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Abstract
BACKGROUND 
Left ventricular ejection fraction calculation automation typically requires 
complex algorithms and is dependent of optimal visualization and tracing of 
endocardial borders. This significantly limits usability in bedside clinical applic-
ations, where ultrasound automation is needed most.

AIM 
To create a simple deep learning (DL) regression-type algorithm to visually 
estimate left ventricular (LV) ejection fraction (EF) from a public database of 
actual patient echo examinations and compare results to echocardiography 
laboratory EF calculations.

METHODS 
A simple DL architecture previously proven to perform well on ultrasound image 
analysis, VGG16, was utilized as a base architecture running within a long short 
term memory algorithm for sequential image (video) analysis. After obtaining 
permission to use the Stanford EchoNet-Dynamic database, researchers randomly 
removed approximately 15% of the approximately 10036 echo apical 4-chamber 
videos for later performance testing. All database echo examinations were read as 
part of comprehensive echocardiography study performance and were coupled 
with EF, end systolic and diastolic volumes, key frames and coordinates for LV 
endocardial tracing in csv file. To better reflect point-of-care ultrasound (POCUS) 
clinical settings and time pressure, the algorithm was trained on echo video 
correlated with calculated ejection fraction without incorporating additional 
volume, measurement and coordinate data. Seventy percent of the original data 
was used for algorithm training and 15% for validation during training. The 
previously randomly separated 15% (1263 echo videos) was used for algorithm 
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performance testing after training completion. Given the inherent variability of echo EF 
measurement and field standards for evaluating algorithm accuracy, mean absolute error (MAE) 
and root mean square error (RMSE) calculations were made on algorithm EF results compared to 
Echo Lab calculated EF. Bland-Atlman calculation was also performed. MAE for skilled echocardi-
ographers has been established to range from 4% to 5%.

RESULTS 
The DL algorithm visually estimated EF had a MAE of 8.08% (95%CI 7.60 to 8.55) suggesting good 
performance compared to highly skill humans. The RMSE was 11.98 and correlation of 0.348.

CONCLUSION 
This experimental simplified DL algorithm showed promise and proved reasonably accurate at 
visually estimating LV EF from short real time echo video clips. Less burdensome than complex 
DL approaches used for EF calculation, such an approach may be more optimal for POCUS 
settings once improved upon by future research and development.

Key Words: Deep learning; Artificial intelligence; Point-of-care-ultrasound; Ejection fraction; Cardiac; 
Echocardiography

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The manuscript describes a novel study of machine learning algorithm creation for point of care 
ultrasound left ventricular ejection fraction estimation without measurements or modified Simpson's Rule 
calculations typically seen in artificial applications designed to calculate the left ventricular ejection 
fraction. I believe the manuscript will be of interest to your readers and significantly add to the body of 
literature related to bedside clinical ultrasound artificial intelligence applications.

Citation: Blaivas M, Blaivas L. Machine learning algorithm using publicly available echo database for simplified 
“visual estimation” of left ventricular ejection fraction. World J Exp Med 2022; 12(2): 16-25
URL: https://www.wjgnet.com/2220-315x/full/v12/i2/16.htm
DOI: https://dx.doi.org/10.5493/wjem.v12.i2.16

INTRODUCTION
Left ventricular (LV) ejection fraction (EF) calculation is the most common method for quantifying left 
ventricular systolic function[1,2]. Not only is EF the most widely used measure of cardiac function in 
clinical care but it is especially important in severely ill and unstable patients. In critically ill patients, 
rapidly obtaining the EF helps narrow treatment options and can identify possible causes behind 
unstable vital signs. EF can be assessed using a variety of imaging modalities and methods. Magnetic 
resonance imaging, while providing high accuracy, is logistically difficult to perform in most urgent or 
emergent situations[3,4]. The resultant effective criterion standard is EF calculation by comprehensive 2-
D echocardiography, typically using the modified Simpson’s rule[5]. However, despite ultrasound’s 
lower cost and greater accessibility than MRI, and the potential for bedside imaging by an echocardio-
graphy tech, results are typically delayed by hours to days after examination performance. This “results 
time lag” is impractical in any clinical scenario requiring rapid patient assessment and decision making
[6].

The modified Simpson’s approach uses a mathematical approach for estimating volumes, based on 
LV images in two orthogonal planes[7]. The operator carefully outlines endocardial borders for end 
systolic and end diastolic frames in both planes (Figure 1). Using a single plane, typically from the 
apical 4 chamber view, is possible, but leads to lower accuracy when compared to a two plane approach
[8]. Manually calculating EF using ultrasound is time consuming, requires considerable training and 
expertise and is rarely performed, even by highly experienced providers, in POCUS settings due to 
hardware and time limitations[9]. An alternative method is visual estimation by the operator. 
Experienced echocardiography technologists and cardiologists specializing in echocardiography can 
visually estimate EF with reasonable accuracy[10]. However, rank and file POCUS users are only able to 
grade EF visually into broad general categories such as normal, moderately and severely depressed. 
This level of gradation equates to just three 20% EF ranges while most echocardiography laboratories 
report EF in much more granular 5% ranges between 10% to 70%[11].

https://www.wjgnet.com/2220-315x/full/v12/i2/16.htm
https://dx.doi.org/10.5493/wjem.v12.i2.16
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Figure 1 The operator carefully outlines endocardial borders for end systolic and end diastolic frames in both planes. RV: Right Ventricle; 
RA: Right Atrium; LV: Left Ventricle; LA: Left Atrium.

Although visual EF estimation is indeed faster and theoretically better suited for many acute care 
scenarios, it has to be accurate and precise enough to detect clinically relevant changes and be 
repeatable. Given that human operator visual estimation is highly subjective, reproducibility in a high 
pressure clinical setting such as with a critically ill patient undergoing interventions and resuscitation, 
can be especially difficult[12]. The challenge can be made even more difficult if the operator obtaining 
the visual EF estimation changes, such as with shift change or transition of care. The decompensating 
patient, now being treated by a new provider, may not have an objective and reproducible EF 
assessment for comparison. In such cases especially, a more objective, precise and reproducible, yet 
rapid, measure is highly desirable.

