymph nodes, and bac-
terial antigens might then be transported by monocytes 
to the joints[24,25]. On the other hand, an altered immune 
response and the unbalanced production of  cytokines 
have been reported in subjects with ReA[26,27]. This altered 
immune response benefits the bacterial persistence and 
disfavors the elimination of  the antigen by the host.

In this review, we highlight recent advances on the 
role of  cytokines in ReA. Particularly, we discuss the 
roles of  pro- and anti-inflammatory cytokines, especially 
interleukin (IL)-17, IL-12, IL-23, IL-6, tumor necrosis 
factor-α (TNF-α), interferon-γ (IFN-γ) as well as IL-10 
in the pathophysiology of  the ReA. Finally, we discuss 
the latest advances in the treatment of  ReA based on the 
use of  biological agents that neutralize the functions of  
certain cytokines, such as TNF-α or IL-6. 

ROLE OF THE CYTOKINES IN ReA
Conflicting data have been reported on the production 
of  cytokines in ReA patients. CD4+ T cells mediate im-
munity as a balance between different lineages of  T 
helper (Th)-1, Th2, Th3 and Th17 which secrete IFN-γ, 
IL-4, TGF-γ and IL-17, respectively, as the main cytokine 
for each profile. Some studies revealed low levels of  Th1 
cytokines in ReA, especially of  TNF-α but also of  IFN-γ 
in peripheral blood and synovium[28-34]. Since Th1 cells 
secreting IFN-γ and TNF-α have been proposed for bac-

terial clearance, defective Th1 response may contribute to 
bacterial persistence. Other data suggest that a Th2 cyto-
kine profile and Th3 response with expression of  TGF-β 
is common in ReA[32]. Temporal relationships of  these 
different Th1 and Th2 cytokines or blunting of  initial 
cytokine response might also be important in the disease 
manifestations and its maintenance. On the other hand, 
the discovery of  Th17 cells and their importance in the 
pathogenesis of  chronic inflammatory diseases suggested 
that these cells may have a pathogenic role in ReA. How-
ever, the available studies are not large enough to support 
the role of  certain cytokines in the pathogenesis of  ReA. 

NOVEL CYTOKINES IMPLICATED IN 
PATHOGENESIS OF ReA
IL-17
IL-17 is a 15-20-kDa glycoprotein produced by a novel 
subset of  Th cells, termed Th17 cells, and to a lesser 
extent by innate lymphoid cells, including T-cells, innate-
like lymphoid cells, mast cells and neutrophils[35]. Th17 
cells are critical in the pathogenesis of  the arthritis, as 
demonstrated in several animal models[36-38]. Th17 dif-
ferentiation, survival and expansion depend on a variety 
of  cytokines and transcription factors that work in con-
cert to drive the induction of  increased Th17 numbers. 
TGF-β in synergy with IL-6 has been described as the 
central factor involved in generating Th17 cells in mice. It 
has been shown in humans that TGF-β, IL-1b and IL-6, 
combined with IL-21 or IL-23, can induce Th17 differ-
entiation[39]. IL-17 binds to IL-17RA/IL-17RC, which is 
expressed by a variety of  cells, such as monocytes, lym-
phocytes, lymphoid tissue inducer cells, epithelial cells, 
synoviocytes, fibroblasts and keratinocytes[35].

Th17 cell responses and IL-17 expression provide 
protection against bacterial and fungal pathogens through 
production and induction of  inflammatory cytokines 
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Table 1  Animal models of reactive arthritis similar to the human form of the disease

Animal Bacteria Route of infection Arthritis onset/
remission

Clinical symptoms Cytokine
involved

Ref.

Lewis rats Y. enterocolitica
O:81

iv1 1 wk/6 wk Polyarticular arthritis, erythema ND Hill et al[10] 

DBA/2 and 
BDF1 mice

Y. enterocolitica O:8 
plasmid cured1

iv1 Day 31/3 wk Polyarticular arthritis ND Yong et al[11] 

SHR rats Y. enterocolitica
O:81

iv1 1-4 wk/7-25 wk Polyarticular arthritis, erythema, swelling 
and impaired movement of the joint

ND Merilahti-Palo et al[12] 

Swiss, BALB/
c and C3H/
HeJ mice

Y. enterocolitica O:3 iv1/Oral 1-3 wk/2-8 mo Monoarticular arthritis, swelling redness, 
deformations and conjunctivitis

ND de los Toyos et al[13]

C57BL/6 
TNFRp55-/- 
mice

Y. enterocolitica O:3 ig 2 wk/chronic 
until 8 wk

Polyarticular arthritis, swelling, erythema IL-17 
IFN-g

Di Genaro et al[14]

IL-6 
IL-1b

Eliçabe et al[15]

BALB/c mice S. enteritides ig 1 wk/ND Synovial inflammation TNF-a
IL-17

Noto Llana et al[16]

Noto Llana et al[17] 

1Different to the human form of the disease. ND: Not determined; iv: Intravenous infection; ig: Intragastric infection; IL: Interleukin; TNF: Tumor necrosis 
factor.
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against many pathogens associated with ReA. Thus, the 
low concentrations of  IL-12 have been linked to the bac-
terial persistence hypothesis and then to the pathogenesis 
of  ReA[28]. On the other hand, data on IL-23 concentra-
tions in synovial fluid or serum of  patients with ReA are 
limited, but high levels of  IL-17 found in synovial fluids 
and sera of  patients with ReA may reflect IL-23 activ-
ity. Moreover, abnormality of  IL-12p40 gene expression 
in humans has been reported and IL-12 deficiency has 
been detected in patients with ReA[51,52]. Yin et al[28] found 
that the balance of  anti-inflammatory cytokines (IL-10) 
and IL-12 in the synovial fluid is also important. This 
may contribute to the decreased clearance of  the bacteria 
or their components from the joint and lead to ReA[28]. 
In relation to these findings, a recent study has shown 
that monocyte-derived macrophages from subjects with 
a history of  ReA show low IL-12 and IL-23 produc-
tion[53]. Conversely, some authors have reported that IL-
12/23p40 levels in synovial fluids of  patients with ReA 
and other SpA are higher compared to synovial fluids of  
patients with osteoarthritis (OA) used as control[41,54]. 

Interestingly, we demonstrated that the p40-deficient 
mice develop acute ReA after oral infection with Y. en-
terocolitica, suggesting that IL-12 or IL-23 could exert a 
protective effect on the development of  ReA[55]. How-
ever, we have observed elevated levels of  p40 in regional 
lymph nodes to joints of  TNFRp55-/- mice with Yersinia-
induced ReA. This effect has been accompanied by high 
levels of  IFN-γ and IL-17 in affected joints[15]. These re-
sults are in accordance with the concept that the IL-12/
IL-23 pathway plays a dual role protecting from infection 
and eliciting tissue damage, and support future study to 
determine whether IL-12/23p40 could be a possible tar-
get for ReA treatment.

IL-6
IL-6 is a pleiotropic cytokine that is involved in numer-
ous biological processes. The pleiotropy and redundancy 
of  IL-6 functions have been identified by characterizing 
a unique receptor system comprising two functional pro-
teins: a receptor specific for IL-6 (IL-6R)[56] and gp130, 
the common signal transducer of  cytokines related to 
IL-6, including the IL-12 family cytokines IL-27 and 
IL-35[57,58]. In the early phase of  infectious inflammation, 
IL-6 is produced by monocytes and macrophages imme-
diately after the stimulation with distinct pathogen-asso-
ciated molecular patterns. In noninfectious inflammation, 
damage-associated molecular patterns from damaged 
or dying cells stimulate monocytes and macrophages to 
produce IL-6. The pathogenic role of  IL-6 in rheumatic 
diseases like rheumatoid arthritis (RA) has been well es-
tablished. The critical role for IL-6 in the pathogenesis 
of  RA is provided by clinical trials, in which tocilizumab, 
a humanized mAb specific for IL-6R, has been shown 
to suppress disease activity and erosive progression in 
patients with RA[59]. In ReA, elevated IL-6 concentra-
tions in the plasma and sera of  the patients has been 
reported[60,61]. Moreover, synovial fluid concentrations of  

and granulopoiesis, or by the recruitment of  neutro-
phils. However, Th17 cells producing IL-17 have been 
suggested as the central effector lineage involved in the 
pathogenicity of  ReA[40]. Thus, it has been shown that 
ReA patients have elevated levels of  IL-17 in synovial 
fluid and that this cytokine contributes to the develop-
ment of  joint inflammation[40,41]. Furthermore, high 
expression of  IL-17 was found in the synovial fluid of  
patients with SpA and an increased number of  circulating 
memory Th17 cells has been recently reported in these 
patients[42,43]. Moreover, in patients with C. trachomatis-
induced ReA, increased percentages of  IL-17-positive 
CD4+ T cells[44] and higher IL-17 concentrations were 
detected in synovial fluid[45]. 

Recent works suggest that Salmonella-induced ReA 
in mice dependent on CD4+ T cells secreting IL-17[17]. 
Interestingly, these authors observed that the expression 
of  IL-17 in the large intestine and in mesenteric lymph 
nodes (MLN) resembles that of  popliteal and inguinal 
lymph nodes (ILN)[17]. Accordingly, previous results 
from our laboratory demonstrated that IL-17 plays a ma-
jor role in Yersinia-induced ReA[15]. Furthermore, we de-
tected a strong correlation among IL-17 levels in MLNs, 
ILNs and joints from TNFRp55-/- mice with arthritis, 
supporting a link between the intestinal mucosa and the 
articular immune response. In addition, we observed 
that neutralization of  IL-17 resulted in the abrogation of  
synovitis[15]. In line with these results, other authors have 
reported recently that modulating intestinal IL-23/IL-17 
expression by consumption of  Lactobacillus casei prior to 
Salmonella infection in mice abolishes intestinal and joint 
inflammation[46]. 

These data in animal models and patients support 
the hypothesis that Th17 cells may be involved in ReA 
pathogenesis. However, there are few reports for under-
standing and elucidating the true role of  IL-17 in the 
pathogenesis of  ReA.

IL-12 and IL-23
IL-12 and IL-23 are heterodimeric cytokines that share 
subunits and have important roles in autoimmunity. These 
IL-12 family cytokines share some biological character-
istics but have functional differences. IL-12 is composed 
of  two covalently linked subunits, IL-12p35 and IL-
12p40, while IL-23 is composed of  two covalently linked 
subunits, IL-23p19, which is distantly related to IL-12p35, 
and the IL-12p40 subunit[47,48]. Furthermore, the recep-
tors of  IL-23 and IL-12 are also heterodimers that share 
the receptor 1 chain and have unique 2 chains[49]. IL-12 is 
released by antigen presenting cells such as dendritic cells 
(DCs) and monocytes/macrophages in response to bac-
terial products and immune signals. Furthermore, IL-12 
is the main stimulator of  IFN-γ production by inducing 
development of  Th1 responses[49,50]. In addition, IL-23 is 
produced by macrophages and activated DCs and plays 
a crucial role in the generation of  the Th17 cells. Since 
IL-12 has the ability to orchestrate the Th1 response, this 
cytokine plays a crucial role in the protective immunity 
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IL-6 were higher in patients with ReA[41]. Interestingly, 
we found that mice TNFRp55-deficient macrophages 
are hyperactivated to secrete common pro-inflammatory 
mediators such as NO and IL-6 following stimulation 
with Yersinia antigens. The higher concentrations of  IL-6 
production detected in stimulated TNFRp55-/- macro-
phages may be associated with our previous in vivo results 
demonstrating the increased susceptibility of  TNFRp55-/- 

mice to Yersinia-induced ReA[14]. Furthermore, higher 
concentrations of  IL-6 were detected in the joints of  
these mice which showed a severe chronic synovitis[15]. 
This data suggests that over-synthesis of  IL-6 may be re-
lated to the development of  ReA.

TNF-α
TNF-α is a cytokine prototype of  a large family of  over 
40, known as TNF superfamily, and TNF receptor (TNFR) 
proteins. TNF-α is a cytokine with pleiotropic functions 
produced by a large number of  cells, but are monocytic 
lineage cells (macrophages, astroglia, microglia, Kupffer 
cells and alveolar macrophages) major sources. Initially, 
this cytokine is produced as a pro-TNF and is expressed 
on the cell surface. Subsequently it is cleaved by the ac-
tion of  a metalloproteinase (TACE) and released into 
the extracellular medium as a soluble protein[62]. Often, 
TNF-α is not detected in high concentrations in serum or 
tissues, but increases intensively on various inflammatory 
and infectious conditions. Two receptors, TNF-R1 (TNF 
receptor type 1; CD120a; p55/60) and TNF-R2 (TNF 
receptor type 2; CD120b; p75/80) bind to membrane-
integrated TNF (memTNF) as well as soluble TNF-α 
(sTNF-α). In the vast majority of  cells, TNF-R1 appears 
to be the key mediator of  TNF-α signaling, whereas in 
the lymphoid system, TNF-R2 seems to play a major role. 
Low TNF-α secretion by blood mononuclear cells may 
be related to ReA development since TNF-α deficiency 
may interfere with eradication of  bacterial infection in 
its early stages[34,63-66]. However, other studies suggest that 
TNF-α could have a pathogenic role during the chronic 
stage of  ReA in line with the role of  this cytokine in RA. 
In this regard, some studies have revealed significant in-
crease of  TNF-α production in chronic ReA compared 
with acute ReA[66]. These data support the possibility that 
anti-TNF-α treatment in ReA during the chronic phase 
of  the disease could be beneficial. However, considering 
that TNF-α may be required for the elimination of  ReA-
associated bacteria, anti-TNF-α biologics might favor bac-
teria growth. Results obtained in our laboratory showed 
that TNFRp55 deficiency favors the development of  ReA 
after infection with Y. enterocolitica[14]. These data support 
the idea that the relative lack of  TNF-α may play a pro-
tective role in ReA at acute phase of  disease. On the other 
hand, we have demonstrated an in vivo regulatory role for 
TNFRp55 signaling in fine-tuning of  Th17 and Th1 pro-
grams during bacterial-induced ReA through modulation 
of  the common p40 subunit of  IL-23 and IL-12[15]. This 
evidence suggests that TNF-α might have a dual role in 
ReA, playing a protective role first and during the initial 

stage. However, during the chronic stage of  the disease, 
TNF-α would act as a pro-inflammatory cytokine. 

IFN-γ
IFN-γ is produced mainly by natural killer (NK) cells 
and a particular subset of  T cells, namely Th1 cells[67]. As 
previously mentioned, IL-12 is the main stimulator of  
IFN-γ production[47,50]. Thus, IL-12 and IFN-γ coordinate 
the link between pathogen recognition by innate immune 
cells and the induction of  specific immunity by mediat-
ing a positive feedback loop to amplify the Th1 response. 
The functional IFN-receptor (IFN-R) consists of  2 
ligand-binding IFNGR1 chains and 2 signal-transducing 
IFNGR2 chains[68]. Mice deficient in IFN-γ or its receptor 
are susceptible to an array of  intracellular pathogens[69-71]. 
It was thought that Th1 cells cause damage in the joints 
mainly through IFN-γ driven inflammatory mechanisms. 
However, similar to TNF-α, conflicting data have been 
reported about the role of  IFN-γ in ReA. As previously 
mentioned, some authors have reported an aberrant 
lower production of  IFN-γ in patients with ReA[28-34,52]. In 
contrast, in patients with C. trachomatis-induced ReA, the 
synovial fluid concentrations of  IFN-γ were significantly 
higher than in OA patients but no significant differences 
were found between ReA and RA patients[45]. Similar re-
sults were reported by Singh et al[41]. Other studies have 
shown that the percentages of  IFN-γ positive CD3+ cells 
were significantly higher in peripheral blood and synovial 
fluid of  chronic ReA patients[66]. These data support the 
idea that, as with TNF-α, IFN-γ may play a significant 
protective role in ReA in the acute phase of  disease. 
However, in the chronic phase, this cytokine, as in RA, 
could play a pathogenic role in ReA.

IL-10
IL-10 is an anti-inflammatory cytokine with a major role 
in preventing inflammatory and autoimmune patholo-
gies[72]. Based on a large body of  evidence, T cells are 
thought to be the main source of  IL-10 in vivo. Regulatory 
T (Treg) subsets are also a key source of  IL-10 in vivo and 
play a central role in mediating the inflammation con-
trol. However, it is now accepted that IL-10 is expressed 
by subsets of  all CD4+ T helper populations, including 
Th1, Th2 and Th17[73]. Nevertheless, this cytokine is also 
expressed by B cells and cells of  the innate immune sys-
tem (DCs, stimulated macrophages, mast cells, NK cells, 
eosinophils and neutrophils)[74]. This cytokine binds to 
IL-10 receptor (IL-10R), which consists of  two subunits. 
They are members of  the interferon receptor family and 
belong to JAK/STAT3 class of  receptors[74]. Extensive 
studies have demonstrated that IL-10 inhibits the produc-
tion of  pro-inflammatory cytokines and chemokines in 
activated monocytes/macrophages and inhibits prolifera-
tion of  CD4+ T cells[75]. However, the role of  IL-10 in 
ReA is less clear. Appel et al[32] reported that the amount 
of  IL-10 and TGF-β secreting cells was higher in ReA 
than in RA patients. This result was accompanied by a 
lower level of  TNF-α secretion in ReA patients. Interest-
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ingly, all ReA patients had a disease course of  less than 6 
mo. These authors suggest that this cytokine milieu might 
contribute to the lack of  elimination of  the triggering 
agent. Similar results were reported by Yin et al[28]. These 
authors found that synovial fluid mononuclear cells 
secreted low amounts of  IFN-γ and TNF-α, but high 
amounts of  IL-10 upon stimulation with specific bacte-
ria, which was responsible for the suppression of  IFN-γ 
and TNF-α[28]. There is also evidence indicating associa-
tion of  the IL-10 promoter region with the development 
of  ReA. This raises the possibility that high levels of  
IL-10 in the joints of  patients with ReA may be geneti-
cally determined, making these individuals more prone to 
the persistence of  arthritogenic bacteria[76].

