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Abstract
Mammalian chitinases and the related chilectins 
(ChiLs) belong to the GH18 family, which hydrolyse 
the glycosidic bond of chitin by a substrate-assisted 
mechanism. Chitin the fundamental component in the 

coating of numerous living species is the most abundant 
natural biopolymer. Mounting evidence suggest that the 
function of the majority of the mammalian chitinases 
is not exclusive to catalyze the hydrolysis of chitin 
producing pathogens, but include crucial role specific in 
the immunologic activities. The chitinases and chitinase-
like proteins are expressed in response to different 
proinflammatory cues in various tissues by activated 
macrophages, neutrophils and in different monocyte-
derived cell lines. The mechanism and molecular 
interaction of chitinases in relation to immune regulation 
embrace bacterial infection, inflammation, dismetabolic 
and degenerative disease. The aim of this review is to 
update the reader with regard to the role of chitinases 
proposed in the recent innate and adaptive immunity 
literature. The deep scrutiny of this family of enzymes 
could be a useful base for further studies addressed to 
the development of potential procedure directing these 
molecules as diagnostic and prognostic markers for 
numerous immune and inflammatory diseases. 

Key words: Chitinases; Chitinase like proteins; Chronic 
inflammation; Immune regulation; Autoimmunity

© The Author(s) 2016. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: The chitinases and chitinase-like proteins are 
expressed in response to different pro-inflammatory 
signals by activated macrophages and in different 
monocyte-derived cell lines. The mechanism and mole
cular interaction of chitinases in the immune regulation 
embrace bacterial infection, inflammation, dismetabolic 
and degenerative disease. The concept of the chitinases 
involvement in human diseases discussed herein may 
stimulate the development of new studies leading to a 
deeper understanding on the biochemical mechanisms 
inducing chitinases regulation and on the consequences 
that the increases in chitinases levels impact with 
immunity and autoimmunity in different conditions. The 
future understanding on chitinase functions will lead 
to the opportunity to develop selective and specific 
chitinase inhibitors.
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INTRODUCTION
Mammalian chitinases and the related chilectins (ChiL) 
belong to the GH18 family[1]. Chitinases embraces 
members both with and without glycohydrolase enzy­
matic activity against chitin. Chitotriosidase (CHIT1) 
and acidic mammalian chitinase (CHIA) are recognized 
as true chitinase because are the only two chitinases 
demonstrating chitinolytic (glycohydrolase) activity[2]. 
In contrast none of the other mammalian chitinases, 
encompassing chitinase 3-like-1 (CHI3L1), chitinase 
3-like-2 (CHI3L2), chitinase domain–containing 1 
(CHID1), display enzymatic activity in the face of the 
retention and conservation of the substrate-binding 
cleft of the chitinases[3] and for this reason they are 
called chitinase-like-lectins (Chi-lectins) or chitinase-like 
proteins (C/CLPs). Mammalian chitinases with enzymatic 
activity have a chitin binding domain containing 
six cysteine residues predisposed for the binding of 
chitin[4]. Instead, CLPs do not contain such typical 
chitin-binding domains, but still can bind to chitin with 
high affinity[5]. A number of evidence reports that the 
expression of the majority of the mammalian chitinases 
is differentially regulated during specific immunologic 
activities and has important biological roles in chronic 
inflammatory diseases[6-8]. Additionally chitinases 
have been widely shown to have an antipathogen 
function, through their capability to degrade both 
colloidal chitin and chitin in the cell wall of the fungal 
pathogen. Similarly, mammalian ChiLs may play a 
role in immunomodulation. The majority of chitinase 
families are produced by monocyte/macrophages 
lineage. In addition, macrophages induce inflammatory 
responses by producing cytokines, chemokines, and 
lipid mediators. Interestingly, chitinase play a role in 
modulating the local and/or circulating concentration 
of chitins in the body and, therefore, in regulating the 
immune response to this polysaccharide. Hypothetically, 
when exogenous chitin from sources such as fungi or 
dust mites are present in the tissues, chitinases act by 
cleaving chitin which consequently prevent chitin from 
stimulating immune responses. Hence, it is possible 
that without active chitinases, chitin accumulate in 
tissues triggering an excessive inflammatory response. 
Therefore is clear that induction of chitinase and CLPs is 
associated with inflammatory disease, including allergy, 
asthma, dismetabolic and degenerative diseases and 
several types of cancer[9].

In the last decade various investigations have brought 
new insights on the immune properties of chitinases 
and their functions in inflammatory pathologies. Both 
chitinases and CLPs can activate specific receptors and 

signaling pathways stimulating immune mediators’ 
generation and amplification of inflammation. New 
studies are helping to understand the beneficial as well 
the detrimental properties of chitinases. Characterizing 
the role of induced chitinases activity promises interest­
ing perspectives. As well, understanding the molecular 
signalling pathways involved in the immune function 
influenced by chitinases might be a valuable approach to 
investigate new therapeutic alternatives for pathological 
conditions in which the increased immune response and 
inflammation are involved.

CHITOTRIOSIDASE AND IMMUNITY
CHIT1 was the first mammalian chitinase measured in 
disease states[4]. CHIT1 has been encompassed as one 
of the secreted biomarkers for Gaucher’s disease[10]. 
The elevation of CHIT1 in these patients may reflect a 
particular state of activation of macrophages[11]. CHIT1 
is a very critical enzyme to regulate the susceptibility 
to infection of organisms containing chitin as structural 
components[2]. 

The CHIT1 gene is localized in chromosome 1q31-
q32[12] and consists of 12 exons and spans approximately 
20 kb of genomic DNA[12]. Recombinant CHIT1 inhibits 
hyphal growth of fungi, suggesting a physiological role 
in the host defense mechanism against the invasion/
attack of chitin-containing pathogens[13] which to act as 
adjuvants by stimulating the production of cytokines 
and chemokines[6]. Further evidence indicates that 
the enzymatic role of CHIT1 extends to bacteria[4,13]. 
Usually, CHIT1 activity is very low and originates in 
the circulating polymorphonuclear cells[12]. CHIT1 rises 
significantly in response to various pro-inflammatory 
signals in a complementary fashion in neutrophils and 
macrophages[4]. The evidence that TLR signaling is a 
potent inducer in neutrophils, while NOD-2 signaling 
induces CHIT1 in macrophages[14], strongly confirms the 
importance of this enzyme in the immune response. A 
defect in CHIT1 gene consisting of 24-bp duplication in 
exon 10 that activates a cryptic 39 splice site in the same 
exon generates an abnormally spliced mRNA with an 
in-frame deletion of 87 nucleotides. This spliced mRNA 
encodes an enzymatically inactive protein that lacks an 
internal stretch of 29 amino acids[12]. CHIT1 deficiency 
appears as an autosomal incompletely dominant 
disorder, with no activity in homozygous subjects for the 
defective allele and approximately half-normal activities 
in heterozygous subjects. CHIT1 gene mutation has 
been encountered with high incidence in different 
Caucasian populations[12], instead, in African peoples 
living in malaria parasite endemic areas CHIT1 mutation 
shows a low prevalence. The absence of homozygosis 
for CHIT1 deficiency in malaria endemics area suggests 
the hypothesis that susceptibility to parasitic disease 
influences the CHIT1 allele composition. In sub-Saharan 
regions the maintenance of the wild-type CHIT1 gene 
confirms that CHIT1 provides innate protection from 
malaria infection[15]. As well the studies reporting that 
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individuals bearing the mutant allele exhibit an increased 
susceptibility to chitin-containing pathogens including 
Wuchereria bancrofti filarial, Plasmodium falciparum 
malaria, Cryptococcus neoformans and Candida 
albicans[16] confirmed the CHIT1 allele arrangement 
hypothesis. Nevertheless, in others studies have been 
reported that a functional polymorphism produces 
protective effect in human longevity[17] and protects 
from nonalcoholic fatty liver disease progression[18]. 
CHIT1 may have organ- as well as cell-specific effects 
in the setting of infectious diseases and inflammatory 
disorders. In fact, CHIT1 overexpression in Kupffer cells 
is involved in the modulation of the tissue remodeling 
processes in fibroblastic hepatic tissue[18]. Furthermore, 
the CHIT1 produced by macrophages enhances 
atherosclerotic plaques formation and subsequent throm­
bosis[19]. Therefore this enzyme produced by differenti­
ated macrophages can also be damaging to host tissues 
and are implicated in the progression of a number of 
chronic inflammatory diseases[20]. In this context, it 
is important to note that CHIT1 displays different role 
in the specialized macrophages. CHIT1 modulation 
changed during the diverse stages of macrophages 
maturation and in polarized M1 and M2 macrophages[6]. 
This data could explain why the expression of CHIT-1 
is particularly elevated in the later inflamed stages of 
infection-induced diseases such as tuberculosis and 
leprosy[21,22]. Remarkably, was also reported that in 
monocytes interleukin-4 (IL-4) treatment induced a 
significant increase on CHIT-1 expression[6]. Since IL-4 
promotes immune responses to parasites, this finding 
set straight why CHIT-1 increased secretion is closely 
associated with pathophysiological conditions dominated 
by T-helper type 2 (Th2) cells including infections with 
fungal pathogens and malaria parasites, fibrosis, allergy, 
and asthma[23-25]. Macrophages are involved in both 
generation of fibrosis and its resolution. Conversely 
M2 polarization generates a positive feedback loop 
during resolution of inflammation, therefore it is unclear 
what are the events influencing M2 differentiation and 
interrupting tissue repair/remodeling as well fibrotic 
outcomes. The finding reporting that CHIT1 increases 
in M2 subset suggest that CHIT1 could be involved in 
the modulation of the extracellular matrix affecting cell 
adhesion and migration during the tissue remodeling 
processes that take place in fibrogenesis[26,27]. CHIT1 is 
also involved in human airway hyper-responsiveness 
and asthma[28], as well as being active to IL-13-driven 
alveolar fibrosis by augmenting transforming growth 
factor beta (TGFβ) and mitogen-activated protein kinase 
signaling in mice[29]. Therefore, it is conceivable that 
chitinase inhibition might have beneficial effects on the 
expression of genes associated with tissues remodeling. 
Additionally, the recent findings demonstrating that 
CHIT1 is not exclusively produced by macrophages 
but is expressed in other cells involved in the immune 
response such as osteoclasts[30,31] and monocyte-derived 
DCs[32] confirm the active role of CHIT-1 in the immune 

