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Abstract
Hepatitis D virus (HDV) is a defective virus with circular, 
single-stranded genomic RNA which needs hepatitis 
B virus (HBV) as a helper virus for virion assembly 
and infectivity. HDV virions are composed of a circular 
shape HDV RNA and two types of viral proteins, small 
and large HDAgs, surrounded by HBV surface antigen 
(HBsAg). The RNA polymerase Ⅱ from infected hepato-
cytes is responsible for synthesizing RNAs with positive 
and negative polarities for HDV, as the virus does not 
code any enzyme to replicate its genome. HDV occurs 
as co-infection or super-infection in up to 5% of HBsAg 
carriers. A recent multi-center study highlighted that 
pegylated interferon α-2a (PEG-IFN) is currently the 
only treatment option for delta hepatitis. Nucleotide/
nucleoside analogues, which are effective against HBV, 
have no relevant effects on HDV. However, additional 
clinical trials combining PEG-IFN and tenofovir are cur-
rently ongoing. The molecular interactions between 
HDV and HBV are incompletely understood. Despite 
fluctuating patterns of HBV viral load in the presence of 
HDV in patients, several observations indicate that HDV 
has suppressive effects on HBV replication, and even 
in triple infections with HDV, HBV and HCV, replication 
of both concomitant viruses can be reduced. Additional 
molecular virology studies are warranted to clarify how 
HDV interacts with the helper virus and which key cel-
lular pathways are used by both viruses. Further clinical 

trials are underway to optimize treatment strategies for 
delta hepatitis.

© 2012 Baishideng. All rights reserved.
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INTRODUCTION
The hepatitis D virus (HDV) causes chronic or fulmi-
nant hepatitis in patients, as a co- or super-infection in 
hepatitis B virus (HBV) infected individuals[1,2]. Experi-
mentally, the “delta virus” can also infect chimpanzees or 
woodchucks who have already been infected with HBV 
or woodchuck hepatitis virus (WHV), respectively[3]. 
HBV/HDV co-infection is a clinically very deleterious 
condition as it commonly leads to progression of  hepatic 
fibrosis, cirrhosis and increase the risk of  hepatocellular 
carcinoma[4]. The mechanism by which HDV promotes 
hepatic malignancies are unclear, however it has been 
shown that the virus has negative effects on hepatocytes’ 
growth and viability[5]. 

HDV, with a spherical shape and a virion size of  36 
nm, is a satellite virus with a circular RNA of  negative 
polarity which requires obligatory a helper function to 
propagate[1,2]. This helper function is usually provided 
through HBV by sharing its envelope proteins[2]. Some 
in-vivo studies have shown that other Orthohepadnaviri-
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dae members like WHV can also play the same role as 
HBV[6,7]. There are some arguments that interactions be-
tween HDV and its helper virus might not be limited to 
surface protein supplies, but also other unknown mecha-
nisms[2]. With respect to the size of  the genome (1679 bp 
RNA), the rolling circle mechanism of  replication and its 
high GC nucleotide content, HDV is very unique among 
animal viruses and looks very similar to viroids (a family 
of  helper-independent plant pathogens)[8].

VIRAL STRUCTURE
The HDV ribonucleoprotein (RNP) is surrounded by 
a mixture of  host cell-derived lipids and HBV surface 
proteins (HBsAg)[9]. HDV has a small single stranded 
RNA genome of  1679 nucleotids[10]. Due to the high de-
gree of  intramolecular base pairing in the HDV genome, 
the RNA folds to an un-branched, rod like structure[11]. 
HDV’s circular RNA forms a complex with two viral-
encoded proteins, small (195 amino acids) and large 
(214 amino acids) HDV-antigens (HDAg-S or p24, and 
HDAg-L or p27, respectively)[6,9,11]. Delta proteins have 
identical amino acids except for 19 additional residues at 
the C-terminus of  HDAg-L[9].

The small delta protein acts as a trans-activator for 
initiation of  genomic RNA replication[12]. It also under-
goes post translational modifications like methylation, 
acetylation and phosphorylation to mediate viral mRNA 
transcription in its modified form[10,13]. HDAg-L is a late 
protein which inhibits viral RNA replication and tran-
scription of  viral proteins, interacts with HBV surface 
antigens and accelerates the assembly of  new virions[6,9,11]. 
The capacity of  binding to HBsAg is not only limited to 
HDAg-L protein but also occurs with HDAg-S. In fact, 
in the presence of  HDAg-S the packaging level of  HDV 
raises up to 3 to 4 fold[9]. Moreover, there is a conserved 
molar ratio of  delta antigen to HDV genomic RNA in 
infected liver tissues as well as in HDV particles[10]. 

MOLECULAR INTERACTIONS BETWEEN 
HBV AND HDV
HBV, with a 3.2 kb partial double stranded DNA, plays 
the role of  a HDV helper virus in HBV/HDV-infected 
hepatocytes. From the four overlapping reading frames 
in the HBV genome one encodes viral surface enve-
lope proteins[14]. This region contains (from amino- to 
carboxyl-end) the pre-S1 (119 aa), pre-S2 (55 aa) and S 
(226 aa) domains[9]. These domains encode the large (from 
pre-S1, pre-S2 and S), middle (from pre-S2 and S) and 
small (from S) HBV surface proteins which are all in the 
same translational frame with different start codons (N-
terminals)[6,9].

Although the S-HBsAg alone is sufficient for virion 
development due to its self-assembling trait (which most 
of  the time leads to empty envelope particle formation), 
the presence of  large HBsAg is necessary for both HBV 
and HDV to infect other cells[6,9]. In-vivo studies have 

shown that all three HBsAg proteins are present in HDV 
particles[9]. Delta proteins can bind to the S domain of  
HBV envelope as well as the L4 region which is located 
in the pre-S1 domain of  HBsAg (amino acid residues 
86-108). This is the same region which HBV core pro-
teins interact with[9]. 

The surface protein coding region of  HBV overlaps 
with polymerase encoding genes of  HBV, so any mu-
tation in this region may affect both polymerase and 
HBsAg activities[6]. In fact, mutations in the HBV poly-
merase gene that also affect correspondingly the HBV 
surface antigen coding region, may therefore have effects 
on HBV as well as on HDV replication efficacy. Not all 
consequences of  HBV mutations for HBV/HDV viral 
replication are currently understood, but limited data exist 
for some of  the most common clinical variants (Table 1). 
Effects of  mutations within the HBV polymerase and 
surface proteins on HDV secretion. LMV stands for La-
mivudine. Data are mainly derived from molecular inter-
action studies in vitro[6,15,16]. While the lamivudine-resistant 
mutant rtM204V improves HDV secretion, another re-
sistance-conferring mutant like rtM204I (corresponds to 
sW196L/S/stop) diminishes HDV production[6], which 
is due to the importance of  the codon 196 in the HBV 
surface antigen for HDV packaging[6,15]. 

Mutations in C-terminal region of  the envelope 
proteins (especially between amino acid residues 163 
to 224) can severely reduce HDV assembly[16]. HBsAg 
mutations, selected by antiviral agents, are also located 
in this region[6]. These mutations can affect the level of  
HDV virion secretion out of  the cells in in-vitro experi-
ments[6,16].

Although it is known that HBV/HDV-coinfected 
patients have an unfavorable clinical outcome, the ex-
act role of  HBV and HDV in liver disease progression 
has been controversially discussed, because contrasting 
results have been published about the role of  each one 
of  the viruses[10,12]. Some authors suggested that the 
underlying HBV infection is aggravated by concomitant 
presence of  HDV in hepatocytes with synergistic delete-
rious effects on cell survival[12,17], while others indicated 
that HDV, which often suppresses HBV, is most criti-
cal for liver disease and malignant transformation[5,10,12]. 
From a molecular point of  view, it is very likely that both 
viruses do not replicate independent from one another, 
but modulate each other’s replication level and also 
pathogenicity[2]. Suppressed HBV replication, but also 
high or fluctuating loads of  both viruses in the serum of  
co-infected individuals have been reported[2,12]. A recent 
longitudinal study investigating quantitatively HBV and 
HDV viral loads in co-infected patients showed that in 
spite of  cross-sectional studies, in which there is a signifi-
cant positive association between HBsAg level and HBV-
DNA or HDV-RNA, HBsAg has longitudinally fluctuat-
ing levels in the presence of  HDV[12]. Apparently, there 
is not always an inhibitory effect of  HDV on HBV rep-
lication as sometimes HBV shows significant inhibitory 
actions on HDV in HBV/HDV double infection as well. 
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This observation might be due to some changes in HBV 
surface antigen region interacting with HDV[12]. Overall, 
the molecular mechanisms underlying HBV/HDV inter-
actions leading to the progression of  the disease are still 
uncertain and require intense further investigations.

PROTEIN MODIFICATIONS OF HDV
The level of  HDV replication and pathogenicity is not 
only influenced by interactions with HBV and HBV mu-
tants, but might be also impacted by modifications of  the 
HDV proteins as well. As such, some amino acid residues 
in S- and L-HDAg appear to be critical for posttransla-
tional modifications[1,10]. Of  these residues Arg-13, Lys-72 
and Ser-177 in S-HDAg undergo methylation[18], acetyla-
tion[19] and phosphorylation[20], respectively[1,10].

There are also multiple lysin residues throughout the 
whole S-HDAg as well as 66 amino acids at the N-terminal 
part of  this protein which act as sumoylation sites of  the 
protein. Sumoylation is a reversible process which has 
implications for cell cycle progression, nuclear import, 
regulation of  transcription, protein turnover and other 
cell biology functions. In case of  HDV, sumoylation 
enhances G-RNA and mRNA synthesis by unknown 
mechanism but has no effect on antigenomic RNA (AG-
RNA) synthesis[1].

In L-HDAg Cys-211 gets isoprenylated for virus as-
sembly[1,21,22]. Deletion of  15 amino acids upstream of  
the isoprenylation site would also lead to the eradication 
of  viral replication[21]. Moreover, some mutants of  HDV 
have been observed which can only replicate in the pres-
ence of  wild-type HDV, called “defective” viruses[23].

HDV REPLICATION
The replication cycle of  HDV is schematically summa-
rized in Figure 1. N-terminal residues of  Large Hepatitis 
B surface antigen mediate the entry of  HDV into the he-
patocytes[24]. Once delta virus enters the cell it gets uncoat-
ed, and the accompanying S-HDAg leads the HDV nu-
cleoprotein complex to the cell’s nucleous[10,11]. HDV has a 
mechanism of  double rolling circle amplification. For this, 
the virus needs an RNA-dependent RNA polymerase ac-
tivity which in the majority of  RNA viruses, but not in the 
case of  HDV, is carried out by virally encoded enzymes[25]. 
Exceptionally, the delta hepatitis virus is capable of  using 
host RNA polymerases to amplify its genome[25]. 

The HDV genomic strand undergoes RNA-depen-
dent RNA synthesis, more likely by nucleolar RNA-
POL-I[1,11], to produce multimeric full-length intermediate 
RNAs or AG-RNAs. These molecules then serve as tem-
plates for cellular RNA Pol-Ⅱ to generate HDV genomic 
RNA again through another rolling circle step[11]. Both 
genomic and anti-genomic strands of  HDV contain 85 
nucleotides with ribozyme activity which enables the vi-
rus to self-cleavage and to ligate its circular RNA[2]. There 
is also the possibility of  producing small segments of  
RNA transcripts, from both genomic and anti-genomic 
HDV RNAs which have been consumed to contribute to 
viral replication[25].

Genomic RNA is also transcribed into an mRNA (0.8 kb)  
which encodes the HDAgs[1]. This step distinguishes 
HDV from viroids since they do not produce any pro-
tein. This event has also been shown to take place in the 
nucleus, the same place at which G-RNA synthesis hap-
pens[1]. It means that different cellular machineries are 
mediating HDV genomic RNA/mRNA and HDV anti-
genomic RNA synthesis, which are localized in the nu-
cleus and nucleolus of  the host cells, respectively[1,11,26,27]. 
Modified small HDAg intermediates viral mRNA tran-
scription[10,13]. 

During small HDAg production, an RNA editing 
event happens at position 1012 by double-stranded RNA-
specific adenosine deaminase[22], resulting in alteration of  
the stop codon of  the HDAg-S open reading frame (ORF) 
and translation extension for additional 19 amino acids[11]. 
This edition is very essential for the virus since it creates 
an ORF for the large delta antigen to be translated[22]. The 
extra 19 amino acid sequence of  p27 is poorly conserved 
among different HDV isolates. However a CXXX motif  
inside this region causes prenylation of  the protein, facili-
tates protein-protein interactions and directs it to the host 
cell membrane[28]. Defective mutants of  this motif  are 
not able to interact with HBsAgs and to be packaged[28,29]. 
Expression of  L-HDAg initiates interactions with HBV 
surface proteins and HDV RNP encapsidation[9,11]. 

TREATMENT OF DELTA HEPATITIS
Chronic hepatitis D, “delta hepatitis”, principally demands 
effective therapy, due to the adverse natural history of  
chronic HDV infection with more severe liver disease, 
rapid progression to cirrhosis, increased hepatic decom-
pensation and higher mortality rates compared to HBV 
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Table 1  Molecular interactions between hepatitis B virus and hepatitis D virus

HBV polymerase 
mutation(s)

Corresponding 
HBsAg mutation(s)

Clinical relevance Effect(s) on HDV

rtM204V sI195M(A) LMV resistance Enhanced HDV secretion
rtM204I sW196L/S/stop LMV resistance S, L: no HDV secretion
rtD205H sW196F Selected during LMV treatment with reduced binding to anti-HBsAg antibodies Reduced HDV secretion
rtV173L sE164D Selected during LMV treatment with reduced binding to anti-HBsAg antibodies Reduced HDV secretion
rtV173L/rtM204V sE164D/sI195M Selected during LMV treatment with reduced binding to anti-HBsAg antibodies Support HDV secretion

LMV: Lamivudine; HDV: hepatitis D virus; HBV hepatitis B virus; HBsAg: HBV surface antigen.

Shirvani Dastgerdi E et al . Hepatitis delta virus



monoinfection[30,31]. However, the therapy of  chronic 
hepatitis D infection is a major challenge, because there 
is no specific virus inhibitor. At the moment, there is 
only one approved therapy with IFN α or PEG-IFN α, 
respectively, available[30]. A lot of  different substances 
have been investigated; Table 2 gives an overview of  the 
results of  selected major clinical trials.