Considerable work has occurred with Artificial Intelligence (AI) in automatic EF estimation in the 
academic research space as well as some with commercial ventures, resulting in several hardware/ 
software products available for purchase and use by clinicians[13-16]. Liu et al[16] developed a DPS-Net 
based algorithm using a biplane Simpson’s rule for EF determination. The investigators achieved high 
correlation with gold standard testing based on receiver operator curves approaching 0.974. However, 
accurate segmentation of the LV in the apical 4 and 2 chamber planes, for both end systole and end 
diastole. This method, while accurate is computationally intensive and would require POCUS users to 
obtain an imaging plane they are rare trained to achieve (apical 2 chamber). Strezecka et al[13] studied 
automated EF measurement specifically on a POCUS device, which would inherently indicate use by 
clinicians with little training in echo. The researchers used an algorithm capable of EF determination 
from just one imaging plane, the apical 4 chamber view. However, they depicted several failures of the 
algorithm to detect and trace the endocardial border, a critical step in their EF calculation method. 
Unfortunately, POCUS settings often result in images with limited endocardial border detail, which can 
lead to the failure of such algorithms on a regular basis. To date, the majority of the commercial 
products utilize some form of a modified Simpson’s rule approach and depend significantly on clear 
images with well delineated endocardial borders[17,18]. In fact, the challenge of determining an EF in 
the POCUS setting with POCUS equipment has already led to one class 2 FDA recall and another 
vendor’s EF application removal from the market and requirement for full FDA review[19].

In order to explore improved visual EF estimation, researchers sought to create a simple deep 
learning (DL) algorithm to rapidly “visually” estimate EF from a public database of actual patient echo 
examinations and compare results to echocardiography laboratory EF calculations.

MATERIALS AND METHODS
Study design 
Researchers utilized simple DL architecture previously found to perform well in ultrasound image 
analysis. The VGG16 architecture was used as a base to run inside a long short term memory (LSTM) 
algorithm for video analysis by sequential frames. To better reflect POCUS clinical settings and time 
pressure, the algorithm was trained on echo videos correlated with calculated ejection fraction without 
incorporating additional available measurement data such as end systolic and diastolic volumes, key 
frames or endocardial border coordinates, from a large public echo database. Seventy percent of the 
data was used for algorithm training and 15% for validation during training. A previously separated 
15% was reserved for algorithm performance testing. Algorithm training was optimized through 
variably adjusting batch size, number of epochs (an epoch is one round of DL algorithm training 
through all of the data), learning rate and the number of frames the LSTM analyses at once. A total of 
1263 randomly selected echo videos were used to test algorithm performance. For final DL testing, 
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researchers created a script to generate a CSV file containing a calculation of difference between 
algorithm estimated EF and criterion standard EF calculation for each video along with a cumulative 
average. The study did not utilize any patient data nor medical center facilities or resources and was 
exempted from Institutional Review Board (IRB) review.

Study data
Researchers were granted permission to access the Stanford EchoNet-Dynamic database after 
submitting an application to the data curators of the approximately 10036 apical 4-chamber (A4C) echo 
A4C video repository[20]. After downloading the video data and corresponding spreadsheet, 
researchers randomly removed approximately 15% (1263 A4C) of the A4C videos for final performance 
testing. Stanford researchers created the EchoNet-Dynamic database “to provide images to study 
cardiac motion and chamber volumes using echocardiography, or cardiac ultrasound, videos obtained 
in real clinical practice for diagnosis and medical decision making[20].” Data contained in the database 
is depicted in Table 1. All extracted Stanford de-identified echo examination data contained EF, end 
systolic and diastolic volumes, key frames and coordinates for LV endocardial tracing and were read as 
part of comprehensive echocardiography study performance. A4C videos were 112 × 112 pixels in size, 
compared to typical exported examination videos which can be 1024 × 560 pixels in size, or larger 
(Figure 2). Many of these videos were noted to have noisy images impacting LV endocardial 
delineation.

Algorithm design
The publicly available Keras-based (a python machine learning library) VGG-16 bidirectional LSTM DL 
algorithm, which had produced superior performance in prior studies, was chosen for this project[21]. 
Researchers coded the DL algorithm in the Python programming language version 3.72. VGG-16 
convolutional neural network (CNN) architecture is obtainable from public sources including an online 
repository, github.com. VGG is a rudimentary CNN containing only 16 Layers, in comparison to most 
modern CNNs which are made of hundreds of layers. Previous work suggests simpler CNNs like VGG-
16 may perform better than larger complex ones in classifying some grayscale ultrasound images[21].

The VGG-16 CNN was used inside a Long Short Term Memory algorithm. A LSTM network is one of 
several approaches geared for video analysis by having the VGG-16 CNN analyze each frame sequen-
tially. On top of the VGG-16 functionality the LSTM tracks temporal changes which may occur from one 
frame to the next. For studies with large dynamic components such as lung ultrasound applications and 
echocardiography, such approaches are especially critical. Standard LSTM networks are designed to 
track temporal changes in one direction. Researchers chose a bidirectional LSTM architecture for even 
better performance. Bi-directional LSTM allows temporal information to flow in both directions, 
forward and reverse, resulting in higher sensitivity and specificity for detecting change from one frame 
to another. Higher sensitivity and specificity result from the bi-directional LSTM’s enhanced 
understanding of what context motion or change occurs in. Researchers used standard VGG-16 specific 
initial training weights for the VGG-16 bidirectional LSTM. Weights used in a CNN are best viewed as 
learnable mathematical parameters. These weights are used by a CNN to analyze image features and 
through that the entire image, leading to image classification or object detection.

The bidirectional LSTM was trained on 70% of the original downloaded data. Stepwise adjustments 
were made to optimizers, batch size and learning rates in response to training results. Total epochs were 
also manipulated training to improve results for highest accuracy.

Algorithm validation and testing 
LSTM architecture and coding included scripts for automatic cross validation during each epoch 
automatically. Additionally, researchers added code to automatically calculate a running MAE from 
epoch to epoch in order to provide additional training performance clues. After results were optimized 
and no further adjustments improved performance, the algorithm was tested on the 1263 apical 4 
chamber echocardiograph videos randomly selected and set aside upon original data download from 
EchoNet. These randomly selected video EFs ranged from 7% to 91%. During this final testing phase, 
researchers again coded the algorithm to produce an MAE and also a running CSV file with each CNN 
predicted EF and the actual calculated EF made at Stanford using the modified Simpson’s rule.