response and in disease states where inflammatory 
responses prevail[21,22,28,33-35]. 

ACIDIC MAMMALIAN CHITINASE AND 
IMMUNITY
The second true chitinase called AMCase or CHIA has a 
30-kDa N-terminal catalytic domain that hydrolyze chitin, 
and it expressed mainly in the gastrointestinal tract and 
lung of both mouse and human[36]. Similarly to CHIT1, is 
located on chromosome 1q13.1e 21.3, and in addition 
to the N-terminal catalytic domain acidic mammalian 
chitinase (AMCase) contain a C-terminal chitinase binding 
domain[5]. The presence of AMCase in the gastrointestinal 
tract and lung indicates that it plays a crucial role as a 
food processor in stomach and its involvement in lung 
inflammation[5,37]. As well, the expression of AMCase 
in the lung suggests that the enzyme may have a 
dual function in digestion of chitinous substrates and 
host defense[38]. This enzyme plays protective role 
against parasites. AMCase acts as chemotactic agents 
and synergistically with other chemokines attracting 
eosinophils and T cells to sites of parasitic infection, 
appears to modulate tissue inflammation, immunity, and 
therefore plays active roles in anti-infective defense and 
repair responses[8]. Recently it has been demonstrated 
that AMCase and CHIT1 play different rule in the 
immune response[8]. Comparing the modulation of 
both AMCase and CHIT1 expression during monocyte/
macrophages differentiation and polarization was found 
that AMCase was not selectively expressed and highly 
regulated in activated macrophages. The slight increases 
of AMCase in M1 stage following treatment with pro-
inflammatory stimuli indicated AMCase is ineffective 
against infections and therefore may be involved only in 
innate immunity[8]. It has been reported that AMCase is 
specifically upregulated in response to Th2 inflammation 
in the lung, and is strictly related to pathophysiological 
conditions dominated by Th2 type cells such as allergy 
and asthma[39-41]. The early up regulation of AMCase 
expression in undifferentiated monocytes treated with 
IL-4 suggested that an inhibition of AMCase prevents this 
immune response[8]. In addition, genetic studies of the 
AMCase gene have indicated that certain polymorphisms 
and haplotypes of AMCase are associated with bronchial 
asthma in humans[40]. In contrast, other studies revealed 
that a haplotype encoding an AMCase isoform dis­
playing a significant enzymatic activity was associated 
with protection from asthma in several United States 
ethnic populations[41]. These data indicated that an 
increased AMCase enzymatic activity could be protective 
against the development of human asthma, possibly 
through cleavage of inflammatory chitin polymers[41]. 
This protective isoform of AMCase may reproduce an 
improved activity in the stomach, where the degradation 
of ingested polymeric environmental chitin or chitin-
containing microorganisms could induce changes of 
the bowel commensal flora or to alterations in immune 
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The expression of CHI3L1 has been reported to be 
significantly associated with migration of human 
macrophages[52] bronchial smooth muscle cells[62] and 
glioma cells[63]. In inflammation activated macrophages 
are the major CHI3L1 producers[50]. Substantial evidence 
supports a role of CHI3L1 in endothelial dysfunction 
and atherosclerosis[52,60]. CHI3L1 expression was found 
variably modulated during macrophages activation 
and polarization supporting that CHI3L1 plays a crucial 
role during the initial innate immune responses at 
the site of pathogen invasion[64]. The modulation of 
CHI3L1 following treatment with pro-inflammatory 
stimuli in monocytes and its strong increases in M1 
polarized macrophages indicates that the antimicrobial 
pathway in human macrophages involves also a 
vigorous activation of CHI3L1. Additionally the higher 
expression in M2 polarized macrophages highlight 
that CHI3L1 is a mediator of innate and acquired 
immunity[7]. Remarkably, some evidence indicated that 
CHI3L1 may play a role in type 2 helper cell-mediated 
inflammation[65]. Additionally, CHI3L1 is involved in 
intestinal inflammation and diverse pathologies con­
cerning the mucosal barriers of the stomach and gas­
trointestinal tract integrity such as inflammatory bowel 
disorders. Specifically, CHI3L1 is upregulated in inflam
matory conditions of the gut. Moreover, infection studies 
have suggested a function in both development and 
resolution of intestinal inflammation as well as bacterial 
removal[66]. The infection stimulating effects have been 
found to arise from enhanced adhesion of bacteria to 
intestinal epithelial cells (IECs)[66], precisely through 
bacterial interaction with N-glycosylation patterns on 
CHI3L1 expressed by IECs[66]. CHI3L1 also stimulates 
clearance and resolution of bacterial infections and 
inflammation in colitis via Stat3 signaling[66]. Moreover, 
elevated serum levels of CHI3L1 promote a marked 
protection against Streptococcus pneumoniae infection, 
improving the aptitude of macrophages to kill bacteria 
and simultaneously protecting the immune cells from 
pyroptosis by inhibiting IL-1β-driven inflammasome 
activation[66]. Serum levels of CHI3L1 are elevated in 
patients with pathogen-induced inflammation, including 
purulent meningitis, and endotoxaemia caused by 
endotoxin of Escherichia coli[66]. In both meningitis and 
pneumonia, CHI3L1 is secreted by locally activated 
macrophages[66] and neutrophils[67], and thus, has been 
proposed as a specific supplementary serological marker 
for the activation of granulocytes and macrophages 
in inflamed tissues[68]. These evidences confirm that 
CHI3L1 may have a particular affinity with some 
pathogenic bacteria. Though chitin is not expressed in 
bacteria, the majority of chitinase-producing pathogenic 
microorganisms enclose a gene encoding for the chitin 
binding protein, which possibly interacts with the 
binding ability between chitinase producing bacteria 
and chitin[69]. In a knock-out model of the murine 
CHI3L1 analogue, CHI3L1 is important in establishing 
Th2 polarized immune responses and enhance the 

responses to ingested allergens[42,43]. Ingested polymeric 
chitin has been observed to disrupt interactions with 
host proteins involved in regulating bacterial adherence 
to the gastrointestinal epithelium, such as RegIII, and to 
be used as the preferred energy source by certain gut 
bacteria[44,45]. Alterations in intestinal microflora alter the 
subsequent immune response to allergens in the lung 
in experimental models[46]. It has been reported that 
inhibition with the transition-state analog allosamidin, 
an inhibitor of chitinase, enhanced the Th2 driven, IL-
13-dependent inflammation, endorsing that its chitinase 
activity play a role in asthma, even in the absence of 
chitin[47]. The enzymatic activity of AMCase was found 
critical in the regulation of pulmonary Th2 inflammation 
in both murine models exposed and unexposed to 
polymeric chitin. Since AMCase expression is regulated 
by active Th2 inflammation it is possible that the active 
isoform predominates in severe asthmatics and/or during 
asthma exacerbations. Furthermore, expression of the 
active isoform could be up-regulated by environmental 
chitin exposures. Chitin microparticles induce alternative 
macrophage activation through CCL2 signaling in 
response to binding of chitin by airway epithelial cells[45]. 
Moreover, chitin induces the release of IL-25, IL-33 and 
thymic stromal lymphopoietin that are able to activate 
the production of the type 2 cytokines such as IL-5 and 
IL-13 in innate lymphoid type 2 cells. This induction 
also led to both eosinophilia and alternative activation 
of macrophages[48]. It has been reported that chitin 
itself is a pattern recognition molecule stimulating the 
tissue accumulation of innate immune cells associated 
with asthma, such as eosinophils and basophils[43]. In 
addition, AMCase preserves airway epithelial cells from 
undergoing apoptosis by stimulating phosphoinositide 
3-kinase (PI3K) and AKT signaling, through a mechanism 
associated to its chitin-binding site[45]. 