Despite these clinical findings suggesting a pathogenic 
role of  IL-10 in human ReA, IL-10 depletion and IL-10 
treatment in other types of  arthritis models have dem-
onstrated the anti-inflammatory properties of  IL-10 in 
arthritis[77-80]. Results obtained in our laboratory showed 
that the number of  Treg cells as well as the FoxP3 mRNA 
expression and IL-10 levels were significantly decreased 
in joint regional lymph nodes of  TNFRp55-/- mice at the 
arthritis onset[81]. These results would indicate that IL-10 
plays a protective role during the acute phase of  arthritis. 
However, the clinical evidence suggests that high levels 
of  IL-10 could promote bacterial persistence, favoring 

the development of  ReA.

TREATMENT BASED ON BIOLOGICAL 
AGENTS
IL-6 antagonists
Published data on the effects of  IL-6 blockade in pa-
tients with SpA are very scarce. Thus, in 1996 a report 
describes a patient with ReA who received a murine anti-
IL-6 antibody[82] and, in 2009, tocilizumab was reported 
to be successful in another patient with ReA[83]. Only two 
injections of  tocilizumab led to complete clinical remis-
sion from symptoms caused by ReA[83]. Recently, Kwan 
et al[84] reported successful results of  tocilizumab in the 
treatment of  a case of  ReA precipitated by intravesical 
bacillus Galmette-Guèrin (BCG) which did not respond 
completely to disease modifying antirheumatic drugs 
(DMARDs). As previously mentioned, IL-6 is one of  the 
cytokines that favor the differentiation of  naïve T cells 
into Th17 cells[39]. Therefore, it is possible that the inhibi-
tory action of  tocilizumab is exerted indirectly interfering 
with the differentiation of  Th17 cells. These data indicate 
that IL-6 may play a pivotal role directly or indirectly in 
the pathogenesis of  ReA and tocilizumab treatment can 
be an option for an alternative treatment.
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IL-17
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IFN-g
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Figure 1  The role of cytokines in reactive arthritis depending on the state of disease. Arthritogenic bacteria enter through the gastrointestinal or genitourinary 
mucosa using different strategies (M cells; epithelial cells) and induce an inflammatory response. During the acute stage, interleukin (IL)-12 and IL-23 plus IL-6 pro-
mote the development of Th1 and Th17 cells, respectively. These cells are a major source of interferon (IFN)-g and IL-17, favoring the bacterial clearance. The IFN-g 
activates macrophages to kill phagocyted bacteria and secrete tumor necrosis factor (TNF)-a. IL-17 induces the migration of polymorphonuclear cells to the site of 
infection. However, this effect could be disrupted by the action of regulatory T cells producing IL-10. This regulatory event contributes to the bacterial persistence in 
the mucosa. Then, the bacteria could reach the joint transported by macrophages. In chronic stages, IL-6, TNF-a, IFN-g and IL-17 exert pro-inflammatory roles in the 
joint. These cytokines stimulate articular cells (e.g., fibroblasts, osteoblast) and immune cells to produce more cytokines and pro-inflammatory mediators that contrib-
ute to chronic articular inflammation. These effects may be enhanced by the presence of bacteria or bacterial antigens in the joint. EC: Epithelial cell; MC: M cell; MO: 
Macrophage; PMN: Polymorphonuclear cell; DC: Dendritic cell.
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TNF-antagonists
The pathogenic role during the critical stage of  the dis-
ease supports the idea that TNF-α blocking agents could 
be an effective treatment for patients with ReA who 
develop severe arthritis that does not respond to conven-
tional lines of  treatment. Thus, Kaipiainen-Seppönen et 
al[85] reported two cases of  ReA post Y. enterocolitica treat-
ed early with infliximab (an anti-TNF-α antibody). One 
patient that received this treatment within 2 mo after the 
disease onset exhibited an improvement after the third 
infusion. The second patient that was treated after one 
month of  evolution showed an immediate clinical im-
provement with almost complete regression after 15 d[85]. 
Recently, Thomas-Pohl et al[86] obtained the same result 
in one patient with ReA triggered by a gastrointestinal 
infection. Similar results were reported by Edrees in a pa-
tient with a severe case of  C. trachomatis-related ReA that 
was successfully treated with etanercept (a fusion protein 
of  TNFRp75)[87]. Thus, anti-TNF-α therapy has proved 
efficacious in some cases. However, sufficient data are 
lacking and theoretical concerns with their use remain. 
Large controlled trials are needed to evaluate the role of  
TNF-α blocking agents in ReA. 

CONCLUSION
The network of  cytokines is complex with feedback 
regulatory circuits that make it difficult to elucidate the 
role of  a particular cytokine in ReA. In addition, the clini-
cal reports of  cytokine levels in patients with ReA have 
included patients in different stages of  the disease or 
they are not large enough to support the role of  differ-
ent cytokines in ReA development. However, the current 
evidence in patients with anti-cytokine treatments sug-
gests that IL-6 and TNF-α may play central roles in ReA 
pathogenesis. Furthermore, the IL-17/23 axis should be 
considered in the picture of  ReA development, although 
further investigations are necessary for these cytokines. 
According to the presented evidence in this review, Fig-
ure 1 shows the different functions of  the cytokines in 
ReA depending on the disease phases. Moreover, animal 
models may contribute to provide insight into the im-
munopathogenic mechanisms mediated by a particular 
cytokine in ReA and to support anti-cytokine treatments.
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clinical response. This therapy has demonstrated cure 
rates above 70% and 55% in horses and humans but 
low cure rates in dogs and cats. Despite the curative 
properties of this type of immunotherapy, the antibod-
ies that are produced do not prevent host reinfection. 
Thus, development of effective adjuvants and new 
diagnostic techniques for early disease diagnosis are 
of utmost importance. The aim of this review was to 
promote pythiosis awareness and to provide an update 
about the immunotherapy and immunobiology of this 
disease.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Pythiosis is a life-threatening disease for which 
there is no gold standard chemotherapy. Immunothera-
py derived from killed mycelium from Pythium insidio-
sum is a non-invasive therapy that has demonstrated 
cure rates above 90% when associated with the surgi-
cal removal of the lesions and early disease diagnosis.

Loreto ÉS, Tondolo JSM, Zanette RA, Alves SH, Santurio JM. 
Update on pythiosis immunobiology and immunotherapy. World 
J Immunol 2014; 4(2): 88-97  Available from: URL: http://www.
wjgnet.com/2219-2824/full/v4/i2/88.htm  DOI: http://dx.doi.
org/10.5411/wji.v4.i2.88

INTRODUCTION
Pythium insidiosum (P. insidiosum, an oomycete also known 
as water mold) is a filamentous microorganism that 
shares many characteristics with fungi (i.e., it grows by 
polarized hyphal extension, engages in an absorptive 
mode of  nutrition, and it can form spores for reproduc-
tion). However, P. insidiosum is classified in a completely 
different taxonomic group, namely the Stramenopiles, 
together with diatoms and brown algae[1]. This classifica-
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Abstract
Pythiosis is an invasive, ulcerative, pyogranulomatous 
disease caused by Pythium insidiosum, a fungus-like 
oomycete that has been reported to affect humans, 
horses, dogs, and other mammals mainly in tropical 
and subtropical areas of the world. The disease is char-
acterized by an eosinophilic granulomatous and a Th2 
immune response which in turn helps to protect the 
fungus from the host cells. Pythiosis can present clini-
cally in subcutaneous, gastrointestinal, and vascular 
tissues or in a systemically disseminated form depend-
ing on the species and site of infection. Changes in iron 
metabolism and anemia are commonly observed. The 
diagnosis is accomplished through clinical and patho-
logical features, laboratory characteristics of cultures, 
serological and molecular tests. Treatment includes 
radical surgery, antimicrobial drugs, immunotherapy 
or a combination of these treatments. Immunotherapy 
is a practical and non-invasive alternative for treating 
pythiosis which is believed to promote a switch from a 
Th2 to Th1 immune response, resulting in a favorable 
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tion is the first essential information for understanding 
pythiosis in humans and other mammals; infections have 
similar clinical and histopathological characteristics as 
those of  certain mycoses. Conversely, treating pythiosis 
with antifungal drugs is generally inefficient because the 
oomycetes do not synthesize ergosterol, which is a com-
ponent of  the plasma membrane of  true fungi and the 
primary target of  those drugs[2]. Similarly, the immune re-
sponse of  animals with pythiosis presents similar features 
to those of  fungal infections, and there are peculiarities 
found only in infections caused by this oomycete[3]. The 
challenge of  treating pythiosis is characterized by the se-
verity of  the disease in mammals and by the absence of  a 
gold standard chemotherapy. Nevertheless, immunother-
apy is a practical and non-invasive alternative for treating 
pythiosis, and there is a favorable clinical response. In this 
context, the aim of  this review was to promote pythiosis 
awareness and to provide an update about the immuno-
therapy and immunobiology of  this disease.

THE EPIDEMIOLOGY, IMMUNOBIOLOGY 
AND PATHOGENESIS OF PYTHIOSIS 
The proposed life cycle of  P. insidiosum is characterized 
by the colonization of  aquatic plants and the soil of  
wetlands or swampy areas, which serve as a substrate for 
mycelial vegetative growth and the asexual formation of  
mobile biflagellate zoospores that move through the wa-
ter, find another host, encyst and form a new mycelium 
that can then start a new colonization[4-6]. 

In view of  this biological cycle, pythiosis cases are as-
sociated with human or animal contact with areas in which 
zoospore-containing water accumulates (such as wetlands 
and lakes) and environmental temperatures range between 
30 ℃ and 40 ℃. Most reports of  animal pythiosis are de-
scribed in horses that live in swampy areas or periodically 
enter ponds or lakes. These cases are distributed primarily 
between the peak months of  the rainy season in each re-
gion. A higher human disease frequency has been observed 
in thalassemic patients in Thailand, where it is common for 
people to work in flooded rice cultivation areas[7-9].

Human and animal pythiosis cases have been de-
scribed in tropical and subtropical climatic regions. Al-
though these cases are most often diagnosed in Australia, 
Asia, Latin America and United States, some cases have 
originated from temperate areas of  Japan, South Korea, 
Oceania and Africa. There are no reports of  animal-
animal or animal-human transmission[10,11].

P. insidiosum hyphae do not exert sufficient pressure 
to penetrate undamaged skin through mechanical means 
alone[12], and they must effect a decisive reduction in tis-
sue strength by proteinase secretion or by finding prior 
skin damage to invade their host. Indeed, P. insidiosum 
possesses a strong tropism for mammalian injured tis-
sue[10]. Interestingly, P. insidiosum has been recovered from 
a mosquito larva (Culex quinquefasciatus)[13] and hematoph-
agous insects prefer the same anatomical areas for blood 
feeding in which pythiosis lesions are more prevalent in 

horses[9]. Given this information, future studies should 
investigate if  insect bites could favor the penetration of  
zoospores into injured skin or if  infected mosquitoes 
could directly transmit the disease.

Once inside the host, pythiosis pathogenesis involves 
the Splendore-Hoeppli phenomenon (reaction), which 
is characterized by the presence of  radiating, star-like 
asteroid or club-shaped eosinophilic material around the 
infectious agent[14]. Thus, P. insidiosum triggers an eosino-
philic granulomatous reaction similar to other fungi, such 
as Basidiobolus spp. and Conidiobolus spp.[15], with character-
istic histopathological features depending on the species 
and the clinical form[16].

Mendoza et al[17] proposed that the antigens released 
by P. insidiosum hyphae modulate the host’s immune 
response and may be responsible by keeping an eosino-
philic granulomatous response, locking the immune 
system into a Th2 immune response through the con-
tinuous stimulatory production of  more eosinophils 
and mast cells, which in turn helps to protect the fungus 
from the host cells and leads to a worsening condition, 
and if  not treated properly, can lead to  host death. As 
a consequence, the P. insidiosum hyphae surrounded by 
degranulated eosinophils would be camouflaged inside 
the eosinophilic micro-abscesses, preventing their full 
presentation to the immune system and thereby ensuring 
their viable presence in infected tissues. These features 
and the subsequent finding of  elevated IgE levels in hu-
mans and horses with the disease strongly validated the 
concept of  a Th2 modulation by this pathogen during 
natural infection[3,17]. High Th2 interleukin levels [inter-
leukin (IL)-4, IL-5 and IL-10] have also been detected in 
human patients with pythiosis, confirming a Th2 immune 
response[18,19].

The eosinophil degranulation in equids and camels 
with pythiosis is remarkable, forming around the hyphae 
cores of  necrotic yellow-gray and firm materials called 
kunkers, which are easily shed from lesions[4,15,20,21]. The 
kunkers range from 2 to 10 mm in diameter, have an ir-
regular shape and sandy aspect, may be branched and 
invade the granulation tissue within the sinus formed 
along its trajectory. This pronounced degranulation is 
also associated with extensive tissue damage and with the 
tumor-like appearance of  lesions that can reach over 50 
cm in diameter[22]. Horses are the mammals that are most 
affected by pythiosis, with no predisposition according 
to their age, race or sex. However, although young ani-
mals are also susceptible, the disease is rarely observed in 
animals under one year of  age, and the bodily lesions are 
predominant in dark pigmented areas[9].

The lesions are subcutaneous and present primarily in 
the distal extremities, the ventral portion of  the thoraco-
abdominal wall and face, which represent anatomical 
structures that remain in contact with contaminated 
water containing P. insidiosum zoospores[7,23,24]. The kunk-
ers are considered to be pathognomonic of  pythiosis in 
equids, and they have also been described in camels with 
vulvar pythiosis[21] and in a case of  equine conidiobolo-
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mycosis[25]. The disease was also described in cattle[26-29], 
cats[27,30], dogs[16,17,27,31-39], sheep[40,41] and occasionally in 
animals kept in captivity in zoos[42,43] and birds[44].

P. insidiosum can cause superficial infections in humans, 
namely keratitis with corneal involvement[45-47]; cutaneous 
and subcutaneous infections[48]; orbital pythiosis and bone 
involvement[49,50]; and systemic infections, namely arteritis 
of  the lower limbs and/or dissemination[8,19,51]. Although 
pythiosis can affect apparently healthy individuals[48,50,51], 
most cases are reported in patients with thalassemia and 
other hematological diseases[8]. The same authors have 
argued that iron overload, which is a marked characteris-
tic of  patients with thalassemia, could increase host sus-
ceptibility to pythiosis by promoting the infectivity of  the 
pathogen or by impairing host immunity.

In fact, both iron overload and deficiency can weaken 
the immune system[52-54]. Additionally, many microorgan-
isms are known to be avid for iron during infection[53,55] 
and changes in iron metabolism may increase host sus-
ceptibility to infection by P. insidiosum. Krajaejun et al[56] 
described that P. insidiosum expresses a gene encoding a 
ferrochelatase and Krajaejun et al[57] reported, through 
the transcriptome analysis of  this species, an extensive 
repertoire of  proteins that may be involved as virulence 
factors during infection. Although the role of  iron in py-
thiosis has not been fully explained, the disease is more 
frequently found in human patients with thalassemia 
and with other hemolytic anemias[18,19,58]. Anemia as a 
consequence of  the disease has already been described 
in horses[59-65], dogs[33,34,37,39,66], cats[39,67], camels[21,68] and 
in a jaguar[42] and Bengal tiger[69]. Santos et al[9] also argue 
that the iron deficiency is common in lactating foals (< 
1-year-old and, which are less susceptible to pythiosis) 
because of  the low iron levels in the milk. In contrast, 
iron deficiency is uncommon in adult horses, and they 
may have increased levels of  circulating iron, especially in 
the Brazilian Pantanal, which contains high levels of  this 
mineral in the soil, plants and water[70], and where it is ob-
served a high incidence of  pythiosis.

Loreto et al[71] reported an increase in the unsaturated 
iron binding capacity (UIBC) in rabbits experimentally 
infected with P. insidiosum, suggesting that there was an in-
crease in the transferrin concentration and/or an increase 
in the number of  transferrin iron receptors, which is com-
patible with a physiological decrease in the iron availabil-
ity. Similar results were observed by Zanette et al[72], who 
noted that rabbits experimentally infected with pythiosis 
presented decreased serum iron levels, increased transfer-
rin levels with low saturations (increased UIBC) and mark-
edly decreased levels of  stainable iron in the hepatocytes, 
which suggests an affinity for iron by P. insidiosum. 

DIAGNOSIS AND HUMORAL RESPONSE
A classical pythiosis diagnosis is accomplished through 
clinical and pathological features, in addition to cultural, 
morphological and reproductive characteristics in vitro. A 
differential diagnosis includes habronemiasis, neoplasms, 

exuberant granulation tissue, and fungal or bacterial 
granulomas[73,74]. Microscopic evaluations using 10% 
KOH (direct examination) can reveal P. insidiosum hyaline 
hyphae and eventually septate-morphology, depending on 
the clinical material evaluated. This material can easily be 
confused with filamentous fungi, particularly those of  the 
orders Entomoftorales and Mucorales[11]. A culture from 
kunkers or biopsies can usually be performed on V8 agar, 
corn meal agar and Sabouraud dextrose agar.  

Hyphal growth can be observed after 24 h of  incuba-
tion at 37 ℃ when submerged in culture medium, and it 
exhibits a hyaline or white color[75]. Because P. insidiosum 
does not produce reproductive structures in traditional 
culture media, the induction of  zoosporogenesis (asexual 
zoospore formation) can be obtained by cultivating P. in-
sidiosum in sterile blades of  grass that are then transferred 
to a mineral solution[76]. However, the correct identifica-
tion of  this species should be confirmed by molecular 
methods[77-81]. 