The recent standard therapy for delta hepatitis is 
PEG-IFN, administered 180 µg s.c. once per week for 
a period of  48 wk. Traditionally, conventionally IFN 
proofed to be effective in chronic hepatitis D in the early 
1990s[32-35]. Also, a placebo-controlled trial reported in 
2005 could show a benefit for conventional IFN in a 
small cohort[36]. But nevertheless response rates in mat-
ters of  sustained virological responses (SVRs) are low 
and therapy efficacy seems to be proportional to the 
dose and duration of  treatment[37]. In a single case with a 
12-year permanent therapy with 5 million units IFN daily 
a HDV RNA clearance could be achieved after several 

years accompanied with anti-HBs seroconversion. This 
was attended by improvement of  liver histology (initially 
cirrhosis, after 10 years no abnormalities)[38]. Interestingly 
Yurdaydin et al[39] could not find a benefit for IFN treat-
ment over 2 years instead of  1 year. However long-term 
data (12 years) showed a benefit of  high-dose IFN α 
therapy (9 million units three times per week) with even 
regression of  advanced hepatic fibrosis[40].

Due to the advantageous pharmacodynamics and 
pharmacokinetics, PEG-IFN clearly provided a benefit 
in HDV therapy. In 2006 three small studies could show 
effectiveness for this type of  treatment[41-43], but neverthe-
less SVR rates remained low (17% to 43%) overall. In a 
multicentre randomised landmark trial published in 2011, 
Wedemeyer et al[44] achieved 28% SVR. These differences 
in SVR rates compared to prior smaller trials might be 
due to baseline clinical, demographical and virological 
characteristics[30]. Farci[37] proposed to divide patients 
into IFN responders and non-responders. Additionally, 
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Figure 1  Hepatitis D virus life cycle in hepatocytes in the presence of hepatitis B virus. Schematic summary of the current concept of hepatitis D virus (HDV) 
replication cycle. The entry of HDV particles into hepatocytes is mediated by the attachment of hepatitis B virus (HBV)  surface antigens coating HDV nucleoprotein to 
the host cell receptors, followed by endocytosis and uncoating of the virions (1). HDV nucleoprotein complex is leaded to the nucleus by accompanying S-HDAg, then 
the complex arrives to the nucleolus where RNA Pol Ⅰ exists (2). Multimeric full-length antigenomic RNAs (AG-RNAs) are transcribed from HDV genomic RNA, likely 
by RNA Pol Ⅰ. Circular AG-RNA molecules which are created by ribozyme activities of AG-RNA itself move to the nucleoplasm (3). AG-Strands serve as templates 
for RNA Pol Ⅱ (4). RNA Pol Ⅱ starts generating mRNA from genomic strands (5a) and full-length transcripts from AG-strands (5b). 6: Due to RNA editing at position 
1012 of S-HDAg exerted by double-stranded RNA-specific adenosine deaminase, the open reading frame of these mRNA molecules extends for additional 19 amino 
acids, which lead to the production of Large delta antigen (6). mRNA molecules coding for small and large delta antigens move to the cytoplasm and are translated to 
relevant proteins (7,8). Small delta antigens activate genomic RNA replication (7), while large proteins promote virion assembly (8). Viral proteins form nucleoprotein 
complexes with HDV genomic RNAs (9). L-HDAg in HDV ribonucleoprotein complex interacts with existing HBV surface proteins in the cell (10). After HDV encapsida-
tion by HBV surface proteins (11), complete virions leave the cell through exocytosis (12). HBV surface proteins bud through the endoplasmic reticulum or golgi body 
membranes of the host cell (A).



IFN responders might be distinguished in early- and 
late-responders. The latter could possibly benefit from a 
prolonged treatment, because HDV decrease might oc-
cur late, even after the end of  treatment[44]. Clear predic-
tors of  response to IFN have not been identified, but 
viral load determination at 6 mo of  treatment might be 
helpful[41,43]. Even in virological non-responders, Erhardt 
et al[43] observed a stabilization of  histological liver score 
under therapy so that IFN might be beneficial.

Because of  the poor results and high rates of  adverse 
events like flu-like symptoms or bone marrow suppres-
sion with anemia or neutropenia, dose reduction or dis-
continuation of  treatment are common upon PEG-IFN 
therapy, corroborating the urgent need for therapeutic 
alternatives. 

Major problems in developing new treatment strate-
gies are that there are no specific therapeutic targets 
like a virus polymerase and that potentially two viruses 
have to be treated at the same time[30]. A lot of  different 
approaches have been investigated over the last years. 
Ribavirin as a monotherapy or in combination with IFN 
could not show a benefit[42,45,46], likewise Famciclovir[47] 
and acyclovir[48] had no effect. Different studies could 
not show an advantage of  lamivudine as a monotherapy 
or combination therapy[36,49,50]. Because of  a significant 

decrease in cccDNA levels accompanied with a reduction 
in serum HBsAg titers in long-term adefovir therapy[51], 
the well-known HBV-effective nucleotide analogue ad-
efovir dipivoxil was thought to be a potential anti-HDV 
drug as well. Interestingly, in the recent HIDIT-1 study 
Wedemeyer et al[44] could not find superiority compared 
to PEG-IFN monotherapy. Thus, nucleoside/nucleotide 
analogue treatment is not recommended at the moment 
in patients with suppressed or low HBV replication. In a 
single case report, a patient achieved a SVR accompanied 
with anti-HBs seroconversion after add-on therapy of  te-
nofovir and emtricitabine to PEG-IFN[52]. Therefore, fur-
ther studies are required to investigate the role of  nucleo-
side/nucleotide analogues with high resistance barrier like 
entecavir or tenofovir. The HIDIT-2 trial, for instance, 
combines PEG-IFN with tenofovir for the treatment of  
HDV, and results from this trial are anticipated within the 
next years.

Because of  different patterns in replication of  HDV 
and HBV (active HDV/inactive HBV 70%, active HDV 
and HBV 23%, inactive HDV/active HBV 4%, both inac-
tive 3%)[53] which vary over time a close treatment surveil-
lance and an individually adopted therapy is likely to be 
essential. Possibly, patients with a high HBV replication 
might benefit from a therapy with nucleoside/nucleotide 
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Table 2  Selected clinical trials on delta hepatitis therapy

Ref. Drug used Dosage No. of 
patients 
included

Main result (s)

Garripoli 
et al[45], 1994

Ribavirin monotherapy 15 mg/kg for 16 wk   9 Ribavirin did not show significant antiviral 
effects in chronic hepatitis D

Wolters 
et al[49], 2000

LAM + IFN add-on LAM 100 mg at least for 24 wk; afterwards 
combination therapy with IFN 9 MU/d for 
4 wk, followed by 9 MU 3 times/wk for 12 wk

  8 Neither LAM alone nor the addition of IFN 
was capable of reducing HDV

Yurdaydin 
et al[47], 2002

Famciclovir 500 mg for 6 mo 15 Not effective

Farci et al[40], 
2004

High-dose IFN α vs low 
dose IFN vs no treatment

High dose: 9 million units 3 times/wk, low 
dose 3 million units 3 times/wk for 48 wk

36 High-dose IFN α significantly improves long 
term clinical outcome and survival

Kaymakoglu 
et al[46], 2005

IFN α + ribavirin IFN 10 MU 3 times/wk, Ribavirin 
1000-1200 mg/d for 24 mo

19 Addition of Ribavirin to IFN-α does not 
increase response rate in patients with CHD

Niro et al[36], 
2005

LAM vs placebo 100 mg LAM for 52 wk 31 HDV viraemia was unaffected, even in patients 
when HBV replication was lowered by LAM 
therapy

Erhardt 
et al[43], 2006

PEG-IFN 1.5 µg/kg PEG-IFN per wk for 48 wk 12 PEG-IFN is a promising treatment option in 
chronic hepatitis D

Castelnau 
et al[41], 2006

PEG-IFN 1.5 µg/kg PEG-IFN per wk for 12 mo 14 PEG-IFN is safe and efficient for HDV 
treatment

Niro et al[42], 
2006

PEG-IFN mono vs 
combination therapy 
with ribavirin

1.5 µg/kg PEG-IFN per wk; 800 mg ribavirin; 
48 wk mono or combination therapy, 
afterwards 24 wk PEG-IFN mono

38 Ribavirin had no effect

Yurdaydin 
et al[50], 2008

LAM vs LAM + IFN vs 
IFN mono

IFN 9MU 3 times/wk, LAM 100 mg; totally 
12 mo therapy; for combination therapy 2 mo 
LAM mono, afterwards 10 mo combination

39 Addition of LAM to IFN is of no additional 
value; both (IFN mono/IFN + LAM) are 
superior to LAM mono

Mansour 
et al[52], 2010

PEG-IFN, add-on tenofovir 
und 
emtricitabine after 2 mo

PEG-IFN 180 µg/wk; tenofovir 300 mg/d 
for 10 mo

  1 Combination therapy with PEG-IFN and 
nucleoside/tide analogue seems to be more 
effective than IFN alone

Wedemeyer 
et al[44], 2011

PEG-IFN mono vs adefovir 
vs combination PEG-IFN + 
adefovir

PEG-IFN 180 µg/wk; adefovir 10 mg/d for 
48 wk

90 PEG-IFN α-2a with or without adefovir 
resulted in sustained HDV clearance in about 
25%

LMV: Lamivudine; LAM: Lamivudine; CHD: Coronary heart disease; HDV: hepatitis D virus; HBV hepatitis B virus; PEG-IFN: Pegylated interferon.
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analogues, because of  the long-term HBsAg reduction 
observed with these agents. Sheldon et al[54] could show 
that in a long-term study (median 6.1 years) of  HIV/
HDV/HBV co-infected patients who where treated with 
anti-HBV drugs 13 of  16 patients had reduced HDV 
viremia and ALT levels. Even three of  these achieved 
undetectable HDV RNA and normal ALT levels. This is 
especially important considering that high levels of  HBV-
DNA in HDV/HBV co-infected patients lead to more 
severe liver damage than those with low viremia[55].

Another promising approach is the use of  prenylation 
inhibitors. Bordier et al[56] used a farnesyltransferase inhib-
itor (FTI) because prenylation of  the large delta antigen 
- especially the prenyl lipid farnesyl, which was found on 
the delta antigen[57] - seems to play an essential role for 
the virus assembly and release. In this study, a complete 
clearance of  HDV viremia with FTI was achieved[56]. 
Orally taken FTIs have been developed with a relative 
lack of  toxicity in human phase Ⅰ/Ⅱ studies[58] and 
might be a potential new substance group for treatment 
of  chronic HDV infection.

In a pilot study of  chronically infected woodchucks 
clevudine was capable to reduce WHV cccDNA with re-
duction in WHsAg. Moreover, they could achieve in 75% 
of  HDV infected woodchucks undetectable HDV RNA 
with clevudine treatment[59]. An HBsAg titer reduction 
by reducing the cccDNA during clevudine therapy was 
also found in humans[60]. In comparison to lamivudine, 
clevudine seems to be superior in HBeAg positive HBV. 
Compared to entecavir, in chronic HBV infected patients 
clevudine could reduce viral load similar than entecavir, 
but higher rates of  virological breakthrough and signifi-
cantly more myopathy was observed[61], indicating that 
clevudine has a higher adverse event profile.

Potential novel strategies for an anti-HDV treatment 
might be an HDV receptor blockade, which is thought to 
be the same receptor like HBV. Also, a modulation of  the 
balance between S-HDAg and L-HDAg and especially 
modification of  post-translational changes of  HDAg, 
which effects the viral life cycle, might be a promising 
target. Another approach is the reduction of  HBsAg, 
which might be associated with clearance of  HDV RNA. 
Vietheer et al[6] for instance could show that mutations in 
the HBsAg lead to an inhibition of  HDV particle secre-
tion. But it should be taken into consideration that HDV, 
once it got into the cell, can replicate without HBV[62-64], 
so that an HBsAg reduction might inhibit new infections 
of  cells, but can theoretically not by itself  promote the 
clearance from already infected cells. Also other IFN 
types, like IFN λ[30], should be evaluated for their efficacy 
in HDV.

At the moment, the current standard therapy for chron-
ic HDV infection is PEG-IFN α-2a 180 µg s.c. weekly. 
Wedemeyer et al[44] proposed a treatment for 48 wk. If  
there is a high viremia with positive anti-HDV IgM after 
this treatment period, a response seems to be unlikely. If  
there is a reduced viremia, decreased IgM antibody titers 
or transaminases patients might benefit from extended 
therapy for 72 wk. Patients with a high HBV replication 

might benefit by nucleoside/nucleotide therapy. Also a 
spontaneously HDV clearance might appear with spon-
taneously seroconversion to anti-HBs (0.25% annual 
rate). Nevertheless, therapy is needed in delta hepatitis, 
because HDV replication is an independent predictor of  
mortality[65] and lack of  treatment is a predictor of  an un-
favourable outcome[53]. Even 8/35 patients with an SVR 
developed a HCC in long-term[65], especially elderly are at 
a specific risk[66].

The aim of  therapy is a HDV RNA clearance, sero-
conversion to anti-HBs and avoiding imminent compli-
cations like cirrhosis. Once a stage of  liver cirrhosis has 
developed, the viral clearance will have limited influence 
on the further course of  liver disease. Half  of  patients 
who develop cirrhosis later will progress to liver failure[53]. 
To cure patients, long-term IFN treatment is required 
for undetectable HDV RNA and further treatment is 
required for HBsAg loss[67]. During therapy, monitoring 
of  HDV RNA and HBsAg might help in the surveillance 
of  therapy, although HDV RNA does not correlate with 
activity or stage of  liver disease[68]. 

