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Abstract
Ongoing clinical and research efforts seek to optimise the 
use of endocrine therapy in the treatment of breast cancer. 
Accurate biomarkers are needed that predict response 
for individual patients. The presence of the estrogen 
receptor (ER) as the direct (for tamoxifen and fulvestrant) 
or indirect (for aromatase inhibitors) target molecule 
for endocrine therapy remains the foremost biomarker 
and determinant of response. However, ER expression 
only poorly predicts outcome and further indicators of 
response or resistance are required. The development 
and application of molecular signature assays such as 
Oncotype Dx, Prosigna, Mammaprint and Endopredict 
have provided valuable information on prognosis and 
these are being used to support clinical decision making 
on whether endocrine therapy alone alongside surgery 
is sufficient for ER-positive early stage breast cancers or 
whether combination of endocrine with chemotherapy are 
also warranted. Ki67, the proliferation marker, has been 
widely used in the neo-adjuvant (pre-operative) setting 
to help predict response and long term outcome. Gene 
expression studies within the same setting have allowed 
monitoring of changes of potential predictive markers. 
These have identified frequent changes in estrogen-
regulated and proliferation genes. Specific molecules 
such as mutant ER may also prove helpful biomarkers in 
predicting outcome and monitoring response to treatment. 

Key words: Estrogen; IL6ST; Biomarker; Breast cancer; 
Predictive
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therapy in breast cancer. Molecular signatures provide 
increasing confidence for helping identify breast cancers 
for which endocrine therapy alone is likely to be 
sufficient. Estrogen and proliferation related genes have 
come to the fore in many of the molecular signatures. 
In neo-adjuvant studies, Ki67 expression at baseline and 
after 2 wk treatment can provide useful prognostic and 
predictive information. Neo-adjuvant studies continue to 
seek new markers that relate to tumor response.

Mosly D, Turnbull A, Sims A, Ward C, Langdon S. Predictive 
markers of endocrine response in breast cancer. World J Exp Med 
2018; 8(1): 1-7  Available from: URL: http://www.wjgnet.com/2220-
315X/full/v8/i1/1.htm  DOI: http://dx.doi.org/10.5493/wjem.v8.i1.1

INTRODUCTION
Breast cancer is the second most frequently diagnosed 
cancer worldwide with an estimated 1676000 new cases 
each year[1]. Of these cancers, approximately 70%-80% 
will have estrogen receptor (ER) expression and be 
considered candidates for endocrine therapy. Tamoxifen 
and the aromatase inhibitors represent the major endocrine 
treatments in use worldwide. Tamoxifen was first approved 
in 1977 for treatment of breast cancer and continues to be 
used in many post-menopausal women, but is primarily 
recommended for use in pre-menopausal women[2]. The 
3rd-generation aromatase inhibitors (anastrazole, letrozole 
and exemestane) have demonstrated superiority over 
tamoxifen in post-menopausal ER-positive breast cancer 
and have become the preferred option for this group of 
cancers[3]. Fulvestrant, a “pure” anti-estrogen and ER 
down-regulator, is an alternative after treatment failure in 
post-menopausal women and being considered in other 
settings[4]. Meta-analyses of multiple clinical trials have 
demonstrated that these endocrine agents can halve the 
risk of breast cancer relapse and reduce the risk of breast 
cancer death by 40%[5].

With recognition of the molecular heterogeneity 
present both within and between individual breast cancers, 
strenuous efforts have been undertaken to optimise 
individual patient management. This has led to the search 
for predictive biomarkers that might identify ER-positive 
breast cancers which are sensitive to endocrine therapies 
and those in which endocrine therapy is likely to be 
insufficient, hence requiring either chemotherapy or new 
agents. Since prognostic molecular signatures are now 
also helping to stratify patient groups into those for which 
endocrine therapy alone is likely to be sufficient, these will 
be mentioned briefly as well.