The production of  anti-P. insidiosum antibodies was 
one of  the first immunological features described for 
pythiosis, and these antibodies were easily detected by 
immunodiffusion and complement fixation tests with an-
tigens that were extracted from the pathogen[82,83]. Studies 
then confirmed that humans and animals suffering from 
pythiosis exhibited a humoral immune response upon 
host-pathogen interaction[3,36,77,84-86], but this response was 
not sufficient to clear the infection[19,50,87,88]. However, the 
serological tests developed for detecting antibodies, such 
as agar gel immunodiffusion, enzyme-linked immunosor-
bent assay (ELISA), Western blot, latex agglutination and 
immunochromatographic tests[77-80,89-93], are highly useful 
for the early diagnosis of  pythiosis. In equine pythiosis 
cases in which the animal is far from reference laborato-
ries, sending serum for ELISA and collecting kunkers and 
tissues for microbiological culture and histopathological 
analysis are among the primary forms of  diagnosis. An 
early pythiosis diagnosis can also be performed through 
immunohistochemical[16,94] and molecular methods[80,95].

TREATMENT
Antimicrobial and surgical treatment
Because primary antifungal drugs act directly or indirectly 
on ergosterol and Pythium spp. are unable to synthesize 
any sterols, it is understandable that pythiosis cases do 
not respond satisfactorily to antifungal treatments. How-
ever, contradictory results have been reported in the use 
of  antifungal agents to treat pythiosis[8,10,49,96].

P. insidiosum isolates have varying in vitro susceptibility 
to antifungal compounds[97,98]. Reviews of  antifungal drug 
associations show that in vitro synergism occurs in AmB 
+ terbinafine[99], terbinafine + azole antifungals and terbi-
nafine + caspofungin associations[100]. Additionally, some 
antibacterial drugs that act as protein synthesis inhibitors 
(macrolides, tetracyclines and glycylcycline) have been 
shown to inhibit the in vitro growth of  P. insidiosum[101,102]; 
nonetheless, experimental in vivo tests have not been con-
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the aim of  increasing the effectiveness and safety of  im-
munotherapy.

Mendoza et al[104] tested two immunotherapies by us-
ing the cell mass or a concentrated soluble antigen as an 
antigen, and they observed efficacies of  60% and 70%, 
respectively, when treating 71 horses. Mendoza et al[17] 
reported that immunotherapy derived from the soluble 
antigen and sonicated hyphae of  P. insidiosum cured 72% 
of  the horses (n = 18) with pythiosis.

Santurio et al[106] compared the immunotherapy ob-
tained from sonication, maceration (or liquidification) or 
the combination of  these two techniques in experimental 
pythiosis cases in rabbits and observed that the macer-
ated immunotherapy had a higher efficiency, with a re-
duction of  71.8% in the lesion sizes and the clinical cure 
of  two rabbits (n = 5). This macerated immunotherapy 
was lyophilized, and it was valid for more than one year 
without refrigeration[106]. This treatment exhibited a cure 
rate of  50% to 83% (n = 19)[107], or 75% (n = 8)[7] and 
90% when combined with surgical excision (n = 11)[24] in 
horses in the Brazilian Pantanal. The best results are typi-
cally observed when the disease is in its early stages. 

Despite the good immunotherapy performance in 
equines, immunotherapy in cats and dogs has been disap-
pointing[17,27,31]. One explanation for this failure might be 
that most dogs and cats with pythiosis are diagnosed sev-
eral months after the initial onset of  infection, resulting 
in animals with weakened immune systems that respond 
poorly to immunotherapy[3]. However, the healing of  a 
dog was demonstrated by the combination of  immuno-
therapy and antifungal therapy[108].

The immunotherapy treatment period (no. of  doses) 
is related to the size, location, time of  lesion develop-
ment, and individual patient response. Santos et al[24] 
reported that a horse with 90 d of  disease evolution 
required five months of  treatment (eight doses) for com-
plete lesion healing, and they noted that the slowness in 
the immunotherapy response cannot be interpreted as re-
fractory and in turn end in the premature withdrawal of  
treatment. Conversely, only two to three doses promoted 
the effective healing of  four horses bearing lesions with 
seven and 45 d of  development.

Field tests with macerated immunotherapy have dem-
onstrated that the efficacy of  this treatment is directly 
associated with early diagnosis. The borderline between a 
clinical cure and an unsatisfactory response or even non-
responsive cases seems to be 60 d from the appearance 
of  lesions in horses[3]. The treatment consists of  subcu-
taneous applications at 14-d intervals until the complete 
healing of  the granulomatous ulcerative tissue. A mild re-
action at the injection site is often observed, and in most 
cases, it subsides in a few weeks. The number of  doses 
is variable, and some animals respond better to weekly 
applications. In fact, the only disadvantage of  this treat-
ment is the production of  protective IgG classes, which 
impairs serodiagnostic tests such as ELISA and immu-
nochromatography. In this context, blood collection for 
serological diagnosis of  pythiosis should be performed 

ducted to demonstrate the clinical effectiveness of  these 
antibiotics. 

Successes and failures of  pythiosis treatment cases 
have been reported with combinations of  antifungal 
therapies. The surgical removal of  the lesion, the am-
putation of  the affected limb or the enucleation of  the 
affected eye represents the last resort in human pythiosis 
treatment. However, recurrence rates of  40% have been 
observed, which illustrates the difficulty of  controlling 
this disease[11]. The implementation of  surgical treatment 
with antifungal drugs or potassium iodide was described 
in cases of  therapeutic healing[73].

Surgically removing all affected tissue is the traditional 
and most commonly used method for equine pythiosis 
treatment. The surgery yields good results for small and 
superficial lesions. However, removing the lesion with a 
safety margin to avoid recurrences is often hampered by 
the anatomical regions that are typically involved (dis-
tal extremities and the ventral portion of  the thoraco-
abdominal wall)[73].

Immunotherapy
Although the antigens used in vaccine preparation (usually 
from the infectious agent itself) are intended to trigger a 
protective response in the host immune system (antibody 
production), the aim of  immunotherapy (antibodies or 
antigens from the infectious agent) is the objective modi-
fication of  the host immune response to mount an ef-
fective response against a disease that is already present. 
Despite the fact that a protective vaccine against pythiosis 
does not currently exist, the immunotherapy developed 
from protein extracts of  P. insidiosum cultures is a non-
invasive alternative for treating this disease in humans 
and animals. 

Immunotherapy was discovered by serendipity when 
investigators were working on a skin test for pythiosis 
in horses, and they found that almost half  the animals 
were cured upon inoculation with P. insidiosum immuno-
gen[88,103,104]. The first investigator to use a culture-derived 
antigen for a skin test was Witkamp[83], but he did not 
report cure rates in his experiments. Miller[103] was the 
first researcher to report the use of  P. insidiosum antigens 
(sonicated hyphae) with therapeutic potential when in-
jected into horses (n = 30), resulting in 53% healing in 
the animals with pythiosis (Table 1). During the following 
year, the same author observed an immunotherapeutic 
efficiency ratio of  75% when associated with surgical 
removal[105]. Subsequent studies showed that lesions pre-
senting with more than two months of  progress in cases 
of  chronic pythiosis had cure rates of  approximately 
20%-40% with immunotherapy, and cure rates of  100% 
were obtained when the lesions had less than 20 d of  
evolution[17,88,104].

In addition to the lesion evolution time, the manner 
by which the P. insidiosum mycelium is broken to obtain 
the antigens is also associated with immunotherapy ef-
ficacy. In this context, modifications to the original tech-
nique as described by Miller[103] have been developed with 
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before the application of  immunotherapy, thus prevent-
ing false-positive results.

Because of  the higher incidence of  pythiosis in hors-
es, most data on the efficacy of  immunotherapy are de-
scribed in this animal species[7,9,17,23,24,60,64,88,103,104,107,109-115]. 
However, there are also descriptions of  its use in 
dogs[17,31,32,35,38,108], camels[21,68] and sheep[41] (Table 1). Hu-
man immunotherapy was described for both successful 
and failed treatments in association with surgical proce-

dures and the use of  various antimicrobials[18,19,95,116-122] 
(Table 2). These studies suggest that the injection of  P. 
insidiosum immunogens in the form of  immunotherapy 
make antigens available to the host immune system that 
are not produced during active infection, stimulating 
a healing response and the formation of  immune re-
sponses with the presence of  mononuclear cells and the 
disappearance of  the eosinophilic reaction around the 
hyphae.

Table 1  Review of animal pythiosis cases reported in the literature when treated with immunotherapy

Species/n Lesions Adjunctive therapy Immunotherapy type3, doses Outcome Ref.

Horses
   40 Various4 No or surgery UF, 31 doses at 7-d intervals C (53%), I (33%) [103]
   5 Limbs ATM, surgery UF, 3 doses at 7-d intervals C (20%), 60(E), 20 (D) [60]
   5 Various4 No SA, 2 doses at 15-d intervals C (60%) [88]
   1 Limb, bones No SA, 2 doses at 7-d intervals E [109]
   71 Various4 Nr FH or SA, 1 or 2 doses at 7-d intervals C (66%) [104]
   1 Limb, bones Surgery, ATM Nr, 3 doses postsurgical D [110]
   2 Abdomen Surgery, ATM SH, 3 doses at 7-d intervals C (50%), E (50%) [111]
   19 Various4 No LMH, 3 to 9 doses at 14-d intervals C (50%-83%) [107]
   18 Various4 Surgery, ATM SA + SH, 21 doses at 15-d intervals C (72%) [17]
   1 Limbs, sub-maxillary Surgery Nr E [23]
   1 Limb ATM LMH, 7 doses at 14-d intervals D [112]
   1 Hind pastern, fetlock ATB SA, 3 doses at 1, 7 and 21 d E [113]
   1 Face Surgery, ATM LMH, 5 doses at 14-d intervals E [114]
   1 Face ATM LMH, 5 doses at 14-d intervals C [64]
   12 Limb, abdomen No LMH, 4-5 doses at 14-d intervals C [115]
   11 Limbs, abdomen No or surgery LMH, 2-5 doses at 14-d intervals C (70%-90%) [24]
   8 Limbs, abdomen No or surgery LMH, Nr C (75%) [7]
   47 Various4 No or surgery LMH, Nr C (79%-84%) [9]
Dogs
   1 Cutaneous AMB, surgery UF, 1 dose C [38]
   6 Cutaneous, intestinal ATM, surgery SA + SH, 21 doses at 15-d intervals C (33%) [17]
   2 Cutaneous Itraconazole SA, 1 or 2 doses at 7-d intervals E [31]
   1 Cutaneous No SA, 2 doses at 14-d intervals C [35]
   1 Gastrointestinal ATF, surgery Nr, 3 doses at 1, 7 and 21 d C [32]
   1 Gastrointestinal ATF SA, 6 doses at 15-d intervals C [108]
Camels
   1 Face, stomach Surgery, ATM SA + SH, 21 doses at 14-d intervals D [68]
   2 Vulvar Surgery, ATM SA, 3 doses at 1, 10, 17 d C (50%) [21]
Sheep
   6 Oronasal No LMH, 1-5 doses at 14-d intervals C (16.7%) [41]

1At least; 2Same animal, cured twice with immunotherapy with reinfection within an interval of two years; 3Manufacturing process for immunotherapy; 
4Not reported individually (subcutaneous). Nr: Not reported; AMB: Amphotericin B; UF: Ultrasonication of hyphae; SA: Soluble antigens; SH: Sonicated 
hyphae; FH: Fragmented hyphae; LMH: Lyophilized macerated hyphae; C: Cured; I: Clinically improved; D: Died; E: Euthanized; ATM: Antimicrobials; 
ATB: Antibacterials; ATF: Antifungals.

Table 2  Review of human pythiosis cases reported in the literature when treated with immunotherapy

n Lesions Adjunctive therapy Immunotherapy type2, doses Outcome Ref.

1 Vascular ATM, surgery SA, 2 doses at 14-d intervals C [19]
8 Vascular Surgery/amputation, ATF SA, 21 doses at 14-d intervals C (50%) [18]
1 Vascular Above-knee amputation SA, Nr C [116]
1 Vascular ATM, limb amputation SA, Nr D [117]
1 Ocular ATM, enucleation Nr D [118]
1 Vascular Above-knee amputation Nr C [119]
1 Vascular ATM, above-knee amputations Nr C [120]
1 Vascular ATM, above-the-knee-amputation Nr, 4 doses at 7-d intervals C [95]
1 Vascular/disseminated ATM SA, 2 doses at 7-d intervals D [121]
3 Ocular ATM, surgery Nr, 3 doses C (66%) [122]

1At least; 2Manufacturing process for immunotherapy. Nr: Not reported; SA: Soluble antigens; C: Cured; D: Died; ATM: Antimicrobials; ATF: Antifungals.
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The proposed mechanism for immunotherapy suc-
cess is based on a change in the type of  cellular response. 
The immune response observed during pythiosis involves 
eosinophilic inflammation and the expression of  T helper 
lymphocyte type 2 (Th2) with the release of  interleukins 4 
and 5 and the mobilization of  eosinophils and mast cells. 
However, the expression of  T helper lymphocyte type 1 
(Th1) occurs after the immunotherapeutic treatment with 
the release of  interleukin 2 and INF-γ and the mobiliza-
tion of  T lymphocytes and macrophages, which destroy 
the P. insidiosum cells[3]. This approach was observed for 
the immune response to human pythiosis when interleu-
kin 4 and 5 production was detected in association with 
high IgE titers; a large amount of  inflammatory cells (eo-
sinophils and mast cells) was identified, which indicated a 
Th2 response during the infection. After immunotherapy, 
the patients presented high blood levels of  interleukin 2 
and INF-γ with a mononuclear immune response, which 
is typical of  a Th1 response[18,19]. Additionally, an increase 
in the enzyme activity of  ecto-adenosine deaminase (E-
ADA) was observed in a rabbit model of  experimental 
pythiosis, which is also associated with the switch from a 
Th2 to a Th1 response[123]. 

Despite the curative properties of  this type of  im-
munotherapy, the antibodies that are produced do not 
prevent host reinfection[2,115]. Santos et al[115] described a 
case of  reinfection that occurred two years after the end 
of  a successful immunotherapy treatment against pythio-
sis. Reinfection occurred at a different anatomical site 
than the initial infection (abdomen versus left pelvic limb), 
and although the new lesion was larger (60 cm perilesional 
edema and ulcerated lesions with approximately 20 cm in 
diameter), a cure was achieved with four immunotherapy 
doses (versus the five doses needed in the primary treat-
ment). It is important to note that the levels of  antibody’s 
anti-P. insidiosum are associated with the response to treat-
ment. Antibody titers are stable or increase in cases of  
unsuccessful treatment or when there is a persistent or 
recurrent infection. In cases of  healing, substantial reduc-
tions of  antibody’s titers are seen during the subsequent 
months after the resolution of  the infection[35].

Given the above information, we can conclude that 
effective immunotherapy treatment can be obtained in as-
sociation with a rapid and accurate diagnosis, and it may 
or may not be associated with surgical excision. 

CONCLUSION
In summary, although the current immunotherapies used 
for treating pythiosis make use of  crude P. insidiosum an-
tigens, some studies have described the identification of  
immunodominant antigens[124,125], and the best aspects of  
these immunotherapeutic elements could lead to a new 
vaccination strategy that is more effective and protective. 
A recent description of  the P. insidiosum transcriptome[57] 
uncovered many putative virulence proteins, and it pro-
vided a set of  candidate targets for the development 
of  better pythiosis diagnosis and treatment modalities. 

Because the production of  IgG by stimulated B cells is 
known to protect the host for short periods of  time[2,115], 
the development of  effective adjuvants and new diagnos-
tic techniques for early disease diagnosis are of  utmost 
importance, primarily for animal and human use in en-
demic areas.  
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Abstract
Cancer vaccines to date have not broadly achieved a 
significant impact on the overall survival of patients. 
The negative effect on the immune system of the tu-
mor itself and conventional anti-tumor treatments such 
as chemotherapy is, undoubtedly, a key reason for 
these disappointing results. Myeloid-derived suppres-
sor cells (MDSCs) are considered a central node of the 
immunosuppressive network associated with tumors. 
These cells inhibit the effector function of natural 
killer and CD8+ T cells, expand regulatory T cells and 
can differentiate into tumor-associated macrophages 
within the tumor microenvironment. Thus, overcoming 
the suppressive effects of MDSCs is likely to be criti-
cal for cancer immunotherapy to generate effective 
anti-tumor immune responses. However, the capacity 
of cancer vaccines and particularly their adjuvants to 
overcome this inhibitory population has not been well 
characterized. Very small size proteoliposomes (VSSP) 
is a nanoparticulated adjuvant specifically designed to 
be formulated with vaccines used in the treatment of 
immunocompromised patients. This adjuvant contains 
immunostimulatory bacterial signals together with GM3 

ganglioside. VSSP promotes dendritic cell maturation, 
antigen cross-presentation to CD8+ T cells, Th1 polar-
ization, and enhances CD8+ T cell response in tumor-
free mice. Currently, four cancer vaccines using VSSP 
as the adjuvant are in Phase Ⅰ and Ⅱ clinical trials. 
In this review, we summarize our work characterizing 
the unique ability of VSSP to stimulate antigen-specific 
CD8+ T cell responses in two immunocompromised sce-
narios; in tumor-bearing mice and during chemother-
apy-induced leukopenia. Particular emphasis has been 
placed on the interaction of these nanoparticles with 
MDSCs, as well as comparison with other cancer vac-
cine adjuvants currently in preclinical or clinical studies.
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Core tip: Very small size proteoliposomes (VSSP) is a 
nanoparticulated adjuvant being used in the formula-
tion of several cancer vaccines that are currently in 
clinical trials. In this review we summarize the unique 
ability of VSSP to stimulate antigen-specific CD8+ T 
cell responses in tumor-bearing mice and in mice with 
chemotherapy-induced leukopenia, both immunosup-
pressive scenarios frequently found in cancer patients. 
As a possible mechanism of this efficacy, we have fo-
cused on the modulation of myeloid-derived suppressor 
cells (MDSCs) by these nanoparticles, in the context of 
the current knowledge about the interaction of cancer 
vaccine adjuvants with MDSCs.
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INTRODUCTION
The central importance and complexity of  the interac-
tions between tumors and the immune system has only 
recently been recognized, with rapidly expanding inves-
tigations in the last decade. Tumors are not only shaped 
by the immune system[1,2] but actively induce impairment 
of  antigen-presenting cells (APCs) as well as effector T 
lymphocytes[3,4], contributing significantly to both tumor 
progression and metastasis. One of  the key cellular medi-
ators of  tumor-induced immunosuppression are myeloid-
derived suppressor cells (MDSCs), which not only are the 
manifestation of  the myeloid differentiation block that 
causes loss of  mature APCs, but also actively and directly 
inhibit the lytic activity of  both CD8+ T cells[5,6] and NK 
cells[7].