Overall, more long-term data as well as a better un-
derstanding of  the viral life cycle and HDV/HBV inter-
actions are needed for an efficient HDV treatment. Until 
then, HDV infection obviation should be a major focus 
of  health care measures by preventing delta hepatitis us-
ing vaccination against HBV, especially in countries with 
high HDV prevalence[31].
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Abstract
In the last decade, RNA interference (RNAi) advanced 
to one of the most widely applied techniques in the 
biomedical research field and several RNAi therapeutic 
clinical trials have been launched. We focus on RNAi-
based inhibitors against the chronic infection with hu-
man immunodeficiency virus type 1 (HIV-1). A lentivi-
ral gene therapy is proposed for HIV-infected patients 
that will protect and reconstitute the vital immune cell 
pool. The RNAi-based inhibitors that have been de-
veloped are short hairpin RNA molecules (shRNAs), of 
which multiple are needed to prevent viral escape. In 
ten distinct steps, we describe the selection process 
that started with 135 shRNA candidates, from the ini-
tial design criteria, via  testing of the in vitro  and in vivo  
antiviral activity and cytotoxicity to the final design 
of a combinatorial therapy with three shRNAs. These  
shRNAs satisfied all 10 selection criteria such as tar-
geting conserved regions of the HIV-1 RNA genome, 

exhibiting robust inhibition of HIV-1 replication and 
having no impact on cell physiology. This combinatorial 
shRNA vector will soon move forward to the first clini-
cal studies.
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INTRODUCTION
After discovery of  the mechanism of  RNA interference 
(RNAi) in C. elegans in 1998[1], several RNAi approaches 
have been developed for use in therapeutic strategies, e.g., 
against inherited diseases or infectious pathogens[2]. The 
cellular RNAi pathway leads to the processing of  small 
noncoding microRNAs (miRNAs) that regulate cellular 
gene expression at the post-transcriptional level to con-
trol cell differentiation and development[3]. This pathway 
may be primed by artificial short hairpin RNAs (shRNAs) 
that are produced in the cell from a transgene and pro-
cessed into small interfering RNAs (siRNAs)[4]. Ready-
to-use siRNAs can also be synthesized chemically and 
transfected into cells. Perfect base-pairing of  the designed 
siRNA with the specific mRNA target results in cleav-
age of  the latter by the RNA-induced silencing complex 
(RISC)[5]. Topical delivery of  siRNAs in the lungs might 
be feasible for the treatment of  acute infections with e.g., 
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influenza A virus or the respiratory syncytial virus. How-
ever, chronic infections caused by pathogens such as the 
human immunodeficiency virus type 1 (HIV-1), hepatitis 
B virus and hepatitis C virus will require the continuous 
expression of  RNAi inhibitors from a therapeutic trans-
gene.

HIV-1 is replicating in cells of  the human immune 
system, resulting in a constant depletion of  the CD4+ 
T cells that contributes to the eventual progression to 
AIDS. Anti-HIV gene therapy aims to protect this indis-
pensable cell pool from virus infection and destruction, 
which should lead to a (partial) reconstitution of  the 
immune system. Due to the chronic nature of  HIV-1 
infection, cells must be protected life-long against HIV-1, 
which can be achieved by a stable RNAi gene therapy 
against the HIV-1 RNA genome. Apart from RNAi ap-
proaches, other antiviral strategies can be utilized such as 
ribozymes, antisense RNAs, dominant negative protein 
variants, decoy RNAs, or combinations of  RNAi, ribo-
zymes and RNA decoys[6]. However, the simultaneous 
use of  multiple RNAi inhibitors seems one of  the most 
promising approaches for a potent and durable therapy[7]. 
The therapeutic protocol that we have in mind starts with 
the isolation of  blood mobilized CD34+ hematopoietic 
progenitor cells from HIV-infected patients, followed by 
ex vivo transduction with an shRNA-expressing lentiviral 
vector that stably integrates in the host cell DNA, and re-
injection of  the modified cells into the patients. Target 
cells for HIV-1 infection (CD4+ T cells, monocytes/
macrophages and dendritic cells) that originate from 
these transduced pluripotent progenitor cells will express 
the antiviral RNAi constructs and thus prevent HIV-1 
gene expression and virus replication. By that, HIV-1 in-
fected CD4+ T cells evade also the destruction by CD8+ 
cytotoxic T cells as HIV-1 protein production can trigger 
viral peptide presentation via the MHC class Ⅰ molecules 
to cytotoxic T cells.

We and others have previously demonstrated remark-
ably potent virus inhibition even with a single shRNA, 
but also observed that HIV-1 quickly escapes from RNAi 
pressure via the selection of  mutations in the targeted 
sequence[8-13]. However, a combination of  multiple po-
tent shRNAs provided long-term suppression of  HIV-1 
replication[14-16]. For several years, we have designed and 
tested various alternative RNAi strategies against HIV-1. 
Extended shRNA designs and miRNA-like polycistron 
transcripts were optimized for the expression of  multiple 
inhibitors, but the use of  independent shRNA cassettes 
turned out to be most efficient[9,14,17-21]. Thus, the goal is 
to use a lentiviral vector with multiple shRNA cassettes 
that becomes stably incorporated in the human genome. 
We therefore designed a battery of  shRNA inhibitors 
and tested these in a variety of  in vitro and in vivo experi-
mental settings to allow the selection of  the most potent 
and safe RNAi antivirals. The top candidates were subse-
quently chosen for the development of  a combinatorial 
RNAi gene therapy against HIV-1 that will be translated 
into a clinical trial[16]. Primary safety and efficacy stud-

ies were performed in the “Human Immune System” 
(HIS) mouse model[22,23]. Human CD34+ hematopoietic 
progenitor cells (hHPC) were transduced ex vivo with the 
lentiviral RNAi expression constructs and injected into 
immunocompromised newborn mice to monitor cell 
development and differentiation, shRNA expression, cy-
totoxicity and efficacy of  the therapeutic regimen upon 
HIV-1 infection[24]. This pre-clinical animal model does 
closely mimic the anti-HIV gene therapy approach pro-
posed for HIV-infected patients.

Here, we will discuss the numerous criteria and cor-
responding experimental tests that were used in selecting 
the optimal shRNA reagents for a combinatorial attack 
on the HIV-1 RNA genome. Ten distinct selection steps 
can be envisaged (Figure 1): (1) the basic design of  the 
shRNA gene cassettes; (2 + 3) measurement of  the an-
tiviral activity in transiently transfected cells and stably 
transduced cells; (4) selection of  the most conserved 
HIV-1 target sequences to maximize the number of  sen-
sitive viral isolates; (5) testing the viral escape possibilities 
as a measure of  the durability of  the therapeutic attack; 
(6) criteria imposed by the use of  a lentiviral vector 
for delivery of  the antiviral shRNA cassettes; (7 + 8) 
screens for possible adverse effects on cell physiology, 
both in vitro and in vivo; (9) target site alterations due to 
resistance mutations for clinically approved antiretrovi-
ral drugs; and (10) the assembly of  multiple shRNAs to 
establish a combinatorial RNAi therapy. Along this selec-
tion pathway, which took over 7 years, we tested more 
than 135 shRNA candidates to end up with three potent 
and safe shRNAs that will be employed in a gene therapy 
trial (Table 1).

DESIGN OF shRNA MOLECULES
To identify new and potent shRNAs against HIV-1, dif-
ferent design criteria were applied. In general, the shRNA 
design was based on the prototype shRNA hairpin tran-
script published by Brummelkamp in 2002: complemen-
tary 19-nucleotide sense and antisense strands, a 9-nucleo-
tide hairpin loop and 3’-UU overhang[4]. The antisense 
strand of  this shRNA design will, upon Dicer processing, 
form the guide strand that instructs RISC for antiviral 
attack. The complete shRNA cassette consists of  the 
RNA polymerase III H1 promoter, the shRNA sequence 
followed by the TTTTT termination signal. The H1 pro-
moter, shRNA and termination signal were designed as 
synthetic DNA or as restriction fragments and cloned into 
the pSUPER vector (Figure 2A). This cassette can easily 
be transferred into the lentiviral vector JS1 (Figure 2B) 
for generation of  stably transduced cells[25]. All shRNAs 
were checked in silico to avoid significant complementarity 
against cellular mRNAs to prevent putative off-target ef-
fects.

Over the years, several sets of  shRNA inhibitors were 
tested in our laboratory. We initially described potent 
suppression of  HIV-1 replication with an shRNA that 
targets nef  gene sequences, but viral escape was appar-
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ent in prolonged cultures[9,13]. We next tested a first set 
of  86 antiviral shRNAs that were selected based solely 
on the conservedness of  the target sequence among 
HIV-1 isolates[14]. Due to the high variability of  HIV-1, 
this selection criterion has become very important for the 
development of  a gene therapy that applies to a broad 
range of  isolates. Our initial studies also revealed the 
importance of  taking the target RNA structure into ac-
count for shRNA design as occluded targets are poorly 
recognized by the RNAi machinery[13,26]. Therefore, we 
generated a second set of  shRNAs that targets particu-
larly accessible regions of  the HIV-1 RNA genome based 
on the SHAPE determined RNA structure model[27,28]. 

ANTIVIRAL ACTIVITY IN TRANSIENTLY 
TRANSFECTED CELLS
To evaluate the potency of  the shRNAs in terms of  anti-
HIV activity, we developed a test to measure the inhibi-
tion of  HIV-1 protein production[14]. For that reason, 
293T cells were co-transfected with the HIV-1 molecular 
clone pLAI, the pSUPER-shRNA vector and the pRL 
Renilla vector to control for the transfection efficiency. 
These transfected 293T cells produce infectious virus but 
do not allow new rounds of  infection due to the absence 
of  relevant receptors for HIV-1 attachment and entry. At 

48 h post-transfection, the HIV-1 capsid protein (CA-p24) 
production and Renilla production were quantified. 
CA-p24 can easily be measured via CA-p24 ELISA in the 
culture supernatant. Then, CA-p24 levels normalized for 
Renilla expression were compared to virus production 
with the empty pSUPER control plasmid obtained in co-
transfections[14]. Figure 3 indicates the target sites for the 
most potent RNAi inhibitors plotted onto the HIV-1 
genome. Of  the 135 shRNA candidates, 44 exhibited at 
least 80% suppression of  HIV-1 production. The up-
per panel depicts the first set, the lower panel marks the 
target sites for the second shRNA set[14,27]. Table 1 sum-
marizes the characteristics of  the 44 shRNAs that exhibit 
robust inhibition.

ANTIVIRAL ACTIVITY IN STABLY 
TRANSDUCED T CELLS
Several of  the shRNAs that exhibited significant antiviral 
activity in the transient transfection assay were subse-
quently tested in stably transduced CD4+ T cells. To do 
so, the shRNA expression cassettes were cloned into 
the lentiviral vector JS1 to allow stable transduction of  
SupT1 T cells (Figure 2B)[11,14,25]. SupT1 is a commonly 
used CD4+ T cell line that is permissive for HIV-1 infec-
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Figure 2  RNA interference vector constructs. A: Two complementary DNA 
oligonucleotides are annealed and cloned into pSUPER downstream of the 
H1 promoter that triggers short hairpin RNA (shRNA) expression. The shRNA 
cassette encodes a 19 nt sense strand, 9 nt loop, 19 nt antisense strand and 
a stretch of 5 T’s (T5), which is the termination signal; B: The shRNA cassette 
was cloned in the lentiviral vector JS1 for stable transduction of human T cells. 
The shRNA cassette is cloned in antisense direction to avoid promoter interfer-
ence. During vector production three transcripts are produced from the lentiviral 
vector: the shRNA, the vector RNA genome and the GFP transcript. The shRNA 
will have a 100% target match with the shRNA-encoding sequence in the vector 
RNA genome (self-targeting), and potential targets in the human immunodefi-
ciency virus type 1 (HIV-1) derived sequences of the lentiviral vector (vector-
targeting). RSV: Respiratorial syncytial virus promoter; R U5: R and U5 element 
of HIV-1 promoter; ψ: Packaging signal; RRE: Rev responsive element; cPPT: 
Central polypurine tract; PGK GFP: Green fluorescent protein driven from a PGK 
promoter; 3’LTR: 3’ long terminal repeat of HIV-1, with deletion in the U3 region.

Figure 1  Selection of short hairpin RNAs against human immunodefi-
ciency virus type 1. Scheme of the 10 steps used for the selection of the best 
shRNA inhibitors for development of an antiviral RNA interference (RNAi) gene 
therapy. HIV-1: Human immunodeficiency virus type 1.
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tion and that shows clear cytopathic effects (syncytia) 
upon virus replication. The cells were transduced at a 
low multiplicity of  infection of  0.15 to assure that maxi-
mally a single copy of  the lentiviral vector integrates per 
cell. The expression of  a GFP reporter gene by the JS1 
lentiviral vector allows the easy separation of  transduced 
from non-transduced cells by fluorescence activated cell 
sorting. The cells are usually sorted 2 d after transduction 
to obtain a pure GFP-positive population. The trans-

duced cells can subsequently be challenged with HIV-1 
and virus replication can be monitored. Infected cultures 
were inspected on a daily basis under the microscope to 
monitor cytopathic effects and supernatants were collect-
ed to measure CA-p24 production (Figure 4A). SupT1 
cells transduced with the empty JS1 vector served as con-
trol cells to measure uninhibited viral spread. For future 
gene therapy applications, shRNAs were only considered 
if  they conferred strong HIV-1 inhibition in transient co-
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Table 1  Selection of short hairpin RNAs against human immunodeficiency virus type 1

shRNA 
name

HIV-1 target HIV-1 inhibition Target conservation (%)5 Viral 
escape6

Lentiviral vector Cell toxicity9 Drug resistance 
mutation10

Position1 Gene Transient3 Stable4 Subtype 
B

All 
subtypes

Vector 
targeting7

Titer 
reduction8

In vitro In vivo

LDR2    3272 Leader 95 ++ 66 61 ND + ND ND ND -
LDR3    3282 Leader 94 ++ 68 61 ND + ND ND ND -
LDR4    3292 Leader 99 +++ 68 61 ND + ND ND ND -
LDR5    3302 Leader 94 ++ 68 61 ND + ND ND ND -
LDR7    3322 Leader 84 - 69 61 ND + ND ND ND -
LDR8    3332 Leader 79 ++ 69 61 ND + ND ND ND -
LDR9    3342 Leader 91 +++ 70 63 ND + ND ND ND -
CA 1032 CA-p24 97 - 87 67 ND - - - ND -
Gag5 1365 CA-p24 86 ++ 81 80 + - + + + -
Pol111  19102 Prot11   9711 +++11   8911   8511 +11 -11 -11 -11 -11 D30N, V32I11