ER, PROGESTERONE RECEPTOR AND 
HER2
Foremost and most powerful of the biomarkers identified 
to predict response to endocrine therapy is the ER itself, 
specifically ER-alpha (ESR1)[6]. The routine classification 

of breast cancers into ER-positive and ER-negative 
categories was based on the early identification of the 
requirement for ER expression for response to tamoxifen 
with 60%-70% of ER-positive patients responding to this 
endocrine agent compared to only 5%-10% responding 
with ER-negative metastatic disease[2]. Consistent with 
this, the likelihood of response increased with increasing 
ER concentration with ER-rich tumors responding better 
than ER-poor cancers[7]. However, even for responders, 
up to 50% will eventually relapse hence predictive 
biomarkers are required that will identify ER-positive 
patients most likely to respond to therapy and those for 
whom endocrine therapy is likely to be insufficient[2]. 

Other forms of ER include ER-beta, G-protein coupled 
ER (GPER1) (previously GPR30) and mutated versions 
of ER-alpha and these have all been investigated as 
predictive markers of response to endocrine therapy. 
The role of ER-beta appears complex and dependent on 
whether ER-alpha is present leading to a bi-faceted role[8], 
however several clinical studies have suggested predictive 
effects for specific ER-beta isoforms[8,9]. Low expression 
of the membrane-bound GPER1 is associated with 
favourable outcome to tamoxifen[10] while high expression 
has been associated with tamoxifen resistance[11]. The role 
of ER mutants is discussed below.

The ER is one of 3 markers (ER, PR and HER2) 
routinely measured at diagnosis to help determine potential 
treatment options. Expression of the progesterone receptor 
(PR), an estrogen-regulated protein, is highly estrogen 
dependent and has therefore been regarded as an 
indicator of estrogen-drive and signaling. It has been 
associated with both disease-free as well as overall survival 
in tamoxifen-treated breast cancers with PR-positive 
breast cancers responding better than PR-negative[12] 
cancers, but this is not a universal finding[13]. Breast 
cancers that are both ER-positive and PR-positive have 
> 70% likelihood of response to endocrine therapy and 
these two receptors have become the prototypic predictive 
markers of endocrine response in this disease[14]. The 
third molecule routinely assessed at diagnosis, HER2 
(assessed for amplification or overexpression), while 
developed as a predictor for anti-HER2 targeted therapies, 
e.g., trastuzumab or lapatinib, is generally associated 
with poor response to endocrine therapy[15,16]. One multi-
protein assay tool using immunohistochemistry, the IHC4 
score, combines information from ER, PR, HER2 and the 
proliferation index Ki67 into a score that helps estimates 
the risk of distant recurrence at 10 years in post-
menopausal women with ER-positive breast cancer who 
have received 5 year of endocrine therapy[17]. These same 
4 markers are also components of the Oncotype Dx and 
Prosigna assays which will be described later.

DEVELOPMENT OF ENDOCRINE 
RESISTANCE
A major limitation of endocrine therapy is the development 
of resistance and markers that reflect these resistance 
mechanisms may predict outcome[14]. Resistance may 
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be present at the outset (de novo) or develop on drug 
treatment (acquired) and can arise in multiple ways[18]. 
Two well defined mechanisms of endocrine resistance are 
the loss of ER function and the development of estrogen-
insensitivity. 

ER function can be lost as a result of decreased ER 
expression or ER co-activator expression or function. ER 
expression is lost in approximately 10% or so of breast 
cancers on neo-adjuvant treatment[14], and these cancers 
have a poorer outcome than where ER expression is 
maintained[19]. This would be reflected in reduced down-
stream signalling such as decreased PR expression or 
estrogen-regulated gene expression in the absence of an 
inhibitor and these can be indicative of a lack or loss of 
estrogen signaling.

The development of estrogen-independent signaling 
can lead to insensitivity to estrogen. This can occur via ER 
gain-of-function mutations[19-21] or by indirect activation 
of ER phosphorylation or ER-coactivator phosphorylation 
(hence avoiding the need for estrogen activation) via 
growth factor pathways including EGF receptor, HER2 and 
IGFIR[18]. Gain-of-function mutations in ER may bypass 
inhibition produced by endocrine agents. Although these 
ER mutations are infrequent in initially diagnosed disease, 
a much higher mutation rate has been observed in 
metastases (up to 20%) and circulating tumor DNA (up 
to 40%) in metastatic breast cancers[19-21]. This may be a 
cause of endocrine resistance to aromatase inhibitors (since 
production of estrogen is no longer needed to activate the 
receptor) and tamoxifen or fulvestrant therapy may be 
more effective in these cancers[19]. 