Statistical analysis
Echocardiographic EF measurements inherently vary in the same subject due to both patient and 
operator factors[21]. Therefore, exact agreement between the calculated EF and LSTM prediction are 
seen as unlikely. Thus, mean absolute error (MAE) and root mean square error (RMSE) calculations 
were performed on algorithm EF results, in keeping with field standards, to evaluate relative algorithm 
accuracy compared to Echo Lab calculated EF[21]. MAE for highly skilled echocardiographers has been 
established to range from 4 to 5%[22]. A highly complex DL algorithm using additional data points and 
built by database creators achieved a MAE of 5.44% with the same videos[20]. Researchers also 
performed Bland-Altman analysis between comprehensive echocardiography laboratory bi-planar 
modified Simpson’s rule EF results and the visual estimations by the DL algorithm. Statistical analyses 
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Table 1 EchoNet-dynamic database contents

Category Content in Category

Video file name File name linked to annotations, labels and videos

Subject age Scanning subjects age reported in years

Subject gender Scanning subject gender

Ejection fraction EF calculated through a ratio of ESV and EDV

End systolic volume ESV calculated using a method of discs during the echocardiogram

End diastolic volume EDV calculated using a method of discs during the echocardiogram

Height of video frame Individual frame height for the echo videos

Width of video frame Individual frame width for the echo videos

Frames per second FPS rate for the echo video

Number of frames Number of frames in the entire echo video

Split from benchmark Split of videos into train/validate and test datasets from original work

ESV: End systolic volume; EDV: End diastolic volume; EF: Ejection fraction of the left ventricle; FPS: Frames per second.

Figure 2 Apical 4-chamber videos were 112 × 112 pixels in size, compared to typical exported examination videos which can be 1024 × 
560 pixels in size, or larger.

were performed using Python Scripts.

RESULTS
The LSTM DL algorithm using original greyscale video for visual EF estimation resulted in a MAE of 
8.08% (95%CI 7.60 to 8.55) when tested on 1263 apical 4 chamber videos previously unseen by the 
algorithm. This suggests good performance compared to highly skilled human operators such as echo 
technologists or echo trained cardiologists who typically have an MAE of 4% to 5%[22]. The RMSE was 
11.98 and correlation of 0.348. The standard deviation was 8.58%. The Bland-Altman plots are shown in 
Figure 3. For reference, the DynamicEcho creators tested 9 different DL models obtaining a best MAE of 
5.44 and worst of 51.8. RMSE ranged similarly from 6.16 to 35.2, respectively[20]. Human experts tested 
by DynamicEcho creators achieved an MAE of 3.12 and RMSE of 4.57[20].

Best results were obtained with an LSTM frame analysis of 50, 40 epochs, batch size of 40, using an 
Adam optimizer and batch size of 10 videos. The DL was able to analyze and interpret reach of the 1263 
test videos with no failures, Training failed on three videos which were found to be corrupted (not 
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Figure 3 The Bland-Altman plots. EF: Ejection fraction.
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previously identified) and contained no usable data.

DISCUSSION
This simple DL algorithm proved fairly accurate in delivering visual EF predictions when tested on 1263 
actual patient A4C echocardiogram videos and compared to comprehensive cardiac laboratory echocar-
diography EF calculations. Further, its agreement as measured by MAE was within three percentage 
points of what is expected from expert echocardiographers and approximately two percentage points of 
the best performing complex algorithm designed by the DynamicEcho database creators. utilizing 
additional available data points. The creation of “visual” EF estimation DL algorithms has been 
overlooked to date by POCUS machine vendors, but considerable potential exists for its imple-
mentation.

Emergent situations such as unstable vital signs require rapid patient assessment. Simple 
measurements like blood pressure, heart rate and oxygen saturations are useful initial parameters, yet 
clinicians may require more information than vital signs provide. Perhaps the most important general 
information in many emergent medical situations is assessment of systolic cardiac function. Uncovering 
abnormal cardiac function is immensely informative to the clinician, especially when it was previously 
unknown. An unstable patient with normal cardiac function can tolerate interventions that are contrain-
dicated for those with decreased EF, such as immediate administration of fluid boluses. Alternatively, 
severely depressed systolic cardiac function may lead the clinician directly to pharmacological 
intervention with centrally administered vasopressors to increase blood pressure and systemic 
perfusion. Unfortunately, without actually imaging the heart in real time at bedside, clinicians have few 
options for dividing current systolic function reliably. POCUS cardiac imaging is the most accessible 
imaging solution worldwide and may hold the answer for emergent assessment even in the hands of 
novice users[23].

POCUS literature on cardiac function assessment dates back nearly 30 years, and has ranged from 
simply identifying cardiac activity in arresting patients to identification of tamponade and even visual 
assessment of EF[24,25,11]. One early study showed that POCUS users, who received focused training 
on visual EF estimation, could successfully categorize EF into normal, moderately and severely 
depressed categories[11]. This equates to approximately 20% categories given a typically EF range of 
10% on the low side and 70% on the high. In contrast, a report obtained from a echocardiography 
laboratory will have an EF presented as a 5% range. While knowing if the EF is normal, moderately or 
severely depressed can be helpful in some clinical situations, a more granular measure and one that is 
reproducible would be necessary in others. For instance such as a patient whose EF has dropped from 
50% to 40% or from 35% to 25%. Both may represent critically important changes as one shows a 10% 
decrease from a near normal EF and the other a deterioration from a poor EF to significantly worse. 
Additionally, stressful situations such as emergency scenarios may result in a confidence drop in 
measurement repeatability and a change of the provider visually estimating the EF can lead more inter-
observer problems with identifying EF changes[26]. A precise and repeatable EF measurement tool 
would optimally be available at very patient’s bedside, but in reality most clinicians still do not use 
ultrasound at all, and among those that do the vast majority cannot perform modified Simpson’s rule 
calculation from the apical 4 and 2 chamber views[27]. Similarly, most clinicians still lack the experience 
to reliably visually estimate the EF such as a highly seasoned cardiologist or echo tech.