MDSCs are currently thought of  as a heterogeneous 
population of  immature myeloid cells with suppressive 
activity. In mice these cells are routinely identified by 
the co-expression of  CD11b and Gr1 markers. More 
recently, two subpopulations of  MDSCs have been 
identified with different phenotypes and mechanisms 
of  suppression: monocytic (Mo-MDSCs) and granulo-
cytic (G-MDSCs)[8-11]. In tumor-bearing mice, as well as 
in cancer patients, the G-MDSCs constitute 70%-80% 
of  overall MDSCs, whereas Mo-MDSCs represent only 
20%-30%[11-14]. Mo-MDSCs (CD11b+Ly6ChiLy6G-) are 
highly immunosuppressive and exert their suppression 
via antigen-independent mechanisms[15-18]. In compari-
son, G-MDSCs (CD11b+Ly6CloLy6G+) are moderately 
immunosuppressive, release reactive oxygen species 
(ROS) and require antigen-specific interaction with T 
cells to induce tolerance[9,11,19,20]. Several mechanisms 
of  MDSC-mediated suppression have been described 
and are extensively detailed in other reviews[3,21]. Among 
these, the depletion of  L-arginine, production of  nitric 
oxide (NO) and generation of  ROS/reactive nitrogen 
species have been linked to the overexpression of  argi-
nase 1 (ARG1), inducible nitric oxide synthase (NOS2) 
and NADPH oxidase[3,13,22]. MDSCs are also able to ex-
pand regulatory T cells (Tregs) populations[23,24] and can 
differentiate into tumor-associated macrophages within 
the tumor microenvironment[25,26]-both regulatory popu-
lations that play an important role in tumor-induced im-
munosuppression. Recent findings suggest that MDSCs 
can also facilitate tumor-progression and metastasis by 
increasing angiogenesis[27,28], via secretion of  matrix me-
tallopeptidases[29,30] and by aiding in the formation of  the 
metastatic niche[27,31].

Given the pro-tumor importance of  MDSCs, many 
efforts have been undertaken to find drugs capable of  
reducing the number of  circulating MDSCs, abrogate 
MDSCs suppressive function or differentiate these cells 
into mature APCs. For instance, it has been demonstrated 
that 25-hydroxy vitamin D3 and all-trans retinoic acid 
reduce the frequency of  MDSCs by inducing their dif-
ferentiation towards HLA-DR+ cells and dendritic cells 
(DCs), respectively, in patients with advance head and 
neck squamous cell carcinoma and metastatic renal cell 

carcinoma (RCC)[32-34]. Sunitinib, a pan-receptor tyrosine 
kinase inhibitor, and chemotherapeutic agents (taxanes, 
gemcitabine and 5-fluorouracil) also decrease circulating 
MDSCs in patients with RCC, melanoma, pancreatic and 
esophagogastric cancer[35,36]. Finally, the phosphodiester-
ase-5 inhibitor sildenafil diminishes the suppressive func-
tion of  human MDSCs[37].

Although the pharmacological modulation of  MDSCs 
represents a potentially important strategy for cancer treat-
ment, none of  these drugs detailed above have thus far 
improved the clinical outcome in cancer patients. These 
data suggest that inhibiting MDSCs alone (unlike the 
T cell checkpoint inhibitors) is not sufficient to achieve 
an effective anti-tumor response, and that combination 
with strategies to specifically activate immune responses 
against the cancer are needed. However, most cancer 
vaccines have not shown significant objective responses 
in clinical trials. But, the unimpressive clinical impact of  
active immunotherapy in cancer patients may be in turn 
tied to the immunosuppressive environment generated 
by tumors[3,4,21] as well as the aggressive chemotherapeutic 
treatments used in patients, which frequently induce leu-
kopenia[38-40]. Thus, the combination of  cancer vaccines 
with agents interfering with MDSCs number/function 
may be an effective approach to generate fully functional 
tumor-specific immune effectors. Even more desirable 
would be to find agents that are capable of  simultane-
ously activating tumor-specific effector cells, inhibiting 
the suppressive function of  MDSCs, and diminishing 
leukopenic period after chemotherapy. As detailed below, 
these are all properties of  the VSSP adjuvant.

Adjuvants are critical but largely unappreciated com-
ponents of  vaccine formulations, necessary to potentiate 
the immune response specific for the nominal antigen. 
This is particularly important in cancer, where the vaccine 
antigen is often a self  protein for which self-tolerance 
needs to be broken. In recent years the interaction of  
adjuvants with regulatory cells, and particularly MDSCs, 
have begun to be study[41-45]. This field is still in its infancy 
however, and there is only strong evidence for the modu-
lation of  tumor-induced MDSCs by synthetic oligode-
oxynucleotides containing unmethylated CpG motifs 
(CpG)[44], formalin-inactivated Herpes Simplex Virus[43] 
and VSSP[42], while indirect evidence suggests that other 
adjuvants may expand MDSCs once inoculated in the 
hosts. Therefore, the selection of  suitable adjuvants for 
cancer vaccines is a very complex matter, and needs to be 
based in the ability to overcome the immunosuppression 
generated by tumors and chemotherapy. In this review we 
summarize the immunomodulatory properties of  VSSP, a 
novel adjuvant for cancer immunotherapy.

GENERAL PROPERTIES OF VSSP
VSSP is a nanoparticulated adjuvant obtained through 
the hydrophobic incorporation of  the GM3 ganglioside 
into outer membrane vesicles (OMPs) from Neisseria men-
ingitidis[46]. It has been shown that VSSP contains TLR4 
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and TLR2 ligands, which play an important role in the 
immunomodulatory properties of  this compound[47,48]. 
Immunization of  mice, monkeys and humans with VSSP 
generated IgM and IgG antibodies specific for both GM3 
and OMPs[46,49]. This adjuvant also induced DC matura-
tion, as evidenced by the increased expression of  MHCII 
and CD40, CD80 and CD86 costimulatory molecules 
(Table 1)[47]. Additionally, VSSP-treated DCs secreted in-
flammatory cytokines such as IL-12p40/70 and IL-6[47]. 
DCs from healthy donors treated in vitro with VSSP pro-
duced not only higher levels of  IL-6 but also decreased 
amount of  IL-10, in comparison to lipopolysaccharide 
[LPS, the prototypic TLR4 agonist (Table 1)][48]. Experi-
ments with antigen-specific transgenic T cells demon-
strated that VSSP-treated DCs induced a Th1 phenotype 
in stimulated naïve CD4+ T cells[47]. Furthermore, VSSP 
expanded CD8+ T cells specific for the co-injected an-
tigen and promoted an effective in vivo cytotoxic T lym-
phocytes (CTL) response[50]. In the latter case, CD8+ T 
cell activation was mediated by the cross-presentation of  
exogenous antigens and did not require help from CD4+ 
T cells (Table 1)[50].

More recently, we have found that VSSP treatment 
of  naive mice (without a vaccine antigen) significantly 
increased the frequency of  splenic CD11b+Gr1+ cells[42]. 
However, these CD11b+Gr1+ cells were poorly suppres-
sive on both antigen-specific and allogeneic CTL assays 
(Table 1). The residual suppressive capacity of  VSSP-
derived MDSCs depended on NOS but not ARG, which 
was associated with a significant increase of  NOS3 en-

zyme. Although VSSP contains TLR2 and TLR4 ligands, 
the interaction of  these particles with the immune system 
appears to be more complex than can be explained by 
just TLR activation. For example, OMPs containing the 
same TLR ligands induced a significantly lower expansion 
of  CD11b+Gr1+ cells than did VSSP, indicating that the 
presence of  the GM3 ganglioside is also relevant for the 
immunomodulatory properties of  this compound. 

VSSP-induced expansion of  MDSC numbers is not 
entirely unexpected, as MDSCs have also been reported 
to accumulate in mice treated with granulocyte and 
macrophage colony-stimulating factor (GM-CSF)[51,52], 
LPS[41], CpG[53], complete Freund’s adjuvant[45] and Bacil-
lus Calmette-Guérin from Mycobacterium bovis[54]. Similar 
MDSCs expansion has been described for other condi-
tions involving major inflammatory responses, such as 
superantigen vaccination[55], polymicrobial sepsis[56], after 
burn[57] and traumatic injuries[58]. These findings are con-
sistent with a physiological role of  MDSCs as a counter-
balancing mechanism to inflammation, preventing collat-
eral damage to the tissue caused by activated T cells once 
the “dangerous” antigen has been eliminated.

EFFECT OF VSSP ON TUMOR-BEARING 
IMMUNOCOMPROMISED HOSTS
The effect of  VSSP on the phenotype, suppressive func-
tion and differentiation status of  tumor-induced MDSCs 
has been evaluated in mice bearing C26GM, EL4, EG.7 
and MCA203 tumors (Table 1)[42]. Splenic MDSCs de-
rived from VSSP-treated tumor-bearing mice (MDSCs-
T+V) contained a higher frequency of  CD11b+Gr1hi and 
Ly6CloLy6G+ G-MDSCs than untreated tumor-bearing 
counterparts (MDSCs-T). In addition, IL-4Rα is down-
regulated on MDSCs-T+V, and these cells showed an in-
crease of  the homing molecule CD62L. Consistent with 
our in vitro studies, the suppressive function of  tumor-
induced splenic MDSCs was significantly reduced when 
VSSP is given in vivo. Several different findings support 
this effect of  VSSP. First, MDSCs-T+V were unable to 
suppress the hemagglutinin (HA) peptide-specific pro-
liferation of  CD8+ T cells from CL4 TCR transgenic 
mice, in the same experimental setting where equal num-
ber of  MDSCs-T were significantly inhibitory. In vitro 
51Cr release CTL assays demonstrated that, as expected, 
MDSCs-T completely suppressed both antigen-specific 
and alloantigen-specific lytic activity of  CD8+ T cells. In 
contrast, MDSCs-T+V isolated from EL4 and C26GM 
tumor-bearing mice only marginally affected the genera-
tion of  the CTL.

The effect of  VSSP on MDSCs in vivo was further 
examined in adoptive transfer experiments. In the first 
approach, MDSCs-T and MDSC-T+V were adoptively 
transferred into CD45.1+ B6 congenic mice, which pre-
viously received the transference of  ovalbumin (OVA)-
specific CD8+ T cells from OTI transgenic mice, and 
vaccinated with the immunodominant OVA257-264 (SIIN-
FEKL) peptide emulsified in incomplete Freund’s adju-
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Table 1  Modulation caused by very small size proteoliposomes 
on different immune cell populations

Immune cell Effect of VSSP Ref.

DCs Increases costimulation and MHCII expression [47]
Enhances production of IL-12, IL-6, IL-18, IL-1β 
and reduces secretion of IL-10

[47,48]

Induces Th1-polarizing capacity [47]
Facilitates cross-presentation of protein antigens [50]

MDSCs Expands poorly suppressive MDSCs [42]
Reduces the suppressive function of tumor-
induced MDSCs

[42]

Impairs migration of tumor-induced MDSCs 
towards the tumor microenvironment

[42]

Promotes differentiation of tumor-induced 
MDSCs into mature DCs

[42,59]

Reduces the suppressive function of MDSCs 
generated during chemotherapy-induced 
leukopenia

[62]

CD4+ T cells Induces Th1 polarization [47]
CTL Potentiates CTL responses in healthy mice. 

Primary expansion independent of CD4+ T cell 
help

[50]

Generates similar CTL responses in tumor-free 
and tumor-bearing mice

[42]

Increases CD8+ T cell counts, with memory 
phenotype, and protects CTL response in 
leukopenic mice

[62]

VSSP: Very small size proteoliposomes; MDSCs: Myeloid-derived 
suppressor cells; DCs: Dendritic cells; CTL: Cytotoxic T lymphocytes.
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LPS was done in the same experimental setting. Interest-
ingly, incubation with LPS fails to differentiate tumor-
induced MDSCs into DCs and, consequently, these cells 
retain their inhibitory activity[59]. In agreement with these 
results, Greifenberg et al[60] have shown that incubation 
of  bone marrow (BM)-derived MDSCs with the com-
bination of  LPS and IFN-γ increases NO secretion, 
enhancing the suppressive activity of  these MDSCs and 
impairing their maturation into DCs. These findings fur-
ther suggest that VSSP’s effect on MDSCs is not a shared 
characteristic of  all TLR4 agonists, but is a unique prop-
erty of  VSSP. Other authors have reported that TLR4 
signaling is involved in the promotion of  tumor growth 
associated with the recruitment of  G-MDSCs, through 
the interaction with S100A9 protein[61]. VSSP also ex-
pands G-MDSCs subpopulation in tumor-bearing mice, 
however it also potentiates CTL responses and anti-tu-
mor activity on those mice[42]. Therefore, the complexity 
of  signals in the structure of  VSSP (TLR2 agonist, GM3 
ganglioside, etc.) likely makes these particles distinct from 
single TLR4 agonists. In fact, VSSP can induce activa-
tion of  BM-derived DCs obtained from LPS hypore-
sponsive mice (C3H/HeJ)[47]. 

It has been shown in the literature that other adju-
vants can also reduce the suppressive function of  tumor-
recruited MDSCs. For instance, intratumoral injection of  
CpG reduces the suppressive function of  Mo-MDSCs 
and induces their differentiation towards macrophages 
with tumoricidal capability[44]. However, CpG does not 
modify G-MDSCs, and intratumoral injections in patients 
may be difficult to impossible. Formalin-inactivated Her-
pes Simplex Virus also decreases the suppressive function 
of  MDSCs-T, but whether this adjuvant is able to differ-
entiate MDSCs has not been addressed[43]. 

INFLUENCE OF VSSP ON 
CHEMOTHERAPY-ASSOCIATED 
IMMUNOSUPPRESSED HOSTS
The ability of  VSSP to rescue the number and function-
ality of  relevant immune populations on mice undergo-
ing chemotherapy-induced leukopenia has been also 
tested (Table 1)[62]. The widely used chemotherapy agent 
cyclophosphamide (CY) was used to induce the leukope-
nic setting for these studies. In this model, VSSP acceler-
ated the recovery of  specific leukocytes population when 
administered in the early stages of  leukopenia. Splenic 
CD4+ and CD8+ T cells (with a memory CD4+CD44hi 
and CD8+CD44hi phenotype) and CD11c+CD11b+ DCs 
were some of  the populations most enhanced by VSSP 
in leukopenic mice. Interestingly, MDSCs were also sig-
nificantly expanded. However, similar to what was seen in 
the tumor-mediated immunosuppression setting, MDSCs 
from leukopenic mice treated with VSSP showed a re-
duced capacity to suppress T cell responses, compared 
to CY-induced MDSCs (Table 1). Importantly, in the 
same experimental setting, we found that polyI:C treat-

vant (IFA). Similar frequencies of  IFN-γ+ antigen-specific 
CD8+ T cells were found in recipient mice transferred 
with MDSCs-T+V compared to control mice receiving 
no MDSCs, whereas transfer of  MDSCs-T significantly 
impaired the activation of  OTI lymphocytes. Additional 
experiments were performed to compare VSSP with oth-
er adjuvants or well-established vaccination systems. On 
this regard, we found that VSSP-based vaccines are more 
efficient than vaccination with DCs or vaccines employ-
ing the adjuvant polyinosinic:polycytidylic acid (polyI:C) 
in activating antigen-specific CTL responses in the pres-
ence of  MDSCs-T. In fact, vaccination of  BALB/c mice, 
which had been adoptively transferred with both con-
genic antigen-specific CD8+ T cells and MDSCs-T, with 
HA peptide in VSSP adjuvant prevented the MDSCs-
T-mediated suppression of  CD8+ T cell responses that 
was observed in mice vaccinated with HA-pulsed DCs. 
Also congenic OTI CD8+ T cells transferred to EG.7 
tumor-bearing mice produce IFN-γ in response to VSSP 
admixed with SIINFEKL peptide- but not to a vaccine 
consisting of  SIINKEKL-pulsed DCs. Importantly, the 
OVA-specific in vivo CTL response generated in mice with 
EL4 tumors by the administration of  OVA/VSSP was 
comparable to that observed in tumor-free mice, whereas 
vaccination with OVA/polyI:C was unable to overcome 
the tumor-induced impairment of  the CTL response. 

In addition to TCR transgenic T cell responses to a 
model antigen, we have found that VSSP blunts MDSC-
mediated suppression of  endogenous T cell responses 
to native tumor antigen, by measuring the inhibition of  
tumor-specific CD8+ T cells by MDSCs in an ELISPOT 
assay. CD8+ T cells isolated from MCA203 tumor-
bearing mice did not release IFN-γ when stimulated with 
MCA203 tumor cells, irrespective of  the presence of  
MDSCs. In contrast, a significant frequency of  CD8+ T 
cells derived from VSSP-treated tumor-bearing mice were 
activated by tumor cells and produced IFN-γ, even when 
MDSCs-T+V were added to the culture. Importantly, 
MDSCs-T maintained their ability to suppress tumor-
specific CTL in this experiment.