Increased expression of EGFR, HER2 or IGFIR have 
all been associated with reduced or loss of endocrine 
regulation and are potential indicators of endocrine 
resistance[18]. Moreover, the pathways they use, i.e., the 
PI3K/AKT and Ras/Raf/MEK/ERK pathways, may have 
activating mutations, e.g., in components such as PI3K, 
which in turn may lead to ER activation[22]. To date, this 
information has been used to develop combination drug 
approaches that combine an endocrine agent with an 
inhibitor (e.g., HER2, PI3K, mTOR, CDK inhibitor, etc.) 
that targets a component of the growth factor driven 
pathway. Although this has been valuable for the strategic 
development of inhibitory strategies in endocrine-resistant 
disease, it hasn’t yet led to the development of specific 
markers to predict endocrine resistance. Even for ER-
positive/HER2-positive breast cancers, wherein many 
cancers are responsive to endocrine treatment, it remains 
unclear which tumors are sensitive and which are resistant 
indicating the need for further markers of response.

The detection of ER mutations in circulating tumor DNA 
is promising and supports the use of plasma sampling 
to help monitor the changing status of the disease in 
the patient. Retrospective analyses of ER mutations in 
baseline plasma circulating tumor DNA from completed 
clinical trials suggest that these mutations are prognostic 
and predictive of resistance to aromatase inhibitors in 
metastatic disease[23] however prospective studies will be 
needed to validate clinical utility.

MULTIGENE SIGNATURES
It is nearly 20 years since the first detailed molecular 
portrait of breast cancer was published by Perou et al[24] 
that stratified breast cancers into molecular subtypes 
based on gene expression data. Four groups (luminal, 
HER2, basal and normal breast like) were identified with 
the luminal group describing the ERα-positive group. 
Further studies by the same investigators demonstrated 
that the ERα-positive luminal group could usefully be 
sub-divided into luminal A and luminal B cancers[25-27]. 
Luminal A cancers comprise about 40%-75% (cf. large 
geographical variation) of breast cancers with relatively 
higher levels of estrogen signalling and lower proliferation. 
Luminal B cancers represent approximately 10%-20% of 
breast cancers and tend to have lower estrogen signaling 
and higher proliferation or HER2 over-expression. Over 
time further ERα-negative subgroups such as claudin-
low and molecular apocrine clusters have been suggested 
along with the so-called 4-6 Lehman TNBC subtypes[28-30], 
however luminal cancers remain the endocrine-sensitive 
group with luminal A in general being sensitive to 
endocrine therapy alone while luminal B cancers may 
require both endocrine therapy and chemotherapy. As 
further molecular portraits were characterised, a number 
of gene sets were developed as prognostic signatures and 
have been useful to help stratify groups of patients (Table 
1). Several commercial assays have been developed 
that generate risk of recurrence scores that can be used 
to help determine the likely risk of relapse. These have 
been particularly valuable in clinical decision making to 
help identify which early stage ER-positive HER2-negative 
patients without lymph node spread (encompassing over 
half of all breast cancer patients) should receive endocrine 
therapy alone and which should receive chemotherapy or 
novel treatments as well in the adjuvant setting. 