CHITINASE-3-LIKE-1 AND IMMUNITY
Chitinase-3-like-1 (CHI3L1) protein or YLK-40 binds 
chitin polymers in the absence of the active site 
residues necessary for cleavage. CHI3L1 is produced 
by neutrophils, monocytes/macrophages, monocyte 
derived dendritic cells and osteoclasts[32,49,50]. CHI3L1 
is a pro-inflammatory biomarke[51] and is capable of 
inducing inflammatory mediators including chemokines 
(CCL2, CXCL2) and metalloproteases (MMP-9)[51]. 
Local inflamed tissues including intestinal mucosa in 
inflammatory bowel disease (IBD)[52] and adipose tissues 
in type 2 diabetes produce CHI3L1[53]. Induction of 
CHI3L1 has been reported in autoimmune disorders, in 
pulmonary sarcoidosis, systemic sclerosis, liver fibrosis, 
rheumatoid arthritis, bronchial asthma, coronary 
artery disease, Alzheimer’s disease and inflammatory-
related illnesses in humans[54-62]. CHI3L1 secretion 
is induced by interferon (IFN)-γ[5] and IL-6[61] and is 
an acute phase reactant associated with disease se­
verity and mortality in numerous infectious diseases. 
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recruitment of macrophages, dendritic cells and T-cells 
by inhibiting apoptosis[70]. 

Genetic variants of CHI3L1 are associated with 
reduced lung function in asthmatics[71]. The increase 
of this protein in the lung has been found also in 
patients with COPD and pulmonary sarcoidosis[72]. Both 
macrophages and giant cells in pulmonary sarcoid 
granuloma express CHI3L1, and serum levels of CHI3L1 
are indicative for sarcoid disease activity and ongoing 
fibrosis[73]. In addition, CHI3L1 promotes the proliferation 
and antagonizes catabolic or degradative processes 
during the inflammatory response of connective 
tissues[74]. Increased concentrations of CHI3L1 have 
been detected also in serum of patients with rheumatoid 
arthritis (RA). The ability of CHI3L1 to regulate cell 
proliferation, adhesion, migration, and activation, as well 
as to regulate extracellular matrix assembly, correlates 
well with elevated level of CHI3L1 in the sites of chronic 
inflammation and active connective tissue turnover. Local 
release of CHI3L1 in the arthritic joint is followed by a 
secondary increase of CHI3L1 concentration in serum. 
Neutrophil-released CHI3L1 acts as an autoantigen in 
RA. In contrast to healthy individuals, who show strong 
bias to regulatory response to CHI3L1, patients with 
RA exhibit polarization towards Th1 phenotype[73]. At 
the same time CHI3L1 is able to suppress the TNFα 
and IL-1-induced secretion of matrix metalloproteases 
and IL-8 in both human skin fibroblasts and articular 
chondrocytes[74]. In contrast, in RA the serum levels 
of CHI3L1 positively correlated with serum levels 
of IL-6 and CRP[75]. Increased levels of CHI3L1 in 
serum reflect the degree of the synovial inflammation 
and joint destruction in patients with RA and OA[76]. 
Moreover, elevated level of CHI3L1 is a marker for 
joint involvement in IBD[77] and for the activity of the 
disease[59]. Rheumatic symptoms are also common 
for extra-intestinal manifestations of IBD, which is an 
autoimmune inflammatory disorder of the colon and 
small intestine. CHI3L1 also colocalises with lactoferrin, 
but not with gelatinase in both stimulated and non-
stimulated neutrophils. Moreover, release of CHI3L1 from 
specific neutrophil granules was suggested to lead to the 
post-transfusional complications, which were avoided 
depleting leukocytes by filtration of whole blood in order 
to inhibit extracellular CHI3L1 accumulation during 
storage of erythrocyte components[78]. CHI3L1 promotes 
proliferation of human synovial cells, skin and fetal lung 
fibroblasts, an effect that occurs in synergy with the 
insulin-like growth factor[79]. CHI3L1 is upregulated in 
distinct subsets of macrophages, particularly, in early 
atherosclerotic lesions and in macrophages which 
infiltrated deep in the lesion[80]. Later proteomics study 
identified elevated levels of CHI3L1 in supernatants 
of macrophage cell line THP-1 treated with oxidized 
LDL[81], proving that CHI3L1 expression is indicative for 
the differentiation of macrophages during formation of 
atherosclerotic plaque[79]. 

CHI3L2 AND IMMUNITY
CHI3L2 was originally isolated from the cultured medium 
of primary human articular cartilage chondrocytes[82]. 
CHI3L2 is homologous to the family 18 chitinases in 
the human genome, it lacks of chitinase activity but 
possesses a chitinase-like fold and putative lectin 
properties[83]. CHI3L2 is recognized as a biochemical 
marker for the activation of chondrocytes and the pro­
gress of the osteoarthritis in human. CHI3L2 mRNA 
is significantly up-regulated in cartilage of patients 
with osteoarthritis (OA) vs normal subjects, while no 
significant up-regulation was detected for CHI3L2 mRNA 
in OA cartilage[82]. Particularly CHI3L2 expression is 
upregulated both in early degenerative and late stage 
of osteoarthritis. Proteomic analysis established that 
CHI3L2 is secreted by human osteoarthritic cartilage 
in culture[5]. The contribution of CHI3L2 to the OA 
progression is suggested by the induction of autoimmune 
response[84] and by its involvement in tissue remodeling. 
However these finding suggested that synovial fibro­
blasts do not represent the exclusive producers of 
CHI3L2 in OA. Recently, CHI3L2 has been found slightly 
expressed in macrophages differentiated in the presence 
of IFN-γ or IL-4[85]. Only classically activated or M1 
macrophages are able to produce CHI3L2, whereas in 
response to IFN-γ and LPS stimulation undifferentiated 
monocytes were unable to produce CHI3L2[85]. Thus, 
IFN-γ which is one of the main cytokines in OA tissues 
that is able to induce the production of CHI3L2 by 
monocyte-derived macrophages. In patients with OA, 
the amount of autoantibodies to CHI3L2 and other auto-
antigens on early phases of disease indicates that the 
autoimmune response occurs during the initial phase 
of cartilage degeneration[86]. It has been demonstrated 
that Th1 cells prevail in the synovium of patients with 
OA[87]. In addition the co-treatment of IL-4 and TGF-β 
promotes stimulatory effect on the expression of 
CHI3L2 in macrophage cultures[88]. So far, the studies on 
biological activity of CHI3L2 are limited, therefore further 
studies are necessary to elucidate the role of CHI3L2 in 
immunopathology and inflammatory diseases. 

CONCLUSION
Chitinases synthesis occurs in most innate immune 
responses against fungi, bacteria and other non-viral 
pathogens. In the context of infectious diseases, it is 
likely that chitinases activity can be both detrimental 
and beneficial for the host organism. In addition, it 
cannot be excluded that chitinases augmentations have 
negative consequences in those conditions in which they 
are regarded as biochemical markers of macrophage 
activation. Although we do not yet fully understand 
the implications of chitinases production in response 
to chitinous pathogens, the concept of their function 
as “more than just antipathogens and antifungicidals”  
seems reasonable. In support to this opinion, the 
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aforesaid investigations confirming that CHIT-1, CHI3L1 
and CHI3L2 can be regarded as mediators of the 
immune and inflammatory responses and are involved 
in the progression of degenerative and dismetabolic 
disorders. The general concept of the chitinases 
involvement in human diseases discussed in this review 
may stimulate the development of new planning and 
experiments leading to a deeper understanding, not 
only on the biochemical mechanisms inducing chitinases 
regulation, but also on the consequences that the 
increases in chitinases levels impact with immunity 
and autoimmunity in different conditions. The future 
understanding will lead to the opportunity to develop 
selective and specific chitinase inhibitors.
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Abstract
AIM: To investigate the role of regulatory T (Treg) 
cells in CD4+ T cell-mediated bladder autoimmune 
inflammation. 