EF calculation via echo with AI has been well explored by large research groups with good results, 
but often complex algorithms and some requiring multiple steps[28,29]. The creators of the Stanford 
EchoNet-Dynamic database were successful in creating several algorithms with the best one performing 
on par with echo techs in a comprehensive echocardiography laboratory[19]. Not surprisingly, 
commercial vendors of AI technology have finally turned their attention to the POCUS market and its 
needs. One of the first applications focused on by a number of both hardware/software and software 
only vendors has been EF calculation. Most utilize a modified Simpson’s rule approach requiring good 
imaging planes and in some cases acquisition of a 2 chamber apical view. Typically the internal LV 
tracing made by the software are displayed and the clinician is asked to adjust them as needed, 
something beyond the skill level of most POCUS users.

This is the first POCUS research effort without involvement of a commercial entity and using a 
classical modified Simpson’s rule approach that could be identified in the literature. It suggests that 
rapid visual EF estimation may be feasible as a clinical DL tool for emergent clinical settings. The MAE 
of 8%, while not as good as attained by expert echocardiographers still shows significant potential for 
such deep learning algorithms. The original DynamicEcho creators attained a range of MAEs for 
multiple DL algorithm approaches using additional data beside simple video analysis. The highest MAE 
was over 50% and best performing at 5.44% further validating this initial effort as a worthwhile 
development pathway for future DL solutions. No doubt future developers, using higher resolution 
videos could greatly improve on these results, especially prior to putting them into commercially 
available software. The visual estimation DL algorithm described here using LSTM can run in real time 
on an ultrasound device while a novice POCUS user is imaging the heart. The ability to estimate EF in 
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real time, without need for a pause while the ultrasound machine runs the DL algorithm tracing 
endocardial borders and comparing end systolic and end diastolic volumes, should improve clinicians’ 
abilities for rapid medical decision making.

Our study had multiple limitations. The database contained a large number of videos with compre-
hensive echocardiography laboratory calculated EF, but the videos to which access was provided were 
very small at 112 × 112 pixels, potentially limited algorithm performance. While DL algorithms often 
resize video during training in order to decrease computational burden on the algorithm, researchers 
have seen improved results when using larger image size, double or triple the provided frame 
dimension, when training on ultrasound video. Although the DL algorithm was tested on a large 
number of echo videos covering the broad range of EFs from very low to high, this is not the same as 
actual implementation of an algorithm on a POCUS device in a clinical setting to test its performance. 
The steps necessary to achieve that were outside the scope of our study, but are technically, if not logist-
ically simple. Additionally, the source videos were typically from one of a handful of ultrasound 
machines, thus likely leading to a less robust algorithm as recent work show the potential for significant 
DL algorithm performance degradation even when faced with superior image quality videos and near 
total performance failure when significantly inferior image quality videos are faced by the algorithm
[30]. Another source of disagreement with comprehensive echo lab EF calculation and our DL algorithm 
lie in our use of only 4 chamber videos (the only ones available for download). The optimal approach to 
EF calculation is using the ESV and EDV volume of the left ventricle in both apical 4 chamber and apical 
2 chamber views. This results in a more accurate EF calculation and should naturally explain some of 
the differences found[7].

CONCLUSION
This simplified DL algorithm proved fairly accurate at visually estimating LV EF from short real time 
echo video clips. It opens up an exploratory avenue that differs from most current commercial applic-
ations seen in automated EF calculations. Less burdensome than complex DL approaches used for EF 
calculation, such an approach may be more optimal for POCUS settings. Future research lines should 
explore actual on the edge implementation and testing in different clinical environments. Additionally, 
an exploration of a more diverse database with multiple ultrasound machines represented as well as 
higher quality videos should be undertaken to further implore potential accuracy improvements in 
visual EF estimation.

ARTICLE HIGHLIGHTS
Research background
Deep learning has been explored in medical ultrasound image analysis for several years and some 
applications have focused on evaluation of cardiac function. To date, most academic research and 
commercial deep learning ventures to automate left ventricular ejection calculation have resulted in 
image quality dependent highly complex algorithms which require multiple views from the apical 
window. Research into alternative approaches have been limited.

Research motivation
To explore a deep learning approach modeling visual ejection fraction estimation, thereby modeling the 
approach taken by highly skill electrocardiographers with decades of experience. If possible, such an 
approach could work with less than ideal images and be less computationally burdensome, both ideal 
for point of care ultrasound applications, where experts are unlikely to be present.

Research objectives
To develop a deep learning algorithm capable of visual estimation of left ventricular ejection fraction.

Research methods
Long short term memory structure using a VGG16 convolutional neural network capable of bidirec-
tionality was employed for video analysis of cardiac function. The algorithm was trained on a publicly 
available echo database with ejection fraction calculations made at a comprehensive echocardiography 
laboratory. After training, the algorithm was tested on a data subset specifically set aside prior to 
training.

Research results
The algorithm performed well in comparison to baseline data for correlation between echocardio-
graphers calculating ejection fraction and gold standards. It outperformed some previously published 
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algorithms for agreement.

Research conclusions
Deep learning based visual ejection fraction estimation is feasible and could be improved with further 
refinement and higher quality databases.

Research perspectives
Further research is needed to explore the impact of higher quality video for training and with a more 
diverse ultrasound machine source.
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Abstract
BACKGROUND 
Even though coronavirus 2019 disease (COVID-19) clinical course in children is 
much milder than in adults, pneumonia can occur in the pediatric population as 
well. Here, we reported a single-center pediatric case series of COVID-19 from 
Kazakhstan during the first wave of pandemic.

AIM 
To analyze the main clinical and laboratory aspects in severe acute respiratory 
syndrome coronavirus-2 (SARS-CoV-2) positive and negative children diagnosed 
with pneumonia.

METHODS 
This is a retrospective analysis of 54 children, who were medically assessed as 
close contacts of COVID-19 adults in their family setting, between June and 
September 2020. These children were all hospitalized: We compared the clinical 
and laboratory characteristics of children affected with pneumonia in the presence 
(group 1) or absence (group 2) of SARS-CoV-2 infection.