Within the tumor microenvironment itself, VSSP 
treatment did not change the phenotype and functional 
capacity of  CD11b+ sorted MDSCs. However, adop-
tively transferred congenic MDSCs-T had a reduced 
ability to infiltrate tumors in EL4 tumor-bearing mice 
treated with VSSP. More importantly, in these VSSP-
treated mice, tumor-infiltrating transferred MDSCs-T 
were more differentiated into CD11c+MHCII+CD11b- 
phenotype characteristic of  DCs, and did not differen-
tiate towards MHCII+F4/80+ macrophages. A similar 
differentiation pattern was observed in vivo in the spleen 
and lymph nodes from VSSP-inoculated tumor-bearing 
mice. In a more recent work, it was demonstrated that 
in vitro treatment with VSSP of  tumor-induced MDSCs 
was sufficient to differentiate this immature population 
towards phenotypically mature DCs and, more impor-
tantly, causes the loss of  their suppressive function[59]. 
Since VSSP contains a TLR4 ligand, a comparison with 
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ment induced none of  the effects observed with VSSP 
inoculation.

The ability of  VSSP to activate antigen-specific CD8+ 
T cells was also tested in leukopenic mice. In this im-
munocompromised scenario, vaccination with a single 
dose of  OVA/VSSP, at the time point corresponding 
to the lowest CD8 counts, induced significant antigen-
specific CTL responses. In comparison, vaccination 
with three doses of  OVA/polyI:C was not capable of  
inducing antigen-specific effector CD8+ T cell activation. 
Furthermore, VSSP treatment of  OVA/polyI:C vac-
cinated animals restored the dampened CTL responses 
in polyI:C-treated leukopenic mice, indicating that VSSP 
can function as an immunomodulator as well. This effect 
could be associated to the capacity of  VSSP, different 
from polyI:C, to accelerate the recovery of  effector CD8+ 
memory T cells and to induce the expansion of  DCs and 
less suppressive MDSCs.

Granulocyte colony-stimulating factor (G-CSF) is 
the standard growth factor used in the clinic to revert 
chemotherapy-induced leukopenia, but also has been re-
ported to be a tumor-derived factor that induces MDSCs 
generation and recruitment[63]. Therefore we assessed 
whether treatment with recombinant G-CSF could re-
store the in vivo CTL response barely induced by OVA/
polyI:C vaccine in CY-treated mice[62]. Administration of  
G-CSF has no impact in the impaired antigen-specific 
CTL response, possibly due to the expansion of  MDSCs 
but also via G-CSF-induced Th2 responses[64] and the 
resulting differentiation of  Tregs that may impair effec-
tor T lymphocyte proliferation[65]. However, when VSSP 
was given with G-CSF, the ability of  VSSP to restore 
CD8+ T cell function was not affected, which opens the 
possibility for their concomitant use in the clinic. More-
over, the functionality of  MDSCs recruited in these 
experiments was additionally evaluated. As expected 
from previous reports, our data also demonstrated that, 
in leukopenic mice treated with G-CSF, the induced 
MDSCs were highly suppressive. Importantly, the con-
comitant treatment with VSSP dampened the inhibitory 
function of  MDSCs expanded after G-CSF injection. 
To our knowledge, no other adjuvant has been tested in 
this immunosuppressive leukopenic scenario induced by 
chemotherapy.

ANTI-TUMOR ACTIVITY OF VSSP
Several pre-clinical studies support the anti-tumor ef-
ficacy of  VSSP, whether used alone or in combination 
with other tumor-associated antigens different from 
the GM3 ganglioside. The combination of  surgery and 
VSSP alone prevented tumor recurrence and improved 
survival in melanoma B16F10 tumor-bearing mice[66]. 
In a different tumor model, treatment of  mice bearing 
MCA203 tumors with three doses of  VSSP was sufficient 
to significantly delay tumor growth[42]. Of  interest, GM3 
ganglioside, an important component of  VSSP, is highly 
expressed on both melanoma B16F10 and MCA203 sar-

coma. Particularly in MCA203 tumor-bearing mice, treat-
ment with VSSP alone caused a significant increase in 
the frequency of  classical IFN-γ-producing CD8+ T cells 
specific for MCA203 antigens, suggesting an antigen-
spreading likely induced by the initial response against 
the GM3 ganglioside[42]. Moreover, VSSP-adjuvanted 
vaccines (both peptides and whole proteins) have shown 
anti-tumor activity. For instance, a vaccine containing the 
extracellular domain of  murine epidermal growth factor 
receptor (EGFR) and VSSP has a potent anti-metastatic 
effect in the Lewis lung carcinoma model[67]. In a mouse 
model of  cervical cancer induced by Human Papilloma 
Virus (HPV), the immunization with an E7-derived CTL 
peptide from HPV 16 mixed with VSSP induced regres-
sion of  established tumors[68]. Therapeutic vaccination 
of  EG.7 tumor-bearing mice with OVA or SIINFEKL 
peptide adjuvated in VSSP, but not SIINFEKL emulsi-
fied in IFA, caused a significant reduction of  tumor 
growth[42]. However, VSSP administration alone to EL4 
and C26GM tumor-bearing mice, with the same schedule 
associated with the inhibition of  MDSCs suppressive 
function, does not delay tumor growth. One possible 
explanation for the absence of  an anti-tumor effect 
of  VSSP alone in these models is the lack of  a tumor-
associated antigen during treatment, and consequently, 
the absence of  antigen-specific CD8+ T cell activation. In 
fact, EL4 tumors express low levels of  GM3 whereas an 
inappropriate exposure of  this ganglioside on the surface 
of  C26GM tumor cells has been observed[42]. Altogether, 
these data strongly suggest that the best induction of  
anti-tumor responses requires combining the abrogation 
of  tumor-induced MDSCs with a specific stimulation of  
T lymphocytes, which can be successfully done by mixing 
a proper tumor-associated antigen with VSSP.

Finally, four therapeutic cancer vaccines employing 
VSSP as adjuvant are in clinical trials. An EGFR-based 
vaccine[67] is currently in Phase Ⅰ clinical trials. A Phase I 
clinical trial in patients with advanced solid tumors using 
a formulation of  a mutated vascular endothelial growth 
factor[69] and VSSP has been recently completed. In this 
trial, the most common adverse events were Grade 1 
pain and erythema at injection site and Grade 1 fever [70]. 
Additionally, a gonadotropin releasing hormone-based 
vaccine[71] and a HPV-derived peptidic vaccine[72] are cur-
rently in Phase Ⅱ trials in prostate cancer patients and 
women with high-grade cervical intraepithelial neoplasia, 
respectively. Both vaccines have previously shown to be 
safe and immunogenic. The most frequent adverse event 
in patients receiving the HPV vaccine was local pain at 
the vaccination site, whereas fever, tremors and cramps 
were seen in few cases, but none exceeded Grade 1[72]. 
Another Phase Ⅰ trial using VSSP alone in metastatic 
melanoma patients demonstrated the safety of  this prep-
aration even in the presence of  Montanide ISA 51, with 
toxicity consisting of  local reaction at the site of  injection 
and mild fever and chills[49]. In this trial both humoral and 
cellular responses were induced by the VSSP treatment. 
Additionally, an ongoing physician-lead trial is evaluat-
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ing the modulation of  tumor-induced MDSCs by VSSP 
treatment alone in RCC patients.

CONCLUSION
The immunomodulatory and anti-tumor properties of  
VSSP are summarized in Figure 1. In tumor-bearing 
mice, activation and effector function of  tumor-specific 
CD8+ and CD4+ T cells are impaired, among other fac-
tors, due to ineffective antigenic presentation by imma-
ture DCs and through multiple suppressive mechanisms 
exerted by MDSCs. Experimental evidence suggest that 
VSSP-based vaccines could promote cross-presentation 
of  the formulated antigen by DCs, drive the full matu-
ration of  the DCs and, simultaneously, inhibit tumor-
induced MDSCs immunosuppression. In addition, VSSP 
could induce Th1 polarization on tumor-specific CD4+ 
T cells. All these effects may significantly enhance the 
proliferation and activation of  tumor-specific CD8+ T 
cells, thus eliciting robust anti-tumor immunity. VSSP 

also diminishes the migration of  MDSCs towards the 
tumor site and promotes their differentiation into DCs. 
Tumor-infiltrating MDSCs have been related with the 
recruitment and expansion of  Tregs[23,24,73], in addition to 
an impaired migration of  effector T cells[74]. Thus, within 
the tumor microenvironment, VSSP treatment may tip 
the the balance between functional T cells vs suppres-
sive MDSCs/Tregs to favor the immune effectors that 
ultimately lead to an anti-tumor response. The higher 
frequency of  DCs could additionally contribute to acti-
vate T cells specific for other tumor antigens by captur-
ing, processing and presenting the proteins released by 
dying tumor cells. In chemotherapy-treated individuals, 
VSSP also accelerates the homeostatic recovery of  CD8+ 
T cells and DCs, whereas the suppressive function of  
chemotherapy-induced MDSCs is abrogated. Altogether, 
these elements support the use of  VSSP as a novel ad-
juvant or immunomodulator for active immunotherapy 
and, particularly, for the combination with chemotherapy 
in the clinical setting.
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Figure 1  Schematic of potential immunomodulatory effects of very small size proteoliposomes in tumor-bearing hosts. A: Tumor-associated immunosup-
pressive networks prevent the elimination of neoplastic cells by specific T cells, thus contributing to tumor growth and metastasis; B: VSSP administration reduces the 
suppressive function of tumor-induced MDSCs, impairs their migration to the tumor microenvironment and promotes their differentiation towards DCs, both at the tumor 
and secondary lymphoid organs. VSSP also stimulates the activation and effector function of tumor-specific CTL, and combined with the concomitant reduction in the 
frequency of suppressive MDSCs and Tregs at the tumor site, further enhances elimination of neoplastic cells. An accelerated recovery from chemotherapy-induced 
leukopenia with VSSP treatment also contributes to a better anti-tumor response. VSSP: Very small size proteoliposomes; MDSCs: Myeloid-derived suppressor cells; 
DCs: Dendritic cells; CTL: Cytotoxic T lymphocytes; IL: Interleukin; TGF: Transforming growth factor.
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approaches to identify specific amino acid residues and 
the immune escape kinetics which may impose Vpu 
functional constraints in vivo . This review will focus 
on HIV-1 accessory protein Vpu in the context of its 
sequence variability at population level and also bring 
forward evidence on the role of the host immune re-
sponses in driving Vpu sequence variability; we will also 
highlight the recent findings that illustrate Vpu func-
tional implication in HIV-1 pathogenesis.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Human immunodeficiency virus type 1; 
Vpu; Sequence variability; Immune responses; Human 
leukocyte antigen class Ⅰ

Core tip: Viral protein U (Vpu) is a highly polymorphic 
human immunodeficiency virus type 1 (HIV-1) accesso-
ry protein; however factors that are attributable to Vpu 
sequence variability are not well defined. In this review 
we have focused on the immune responses both innate 
(natural killer cells) and adaptive (cellular and humoral) 
immunity that are directed towards HIV-1 Vpu and we 
also show the interaction between Vpu and host cel-
lular factors. We also highlight evidence that suggests 
interaction between the host immune responses and 
Vpu may contribute to Vpu sequence variability. Finally 
we have summarized the current knowledge on HIV-1 
Vpu functions including Vpu evasion activities from the 
host immune surveillance. 
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INTRODUCTION
Human immunodeficiency virus type 1 (HIV-1) dem-
onstrates a significant genetic diversity due to its high 
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Abstract
Viral protein U (Vpu) is an accessory protein associated 
with two main functions important in human immu-
nodeficiency virus type 1 (HIV-1) replication and dis-
semination; these are down-regulation of CD4 receptor 
through mediating its proteasomal degradation and en-
hancement of virion release by antagonizing tetherin/
BST2. It is also well established that Vpu is one of the 
most highly variable proteins in the HIV-1 proteome. 
However it is still unclear what drives Vpu sequence 
variability, whether Vpu acquires polymorphisms as a 
means of immune escape, functional advantage, or 
otherwise. It is assumed that the host-pathogen inter-
action is a cause of polymorphic phenotype of Vpu and 
that the resulting functional heterogeneity of Vpu may 
have critical significance in vivo . In order to compre-
hensively understand Vpu variability, it is important to 
integrate at the population level the genetic association 
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mutation rate; so far this extraordinary diversity has been 
a major setback in development of  vaccine and antiret-
roviral drugs. Low fidelity of  reverse transcriptase that 
give rise to error prone replication process, high progeny 
production, turnover rates and recombination of  circu-
lating HIV-1 strains are some of  the viral factors that 
contributes to HIV-1 diversity[1-3]. The adaptive potential 
of  HIV-1 is shaped by both virus and the host immune 
factors, in other words both the diversifying and purify-
ing selection factors influence HIV-1 diversity. In fact, 
strong evidence has also indicated that the host immune 
responses influence HIV-1 diversity by selection of  es-
cape mutations[4-6]. Thus a comprehensive analysis of  the 
dynamics of  polymorphisms in HIV-1 proteins is a pow-
erful tool to reveal actual interactions between HIV-1 and 
the host immune system[7-9]. 

 HIV-1 viral protein U (Vpu) is a 16-kDa accessory 
protein[10] responsible for various functions such as CD4 
down-regulation[11-13] and enhancement of  virion release 
by antagonizing tetherin/BST2[14-17]. Interestingly, func-
tionally competent Vpu (with respect to BST-2 antago-
nistic activity) were only found in the pandemic group 
M subtypes, suggesting that Vpu functional adaptation 
may confer pandemic spread of  this HIV-1 subtype[18]. In 
general, the host genetic factor is one of  the main driv-
ing force of  sequence polymorphism in HIV-1[18], as evi-
denced in HIV-1 Nef[7,19-21] and Env[22,23] proteins whose 
highly polymorphic phenotype is mostly attributed by the 
host immune responses such as HLA class I-restricted 
CD8+ T lymphocytes and neutralizing antibodies, re-
spectively. However, it is still unclear to what extent the 
host immune responses influence Vpu sequence varia-
tion. This review focuses on the role of  host immune 
responses in Vpu sequence variability. Briefly, we also dis-
cuss the current understanding of  Vpu functions includ-
ing evasion of  the immune system and their implication 
in viral pathogenesis. 

SEQUENCE VARIABILITY OF VPU
Vpu exhibit a stable reading frame in vivo despite being a 
highly variable protein, suggesting functional importance 
of  Vpu in HIV-1 replication and persistence. Further-

more, it has evidently been shown that only HIV-1 strains 
of  the pandemic M group evolved a fully functional 
Vpu that efficiently antagonizes human tetherin/BST-2; 
this suggests that Vpu evolutional adaptation may be as-
sociated with the pandemic spread of  HIV-1[18]. Several 
studies have demonstrated the extent of  Vpu sequence 
variability both at inter- and intra-patient level. By using 
the 101 aligned amino acid sequences of  entire HIV-1 
genome, one study showed that Vpu had the highest 
average entropy score in comparison to other proteins 
in HIV-1 genome[24]. Another study analyzing the intra-
patient diversity and adaptation of  non-structural genes 
in primary HIV-1 subtype C infection reported that vpu 
compared to vif, vpr, tat exon 1 and rev exon 1 genes has 
the highest mean of  intra-patient diversity that increased 
gradually[25]. We retrieved full lengths clade B sequences (n 
= 544) of  HIV-1 proteins (Gag, Pol, Env, Nef, Vif, Vpu, 
Vpr, Tat and Rev) from Los Alamos database and the av-
erage entropy score of  each protein was determined. Vpu 
was observed to be one of  the proteins with the highest 
average entropy score (Figure 1), confirming the highly 
variable nature of  Vpu at population level. However, 
interestingly, a recent study has shown that despite exten-
sive Vpu sequence variation in HIV-1 infected individu-
als, Vpu functions (CD4 cell surface downregulation and 
tetherin counteraction activity) were maintained[26]. 

IMMUNE RESPONSES TOWARDS VPU 
Humoral immunity
Several studies have reported Vpu-specific humoral im-
mune responses during HIV-1 infection[27-31]. However 
there has been some controversy on correlation between 
the presence of  anti-Vpu Ab responses in HIV-infected 
patients’ sera and clinical outcome. Some studies have 
indicated that anti-Vpu Ab responses may influence the 
clinical outcomes in HIV-1 infected individuals[27,28,30,31]; 
while on the other hand other studies have showed no 
correlation[29]. These findings indicate that Vpu is indeed 
a target of  antibodies although no evidence yet support 
that such antibody responses influence the Vpu vari-
ability. The epitopic regions for such antibodies reported 
include 37-50[30] and 68-81[28] of  Vpu; nonetheless there 

108 July 27, 2014|Volume 4|Issue 2|WJI|www.wjgnet.com

Hasan Z et al . Host immune responses to HIV-1 Vpu

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Av
er

ag
e 

en
tr

op
y

Pol       Gag       Vpr        Vif        Rev       Tat        Nef        Vpu       Env
HIV-1 proteins

Figure 1  Sequence variability of human immunodeficiency 
virus type 1 proteins. The sequence variability of nine proteins 
of human immunodeficiency virus type 1 (HIV-1) shown in the 
graph was determined by using Shannon entropy approach[24,90]. 
The full genome clade B sequences of the individual patients 
were retrieved from Los Alamos database (n = 544). Vpu: Viral 
protein U.



is no specific Vpu activity mapped to these regions so 
far. However, considering that Vpu is a small protein (81 
amino acids); it is intriguing to test whether such Vpu-
specific antibodies can inhibit Vpu functions and subvert 
viral replication. 