METHODS: Urothelium-ovalbumin (URO-OVA)/OT-
II mice, a double transgenic line that expresses the 
membrane form of the model antigen (Ag) OVA as a 
self-Ag on the urothelium and the OVA-specific CD4+ T 
cell receptor specific for the I-Ab/OVA323-339 epitope in the 
periphery, were developed to provide an autoimmune 
environment for investigation of the role of Treg cells in 
bladder autoimmune inflammation. To facilitate Treg cell 
analysis, we further developed URO-OVAGFP-Foxp3/OT-II 
mice, a derived line of URO-OVA/OT-II mice that express 
the green fluorescent protein (GFP)-forkhead box protein 
P3 (Foxp3) fusion protein. 

RESULTS: URO-OVA/OT-II mice failed to develop bladder 
inflammation despite the presence of autoreactive CD4+ T 
cells. By monitoring GFP-positive cells, bladder infiltration 
of CD4+ Treg cells was observed in URO-OVAGFP-Foxp3/OT-
II mice. The infiltrating Treg cells were functionally 
active and expressed Treg cell effector molecule as 
well as marker mRNAs including transforming growth 
factor-b, interleukin (IL)-10, fibrinogen-like protein 
2, and glucocorticoid-induced tumor necrosis factor 
receptor (GITR). Studies further revealed that Treg 
cells from URO-OVAGFP-Foxp3/OT-II mice were suppressive 
and inhibited autoreactive CD4+ T cell proliferation 
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and interferon (IFN)-g production in response to OVA 
Ag stimulation. Depletion of GITR-positive cells led to 
spontaneous development of bladder inflammation and 
expression of inflammatory factor mRNAs for IFN-g, 
IL-6, tumor necrosis factor-a and nerve growth factor in 
URO-OVAGFP-Foxp3/OT-II mice. 

CONCLUSION: Treg cells specific for bladder epithelial 
Ag play an important role in immunological homeostasis 
and the control of CD4+ T cell-mediated bladder 
autoimmune inflammation. 

Key words: Bladder; Autoimmunity; Regulatory T cell; 
CD4+ T cells; Antigen

© The Author(s) 2016. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Evidence suggests that autoimmune inflam
mation may cause interstitial cystitis/bladder pain 
syndrome (IC/BPS) in subgroups of patients. However, 
the role of regulatory T (Treg) cells in the control of 
bladder autoimmunity has not yet been identified. In 
this study we developed novel transgenic autoimmune 
cystitis models and demonstrated that Treg cells specific 
for bladder epithelial Ag play an important role in 
immunological homeostasis and the control of CD4+ T 
cell-mediated bladder autoimmune inflammation. Our 
results suggest that loss of functional Treg cells may 
contribute to IC/BPS pathology in subgroups of patients.

Liu WJ, Luo Y. Regulatory T cells suppress autoreactive CD4+ 
T cell response to bladder epithelial antigen. World J Immunol 
2016; 6(2): 105-118  Available from: URL: http://www.
wjgnet.com/2219-2824/full/v6/i2/105.htm  DOI: http://dx.doi.
org/10.5411/wji.v6.i2.105

INTRODUCTION
The mechanisms of autoimmune responses in the 
urinary bladder have not been well studied. Regulatory 
T (Treg) cells, a special subset of CD4+ T cells, are 
crucial for immunological homeostasis and play an 
important role in preventing autoimmune pathogenesis. 
Predisposition to immunopathology due to loss of 
functional Treg cells has been observed in numerous 
autoimmune diseases and animal models[1]. Studies 
have shown the involvement of Treg cells in the 
pathogenesis of bladder carcinoma[2-4], suggesting the 
importance of Treg cells in bladder immunosurveillance. 
Interstitial cystitis/bladder pain syndrome (IC/BPS) 
is a chronic inflammatory condition of the bladder 
characterized by pelvic pain, irritative voiding sym
ptoms, and sterile and cytologically normal urine. 
The etiology of IC/BPS is currently unknown and may 
involve multiple causes. Although autoimmunity is 
debated as a potential cause of IC/BPS, clinical evidence 

suggests that it may play an important role in the 
pathophysiology of the disease. It has been reported that 
IC/BPS patients develop antinuclear and anti-urothelium 
autoantibodies[5-11], overexpress urothelial HLA-DR 
molecules[12-14], and co-present with other autoimmune 
diseases such as bronchial asthma, systemic lupus 
erythematosus, Sjögren’s syndrome, rheumatoid 
arthritis and ulcerative colitis[15-21]. Considerable data 
have been published on the histopathology of bladder 
specimens, demonstrating a role of cell-mediated 
immune mechanisms in IC/BPS[14,22]. Hence, autoim
mune inflammation may be a component in the 
pathophysiology of IC/BPS in subgroups of patients. 
However, despite these observations, the role of Treg 
cells in bladder autoimmunity has not been identified.

Prior studies on bladder autoimmunity have been 
based on the use of rodent models of experimental 
autoimmune cystitis (EAC) in which animals developed 
bladder inflammation after immunization with urothelial 
components[23-28]. These EAC models demonstrated 
many clinical correlates seen in IC/BPS, offering a 
unique property for controlled examination of specific 
aspects of the disease. Using genetic engineering tech
nology, we previously developed a novel transgenic 
model of EAC (URO-OVA mice) that expresses the 
membrane form of the model antigen (Ag) ovalbumin 
(OVA) as a self-Ag on the urothelium and develops 
bladder inflammation upon introduction of OVA-
specific T cells[29-32]. In addition to the many features of 
conventional EAC models, the transgenic EAC model 
demonstrates T cell tolerance, activation and autoim
mune responses[29,32], facilitating the investigation of 
the mechanisms underlying bladder autoimmune patho
genesis.

To investigate the role of Treg cells in bladder autoim
munity, we established an autoimmune environment 
through crossbreeding of URO-OVA mice with OT-II 
mice that expressed the CD4+ T cell receptor (TCR) 
specific for the I-Ab/OVA323-339 epitope[33,34]. To further 
facilitate the analysis of Treg cells, we generated URO-
OVAGFP-Foxp3/OT-II  mice that expressed green fluorescent 
protein (GFP)-fused forkhead box protein P3 (Foxp3), a 
Treg cell lineage specification factor[35,36], enabling direct 
identification of Treg cells based on GFP fluorescence[37]. 
By using these transgenic EAC models, we have 
found that CD4+ Treg cells play an important role in 
immunological homeostasis and the control of bladder 
autoimmune inflammation. 

MATERIALS AND METHODS
Mice
URO-OVA mice [C57BL/6 (B6) genetic background] 
were previously developed in our laboratory[29]. 
B6 mice were obtained from the National Cancer 
Institute/Frederick Cancer Research Animal Facility 
(Frederick, MD). OT-II mice (B6 genetic background), 
a line originally developed by Barnden et al[33,34], were 
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obtained from Dr. Ratliff (Purdue Cancer Center, West 
Lafayette, IN). As shown in Figure 1, URO-OVA/OT-II 
mice were generated through crossbreeding of URO-
OVA mice with OT-II mice and B6/OT-II mice were 
generated through crossbreeding of B6 mice with OT-
II mice, respectively. Foxp3gfp mice, a line developed 
by Fontenot et al[37], were obtained from Dr. Rudensky 
(University of Washington, Seattle, WA). URO-OVAGFP-

Foxp3 mice were generated through crossbreeding of URO-
OVA mice with Foxp3gfp mice (Figure 1), while B6GFP-Foxp3 
mice were generated through crossbreeding of B6 mice 
with Foxp3gfp mice (Figure 1). All progeny mice were 
selected for transgenic OVA by tail genotyping and for 
GFP-positive CD4+ T cells by flow cytometry. Both URO-
OVAGFP-Foxp3 and B6GFP-Foxp3 mice were further crossed 
with OT-II mice to generate URO-OVAGFP-Foxp3/OT-II and 
B6GFP-Foxp3/OT-II mice, respectively (Figure 1). Male OT-
II mice and their derived mice were used because only 

the Y chromosome carries the transgenic CD4+ TCR 
specific for the I-Ab/OVA323-339 epitope. Mice were housed 
in a pathogen-free facility at the University of Iowa 
Animal Care Facility. All procedures involving animals 
were reviewed and approved by the University of Iowa 
Institutional Animal Care and Use Committee.

In vitro CD4+ T cell response to OVA 
Splenocytes were prepared from OT-II, B6/OT-II and 
URO-OVA/OT-II mice as described previously[32], 
resuspended in RPMI 1640 medium containing 10% 
fetal bovine serum (FBS), 100 units/mL of penicillin 
and 100 μg/mL of streptomycin, and seeded in 96-well 
plates at a density of 4 × 105 cells/200 mL per well. 
Cells were cultured in the absence or presence of 
OVA257-264 peptide (10 μg/mL) or OVA323-339 peptide (10 
μg/mL) for 3 d at 37 ℃ in a humidified incubator with 
5% CO2. Culture supernatants were then collected and 
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Figure 1  Animal crossbreeding. URO-OVA/OT-II mice were generated through crossbreeding of URO-OVA mice with OT-II mice. B6/OT-II mice were generated 
through crossbreeding of B6 mice with OT-II mice. URO-OVAGFP-Foxp3 mice were generated through crossbreeding of URO-OVA mice with Foxp3gfp mice. B6GFP-Foxp3 mice 
were generated through crossbreeding of B6 mice with Foxp3gfp mice. Both URO-OVAGFP-Foxp3 and B6GFP-Foxp3 mice were further crossed with OT-II mice to generate URO-
OVAGFP-Foxp3/OT-II and B6GFP-Foxp3/OT-II mice, respectively. URO: Urothelium; OVA: Ovalbumin.

