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Abstract
In this editorial, we comment on the current development and deployment of data 
science in intensive care units (ICUs). Data in ICUs can be classified into quali-
tative and quantitative data with different technologies needed to translate and 
interpret them. Data science, in the form of artificial intelligence (AI), should find 
the right interaction between physicians, data and algorithm. For individual 
patients and physicians, sepsis and mechanical ventilation have been two impo-
rtant aspects where AI has been extensively studied. However, major risks of bias, 
lack of generalizability and poor clinical values remain. AI deployment in the 
ICUs should be emphasized more to facilitate AI development. For ICU manag-
ement, AI has a huge potential in transforming resource allocation. The coron-
avirus disease 2019 pandemic has given opportunities to establish such systems 
which should be investigated further. Ethical concerns must be addressed when 
designing such AI.

Key Words: Artificial intelligence; COVID-19; Data science; Intensive care units; 
Interaction
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Core Tip: Data in intensive care units (ICUs) can be classified into qualitative and 
quantitative data with different technologies needed to translate and interpret them. Data 
science, in the form of artificial intelligence (AI), should find the right interaction 
between physicians, data and algorithm to maximize the utility. AI deployment in the 
ICUs should be emphasized more to facilitate AI development. Individual-level applic-
ations such as disease prediction, and ICU-level potentials such as resource allocation 
are both of paramount importance.
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INTRODUCTION
The intensive care unit (ICU) is a data-rich setting where the right decision can mean the difference 
between life and death. This gives the ICU the perfect opportunity to explore the impact of data science 
combined with artificial intelligence (AI) to maximize the utility and benefits. However, challenges 
remain because the interpretation of an incredibly huge amount of data is still a black hole with many 
questions unanswered. Although many models have been created, their clinical applications are limited. 
Attention is mostly paid to individual-level decision making such as diagnosing and predicting the 
prognosis of a specific disease, while potentials at a more macroscopic level such as ICU resource 
allocation, are largely omitted.

Generally speaking, data in the ICU can be classified into qualitative and quantitative data. 
Qualitative data include graphical data such as waves on the ventilation machine, and radiological data 
such as x-rays or computed tomography scans. Such data need to be translated first before being further 
calculated. Recently, we have seen a substantial number of researches focusing on such a translation 
process[1-4]. Quantitative data in the form of numbers such as physiological parameters, laboratory 
results, dosage of medication and ICU bed capacity, are common to intensivists. This kind of data has 
the advantage of being readily available for statistical analyses without the necessity for further proc-
essing into means that are more accessible.

The key to making full use of data in ICUs is to find the right interaction between three roles: physi-
cians, data and algorithm (Figure 1). Physicians need to ask the right clinical question which points out 
the direction of the research and the data we should pay attention to. The data should be collected and 
interpreted in a way that can be processed by current software. The collection of data should follow 
certain statistical rules and avoid bias as much as possible. The algorithm can be built to find patterns 
based on a large quantity of data and these patterns should target clinical questions raised by physi-
cians.

DECISION MAKING AND PREDICTIVE MODELS
Two examples where predictive models are supported by AI in decision making in ICUs are sepsis and 
mechanical ventilation. Sepsis is a leading cause of morbidity and mortality in critically ill patients. AI 
models have been studied in different stages such as the detection, prediction, risk stratification and 
management of sepsis. Goh et al[5] developed an algorithm with independent clinical notes and 
achieved high predictive accuracy 12 h before the onset of sepsis (Area under curve 0.94). It also has 
great potential for improving the early identification of patients who may benefit from the adminis-
tration of antibiotics. Moreover, it can discover new phenotypes for sepsis potentially transforming 
sepsis treatment and offering a more tailored strategy for patients with sepsis[6], such as the use of 
glucocorticoids[7]. Clinicians hold a positive view in letting AI take a more active role when managing 
patients with sepsis[8].

Mechanical ventilation is another common situation in ICUs. Machine learning can predict the need 
for intubation in critically ill patients using commonly collected bedside clinical parameters and 
laboratory results[9]. AI has the potential to identify treatable phenotypes, optimize ventilation strat-
egies and provide clinical decision support for patients who require mechanical ventilation[10]. Zhao et 
al[11] also created a model for predicting extubation failure in ICUs with an AUROC of 0.835 and 0.803, 
respectively, for internal and external validation.

Such an exciting trend should be viewed with caution. Current AI prediction models to diagnose 
sepsis are at a major risk of bias when the diagnostic criteria vary. The generalizability of these models 
is poor due to overfitting and the lack of standardized protocols. Similar conditions occur for mecha-
nical ventilation. AI applied to mechanical ventilation has limited external validation and model 
calibration with a substantial risk of bias, significant gaps in reporting and poor code and data avail-
ability[10].

Mamdani and Slutsky summarized three themes in applied AI in medicine: (1) Enabling data; (2) AI 
development; and (3) AI deployment. We believe that AI development and AI deployment should be 
combined to revise current models and offer tangible benefits derived from current researches. A vast 
majority of developed ICU-AI models remain within the testing and prototyping environment and only 
a handful have been actually evaluated in clinical practice[12] which implies the lack of enough evid-
ence to support the clinical values of published models. Focusing more on AI deployment in the form of 
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Figure 1 Interaction between artificial intelligence development and artificial intelligence deployment. Artificial intelligence (AI) development and 
AI deployment should be combined to revise current models and offer tangible benefits derived from current researches. AI development should find the right 
interaction between three roles: physicians, data and algorithm. AI deployment in the form of prospective randomized controlled trials can facilitate published models 
to generate bedside merits and evaluate whether major biases exist. The results from deployment testing can, in turn, offer insights into the development and modify 
the substandard algorithm. CRRT: Continuous renal replacement therapy; ECMO: Extracorporeal membrane oxygenation.

prospective randomized controlled trials would not only facilitate published models to generate bedside 
merits but also test and evaluate whether major biases exist and clinical needs can be met in a satis-
factory way. The results from deployment testing can, in turn, offer insights into the development and 
modify the substandard algorithm (Figure 1).

RESOURCE ALLOCATION
Machine learning and algorithm have been widely used to manage resource allocation. Machine 
learning has been studied for predictive scheduling and resource allocation in large-scale manufacturing 
systems and resource allocation strategies in vehicular networks using machine learning have been 
extensively explored[13,14]. These settings are similar to ICUs in that both need to capture the value 
from big data processing and extract useful insights to optimize production and protect resources.

However, in the realm of critical care, where resource can be scarce due to factors such as bed 
capacity, the applications of machine learning has just shown a glimpse of light (Figure 2). Over the past 
2 years, these applications in the context of the coronavirus disease 2019 (COVID-19) ICUs offered more 
chances to lay emphasis on resource allocation. Cheng et al[15] used machine learning to predict ICU 
transfer in hospitalized patients with COVID-19 and concluded that it could improve the management 
of hospital resources and patient-throughput planning. Similar principles were used to predict the use 
of ICU resources, such as mechanical ventilation, during the COVID-19 pandemic in Denmark[15]. At a 
healthcare system level, the National Health Service (NHS) in the United Kingdom started trials of a 
machine-learning system designed to help hospitals in England anticipate the demand on resources 
caused by COVID-19. COVID-19 Capacity Planning and Analysis System, a machine learning-based 
system for hospital resource planning, was subsequently developed that could be deployed at 
individual hospitals and across regions in the United Kingdom in coordination with NHS Digital[16].

Such models can take the application of AI in ICUs to another level. Although its insight into disease 
prediction, diagnosis and management is extremely important, it gives the chance to make the most use 
of resources, especially in ICUs where demand and supply frequently mismatch. Prediction in 
interventions such as mechanical ventilation would mean that the management groups can foresee 
changes and mobilize resource, such as equipment and staff, to cope with such demands in advance and 
this is a positive factor for patient outcomes.
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Figure 2 Resource allocation in the intensive care units. The applications of machine learning can target patients in need of intensive care units (ICUs) 
and predict the use of ICU resources. Machine learning can predict ICU transfer in hospitalized patients and predict the use of ICU resources, such as mechanical 
ventilation. It gives the chance to make the most use of resources, especially in ICUs where demand and supply frequently mismatch. Prediction in interventions, 
such as mechanical ventilation, would mean that the management groups can foresee changes and mobilize resource, such as equipment and staff, to cope with 
such demands in advance which is a positive factor for patient outcomes. AI: Artificial intelligence.