The multigene test most widely used in the clinic to 
date is the Oncotype Dx signature. Oncotype DX is a 
21-gene recurrence score assay initially developed to 
predict likelihood of recurrence of tamoxifen-treated, 
node negative breast cancer[31]. This assay includes 
proliferation-related genes (Ki67, STK15, Survivin, 
CCNB1, MYBL2), estrogen-related genes (ER, PGR, BCL2, 
SCUBE2), HER2-related genes (HER2, GRB7), invasion-
related genes (MMP11, CTSL2) and 3 others (GSTM1, 
CD68, BAG1) alongside 5 reference genes (ACTB, 
GAPDH, RPLPO, GUS, TFRC). Levels of expression of 
these genes are combined into an algorithm to generate 
a recurrence score between 0 and 100 which is predictive 
of overall survival[31]. If the score is high (> 31) then 
chemotherapy has been shown to be beneficial. If the 
score is low (< 10), then this is prognostic of a very low 
rate of recurrence (< 2%) and endocrine therapy alone is 
likely to be sufficient. Until recently, it was unclear whether 
endocrine therapy alone was adequate for patients with 
cancers with intermediate scores (10-25) since these can 
comprise 2/3 of patients, but the TAILORx trial has now 
demonstrated that endocrine therapy alone without added 
chemotherapy produces the same outcome suggesting 
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that endocrine therapy alone is sufficient for this large 
group of patients[32]. The trial results though did not 
exclude a benefit of chemotherapy for patients aged < 50 
years with a high-intermediate score[32].

Several other multigene signatures have been 
shown to produce similar prognostic data for this group 
of ER-positive, HER2-negative patient group. These 
include Prosigna (based on PAM50), Mammaprint and 
Endopredict. 

The Prosigna classifier uses the PAM 50 (Prediction 
Analysis of Microarrays) set of 50 genes together with 
a set of 8 reference genes to identify the intrinsic gene 
expression subtype (i.e., luminal A, luminal B, HER2 or 
basal-like)[33]. This classifier identifies the cancer subtype 
based on comparison of the cancer’s gene expression 
profile to the characteristic subgroup profiles and 
generates a risk of recurrence score. Its prognostic value 
has been demonstrated in multiple cohorts of breast 
cancer patients including those treated with tamoxifen or 
anastrazole alone[34,35] and tamoxifen plus anastrazole[36]. 
A recently developed PAM50-based chemoendocrine 
score has been developed that highlights luminal to basal 
differences and response to treatment[37]. 

The Mammaprint assay is a classifier based on the 
70-gene Amsterdam signature[38] developed to help 
identify early stage breast cancer patients most likely to 
develop distant metastases and therefore benefit from 
adjuvant chemotherapy[39]. Its value has been tested 
in multiple clinical trials, but the largest trial has been 
the 6693 patient MINDACT trial[40]. In this trial, it was 
demonstrated that the group of patients identified as high 
risk for recurrence according to clinical and pathological 
factors but who were classified as Low Risk by MammaPrint 
were unlikely to benefit from chemotherapy[40].

The Endopredict test measures 8 genes of which 3 are 
proliferation associated (BIRC5, UBE2C, DHCR7) and 5 

are estrogen-related genes (RBBP8, IL6ST, AZGP1, MGP, 
STC2) by RT-PCR from fixed tissue and generates a score 
between 0 and 15 (< 5 is low risk; > 5 is high risk)[41]. 
This data is combined with nodal status and tumor size 
information to provide an EPclin score[41,42]. The test has 
been validated within a number of trials[41,42].

DYNAMIC NEO-ADJUVANT STUDIES
Neo-adjuvant (pre-operative) studies, wherein breast 
cancer patients are treated with endocrine therapy prior to 
surgery, have provided opportunities to study and identify 
predictive biomarkers of endocrine response. In these 
studies, tumors have commonly been serially sampled at 
diagnosis, after 14 d and at 3 mo of treatment and assayed 
for gene or protein expression levels[43]. These studies 
have demonstrated that several parameters may be 
informative including the expression level of a biomarker 
at diagnosis prior to treatment, the change in expression 
over time during treatment and the residual level com-
pared to baseline value after a period of treatment. 