Pol2  19112 Prot 86 - 89 85 ND - ND ND ND D30N, V32I
Pro 1  19122 Prot 99 +++ 85 81 ND - - - ND D30N, V32I
Pro 2  19132 Prot 99 ND 80 79 ND - ND ND ND D30N, V32I
Pro 3  19142 Prot 99 ND 80 79 ND - ND ND ND D30N, V32I
Pro 4  19152 Prot 98 ND 77 76 ND - ND ND ND D30N, V32I, L33F
Pro 5  19162 Prot 97 ND 79 78 ND - ND ND ND D30N, V32I, L33F
Pro 6  19182 Prot 98 ND 78 77 ND - ND ND ND D30N, V32I, L33F
Pro 7  19192 Prot 98 ND 77 76 ND - ND ND ND D30N, V32I, L33F
Pro 8 2026 RT 87 ND 58 17 ND - ND ND ND D30N, V32I, L33F
Pol6  37552 RT 97 - 72 75 ND - ND ND ND -
RT 1 (A)  37572 RT 95 ++ 71 74 ND - - - ND -
RT 2 (B)  37582 RT 98 ++ 73 75 ND - - + ND -
RT 3 (C)  37592 RT 95 ++ 73 75 ND - - - ND -
RT 4 (F)  37602 RT 85 ++ 69 69 ND - ND ND ND -
RT 5 (G)  37622 RT 94 - 72 72 ND - - - ND -
Int 1 4310 Int 91 ND 71 19 ND - ND ND ND -
Int 2 4344 Int 96 +++ 67 25 ND + + - ND -
Pol29 4393 Int 82 - 80 80 ND + ND ND ND -
Int 3  44202 Int 95 +++ 68 61 ND + + + ND -
Int 4  44222 Int 99 ND 71 64 ND + ND ND ND -
Int 5 4491 Int 81 ND 70 33 ND - ND ND ND -
Pol45  45432 Int 92 ++ 91 75 ND - ND ND ND -
Pol4711  45452 Int11   9211 +++11   9111   7311 +11 -11 -11 -11 -11 -11

Vif 4646 Int/Vif 96 - 82 31 ND - - - ND -
R/T511 5551 Rev/Tat11   9311 +++11   8711   7311 +11 -11 -11 -11 -11 -11

Env 1 7250 gp120 81 ND 83 76 ND + ND ND ND -
Env 2  78752 gp41 83 ND 49 33 ND - ND ND ND -
Env 3  78812 gp41 89 ND 19   6 ND + ND ND ND -
Env 4  78842 gp41 85 ND 21   6 ND + ND ND ND -
Env 5 8026 gp41 96 +++ 53 14 ND + + + ND -
Env 6  82772 gp41 98 ++ 53 18 ND - - + ND -
Env 7  82782 gp41 98 ++ 56 18 ND - - - ND -
Env 8 8359 gp41 97 +++   3   1 ND - - - ND -
LTR 9072 3’LTR 95 ++ 53   1 ND - - - ND -

1Position in human immunodeficiency virus type 1 (HIV-1) LAI mRNA; 2Overlapping short hairpin RNA (shRNA) clusters; 3Percentage of inhibition of 
HIV-1 production in co-transfected cells; 4Inhibition of HIV-1 replication in stably transduced cells: +++ = strong, ++ = medium, + = low, - = no inhibition; 
5Percentage of sequences in Los Alamos database identical to shRNA target sequence; 6Detection of escape mutations after prolonged culturing; 7100% 
complementarity of the shRNA to JS1 lentiviral vector; 8Titers compared to JS1 lentiviral vector; + = reduction > 1 log, - = reduction < 1 log; 9Effects on cell 
growth; + = negative effect, - = no effect; 10Drug resistance mutations in the shRNA target region; 11Selected for the combinatorial gene therapy. ND: Not 
determined.
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transfections and stably transduced T cells. In Table 1, 
this is indicated as “+++” in the respective column.

HIV-1 TARGET SEQUENCE VARIABILITY
Due to the high variability of  HIV-1, it is especially im-
portant for an anti-HIV gene therapy to target sequences 
that are relatively conserved among different virus iso-
lates and several HIV-1 subtypes. For most shRNAs, this 
was an important selection criterion and Table 1 provides 
an overview of  the conservedness of  the shRNA targets, 
both for subtype B that is most prevalent in the Western 
world and the other subtypes that belong to the HIV-1 
group M. To determine the degree of  conservedness of  
the siRNA target sequences, all HIV-1 genome sequences 
present in the Los Alamos National Laboratory database 
(http://www.hiv.lanl.gov/) were aligned. The alignment 
provides the percentage of  sequences that are fully com-
plementary to the siRNA for the entire group M and also 

per subtype. To ensure high sequence conservation, mini-
mally 70% of  the viral sequences of  each target region 
have to form a perfect match with the siRNA[14]. This 
was important for the group M sequences that comprise 
all subtypes, and specifically the subtype B sequences that 
are most prevalent in the Western world (Table 1). This 
standard ensures targeting of  a broad spectrum of  viral 
isolates and also decreases the risk of  rapid viral escape 
because mutations of  well-conserved HIV-1 sequences 
are more likely to cause a loss of  viral replication efficien-
cy[9-11,13,29,30]. As a current standard diagnostic procedure, 
the patient-derived HIV-1 sequences of  the pol gene 
are genotyped, including the target sequences for the 
shRNA inhibitors Pol1 and Pol47. Thus, one will be able 
to confirm the conservation, such that a full match with 
the shRNA is guaranteed. Genotyping will also reveal the 
presence of  non-B subtypes, exotic HIV-1 strains and 
even super-infections that may complicate the RNAi gene 
therapy[31]. 
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Figure 4  Long-term short hairpin RNA activity in human immunodeficiency virus type 1 replication studies. A: SupT1 T cells expressing short hairpin RNA 
(shRNA) Pol47 were infected with HIV-1 and virus replication was monitored in five cultures by measuring CA-p24 production for up to 75 d. Cells transduced with 
the empty lentiviral vector JS1 served as control (dark circles); B: Supernatant from the indicated culture (asterisk in panel A) was passaged on new cells to test the 
escape phenotype. The virus replicated on control and shRNA Pol47 cells, but not on cells that express another antiviral shRNA (R/T5) or the R4 construct. Adapted 
from[16].
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Figure 3  Target sites of anti-human immunodeficiency virus short hairpin RNAs. Depicted is the human immunodeficiency virus type 1 (HIV-1) LAI proviral 
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HIV-1 ESCAPE STUDIES
Viral escape from the shRNA pressure can occur similar 
to what is observed under antiviral therapy with antiviral 
drugs when the HIV-1 target sequence accumulates one 
or multiple mutations. Extensive viral escape studies have 
been performed for some shRNAs[8-11,13,32-34]. Transduced 
and GFP-sorted SupT1 cells were challenged with a high 
amount of  virus and passaged over time. When viral 
outgrowth was observed, the cell-free supernatant was 
transferred to a new culture of  shRNA-expressing cells 
to confirm the resistance phenotype (Figure 4A and B). 
Cellular DNA with the integrated proviral genome can 
subsequently be isolated, the siRNA target region can be 
PCR-amplified and cloned into a plasmid for sequence 
analysis[11,13,16,35]. At this point, it is important to filter out 
‘pseudo-escape’ events that are due to breakthrough vi-
rus replication when a high virus input is tested, often in 
combination with a sub-optimal inhibitory shRNA regi-
men. In this scenario, the pseudo-escape virus can be rec-
ognized because it will not carry any resistance mutation 
and will obviously lack the resistance phenotype[9,11,16]. 

We routinely test multiple HIV-1 evolution cultures in 
parallel because viral evolution is a chance process driven 
by randomly occurring mutations, some of  which are 
beneficial and thus subsequently selected under RNAi 
pressure. For example, the diverse viral escape routes ob-
served in independent cultures of  shRNA Nef  express-
ing cells are depicted in Figure 5[13]. We reported three 
types of  HIV-1 escape: (1) Mutation(s) in the siRNA target 

sequence; (2) a mutation in the flanking region that influ-
ences the local RNA structure; and (3) partial or even 
complete deletion of  the target sequence. The latter es-
cape route seems possible only in case non-essential viral 
sequences are targeted. Indeed, deletion-based viral escape 
was never witnessed when essential HIV-1 sequences 
encoding the Protease and Integrase enzymes were tar-
geted[10,32]. This observation supports the notion to target 
well-conserved viral sequences that usually encode the 
more essential viral functions. It must be pointed out that 
viral escape studies are extremely time and labor-intensive. 
Therefore, such investigations should only be conducted 
for candidate shRNAs that fulfill multiple criteria, e.g., po-
tent inhibition in transient transfections and stably trans-
duced T cell infections.

LENTIVIRAL VECTOR CONSIDERATIONS
HIV-1 causes a persistent infection in humans, which 
requires durable expression of  the inhibitory shRNAs. 
Therefore, the use of  a lentiviral vector seems ideal be-
cause of  its property to stably integrate into the host cell 
genome, which allows a constant supply of  antiviral 
shRNAs. The third generation lentiviral vectors have 
proven to be safe for use in humans and no insertional 
oncogenesis has been reported thus far[36-38]. These vectors 
transduce dividing and non-dividing cells and can thus be 
applied, e.g., in hematopoietic progenitor cells[23,39-43]. For 
clinical application, it is important that the vector can be 
produced to high titers. We and others previously report-
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Cultures Sampling day         shNef target

wt GCTGCTTGTGCCTGGCTAGAAGCACAAG

A 43 ---------------------------- 106-nt deletion

B 46 GCTGCTTGT-----------AGCACAAG

C1 27 GCTGCTTGTGCCTGGCGAGAAGCACAAG

C2 62 GCTGCTTGTACCTGGCGAGAAGCACAAG

D 62 GCTGCT------TGGCTAGAAGCACAAG

E 62 GCTGCTTGTGCCTGGCTAGAAG------ 63-nt deletion

F 80 GCTGCTTGTGCCTGGCTAGAGGCACAAG

G 77 ---------------------------- 225-nt deletion

H 74 ACTGCTTGTGCCTGGCTAGAAGCACAAG

I 61 GCTGCTTGTGCCTGGATAGAAGCACAAG

pol

gag

U3 U5R
vif

v
p
r

v
p
u

rev

tat

env

nef

shRNA Nef

U3 U5R

164 182

Figure 5  Human immunodeficiency virus type 1 escapes from short hairpin RNA Nef. The human immunodeficiency virus type 1 (HIV-1) LAI proviral genome 
and the short hairpin RNA (shRNA) Nef target site are indicated. SupT1 cells expressing shRNA Nef were infected with HIV-1 and passaged twice a week until viral 
escape occurred. Nine different cultures were examined in parallel and the day of sampling is indicated. Part of the nef gene is shown with the shRNA Nef target site 
highlighted in gray. Numbers refer to the nucleotide position in the nef gene. Escape was apparent by (1) one or more escape mutations in the target sequence; (2) 
mutations outside the target region; and (3) complete or partial deletions of the target region. Mutations are underlined. Adapted from[13].
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ed titer problems with lentiviral vectors encoding antiviral 
shRNAs that may obstruct clinical application[44-48]. Lenti-
viral vectors are produced by co-transfection of  the lenti-
viral vector construct JS1 (Figure 2B), Gag-Pol and Rev-
expression plasmids, and a VSV-G envelope construct. 
During lentiviral vector production, all the different 
mRNAs are expressed in the producer cell together with 
the shRNA transcript. The vector transcript does in fact 
include the shRNA sequence and will thus have a perfect 
target for siRNA-mediated degradation. However, such 
self-targeting does not easily occur because the target is 
occluded in a stable shRNA hairpin structure and there-
fore protected from RNAi attack. Further complications 
arise when the shRNA targets HIV-1 derived sequences 
in one of  the lentiviral vector constructs. This is referred 
to as vector targeting. We previously discussed in detail all 
possible routes by which shRNAs could impede lentiviral 
vector production and how to prevent or overcome these 
specific problems[45,48]. Of  course, acute cytotoxicity of  
the expressed shRNA can also cause a serious titer reduc-
tion due to effects on the producer cell viability and this 
may eventually also affect the viability of  transduced cells, 
i.e., the gene therapy target cells.

CYTOTOXICITY IN IN VITRO CELL 
CULTURE
The antiviral shRNA may exhibit adverse effects on cell 
growth through silencing of  cellular mRNAs (off-target 
effects) or saturation of  the RNAi machinery, in particu-
lar when the shRNA is overexpressed[49]. These effects 
cannot easily be predicted and should thus be tested ex-
perimentally. There are several ways to score the impact 
of  shRNA expression on cell viability and physiology. 
One could for instance determine the cellular doubling 
time by frequent cell counting. We recently developed a 
very user-friendly and ultra-sensitive assay that follows 
over time the ratio of  shRNA-expressing GFP-positive 
cells vs untransduced GFP-negative cells in a co-culture 

assay[50]. This competitive cell growth or CCG assay has 
some clear advantages over other well-established cell 
proliferation assays: (1) After cell transduction, only a 
small aliquot of  the culture is needed to launch the CCG 
assay, without any extra steps; (2) The CCG assay is inter-
nally controlled as it starts with a mixture of  transduced 
and untransduced cells; and (3) Even minor effects on 
the cellular proliferation rate caused by shRNA expres-
sion can be detected. We screened all promising shRNAs 
in this assay (Figure 6). Besides single shRNA-expressing 
vectors, we also investigated combinatorial vectors such 
as R4 (Gag5, Pol1, Pol47, and R/T5) and R3 (Pol1, 
Pol47, and R/T5). shRNAs that exhibit negative effects 
on cell growth such as Gag5 should be excluded from 
combinatorial RNAi vectors (Figure 6, Table 1). Removal 
of  Gag5 from the R4 vector that exhibited impaired cell 
proliferation led to the design of  the R3 lentiviral vector 
that scored no negative cell growth effects. Cytotoxicity 
by saturation of  the cellular RNAi pathway is especially 
critical for the combinatorial shRNA vectors and might 
have contributed to the adverse R4 effects.