Besides efficiency, another aspect that we must pay attention to is how to answer the ethical questions 
embodied in resource allocation to achieve a healthcare system that values equity and sustainability. 
This implies that ethical considerations must be included and certain ethical principles must be followed 
when designing the algorithm. Recently, a set of new studies focused on the ethics of healthcare 
resource allocation, drawing attentions to patient need, prognosis, equal treatment and cost-effect-
iveness[17]. Also, numerous comments were made during the COVID-19 pandemic that AI should stick 
to the ethical standards[18-20]. In a broader setting, the so-called algorithmic fairness highlights specific 
opportunities where machine learning and public and population health may synergize to achieve 
health equity[21]. Challenges remain as what ethical principles matter and what priority should be 
given to each ethical principle and coding them into an algorithm has not been intensively experi-
mented.

CONCLUSION
AI has become more prevalent in the ICUs. Different kinds of data are collected constantly and should 
be interpreted in an accurate fashion. The key to maximizing AI in the ICU is to find the right balance 
between data, algorithms and physicians to ensure that the technical, computational and clinical needs 
are targeted.

For individuals, sepsis and mechanical ventilation have been two important aspects where AI has 
been extensively studied. However, major risks of bias, lack of generalizability and poor clinical values 
imply that AI is far from perfect. AI deployment in ICUs should be more emphasized to facilitate AI 
development.

More importantly, AI has huge potential in transforming resource allocation in ICUs. The COVID-19 
pandemic has given some opportunities to establish such systems and more should be investigated. 
Ethical concerns must be addressed when designing such AI.
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Abstract
BACKGROUND 
Intensive care unit (ICU) patients demand continuous monitoring of several clin-
ical and laboratory parameters that directly influence their medical progress and 
the staff’s decision-making. Those data are vital in the assistance of these patients, 
being already used by several scoring systems. In this context, machine learning 
approaches have been used for medical predictions based on clinical data, which 
includes patient outcomes.

AIM 
To develop a binary classifier for the outcome of death in ICU patients based on 
clinical and laboratory parameters, a set formed by 1087 instances and 50 vari-
ables from ICU patients admitted to the emergency department was obtained in 
the “WiDS (Women in Data Science) Datathon 2020: ICU Mortality Prediction” 
dataset.

METHODS 
For categorical variables, frequencies and risk ratios were calculated. Numerical 
variables were computed as means and standard deviations and Mann-Whitney 
U tests were performed. We then divided the data into a training (80%) and test 
(20%) set. The training set was used to train a predictive model based on the 
Random Forest algorithm and the test set was used to evaluate the predictive 
effectiveness of the model.

RESULTS 
A statistically significant association was identified between need for intubation, 
as well predominant systemic cardiovascular involvement, and hospital death. A 
number of the numerical variables analyzed (for instance Glasgow Coma Score 
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punctuations, mean arterial pressure, temperature, pH, and lactate, creatinine, albumin and 
bilirubin values) were also significantly associated with death outcome. The proposed binary 
Random Forest classifier obtained on the test set (n = 218) had an accuracy of 80.28%, sensitivity of 
81.82%, specificity of 79.43%, positive predictive value of 73.26%, negative predictive value of 
84.85%, F1 score of 0.74, and area under the curve score of 0.85. The predictive variables of the 
greatest importance were the maximum and minimum lactate values, adding up to a predictive 
importance of 15.54%.

CONCLUSION 
We demonstrated the efficacy of a Random Forest machine learning algorithm for handling 
clinical and laboratory data from patients under intensive monitoring. Therefore, we endorse the 
emerging notion that machine learning has great potential to provide us support to critically 
question existing methodologies, allowing improvements that reduce mortality.

Key Words: Hospital mortality; Machine learning; Patient outcome assessment; Routinely collected health 
data; Intensive care units; Critical care outcomes

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Considering the critical nature of patients admitted to intensive care units (ICUs), this study 
seeks to analyze clinical and laboratory data using a machine learning model based on a Random Forest 
algorithm. Consequently, we developed a binary classifier that forecasts death outcome, achieving a 
relevant area under the curve value of 0.85 and identifying the variables that contributed the most to the 
prediction. With this, we aim to contribute to the improvement and methodological advancement in the 
development of clinically relevant machine learning tools, seeking to make medical practice decisions 
more accurate and reduce mortality in ICU patients.

Citation: Caires Silveira E, Mattos Pretti S, Santos BA, Santos Corrêa CF, Madureira Silva L, Freire de Melo F. 
Prediction of hospital mortality in intensive care unit patients from clinical and laboratory data: A machine 
learning approach. World J Crit Care Med 2022; 11(5): 317-329
URL: https://www.wjgnet.com/2220-3141/full/v11/i5/317.htm
DOI: https://dx.doi.org/10.5492/wjccm.v11.i5.317

INTRODUCTION
The intensive care unit (ICU) is the section of the hospital responsible for monitoring acute patients, and 
it relies on specialized multidisciplinary staff and high-technology equipment to ensure the best support 
for these patients, who are usually unstable and at high risk of death. These patients demand 
continuous monitoring of the most diverse clinical and laboratory parameters that directly influence 
their medical progress and the staff’s decision-making. Lactate levels obtained from arterial blood 
samples, for example, may indicate the levels and severity of tissue hypoxia[1]. The elevation in serum 
lactate levels (hyperlactatemia) is associated with increased mortality[2,3]. Another important parameter 
in critically ill patients is the prothrombin time expressed in international normalized ratio (INR), which 
reveals abnormalities in the coagulation status[4]. This parameter is also associated with an increased 
mortality when at altered levels. Besides these, many other laboratory and clinical data like temp-
erature, oxygen and carbon dioxide pressure, systolic and diastolic pressure, motor, ocular, and verbal 
responses, among others, require team supervision since they are all related in some way to the severity 
of these ill patients[5].

These data are so vital in the assistance of these patients that they are already used by several scoring 
systems, including the Acute Physiology and Chronic Health Evaluation (APACHE) and the Simplified 
Acute Physiology Score (SAPS), which are designed to assess and predict the patient’s prognosis and 
allow for appropriate interventions[6]. The APACHE score, for example, which has been widely used 
since its creation in the 1980s and has been undergoing updates ever since, relies on the use of para-
meters evaluated in three major groups: Demographic characteristics, comorbidities, and physiological 
measures. From these data, numerical weights are assigned to each one and then summed to assign a 
severity classification and predict outcomes[7].

Machine learning may be understood as a scientific discipline by which a computer system is enabled 
to cross-reference numerous data in order to build statistical prediction models through pattern re-
cognition[8]. To reach this pattern perception capability, it is essential during the use of the supervised 
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machine learning approach to separate the data subsets for training and for testing. The training data 
are presented to the algorithm in order to create the model, and then the test data is also presented after 
the creation of the model in order to simulate this model’s prediction and evaluate its performance. The 
machine learning approach is already used for medical predictions based on clinical data, which 
includes patient outcome. Heo et al[9] used it to predict the long-term outcome of patients who suffered 
an ischemic stroke. In another study, Lynch et al[10] sought a survival prediction of lung cancer patients 
using machine learning by providing a series of patient data such as age, tumor size, type of inter-
vention, and more.

The use of machine learning has been consolidated as an alternative for the development of predi-
ctive models of mortality in the critical care setting. An example is the retrospective study by Liu et al
[11], who developed a logistic model of the death risk grade in patients with pulmonary tuberculosis 
using data from patients admitted to ICUs in three hospitals. In this multivariate analysis study, where 
the sensitivity was 83.3% and specificity was 73.1%, the Apache II score, C-reactive protein levels, 
albumin levels, and pressure of oxygen in arterial blood (PaO2) were considered the main factors 
influencing the outcome. However, a registered limitation was the small dataset utilized.

The limiting matter caused by the database used in machine learning predictive models was also 
observed in the study by Hou et al[12], who developed a model regarding 30-d mortality in patients 
who fit the Third International Consensus Definitions for Sepsis (Sepsis-3). This paper used a public 
database Medical Information Mart for Intensive Care III (MIMIC III) from a single-center critical care 
database. Another study that also relates the development of a predictive machine learning model in the 
context of patients with sepsis is the one proposed by Nemati et al[13] that, in addition to using the 
aforementioned MIMIC III, also relied on ICU admission data from two hospital centers. In this study, 
as well as in the two previously mentioned, the potentialuses of this tool in the early identification of 
severity of cases and the possibility of making fundamental decisions to the positive outcome for pat-
ients was observed.