RESULTS 
Overall, the main clinical manifestations at the admission were fever, cough, loss 
of appetite, fatigue/weakness, nasal congestion and/or rhinorrhea, and dyspnea. 
Based on the SARS-CoV-2 polymerase chain reaction (PCR) test, 24 positive 
children with pneumonia (group 1) and 20 negative children with pneumonia 
(group 2) were identified; 10 positive children did not show any radiological 
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findings of pneumonia. No significant differences were found between the two pneumonia study 
groups for any clinical and laboratory parameters, except for C-reactive protein (CRP). Of course, 
both pneumonia groups showed increased CRP values; however, the COVID-19 pneumonia group 
1 showed a significantly higher increase of CRP compared to group 2.

CONCLUSION 
In our case series of children assessed for SARS-CoV-2 infection based on contact tracing, the acute 
inflammatory response and, in detail, CRP increase resulted to be more pronounced in COVID-19 
children with pneumonia than in children with SARS-CoV-2-unrelated pneumonia. However, 
because of multiple limitations of this study, larger, controlled and more complete clinical studies 
are needed to verify this finding.

Key Words: Pediatric COVID-19; SARS-CoV-2; Pneumonia; C-reactive protein; Chest X-ray; Inflammatory 
parameters

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This is a single-center pediatric case series of coronavirus 2019 disease (COVID-19) from 
Kazakhstan during the first wave of pandemic. We analyzed the main clinical aspects in those children 
diagnosed with pneumonia. In detail, we compared the clinical and laboratory characteristics of children 
affected with pneumonia in the presence (group 1) or absence (group 2) of severe acute respiratory 
syndrome coronavirus-2 infection. No significant differences were found between these study groups for 
any clinical and laboratory parameters, except for C-reactive protein (CRP). Of course, both pneumonia 
groups showed increased CRP values, overall; however, COVID-19 pneumonia group showed a 
significantly higher increase of CRP compared to pneumonia children without COVID-19.

Citation: Zhamankulov A, Rozenson R, Morenko M, Akhmetova U, Tyo A, Poddighe D. Comparison between 
SARS-CoV-2 positive and negative pneumonia in children: A retrospective analysis at the beginning of the 
pandemic. World J Exp Med 2022; 12(2): 26-35
URL: https://www.wjgnet.com/2220-315x/full/v12/i2/26.htm
DOI: https://dx.doi.org/10.5493/wjem.v12.i2.26

INTRODUCTION
In December 2019, a new type of coronavirus infection rapidly spread from Wuhan city (in Hubei 
province, China), which was implicated in many cases of pneumonia and severe respiratory distress. On 
February 11th, 2020, the Research Group of the International Committee on Taxonomy of Viruses 
defined this new coronavirus as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), and 
the World Health Organization (WHO) named the related infectious disease as coronavirus 2019 disease 
(COVID-19). On March 11th, 2020, the WHO announced a pandemic of COVID-19[1-3]. The Republic of 
Kazakhstan borders with China, and the first case of COVID-19 was registered on March 13th, 2020, in 
Almaty city. Accordingly, several restrictions were promptly implemented like in most parts of the 
world, which also affected the general medical practice and patients’ management all over the country
[4]. Overall, COVID-19 in children is characterized by a milder clinical course, in terms of both clinical 
manifestations and risk of complications[5]. According to the report from the American Academy of 
Pediatrics, as of September 17th, 2020 (thus, related to the first wave of pandemic), the proportion of 
pediatric COVID-19 diagnoses in the United States was only 10.3% of all the COVID-19 registered cases; 
the mortality rate in children was < 0.2%[6]. A study from China, including 2,143 pediatric patients, 
confirmed a mild clinical course of COVID-19 in most children and, indeed, only 5.9% of cases were 
diagnosed as severe in the same period[7]. Therefore, most pediatric COVID-19 cases showed an 
asymptomatic or mild clinical course[8-9]. The most commonly reported symptoms in children were 
fever and cough and, in general, respiratory manifestations (such as rhinorrhea, nasal congestion, 
undifferentiated upper airways inflammatory syndrome, dyspnea); however, gastrointestinal symptoms 
(including nausea, vomiting, abdominal pain, and diarrhea) were described as well[9-11]. Here, we 
reported a pediatric case series of COVID-19 from Kazakhstan. In detail, we analyzed the development 
of pneumonia in children medically and microbiologically assessed for SARS-CoV-2 infection in the 
context of a household contact tracing strategy implemented at the beginning of the pandemic.

https://www.wjgnet.com/2220-315x/full/v12/i2/26.htm
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MATERIALS AND METHODS
We retrospectively analyzed the medical records of 54 children aged 5 days to 17 years, who were 
medically assessed and hospitalized since they were close contacts of COVID-19 adult patients in their 
family setting. In detail, all these children were consecutively admitted and assessed at the Emergency 
Department of the multidisciplinary Children's Municipal Hospital No. 1 in Nur-Sultan (Kazakhstan), 
from June 8th to September 15th, 2020, because they were diagnosed with SARS-CoV-2 infection and/or 
affected with pneumonia. Indeed, this case series is a part of all those pediatric patients that received 
medical attention at the Emergency Department of Children's Municipal Hospital No. 1, because of 
previous close contact with a family member diagnosed with COVID-19, as already mentioned. All 
these children underwent SARS-CoV-2 polymerase chain reaction (PCR) test, but only those who 
resulted to be PCR positive and/or were diagnosed with pneumonia (even despite the negative PCR 
result), were admitted to the department of Pulmonology. Indeed, children who had contact with family 
members diagnosed with COVID-19 but resulted to be PCR negative and without pneumonia, were not 
admitted to the hospital and, thus, were discharged from the Emergency Department; unfortunately, 
these data could not be reliably retrieved. In order to assess the infection with SARS-CoV-2 in these 
children, the biospecimen was obtained by oropharyngeal swab, and the samples were placed in 3 mL 
of transport medium, in order to be delivered to the authorized laboratory according to the rules 
approved by the Ministry of Health of Republic of Kazakhstan (protocol No. 15990). The analysis of the 
viral RNA presence (by SARS-CoV-2 PCR test) was carried out by using the diagnostic kit KH-G-M-565-
48-CE (manufactured by Shanghai Kehua Bio-engineering Co., Ltd; analyzer Xi'an Tian Long Science 
and Technology Co., Ltd., Shaanxi, China). Upon admission to the hospital, these children underwent a 
complete clinical examination (including an accurate collection of personal and family history) and first-
level diagnostic work-up (including a complete blood cell count -CBC-, erythrocyte sedimentation rate -
ESR-, urinalysis and general biochemistry). The biochemical analyses included plasmatic calcium, 
glucose, sodium, potassium, chloride, urea, creatinine, total protein, alanine aminotransferase, aspartate 
aminotransferase, bilirubin, creatine phosphokinase, in addition to serum C-reactive protein (CRP). All 
patients received a chest X-ray, in addition to the SARS-CoV-2 PCR test, as mentioned above. 
Additionally, according to the attending physician’s recommendation for individual patients, the 
coagulation panel (including D-dimer) and additional laboratory tests (such as procalcitonin, lactate 
dehydrogenase, vitamin D) were performed in some patients only. Moreover, based upon the actual 
clinical condition and previous results, some children variably received a chest computerized 
tomography, abdominal ultrasound, renal ultrasound, echocardiography, electrocardiogram, cranial 
sonography (in patients younger than 1 year). Whenever these children received this additional 
diagnostic work-up, it was performed within the first week after the hospital admission. The clinical 
monitoring was established based on individual patients’ condition. Temperature normalization, 
resolution of clinical symptoms, and 2 negative consecutive SARS-CoV-2 PCR tests were the adopted 
criteria to discharge these pediatric patients from the hospital. Data collection and descriptive analysis 
were carried out by Microsoft® Excel 2010 for Windows. Wherever appropriate and feasible, the 
statistical data analysis was performed: The differences in specific variables/parameters between two 
groups of patients were assessed for statistical significance by using the GraphPad Prism® software 
(version 4.0). In detail, laboratory parameters were expressed as mean ± SD error of the mean, because 
of the small and variable size of the study groups; accordingly, unpaired t-test (with Welch’s correction) 
was used to compare two groups: P value < 0.05 was considered statistically significant.