CYTOTOXICITY IN VIVO
Before one can proceed to a gene therapy trial in humans, 
safety should ideally be demonstrated in a preclinical ani-
mal model. As the RNAi mechanism is based on perfect 
sequence complementarities between siRNA and the 
viral target, the simian immunodeficiency virus/macaque 
model cannot be used for such studies. However, mice 
with the complete human immune system were created 
by injection of  hHPCs into immunodeficient (BALB/c 
Rag2-/- IL2Rγc-/-) newborn mice. All major subsets of  
the human innate and adaptive immune system are found 
in the reconstituted HIS mice[22,23]. This HIS mouse 
model is ideally suited to test our gene therapy for several 
reasons. First, the hHPCs that are engrafted in the Rag-2-
/-γc-/- newborn mice (Figure 7A) are similar to the ones 
that we propose to modify in our ex vivo gene therapy of  
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Figure 6  Competitive cell growth assay. SupT1 T cells were transduced with a short hairpin RNA (shRNA)-expressing lentiviral vector, yielding a cell population 
with approximately 40% GFP-positive cells. The ratio of GFP-positive cells at day 3 after transduction was set at 1 and measured longitudinally. The cells were pas-
saged and analyzed via FACS measurement twice a week. JS1 represents the empty lentiviral vector without shRNA expression. The gray window highlights shRNAs 
that have a significant adverse effect on cell growth.
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HIV-1 seropositive patients. Second, as the hHPCs trans-
planted in the mice consist of  a mixture of  transduced 
(GFP+) and non-transduced hHPCs (GFP-), the human 

immune system in the animals will thus be constituted 
by transduced shRNA-expressing cells (GFP+) and non-
transduced cells (GFP-). This provides an internal con-
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Lentiviral
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BALB/c Rag-2-/-gc-/-
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efficiency (% GFP+)

GFP in vivo

GFP in vitro

A

Figure 7  In vivo safety studies in the HIS mouse model. A: Cell suspensions enriched for human hematopoietic progenitor cells (hHPC) are prepared from fetal 
liver tissue. Live nucleated CD34+ cells are magnetically sorted and further enriched for the hHPC (CD34+CD38- fraction) using fluorescence activated cell sorting. 
Lentiviral supernatants are produced on 293T cells. hHPC are transduced ex vivo with the shRNA-expressing lentiviral vector and injected intrahepatically into sub-
lethally irradiated newborn BALB/c Rag-2-/-γc-/- mice. The transduction efficiency is evaluated based on GFP expression after 3.5 d in culture (GFP in vitro); B: The 
HIS (BALB-Rag/γ) mice are analyzed in the blood and the organs after at least 8 wk post-transplantation for the presence of human cells (%CD45+ cells) (left graph), 
which were analyzed for GFP recovery (right graph). The GFP recovery is the ratio between the frequency of human GFP+ cells measured in the animals (GFP in 
vivo) and the frequency of GFP+ hHPC injected in the newborn mice (GFP in vitro, transduction efficiency). The major subsets of the human immune system in the 
blood are also analyzed for their frequency and absolute number in the human GFP+ and GFP- population. Adapted from[24,70]. aP < 0.05.
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trol to test for adverse effects of  shRNA expression on 
hematopoiesis. Finally, as the HIS mouse can be infected 
by HIV-1, both the safety and efficacy of  the shRNA 
therapy can be evaluated in the HIS mouse model. 

The safety of  an shRNA is assessed in the blood and 
the organs of  the animals by multiple factors: (1) The 
presence of  the human hematopoiesis-derived CD45+ 
GFP+ and GFP- cells; (2) the ratio between the fre-
quency of  human GFP+ cells measured in the animals 
and the frequency of  human GFP+CD34+ cells injected 
in the newborn mice; and (3) the frequency and abso-
lute number of  different cell subsets of  the human im-
mune system, such as CD4+ and CD8+ T cells, B cells, 
monocytes and dentritic cells (Figure 7B). We previously 
tested the feasibility of  an shRNA-based gene therapy 
in HIS mice reconstituted with hHPC transduced with a 
lentiviral vector expressing an shRNA against the HIV-1 
nef  gene[24]. In this model hHPC expressing anti-HIV 
shRNAs give rise to multi-lineage reconstitution of  the 
human immune system in vivo and generate CD4+ T cells 
with the ability to resist HIV-1 replication in a sequence-
specific manner. We tested our four candidate shRNAs 
and observed normal development of  the human im-
mune system in the animals for three of  these shRNAs 
(Centlivre et al manuscript in preparation). A negative 
impact of  Gag5 on the hematopoiesis of  the HIS mouse 
was scored, confirming the in vitro findings in the CCG 
assay. These combined results led to the exclusion of  
Gag5 from the combination gene therapy (Table 1). The 
three “safe” shRNAs will now be combined into a single 
lentiviral vector for further in vivo safety tests.

PRE-EXISTING DRUG RESISTANCE 
MUTATIONS
Our proposed anti-HIV gene therapy will be developed 
for therapy-experienced HIV-1 infected individuals who 
have failed on regular antiretroviral drug regimens. As 
drug resistance mutations may affect the viral genome 
sequences targeted by RNAi, we investigated whether 
the target sequences of  the top shRNA candidates are 
likely to acquire drug-resistance causing mutations. For 
this, we screened the Stanford HIV-1 drug resistance 
database[51,52]. The relevant drug resistance substitutions 
in the inhibited viral proteins are plotted in Table 1. In 
particular, the Protease gene sequence targeted by the set 
of  overlapping shRNAs (Pol1-2, Pro1-7) has been im-
plicated in the acquisition of  resistance against Protease 
inhibitors like Nelfinavir, Aprenavir, Ritonavir and Indi-
navir at codons 30, 32 and 33. A treatment history that 
includes one of  these Protease inhibitors and genotyping 
results that demonstrate the presence of  at least one of  
these mutations will be an exclusion criterion for gene 
therapy participants.

COMBINATORIAL RNAi
The stable expression of  anti-HIV shRNAs in T cells 

results in potent virus inhibition[16,53,54]. However, the ap-
plication of  a single shRNA inhibitor is not sufficient 
to maintain inhibition. Virus escape variants can emerge 
after extensive culturing[8-11,13,34]. Therefore, multiple an-
tiviral shRNAs should be expressed simultaneously to 
achieve durable inhibition by raising the genetic thresh-
old for viral escape[48,55,56]. This combinatorial strategy is 
analogous to current antiretroviral therapy regimens with 
multiple drugs that have led to significant clinical success 
in HIV-1 infected patients[57]. 

There are several ways to express multiple RNAi inhibi-
tors against HIV-1, ranging from polycistronic miRNAs 
to extended multimeric shRNA transcripts[17-21]. We 
achieved most promising results with multiple shRNA 
cassettes[14,16]. To express multiple shRNAs, we initially 
inserted several H1-driven shRNA expression cassettes 
into the lentiviral vector. However, these vectors are ex-
tremely unstable as shRNA cassettes were deleted during 
transduction due to slippage of  the Reverse Transcriptase 
enzyme on the repeated H1 promoter sequences[16,58]. To 
prevent recombination-mediated deletion of  shRNA cas-
settes, we designed shRNA cassettes with unique promot-
er elements. The RNA polymerase III promoters H1, U6 
and 7SK and the RNA polymerase II promoter U1 were 
used[4,59-61]. All these promoters have precise transcription 
start and termination sites and the shRNA expression 
levels are similar. The combination of  four promoter-
shRNA cassettes in R4 (U1-R/T5, U6-Pol1, 7SK-Gag5, 
and H1-Pol47) leads to durable virus inhibition in stably 
transduced T cells[16]. At present, the R4 combinatorial 
RNAi vector has been modified to R3 without Gag5 due 
to adverse cellular effects of  this shRNA. The R3 lenti-
viral vector that confers the same potent and durable in-
hibition is proposed for the future clinical anti-HIV gene 
therapy trial.

CONCLUSION
We describe here the course that was taken to select the 
most potent and safe shRNA inhibitors against HIV-1, 
which will contribute to the development of  an exclu-
sively shRNA-based gene therapy against HIV-1. Cur-
rently, the combinatorial RNAi approach comprises three 
shRNAs targeting three distinct and highly conserved 
regions of  the HIV-1 RNA genome. 

The proposed RNAi gene therapy against HIV-1 will 
be developed for therapy-experienced HIV-1 infected 
individuals. During antiretroviral therapy, mutations can 
be selected in the genes that encode the drug-targeted 
viral proteins. Such mutations can interfere with RNAi 
attack when siRNA target sites are altered. Indeed, one 
shRNA inhibitor of  the combinatorial shRNA vector 
targets a viral sequence that frequently acquires mutations 
to escape from Protease inhibitors. Patients who failed on 
Protease inhibitor containing regimens or that harbor vi-
ruses with such resistance mutations have to be excluded 
from the current combinatorial RNAi gene therapy. To 
overcome this issue, alternative shRNA regimens could 
be established that do not target viral genome regions 
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known to acquire prominent drug resistance mutations. 
Alternatively, one could attack the resistant HIV-1 strains 
with modified shRNA inhibitors. We previously showed 
that a combination shRNA strategy directed against the 
wildtype and drug-escape variants was able to efficiently 
and durably suppress virus replication[35,48]. 

The selection of  HIV-1 escape variants must be pre-
vented to durably suppress the chronic virus infection. 
To achieve this, targeting of  conserved HIV-1 RNA re-
gions is important, as well as the simultaneous application 
of  multiple shRNAs. Potent virus inhibition will reduce 
the chance of  virus escape by limiting the occurrence 
of  mutations and the genetic threshold for resistance 
development is increased when multiple viral sequences 
are targeted. We continuously work on improvement of  
the shRNA design and recently identified loop sequences 
such as miRNA-derived loops that improve the siRNA 
processing and yield more potent gene knockdown and 
HIV-1 inhibition[62]. Alternatively, targeting of  cellular co-
factors that are essential for HIV-1 replication represents 
a promising anti-escape approach. The mutation rate of  
the cellular DNA replication machinery is significantly 
lower than that of  the lentiviral Reverse Transcriptase 
enzyme. Thus, the chance that resistance mutations 
are selected in host mRNAs is negligible compared to 
HIV-1 target sequences. Recent screens revealed several 
cofactor-encoding mRNAs whose knock-down resulted 
in diminished HIV-1 replication[63-67]. However, knock-
down of  cellular proteins at the mRNA level might have 
negative effects on cell viability and anti-host shRNAs 
must be carefully designed. An ideal candidate cofactor 
is the CCR5 co-receptor. A natural deletion in the CCR5 
gene (CCR5-Δ32) has been found at 1% frequency in the 
Caucasian population. These individuals are resistant to 
HIV-1 infection and do not appear to suffer from major 
biological effects or health issues due to the absence of  
this receptor protein[68].

Within a couple of  years, RNAi has moved from the 
laboratory to clinical trials as novel therapeutic against a 
variety of  diseases. In 2008, the first antiviral shRNA was 
used in combination with a TAR decoy and CCR5-ribo-
zyme as an RNA-based gene therapy for HIV-1 infected 
individuals. The transfused cells were successfully engraft-
ed and the anti-tat/rev siRNA was detected in peripheral 
blood mononuclear cells (PBMCs) up to 24 mo[69]. This 
initial clinical result provides encouragement for the anti-
HIV gene therapy that we develop based exclusively on 
multiple shRNAs. The extensive preclinical assays in the 
humanized mouse model demonstrated the safety and ef-
ficacy of  this combinatorial RNAi approach, which will 
soon move towards clinical testing. 
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Abstract
Picornaviruses, small positive-stranded RNA viruses, 
cause a wide range of diseases which is based on their 
differential tissue and cell type tropisms. This diversity 
is reflected by the immune responses, both innate and 
adaptive, induced after infection, and the subsequent 
interactions of the viruses with the immune system. 
The defense mechanisms of the host and the coun-
termeasures of the virus significantly contribute to 
the pathogenesis of the infections. Important human 
pathogens are poliovirus, coxsackievirus, human rhino-
virus and hepatitis A virus. These viruses are the best-
studied members of the family, and in this review we 
want to present the major aspects of the reciprocal ef-
fects between the immune system and these viruses. 
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INTRODUCTION
The picornavirus family represents a diverse group of  
viruses that are classified within 12 genera[1] (Table 1). 
These viruses cause a variety of  human and animal dis-
eases, including the common cold [human rhinoviruses 
(HRV)], myocarditis [coxsackie viruses (CV)], hepatitis 
[hepatitis A virus (HAV)] and poliomyelitis [poliovirus 
(PV)]. Because of  their clinical relevance, these hu-
man pathogens, which except the hepatovirus HAV are 
members of  the enterovirus genus, are the best-studied 
members of  the family[2-5]. Although many details about 
the replication of  these viruses are known[6,7] the patho-
genesis of  the heterogeneous clinical appearances and 
manifestations of  the particular diseases, varying be-
tween asymptomatic and fatal, is poorly understood, but 
is closely linked to the immune responses induced after 
infection. Therefore, knowledge of  the specific immuno-
logical activities following the entry of  these viruses into 
the human host will provide the basis for a better under-
standing of  the pathogenic processes. 

The spherical, nonenveloped virions of  picornavi-
ruses range in diameter between 27-30 nm. The genome 
is a positive-strand RNA of  7000 to 9000 nucleotides 
covalently linked at the 5’ end to the viral protein 3B 
(VPg) and is translated cap-independently by internal 
ribosomal entry into a polyprotein (VP4-VP2-VP3-
VP1-2A-2B-2C-3A-3B-3C-3D), which yields the eleven 
proteins through various independently functioning in-
termediates, upon cleavage by viral proteases. Replication 
occurs in the cytoplasm in association with intracellular 
membranes. Picornaviruses are usually considered to be 
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released from infected cells by cell lysis[8], which applies for 
the cytopathogenic rhino-, coxsackie- and PVs, but not for 
HAV[9], for which the release process is not known. How-
ever, damage to tissues results not only directly from virus 
replication, but also from the host response to infection. 

The host immune response against picornaviruses is 
diverse and complex, and this is reflected by the numer-
ous data obtained in studies particularly with PV, CV, RV 
and HAV, and this review discusses various aspects of  the 
immunology of  these viruses.

The host fights virus infections by employing vari-
ous mechanisms, including cytokine release, antibody 
production and cytotoxic T cell (CTL) activation. The 
importance of  each mechanism, however, strongly varies 
according to the virus concerned. 

As a large part of  the infections with any of  these 
four viruses proceeds asymptomatically, it can be assumed 
that the innate immune system, which responds within 
minutes after viral entry into host cells[10], is able to block 
viral replication to a certain degree. Sensing of  specific 
structures of  the viral nucleic acid like double-stranded 
RNAs, which occur as replicative intermediates and are 
recognized as pathogen associated molecular patterns, 
is accomplished in the cytoplasm by Toll-like receptor 
(TLR)3, which is associated with intracellular vesicles, or 
by the sensors retinoic acid-inducible gene I (RIG-I) and 
melanoma differentiation-associated gene 5 (MDA-5)[11] 
resulting in synthesis of  cytokines with strong antiviral 
activity, like type Ⅰ interferon (IFN). MDA-5, not RIG-I, 
is believed to be crucial for sensing infection with picor-
naviruses. This was concluded from studies with mice 
lacking the mda-5 gene. These mice are deficient in the 
production of  type Ⅰ IFN in response to the cardiovirus 
enzephalomyocarditis virus (EMCV), and the animals 
showed a higher susceptibility to infection[12,13]. But sens-
ing of  picornaviral RNA seems to be more complex, and 
the other sensors might also be involved, as overpro-
duction of  RIG-I in cultured cells is also able to reduce 
EMCV replication[14]. On the other hand, PV, CV, HRV 
as well as HAV have developed mechanisms to interfere 
with the signaling from the above mentioned sensors, al-
though in different ways. This ability of  the viruses seems 
to be necessary firstly to establish infection and secondly, 
to maintain replication for a longer time, as activation of  
the virus specific adaptive immune response by a specific 
cytokine mix generated during the innate response is re-
tarded.