In addition, more recently, in light of the advent of the severe acute respiratory syndrome 
coronavirus 2 pandemic, the application of these predictive models using machine learning technology 
have been employed on various grounds, such as for risk of critical coronavirus disease 2019 (COVID-
19)[14], need for ICU transfer, and the prognosis of intensive care COVID-19 patients[15,16]. The latter 
one was associated with eight main component factors, namely: Lymphocyte percentage, prothrombin 
time, lactate dehydrogenase, total bilirubin, eosinophil percentage, creatinine, and neutrophil per-
centage. And although it also emphasized the difficulties of small databases, they pointed out the 
significance of this approach in critical patients with a panel of such complicated parameters.

Understanding a clinical setting as complex and full of variables as the ICU, identifying existing 
patterns, and enabling outcome prediction is a valuable tool for the improvement of health assistance to 
these patients. Therefore, the aim of the current paper is to develop a predictive model for the outcome 
of death in ICU patients based on clinical and laboratory parameters using a binary classifier, with 
predicted outcome consisting of in-hospital death and discharge.

MATERIALS AND METHODS
Data acquisition
We used anonymized retrospective data from ICU patients admitted to the emergency department to 
build a predictive model geared towards predicting death outcomes in these patients. For this purpose, 
a dataset used in the study was created from the larger “WiDS (Women in Data Science) Datathon 2020: 
ICU Mortality Prediction” dataset[17], which presents clinical and laboratory data pertaining to the first 
24 h of ICU patient admission. The criteria for inclusion of instances (i.e., patients) in the study dataset 
were: (1) ICU admission and emergency department admission; and (2) Completeness (i.e., absence of 
missing data) with respect to the variables of interest. Since all the data were obtained from a public and 
anonymized dataset[16], it was not necessary to submit this study to the ethics committee, being in 
accordance with all the established precepts by the Committee on Publication Ethics.

Data preprocessing and exploratory data analysis
Aligned with the goal of building an interpretable predictive model from clinical and laboratory data, 
variables related to the clinical status of patients (such as vital signs, clinical score scores, blood counts, 
and biochemical test results) were prioritized in the definition of variables of interest - with exclusion of 
variables of this type only when redundant or when they represented the application of formulas 
instead of measured or scored values - to the detriment of anthropometric and demographic variables, 
with age being the only representative of this group of variables included. Additionally, factors 
referring to logistical aspects of hospitalization (such as source and type of admission and readmission 
status) were also not included among the variables of interest.

This way, a set formed by 1087 instances and 50 variables was obtained, of which 49 were assumed as 
predictive variables and 1 as predicted variable (outcome variable). The predictive numerical variables 
were: (1) Age; (2) Disease score; (3) Eye opening score on the Glasgow coma scale (GCS); (4) Heart rate; 
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(5) Hematocrit; (6) Mean arterial pressure; (7) Maximum albumin; (8) Maximum bilirubin; (9) Maximum 
blood urea nitrogen; (10) Maximum calcium; (11) Maximum creatinine; (12) Maximum diastolic blood 
pressure; (13) Maximum glucose; (14) Maximum HCO3; (15) Maximum hemoglobin; (16) Maximum 
INR; (17) Maximum lactate; (18) Maximum platelets; (19) Maximum potassium; (20) Maximum sodium; 
(21) Minimum systolic blood pressure; (22) Maximum saturation of peripheral oxygen (SpO2); (23) 
Maximum white blood cells (WBC); (24) Minimum albumin; (25) Minimum bilirubin; (26) Maximum 
blood urea nitrogen; (27) Minimum calcium; (28) Minimum creatinine; (29) Minimum diastolic blood 
pressure; (30) Minimum glucose; (31) Minimum HCO3; (32) Minimum hemoglobin; (33) Minimum INR; 
(34) Minimum lactate; (35) Minimum platelets; (36) Minimum potassium; (37) Minimum sodium; (38) 
Minimum systolic blood pressure; (39) Minimum SpO2; (40) Minimum WBC; (41) Motor response on the 
GCS; (42) Partial PaO2; (43) Partial pressure of carbonic gas in arterial blood (PaCO2); (44) pH; (45) 
Respiratory rate; (46) Temperature; and (47) Verbal response on the GCS. The predictive categorical 
variables were: (1) Need for intubation or not; and (2) Predominant systemic involvement. The outcome 
variable was the evolution or not with hospital death.

The disease score corresponded to the number of diseases present among the following conditions: 
(1) Acquired immunodeficiency syndrome; (2) Cirrhosis; (3) Diabetes; (4) Hepatic failure; (5) 
Immunosuppression; (6) Leukemia; (7) Lymphoma; and (8) Solid tumor. The categories of predominant 
systemic involvement considered were: (1) Cardiovascular involvement; (2) Gastrointestinal 
involvement; (3) Genitourinary involvement; (4) Hematological involvement; (5) Metabolic 
involvement; (6) Musculoskeletal/skin involvement; (7) Neurological involvement; (8) Respiratory 
involvement; (9) Sepsis; and (10) Trauma.

Initially, a descriptive and comparative analysis of the data was performed. The data were 
categorized according to the outcome variable. After that, the occurrence frequencies of each category 
for of categorical predictive variables and the means and standard deviations for all numerical 
predictive variables in both groups were computed. Finally, the differences for each variable between 
the groups were analyzed using the χ2 test for risk ratios (for categorical variables) and the Mann-
Whitney U test (for numerical variables). Since a decision tree ensemble algorithm was chosen to 
constitute our predictive model, it was not necessary to normalize or standardize the data, since tree 
partitioning algorithms are insensitive to scaling.

Machine learning algorithm selection
To perform our predictive analysis, we chose to build a Random Forest algorithm, a model consisting of 
an ensemble of randomized decision trees. As an extension of bootstrap aggregation (bagging) of 
decision trees, in Random Forest algorithms each individual model in the ensemble is employed to 
generate a prediction for a new sample, and these individual model predictions are averaged to give the 
forest’s prediction, resulting in better performance than any single tree. By combining individual 
models, the ensemble model tends to be more flexible and efficient. Accordingly, random forests have 
been incredibly successful in a variety of classification and regression problems with clinical applic-
ations. Furthermore, the algorithm does not require any feature scaling since decision trees predictions 
are partitioning-based instead of distance-based.

Model training and evaluation
We then proceeded to the development of the predictive model for the outcome variable. The data were 
divided into a training set (80%) and a test set (20%). The training set was used to train a predictive 
model based on the Random Forest algorithm[18], implemented here through the Scikit-learn open 
source library[19]. The test set was used to evaluate the predictive effectiveness of the model. The 
metrics used for such evaluation were accuracy, sensitivity, specificity, area under the curve (AUC) 
score, positive predictive value, and negative predictive value. The adopted methodology is schemat-
ically summarized in Figure 1. Besides the predictive performance, the feature importance attributed by 
the model to each variable was also considered, which not only adds explainability to the model, but 
also potentially provides insights regarding the evaluation of critically ill patients and the factors 
associated with higher mortality in this clinical setting. All steps of statistical analysis and development 
of the predictive model were performed in Python (version 3.6.9) using SciPy and Scikit-learn libraries.

RESULTS
Data from 1087 ICU patients were analyzed and used in the construction of the predictive model, of 
which 388 evolved with hospital death, while the remaining 699 did not. With regard to the predictive 
variables categories - need or not of intubation and predominantly affected body system -, among the 
388 patients who evolved with hospital death: 275 were intubated and 63 were not; 106 had sepsis as 
predominant systemic involvement, 18 respiratory involvement, 4 metabolic involvement, 154 
cardiovascular involvement, 11 trauma, 16 neurological involvement, 25 gastrointestinal involvement, 2 
genitourinary involvement, 1 musculoskeletal/skin involvement, and 1 hematological involvement. 
Among the 699 patients who did not progress to hospital death: 534 were intubated and 215 were not; 
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Figure 1 Methodological design of the study. The proposed workflow encompasses selective collection of clinical, laboratorial and outcome data, splitting 
and pre-processing of the data, iterative training of the classificatory model, and finally evaluation of its performance. ICU: Intensive care unit.