URO-OVA                              OT-Ⅱ B6                                 OT-Ⅱ

URO-OVA/OT-Ⅱ B6/OT-Ⅱ

URO-OVA                           Foxp3gfp B6                                 Foxp3gfp

URO-OVAGFP-Foxp3                            OT-Ⅱ B6GFP-Foxp3
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and bladder were prepared by mechanical disruption 
as described previously[29,32]. Briefly, cells were washed 
with staining buffer [1% FBS, 0.09% (w/v) NaN3 in Mg2+ 
and Ca2+ free PBS], stained with a FITC-, PE- or PE-
Cy5-labeled antibody (eBioscience, San Diego, CA) to 
various surface markers including CD4 (clone: RM4-5), 
CD44 (clone: IM7), CD45RB (clone: C363.16A), CD62L 
(clone: MEL-14), CD69 (clone: H1.2F3), and OT-II CD4+ 
TCR clonal phenotype Va2 (clone: B20.1) and Vb5 
(clone: MR9-4) at 4 ℃ for 15 min, fixed in 2% formalin, 
and analyzed using a FACScan equipped with CellQuest 
(BD Biosciences). For GFP analysis, the FITC channel 
was used. Post-acquisition analysis was carried out 
using FlowJo software (Tree Star, Ashland, OR). 

RT-PCR analysis
RT-PCR was used to analyze mRNAs expressed 
by bladder infiltrating Treg cells and the inflamed 
bladders of URO-OVAGFP-Foxp3/OT-II mice. Total RNAs 
were extracted using Qiagen RNAeasy Kit (Valencia, 
CA) from FACS-sorted bladder infiltrating CD4+ T 
cells (both GFP positive and negative cells) and the 
bladders of mice untreated or treated with depleting 
mAbs. Three microgram of total RNAs were used for 
cDNA synthesis using Invitrogen Superscript III RNase 
H Reverse Transcriptase (Carlsbad, CA) and oligo dT 
according to the manufacturer’s instructions. Two 
microlitre of the cDNA products were further processed 
for PCR amplification using sequence-specific primer 
pairs and Invitrogen Taq DNA polymerase. The following 
primer pairs were used: 5’-agcccgaagcggactactat-3’ 
and 5’-agccctgtattccgtctcct-3’ for transforming growth 
factor (TGF)-b (357 bp); 5’-tgcctgctcttactgactgg-3’ and 
5’-gctccactgccttgctctta-3’ for interleukin (IL)-10 (397 bp); 
5’-tcaacagtttggatggcaag-3’ and 5’-ctgccgtgccattgtagtta-3’ 
for FGL2 (468 bp); 5’-tggagtctcgatgctctgtg-3’ and 
5’-atcctcagctgacaactgcac-3’ for GITR (583 bp); 
5’-cgctacacactgcatcttgg-3’ and 5’-aaattcaaatag
tgctggcaga-3’ for interferon (IFN)-g (522 bp); 5’-ctgatg
ctggtgacaaccac-3’ and 5’-gccactccttctgtgactcc-3’ 
for IL-6 (505 bp); 5’-gtccccaaagggatgagaag-3’ and 
5’-aagtagacctgcccggactc-3’ for tumor necrosis factor 
(TNF)-a (520 bp); 5’-agtgtcagtgtgtgggttgg-3’ and 
5’-gccttgacgaaggtgtgagt-3’ for nerve growth factor 
(NGF; 218 bp); and 5’-agcttgtcatcaacgggaag-3’ and 
5’-gtcttctgggtggcagtgat-3’ for glyceraldehyde-3-
phosphate dehydrogenase (GAPDH; 364 bp). PCR cycle 
numbers were initially optimized to achieve desirable 
discrepancies between the experimental groups. PCR 
was then performed for GAPDH with 30 cycles, IFN-g, 
TNF-a and NGF with 36 cycles, and other molecules 
with 40 cycles. The cycling condition consisted of 
denaturing at 94 ℃ for 30 s, annealing at 55 ℃ for 30 
s, and elongation at 72 ℃ for 1 min. DNA fragments 
were run on a 1% agarose gel, stained with ethidium 
bromide, and imaged by EpiChemi digital image system 
(Upland, CA). 

analyzed for IFN-g by enzyme-linked immunosorbent 
assay (ELISA) with paired antibodies (Endogen; clones: 
R4.6A2 and XMG1.2; Woburn, MA). 

In vitro Treg cell suppression assay
OT-II splenocytes were prepared as described pre
viously[32], resuspended in the above-mentioned culture 
medium, seeded in 96-well plates at a density of 3 × 
105 cells/200 mL per well, and cultured in the absence 
or presence of OVA323-339 peptide (10 μg/mL) for 3 d at 
37 ℃ in a humidified incubator with 5% CO2. To evaluate 
the effect of Treg cells, OT-II splenocytes were also 
incubated at a 1:1 ratio with GFP-positive (Foxp3+) CD4+ 
T cells sorted from the spleens of URO-OVAGFP-Foxp3/OT-
II mice using FACSAria (BD Biosciences; San Jose, CA). 
As control, GFP-negative CD4+ T cells were collected 
and incubated with OT-II splenocytes at a 1:1 ratio. 
Proliferation was assessed by pulsing the cells with 1 mCi 
of [methyl-3H]thymidine (Amersham; Piscataway, NJ) 
per well for the last 18 h and then assayed for thymidine 
incorporation by liquid scintillation counting. Culture 
supernatants from a parallel plate were collected after a 
3-d incubation period and analyzed for IFN-g by ELISA as 
described above. 

In vivo Treg cell depletion assay
Monoclonal antibodies (mAb) specific for CD25 (clone: 
PC61) and glucocorticoid-induced tumor necrosis 
factor receptor (GITR; clone: DTA-1) were prepared 
from hybridomas provided by Dr. Ratliff through 
ammonium sulfate precipitation and protein-A/G affinity 
chromatography as described previously[38]. URO-
OVAGFP-Foxp3/OT-II mice were injected intraperitoneally 
(i.p.) with 500 mg of PC61 or 250 mg of DTA-1 every 
other day beginning at 6 wk of age and sacrificed for 
analysis at 10 wk. The bladders were then collected and 
processed for histological hematoxylin and eosin (H and 
E) staining and analysis of inflammatory factor mRNAs 
by reverse transcriptase-polymerase chain reaction (RT-
PCR).

Bladder histological analysis
The standard paraffin-embedded histological sections 
of the bladder were prepared and stained with H 
and E solution as described previously[29-32]. Bladder 
inflammation was scored in a blinded manner based on 
cellular infiltration in the lamina propria and interstitial 
edema as follows: 1+ (mild infiltration with no or mild 
edema); 2+ (moderate infiltration with moderate 
edema); 3+ (moderate to severe infiltration with severe 
edema). Statistical analysis was performed using Stu
dent’s t test with SPSS11.0 software.

Flow cytometric analysis
In various experiments single-cell suspensions of the 
thymus, spleen, bladder draining lymph nodes (BLNs) 
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Statistical analysis
Statistical analysis was performed using two-tailed 
Student’s t-test with SPSS11.0 software. P < 0.05 was 
considered statistically significant. 

RESULTS
Constitutive expression of urothelial OVA causes clonal 
deletion of OVA-specific CD4+ T cells in URO-OVA/OT-II  
mice
URO-OVA/OT-II mice (F1 generation), a crossed line 
of URO-OVA mice with OT-II mice, expressed self-
Ag OVA on the urothelium and the TCR (Va2Vb5) 
specific for I-Ab/OVA323-339 epitope on CD4+ T cells. URO-
OVA/OT-II mice showed T cell tolerance in potentially 
autoreactive OVA-specific CD4+ T cells. Compared to 
control B6/OT-II mice (F1 generation) that expressed 
the same OVA-specific CD4+ TCR but no urothelial 
OVA, URO-OVA/OT-II mice showed severe reduction in 
CD4+Va2+ cells, CD4+Vb5+ cells, and Va2+Vb5+cells in 
the thymus (Figure 2, top panel; 1% vs 25% for all 3 
populations). The severe population reduction was also 
observed in the spleen (Figure 2, middle panel; 4% 
vs 19% for CD4+Va2+ cells, 1% vs 19% for CD4+Vb5+ 

cells, and 2% vs 18% for Va2+Vb5+cells) and the BLNs 
(Figure 2, bottom panel; 7% vs 55% for CD4+Va2+ 

cells, 3% vs 50% for CD4+Vb5+ cells, and 9% vs 43% 
for Va2+Vb5+cells). However, this population reduction 
was incomplete, suggesting the presence of additional 
regulatory mechanism(s) in the control of autoreactive 
CD4+ T cells in URO-OVA/OT-II mice.