The most extensively studied pharmacodynamics 
marker in neo-adjuvant endocrine trials is Ki67 (MKI67) 
which is a nuclear protein expressed only in proliferating 
cells[44]. The pre-treatment value of Ki67 reflects 
prognosis, while the change in Ki67 relates to response 
to treatment, hence is predictive[45]. The 14 d value then 
provides an indicator of residual risk[44]. This biomarker 
has already been incorporated into the IHC4, Oncotype 
Dx and Prosigna tests and is currently being studied in the 
POETIC phase III multicentre trial. The POETIC trial is the 
largest study to assess the validity of Ki67 as a marker of 
response and long-term outcome in a pre-surgical window-
of-opportunity setting and has recruited 4500 women 
with early stage ER-positive breast cancer. The study is 
assessing whether time to recurrence and overall survival 

Test name Samples Key references Method Genes No. Genes

Oncotype DX  FFPE tumor 
tissue 

[3�,32] QRT-PCR �6 + 5 MKI67, AURKA, BIRC5, CCNB1, MYBL2, ERBB2, GRB7, ESR1, PGR, BCL2, 
SCUBE2, MMP11, CTSL2, GSTM1, CD68, BAG1 (+ ref genes ACTB, GAPDH, 

RPLPO, GUS, TFRC)
MammaPrint Fresh or 

freshly frozen 
breast cancer 

tissue or FFPE 
tissue

[38-40] DNA 
microarray

70 AA555029_RC, ALDH4A1, AP2B1, AYTL2, BBC3, C16orf61, C20orf46, C9orf30, 
CCNE2, CDC42BPA, CDCA7, CENPA, COL4A2, DCK, DIAPH3, DTL, EBF4, 
ECT2, EGLN1, ESM1, EXT1, FGF18, FLT1, GMPS, GNAZ, GPR126, GPR180, 
GSTM3, HRASLS, IGFBP5, JHDM1D, KNTC2, LGP2, LIN9, LOC100131053,

LOC100288906, LOC730018, MCM6, MELK, MMP9, MS4 A7, MTDH, NMU, 
NUSAP1, ORC6L, OXCT1, PALM2, PECI, PITRM1, PRC1, QSCN6L1, RAB6B, 
RASSF7, RECQL5, RFC4, RTN4RL1, RUNDC1, SCUBE2, SERF1A, SLC2A3, 

STK32B, TGFB3,TSPYL5, UCHL5, WISP1, ZNF533
 Endopredict FFPE tumor 

tissue 
[4�,42] QRT-PCR   8 + 4 BIRC5, UBE2C, DHCR7, RBBP8, IL6ST, AZGP1, MGP, STC2 (+ ref genes 

CALM1, OAZ1, RPL37A, HBB)
Prosigna (based 
on PAM50)

FFPE tumor 
tissue 

[33-37] Nanostring 50 + 8 MIA, SFRP1, KRT14, KRT17, KRT5, FGFR4, GRB7, ERBB2, BAG1, MDM2, 
ACTR3B, BLVRA, CXXC5, TMEM45B, MMP11, FOXC1, EGFR, CDH3, 

PHGDH, MYC, CCNE1, CDCA1, CDC20, KIF2C, TYMS, KNTC2, UBE2T, 
MELK,PTTG1, CCNB1, CDC6, MYBL2, BIRC5, CENPF, EXO1, ORC6L, 

ANLN, UBE2C, RRM2, MKI67, CEP55, PGR, NAT1, SLC39A6, BCL2, ESR1, 
MAPT, GPR160, MLPH, FOXA1 (+ 8 ref genes)

FFPE: Formalin-fixed paraffin-embedded; qRT-PCR: Quantitative reverse transcriptase-PCR.
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are influenced by 2 wk of aromatase inhibitor therapy prior 
to and after surgery to improve outcome compared to 
standard adjuvant therapy alone[44]. To date, the trial has 
provided evidence that measurement of Ki67 at baseline 
and at 2 wk is informative. If baseline Ki67 is low (value < 
10%), prognosis is good and pre-operative treatment and 
a second measurement aren’t needed. However, if baseline 
Ki67 is high (value > 10%) and stays high at 2 wk, then 
prognosis is poorer and patients should be considered for 
further therapy (chemotherapy or new agents)[46]. 