206 had sepsis as predominant systemic involvement, 107 respiratory involvement, 79 metabolic 
involvement, 167 cardiovascular involvement, 38 trauma, 49 neurological involvement, 74 gastro-intest-
inalintestinal involvement, 17 genitourinary involvement, 9 musculoskeletal/skin involvement, and 3 
hematological involvement. A statistically significant association was identified between need for 
intubation and hospital death (risk ratio = 1.5, χ² = 11.87, P < 0.001), as well as between the predominant 
systemic cardiovascular involvement and hospital death compared to the musculoskeletal system/skin, 
which related to lower rate of hospital death (risk ratio = 4.80, χ² = 4.20, P = 0.04). With regards to 
numerical predictive variables, their mean ± SD, and the respective comparison between both outcome 
groups (performed using the Mann-Whitney U test) are shown in Table 1.

The search for the best hyperparameters in our Random Forest model training was done using 
randomized search. In this way, 100 random combinations of hyperparameters were tested. Each 
combination was iterated 6 times, as a 6-fold validation scheme was adopted. In this scheme, the 
training set (n = 869) was split into 6 parts, and in each iteration a different part was used for validation. 
Ultimately, during training we performed 600 fits, obtaining the following hyperparameters: (1) 
Number of estimators = 213; (2) Maximum depth = 23; (3) Maximum leaf nodes = 24; (4) Minimum 
samples split = 5; (5) Class weights = 3.9; and (6) Bootstrap = true.

The model obtained accuracy of 80.28%, sensitivity of 81.82%, specificity of 79.43%, positive 
predictive value of 73.26%, negative predictive value of 84.85%, F1 score of 0.74, and AUC score of 0.85 
on the test set (n = 218). The confusion matrix for the model is shown in Figure 2, and its receiver 
operating characteristic (ROC) curve is shown in Figure 3. The predictive variables with the greatest 
importance were the maximum and minimum lactate values, adding up to a predictive importance of 
15.54%, followed by temperature (6.47%), motor punctuation in GCS (5.25%), maximum blood urea 
nitrogen (4.35%), and minimum WBC (3.31%). The percentage importance of the other variables in the 
prediction are listed in Table 2.

DISCUSSION
The presented predictive model, a Random Forest binary classifier, was able to predict in the test set the 
occurrence or not of hospital death with an accuracy of 80.28%, sensitivity of 81.82%, and specificity of 
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Table 1 Descriptive and univariate comparative analyses for numerical predictive variables according to outcome

mean ± SD
Variable

Death outcome, n = 338 Survival outcome, n = 749
U value P value

Age 63.4 ± 15.7 60.1 ± 16.1 111072 < 0.001

Disease score 1.3 ± 0.8 1.2 ± 0.7 121505.5 0.110

Eye opening (GCS) 2.0 ± 1.2 2.5 ± 1.2 97325.0 < 0.001

Heart rate 114.3 ± 34.9 111.1 ± 31.1 117672.0 0.031

Hematocrit 31.7 ± 8.3 32.8 ± 7.3 116749.0 0.02

MAP 84.7 ± 53.9 87.4 ± 48.7 108432.0 < 0.001

Max albumin 2.7 ± 0.7 2.8 ± 0.6 109136.0 < 0.001

Max bilirubin 2.2 ± 3.8 1.2 ± 1.8 98589.5 < 0.001

Max BUN 40.0 ± 25.2 33.8 ± 24.5 102300.0 < 0.001

Max calcium 8.0 ± 0.9 8.1 ± 0.8 117155.0 0.024

Max creatinine 2.6 ± 2.0 2.0 ± 1.9 96278.5 < 0.001

Max DBP 92.0 ± 23.1 94.8 ± 21.5 116162.0 0.015

Max glucose 231.4 ± 113.0 210.1 ± 105.2 11090.0 < 0.001

Max HCO3 21.0 ± 5.1 23.3 ± 4.8 94750.0 < 0.001

Max hemoglobin 11.7 ± 2.5 11.7 ± 2.3 124619.0 0.341

Max INR 2.1 ± 1.3 1.6 ± 0.8 83944.0 < 0.001

Max lactate 7.3 ± 5.5 3.2 ± 2.8 62255.5 < 0.001

Max platelets 189446.7 ± 98687.9 198186.9 ± 96842.7 120773.5 0.113

Max potassium 4.7 ± 0.9 4.5 ± 0.8 106603.0 < 0.001

Max sodium 142.1 ± 6.7 140.9 ± 5.4 113894.0 0.004

Max SBP 147.5 ± 29.3 151.1 ± 26.2 113747.5 0.004

Max SpO2 99.6 ± 1.5 99.8 ± 0.6 119714.5 0.005

Max WBC 17442.9 ± 10269.3 15302 ± 8516 111218.5 0.001

Min albumin 2.5 ± 0.7 2.7 ± 0.6 101997.5 < 0.001

Min bilirubin 1.9 ± 3.3 1.1 ± 1.7 101177.5 < 0.001

Min BUN 34.2 ± 22.9 29.0 ± 21.0 106584.5 < 0.001

Min calcium 7.4 ± 0.9 7.7 ± 0.9 98668.5 < 0.001

Min creatinine 2.08 ± 1.7 1.6 ± 1.3 99935.0 < 0.001

Min glucose 104.6 ± 47.0 110.7 ± 38.1 111941.5 0.001

Min HCO3 17.0 ± 5.5 20.6 ± 5.5 79747.5 < 0.001

Min hemoglobin 10.3 ± 2.7 10.8 ± 2.4 111370.0 0.001

Min INR 1.8 ± 0.9 1.5 ± 0.6 89909.5 < 0.001

Min lactate 4.7 ± 4.0 2.1 ± 1.58 69894.5 < 0.001

Min platelets 157252 ± 94655.6 177120.8 ± 90595.7 110075.0 < 0.001

Min potassium 3.8 ± 0.8 3.8 ± 0.7 125962.0 < 0.001

Min SBP 75.4 ± 20.3 84.9 ± 19.6 92919.0 < 0.001

Min sodium 137.9 ± 6.1 138.2 ± 5.5 121722.5 0.155

Min WBC 13247.1 ± 8505.4 12.7 ± 6.9 122208.5 0.181

Min DBP 38.7 ± 14.9 44.9 ± 12.7 93559.5 < 0.001

Min SpO2 81.3 ± 19.0 88.0 ± 12.0 94624.5 < 0.001
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Motor response (GCS) 2.9 ± 2.2 4.3 ± 2.0 83488.5 < 0.001

PaCO2 40.0 ± 13.9 39.5 ± 11.6 124352.0 0.321

PaO2 137.4 ± 102.3 130.9 ± 82.4 121043.0 0.124

pH 7.3 ± 0.1 7.3 ± 0.1 109784.0 < 0.001

Respiratory rate 31.2 ± 15.1 27.5 ± 14.9 107284.5 < 0.001

Temperature 35.2 ± 1.9 36.2 ± 1.4 80674.5 < 0.001

Verbal response (GCS) 1.9 ± 1.5 2.3 ± 1.7 109666.5 < 0.001

BUN: Blood urea nitrogen; DBP: Diastolic blood pressure; GCS: Glasgow coma scale; INR: International normalized ratio; MAP: Medium Arterial Pressure; 
PaCO2: Partial pressure of carbonic gas in arterial blood; PaO2: Partial pressure of oxygen in arterial blood; SBP: Systolic blood pressure; SpO2: Saturation 
of peripheral oxygen; WBC: White blood cells.

Figure 2 Model confusion matrix. As illustrated, the model was able to accurately predict occurrence of death outcome for 63 of 77 patients and non-
occurrence for 112 of 131 patients, with true positive and true negative rates of 76.8% and 88.9%, respectively.

79.43%. It is well established in the literature that this type of classifier is generally well suited for high-
dimensional problems with highly correlated features (a frequent situation when it comes to medical 
data)[20]. Our results are consistent with that, as they demonstrate the potential for using random 
forests to handle clinical and laboratory data from patients under intensive monitoring.