Deletion-escaped OVA-specific CD4+ T cells are 
responsive to OVA and gain activation in URO-OVA/OT-
II  mice
We next investigated whether OVA-specific CD4+ T cells 
that had escaped from clonal deletion retained OT-II 
CD4+ T cell responsiveness to OVA. Splenocytes were 
prepared from URO-OVA/OT-II mice and incubated with 
OVA323-339 peptide specific for the OT-II CD4+ TCR for 
3 d in vitro. Cells were also incubated with OVA257-264 

peptide as control. Splenocytes from age-matched OT-
II and B6/OT-II mice were included for comparison. 
As expected, cells from both OT-II and B6/OT-II mice 
produced similar levels of IFN-g in response to OVA323-339 

peptide stimulation (Figure 3). Interestingly, cells from 
URO-OVA/OT-II mice also produced IFN-g in response 
to OVA323-339 peptide stimulation (P < 0.001), although 
the level was 2-3 fold less than those of OT-II and B6/
OT-II cells. This reduced IFN-g production suggested 
that the autoreactivity of OVA-specific CD4+ T cells was 
compromised in URO-OVA/OT-II mice. However, despite 
the reduction of autoreactivity, OVA-specific CD4+ T cells 
gained activation in vivo. Compared to B6/OT-II mice, 
CD4+ T cells from the BLNs of URO-OVA/OT-II mice 
showed up-regulated expressions of CD44 and CD69 
and down-regulated expressions of CD45RB and CD62L 

(Figure 4). In addition, the bladders of URO-OVA/OT-II 
mice contained 6-15 fold more infiltrating CD4+, Va2+ 
and Vb5+ cells than those of B6/OT-II mice (Figure 5A). 
Further analysis revealed that the majority of bladder 
infiltrating CD4+ T cells were Va2+ and Vb5+ cells (Figure 
5B), suggesting that they were OT-II CD4+ T cells. These 
observations indicated that endogenous OVA-specific 
CD4+ T cells retained the ability to respond to self-Ag 
OVA, gained activation in the BLNs, and infiltrated into 
the bladders in URO-OVA/OT-II mice. Interestingly, 
despite T cell activation and bladder infiltration, URO-
OVA/OT-II mice developed no bladder histopathology, 
further suggesting the presence of additional regulatory 
mechanism(s) in these mice.

Bladder infiltrating CD4+ T cells consist of Treg cells in 
URO-OVAGFP-Foxp3/OT-II  mice 
Since URO-OVA/OT-II mice contained activated OVA-
specific CD4+ T cells but failed to develop bladder 
inflammation, we hypothesized that Treg cells might play 
an important role in the control of autoreactive CD4+ T 
cells in these mice. To facilitate the analysis of Treg cells, 
we crossed URO-OVA mice with Foxp3gfp mice, a Foxp3gfp 
allele knock-in line that expresses GFP-fused Foxp3[36], 
to generate URO-OVAGFP-Foxp3 mice. As control, B6GFP-Foxp3 
mice were generated in parallel. To investigate the role 
of Treg cells in bladder autoimmunity, we further crossed 
URO-OVAGFP-Foxp3 mice with OT-II mice to generate URO-
OVAGFP-Foxp3/OT-II mice. As control, B6GFP-Foxp3/OT-II mice 
were generated through crossbreeding of B6GFP-Foxp3 mice 
with OT-II mice. Similar to URO-OVA/OT-II mice, URO-
OVAGFP-Foxp3/OT-II mice showed severe but incomplete 
reduction in OVA-specific CD4+ T cell population in the 
thymus, spleen and BLNs compared to B6GFP-Foxp3/OT-
II mice (data not shown). Also, similar to the bladders of 
URO-OVA/OT-II mice, the bladders of URO-OVAGFP-Foxp3/
OT-II mice showed increased infiltrating CD4+ T cells 
compared to B6GFP-Foxp3/OT-II mice (Figure 6A). However, 
like URO-OVA/OT-II mice, URO-OVAGFP-Foxp3/OT-II mice 
developed no bladder histopathology.

Analysis of bladder infiltrating CD4+ T cells revealed 
an increased number of GFP-positive (Foxp3+) cells in 
URO-OVAGFP-Foxp3/OT-II mice compared to B6GFP-Foxp3/OT-II 
mice (Figure 6B). Further analysis of bladder infiltrating 
CD4+ T cells in URO-OVAGFP-Foxp3/OT-II mice indicated that 
the majority of the cells were GFP positive (Foxp3+) cells 
(Figure 7A; 64% vs 36%). These GFP-positive (Foxp3+) 
CD4+ T cells were functionally active, as they expressed 
increased CD44 and CD69 and decreased CD45RB and 
CD62L compared to GFP-negative (Foxp3-) CD4+ T cells 
(Figure 7B). Consistently, these GFP-positive (Foxp3+) 
CD4+ T cells expressed increased levels of Treg cell 
effector molecule TGF-b, IL-10 and FGL2 mRNAs and 
Treg cell marker GITR mRNA compared to GFP-negative 
(Foxp3-) CD4+ T cells (Figure 7C). These observations 
suggested that Treg cells were actively involved in 
bladder autoimmune responses in URO-OVAGFP-Foxp3/OT-
II mice. 
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Figure 2  Clonal deletion of OT-II CD4+ T cells in urothelium-ovalbumin/OT-II mice. Cells from the thymus (top panel), spleen (middle panel), and BLNs (bottom 
panel) of URO-OVA/OT-II mice (8 wk) were analyzed for surface CD4, Va2 and Vb5 by flow cytometry. Age-matched B6/OT-II mice were included for comparison. 
Gate was set on lymphocytes according to scatter criteria. Percentages of single- and double-positive cells are indicated. Results are representative of 3 separate 
experiments consisting of 4-6 mice per group. URO/OT-II: Urothelium-ovalbumin/OT-II mice.
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Treg cells from URO-OVAGFP-Foxp3/OT-II  mice are 
suppressive to OVA-specific CD4+ T cells
To determine whether Treg cells found in URO-OVAGFP-

Foxp3/OT-II mice were suppressive, we prepared GFP-
positive (Foxp3+) CD4+ T cells from the spleens of URO-
OVAGFP-Foxp3/OT-II mice. GFP-negative (Foxp3-) CD4+ T 
cells were prepared for comparison. The purity of both 
cell types was > 95%. Responder OT-II splenocytes 
were incubated with or without OVA323-339 peptide in the 
presence or absence of GFP-positive (Foxp3+) or GFP-
negative (Foxp3-) CD4+ T cells at a 1:1 ratio for 3 d in 
vitro, followed by analysis of cell proliferation and IFN-g  
production (Figure 8). Compared to OT-II cells incubated 
with OVA323-339 peptide alone, OT-II cells incubated with 
OVA323-339 peptide in the presence of CD4+Foxp3- cells 
showed similar high levels of proliferation and IFN-g 
production. However, when incubated with OVA323-339 
peptide in the presence of CD4+Foxp3+ cells, OT-II cells 
showed significantly reduced levels of proliferation 
(P < 0.001) and IFN-g production (P < 0.05). These 
observations indicated that CD4+ Treg cells were 
suppressive, suggesting their importance in the control 
of bladder autoimmunity in URO-OVAGFP-Foxp3/OT-II mice. 

Depletion of CD4+ Treg cells results in spontaneous 
development of bladder autoimmune inflammation in 
URO-OVAGFP-Foxp3/OT-II  mice
To determine whether CD4+ Treg cells played an 

inhibitory role in bladder autoimmune inflammation, 
we depleted CD25+ cells or GITR+ cells in URO-
OVAGFP-Foxp3/OT-II mice. Mice were injected i.p. with 
anti-CD25 mAb (PC61) or anti-GITR mAb (DTA-1) 
every other day beginning at 6 wk and sacrificed for 
analysis at 10 wk. Depletion of CD4+ Treg cells was 
verified by flow cytometric analysis of splenocytes 
showing the lack of GFP-positive (Foxp3+) CD4+ T 
cells. Interestingly, depletion of CD25+ cells led to the 
development of bladder histopathology in only 2 of 12 
mice (score: +), whereas depletion of GITR+ cells led 
to the development of bladder histopathology in 11 of 
12 mice (score: + for 3 bladders, ++ for 6 bladders, 
and +++ for 2 bladders) (Table 1 and Figure 9A, P < 
0.001). Consistently, the bladders of mice treated with 
anti-GITR mAb expressed increased levels of IFN-g, 
IL-6, TNF-a and NGF mRNAs compared to the bladders 
of mice treated with anti-CD25 mAb (Figure 9B). 
Indeed, the latter bladders showed no clear increase 
in the mRNA expressions compared to the bladders of 
non-treated mice. These observations indicated that 
depletion of GITR+ cells but not CD25+ cells resulted in 
spontaneous development of bladder inflammation in 
URO-OVAGFP-Foxp3/OT-II mice. 