RESULTS
Patients’ demographic and study groups
Fifty-four children (age range: 5 days to 17 years; mean age and SD: 56 ± 55 mo) were assessed because 
of a positive SARS-CoV-2 PCR test and/or clinical/radiological finding of pneumonia after a close 
contact with a family member diagnosed with COVID-19.  As graphically summarized in Figure 1, 
based on the SARS-CoV-2 PCR test and the radiological findings, 24 COVID-19 children with 
pneumonia (group 1) and 20 COVID-19 negative children with pneumonia (group 2) were identified, in 
addition to 10 SARS-CoV-2 PCR positive children who did not show any radiological findings of 
pneumonia. The detailed clinical and demographic characteristics of these 44 pneumonia children 
enrolled in the study are shown in Table 1. Overall, among all those 34 SARS-CoV-2 PCR positive 
children, 4 patients were completely asymptomatic (11.8%), 6 children were affected with upper airway 
acute respiratory infection (17.6%), and 24 patients developed mild to moderate pneumonia (70.6%). 
Among these 24 patients diagnosed with pneumonia (who represent our study population), the lung 
disease was bilateral in 17 cases, segmental in 5 cases, and subsegmental in 2 patients. Among those 20 
SARS-CoV-2 PCR negative children diagnosed with lung disease, 15 children developed bilateral 
pneumonia and 5 patients showed unilateral subsegmental (always right-sided) pneumonia. All these 
radiological aspects are also summarized in Table 1.
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Table 1 Clinical and demographic characteristics of the study participants at the hospital admission

Group 1 Group 2

(PCR+ pneumonia) (PCR- pneumonia)
Patients

Number 24 20

Gender

Male 16 (66. 7%) 9 (45.0%)

Female 8 (33. 3%) 11(55.0%)

Age

0-5 yr 14 (58. 3%) 11 (55.0%)

5-10 yr 4 (16. 7%) 4 (20.0%)

> 10 years 6 (25. 0%) 5 (25.0%)

Clinical manifestations

Cough 17 (70. 8%) 15 (75.0%)

Fever 17 (70. 8%) 16 (80. 0%)

Dyspnea 7 (29. 2%) 7 (35. 0%)

Loss of appetite 15 (62. 5%) 13 (65.0%)

Fatigue 15 (62. 5%) 13 (65. 0%)

Weakness 15 (62. 5%) 13 (65. 0%)

Vomiting/nausea 2 (8. 3%) 3 (15. 0%)

Diarrhea 1 (4. 2%) 0 (0. 0%)

Flatulence 1 (4. 2%) 0 (0. 0%)

Rhinorrhea 8 (33. 3%) 9 (45. 0%)

Sweating 0 (0. 0%) 0 (0. 0%)

Chest pain 0 (0. 0%) 0 (0. 0%)

Dizziness 1 (4. 2%) 0 (0. 0%)

Joint pain 1 (4. 2%) 0 (0. 0%)

Seizures 0 (0. 0%) 0 (0. 0%)

Chest X ray findings 

Bilateral pneumonia 17 (70. 8%) 15 (75. 0%)

Segmental pneumonia 5 (20. 8%)

Subsegmental pneumonia 2 (8. 3%) 5 (25.0%)

Comorbidity

CHD 1 (4. 2%) 0 (0. 0%)

PTI 1 (4. 2%) 0 (0. 0%)

AML 1 (4. 2%) 0 (0. 0%)

Partial epilepsy 0 (0. 0%) 0 (0. 0%)

CHD: Congenital heart disease; PTI: Idiopathic Thrombocytopenic Purpura, AML: Acute Myeloid Leukemia.

Patients’ clinical characteristics
Overall, the main clinical manifestations at the admission were fever, cough (which was reported to be 
dry and not productive in most cases), loss of appetite, fatigue and weakness, nasal congestion and/or 
rhinorrhea, dyspnea, as summarized in Table 1. Gastrointestinal symptoms, such as vomiting/nausea, 
diarrhea, and flatulence, were unusual in our patients, and were mostly reported in children younger 
than 3 years. Only one 16-year patient complained of intense sweating, chest pain and dizziness, but he 
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Figure 1 Flowchart describing the patients’ study enrollment according to the severe acute respiratory syndrome coronavirus-2 
polymerase chain reaction testing and chest X-ray results. COVID-19: Coronavirus disease 2019; PCR: Polymerase chain reaction.

was affected with congenital heart disease (pulmonary artery stenosis). The differential descriptive 
analysis of all clinical manifestations according to the group designation is reported in Table 1. 
Therefore, the main chief complaints were fever and cough, overall. No statistically significant 
differences were noticed between these two groups in terms of frequency and type of clinical manifest-
ations. Cough (overall, reported in around 72% of all pneumonia patients) was present in 70.8% and 
75% patients of the COVID-19 positive and negative groups, respectively. Fever (that was detected in > 
75% of the study participants, overall) was reported in 70.8% and 80% patients of COVID-19 positive 
and negative groups, respectively. As regards other concerning respiratory symptoms, dyspnea was 
detected in both groups without any statistical differences and, respectively, in 29.2% and 35% of 
COVID-19 positive and negative groups.