The ICU mortality is high, and the patients require interventions that are cost-effective in order to 
avoid mortality without inputting unnecessary costs or demand to the medical team. Mortality 
prediction models work with the objective to assess the severity of the patients so that, based on its 
findings, the treatment needed can be directed. The analysis presented in this study works in the same 
way; if we identify those patients that have major mortality rates, faster and better care can be provided 
in order to prevent the worse outcome[21]. For this purpose, a variety of assessment scores already exist, 
like APACHE, SAPS or Mortality Probability Model (MPM). The ROC value of our model (0.85) was 
comparable with some of these highly used models, like 0.836 for APACHE II, or 0.826 for SAPS II[22], 
which showcase the good results obtained.



Caires Silveira E et al. Prediction of mortality in ICU patients

WJCCM https://www.wjgnet.com 324 September 9, 2022 Volume 11 Issue 5

Table 2 Percentual importance of variables in the outcome prediction

Variable Predictive importance, %

Maximum lactate 9.05

Minimum lactate 6.49

Temperature 6.47

Motor GCS 5.25

Maximum BUN 4.35

Minimum WBC 3.31

Minimum creatinine 3.22

Maximum INR 3.15

Minimum HCO3 2.84

Maximum glucose 2.69

Minimum SpO2 2.45

pH 2.18

Age 2.09

Minimum INR 1.95

Platelets 1.9

Maximum HCO3 1.83

Minimum SBP 1.82

Minimum DBP 1.82

Maximum creatinine 1.79

Minimum albumin 1.67

Minimum sodium 1.66

Predominant systemic involvement 1.64

Maximum bilirubin 1.63

Maximum WBC 1.63

PaO2 1.62

Minimum hemoglobin 1.6

Maximum SBP 1.6

Maximum albumin 1.5

MAP 1.5

Eyes opening GCS 1.46

Respiratory rate 1.41

Minimum calcium 1.4

Maximum hemoglobin 1.39

Minimum platelets 1.35

Minimum BUN 1.28

Hematocrit 1.22

Minimum bilirubin 1.2

PaCO2 1.19

Maximum sodium 1.13

Maximum DBP 1.12

Maximum calcium 0.93
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Minimum glucose 0.92

Minimum potassium 0.92

Maximum potassium 0.82

Heart rate 0.72

Verbal GCS 0.42

Intubated 0.15

Disease score 0.14

Maximum SpO2 0.13

BUN: Blood urea nitrogen; DBP: Diastolic blood pressure; GCS: Glasgow coma scale; INR: International normalized ratio; MAP: Medium Arterial Pressure; 
PaCO2: Partial pressure of carbonic gas in arterial blood; PaO2: Partial pressure of oxygen in arterial blood; SBP: Systolic blood pressure; SpO2: Saturation 
of peripheral oxygen; WBC: White blood cells.

Figure 3 Model receiver operating characteristic curve. The graph demonstrates the relationship between true and false positive rates, 
which led to an area under the curve of 85%. AUC: Area under the curve.

Furthermore, the machine learning approach to predict mortality in ICU patients has been 
documented. For example, Veith and Steele[23] developed a LazyKStar model to predict mortality in 
ICU patients at the time of hospital admission, obtaining a 10-fold validation AUC value of 0.75.A 
recurrent neural network inputted with 44 clinical and laboratory features from the first 24 h of ICU 
patient admission proposed by Thorsen-Meyer et al[24] achieved an AUC of 0.82. The extreme gradient 
boosted trees classifier developed by Chia et al[25] reached an AUC of 0.83 using 42 predictive variables. 
The formats and results of these last two studies are comparable to ours, since we reached an AUC of 
0.85 using a random forest fed by 50 features.

Due to the COVID-19 pandemic, there was a great growth of publications focused on machine 
learning models for predicting ICU mortality in a disease-specific manner, such as those by Pan et al
[16], Lichtner et al[26], and Subudhi et al[27]. Meanwhile, many of the previous studies in this field also 
focus on predicting ICU outcomes for specific diseases or morbid conditions, like sepsis or death from 
pulmonary tuberculosis[11,13,28], which lead to an assessment of parameters specific for the disease 
studied, somewhat restricting the research. Many of the renowned models and scales for ICU mortality 
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prediction demand a series of measurements to make their use possible, but not always all the data 
required are available. In this sense, it is important to understand what the main variables involved 
related to the outcome of interest (and its prediction) are, so that they can be closely monitored. In our 
study, lactate level proved to be the most influential one, which is in accordance with its physiological 
role that indicates poor oxygenation, anaerobic metabolism, acidosis and muscle fatigue, involved in a 
systemic response of the organ is mand corroborates the findings by Bou Chebl et al[29], Villar et al[30] 
and Vincent et al[2]. Despite its predictive importance found in our study (15.54%), lactate is not a 
variable of most scores used, and is not included in APACHE, SAPS or MPM.

Temperature, which is part of APACHE and SAPS, was the second variable that influenced the most 
the outcome prediction; its variation (hyper or hypothermia) is related with a loss of control of body 
homeostasis, and the mean valor for death outcome was 35.2 ± 1.9. While we have an increase of nearly 
1 point in the mean value for the survival outcome, these data could represent that an increase of the 
temperature or even fever could be a positive body response, indicating an immune system attempt to 
fight the pathology[31,32].

The third variable of major impact is the motor GCS punctuation, which is part of GCS, a widely 
known scale for neurologic damage used in hospital admissions as well as assessment models[33].This 
motor element has a specific field only in APACHE IV. Lower punctuations in GCS are related with 
greater neurologic damage, with 3 and 1 as its bottom punctuation for the global and motor scale 
respectively, the mean of 2.9 ± 2.2 for the death outcome in contrast with the value of 4.3 ± 2.0 for the 
survival mean demonstrate a considerable difference between those patients since the greatest value 
possible for the motor component is 6. The stratification of the data based on its predictive value is a 
great contribution since the variables above discussed account for approximately 27% of the result, 
while the other 45 for the remaining 73%, indicating that continuous monitoring of them may be of great 
value. Considering their importance, a detailed survey with either a dataset with per hour measurement 
of parameters or the data separated by ICU type could lead to more specific approaches for the medical 
staff.

Despite the good results found, this study faces as its main limitation the incompleteness of the 
original dataset for many instances regarding important clinical and laboratory variables, which lead to 
the use of a relatively small quantity of instances to train the predictive model. Since machine learning 
algorithms are essentially data-driven, a larger amount of data could lead to greater accuracy and a 
wider generalizability of the model, thus being useful for additional testing and refinement. Another 
potential limitation is related to the clinically broad nature of the variables analyzed, since the purpose 
was to study the possible parameters available in the ICU, which contrasts with research focused on the 
outcomes for a specific disease and, therefore, fed with more specific variables with regards to the 
considered pathophysiological process.

Although the use of a wide range of clinical and laboratory parameters was critical for our purpose of 
assessing the predictive significance of the variables in the context of building a model that is not only 
explainable but also clinically interpretable, this factor may restrict the possibilities of potential datasets 
to be used to ascertain the reproducibility of the findings, since some parameters may be unavailable. 
However, since these are variables commonly evaluated in critically ill patients in the ICU, for whom 
the prognostic evaluation of mortality is more important (in view of their higher mortality rates), we 
believe that this should not be a limiting factor to the clinical applicability of the proposed model.

CONCLUSION
In the study, it was possible to develop a reliable model for predicting mortality in the ICU, in which the 
influence of lactate level stands out as the main variable involved in the outcome prediction, followed 
by temperature and motor GCS. What can be perceived through the research is that machine learning 
comes to contribute and to make medical practice more efficient, as it allows faster analysis that 
otherwise would be complex and time-consuming. More than that, it also allows us to critically question 
existing parameters and methodologies through the results it provides in order to allow improvements 
that reduce the mortality of patients and are time and cost-effective. This study also highlights the 
importance of complete and organized registers of ICU patient data in order to enable the development 
of predictive models towards prevention and prediction of in-hospital bad outcomes.

ARTICLE HIGHLIGHTS
Research background
The monitoring of clinical and laboratory parameters of patients in the intensive care unit (ICU) is an 
extremely important part of the routine of intensive care staff. Additionally, several scores already 
utilize these parameters to guide the assistance of these patients. In the meantime, the advance of 
technological resources, such as the machine learning approach, allows the development of predictive 
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models capable of being applied to medical practice.

Research motivation
Mortality in the ICU is something that worries and drives the search for alternatives that can help the 
team in directing treatment to avoid this negative outcome. Therefore, a predictive model that uses the 
patient’s parameters can precisely influence this treatment guidance, improving the cost-effectiveness 
quickly and safely.