DISCUSSION
The role of Treg cells in bladder autoimmunity has 
not been identified due to the lack of a proper animal 
model. In this study we used transgenic EAC models to 
investigate the role of Treg cells and found that CD4+ 
Treg cells played an important role in the control of 
bladder autoimmune inflammation. Acquirement of 
autoreactive CD4+ T cells was not sufficient to cause 
bladder inflammation; however, depletion of CD4+ 

Treg cells led to spontaneous development of bladder 
inflammation in the transgenic EAC models. 

We generated URO-OVA/OT-II mice to investigate 
bladder autoimmunity, because CD4+ T cells are 
preferentially induced in IC/BPS compared to CD8+ T 
cells[14,22,39-41]. The ability of OT-II CD4+ T cells to induce 
bladder inflammation was previously demonstrated in 
URO-OVA mice[32]. To facilitate the analysis of Treg cells, 
we generated URO-OVAGFP-Foxp3 mice that expressed the 
GFP-Foxp3 fusion protein. We further crossed URO-OVA 
and URO-OVAGFP-Foxp3 mice with OT-II mice to establish 
an autoimmune environment in mice. Constitutive 
expression of urothelial OVA resulted in clonal deletion 
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Figure 3  Deletion-escaped OT-II CD4+ T cells retain responsiveness to 
ovalbumin. Splenocytes from URO-OVA/OT-II mice (8 wk) were cultured 
alone or in the presence of OVA257-264 peptide (10 mg/mL) or OVA323-339 peptide 
(10 mg/mL) for 3 d, followed by ELISA analysis of IFN-g production in culture 
supernatants. Splenocytes from age-matched OT-II and B6/OT-II mice were 
included for comparison. Data are presented as the mean ± SD from duplicate 
determinations. bP < 0.001 compared with non-stimulated or OVA257-264-
stimulated splenocytes (two-tailed Student’s t test). URO/OT-II: Urothelium-
ovalbumin/OT-II mice.

Bladder histologic scoreb

- + ++ +++
  Anti-CD25 (n = 12) 10 2 0 0
  Anti-GITR (n = 12)   1 3 6 2

Table 1  Summary of bladder histological inflammation 

bP < 0.001 compared between two groups (two-tailed Student’s t test). 
GITR: Glucocorticoid-induced tumor necrosis factor receptor.
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Figure 4  OT-II CD4+ T cells gain activation in the bladder draining lymph nodes of urothelium-ovalbumin/OT-II mice. BLN cells of URO-OVA/OT-II mice (8 
wk) were analyzed for surface CD44, CD45RB, CD62L, and CD69 by flow cytometry. Age-matched B6/OT-II mice were included for comparison. Gate was set on 
CD4+ T cells. Results are representative of 3 separate experiments consisting of 5 mice per group. Filled histograms: B6/OT-II mice; Gray line histograms: URO-OVA/
OT-II mice. URO/OT-II: Urothelium-ovalbumin/OT-II mice; BLN: Bladder draining lymph nodes.
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Figure 6  Bladder infiltrating CD4+ T cells consist of Treg 
cells in urothelium-ovalbuminGFP-Foxp3/OT-II mice. Bladder 
single-cell suspensions were prepared from URO-OVAGFP-

Foxp3/OT-II mice (8 wk) and analyzed by flow cytometry. Age-
matched B6GFP-Foxp3/OT-II mice were included for comparison. 
A: Flow cytometric analysis of bladder infiltrating CD4+ T cells. 
Gate was set on lymphocytes according to scatter criteria; B: 
Flow cytometric analysis of bladder infiltrating GFP-positive 
CD4+ T cells (i.e., Foxp3+CD4+ T cells). Gate was set on CD4+ 
T cells. Results are representative of 3 separate experiments 
consisting of 6 mice per group. UROGFP-Foxp3/OT-II: Urothelium-
ovalbuminGFP-Foxp3/OT-II mice.

Figure 5  OT-II CD4+ T cells infiltrate into the bladders of urothelium-ovalbumin/OT-II mice. Bladder single-cell suspensions were prepared from URO-
OVA/OT-II mice (8 wk) and analyzed for surface CD4, Va2 and Vb5 by flow cytometry. Age-matched B6/OT-II mice were included for comparison. Gate was set on 
lymphocytes according to scatter criteria. Total numbers of CD4+, Va2+ and Vb5+ cells per bladder are indicated in (A) and percentages of single- and double-positive 
cells per bladder indicated in (B). Results are representative of 3 separate experiments consisting of 5-8 mice per group. URO/OT-II: Urothelium-ovalbumin/OT-II 
mice. 
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of autoreactive CD4+ T cells in both URO-OVA/OT-
II and URO-OVAGFP-Foxp3/OT-II mice. However, this 
clonal deletion was incomplete, as a tiny population of 
autoreactive CD4+ T cells was observed in both central 
and peripheral compartments. Such incomplete clonal 
deletion of autoreactive T cells has been observed in our 
previously reported autoimmune cystitis model (URO-
OVA/OT-I mice)[29] and others’ organ-specific transgenic 
inflammation models[42-44]. 

Due to urothelial OVA expression, deletion-escaped 
OVA-specific CD4+ T cells gained activation in the BLNs 
and infiltrated into the bladders in URO-OVA/OT-II mice. 
These observations suggested that bladder urothelial 
OVA was antigenic and could access the immune 
system for CD4+ T cell activation. However, despite the 
CD4+ T cell activation and bladder infiltration, URO-
OVA/OT-II mice developed no bladder inflammation. 
This observation differed from our previous observation 

in URO-OVA/OT-I mice as these mice spontaneously 
developed bladder inflammation at 10 wk of age[29,31]. 
This discrepancy might be attributed to differential 
expression levels of I-Ab vs H2-Kb on the bladder 
urothelium, which directly influences Ag recognition 
by autoreactive CD4+ and CD8+ T cells, respectively. 
Alternatively, the presence of different numbers of 
deletion-escaped autoreactive T cell subsets might 
lead to different autoimmune responses in these mice. 
However, despite this discrepancy, Treg cells appeared 
to play a predominant role in the control of bladder 
autoimmune responses. To support this, splenocytes 
from URO-OVA/OT-II mice showed a substantially 
reduced ability to produce IFN-g in response to 
OVA323-339 peptide stimulation in vitro, suggesting that 
the autoreactivity of OVA-specific CD4+ T cells was 
greatly compromised in these mice. Also, depletion of 
Treg cells in vivo by anti-GITR mAb has been observed 
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Figure 7  Bladder infiltrating CD4+ Treg cells are functionally active and express inhibitory effector molecules in urothelium-ovalbuminGFP-Foxp3/OT-II mice. 
Bladder single-cell suspensions were prepared from URO-OVAGFP-Foxp3/OT-II mice (8 wk) and analyzed by flow cytometry or sorted for GFP-positive (Foxp3+) and GFP-
negative (Foxp3-) CD4+ T cells. A: Bladder infiltrating CD4+ T cells consist of both GFP-positive (Foxp3+) and GFP-negative (Foxp3-) populations by flow cytometry. 
Gate was set on lymphocytes according to scatter criteria; B: Flow cytometric analysis of surface CD44, CD45RB, CD62L and CD69 on bladder infiltrating GFP-
positive (Foxp3+) and GFP-negative (Foxp3-) CD4+ T cells. Gate was set on CD4+ T cells; C: RT-PCR analysis of TGF-b, IL-10, FGL2 and GITR mRNAs in bladder 
infiltrating GFP-positive (Foxp3+) and GFP-negative (Foxp3-) CD4+ T cells. GAPDH was used as an internal control. M: Marker; N: GFP-negative (Foxp3-) CD4+ T 
cells; P: GFP-positive (Foxp3+) CD4+ T cells; UROGFP-Foxp3/OT-II: Urothelium-ovalbuminGFP-Foxp3/OT-II mice; RT-PCR: Reverse transcriptase-polymerase chain reaction; 
TGF: Transforming growth factor; GITR: Glucocorticoid-induced tumor necrosis factor receptor.
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to result in spontaneous development of bladder 
inflammation in URO-OVAGFP-Foxp3/OT-II mice. Therefore, 
Treg cells appeared to counteract autoreactive CD4+ T 
cells for the induction of bladder inflammation in these 
mice. However, our observations cannot exclude the 
possibility that other cell types with regulatory activities 
may contribute to the control of bladder autoimmune 
responses, since the bladders of mice depleted of GITR+ 
cells showed varying degrees of inflammation.