Cellular immunity
A growing number of  clinical evidence has suggested that 
HLA-restricted, HIV-specific CD8+ cytotoxic T lympho-
cytes (CTL) is mainly involved in controlling HIV-1 repli-
cation[32-34]. CTL responses have been well appreciated in 
SIV-infected macaque’s model[32,33] and in HIV-1 infected 
patients of  both acute[35,36] and chronic[37] phases as well as 
in elite controllers who spontaneously suppress viral repli-
cation below detection limit[38,39]. HLA-restricted CTL re-
sponses are thought to be the main driving force of  HIV-1 
control and viral evolution[40-43]. The viral polymorphism in 
response to immune selective pressures follows predictable 
patterns and kinetics at the population and these immune 
“footprints/landscape” could be predictable based on the 
autologous viral sequences and the host immune genet-
ics[9,42,44]. However, Vpu has been reported to be a poor 
target for CD8+ T cells as revealed by interferon (IFN)-γ 
Elispot assay[45], because only some few epitopes were iden-
tified and less than 3% of  patients showed detectable Vpu-
specific CD8+ T cell responses. Although several HLA-
restricted CTL epitopes of  Vpu are reported[45-49], this 
protein is less targeted by CTLs at least compared to the 
Nef  protein. Consistently, our previous study showed only 
three HLA-associated polymorphisms in Vpu at Glu-5 
with HLA-C*03 and Arg-37, Lsy-37 with HLA-A*3303 in 
a chronic HIV-infected patient cohort in Japan (n = 216), 
indicating that the HLA class I has minor contribution (2% 
of  the total codons) towards Vpu variability[50]. The in-
creased numbers of  subjects to 516 showed similar results 
(DK, ZH, and TU: unpublished observation). Further-
more, an international large IHAC cohort (International 
HIV Adaptation Collaborative, n = 1888) identified that 
only 26.3% of  the highly variable Vpu codons exhibited 
statistically significant HLA class Ⅰ associations[20]. Al-
though the HLA class Ⅰ-associated viral polymorphisms 
observed in the two cohorts suggested to be influenced by 
several factors such as the host genetic profiles, mixture of  
multiethnic populations, studied sample size, geographical 
location and circulating HIV-strains, these results suggest 
that HLA-associated polymorphisms are only partly at-
tributable to the Vpu variability (Figure 2). However, it is 
of  note that the low CTL responses observed in the previ-
ous studies[45,51] and subtle numbers of  HLA-associated 
polymorphisms[20,50] may be an underestimation due to the 
current technical limitation toward a highly variable pro-
tein, even though a number of  studies reported a plenty of  
CTL targeting[52,53] and HLA-associated polymorphisms in 
Nef[19,20,42], which showed comparable variability with Vpu 
at a population level (Figure 1). 

Natural killer cells
A number of  evidence suggests that natural killer (NK) 

cells have an important role in control of  HIV-1 infec-
tion[54-56]. Assuming that NK cells may act as a selective 
force, as similar to CTLs, HIV-1 may leave footprints as 
viral polymorphisms in association with polymorphic 
NK cell ligand such as killer-cell immunoglobulin-like 
receptors (KIR). In fact, one study identified 22 amino-
acid polymorphisms within the HIV-1 clade B sequence 
that are significantly associated with the expression of  
specific KIR genes in chronically HIV-1 infected, treat-
ment naïve patients (n =91)[44]. Three (13.6%) of  these 
KIR associated polymorphisms were located in Vpu at 
positions Ser-3 and Vpu-Env overlapping region (Met-71 
and His-74) (Figure 2)[44]. In addition, the HIV-1-specific 
antibody-dependent NK cell cytotoxicity is identified 
towards a 13-mer Vpu peptide (69EMGHHAPWDVD-
DL81)[57]. Such responses are also observed toward Env[58] 
and Nef[59] in HIV-1 infected patients as well. However, 
there is no evidence at the moment that show antibody-
dependent NK cell cytotoxicity associates with viral poly-
morphisms.

VPU FUNCTIONALITY INCLUDING 
IMMUNE EVASION ACTIVITY
In order to conquer the hostile host environment, viruses 
need to evolve and develop critical interactions with the 
host cellular factors. Vpu does not only play important 
role in HIV-1 pathogenesis through CD4 receptor deg-
radation[11] and enhancement of  virion release from in-
fected cells by antagonizing tetherin/BST-2[60-62]; but Vpu 
has also evolved to interact with and modulate other host 
surface receptors and factors (Figure 3).

Vpu induces CD4 receptor degradation
Vpu induces the rapid degradation of  newly synthesized 
CD4 receptor molecules that are retained together with 
Env precursor protein (gp160) in the endoplasmic reticu-
lum[13]. The cytoplasmic domain of  Vpu and the DSGxxS 
motif  are critical in interaction with and degradation of  
CD4, respectively[12,63] (Figure 2). The degradation process 
is achieved by Vpu recruiting β-TrCP and then interacts 
with CD4 cytoplasmic domain and subsequently subject 
CD4 to degradation by the ubiquitin-proteasome path-
way[11,64]. In doing so Vpu contributes to the suppression 
of  HIV-1 primary receptor at the surface of  the infected 
cell. 

Vpu enhances virion release
Enhancement of  virion release by Vpu has been shown 
to be achieved through antagonizing tetherin/BST-2, 
an IFN regulated host restriction factor. BST-2 directly 
binds to virions and hence retains them on the surface 
of  infected cells[61,62]. Vpu through AxxxAxxxA mo-
tif  in transmembrane domain directly interacts with 
BST-2 transmembrane domain, the Vpu DSGxxS and 
[D/E]XXXL[L/I/V] motifs in the cytoplasmic domain 
also play crucial role in ensuring BST-2 downmodula-
tion[15,65,66] (Figure 2). Previous studies indicated BST-2 
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port of  NTB-A by retaining it within the Golgi compart-
ment and hence affects its glycosylation pattern that sub-
sequently reduces surface expression of  NTB-A[75]. 

PVR (CD155, Necl-5) is a ligand for the activating 
receptor DNAM-1 (CD226) expressed by NK cells[76,77]. 
PVR downmodulation by Nef  and Vpu is another strat-
egy evolved by HIV-1 to avoid NK cell-mediated lysis of  
infected cells[71]. PVR downregulation alters multiple im-
portant PVR-mediated innate cellular immune processes 
such as adhesion and migration, and therefore may influ-
ence HIV-1 pathogenesis. 

CD1d molecules are important in dendritic cells 
for lipid antigen presentation to CD1d-restricted NKT 
cells[78,79]. CD1d and CD1d-restricted NKT cells are pres-
ent at pathogen entry sites thus play a crucial role in early 
immune responses[80]. Vpu has been shown to be the 
major viral factor that inhibit recycling of  CD1d from 
the endosomal compartment back to cell surface through 
retaining CD1d in early endosomes[72].  

Vpu has also been implicated in inhibition of  ubiq-
uitination and degradation of  p53 (a substrate of  SCFβ-

TrCP ligase complex). The successful interaction of  SCFβ-

TrCP complex with β-TrCP binding motif  (DS52GNES56) 
present in Vpu has been shown to be essential[81]. It was 
observed that Vpu mutants with alanine substitutions 

downmodulation is through β-TrCP-dependent protea-
somal degradation pathway[67] while others suggested 
the β-TrCP-dependent endo-lysosomal pathway[65,68]. In 
contrast, recent studies showed that BST-2 antagonistic 
activity by Vpu takes place in the trans-Golgi networks 
(TGN)[14]. Vpu interferes with anterograde transport of  
BST-2 to the cell surface subsequently leading to BST-2 
trapping in the TGN[15-17,69].

Vpu modulation of other cell surface receptors and host 
factors 
Recent studies have indicated that Vpu is emerging as a 
viral factor with a range of  activities devoted to counter-
acting host innate and adaptive immunity including the 
modulation of  NK cell co-activation ligand NK-T and 
B cell antigen (NTB-A)[70], PVR activating ligand of  NK 
cells[71], and CD1d[72,73] (Figure 3).

NTB-A triggering is necessary for induction of  effi-
cient lysis of  target cells upon engagement of  the activat-
ing receptor NKG2D[74]. The Ser-52 and Ser-56 residues 
important for CD4 and BST-2 degradation did not affect 
NTB-A expression, indicating that the down modulation 
of  NTB-A by Vpu is mediated by different domains[70]. A 
recent study has shown that downmodulation of  NTB-A 
is achieved by Vpu interfering with the anterograde trans-
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(DA52GNEA56) failed to stabilize p53 and did not pre-
vent its ubiquitination. This suggested that Vpu is able to 
achieve modulation of  p53 through competing efficiently 
with p53 protein for the β-TrCP subunit of  the SCF com-
plex and hence inhibits subsequent ubiquitination of  p53 
protein. The modulation of  p53 positively correlated with 
apoptosis during the late stages of  HIV-1 infection[81]. 

Finally, although Vpu showed multiple functions in 
vitro and ex vivo, it is yet clear how and what functions of  
Vpu are important in viral pathogenesis in vivo. 

CONCLUSION 

The current knowledge on factors that are attributed 
to Vpu polymorphism has not been quite sufficient; 
therefore this prompt for further analysis to reveal the 
unresolved questions of  why Vpu is so variable and what 
factors drive Vpu polymorphism. In order to define the 
complex dynamics of  HIV-1 Vpu evolution, immune 
escape patterns, and functional adaptation during the 
course of  infection, further insight is needed on the role 
of  host genetics and other immune selection pressures 
towards shaping HIV-1 Vpu diversity. The emergence of  
advanced DNA sequencing technologies such as ultra-
deep sequence which is superior and more sensitive than 
Sanger sequence methods has made it possible to accu-
rately detect and analyze minor variants of  HIV-1 within 
a host[82-85]. Furthermore, the establishment of  different 
contemporaneous cohorts of  HIV-1-infected individuals 
worldwide enables us to examine to what extent the host 

immune components play a role on viral adaptation and/
or evolution at both intra- and inter-patients’ level.  

So far the current studies have indicated that the host 
immune responses directed towards Vpu is not entirely 
attributable to HIV-1 Vpu variation (Figure 2), it is there-
fore crucial to apprehend other factors that may explain 
Vpu variation. Of  note previous studies have identified 
immune responses directed towards Vpu, using peptides 
of  HIV-1 consensus sequences[45,57]. However, ironically 
due to Vpu polymorphic nature itself, these results may 
mask the exact extent to which immune responses con-
tribute to Vpu sequence variation. Alternatively, HIV-1 
like other RNA viruses has evolved to shorten its genome 
length through overlapping its genes[86]. The overlapping 
region of  Vpu and Env is one of  promising aspect to 
consider when we focus on Vpu variation. Because host 
immune responses (neutralizing antibodies) contribute 
to Env polymorphic nature[87,88], it is enticing to assume 
that immune responses directed towards Env may influ-
ence Vpu polymorphisms through Vpu-Env overlapping 
region. KIR associated polymorphisms within Vpu-Env 
overlapping region have been reported previously[44]. 
Although it is still unknown whether NK cells recognize 
Vpu or Env protein, nonetheless these findings indicate 
the importance of  this region for Vpu variability. Fur-
thermore, it is reported that X4- and R5-tropic HIV-1 
showed differential amino acid polymorphisms in Vpu[89], 
suggesting that cellular compartment influences Vpu 
variability. 

The current increase in number of  new findings of  
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Vpu from pandemic HIV-1 group M strain and other 
HIV-1 strains, enlighten us the precise role or mecha-
nisms of  how Vpu degrade the viral receptor CD4, 
antagonize tetherin/BST-2, enhance p53 stability and 
modulate NK-cell activities through modulation of  PVR, 
NTB-A and CD1d receptors (Figure 3). Understanding 
the mode of  action of  Vpu and association of  the im-
mune factors certainly open plenty of  new windows to 
deciphering the intricate mechanisms associated with 
HIV-1 immune pathogenesis in vivo. Also, understanding 
pathways of  Vpu intra- and inter-patients sequence vari-
ability and adaptation may provide us with an alternative 
approach for prospects of  viral persistence and Vpu con-
tributions in vivo. 
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activation by MAPKs/NF-κB signaling pathway to 
induce toxicity by activating different inflammatory 
parameters. Hence, the review focussed on exploring 
the role of TLR4/MAPKs signaling pathway for the 
therapeutic inhibition of atherosclerosis.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: The inhibition of atherosclerosis is one of pri-
mary target for the therapeutics of cardiovascular dis-
eases, which is the eminent health problem worldwide. 
The important function of toll-like receptor 4 (TLR4) 
in the activation and progression of atherosclerosis is 
justified here. The TLR4 in turn activates the mitogen 
activated protein kinases (MAPKs) and nuclear factor 
kappa-light-chain-enhancer of activated B cells which 
are responsible for most of the inflammatory events. 
Hence, therapeutic inhibition of TLR4/MAPKs signaling 
pathway is one of the best method of inhibiting athero-
sclerosis.
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INTRODUCTION
Cardiovascular disease, especially atherosclerosis is a main 
health problem worldwide and it is a disease characterised 
by the deposition of  lipid in the blood vessels. There are 
several studies undertaken to know the proximal role of  
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Abstract
Cardiovascular diseases, especially atherosclerosis, 
found to be the dreadful diseases worldwide. There 
are diverse pathways associated with the progression 
of atherosclerosis. One of the important signaling 
pathways to target atherosclerotic plaque rupture is 
toll-like receptor 4 (TLR4) Pathway. Several studies 
are available for illustrating the role of TLR4 in health 
and diseases. Different types of immune cell are 
activated in atherosclerosis but primary cells that are 
activated by the TLR4 signaling are macrophages and 
endothelial cells. Mechanisms by which macrophages 
uptake lipids are diverse and it is very important to 
target signaling pathway responsible for controlling 
foam cell formation. The process of macrophages 
transformed foam cell formation is the critical event 
in progression of atherosclerotic lesion and TLR4 
found to have actively participate in the event through 
mitogen activated protein kinases (MAPKs) activation. 
The activation of MAPKs signaling pathway leads to 
the accumulation of cholesterol in the macrophages 
and also contribute to the dissociation of IκB and 
the nuclear translocation of nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) p65 
subunit, thereby activating key inflammatory cascade 
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immune system in atherosclerosis[1]. Macrophages are the 
primary cells which are present in atherosclerotic lesions 
and they uptake lipids and get transformed to foam cells. 
These foam cells are risky and contribute to the develop-
ment of  atherosclerotic plaque rupture. 

It was known that inflammatory process and its fur-
ther cascade by activating immune system may contribute 
to the development of  inflammation related atherosclero-
sis[2]. Usually the luminal side of  the blood vessel walls are 
prone to atherosclerotic injury[3]. The presence of  human 
histocompatibility leukocyte antigen is widely upregulated 
as the result of  inflammatory processes[4]. There are stud-
ies reporting the role of  variety of  Infectious organisms 
and HSP60 as trigger of  atherosclerosis[5].

It is very important to know the mechanism by which 
macrophages uptakes lipid and transformed get into 
foam cells. Targeting of  macrophages transformed to 
foam cells are very important therapeutic strategies[6]. The 
studies on mechanism by which macrophages accumu-
late OxLDL and its further activation cascades are very 
important. It usually activates further cascades by activat-
ing components like polyoxygenated cholesteryl ester 
hydroperoxides and in turn activates toll-like receptor 4 
(TLR4)[6]. 

It was suggested that TLR4 act as a link between in-
flammation and atherosclerosis[7]. TLR4 found to have an 
active participation in the progression of  atherosclerotic 
diseases. It can also interferes with the cholesterol meta-
bolic machinery in macrophages[8]. The research in TLR4 
shown that, silencing of  TLR4 gene seems to have re-
duced the size of  atherosclerotic lesion, lipid content and 
macrophage polarisation in mice fed a high cholesterol 
diet for continuous six months[9]. 

TLR4 found to have act as an important receptor for 
arterial remodelling[10]. The activation of  TLR4 receptor 
leads to the further activation of  MYD88 protein and 
through protein cascade further activates mitogen 
activated protein kinases (MAPKs). The activation of  
MAPKs are essential for the secretion of  chemoattract 
protein to direct monocytes to the atherosclerotic site[11]. 
The study on inhibition of  tyrosine phosphatases like 
MAPKs found to have demolished the atherosclerotic 
lesion size in mice[11].

The phosphorylation of  MAPKs triggers the 
activation of  several downstream proteins and further 
activates the nuclear factor translocation (NF-kB) which 
ultimately leading to the progression and rupture of  
atherosclerotic plaque [12]. Hence, the review focussed on 
exploring the role of  TLR4/MAPKs signaling pathway 
in therapeutic inhibition of  atherosclerosis.

ATHEROSCLEROSIS AND ITS 
ACTIVATION BY IMMUNE SYSTEM 
The immune system is considered to be the guardian of  
host and its activation as a result to solve the denudation 
of  endothelium. If  the immune system unable to control 
this activation, then it will result in the chronic immune 

reaction and can result in the development of  atheroscle-
rotic plaque formation[13]. The regions of  atherosclerotic 
lesions are usually crowded with macrophages and T 
cells which usually plays an adequate role in innate and 
acquired immune reactions. It was known in atheroscle-
rotic disease condition there is an clonal expansion of  
differentiated T cells, which are common in all adaptive 
immune reactions[14].

TOLL-LIKE RECEPTOR-4 
Toll-like receptor-4 (TLR4) pattern-recognition receptors 
are found to have an important role in the immune func-
tion. TLRs resides in the family of  type I transmembrane 
receptor which consists of  intracellular domain and an 
extracellular leucine repeat domain[15-17]. It was known 
that human TLR4 was the first characterised form of  
mammalian toll[15]. TLR4 is expressed in different types 
of  cells, among them most abundant cell type is macro-
phages and dendric cells[15]. Usually, it is an membrane re-
ceptor which act as a signal transducing agent in different 
inflammatory insult condition like LPS induced[18-21].

The extensive research in the field of  TLRs resulted 
in knowing mechanism of  immune response induced by 
TLR4, it is by recognition the pathogen associated mo-
lecular pattern. The recent studies using mouse knock out 
genes demonstrated the active role of  TLR4 in triggering 
and development of  atherosclerotic plaque[15].  

TLR4 IN HEALTH AND DISEASES
Among the toll like receptors, the best characterised form 
is the TLR4, which has found to have prominent role in 
the atherosclerosis[22]. The tissue slice from aorta of  ath-
erosclerotic plaque area showed an prominent expression 
of  TLR4 by immunohistochemical analysis[23]. 

The research studies on cardiovascular diseases shown 
that infection associated with C pneumonia found to 
have role in the progression of  atherosclerotic diseases[24]. 
It usually triggers the diseases by activating TLR4 recep-
tor to induce the migration and proliferation of  smooth 
muscle cells[25]. The patient with up regulated expression 
of  human TLR4 results in the elevation of  IL-12 expres-
sion on the downstream activation of  TLR4[22].