Laboratory investigations
All the available laboratory results are summarized in Table 2. No statistically significant differences 
were found between the study groups for any laboratory parameters, except for CRP. In detail, there 
was a statistically significant difference between COVID-19 positive and negative patients, in terms of 
CRP values (group 1: 41.47 ± 11.23 mg/L, group 2: 15.10 ± 4.21 mg/L; P = 0.0361). However, no inter-
group significant differences were detected as regards ESR. In terms of CBC, no significant differences 
were detected between these pneumonia groups in the main hematological parameters (hemoglobin, 
thrombocytes count and total white blood cells). However, in terms of differential cell blood count (as 
described in Table 2), both groups of children with pneumonia showed a relative lymphocyte reduction 
and, conversely, neutrophil increase. As already mentioned, no significant differences were found for all 
the other biochemical parameters; however, as explained, these data were not available for all study 
participants as regards many parameters, which may have affected the results of the statistical analysis, 
of course.

Other radiological investigations 
Unfortunately, data on additional radiological investigations were available for a minority of patients, 
except for abdominal ultrasound, which was performed in 34 patients: It resulted abnormal with diffuse 
and reactive changes in the liver in only 4 COVID-19 patients (11.8%), who actually did not complain of 
any abdominal symptoms. No additional ultrasonographic alterations were reported. In detail, as 
regards the kidneys, no pathological changes were observed at all. Only 3 children (complaining of 
chest pain) underwent chest ultrasound: All showed signs of a small pleural effusion. In detail, among 
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Table 2 Laboratory parameters in the two study groups of children

Group 1 Group 2 

(PCR + pneumonia) (PCR - pneumonia)Laboratory parameters

n = 24 n = 20

HGB (g/L) 120 ± 3.97 119 ± 3.4

MCV (fL) 85.2 ± 2.6 83.9 ± 1.59

PLT (109/L) 280 ± 19.4 338 ± 18.6

WBC (109/L) 10.3 ± 0.85 9.5 ± 0.77

Lymphocytes (%) 28.3 ± 2.91 32.9 ± 3.4

Lymphocytes (109/L) 2.7 ± 0.31 3.1 ± 0.35

Neutrophils (%) 64.3 ± 3.35 60.8 ± 3.8

Neutrophils (109/L) 7.3 ± 0.75 6.3 ± 0.69

Monocytes (%) 5 ± 0.47 6.1 ± 0.64

Monocytes (109/L) 0.5 ± 0.06 0.5 ± 0.06

ESR (mm/h) 19.1 ± 2.36 18.4 ± 1.88

CRP (mg/L) 41.5 ± 11.2 15.1 ± 4.21

Total bilirubin (µmol/L) 7.2 ± 0.67 9.07 ± 0.94

Total proteins (g/L) 66.5 ± 1.85 62.3 ± 1.56

Creatinine (µmol/L) 43 ± 2.84 41.6 ± 4.32

Urea ( mmol/L) 3.24 ± 0.29 3.47 ± 0.41

Ca (mmol/L) 2.25 ± 0.04 2.24 ± 0.05

K (mmol/L) 4.53 ± 0.24 4.79 ± 0.21

Na (mmol/L) 137 ± 0.50 138 ± 0.71

Cl1 (mmol/L) 102 ± 1.22 104 ± 1.18

Glucose1 (mmol/L) 4.66 ± 0.18 5.54 ± 0.58

ALT1 (U/L) 24.6 ± 8.24 24.4 ± 4.78

AST1 (U/L) 29.6 ± 3.88 30.5 ± 5.42

CK1 (U/L) 70.2 ± 18.7 64 ± 14.3

LDH1 (U/L) 399 ± 120 323 ± 189

PCT1 (ng/mL) 0.5 ± 0.11 0.3 ± 0.09

D dimer1 (μg/mL) 1.4 ± 0.35 0.1 ± 0.02

25 OH vitD1 (ng/mL) 27.3 ± 3.79 25.3 ± 2.67

1The information is not available for all patients.
HGB: Hemoglobin; WBC: White blood cells; MCV: Mean corpuscular volume; ESR: Erythrocyte sedimentation rate; PLT: Platelets; CRP: C reactive protein; 
Ca: Total Calcium.; K: Potassium; Na: Sodium; Cl: Chloride; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; CK: Creatinkinase; LDH: 
Lactate dehydrogenase; PCT: Procalcitonin.

these patients, 2 were diagnosed with COVID-19 and one was SARS-CoV-2 negative.