By monitoring GFP for Foxp3+ cells we observed 
a considerable number of CD4+Foxp3+ T cells, along 

with CD4+Foxp3- T cells, in the bladders of URO-OVAGFP-

Foxp3/OT-II mice. Compared to CD4+Foxp3- T cells, 
CD4+Foxp3+ T cells expressed increased levels of Treg 
cell effector molecule TGF-b, IL-10 and FGL2 mRNAs 
as well as Treg cell marker GITR mRNA. In addition, 
CD4+Foxp3+ T cells exhibited an activated phenotype 
with up-regulated expressions of CD44 and CD69 and 
down-regulated expressions of CD45RB and CD62L. 
Such Treg cell activation in vivo has been observed in 
other animal models[45,46]. Moreover, we have observed 
the inhibitory effect of CD4+Foxp3+ T cells on OVA-
specific CD4+ T cells in co-culture assays and the 
spontaneous development of bladder inflammation in 
URO-OVAGFP-Foxp3/OT-II mice after depletion of GITR+ 
cells. All these observations support the important role 
of CD4+ Treg cells in the control of bladder autoimmune 
responses in the transgenic EAC models.

As direct evidence for the role of Treg cells in the 
control of bladder autoimmunity, URO-OVAGFP-Foxp3/OT-
II mice spontaneously developed bladder inflammation 
after depletion of GITR+ cells. Interestingly, mice 
depleted of CD25+ cells failed to develop clear bladder 
inflammation. This phenomenon might result from 
the elimination of CD25-expressing autoreactive CD4+ 
T cells, together with CD4+CD25+ Treg cells, by anti-
CD25 mAb (PC61). Our observation was consistent 
with previous studies demonstrating that anti-GITR 
mAb (DTA-1) but not PC61 was effective in the control 
of cancer in diverse animal models[47-49]. These studies 
revealed the differential activities of DTA-1 and PC61, 
i.e., DTA-1 specifically depleted Treg cells whereas PC61 
depleted both CD25+ effector T cells and Treg cells. 
In addition, studies have also shown that DTA-1 co-
stimulates conventional effector T cells while disabling 
Treg cells[50,51]. 

The origin of CD4+ Treg cells in URO-OVAGFP-Foxp3/OT-II 
mice is unknown. It is generally accepted that naturally-
occurring Treg cells specific for self-Ag presented by the 
thymic epithelium are positively selected in the thymus 
and then colonize in secondary lymphoid organs[52-55]. 
It has also been shown that peripheral CD4+CD25- 
naïve T cells can be converted into CD4+CD25+ Treg 
cells under certain circumstances[56-58]. In the presence 
of a physiologically low level of cognate self-Ag, resting 
autoreactive Treg cells can gain activation in the 
draining lymph nodes and then enter circulation[45,59]. 
Therefore, it is possible that in the transgenic EAC 
models the urothelial self-Ag OVA is transported to the 
BLNs and presented to OVA-specific CD4+ Treg cells as 
well as effector CD4+ T cells by Ag-presenting cells. This 
Ag presentation activates both autoreactive CD4+ T cell 
types, leading to proliferation in the BLNs and infiltration 
into the bladders. However, because of the co-presence 
of Treg cells in situ, effector CD4+ T cells are suppressed 
and cause no bladder inflammation. This assumption is 
supported by our observations that URO-OVAGFP-Foxp3/OT-
II mice spontaneously develop bladder inflammation 
after depletion of GITR+ cells. The origin of Treg cells 
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Figure 8  Treg cells from urothelium-ovalbuminGFP-Foxp3/OT-II mice are 
suppressive to ovalbumin-specific CD4+ T cells. A: OT-II splenocytes were 
incubated alone or in the presence of OVA323-339 peptide (10 mg/mL), GFP-
positive (Foxp3+) CD4+ T cells (at a 1:1 ratio), and/or GFP-negative (Foxp3-) 
CD4+ T cells (at a 1:1 ratio) sorted from URO-OVAGFP-Foxp3/OT-II mice for 3 d. 
Proliferation was assessed by labeling the cultures with 3H-thymidine for the 
final 18 h. Data are presented as the mean ± SD from triplicate cultures. bP 
< 0.001 compared with OT-II cells stimulated with OVA323-339 peptide alone 
(two-tailed Student’s t test); B: Culture supernatants from a parallel plate were 
collected after 3-d incubation and analyzed for IFN-g by ELISA. Data are 
presented as the mean ± SD from duplicate cultures. aP < 0.05 compared with 
OT-II cells stimulated with OVA323-339 peptide alone (two-tailed Student’s t test). 
UROGFP-Foxp3/OT-II: Urothelium-ovalbuminGFP-Foxp3/OT-II mice.
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and the mechanisms underlying Treg cell action are 
interesting topics in bladder autoimmunity research and 
warrant further investigation.

In summary, we have demonstrated that CD4+ 

Treg cells play an important role in immunological 
homeostasis and the control of bladder autoimmune 
inflammation in the transgenic EAC models. This study, 
together with our previous studies[29,32], sheds light 
on the cellular mechanisms of bladder autoimmunity. 
Clear understanding of bladder autoimmune responses 
will add to future development of novel therapies 
for bladder inflammatory diseases that contain an 
autoimmune component in the pathophysiology such as 
IC/BPS in subgroups of patients.
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COMMENTS
Background
Interstitial cystitis/bladder pain syndrome (IC/BPS) is one of the most 
refractory diseases in urology today. Since the etiology of IC/BPS remains 
elusive, current treatments are largely empirical, often dissatisfactory, and 
vary in efficacy. Therefore, effort to identify the mechanisms of the disease for 
therapeutic development is greatly needed. Evidence suggests that autoimmune 
inflammation may cause IC/BPS in subgroups of patients. However, the role of 
Treg cells in immunological homeostasis and the control of bladder autoimmune 
inflammation has not yet been identified. 

Research frontiers
Rodent models of experimental autoimmune cystitis (EAC) have been actively 
used in IC/BPS research for identifying the importance of bladder autoimmunity 
in the disease pathology.

Innovations and breakthroughs
This is the first study demonstrating that Treg cells specific for bladder epithelial 
Ag play an important role in immunological homeostasis and the control of CD4+ 
T cell-mediated bladder autoimmune inflammation. 

Applications
The authors have demonstrated the presence of Treg cells in the developed 
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Figure 9  Depletion of CD4+ Treg cells results in bladder autoimmune inflammation in urothelium-ovalbuminGFP-Foxp3/OT-II mice. URO-OVAGFP-Foxp3/OT-II mice 
were treated with anti-CD25 or anti-GITR mAb every other day beginning at 6 wk of age and sacrificed for analysis at 10 wk. A: Bladder histological H and E staining. 
The slides are representative of 12 bladders for each of anti-CD25 and anti-GITR mAb treated groups. Cellular infiltration is indicated by red arrows. The bladder of 
an untreated mouse is included for comparison. The summary of bladder histological inflammation is shown in Table 1; B: RT-PCR analysis of IFN-g, IL-6, TNF-a and 
NGF mRNA expressions in the bladders of mice treated with anti-CD25 or anti-GITR mAb. GAPDH was used as an internal control. The bladders from untreated mice 
are included for comparison. UROGFP-Foxp3/OT-II: Urothelium-ovalbuminGFP-Foxp3/OT-II mice; RT-PCR: Reverse transcriptase-polymerase chain reaction; IFN: Interferon; 
TNF: Tumor necrosis factor; NGF: Nerve growth factor.
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transgenic EAC models. The authors have also demonstrated that depletion 
of Treg cells causes bladder autoimmune inflammation in the transgenic EAC 
models. The results suggest that loss of functional Treg cells may contribute to 
IC/BPS pathology in subgroups of patients.

Terminology
IC/BPS is a chronic and debilitating inflammatory condition of the urinary 
bladder characterized by the hallmark symptom of pelvic pain in the absence 
of other identified etiologies for the symptom. IC/BPS patients also frequently 
have voiding dysfunction such as increased urinary frequency and urgency. 
This urologic condition is significant and severely affects quality of life. The 
etiology of IC/BPS is currently unknown and may involve multiple causes. 
Increasing evidence suggests that autoimmune inflammation may be causative 
in subgroups of IC/BPS patients.

Peer-review
The manuscript describes the role of regulatory T cells in IC/BPS model mice. 
The experiments are well designed and the results are clearly presented.
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