Lipopolysaccharide are released upon microbial infec-
tion and might triggers the plaque cells to promote the 
production of  different cytokines which initiates the pro-
gression of  plaque and its rupture which results in severe 
complications[26]. The up regulated expression of  hTLR4 
in patients results in the enhanced expression of  MYD88 
protein level[27]. Extensive genetic study on TLR4 gene 
showed that any polymorphism in TLR4 gene found to 
have slow down the progress of  atherosclerosis. It is due 
to the mutation on TLR4 (Asp 299 Gly and Thr 399ile) 
residues. The analysis on TLR4 polymorphism in differ-
ent patient showed that the patient with acute coronary 
syndrome showed less polymorphism were as healthy old 
people showed least polymorphism[28].
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ACTIVATION OF IMMUNE CELLS BY 
TLR4 SIGNALING
Macrophages and the endothelial cells are the main two 
types of  cells which primary respond to the microbial 
infection. TLR4 expression in macrophages triggers the 
local differentiation of  these cells to antigen presenting 
one[29,30]. Finally it act as the bridge between innate and 
adaptive immune response to local antigen such as heat 
shock proteins and OxLDL[31].

TLR4 AND ITS ROLE IN CHOLESTEROL 
METABOLISM
TLR4 has active role in cholesterol metabolism in mac-
rophages[8], which elucidates the process by which TLR4 
affect the disease pathology. It has been found that de-
ficiency in TLR4 gene was associated with reduction in 
the atherosclerotic lesion in cholesterol fed mice for six 
months[9]. The gene polymorphism in TLR4 results in 
the 25% reduction in plaque of  double mutant mice. The 
levels of  plasma cholesterol didn’t affect significantly on 
TLR4 deficiency. Over all the genetic polymorphism in 
TLR4 results in the reduction in levels of  cholesterol, 
conforming the active role of  TLR4 in atherosclerosis.

TLR4 SIGNALING IN ATHEROSCLEROSIS
The innate immune system can be activated by variety of  
pathogen by TLR4 signaling pathways[16,18]. Lipopolysa-
charide can specifically activates TLR4 ligand[31], which 
is the major component of  gram negative bacteria. Cho-
lesterol induced toxicity causes tissue injury and which 
releases cellular fibronectin and HSP60 which triggers the 
activation of  TLR4 receptor and results in the atheroscle-
rotic progression[32,33]. 

The activation of  TLR4 leads to the accumulation of  
different cells in the atherosclerotic walls like endothelial 
cells[20,30], macrophages[7,20,30], adventitial fibroblast[20,34] and 
dendric cells[20,35,36]. TLRs have two important domains 
like extracellular leucine rich (LRR) domain and intracel-
lular domain (TIR). When the TLR4 receptor stimulates, 
the TIR domain bind to TIR domain adaptor protein 
MYD88, then to adaptor protein (AD) to form TIRAP 
complex which is known as MYD88-MAIL and TIR 
domain consist of  adaptor inducing IFN-β (TRIF), the 
TRIF-related adaptor molecule (TRAM) resulting in two 
distinct signaling mechanism. MyD88-dependent and the 
MyD88-independent/TRIF-dependent pathways[37].

MAPKS ACTIVATION BY TLR4 
SIGNALING
TLR4 is widely expressed in atherosclerotic plaques and 
results in the activation of  macrophages and endothelial 
cells. There comes a link between TLR4/MAPKs/NF-
κB pathway in inducing inflammatory stress and ulti-

mately resulting in atherosclerotic plaque rupture[30]. 
Upon activation TLR4 receptor leads to the activation of  
IRAK associated protein TRAF6 which induces activa-
tion of  TAK1 and MKK6 via JNK/p38 to activates NF-
κB and resulting in the activation of  downstream signal-
ing to promote the progression of  the disease[38,39].

TLR4/MAPKS SIGNALING PATHWAY AS 
A THERAPEUTIC TARGET
TLR4 found to have an eminent role in the innate im-
mune system. When it comes in with microbial product 
TLR4 activates intracellular signaling pathway. The execu-
tion of  the mechanism is through NF-kB signaling path-
way. It is known that TLR4 induced NF-kB activation 
is an critical component in ancient host defence system, 
which is phylogenetically conserved in most of  insects 
and mammals[40].

The alterations in the mechanisms regulating the ac-
tivation of  MAPKs and NF-kB are responsible for the 
most of  inflammatory events[12]. In normal cells the NF-
kB resides in the cytoplasm and usually associated with 
Iκ-B, a family of  inhibitory proteins, which usually binds 
to NF-kB and inhibits the nuclear translocation[41]. NF-
kB usually regulates the cell survival and inflammatory 
stress on the active kB binding sites called the promoter 
gene[12]. Active NF-kB complexes are dimers of  combina-
tions of  Rel family polypeptides (p50, p52 and p65) that 
respond to a wide variety of  stimuli. The NF-kB subunit 
determines the biological effect by nuclear translocation 
and further binding to kB-regulatory elements[42,43].

Research study on MAPKs pathway suggests the ac-
tive participation of  MAPKs in the translocation of  NF-
kB subunits. Upon inflammatory stress the cells elicts 
inflammatory responses via MAPKs signaling pathway. It 
regulates various cellular activities like gene expression, 
mitosis, programmed cell death, etc. The phosphorylation 
of  MAPKs act as switch for tuning the activation of  tar-
get protein on/off[44,45].

Natural products have long been recognized as an 
important source of  therapeutically effective medicines. 
It is recognized that natural-product structures have great 
chemical diversity, biochemical specificity and other mo-
lecular properties that make them favourable lead struc-
tures[46]. There are several plant compounds which can be 
used to target this pathway. We have recently published 
our research paper on Robinin a bioflavonoid from Vigna 
unguiculata leaf[47,48] which selectively modulates TLR/NF-
kB signaling pathway in oxidized LDL induced human 
peripheral blood mononuclear cells[49]. Targeting of  
TLR4/MAPKs signaling pathway (Figure 1) is very essen-
tial for the therapeutic inhibition of  atherosclerosis. The 
activation of  TLR4 in turn activates cascades of  proteins 
and IKK dependent phosphorylation of  IκB. There is 
also an activation of  MAPKs which contribute to the dis-
sociation of  IκB and the nuclear translocation of  NF-κB 
p65 subunit (Figure 1) resulting in the activation of  key 
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ing pathway is one of  the best method for inhibiting ath-
erosclerosis.
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CONCLUSION
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for the therapeutics of  atherosclerosis, the leading cause 
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here. The TLR4 in turn activates the MAPKs and NF-kB 
which are responsible for most of  inflammatory events. 
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Abstract
Intraocular inflammation is an important cause of 
blindness both in the developing and developed world. 
Corticosteroids play a pivotal role in the treatment of 
intraocular inflammation. Lately, therapy by immuno-
suppression has taken the center stage for patients 
with severe intraocular inflammation. However, the side 
effects of immunosuppressive drugs are oncogenic, in-
fectious, and hematological. Recently, biologic response 
modifiers specifically targeting suppression of the im-
mune effector responses have revolutionized the treat-
ment of intraocular inflammation. Anti-tumour necrosis 
factor agents are etanercept, infliximab, and adalimum-
ab. Newer drugs include certolizumab and golimumab. 
Infliximab has been found to be superior to corticoste-
roids in treating retinal vasculitis. Anti-interlenkin thera-
pies include rituximab, daclizumab, anakinra, tocilizum-
ab and secukinumab. Rituximab has been proven to be 
quite effective. Other biologics used are interferons and 
abatacept. However, there are several limitations and 
side effects associated with their use.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Corticosteroids play a pivotal role in the treat-
ment of intraocular inflammation. Lately, therapy by 
immunosuppression has taken the center stage for 
patients with severe intraocular inflammation. However, 
biologic response modifiers specifically targeting sup-
pression of the immune effector responses have revolu-
tionized the treatment of intraocular inflammation.
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URL: http://www.wjgnet.com/2219-2824/full/v4/i2/122.htm  
DOI: http://dx.doi.org/10.5411/wji.v4.i2.122

INTRODUCTION
Intraocular inflammation accounts for 5% to 20% of  
blindness in the developed world and 25% in the devel-
oping world[1]. Though the prevalence of  retinal vascu-
litis is less, still the complexity and heterogeneity of  the 
disease makes it unique. The etiology of  most of  them 
is unknown. Uveitogenic proteins that can incite intra-
ocular inflammation include rhodopsin, retinal arrestin, 
recoverin, phosducin, retinal pigment epithelium derived 
(RPE-65) and inter-photoreceptor retinoid binding pro-
tein. These uveitogenic retinal antigens incite innate im-
munity by antigen mimicry and have been found to be as-
sociated in patients with intraocular inflammatory disease 
by numerous studies. Involved immunogenic pathway is 
similar for all types of  intraocular inflammation[2,3]. Over 
the last two decades, laboratory diagnostic tools have 
entered into an era of  molecular diagnostic tests. With 
the advent of  experimental and cellular biology, several 
biomarkers are being identified. Many uveitic diseases are 
known to be strongly associated with particular human 
leucocyte antigen (HLA) haplotypes. It has largely been 
supported by continued development of  experimental 
models of  autoimmune uveitis along with improved mo-
lecular biologic techniques. Novel sophisticated technolo-
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gies such as multiplex bead assays have revolutionized the 
management of  complex refractory uveitis. Despite the 
varied immune etiology, intraocular inflammation poses a 
significant therapeutic challenge given the heterogeneity 
of  the retinal vasculitis spectrum along with the pressing 
need and increasing expectations for personalised care. 
This review attempts to present the current concepts of  
immunotherapy in retinal vasculitis.

PHYSIOLOGICAL AND PATHOLOGICAL 
MECHANISM
Immune privilege guards the eye by mechanical seques-
tration behind an efficient blood-retinal barrier, local 
inhibition of  activation and functioning of  adaptive and 
innate immune cells, and systemic regulation by induction 
of  T regulatory cells[2]. On the other hand, it leaves the 
eye vulnerable to an autoimmune attack by lymphocytes 
primed elsewhere in the body by chance encounter with a 
self  or with mimic antigens. 

Immunohistologically, retinal vasculitis is character-
ized by an infiltration of  mainly cluster differentiation 4 
(CD4 +) T cells. Posterior uveitis in humans is considered 
to be a T cell-mediated autoimmune disease. Importance 
of  T cells is highlighted by the fact that cyclosporin A 
can be effective in arresting the disease progression in 
many cases[4]. In an experimental model, the ability to 
adaptively transfer disease using activated retinal antigen-
specific CD4 + T cells is further evidence of  CD4 + T 
cell-mediated processes inducing the irreversible destruc-
tion of  the photoreceptor cells of  the retina[5]. The CD4 
interacts directly with major histocompatibility complex 
(MHC) class Ⅱ molecules on the surface of  the antigen-
presenting cell. Recognition of  the MHC peptide com-
plex by CD4 + T cells leads to secretion of  cytokines. 
T Helper cells (Th) were divided into two subsets: Th1 
and Th2. Th1 subset secretes Interferon-γ (IFN-γ) and 
Interleukin-2 (IL-2) responsible for cellular anti-viral im-
munity, and a Th2 subset secretes IL-4 required for blood 
borne parasitic responses. CD4 + Th1 cells and IFN-γ are 
considered to be the major effectors in the pathogenesis 
of  experimental autoimmune uveitis[6]. Another subset 
of  regulatory CD4 + T cells that secrete IL-10 and trans-
forming growth factor-β (TGF-β) was added[7]. However, 
the presence of  inflammatory diseases in IFN-γ-deficient 
mice indicated existence of  other Th cell subsets and 
led to the discovery of  the Th17 subset secreting IL-17 
and IL-23[8]. Recently, other Th cell subsets have been 
assigned on the basis of  the secretion of  IL-9 (Th9) or 
IL-21 (T follicular helper)[9].  

CYTOKINE PROFILE IN RETINAL 
VASCULITIS
Ooi et al[10] conducted a systematic review on inflam-
matory cytokines in uveitis of  various etiologies. Few 
studies were conducted by us to ascertain the cytokine 
profile in Eales’disease. Following is a description of  the 

cytokines involved in some of  the important causes of  
retinal vasculitis.

Eales’ disease (retinal periphlebitis)
Eales’ disease is an idiopathic obliterative vasculopathy 
that primarily affects the peripheral retina of  young 
adults. Role of  tumor necrosis factor-alpha (TNF-α) 
in Eales’ disease was evaluated by us in several studies. 
In one such study, quantification of  the TNF-α levels 
was carried out in young adults with Eales’ disease and 
healthy controls of  similar age. TNF-α level was found to 
be significantly raised in cases as compared with controls. 
It was also observed that higher levels of  TNF-α were 
associated with increased severity of  Eales’ disease which 
was graded according to a new grading system based on 
severity of  inflammation[11]. In another study, we evalu-
ated the levels of  TNF in the serum of  52 patients with 
proliferative stage of  Eales’ disease and in 32 healthy 
controls to study its relation with the area of  retinal cap-
illary non-perfusion (ischemic retina). TNF levels were 
significantly increased in the proliferative stage of  the 
disease as compared to controls and higher levels were 
associated with an increased area of  retinal capillary non-
perfusion on fluorescein angiography. It was concluded 
that increased TNF level in proliferative Eales’ disease 
is related to retinal cell death signaling[12]. We conducted 
another study in which we for the first time evaluated IL-
1β, IL-6, IL-10, and TNF-α in the serum of  45 consecu-
tive patients with Eales’ disease and in 28 healthy con-
trols. It was found that levels of  IL-1β, IL-6, IL-10, and 
TNF-α were significantly increased in the inflammatory 
stage of  Eales’ disease as compared to controls. Also it 
was observed that IL-1β levels decreased significantly and 
TNF-α levels increased significantly during the prolifera-
tive stage of  the disease as compared to the inflammatory 
stage. It was concluded that for controlling inflammatory 
activity and/or the associated long-term sequelae related 
to angiogenesis in Eales’ disease, IL-1 system and TNF- 
α represent novel target for immunotherapy[13].

Behcet’s disease
It is a systemic vasculitis with recurrent ocular involve-
ment as uveitis and retinal vasculitis. HLA-B51 pheno-
type association has been found. Raised intraocular levels 
of  the following immune factors have been found: IL-2, 
IL-6, IFN-γ and TNF-α. Recurrent episodes of  Behcet’
s disease-related uveitis has been found to be positively 
correlated with serum TNF-α levels[14].

Sarcoidosis
An acute or chronic granulomatous uveitis of  unknown 
etiology involving the anterior, intermediate or posterior 
uveal layers. The aqueous immune profile of  patients 
with sarcoidosis revealed elevated levels of  IL-1α, IL-6 
and IL-8[10,15].

Vogt-koyanagi-harada disease
A multisystem chronic granulomatous disorder associated 
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with HLA-DR1 and HLA-DR4 phenotype with ocular 
manifestation as a chronic, bilateral panuveitis. Raised 
intraocular levels of  the following immune factors have 
been identified: IL-6, IL-8 and IFN-γ[16].

Fuchs’ heterochromic iridocyclitis 
A chronic typically unilateral anterior uveitis syndrome 
with or without associated glaucoma. One study found 
IFN-γ to be raised in aqueous samples of  patients with 
FHC when compared to patients with idiopathic uveitis. 
Higher levels of  IL-10 was found in larger number of  
FHC samples than of  idiopathic uveitis (not statistically 
significant)[17].

Idiopathic uveitis
The commonest form of  uveitis and has been found to 
be associated with increased intraocular levels of  IL-1β, 
IL-2, TNF-α, IFN-γ, IL-6, IL-8 and MCP-1[16,18] .

Ankylosing spondylitis
A chronic inflammatory disorder of  the axial skeleton 
with a strong association with HLA-B27 phenotype 
which manifests in the eye as severe acute anterior uveitis. 
Reports have revealed elevated intraocular levels of  IL-2, 
IFN-γ, IL-6 and TNF-α[15].

IMMUNOTHERAPY
Corticosteroids and immunosuppressants
Corticosteroids played a pivotal role in the treatment 
of  intraocular inflammation in the early 1950s, later on 
therapy by immunosuppression took the center stage for 
patients with severe intraocular inflammation. Now with 
the proteomic labeling, we can target specific cytokine 
pathway and deliver targeted therapy for patients with in-
traocular inflammation. We have now probably embarked 
on much specialised stratified care[4,5,18-23]. The treatment 
of  noninfectious posterior uveitis can lead to severe 
vision loss, and the first-line conventional treatment 
includes systemic steroids. When the prednisone doses 
necessary to control intraocular inflammation are above 
0.3 mg/d, a therapeutic association is proposed in order 
to lower the daily prednisone dose. The combined drugs 
are immunosuppressive or immunomodulative. The 
side effects of  immunosuppressive drugs are oncogenic, 
infectious, hematological and can involve reproductive 
troubles, associated with specific toxic effects depending 
on the drug used. We undertook a tertiary care center-
based prospective interventional study to evaluate the 
response time and safety profile of  low-dose oral metho-
trexate pulsed therapy in Eales’ disease. Twenty one con-
secutive patients with idiopathic retinal periphlebitis were 
administered 12.5 mg methotrexate as a single oral dose, 
once per week for 12 wk. Drug safety was monitored by 
various laboratory tests that included twice-weekly white 
blood cells and differential counts, twice-weekly plate-
let counts, and monthly liver function tests for a mean 
follow-up period of  6 mo. It was found that all patients 

showed improvement in visual acuity. All the side effects 
of  methotrexate were mild to moderate in severity and 
rapidly reversible on dose reduction or discontinuation. 
We concluded that low dose oral methotrexate pulse 
therapy (at a dose of  12.5 mg/wk) is clinically effective 
within 4 wk and is associated with an acceptable safety 
profile[24]. Conventional therapy with corticosteroids and 
immunosuppressive agents (such as methotrexate, azathi-
oprine, mycophenolate mofetil and cyclosporine) may not 
be sufficient to control ocular inflammation or prevent 
non-ophthalmic complications in refractory patients. In 
a study conducted by us, efficacy of  combined oral corti-
costeroid and low-dose oral methotrexate pulsed therapy 
in Eales’ disease was evaluated prospectively based on 
weighted visual morbidity scale for disease activity and 
visual acuity grading in 36 consecutive cases. Oral cor-
ticosteroids in a weekly tapering dose for 4 wk and 12.5 
mg methotrexate as a single oral dose, once per week for 
12 wk were administered simultaneously. We concluded 
that this combined oral therapy is clinically effective with 
an acceptable safety profile[25].