After primary infection, antibodies seem in general to 
be important to control viral viremic spread within the in-
fected tissue as well as to distant further organs, and thus 
to retard the severity of  the disease. Infections with PV 
and CV seem to be controlled efficiently by antibodies, as 
prolonged replication of  PV occurs in immunodeficient 
patients[15] and prolonged excretion of  coxsackievirus as 
well as chronic encephalitis after coxsackievirus infection 
was observed in patients with agammaglobulinemia[16-20]. 
This is supported by the finding, using CD4+ T-cell defi-
cient mice, that both PV and CV efficiently induce B cells 

to proliferate and produce IgM independent from T-cell 
help (TI IgM)[21-24]. This TI antibody response results from 
extensive B-cell receptor cross linking by the highly orga-
nized, repetitive virion structure and is postulated to be a 
characteristic of  antibody-controlled cytolytic viruses[24]. 
In contrast, HRV seems to be controlled by the innate im-
mune response as the antibody response appears after re-
covery from illness[25] and HAV seems to be eliminated by 
CTL[26,27]. Upon infection, these four viruses are expected 
to induce the production of  secretory IgA (SIgA), serum 
IgA (sIgA) and IgG, which is due to their route of  trans-
mission. PV, CV and HAV are transmitted fecal-orally, 
whereas HRV is transmitted by the respiratory route. But 
there are significant differences between the viruses in the 
time courses of  the different antibody classes as well as 
of  the antibody responses. For example, the IgG response 
after infection with HAV is strongly delayed[28,29] and only 
a weak antibody response against HRV, which is boosted 
after resolution of  the symptoms, develops[25]. It seems at 
least to be the rule for all four viruses that antibodies are 
critical to prevent reinfections. Even during asymptomatic 
courses of  the diseases, production of  neutralizing anti-
bodies may be induced (occult immunization). In order to 
counteract this effect, polio- and coxsackieviruses form 
serotypes (PV: 3 serotypes, CV: 29 serotypes) which are 
defined as different viral strains that do not elicit cross-
neutralizing antibodies. This enables the viruses to evade 
antibody-controlled reinfections and to infect the same 
individual several times by a different serotype despite the 
presence of  possibly high titers of  neutralizing antibodies 
and cross-reactive T-cell help against the first serotype. 
This also seems to apply for rhinovirus, which forms 102 
serotypes, despite its weak and apparently delayed anti-
body response. Only in the case of  HAV, which exists as 
only one serotype, are reinfections efficiently prevented by 
anti-HAV IgG induced by the first infection.

In the following sections the specific interactions be-
tween the different viruses and the immune system will be 
described. 

ADAPTIVE IMMUNE RESPONSE
In general and on average, the adaptive immune response 
during viral infections is induced 3 to 5 d after the infec-
tion occurred, a time point when infections are estab-
lished and the amount of  progeny virus reaches a level 
required to activate the adaptive response by assistance 
of  cytokines, which are released during the innate im-
mune response. Before the CD8+ T-cell response (CTL) 
reaches its peak 7 to 10 d after the infection, natural killer 
cells (NK cells) are present. The T-cell response decreas-
es within 3 to 4 wk, but memory and splenic CD8+ T-cells 
remain present. Antibodies produced by the adaptive 
B-cell response are barely detectable in the acute, symp-
tomatic stage of  the disease, but increase over a period 
of  2 to 4 wk. Virus and virus infected cells are normally 
eliminated 2 wk after infection and serum antibody as 
well as memory B and T cells remain.
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Whereas the adaptive immune response to polio- and 
CV roughly follows the above-described general scheme, 
the adaptive immune responses to human rhinovirus and 
HAV significantly deviate from the average course. In gen-
eral, the adaptive response is required for complete virus 
clearance, and there is considerable data about the antibody 
responses to these four viruses (Figure 1) but, with the ex-
ception of  HAV, little is known about the CTL response, 
and the role of  these T cells is controversially debated. 
The CTL response against HAV which is the only non-
cytopathogenic virus presented here is well investigated 
and it is shown that the symptoms of  hepatitis A can be 
attributed to an immunopathogenic process caused by the 
activity of  HAV-specific CTLs.

Neutralization of  picornaviruses is mediated through 
antigenic sites, which are conformational, discontinu-
ous and complex structures formed on the surface of  
the virions by exposed loops between the β-strands of  
certain structural proteins (structural proteins of  picorna-
viruses building the surface of  the capsid are VP1, VP2 
and VP3; VP4 lines the inside of  the viral particle). PVs 
have three distinct antigenic sites[30,31], which have been 
exactly identified. One antigenic site is formed by amino 
acids of  the structural protein VP1 (aa 90-100, 220-223 
and 286-290), the second site includes residues from VP1 
and VP2 (aa 164-172) and the third site includes residues 
from VP1 and VP3 (aa 58-60 and 70-80). Within cox-
sackievirus capsids conformational and linear antigenic 
sites were found, which include residues from VP1, VP2 
and VP3[32-34]. HRV exhibit four different antigenic sites, 
which are also formed by residues from VP1, VP2 and 
VP3[35]. HAV holds only one immunodominant antigenic 
site, which contains amino acid residues contributed by 

VP1 and VP3[36,37]. Three complementary mechanisms of  
neutralization are assumed[38]. Firstly, antibodies bound to 
the virus particle interfere with the attachment to the cel-
lular receptor. Secondly, neutralization is a result of  an-
tibody-mediated aggregation of  virions, which prevents 
attachment and uptake of  virus, and thirdly, binding of  
antibodies to separate structural subunits within the cap-
sid structure inhibits uncoating.

In the following, an overview of  the adaptive immune 
responses against PV, CV, HRV and HAV is given.

PV
After fecal-oral transmission, the major site of  replication 
is the intestinal tract (epithelia and Peyer’s patches). After 
a mean incubation time of  7 d, influenza-like symptoms 
develop, from which the patient recovers within a few 
days. Fecal excretion of  PV occurs shortly after infection 
and persists for approximately 7 wk, and a short viremic 
phase appears between 3 to 7 d after infection. Besides 
this abortive poliomyelitis, nonparalytic poliomyelitis may 
occur in 1%-2% of  the infections with viral invasion of  
the CNS leading to meningitis and muscle spasm. The 
illness lasts for approximately 6 d. In up to 2% of  the 
cases paralytic poliomyelitis occurs, and in 80% of  these 
patients residual paralysis persists.

Neutralizing anti-PV IgM antibodies appear 3 d after 
infection, reach their peak titer after 9 d and disappear in 
the course of  4 wk[39-41] (Figure 1).

The anti-PV IgG response is also briskly appearing 
3-4 d after exposure. These antibodies reach the peak 
titer 3-4 wk after infection and persist for years, perhaps 
lifelong[39-44]. The antibodies seem to be responsible for 
controlling viremia, as the termination of  viremia im-
mediately follows the detection of  neutralizing antibod-
ies (Figure 1). Already low levels of  circulating anti-PV 
antibody, including passively given immune globulin, are 
able to prevent the paralytic disease. This indicates that 
infection of  the CNS requires or is at least supported by 
viral spread through blood, and therefore significantly 
depends on the velocity and strength of  the antibody re-
sponse[45]. However, virus excretion continues for about 
1 mo. Although it is not clear why shedding is going on 
for so long, the termination of  shedding and final viral 
clearance seem also to be mediated by antibodies because 
hypogammaglobulinemia may result in persistent excre-
tion for years[46] and because T-cell deficiency does not 
result in persistent viral excretion[47,48].

Mucosal anti-PV IgA (SIgA) is detectable 1 wk after 
infection in pharyngeal and stool samples, whereas sIgA 
appears 3 wk post exposure (Figure 1). Both responses 
reach their maximum levels approximately 4 wk after in-
fection, but SIgA with a higher magnitude than sIgA[39-41]. 
The source of  these antibodies is not known. The muco-
sal immunity to PV provides substantial resistance against 
secondary infections[39], and seems to play an important 
role in preventing spread of  PV. This is evident, as in 
contrast to inactivated PV vaccine, which is less effective 
than the live vaccine in stimulating enteric immunity, the 
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Table 1  Picornavirus family

Genus Normal host 
organism

Including for example

Aphtovirus Cattle, swine Foot-and-mouth disease virus
Cardiovirus Humans, small 

rodents
Encephalomyocarditis virus 
Saffold virus 

Enterovirus Humans, cattle, 
swine

Poliovirus 
Coxsackievirus 
Rhinovirus 

Hepatovirus Humans Hepatitis A virus 
Parechovirus Humans, small 

rodents
Human Parechovirus 
Ljungan virus 

Erbovirus Horses Equine rhinitis B virus 
Kobuvirus Cattle Aichi virus
Teschovirus Swine Porcine teschovirus
Sapelovirus Birds, swine Avian sapelovirus

Porcine sapelovirus
Senecavirus Swine Seneca valley virus
Tremovirus Birds Avian encephalomyelitis virus 
Avihepatovirus Birds Duck hepatitis A virus 

Some viruses infecting bats (Juruaca virus), fish (Bluegill virus), reptiles, 
amphibians and ticks (Sikhote Alyn virus, Syr-Dorya Valley fever virus) 
are not classified within a genus so far. Plant picornaviruses differ from 
the animal viruses in some properties and have been classified into the 
family Secoviruses.
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oral live-attenuated PV vaccine is much more effective 
in preventing intestinal infection and has a much greater 
dampening effect on fecal shedding of  PV[49,50]. Both 
vaccines, however, induce similar levels of  circulating an-
tibodies. As mentioned above, the mechanism by which 
anti-PV antibodies terminate viral shedding and are able 

to clear infection is not known. However, it can be as-
sumed that in the intestinal epithelium the cell-to-cell 
spread of  progeny viruses, which are released after lysis 
of  the infected cells, is interrupted by the enteric anti-PV 
IgA antibodies[41]. Alternatively, antibody-mediated lysis 
of  infected cells could also be involved.
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Figure 1  Time courses of viral excretion, viremia and of the antibody responses after infection with poliovirus, coxsackievirus, human rhinovirus and hep-
atitis A virus. This figure schematically shows the mean duration and relative intensity of viral spread and the antibody responses against the viruses. PV: Poliovirus; 
CV: Coxsackievirus; HRV: Human rhinovirus; HAV: Hepatitis A virus; SIgA: Secretory IgA; sIgA: Serum IgA.
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In contrast to the neutralizing antibody response to 
PV, much less is known about the adaptive T-cell re-
sponses and their probable role in PV infections. PV-
specific CD4+ T cells are induced in vaccinated individu-
als, and epitopes have been identified[51,52]. The induction 
may occur by dendritic cells and macrophages infected 
with PV[53]. This also shows that HLA class Ⅱ presenta-
tion remains intact in infected antigen presenting cells. 
The resultant CD4+ T cells were also able to produce 
IFN-γ and lyse infected target cells[53]. The cytolytic ability 
together with the ability to secrete IFN-γ allows the as-
sumption that PV-specific CD4+ T cells may play a role in 
virus clearance. Furthermore, stimulation of  PV-specific 
cytotoxic CD8+ T-cell (CTL) responses by infected mac-
rophages could be demonstrated, and these CTLs secreted 
IFN-γ[53]. This implies that virus clearance is not only due 
to the CD4+ T‑cell/antibody response, but that the CTL 
response might also play a role. Since the 1950s, inactivat-
ed and live-attenuated PV vaccines have been available[50].

Coxsackie virus 
After respiratory and fecal-oral transmission, respectively, 
the incubation time is approximately 5 d, but may last 
for up to 35 d. These viruses cause a systemic disease, 
both acute and chronic, with a wide variety of  symptoms. 
Besides infection of  the epithelial tissues, the viruses ex-
hibit myotropism and a tendency to infect the central and 
peripheral nervous system by humoral spread, and the 
acute clinical appearances may range from influenza-like 
symptoms (minor summer illness) to myocarditis, aseptic 
meningitis as well as myelitis. The duration of  acute ill-
ness is usually between 3 and 8 d. Post-acute symptoms 
include myocarditis and pericarditis, which may persist 
for weeks[54-58] and infections have been linked to the in-
duction of  autoimmune diseases such as chronic myocar-
ditis and type 1 diabetes. Excretion in feces and nasal se-
cretions, respectively, occurs between days 2 and 28 after 
infection, reaching its peak 6 d post exposure. A viremic 
phase may be observed from days 2 till 8 after infection.

Most of  the data available on the courses of  the anti-
body responses were obtained by experimental respiratory 
infections in volunteers or with the mouse model. CV-
neutralizing IgM antibodies, which may be serotype-spe-
cific or cross-reactive, appear 3 d after exposure (Figure 1).  
They reach their maximum titer level 1 wk after infection 
and typically disappear in the course of  3 mo[55-57,59,60].

Little is known on the anti-CV IgA responses. How-
ever, the sIgA and IgM responses seem to interfere with 
each other[60], which means the higher the one is the lower 
the other is with regard to their relative values. In some 
patients an IgA response is not detectable at all through-
out the course of  the infection. The presence of  anti-
CV IgA antibodies is detectable approximately 15 d post 
infection for the first time (Figure 1). These antibodies 
reach their peak level 21 d after exposure and disappear in 
the course of  6 wk[60].

The anti-CV IgG response approximately appears 
4 d after exposure (Figure 1). These antibodies reach their 

maximum titer 2-3 wk after infection and may persist for 
years[55-57,61]. The humoral response plays a prominent role 
in limiting virus spread to different tissues by blood as 
well as in viral clearance[62]. In patients with agammaglobu-
linemia the infection spread to, and persisted in, the cen-
tral nervous system[17,19,63]. CV infection of  B cell-deficient 
mice results in chronic, high-titer infections in multiple 
organs, like heart, liver, lung and pancreas, and transfer of  
immune B cells at least transiently resulted in clearance 
of  CV from all tissues[64]. Furthermore, the importance 
of  antibodies is demonstrated by the finding that passive 
transfer of  immune serum globulin reduces viral titers and 
symptoms in patients[65]. As demonstrated by passive im-
munizations with sera from fully recovered patients (within 
72 h after infection), the presence of  antibodies is also 
sufficient to prevent secondary infections.