Gene sets associated with both aromatase inhibitor 
sensitivity and resistance have been identified within 
neo-adjuvant studies and gene expression changes after 
14 d and 3 mo of treatment linked to tumor growth 
response[47,48]. A common finding in many of the gene 
expression changes is that both estrogen-dependent genes 
and proliferation-associated genes can be down-regulated 
on treatment, however there can be discordant patterns 
of change as well. These changes can occur in resistant 
as well as sensitive treated cancers suggesting different 
mechanism of resistance[49]. Higher basal expression of 
certain immune-related genes such as SLAMF8 and TNF as 
well as lymphocytic infiltration have been associated with 
poor anti-proliferative response and resistance[50] while 
high expression of ribosomal proteins is associated with 
response to letrozole[48].

A four-gene classifier of clinical response to the 
aromatase inhibitor letrozole has recently been described 
with an accuracy of 96% based on the expression levels 
of two genes (IL6ST and NGFRAP1) at baseline and two 
proliferation associated genes (ASPM and MCM4) after 2 
wk of therapy[51]. This gene set was then validated in an 
independent group of patients treated with anastrazole[51]. 
This is now being evaluated in prospective studies. It 
will be important to understand the roles and functions 
of these genes if they are to be used alongside more 
traditional markers such as the estrogen-regulated PR or 
proliferation associated Ki67. Measurement of proliferation 
after endocrine treatment is also a component of the 
Preoperative Endocrine Prognostic Index (PEPI), that 
was developed to identify patients at low risk of relapse 
after neoadjuvant endocrine therapy so that adjuvant 
chemotherapy can safely be avoided[52,53].

CONCLUSION
ER expression together with PR expression continues 
to be the major determinant of endocrine response in 
breast cancer, but further markers to more accurately 
guide treatment would be valuable. Markers of endocrine 
sensitivity are helpful to provide confidence that the use of 
endocrine therapy alone is sufficient treatment for a tumor 
and there are now multiple molecular signatures that can 
do this. Markers of endocrine resistance will help direct 
change of therapy and dependent on the marker used may 
provide some insight into potential inhibitory strategies that 
may be helpful. The use of on-treatment sampling (serial 
biopsy or circulating tumor cells) ideally in comparison 
with baseline sampling will provide the best information to 

aid this. 
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Abstract
Most cases of sudden cardiac death are attributed to 
sustained ventricular tachyarrhythmias (VTs), triggered 
by acute coronary occlusion. Autonomic dysfunction, an 

important arrhythmogenic mechanism in this setting, 
is being actively investigated, aiming at the advent 
of preventive strategies. Recent experimental studies 
have shown vagal withdrawal after anterior myocardial 
infarction, coinciding with high incidence of VTs, followed 
by more gradual sympathetic activation coinciding with a 
second arrhythmia peak. This article summarizes recent 
knowledge on this intriguing topic, generating hypotheses 
that can be investigated in future experimental and 
clinical studies.

Key words: Sudden cardiac death; Acute myocardial 
infarction; Ventricular tachyarrhythmias; Ventricular 
fibrillation; Delayed arrhythmogenesis; Ventricular 
tachycardia; Early arrhythmogenesis; Vagal activity; 
Sympathetic activity; Arrhythmogenic mechanisms
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Core tip: Autonomic dysfunction in response to acute 
myocardial infarction is subject of continuous investigation. 
Recent experimental data indicated vagal withdrawal, 
followed by more gradual sympathetic activation, 
coinciding with early and delayed arrhythmogenesis, 
respectively. These findings call for further research on the 
pathophysiologic role of the autonomic nervous system on 
the ischemic ventricular myocardium.
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INTRODUCTION
Sudden cardiac death is a major health-related problem 
worldwide, accounting for more than half of cardiovascular 
mortality[1]. It is invariably caused by sustained ventricular 
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tachyarrhythmias (VTs), occurring in the setting of 
acute myocardial infarction (MI). The high incidence and 
the ominous prognosis of ischemia-related VTs dictate 
ample research efforts toward in-depth understanding 
of the underlying mechanisms, aiming at the advent of 
preventive strategies[2].