Research objectives
The objective of our study is the development of a binary classifier predictive model between the 
outcomes of death and non-death in ICU patients. This paper demonstrates the potency of emerging 
technological realities within the medical field and how it is possible to harness them to improve 
healthcare practices.

Research methods
Initially, we obtained a set of 1087 instances and 50 variables related to patients admitted to an ICU by 
using a public database. We calculated frequency and risk rate for categorical variables and means, 
standard deviations, and the Mann-Whitney U test for numerical variables. Afterwards, we divided the 
data for the application in training of the predictive model based on the Random Forest algorithm and 
then to test the effectiveness of the model.

Research results
Among the 50 variables associated with death outcome, the maximum and minimum lactate values 
were the most important predictors (15.54%) followed by temperature (6.47%), and motor Glasgow 
coma scale punctuation (5.25%). The Random Forest binary classifier predictive model (death and no 
death) showed accuracy of 80.28%, sensitivity of 81.82%, specificity of 79.43%, positive predictive value 
of 73.26%, negative predictive value of 84.85%, F1 score of 0.74, and area under the curve score of 0.85.

Research conclusions
This study demonstrated the development of a predictive model with high accuracy, sensitivity, and 
specificity for ICU patients by applying a machine learning approach, the Random Forest algorithm, to 
clinical and laboratory data.

Research perspectives
The proper registration of patient parameters, as well as the availability of more and larger databases 
and even further development of digital tools, can enhance machine learning approaches, enabling the 
refinement of predictive models and patient care.
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Abstract
BACKGROUND 
This study aims to highlight the potential serious complications of acute kidney 
injury (AKI) resulting from the consumption of excessive amounts of starfruit, a 
common traditional remedy.

CASE SUMMARY 
A 78-year-old male with a past medical history of hypertension, diabetes mellitus 
and hyperlipidemia without prior nephropathy presented to the emergency 
department (ED) with hiccups, nausea, vomiting and generalized weakness. In 
the preceding 1 wk, he had consumed 3 bottles of concentrated juice self-prepared 
from 1 kg of small sour starfruits. His serum creatinine was noted to be 1101 
μmol/L from baseline normal prior to his ED visit. He was diagnosed with AKI 
secondary to excessive starfruit consumption.

CONCLUSION 
Consumption of starfruit can cause acute renal failure, with a good outcome when 
promptly identified and treated.

Key Words: Acute kidney injury; Acute renal failure; Starfruit; Hemodialysis; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Physicians should have a high index of suspicion on possible interactions and 
toxicities that may occur with the use of traditional medications in combination with 
prescription drugs in susceptible patients. This report highlights the toxicity of starfruit 
when consumed as a traditional remedy for diabetes mellitus resulting in acute kidney 
injury.
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INTRODUCTION
The starfruit (Averrhoa carambola) is a popular fruit in tropical countries due to its nutritional and 
medicinal benefits[1], and is used to treat various ailments such as diabetes mellitus, rheumatism, and 
cough. The starfruit is used as a traditional remedy in Asian countries such as Malaysia and Indonesia 
to treat diabetes mellitus due to its hypoglycemic properties[2]. Despite its frequent consumption, many 
people are unaware of the dangers of overindulging in starfruit. When consumed in large quantities, the 
fruit contains high levels of oxalic acid, which can be nephrotoxic. Starfruit-induced neurotoxicity and 
nephrotoxicity, which manifests as acute kidney injury (AKI) in individuals with underlying renal 
dysfunction, is well documented[3,4]. AKI in individuals with normal renal function is rare. We present 
a case report of AKI following the consumption of starfruit.

CASE PRESENTATION
Chief complaints
A 78-year-old male presented to the emergency department (ED) with hiccups, nausea, vomiting and 
generalized weakness.

History of present illness
In the preceding week, he had consumed 3 bottles of concentrated juice which were self-prepared from 
1 kg of starfruits. Following ingestion of the third bottle of the fruit juice, he developed bouts of severe 
nausea and vomiting without abdominal pain or diarrhea.

History of past illness
He had a past medical history of hypertension, diabetes mellitus and hyperlipidemia.

Personal and family history
No significant family history.

Physical examination
On arrival at the ED, his vital signs were stable (temperature was 36.8°C, pulse rate 60 bpm, respiratory 
rate 18 breaths/min, and blood pressure 161/78 mmHg) and there was no pitting edema. Examinations 
of his cardiovascular, respiratory, abdominal and neurological systems were normal.

Laboratory examinations
Laboratory examination results are shown in Figure 1 and Table 1.

Imaging examinations
No imaging was undertaken.

MULTIDISCIPLINARY EXPERT CONSULTATION
The patient was initially seen in the ED and admitted under renal medicine for specialized care.

FINAL DIAGNOSIS
Acute kidney injury.

https://www.wjgnet.com/2220-3141/full/v11/i5/330.htm
https://dx.doi.org/10.5492/wjccm.v11.i5.330
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Table 1 Trend in patient’s blood investigations

Day 1 Day 2 Day 3 Day 4 Day 5 Day 7 Day 13 Day 17 Day 24 Day 60 Day 135
Renal function

Serum creatinine (μmol/L) 1101 680 659 495 340 328 208 177 127 99

Serum urea (mmol/L) 38.1 23.1 27.1 22.0 14.5 25.2 17.4 10.6 12.4 6.2

Electrolytes

Sodium (mmol/L) 134 142 146 147 137 135 136 138 140 144

Potassium (mmol/L) 4.4 3.5 3.5 3.1 4.0 4.3 4.0 4.1 3.8 3.9

Chloride (mmol/L) 101 105 102 100 98 101 102 105 108 110

Bicarbonate (mmol/L) 15.9 22.8 26.8 31.1 24.6 28.3 23.7 24.6 23.5 24.9

Magnesium (mmol/L) 0.91

Liver function

Total protein (g/L) 60 76

Serum albumin (g/L) 32 41

Total bilirubin (mmol/L) 07 09

Alkaline phosphatase (U/L) 58 65

Alkaline transaminase (U/L) 57 17

Routine tests

White blood cells (×  109/L) 9.33 10.25 9.89

Neutrophil (%) 78.8 74.6 74.1

Lymphocytes (%) 11.1 11.6 15.9

Hemoglobin (g/dL) 12.3 13.8 14.1

Platelet count (× 109/L) 208 307 281

Coagulation 

APTT (secs) 27.0 28.5

Prothrombin time (secs) 11.2 11.4

Other indicators

Creatine kinase (U/L) 7224 4755 2863 754 84 84

PTH (pg/mL) 11.0 

Urine creatinine (μmol/L) 5233 3862 7747 8035

APTT: Activated partial thromboplastin time; PTH: Parathyroid hormone.

TREATMENT
The patient was treated with 4 sessions of hemodialysis and supportive care such as intravenous fluid. 
After each session of hemodialysis, blood tests to determine renal function were repeated. Progressive 
improvement in renal function was noted with each session of hemodialysis.

OUTCOME AND FOLLOW-UP
The patient's renal function returned to normal.

DISCUSSION
Starfruit has several toxins including caromboxin, an excitatory central nervous system stimulant and 
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Figure 1 Laboratory examination results. A: Trend in creatinine kinase following hemodialysis; B: Trend in serum creatinine.

oxalate a nephrotoxic agent[5-7]. The sour type of starfruit has higher levels of oxalate than the sweet 
type. Homemade and medicinal supplements often have high levels of oxalate. When consumed in 
large amounts, especially when fasting or dehydrated, deposits of calcium oxalate crystals in the renal 
tubules lead to kidney damage[6]. Chronic kidney disease has been identified as a major risk factor for 
starfruit-induced kidney toxicity. Starfruit juice volume of approximately 25 mL is known to cause 
nephrotoxicity in patients with chronic kidney disease. Other known risk factors include dehydration, 
the amount of starfruit ingested, and consumption on an empty stomach. Patients with starfruit toxicity 
show gastrointestinal symptoms such as nausea, vomiting, and abdominal discomfort immediately after 
ingestion. These symptoms are believed to be due to the direct corrosive effects of dietary oxalates 
rather than systemic effects[8]. This may be followed by a decrease in urinary output, which can lead to 
renal dysfunction and acute renal failure. Typical histological findings are the intraluminal and intrae-
pithelial deposition of colorless oxalate crystals. There is no specific treatment for acute kidney damage 
from starfruit. In patients requiring renal replacement therapy, hemodialysis and hemoperfusion are 
preferred[9].