DISCUSSION
Currently, a few articles on COVID-19 from Central Asia can be retrieved in the medical literature: As 
regards the first wave of pandemic, those are mainly epidemiological studies describing the outbreak 
situation until June 2020[12-15]. Our study is a single-center pediatric case series describing the clinical, 
laboratory and radiological characteristics of SARS-CoV-2 positive and negative Kazakhstani children 
with pneumonia, who were identified based on contact tracing in the household setting. The clinical 
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manifestations of these COVID-19 children in our study were not qualitatively and quantitatively 
different from those emerging from previous and larger case series during the first phase of the 
pandemic[16-18]. Interestingly, > 60% of our patients were younger than 5 years; however, this distri-
bution may be easily biased by the different parental awareness for infants and young children: Indeed, 
as explained, we assessed all consecutive pediatric contacts of COVID-19 adults, who were addressed 
for medical evaluation at the hospital. Respiratory symptoms were the most frequent clinical manifest-
ations and were complicated with pneumonia in several patients. Among 54 pediatric contacts with 
family members affected with COVID-19, only 34 children resulted to be SARS-CoV-2 PCR positive, and 
24 of them (70.6%) were concomitantly diagnosed with pneumonia. This diagnostic rate of pneumonia 
among COVID-19 children was quite high in our case series, compared to similar studies from different 
countries (see later), in which contact tracing strategy was the main method used for participants’ 
recruitment, like in the present study. For instance, Alsharrah et al[19] described a retrospective and 
monocentric case series including 134 pediatric COVID-19 patients who mostly (84%) acquired the 
infection from household contacts: 67.9% and 32.1% of these children were reported as asymptomatic or 
affected with mild symptoms or pneumonia, respectively. In detail, only 12 COVID-19 patients (around 
9%) showed “abnormal chest X-ray findings”, which is clearly a much lower rate of COVID-19 pneu-
monia than in our experience presented in this study. Another study from Italy described children 
consulted in a specific COVID-19 Hub Centre coordinating the medical services, including children’s 
admission to the pediatric COVID-19 department of a single referral hospital. In this study, 208 children 
were assessed as suspected cases based on fever and/or respiratory symptoms, in addition to the 
exposure COVID-19-infected relatives or cohabitants. Out of 144 children who were SARS-CoV-2 PCR 
tested, 104 turned out positive, but only 30 children were admitted to the hospital for variable medical 
reasons: In most cases, the hospitalization was mainly driven by relative indications, such as the young 
age (< 12 mo) or the presence of pre-existing comorbidities, or the persistence of fever, rather than 
respiratory complications; as regards pneumonia specifically, these authors mentioned only 1 case in a 
15-year girl[20]. As regards the type of lung involvement, in our case series no significant differences 
were noticed in terms of chest X-ray findings, between SARS-CoV-2 positive and negative patients with 
pneumonia. However, CRP values resulted to be statistically different between these two groups. CRP is 
the most widely used parameter for assessing the acute systemic inflammatory response in children 
requiring medical attention at the pediatric emergency department[21]. Our results are in contrast with 
the study by Zhao et al[22], who compared COVID-19 children (n = 23, all inpatient) with others 
diagnosed with Influenza A (n = 69, inpatient; n = 69, outpatient): Indeed, these authors reported the 
opposite situation, since CRP values were significantly higher in the latter disease than in COVID-19. 
However, the COVID-19 and Influenza A study groups included all types of patients in terms of clinical 
severity (30.4% and 40.6% children developed pneumonia, respectively) and not only those affected 
with pneumonia, unlike our present study. The patients’ age in this study was comparable to that of our 
cases series. Another study Li et al[23] made the same etiological comparison, but here all the enrolled 
children (COVID-19, n = 57; or Influenza A, n = 59) were affected with pneumonia: Again, CRP values 
resulted to be significantly lower in COVID-19 patients (3.7 mg/L vs 15.1 mg/L, P = 0.001). In this 
study, the average patients’ age was 18.7 mo and, thus, they were quite younger than ours. However, 
significant increases of CRP values were described in pediatric patients affected with severe forms. 
Therefore, our observations on CRP values are in contrast with the previous data from those few 
comparable studies and the general findings from larger clinical studies conducted during the first wave 
of pandemic. We cannot provide any clear explanation for our different observations, but we could 
speculate that our patients may have arrived at the medical attention at a later stage than what may 
have happened in other countries for some organizational reasons (e.g. different health system 
procedures; more rapid contact tracing system; others), and/or because additional viruses (e.g. 
Influenza A) were concomitantly implicated. However, a number of study limitations might have 
definitely affected our results. Unfortunately, because of the limited resources for a complete diagnostic 
work-up in each patient at this hospital, the incomplete assessment of some laboratory parameters 
(including PCT, D-dimer and LDH) in all patients did not allow us to fully analyze the systemic inflam-
matory background in our case series, which may have provided further insights into our observations 
on the CRP values and radiological findings. In this regard, no computerized tomography imaging was 
immediately indicated at that time in children: Indeed, this is a retrospective cross-sectional study 
performed at the Emergency Department, and chest computerized tomography may have been 
requested later (and, thus, not recorded in the clinical database available to our research team) based on 
the individual medical indication. Indeed, no precise information about the therapy and, in detail, the 
use of antibiotics (such as macrolides, which were usually prescribed in this first phase of COVID-19 
pandemic)[24] was available to us. Moreover, the small sample size and the absence of a control (SARS-
CoV-2 negative) group without pneumonia have further hampered the data interpretation. Finally, the 
specific patients’ recruitment by family contact tracing might have affected these results as well.
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CONCLUSION
In conclusion, in addition to a relatively high prevalence of pneumonia among Kazakhstani COVID-19 
children diagnosed after contact tracing during the first wave of pandemic, we observed a significant 
difference in CRP values between SARS-CoV-2 positive and negative children affected with pneumonia, 
which may deserve further verification and investigations with larger clinical studies, due to the several 
limitations of this retrospective case series.

ARTICLE HIGHLIGHTS
Research background
Even though coronavirus 2019 disease (COVID-19) clinical course in children is much milder than in 
adults, pneumonia can occur in the pediatric population as well.

Research motivation
To report a single-center pediatric case series of COVID-19 from Kazakhstan during the first wave of 
pandemic.

Research objectives
To analyze the main clinical and laboratory aspects in severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) positive and negative children diagnosed with pneumonia.

Research methods
Retrospective analysis of 54 children, who were medically assessed because they were close contacts of 
COVID-19 adults in their family setting, between June and September 2020. The clinical and laboratory 
characteristics of children affected with pneumonia in the presence (group 1) or absence (group 2) of 
SARS-CoV-2 infection, were compared.

Research results
No significant differences were found between the study groups for any clinical and laboratory 
parameters, except for C-reactive protein. Both pneumonia groups showed higher C-reactive protein 
values than COVID-19 children without pneumonia, overall; however, the COVID-19 pneumonia group 
1 showed a significantly higher increase of C-reactive protein compared to group 2 (SARS-CoV-2 
negative pneumonia).

Research conclusions
In our case series of children assessed for SARS-CoV-2 infection based on contact tracing, the acute 
inflammatory response and, in detail, C-reactive protein increase resulted to be more pronounced in 
COVID-19 children with pneumonia than in children with SARS-CoV-2 negative pneumonia.

Research perspectives
Larger, controlled and more complete clinical studies are needed to verify the different aspects of 
(acute) systemic inflammation in children with SARS-CoV-2 pneumonia.
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