During acute-MI, epinephrine is released in the 
ischemic myocardium, followed by activation of chromaffin 
cells in the adrenal medulla[3]; epinephrine, either locally 
released or circulating, alters ventricular electrophysiology 
and has been long known to exert a prominent role in 
genesis of VTs[4]. Acute-MI is also often accompanied 
by marked autonomic dysfunction, but its precise time-
course along the acute phase of MI and the ensuing 
arrhythmogenic effects remain incompletely understood. 
This article briefly summarizes recent knowledge on this 
topic that may offer further insights into the complex 
pathophysiology of sudden cardiac death.

AUTONOMIC DYSFUNCTION DURING MI
Afferent stimuli
Although cardiogenic reflexes were first recognized in 
the mid-19th century, studies on the autonomic effects on 
the ischemic myocardium and their impact on VTs were 
systematically performed only a century later[5]. These led 
to early clinical reports introducing the role of autonomic 
dysfunction on ventricular electrophysiology following acute 
coronary occlusion[6]. The activation of ventricular afferent 
fibers in the ischemic myocardium was subsequently 
demonstrated, mediated by hemodynamic changes induced 
by acute-MI, as well as by the local production of chemical 
stimuli[7]. This process is dynamic, determined by the time-
course of left ventricular hemodynamics and by the balance 
between the rate of production and metabolism of various 
mediators.

Sympathetic afferents are mainly nonmyelinated, 
with only occasional thinly myelinated Aδ-fibers, that 
form a network over the epicardium[8]. Most sympathetic 
afferents are activated by adenosine triphosphate and 
are classified as ischemia-sensitive[7], although the 
pathophysiologic significance of those not responding 
to adenosine triphosphate remains unknown. Afferent 
activation depends on the location of the ischemic 
myocardium, as shown by experimental[9] and clinical[10] 
data; in this regard, vagal Aδ- and nonmyelinated C-fibers, 
located in the inferior left and right ventricular wall, are 
frequently activated during ischemia involving these walls.

Efferent autonomic activation
Afferent stimuli reach the nucleus tractus solitarius, which 
acts as an integrative center, signaling emergency changes 
in the central nervous system. In this structure, a series of 
sensory nuclei, embedded in the medulla oblongata, form 
circuits with other nuclei in the brainstem and with a large 
number of other central regions. The medulla contains 
sympathetic cell bodies, with respective nerves travelling 
along the spinal cord; from there, sympathetic fibers 
synapse with sympathetic ganglia, and postganglionic 

fibers ultimately synapse at their target sites. The 
parasympathetic cell bodies exit the medulla as long 
preganglionic efferent fibers that form synapses with 
postganglionic fibers within the myocardium.

The effects of the autonomic nervous system on 
ventricular electrophysiology during myocardial ischemia 
have attracted rigorous research efforts[11-14]: Sympathetic 
activation shortens the ventricular action potential and 
the refractory period under normal conditions, but these 
actions vary in the ischemic ventricular myocardium. Thus, 
in addition to ionic imbalance, sympathetic activation 
enhances the dispersion of repolarization across the 
energy-depleted ischemic myocardium and lowers the 
fibrillation-threshold[11], perhaps without altering local 
conduction[12]. By contrast, parasympathetic stimulation 
prolongs the action potential duration and the effective 
refractory period[13]; hence, vagal activation exerts potent 
anti-fibrillatory actions on the ischemic myocardium, 
although transmural dispersion of repolarization seems 
unaffected[14].

Early clinical reports have underscored the involvement 
of both arms of the autonomic nervous system post-MI[15]; 
however, the precise time-course of sympathetic and vagal 
alterations and their contribution to arrhythmogenesis 
remain incompletely understood[2]. This can be explained 
by the marked individual variation, attributed to the 
size and location of MI, its hemodynamic sequelae, and 
to the magnitude of the accompanying symptoms of 
pain and anxiety. Moreover, accurate pathophysiologic 
conclusions are hindered by the inevitable delays in 
monitoring patients in coronary care units, coupled with 
the confounding effects of treatment.