Our patient had no evidence of pre-existing renal failure or other contributory factors predisposing to 
AKI such as sepsis, dehydration, nephrotoxic drugs or obstructive urological causes based on clinical 
evaluation and tests done. In addition, over the course of four sessions of hemodialysis, he had gradual 
restoration of his renal function. The temporal relationship between the ingestion of large amount of 
fruit juice and the onset of symptoms in this case strongly suggests starfruit intoxication as the transient 
and reversible etiology likely due to resolving oxalate nephropathy.

CONCLUSION
In Asian countries where starfruit is commonly consumed as a traditional remedy, it is imperative for 
emergency physicians to be aware of starfruit toxicity in patients with unexplained AKI. This will help 
identify and treat these patients promptly to prevent starfruit-induced nephrotoxicity. Patient history is 
the key to reaching an early diagnosis. It is essential to prevent starfruit nephrotoxicity by educating the 
public and especially diabetics on the risks of consuming excess starfruit. Consumption of starfruit as a 
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traditional remedy to control blood sugar levels in diabetics should be discouraged by educating the 
public.
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Abstract
BACKGROUND 
Tracheo and broncho esophageal fistulas and their potential complications in 
adults are seldom encountered in clinical practice but carries a significant morbi-
dity and mortality.

CASE SUMMARY 
We present a case of a 39-year-old otherwise healthy man who presented to our 
hospital after ingestion of drain cleaner substance during a suicidal attempt. He 
unexpectedly suffered from cardiac arrest during his stay in the intensive care 
unit. The patient had developed extensive segmental trachea-broncho-esophageal 
fistulous tracks that led to a sudden and significant aspiration event of gastric and 
duodenal contents with subsequent cardiopulmonary arrest. Endoscopic evalu-
ation of extension of fistulous track proved a slow and delayed progression of 
disease despite initial management with esophageal stenting for his caustic injury.

CONCLUSION 
The aim of this case presentation is to share with the reader the dire natural hist-
ory of trachea-broncho-esophageal fistulas and its delayed progression. We aim to 
illustrate pitfalls in the endoscopic examination and provide further aware-ness 
on critical care monitoring and management strategies to reduce its morbidity and 
mortality.

https://www.f6publishing.com
https://dx.doi.org/10.5492/wjccm.v11.i5.335
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Core Tip: Trachea-esophageal and broncho-esophageal in the setting of caustic ingestion is an unusual 
complication associated with high morbidity and mortality. Close monitoring of the gastrointestinal tract 
patency and motility is critical to avoid gastric distention and large aspiration events with detrimental 
consequences. Although there is no general consensus on the initial approach to patients with fistula 
formation, our case proposes serial esophagogastroduodenoscopy and flexible bronchoscopy for at least 6 
mo as well as a low threshold for surgical referral when progression of disease or new findings are 
encountered.

Citation: Lagrotta G, Ayad M, Butt I, Danckers M. Cardiac arrest due to massive aspiration from a broncho-
esophageal fistula: A case report. World J Crit Care Med 2022; 11(5): 335-341
URL: https://www.wjgnet.com/2220-3141/full/v11/i5/335.htm
DOI: https://dx.doi.org/10.5492/wjccm.v11.i5.335

INTRODUCTION
Injuries from caustic substance ingestion are associated with varying grades of damage to the gastr-
ointestinal and respiratory tract including esophagitis, mucosal burns, necrosis and perforation, 
stenosis, and rarely, trachea-esophageal (TEF), and broncho-esophageal (BEF) fistulas. Suicidal caustic 
ingestion strongly correlates with severity of injury and carries high morbidity and mortality[1]. We 
present the case of a young man after suicidal caustic ingestion of drain cleaner fluid who developed a 
sudden massive gastric and duodenal content aspiration into his airway through acquired large TEF 
and BEF fistulas leading to cardiopulmonary arrest.

CASE PRESENTATION
Chief complaints
A 39-year-old man arrived at our emergency department from another institution where he had been 
endotracheally intubated for airway protection.

History of present illness
The patient had sought medical attention five hours after a suicidal attempt where he ingested an 
unknown amount of drain cleaner liquid that contained sodium hydroxide, potassium hydroxide, and 
carbonyl diamide.

History of past illness
The patient had a free previous medical history.

Physical examination
Upon arrival to our facility, his vital signs were stable. His physical exam revealed edematous oral 
mucosa and chemical injuries to the face.

Laboratory examinations
His initial laboratory data was remarkable for a white blood cell count of 12.9 × 103/μL and a D-dimer > 
5250 ng/mL DDU.

Imaging examinations
Chest computer tomography (CT) with contrast revealed thickening and submucosal edema of the 
esophageal and gastric wall, along with trace para-esophageal and peri-gastric stranding and fluid. No 
free air was reported.

https://www.wjgnet.com/2220-3141/full/v11/i5/335.htm
https://dx.doi.org/10.5492/wjccm.v11.i5.335
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FINAL DIAGNOSIS
Tracheo and broncho esophageal fistulas leading to massive aspiration and cardiac arrest.

TREATMENT
He was started on a proton pump inhibitor, intravenous fluids, and prophylactic antibiotics. A trach-
eostomy and jejunostomy tube were placed on hospital day 13. He was noted to have bouts of coughing 
during routine sedation-awakening trials and with reduction in sedatives. On hospital day 18, he 
became acutely hypoxic, and his oxygen saturation decreased to 50% followed by pulseless electrical 
arrest. Advanced cardiopulmonary resuscitation was initiated with recovery of spontaneous circulation 
after two 5-min rounds of cardiopulmonary resuscitation. Copious amounts of frothy, yellow-tinted 
secretions were noted from the tracheostomy in-line suction setup. No oral secretions were noted during 
oral cavity suction. A nasogastric tube was placed for gastric cavity decompression and approximately 
400-500 mL of fluid were suctioned. Figure 1 demonstrates chest imaging obtained prior and post 
cardiopulmonary arrest highlighting the patient’s acute clinical change. On day 22, the patient 
underwent successful placement of a 1.8 cm in outer diameter and 12.3 cm in length fully covered 
esophageal stent.

The patient’s hospital course was complicated by acute respiratory distress syndrome and recurrent 
septic shock secondary to aspiration pneumonia. He was eventually liberated from mechanical venti-
lation and transitioned to a tracheostomy collar. He continued on enteral nutrition through a jeju-
nostomy feeding tube. He left the intensive care unit on day 40 and was discharged home with home-
health on day 114.

OUTCOME AND FOLLOW-UP
His endoscopy surveillance revealed progression and further extend of disease. Bronchoscopies 
performed on day 1 and day 8 as noted in Figure 2 demonstrate the progression of the insult. Bron-
choscopy performed after 17 wk revealed new tracheoesophageal fistula with esophageal lumen 
opening at midway through posterior wall of the trachea (Figure 3A and B). His prior bronchoscopy at 7 
wk had shown protrusion of esophageal stent through the left main broncho-esophageal fistula without 
any additional fistulous tracts (Figure 3C). Esophagoduodenoscopy (EGD) performed 7 mo after initial 
presentation visualized tracheostomy tube through a combined lumen formed by the esophagus and 
trachea (Figure 3D). Distal to the tracheostomy tube, a double lumen is identified with the esophagus 
opening at the proximal end of the stent (Figure 3E) as well as a complete obliteration of the stent in his 
distal end due to in-growth tissues (Figure 3F). The patient has been referred for cardiothoracic surgical 
evaluation where he will complete nutritional optimization prior to potential surgical intervention. 
Chron-ology of events is listed in Table 1.

DISCUSSION
Caustic ingestion remains a rare but potentially catastrophic mechanism for injury leading to significant 
morbidity and mortality. Specific management guidelines have yet to be defined[2]. Injury severity is 
determined by multiple factors including type of agent, its concentration, amount consumed, and time 
of contact with gastrointestinal mucosa. Agents can be either acidic or alkali. Our patient ingested drain 
cleaner liquid, predominantly an alkali substance.