In contrast to the evidently central protective role of  
anti-CV antibodies during coxsackievirus infections, some 
studies have shown that anti-CV IgG-mediated CV infec-
tion of  monocytic/macrophagic cell lines, lymphocytes 
and plasmacytoid dendritic cells (pDC) via Fc receptors 
is possible[64,66-68], thus showing that IgG antibodies might 
contribute to virus dissemination in the body, enhance 
infection and exacerbate disease under certain circum-
stances. This effect must be taken into consideration in 
the development of  vaccines.

The role of  the T-cell responses in coxsackievirus infec-
tions is not clear. The data obtained with different mouse 
strains or different virus variants are controversial[21,62,69-74]. 
Using T cells directed against lymphocytic choriomenin-
gitis virus-specific epitopes as sensors to evaluate antigen 
presentation by a recombinant CV expressing these epit-
opes, it was shown that the virus strongly inhibits antigen 
presentation through the MHC class Ⅰ pathway[75], and 
therefore is able to evade CD8+ T-cell immunity. In con-
trast to the low presentation by MHC class Ⅰ molecules, 
MHC class Ⅱ-restricted presentation occurred at least 
at a level that might enable a primary CV-specific CD4+ 
T-cell response[75].

Coxsackievirus infections are suspected to be in-
volved in the induction of  autoimmune reactions particu-
larly against cardiac cells and pancreatic islet cells. How-
ever, a discussion of  this aspect is beyond the scope of  
this review. In short, these reactions are directed against 
self-antigens by pre-existing auto-reactive lymphocytes. 
Coxsackieviruses might contribute to the activation of  
these lymphocytes by making more antigens available 
by the release of  cellular components, which in addition 
might present novel, cryptic epitopes resulting from the 
cleavage of  cellular proteins by the viral proteases 2A 
and 3C, during cytopathogenic infection and by promot-
ing responses to these new antigens by presentation in 
an inflammatory context, which stimulates migration of  
lymphocytes to the relevant tissues[73]. There is no vaccine 
for active immunization against CV infections.

Human rhinovirus 
After transmission by the respiratory route (sneezes) or 
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after infection by self-inoculation (hand into nose con-
tact), the mean incubation time is 2 d. The typical symp-
toms are these of  the common cold (rhinorrhea: running 
nose, swelling of  the epithelial tissue), which last on aver-
age for 3 d. Virus shedding in the nasal secretions already 
occurs 8-10 h after exposure, reaches maximum levels 
between days 2-7 and sometimes may continue till day 14 
after infection at very low levels[25,57,76]. Besides this com-
mon course of  infection, virus might spread from the 
ciliated epithelial cells of  the upper respiratory tract into 
the lower airways resulting in asthmatic exacerbations[77].

Anti-HRV SIgA in nasal secretions occur approxi-
mately 7 d after infection, a time point when the illness 
had subsided already, reaching their maximum level ap-
proximately 16 d post exposure[25] (Figure 1). In contrast 
to SIgA, sIgA to HRV does not increase before 6 wk 
after infection (Figure 1). The same applies for the anti-
HRV IgG response, which develops between 6 and 7 wk 
after exposure and persists for approximately 1 year[25] 
(Figure 1). However, during secondary infections detect-
able amounts of  serum antibodies to HRV may develop 
between 1 and 2 wk after infection, reaching their peak 
titer 5 wk post exposure[76,78].

The antibody response to HRV does not seem to play 
a role in virus spread and clearance, because it appears 
only after the end of  the illness, and in persons with IgA 
deficiency and hypogammaglobulinemia normal recovery 
from illness occurs[79]. Furthermore, antibody production 
occurs on an average only in 50% of  the cases and neu-
tralizing antibodies, which do not show cross-reactivity, 
generally are produced in low amounts[76,78]. Therefore, 
protection by antibodies against secondary infections 
with HRV, which additionally appear in extraordinary dif-
ferent versions of  serotypes, is strongly limited.

The T-cell response to HRV is incompletely under-
stood. An increase in lymphocytes 3-4 d after exposure 
can be observed in nasal secretions. Specific CD4+ T-cell 
clones, which secreted the Th-1 type cytokine IFN-γ, 
could be isolated in peripheral blood from persons with 
previous disease[80,81]. These T cells showed serotype cross-
reactivity[80]. This implies that CD4+ T cells can be activat-
ed by shared viral determinants, and can induce recall T-cell 
responses to HRV. One study suggests that eosinophils 
might act as antigen-presenting cells, which activate CD4+ 
T cells[82]. No data are available on an involvement of  cy-
totoxic CD8+ T cells (CTL). There is no vaccine (neither 
passive nor active) against HRV infections.

HAV 
After oral uptake, the mean incubation period is 4 wk. The 
preicteric period of  normally 5 d with unspecific symp-
toms (nausea, malaise, headache) ceases with the onset 
of  jaundice, which lasts on average for 3 wk. Fecal shed-
ding of  HAV already occurs during the late incubation 
period when no clinical symptoms are observable, and 
lasts for approximately 3 wk. The fecal excretion reaches 
its maximum just before the onset of  hepatocellular injury 
and terminates about the time when the IgG antibody re-

sponse is detectable (Figure 1). Viremia occurs a few days 
before and during the early acute stage and roughly paral-
lels the fecal shedding, but at a lower magnitude. Besides 
this common course of  infection, prolonged and relapsing 
courses occur in up to 25% of  the patients[83]. 

Anti-HAV IgM antibodies are present in almost all 
patients at the onset of  the symptoms (3-4 wk post infec-
tion). These antibodies reach their maximum level 2 mo 
post exposure, have only weak neutralizing activity and 
typically disappear in the course of  3 mo (Figure 1). But 
in the course of  prolonged courses, IgM can be detected 
up to 1 year after onset of  icterus[28,29,84,85]. 

Anti-HAV IgA antibodies are also detectable at the 
onset of  the symptoms in blood (sIgA) (Figure 1). This 
response reaches its peak titer 50 d post exposure and may 
last for more than 5 years[28,29,85,86]. The majority of  the IgA 
remains in circulation as sIgA and is not secreted into the 
intestinal tract as SIgA by the polymeric immunoglobu-
lin receptor (pIgR) pathway. But a significant fraction 
of  the sIgA may be released into the intestines via bile 
by liver functions mediated by the hepatocellular IgA-
specific asialoglycoprotein receptor (ASGPR), and fecal 
samples contain IgA from 5 to 6 wk till 3 to 6 mo post 
infection[87-91] (Figure 1). Salivary anti-HAV IgA is also 
detectable in patients, which course parallels that of  fe-
cal IgA[90]. But the role of  SIgA in the protection against 
HAV infections appears to be limited, as neutralizing 
activity in most human specimens is barely detectable, 
which correlates with animal studies[90]. Results obtained 
with cultured cells as well as in a mouse model suggest 
that HAV-specific IgA can serve as a carrier molecule 
for a liver-directed transport of  HAV, supporting and 
enhancing the hepatotropic infection by uptake of  HAV/
IgA immunocomplexes via the ASGPR[91,92]. It could be 
shown that IgA-coated HAV is translocalized antivectori-
ally from the apical to the basolateral site of  cultured po-
larized epithelial cells via the pIgR[93], and it was assumed 
that fecal HAV/IgA[87,94], whose stability enables its fecal-
oral transmission[91], is able to support the primary in-
fection utilizing the IgA receptors. Furthermore, it was 
postulated that an enterohepatic cycling of  HAV may be 
established during infection by HAV/IgA resulting in en-
dogenous reinfections of  the liver until large amounts of  
highly avid IgG displace the IgA in the HAV/IgA com-
plexes[92]. Depending on the individual immune response, 
this mechanism may play a role in the development of  
the different courses of  hepatitis A[92]. With respect to 
the anti-HAV IgA response in general, it is not clear by 
which processes and mechanisms induction occurs.

Neutralizing anti-HAV IgG antibodies are detectable 
3-4 wk post infection for the first time, but this response 
develops slowly, reaching its peak titer 4 to 5 mo post in-
fection (Figure 1), a time point late in the convalescence 
phase[28,29,85]. Anti-HAV IgG persists lifelong, although the 
titer may fall to undetectable levels after several decades. 
Although the minimum level of  neutralizing antibodies 
that protects against infection and disease is unknown, an 
estimate of  a minimal protective level is approximately 
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20 mIU/mL blood. Circulating anti-HAV IgG of  the 
developing IgG response may limit viremia and thus re-
infections at different hepatic sites by progeny virus, but 
is sufficient to prevent subsequent secondary infections. 
Passive immunization with pooled immune serum globu-
lin[95,96] of  at least 100 IU anti-HAV can prevent the dis-
ease for up to 5 mo with a certainty of  80%-90%. Definite 
duration of  protection by immune serum globulin is dose 
related[97-100]. Studies suggest that passive immunization 
does not always prevent infection, but ensures an asymp-
tomatic course of  the disease[101,102]. IgG is still used for 
post exposure prophylaxis. If  administered within 2 wk 
after exposure, either development of  the disease is pre-
vented or the severity of  the disease is attenuated as well 
as virus shedding is reduced[95,96,103]. Since 1992, inactivated 
vaccines are available[104-106], which protect against both 
infection and disease caused by all strains of  HAV with 
100% efficacy for at last 10 years. Live, attenuated vaccines 
have been developed using virus adapted to growth in cell 
culture[107], but were poorly immunogenic[108]. Nonetheless, 
such a vaccine has been widely used in China and appears 
to be capable of  inducing protective levels of  antibody[109]. 
However, as anti-HAV IgA might be induced by live vac-
cines and act as pathogenicity factor for hepatitis A (see 
above), this approach might not be advantageous as com-
pared to the inactivated vaccines.

Clearly, the antibody response to HAV prevents sec-
ondary infections and may limit viral spread during infec-
tion. But with regard to viral clearance and destruction of  
infected hepatocytes, anti-HAV antibodies do not seem to 
play a role. Destruction of  infected hepatocytes by HAV-
specific antibodies with or without the help of  comple-
ment could not be demonstrated[29]. However, it has been 
shown that HAV-specific, HLA-restricted cytotoxic CD8+ 
T lymphocytes (CTL) play a prominent role both in elimi-
nating the virus and in causing liver injury (immunopatho-
genesis). CTLs were identified in liver biopsy specimens 
obtained during the acute infection[26,27]. Nearly 50% of  
the liver-infiltrating, cytotoxic T-cell clones displayed HAV-
specific cytotoxicity. During activity the CTLs produced 
IFN-γ[27,110], which may stimulate HLA class Ⅰ expression 
on hepatocytes and in the following promote upregulation 
of  the normally low level display of  antigen on liver cells 
resulting in more efficient destruction of  infected cells 
by these CTLs. During this acute phase of  infection only 
1%-2% of  the CTLs in peripheral blood showed HAV-
specific cytotoxic activity[26], whereas 2-3 wk after onset 
of  icterus[111], which means during the early convalescent 
phase, HAV-specific CTL activity reached peak levels in 
peripheral blood. This indicates that HAV-specific CTLs 
accumulate in the liver during the acute phase, and after 
the destruction of  the infected hepatocytes leave the liver 
back into blood. Multiple dominant T-cell epitopes could 
be identified in the proteins VP1, VP2, VP3, 2B, 2C and 
mainly 3D[112]. This multitude of  T-cell epitopes combined 
with an inhibitory effect of  HAV on CTL-suppressing 
regulatory T cells during the acute phase of  the disease[113] 
seems to result in a strong activity of  HAV-specific CTLs 

leading to an efficient elimination of  HAV, which might 
prevent persistence of  the virus. Also NK T cells seem to 
be involved in the elimination of  HAV and the destruc-
tion of  hepatocytes[114]. 

INNATE IMMUNE RESPONSE
The innate immune system is designed to enable fast cell 
reactions to invading microorganisms. It is not aimed to re-
spond to a specific pathogen, but pathogens are recognized 
by particular molecular patterns, which are specific for 
certain groups of  pathogens (PAMP; pathogen-associated 
molecular pattern), but not found within cellular molecules. 
After recognition of  viral molecular patterns, the synthesis 
of  proteins, including a variety of  cytokines and enzymes, 
and/or reactions, like apoptosis, are induced, which are 
able to interfere with the growth of  the virus at the site 
of  infection. Virus-specific molecular patterns are espe-
cially single-stranded RNA (ssRNA) and double-stranded 
RNA (dsRNA) (in the case of  DNA viruses, unmethyl-
ated CpG DNA is additionally recognized by the TLR9). 
ssRNA represents viral RNA genomes either introduced 
by the invading virus or produced by virus replication, and 
dsRNA represents viral replication intermediates (in the 
case of  dsRNA viruses it also represents the genome). As 
these viral nucleic acids can only be detected if  they are 
freely present in the cytoplasm, sensing of  viruses and in-
duction of  the cellular antiviral activities are only possible 
after the infection of  cells has already occured. By far the 
most prominent reaction against viruses is the production 
and secretion of  type Ⅰ IFN by infected cells, resulting in 
the establishment of  an antiviral state in the surrounding 
cells by expression of  proteins with antiviral activity. Thus, 
viral spread in the infected tissue is contained. Type Ⅰ IFN, 
which can be induced in virtually all cell types, represents 
numerous subtypes of  IFN-α and a single IFN-β. The ma-
jor cytoplasmatic recognition receptors are RIG-I[13,115,116] 
and MDA-5[12,13], which both are cytosolic and may associ-
ate with stress granules, as well as TLR3[117,118], which is 
localized in endosomal membranes. These three receptors 
activate the IKKε/TBK1 kinases [inhibitor of  nuclear 
factor (NF)-κB kinase ε/TANK-binding kinase 1][119-122] 
via the adaptor proteins MAVS (mitochondrial antiviral 
signaling protein; RIG-I and MDA-5)[123-126] and TRIF (TIR 
domain-containing adaptor inducing IFN-β; TLR3)[127-129], 
respectively. These kinases phosphorylate interferon regu-
latory factor 3 (IRF-3), which results in IRF-3 dimerization 
and cytoplasmic-to-nuclear translocation[130,131], where it 
induces IFN-β transcription as a central component of  
the transcription complex[132,133]. Three additional tran-
scription factors participating in the induction of  IFN-β 
transcription are NF-κB, ATF-2 and c-Jun, which are 
activated by signaling pathways also starting from MAVS. 
After secretion, IFN-β binds to the type Ⅰ IFN receptor 
(IFNAR1/2) on neighbouring cells, resulting in expres-
sion of  a variety of  interferon stimulated genes (ISGs) 
via the Jak/STAT signaling pathway, which additionally 
includes the transcription factor IRF-9 and the interferon 
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stimulated response element promoter element. In gen-
eral, upon activation by viral stimuli these antiviral ISG 
proteins [e.g., protein kinase R (PKR) or oligoadenylate 
synthetase] affect the cellular, macromolecular synthesis 
(transcription, translation) and consequently viral growth. 
Induction of  IFN-α requires the IFN-β-induced IRF-7, 
which is also activated by the IKKε/TBK1 kinases, but 
is not constitutively expressed as compared with IRF-3. 
Thereby, the effects of  IFN-β are amplified in the course 
of  the IFN response. 