VTs during acute MI
In response to acute coronary occlusion, two temporally 
distinct peaks have been described in various species, with 
several lines of epidemiological data pointing towards a 
similar curve in man[1,2]. Although this topic has been long 
debated, classification into VTs linked to reversible ischemia 
versus those occurring during evolving necrosis is based 
on firm pathophysiologic differences; more importantly, 
classification into early and delayed VTs is clinically sound, 
as it corresponds to the pre- and in-hospital phases, 
respectively, carrying profound consequences on survival 
rates and potential treatment strategies. As noted 
above, scarce data exist in humans on the incidence of 
early-phase VTs and concurrent autonomic responses. 
Therefore, the investigation on the underlying mechanisms 
of ischemia-induced VTs relies largely on in vivo animal 
models; indeed, these models offer clear-cut advantages in 
monitoring physiologic parameters during specific periods 
after coronary ligation, in the absence of the confounding 
effects of various interventions. 

ANALYSIS OF RECENT EXPERIMENTAL 
STUDIES 
Our group recently examined the autonomic responses 
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and the incidence of VTs in the in vivo rat-model, by 
comparing sham-operated controls with an animal-group 
post-ligation of the left coronary artery[16]. Continuous 
electrocardiographic recording was performed in 
conscious rats via implanted telemetry transmitters, and 
autonomic indices were derived by heart rate variability 
techniques; specifically, sympathetic activity was assessed 
by detrended fluctuation analysis, and vagal activity by 
time- and frequency-domain analysis. Frequent VTs were 
observed post-ligation, following the typical pattern of 
an early prominent peak and a more prolonged delayed 
arrhythmogenic window. Vagal activity decreased 
markedly immediately post-ligation and remained low 
throughout the 24 h-observational period. The pattern 
of sympathetic activation differed, showing a progressive 
rise; it became significant at a later stage post-MI and 
remained elevated until the end of the recording. Using 
micro-neurographic recordings, such delayed sympathetic 
activation post-MI was also observed by Jardine et 
al[17] in the ovine-model, in which enhanced cardiac 
sympathetic nerve-activity was observed only after the 
first hour post-ligation. These findings support the notion 
of attenuated parasympathetic, rather than enhanced 
sympathetic-inputs, contributing to early-phase VTs, given 
the aforementioned anti-fibrillatory vagal effects on the 
ischemic myocardium[14].

Two recent studies lend further support to this 
hypothesis: in the canine-model[18], no antiarrhythmic 
effect was found after suppression of the left stellate-
ganglion for 60 min post-MI, except from experiments in 
which its action was completely abrogated. Likewise, a 
study from our group[19] examined the incidence of VTs 
post-ligation in rats pretreated with clonidine, a centrally 
acting inhibitor of sympathetic preganglionic-neurons; 
treated rats displayed a lower incidence of VTs occurring 
during the delayed phase post-MI, but early phase 
arrhythmogenesis was unaffected[19]. 

PERSPECTIVE
Autonomic dysfunction, commonly observed during acute 
MI, contributes to the genesis of VTs. Autonomic responses 
vary, depending on several modulating factors, some of 
which remain incompletely understood; hence, the precise 
nature and time-course of such responses during the 
acute phase of MI is subject of continuous investigation. 
Early-stage VTs are at the center of research-efforts, 
because they invariably occur prior to medical attendance 
and they are responsible for most cases of sudden cardiac 
death. Recent in vivo experimental studies have drawn the 
attention toward vagal withdrawal, associated with pro-
fibrillatory effects in the ischemic ventricular myocardium. 
Such decreased parasympathetic inputs appear to occur 
swiftly in response to ischemia, whereas sympathetic 
activation is more gradual and coincides with a second 
cluster of VTs. These studies provide further insights into 
the pathophysiology of acute MI and sudden cardiac 
death. Nonetheless, these findings should be viewed as 
hypothesis-generating research that warrants further 

validation in animal models and, ultimately, in patients. 
The investigation of autonomic dysfunction during acute 
MI is an intriguing topic of high clinical importance that 
may unravel further aspects of the interrelation between 
the brain and the heart. 
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