Biologic response modifiers
Biologics specifically target inflammatory cytokines and 
cause suppression of  the immune effector responses that 
are responsible for damaging tissues. They were first used 
for ocular inflammation in 1990s. Commonly used bio-
logics are anti-TNF agents and anti-interleukins. Now we 
have entered into an era of  recombinant cytokines. 

Anti TNF-α  agents
TNF-α is a pleiotropic inflammatory cytokine. It plays a 
pivotal role in down-regulating both inflammatory and 
the immune response. Thus, blockade with anti-TNF 
agents has turned into the most important tool in the 
management of  retinal vasculitis. The three most com-
monly used TNF inhibitors in the US are infliximab, 
etanercept and adalimumab. Newer drugs include certoli-
zumab and golimumab. 

Infliximab: Infliximab is a chimeric immunoglobu-
lin G1 (IgG1) monoclonal antibody with the antigen-
binding region derived from a mouse antibody and the 
constant region from a human antibody[26]. It binds to 
TNF-α with high affinity thereby blocking the binding 
of  TNF-α to its receptor. One of  the considerations 
in giving infliximab is that it can potentially induce an-
tinuclear antibody and anti-double stranded DNA on 
long term therapy[27,28]. Early monitoring and optimizing 
dose regimens can be useful in patients on long term 
infliximab therapy. Side effects are autoimmune diseases 
which improve on stopping the drug, blood dyscrasias, 
allergies secondary to infusion, fever, fatigue, upper re-
spiratory chest infection, headache, gastrointestinal up-
set, headache.

Adalimumab: Adalimumab is a fully humanized recom-
binant IgG1 monoclonal antibody with high binding to 
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multi-systemic sarcoidosis and refractory retinal vascu-
litis was emphasized in a case report in which 2 patients 
experienced an excellent response to infliximab[31]. A 
retrospective noncomparative case series was conducted 
on 6 pediatric patients with uveitis refractory to metho-
trexate, cyclosporine, mycophenolate mofetil, etanercept, 
daclizumab and topical steroids. These patients initially 
received infliximab at doses between 5 and 10 mg/kg at 
2 to 4 wk interval and then were maintained at 4 to 8 wk 
interval at doses of  5 to 18 mg/kg. Reduction in intra-
ocular inflammation after infliximab therapy initiation 
was seen in all the patients. The only adverse reactions 
seen were vitreous hemorrhage in 1 patient and a case 
of  transient upper respiratory infusion reaction. It was 
concluded that for the treatment of  refractory pediatric 
uveitis, infliximab seems to be an effective agent with-
out apparent serious toxicity[32]. To evaluate the clinical 
response after switching from infliximab to adalimumab, 
a prospective, longitudinal and observational study was 
conducted in 69 patients with Behcet’s disease. Seventeen 
patients were switched to adalimumab for lack or loss 
of  efficacy or infusion reactions to infliximab. Of  the 17 
treated patients, 9 showed sustained remission of  the dis-
ease and 3 showed good response. No side effects were 
observed in any patient. They concluded that adalimumab 
can be used to treat patients with Behcet’s disease show-
ing a scarce response or adverse events to infliximab[33]. 
A study was conducted to alert physician for timely rec-
ognition and to evaluate current treatment of  recurrent 
hypopyon iridocyclitis or panuveitis in Behçet’s disease. 
It was found that for the control of  acute panuveitis, a 
single infliximab infusion should be considered, whereas 
in reducing the number of  episodes in refractory uveo-
retinitis with faster regression and for complete remission 
of  cystoid macular edema, repeated long-term infliximab 
infusions proved to be more effective[34]. Rifkin et al[35] 
studied current status of  three of  the five commercially 
available TNF inhibitors-etanercept, infliximab, and adali-
mumab for their efficacy in treatment of  ocular inflam-
mation. They found etanercept to be inadequate in con-
trolling ocular inflammation. Infliximab and adalimumab, 
however, showed encouraging results in multiple trials[35]. 
There are only two reports in the literature about the use 
of  golimumab in uveitis, describing four patients with ju-
venile idiopathic arthritis-associated uveitis and a case of  
idiopathic retinal vasculitis. Mesquida et al[36] first reported 
about the use of  golimumab in Behçet’s disease. William 
et al[37] reported good outcomes using golimumab in three 
patients with juvenile idiopathic arthritis. 

Anti-interleukin therapies
Rituximab: Rituximab (first used in the treatment of  
Non Hodgkin’s B cell lymphoma) is a recombinant 
chimeric monoclonal antibody with binding efficacy to 
CD20. It works by blocking CD20-bearing B cells. Side 
effects are severe stomach pain with constipation, bloody 
or tarry stools, coughing up blood or vomit that looks 
like coffee grounds, painful blistering skin rash with 

human TNF-α. Side effects are gastrointestinal distur-
bances including haemorrhage, hyperlipidaemia, hyper-
tension, chest pain, tachycardia, cough, dyspnea, mood 
changes, paraesthesia, haematuria, renal impairment, 
electrolyte disturbances, hyperuricaemia, musculoskeletal 
pain, eye disorders (visual impairment, conjunctivitis, 
blepharitis, eye swelling), rash, dermatitis.

Etanercept: Etanercept is a soluble fusion protein and 
prevents both TNF-α and TNF-β from interacting with 
receptors. It consists of  2 dimers of  higher affinity type 
2 TNF receptors. Side effects include headache, infection 
like upper respiratory tract infections, urinary tract infec-
tions, butterfly rash on cheeks, dizziness, fatigue, swell-
ing of  the arms/legs, unusual bruising/bleeding, severe 
headache, mental/mood changes, seizures, unexplained 
muscle weakness, numbness/tingling of  the hands/feet, 
unsteadiness, vision changes, severe stomach/abdominal 
pain.

Golimumab: Golimumab is a novel fully humanized 
anti-TNFα monoclonal antibody. Side effects include 
body aches or pain, chills, cough, difficulty with breath-
ing, ear congestion, fever, headache, loss of  voice, muscle 
aches, sneezing, sore throat, stuffy or runny nose, unusual 
tiredness or weakness. Blurred vision, burning, crawl-
ing, itching, numbness, prickling, “pins and needles”, or 
tingling feelings, congestion cough with mucus diarrhea, 
dizziness, general feeling of  discomfort or illness, hoarse-
ness, joint pain, loss of  appetite, muscle aches and pains, 
nausea, nervousness, pain or tenderness around the eyes 
and cheek bones, painful cold sores or blisters on the lips, 
pounding in the ears, shivering, shortness of  breath or 
troubled breathing, slow or fast heartbeat, sweating, ten-
der/swollen glands in the neck.

Anti-TNF-α agents have improved the treatment 
armamentarium for refractory immune-mediated uveitis 
particularly in Behçet disease-associated uveitis. A pro-
spective observational study of  patients with panuveitis 
was undertaken in which 19 eyes received an infliximab 
infusion, 8 eyes received high-dose methylprednisolone 
intravenously and 8 eyes received intravitreal triamcino-
lone acetonide at attack’s onset. Unchanged baseline 
maintenance therapy was continued for 30 d. Visual 
acuity, anterior chamber cells, vitreous cells and inflam-
mation of  the posterior eye segment were assessed at 
baseline and at days 1, 7, 14 and 29 post-treatment. Inf-
liximab was superior to corticosteroids in treating retinal 
vasculitis as well as in resolution of  retinitis and cystoid 
macular oedema[29]. A study was conducted in which anti-
TNFα therapy was administered in 15 patients of  chron-
ic non-infectious uveitis when no response had been 
obtained with classical immunosuppressive therapies 
or in the presence of  severe rheumatoid disease. Mean 
duration of  ocular disease was 8 years. Treatment was 
initiated with infliximab, etanercept, and adalimumab. It 
was concluded that anti-TNF-α therapy is effective and 
safe[30]. Importance of  TNF-α in the pathophysiology of  
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burning, itching, or tingly feeling, or upper stomach pain, 
vomiting, loss of  appetite, dark urine, clay-colored stools, 
jaundice (yellowing of  the skin or eyes), runny or stuffy 
nose, sinus pain, sore throat, headache, dizziness, itching, 
or mild stomach cramps.

Daclizumab: Daclizumab is a recombinant monoclonal 
antibody of  the human IgG1 isotype composed of  90% 
human and 10% mouse antibody sequences that bind 
to CD25 with high affinity and inhibit IL-2-mediated 
responses of  activated T cells. It was withdrawn in 2009 
based on a report by Wroblewski et al[38] according to 
which four of  39 patients developed solid malignant tu-
mor while on daclizumab over a follow up period of  11 
years. Side effects include poor wound healing, unusual 
growths/lumps, swollen glands (e.g., on the neck, in the 
armpits), unexplained weight loss, night sweats, easy 
bruising/bleeding, abdominal pain/swelling, unusual 
tiredness. A very serious allergic reaction to this drug is 
rare.

Anakinra: Anakinra is a recombinant non-glycosylated 
homologue of  HuIL1Ra, a natural immunomodulating 
molecule, which competitively inhibits binding of  IL1α 
and IL1β to the IL1 receptor type 1. Side effects are in-
fections, nausea or diarrhea, headache, sinus infection, or 
redness, bruising, pain, or swelling at the injection site.

Tocilizumab: Tocilizumab is a recombinant humanized 
monoclonal antibody and inhibits IL-6 mediated respons-
es by binding to both membrane-bound and soluble IL-6 
receptors with high affinity. 

Secukinumab: Secukinumab is a fully humanized IgG1k 
monoclonal antibody neutralizing IL-17A. 

Sadreddini et al[39] reported treating a patient with vi-
sual loss due to retinal vasculitis resistant to prednisolone 
and azathioprine with rituximab successfully with a sus-
tained remission of  24 mo of  follow-up. Severe retinal 
vasculitis is a potentially blinding complication of  pa-
tients with systemic lupus erythematosus (SLE). Hickman 
et al[40] first reported that rituximab can be used to treat 
severe bilateral SLE-associated retinal vasculitis. This case 
suggested that rituximab-induced B-cell depletion may 
provide an important new therapeutic option in such re-
fractory cases. A study was conducted to evaluate the ef-
ficacy of  rituximab in patients with retinal vasculitis and 
edema, resistant to cytotoxic drugs. Twenty patients were 
randomized to a rituximab group or cytotoxic combina-
tion therapy group. Rituximab was given in two 1000-mg 
courses (15-d interval). Subjects received methotrexate 
(15 mg/weekly) with prednisolone (0.5 mg/kg per day). 
The cytotoxic combination therapy group received pulse 
cyclophosphamide (1000 mg/monthly), azathioprine (2-3 
mg/kg per day) and prednisolone (0.5 mg/kg per day). 
It was concluded that rituximab was efficient in severe 
ocular manifestations of  Behcet’s disease as significant 
improvement after 6 mo was seen with rituximab, but 

not with cytotoxic drugs[41]. A pilot study aimed to evalu-
ate the safety, pharmacokinetics and clinical activity of  
gevokizumab in Behçet’s disease patients with uveitis was 
conducted. Patients with acute posterior or panuveitis 
and/or retinal vasculitis, receiving 10 mg/d or less of  
prednisolone and resistant to azathioprine and/or cyclo-
sporin were enrolled into the study. Patients received a 
single infusion of  gevokizumab (0.3 mg/kg) and immu-
nosuppressive agents were discontinued at baseline. On 
evaluation of  the safety and uveitis status and pharmaco-
kinetics of  gevokizumab, it was found that no treatment-
related adverse event was observed and rapid and durable 
clinical response was seen in all patients. Complete reso-
lution of  intraocular inflammation was achieved in 4-21 d, 
with a median duration of  response of  49 d. Moreover, 
despite discontinuation of  immunosuppressive agents 
and without the need to increase corticosteroid dosages, 
the effect was observed[42]. In addition, a clinical trial 
is underway for the use of  anakinra in Behcet’s disease 
(clinical trial reference number NCT01441076). Muselier 
et al[43] showed tocilizumab to be effective in treatment of  
refractory uveitis. Secukinumab has proved to be quite 
effective in the treatment of  patients with anterior and 
posterior uveitis with no serious adverse effects[44].

Interferons 
(1) IFN α; (2) Recombinant IFN α-2a (Roferon-A); (3) 
Recombinant IFN α-2b (Intron A); and (4) Pegylated 
interferons.

Interferon-α: Interferon α-2A and Interferon α-2B 
are human recombinant interferons manufactured us-
ing recombinant DNA technology with E. coli to pro-
duce human proteins. It is a type Ⅰ interferon and has 
been used in the treatment of  uveitis due to its anti-
proliferative, anti-angiogenic, apoptotic effects and the 
ability to activate dendritic, cytolytic T and natural killer 
cells. A prospective, open clinical trial was conducted to 
study long term effects of  interferon α-2A on panuveitis 
in seven patients with Behçet’s disease. IFN α-2A was 
given for a mean duration of  23.6 mo in seven patients. 
Initial dose of  IFN α-2A was 6 × 106 IU/d, followed by 
3 × 106 IU/d after 1 mo and 3 × 106 IU every other day 
after 3 mo. Additionally in the beginning of  the therapy, 
two patients received low dose prednisolone (between 0.2 
and 0.4 mg/kg per body weight). In three patients com-
plete cessation of  IFN α-2A was possible (observation 
period was 22, 6, and 4 mo). Six patients who had ocular 
manifestations of  Behçet’s disease for the first time or 
with minor damage during their course of  chronic re-
lapsing panuveitis showed marked improvement. New 
relapses were prevented in one patient with advanced 
ocular Behçet’s disease. Resolution of  retinal infiltrates 
occured within 2 wk and retinal vasculitis within 4 wk. It 
was found that complete remission of  retinal vasculitis 
occurred in all patients treated with IFN α-2A alone or 
in combination with low dose steroids. It was concluded 
that retinal or optic nerve damage due to vascular occlu-
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sion can be prevented by treatment with IFN α-2A. No 
severe side effects were found[45]. Evaluation of  the ef-
ficacy of  interferon needs to be done in other etiologies 
of  retinal vasculitis through randomized studies[46,47]. An-
other study was conducted to evaluate the long-term de-
velopment of  visual acuity in patients with severe ocular 
Behcet’s disease who were treated with IFN α-2A. Fif-
teen eyes of  9 patients with an active panuveitis and/or 
retinal vasculitis due to Behcet’s disease refractory to im-
munosuppressive treatment were included. Visual acuity 
before initiation of  IFN was compared to visual acuity 
at the end of  the follow-up. Increase in visual acuity of  
two lines or more was seen in 10 eyes during the follow-
up. In 5 eyes visual acuity remained stable. No decrease 
of  visual acuity in any eye was seen. In the presence of  
macular edema, quick response to IFN α-2A was seen. 
It was concluded that IFN α-2A seems to be much more 
effective to prevent a loss or decrease of  visual acuity 
over a long period of  time in patients with severe ocular 
Behcet’s disease compared to conventional immunosup-
pressants[48].

Fusion protein of cytotoxic T- lymphocyte antigen 4
Abatacept: It is a fusion protein that prevents activation 
of  T cells by barring antigen presenting cells from deliv-
ering the co-stimulatory signals. There are case reports 
and case control studies reporting on the effectiveness of  
abatacept in the treatment of  refractory uveitis in patients 
with juvenile idiopathic arthritis[49].

IMPORTANT CONSIDERATION
These drugs are contraindicated in patients with tuber-
culosis or any active infection and in patients with preg-
nancy or breast feeding. Patients should be instructed 
to avoid pregnancy till 5 mo after stopping last dose of  
biologics. Before prescribing them, malignant conditions 
should be ruled out. Baseline blood counts, liver function 
tests and Glucose should be measured and subsequently 
at every 4 wk for three months followed by every 6 wk. 
If  patient develops fever, sore throat or bleeding then 
examination by a physician needs to be done. Demyelin-
ating diseases should be ruled out before starting these 
drugs as TNF-α agents can aggravate multiple sclerosis. 
Caution should taken as reduced immunity can lead to 
increased risk of  infection including flare up of  latent 
tuberculosis. Also, worsening of  heart failure can occur if  
already present.

LIMITATIONS
There is no proven causal relationship as yet with any 
of  these novel biomarkers, though there is association 
of  these biomarkers with some specific uveitis entities. 
Whether it is the disease leading to release of  a specific 
biomarker or is it the inflammatory cytokine causing the 
disease is yet to be determined in future research. In addi-
tion, biologic response modifiers are expensive and with 

life threatening risks. Hence, a specialist experienced with 
immunology and the pathophysiology of  inflammatory 
diseases has to supervise. Strict monitoring with aware-
ness of  the adverse effects is needed in rendering this 
specific therapy in refractory uveitis patients.

CONCLUSION
With the advent of  experimental and cellular biology, 
cytokines are increasingly being recognized as biologi-
cal markers in intraocular inflammatory diseases. Several 
experimental models and improved molecular biologic 
techniques have supported it. Biologics provide custom-
ized ocular therapy. As shown by various studies and ran-
domized controlled trials, they have been found to be ef-
fective in several systemic diseases. Many biologic agents 
have been found to be efficacious in refractory anterior 
and posterior uveitis, particularly Behcet’s disease. With 
the advent of  novel and advanced sophisticated tech-
niques, newer cytokines are being found. The efficacy of  
biologic therapies and their comparison with each other 
are being studied in various randomized controlled trials. 
In future, evidence based medicine will pave way for tai-
lored treatment by specific biologic regime.
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