TEF is a delayed and unusual complication that occurs approximately in 3% of patients with caustic 
ingestion[2]. BEF are not extensively described in the literature and their true incidence unknown. The 
rarity of BEFs is likely due to the anatomical relationship between the left mainstem bronchus and the 
esophagus. The thoracic esophagus extends caudally towards the diaphragmatic hiatus, passing poste-
riorly to the trachea, the tracheal bifurcation, and the left main stem bronchus[3]. The area of contact of 
the posterior wall of the left main bronchus with the anterior wall of the esophagus, in contrast to that of 
the trachea, is significantly smaller, making left main BEFs less likely to develop than TEF.

Hemorrhage, thrombosis, and inflammation with edema occur within the first 24 h. If caustic 
ingestion is severe enough, transmural necrosis leads to perforation and regional fistulous tract 
formation. TEFs and BEFs can lead to sepsis, aspiration pneumonia, acute respiratory distress synd-
rome, strictures, malignancy among other systemic complications[2]. In our patient, the fistulous tract 
was significant enough to allow for large amounts of gastric and duodenal content to reach the airway 
causing hypoxemia and cardiopulmonary arrest.

Medical literature on the incidence of cardiopulmonary arrest due to aspiration through a BEF is 
lacking, and its incidence is not defined. We infer that our patient’s aspiration leading to his arrest was 
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Table 1 Timeline of major events in chronological order

Event Time

Admission to hospital/ICU Day 0

EGD #1 Day 0

Bronchoscopy #1 Day 1

Bronchoscopy #2 Day 8

Cardiac arrest Day 18

Esophageal stent placement with EGD #2 Day 22

Bronchoscopy #3 7 wk

Hospital discharge 16 wk

Bronchoscopy #4 17 wk

EGD #3 28 wk

ICU: Intensive care unit; EGD: Esophagoduodenoscopy.

Figure 1 Chest X-ray. A: Chest X-ray on the left was obtained one day prior to cardiac arrest which shows bibasilar atelectasis; B: Chest X-ray on the right 
obtained following episode of cardiopulmonary arrest showing significant patchy airspace opacities occupying most of left hemithorax.

Figure 2 Flexible bronchoscopy. A: Day 1: Two-centimeter bronchoesophageal fistula (asterisk) with adjacent yellow tinged devitalized mucosa on the 
posterior wall of left main bronchi; B: Day 8: Further delineation of fistulous track (asterisk) with necrotic mucosa and well-defined borders. LMB: Left main bronchi; 
RMB: Right main bronchi.

due to increased output through a persistently large fistulous track in the setting of transient duodenal 
outlet stenosis from mucosal damage and impaired gastrointestinal motility. Our patient exhibited large 
amounts of bile-colored tracheal secretions in the peri-arrest period confirming a high output fistulous 
passage of duodenal content. Although in our case the volume we aspirated through naso-gastric 
suctioning was 400-500 mL, the exact volume of gastric content aspirated is unknown. However, it was 
large enough to infiltrate the lingula and left lower lobe.
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Figure 3 Flexible bronchoscopy at 17 wk. A: Visualization of tracheostomy tube (asterisk) shortly after bronchoscope is advanced through vocal cords; B: 
Esophageal lumen visualized at the level of mid-trachea confirming TEF. Flexible Bronchoscopy at 7 wk; C: Protruding esophageal stent through left main bronchi 
BEF. Esophagoduodenoscopy at 28 wk; D: Visualization of tracheostomy tube (asterisk) through a combined lumen of the esophagus and trachea at 14 cm; E: 
Proximal end of the esophageal stent located below the end of the tracheotomy at 23cm with a double lumen track, esophagus at 8 o’clock and trachea at 2 o’clock; 
F: Complete obliteration of esophageal stent due to in-growth of tissue at 35 cm (asterisk); G: Schematic diagram. LMB: Left main bronchi; TEF: Tracheoesophageal 
fistula; BEF: Bronchoesophageal fistula.

The incidence of aspiration pneumonia related to corrosive ingestion has been estimated in up to 
4.2% of cases with a mortality up to 60%[4]. Due to high risk of aspiration, enteral nutrition is often 
restricted[4]. In addition, caloric restriction and malnutrition further lead to recurrent pulmonary 
infections, bronchopneumonia, and sepsis[5]. Alternative means of enteral nutrition through the 
insertion of a jejunostomy tube were sought in our patient to enhance nutritional state as well as to 
promote fistula healing. A high index of suspicion should be maintained for functional or anatomic 
gastrointestinal tract obstruction as a consequence of caustic injury and should be considered when 
addressing nutritional support to select the most suitable nutritional route.

Risk stratification is needed during the initial approach. Symptoms such as dysphagia, hematemesis, 
stridor, cough, respiratory distress, drooling, and abdominal pain have been described. A sudden bout 
of uncontrolled paroxysmal cough, a reported symptom associated with BEF[6], was witnessed in our 
patient while mechanically ventilated during daily sedation awakening trials suggesting aspiration 
events and persistent fistula.

There is no consensus within the medical community of the initial and emergent management of 
TEF/BEF after caustic ingestion. In 2015, the World Society of Emergency Surgery recommended a 
management algorithm which includes both endoscopy and CT imaging as part of the initial assessment
[7]. Our patient underwent both, esophagogastroduodenoscopy and non-contrast CT scan within the 
first twenty-four hours of ingestion. Figure 4 demonstrates initial esophagoduodenoscopy findings. In 
order to quantify the severity of the injury, we utilized the Zargar classification system which placed 
him in the IIIB category[8]. This grading is useful for predicting systemic complications, respiratory 
failure, nutritional autonomy, and survival. In general, the degree of esophageal injury at endoscopy is a 
predictor of systemic complication and death with a 9-fold increase in morbidity and mortality for every 
increased injury grade[9] which aligns with our case study. An important tool for the clinician about 
risk rather than timing.
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Figure 4 Esophagoduodenoscopy. Extensive esophageal esophagitis with devitalized mucosa (asterisk) and deep brownish black ulcers (arrowhead).

However, risk stratification cannot accurately predict the depth of necrosis which could lead to 
inappropriate non-operative management and/or unnecessary surgical resection[2]. In order to 
properly evaluate the extent of necrosis, we propose that there is a benefit for surveillance endoscopic 
examination through EGD and flexible bronchoscopies for early fistula detection and therapeutic 
interventions. This would also serve for the monitoring of long term sequelae such as airway stenosis, or 
such in our case, further development of fistulous tracks. The interval of bronchoscopies would be 
dictated by endoscopic findings. In our case, evidence of a large newly detected TEF occurred 4 mo after 
the initial event. Prior biweekly and monthly bronchoscopies only reported the known BEF. It is 
reasonable to suggest monthly endoscopic surveillance in patients with high Zargar Score for at least 4-6 
mo following the initial ingestion. In patients who are able to be discharged from the hospital, surgical 
referral should be sought if endoscopic examination does not show a favorable course, new fistulous 
tracks are detected, or if the patient’s symptoms severely impair quality of life.

The treatment of TEFs and BEFs is based on previous case reports, reviews, and case series, along 
with experts' opinions. In our case, a multidisciplinary team agreed on the placement of an 18 mm × 123 
mm fully covered esophageal wall stent. According to the World Journal of Emergency Surgery, 
endoscopic treatment is the gold standard for closing large esophageal defects such suspected in our 
patient for the exam of injury during initial endoscopic examination. Self-expandable stents have 
showed to have a higher success rate and lower mortality rate when compared to surgical approach
[10]. Our patient underwent self-expandable sent placement due to the clinical complexity and added 
surgical risk in the setting of a recent cardiac arrest. This case illustrates both the prolonged hospital 
course of a cardiac arrest survival due to delayed complications of a BEF associated with functional 
impairment and also the protracted progression of the disease more than 6 mo later.

CONCLUSION
In conclusion, TEF and BEF in the setting of caustic ingestion is an unusual complication associated with 
high morbidity and mortality. Early and frequent endoscopic evaluation of the upper gastrointestinal 
tract and bronchial tree, as well as maintaining a high index of clinical suspicion, are necessary for its 
prompt recognition. This will lead to early detection of delayed complications including new fistulous 
tracks, and timely institution of therapeutic interventions. We remind the reader of the importance of 
close monitoring of the gastrointestinal tract patency and motility to avoid gastric distention and large 
aspiration events with detrimental consequences. Although there is no general consensus on the initial 
approach to patients with fistula formation, our case proposes serial EGDs and flexible bronchoscopy 
for at least 6 mo as well as a low threshold for surgical referral when progression of disease or new 
findings are encountered.
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