Besides induction of  IFN synthesis in infected cells, 
apoptosis may be initiated by activation of  caspases. 

These antiviral effects are supported by cytokines, 
which are produced by monocytes/macrophages, dendritic 
cells, granulocytes (eosinophiles, basophiles and neutro-
philes) and NK cells activated by cellular contents and 
debris released by the destruction of  infected cells. For in-
stance, cellular destruction may be caused by the cytolytic 
activity of  cytopathogenic viruses. In this way, a hostile, 
inflammatory environment is created, which can be char-
acterized by the presence and the amount of  the different 
cytokines and of  the different inflammatory mediators, 
which are induced by the cytokines in the cells at the site 
of  infection (certain enzymes, prostaglandines/leukot-
riens, reactive oxygen intermediates). Simultaneously, the 
adaptive immune response is activated by effects of  the 
cytokines (e.g., upregulation of  antigen presentation).

In general, the effects caused by the innate immune 
system depend on the specific composition of  the cyto-
kine pattern, which is created by cell type-specific reactions 
of  the cells involved in the antiviral response, including 
the leukocytes and the specialized cells of  the tissue in-
fected. Therefore, the innate immune response will vary 
according to the cell type infected. In addition, the re-
sponse is influenced and modified in a specific manner by 
the ability of  the viruses to interfere at certain sites of  the 
cellular reactions (Figure 2). These specific interactions 
between host cell and virus significantly contribute to the 
pathogenesis of  the infection, which can for example be 
clinically observed in the viral-specific course of  the fever 
curve.

In the following, an overview of  the interactions be-
tween PV, CV, HRV and HAV and the innate immune 
system is given.

PV 
PV is partially resistant to type Ⅰ IFN. In experiments 
using cells pre-treated with IFN-α, PV resistance against 
type Ⅰ IFN correlated with the amount of  virus infect-
ing each cell[134], and it was shown that the viral protease 
2A can inhibit the activity of  ISG proteins. However, this 
ability depends on the cell type infected. In PV receptor-
transgenic mice (only infectable because of  this genetic 
modification), virus replication is limited to the central 
nervous system, whereas in mice which additionally lack 
the receptor for type Ⅰ IFN, replication also occurs in 
liver, spleen and pancreas[135]. This presumably reflects 
cell type-specific antiviral effects of  IFN which can not 

be inhibited by 2A. It is unknown which ISG proteins 
inhibit PV replication and by which mechanism 2A in-
terferes with these proteins, but it was demonstrated that 
the IFN-inducible PKR is degraded by the PV protease 
2A in cells infected with PV[136,137].

The release of  IFN-β from cells infected with PV is 
repressed by a variety of  mechanisms. Transcription, 
translation and secretion of  IFN are affected by participa-
tion of  the polioviral proteases 2A and 3C as well as by 
the protein 3A, which is able to interact with intracellular 
membranes. MDA-5 is degraded during infection in a 
proteasome- and caspase-dependent manner[138]. Al-
though the mechanism involved is not fully understood, 
MDA-5 cleavage might be triggered by the proteases 2A 
and 3C, respectively (Figure 2). Both 2A and 3C mediate 
PV-induced apoptosis[139,140], causing mitochondrial dam-
age, release of  cytochrome c, and activation of  the cas-
pases 3 and 9[141]. The caspases might produce cleavage 
products of  MDA-5, which are substrates for the protea-
some. The apparent disadvantage of  inducing apoptosis 
in cells infected can be compensated by the fast replica-
tion of  PV, and the apoptosis-induced MDA-5 cleavage 
resulting in suppression of  IFN synthesis provides the 
opportunity that newly synthesized viruses are able to 
infect neighbouring cells, in which no antiviral status is 
established. However, inhibition of  MDA-5 cleavage did 
not influence PV replication[138], indicating that alternative 
signaling pathways for IFN induction are available after 
PV infection. In this context it is remarkable that PV-3C 
cleaves RIG‑I[142]. This might indicate that this sensor of  
viral nucleic acids, too, is involved in the recognition of  
picornaviral RNA, although it is believed that MDA-5 is 
the major sensor receptor. Not only are both cytoplas-
matic RNA sensors cleaved during PV infections, but 
also is the mitochondrial protein MAVS that is transmit-
ting the signal from the sensors downstream cleaved by 
the proteases 2A and 3C, in which 3C seems to be posi-
tioned at the mitochondrial membrane by 3A of  the pro-
cessing intermediate 3ABC[143]. Therefore, different sites 
inside the RIG-I/MDA-5 pathway are attacked by PV, 
which might result in cooperative or synergistic effects, 
and might compensate for the only partial resistance of  
PV to IFN.

The viral proteases are not only involved in the inacti-
vation of  components of  the signaling pathway resulting 
in induction of  IFN transcription, but also cleave other 
cellular proteins, including eIF4G[144] (cleaved by 2A), 
which is necessary for cap-dependent initiation of  cel-
lular protein translation, and PABP[145] (cleaved by 3C), 
resulting in an attenuation of  IFN-β translation (Figure 2).

Besides inactivation of  cellular proteins necessary 
for expression of  IFN-β by proteolytic cleavage through 
viral proteases, a significant reduction in secretion of  
IFN-β as well as of  the pro-inflammatory cytokine inter-
leukin-6 (IL-6), is caused by localization of  the viral 3A 
protein to the ER leading to an attenuation of  the ER-
to-Golgi traffic[146] (Figure 2). This mechanism results in a 
diminished IFN response as well as in an attenuation of  
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inflammation. Additionally, the rate of  MHC‑I transport 
to the cell surface is reduced, resulting in an inhibition of  
antigen presentation and therefore of  the adaptive CD8+ 
T-cell response.

In summary, PV seems only to be able to interfere 
partially with certain sites of  the signaling and synthetic 
pathways participating in the innate immune response to 
the virus. But the virus seems to be capable to dampen 
the innate responses to a certain degree by interference 
with multiple sites in these pathways, allowing the virus 
to establish infection.

Coxsackie virus 
The innate immune response against CV was investigated 
in the presence of  different post-acute symptoms, utiliz-
ing different cell types in cell culture experiments as well 
as different mouse strains and different virus strains, and 
accordingly, the available data is versatile. We will give a 
summary on the processes found that apply in general. 

CV is sensitive to IFN-β, and treatment of  patients with 
myocardial virus persistence with this cytokine results 
in elimination of  the virus[147]. The protective role of  
the IFN-β system was demonstrated in mice lacking 
the type Ⅰ IFN receptor and in IFN-β-/- mice, respec-
tively[148,149]. In these mice the susceptibility to infection 
as well as the severity of  the disease was significantly 
increased. These findings correlate with results obtained 
with mice deficient in the genes for MDA‑5[150,151] and 
TLR3[152], respectively. The pronounced effect on mortal-
ity in MDA‑5/TLR3 double-knockout mice after CV in-
fection might indicate a cooperative role of  these recep-
tors[151]. These results show that MDA-5 and TLR3 are 
involved in IFN-β induction during CV infections. How-
ever, this does not influence virus titers[151]. It is possible 
that type Ⅰ IFN reduces mortality during infection inde-
pendent of  its effect on viral replication. Nevertheless, 
CV is able to attenuate the IFN response by protease 3C-
mediated cleavage of  the adaptor protein MAVS, which 
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transmits the signal from MDA-5 to the IRF-3 kinases, 
and the adaptor protein TRIF, which transmits the signal 
from TLR3 to the IRF-3 kinases[153] (Figure 2). Cleavage 
of  these adaptors also inhibits apoptotic signaling. In ad-
dition, secretion of  IFN and other cytokines, which are 
induced by other pathways, as well as MHC-I transport 
to the cell surface for antigen presentation, are inhibited 
by the viral protein 2B, which localizes to the Golgi com-
plex, thus inhibiting trafficking through the Golgi[154-157] 
(Figure 2). The intercalation of  CV-2B into the Golgi 
membranes also results in down-regulation of  Ca2+ sig-
naling between Golgi and mitochondria and consequently 
in suppression of  the apoptotic cell response[158].

Besides TLR3, coxsackievirus infections can be also 
sensed by further TLRs[62], including TLR7 and TLR8[67,159], 
which recognize viral ssRNA. These receptors can me-
diate production of  pro-inflammatory cytokines and 
type Ⅰ IFNs in human cardiac cells and pDC. But this 
response seems to occur late in the course of  the infec-
tion, after the antibody response to CV has developed, as 
TLR7 activation seems to appear after the IgG-mediated 
entry of  CV into pDCs via the Fc receptor, and absence 
of  MyD88, the adaptor molecule for TLR7, does not af-
fect the mortality rate of  CV infections[151]. Amazingly, 
TLR4, which is normally activated by bacterial lipopoly-
saccharides, appears to be activated by CV resulting in se-
cretion of  pro-inflammatory cytokines, which correlates 
with a more severe course of  the disease[160-163]. However, 
the mechanism of  activation by CV is unknown. Al-
though CV can be recognized by several receptors sens-
ing viral nucleic acids, TLR3 seems to play a critical, non-
redundant role. TLR3 deficient mice are unable to control 
CV replication, and activation of  alternative pathways is 
not sufficient to protect the host[152,164]. 

It has been demonstrated that several innate effector 
cell types, including NK cells, macrophages and dendritic 
cells are involved in the secretion of  the cytokines and 
pro-inflammatory mediators during the innate response 
to CV[73]. Depletion of  NK cells, which are involved in 
the maturation of  DCs and activation of  T cells, sub-
stantially increased CV titers in the heart or pancreas[165]. 
Concerning the role of  macrophages, it has been demon-
strated that inducible nitric oxid synthase expressing mac-
rophages migrate to CV-infected tissues, that inhibition 
of  this enzyme results in higher viral titers[166], and that 
adoptive transfer of  macrophages from wild type mice 
has protective effects in TLR3-deficient mice by reducing 
cardiac disease and mortality following CV infection[152]. 
With regard to dendritic cells, their subset composition 
and functionality have an impact on the development of  
myocarditis[167].

The role of  CV binding to the complement compo-
nent C3 and activation of  the alternative pathway[168] is 
not clear, but might be involved in the development of  
myocarditis by the effects of  C3a and C5a on activation 
of  leukocytes.

A whole series of  different substances (cytokines, 
chemokines and mediators of  inflammatory reactions) 

and cell types of  the innate immune system show correla-
tions with autoreactive processes following CV infection. 
However, it has not clearly been shown in which way 
they contribute to the disease. But the balance of  timing, 
duration and amount of  expression of  the different cy-
tokines, which depends on the strength of  signaling from 
the different pathways and results in a certain cytokine 
pattern, seems to be important and critical for the devel-
opment of  an appropriate antiviral response that does 
not degenerate into autoimmunity (for review see Richer 
2009[152]).

Human rhinovirus 
During HRV infection, a variety of  antiviral factors are 
released by the epithelial cells including the vasoactive 
peptide bradykinin and the pro-inflammatory cytokines 
IL‑1β, tumor necrosis factor α, IL-6 and IL-8, which ac-
tivate granulocytes, dendritic cells and monocytes to mi-
grate to the site of  infection[169,170]. IL-8 especially attracts 
neutrophiles, which might contribute to the exacerbation 
of  asthma observed in infections[171]. Type Ⅰ IFN, to 
which HRV is sensitive[172], is detectable in nasal secre-
tions in approximately 30% of  the patients[78], but up-
regulation of  the IFN-induced MxA protein in the nasal 
mucosa could not be detected[173]. As HRV can replicate 
in certain cells pre-treated with IFN-α[134], the virus has 
the ability to interfere with the activity of  ISG proteins 
and attenuate the effects of  type Ⅰ IFN. However, the 
mechanisms involved are unknown.

Although HRV seems to be eliminated by the innate 
immune responses, the virus has the ability to affect 
several components of  the IFN-β induction pathway 
(Figure 2). At least certain types of  HRV are able to cleave 
the cytosolic viral pattern recognition receptors MDA-5 
(type 1a)[138] and RIG-I (type 16)[142], respectively. Cleav-
age of  the mitochondrial protein MAVS also could be 
demonstrated during HRV 1a infection[143] (Figure 2). 
This cleavage is mediated by the viral proteases 2A and 
3C. Here, the activity of  3C seems only to be displayed 
by the processing intermediate 3ABC, which is directed 
to the mitochondrial membrane by the function of  3A. 
However, 2A as well as 3C mediate the HRV-induced 
apoptosis[174], which has antiviral effects. But caspase-3, 
which is activated during apoptosis, is able to support the 
2A/3C-mediated inhibition of  MAVS signaling by cleav-
age of  MAVS[143]. Furthermore, the secretion of  cytokines, 
including IFN, is inhibited by HRV-2B, which localizes 
to the Golgi membranes resulting in the inhibition of  the 
secretory pathway[157]. This effect might also delay MHC-I 
presentation. By this attenuation of  the IFN-β response, 
the fast replicating HRV might gain time to establish in-
fection at least locally and thus to secure its transmission.

HRV is also able to attenuate the inflammatory effects 
caused by the cytokines released from epithelial cells dur-
ing infection by induction of  IL-10 secretion in mono-
cytes and macrophages[76,175]. The mechanism by which 
HRV causes this effect is unknown. IL-10 does not only 
inhibit the production of  pro-inflammatory cytokines[176], 
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but also downregulates MHC class Ⅱ molecule expres-
sion[177], which results in inhibition of  T cell activation. 
This inhibitory effect on T-cell stimulation might con-
tribute to the delayed adaptive immune response against 
HRV and might be supported by additional viral effects 
on antigen presenting cells[76]. Although HRV does not 
infect leukocytes, the virus binds to these cells via the in-
tercellular adhesion molecule-1[178], which serves as cellular 
receptor of  the major group of  HRV, and is important in 
leukocyte migration and stimulation of  T-cell responses. 
This binding results in an enhanced adhesiveness of  
monocytes/macrophages[179], which thereby might be 
retained longer at the infected sites. As a result, delayed 
emigration of  these cells to lymph nodes might occur, 
which in combination with an attenuated stimulatory ef-
fect on T-cell proliferation might inhibit T-cell activation. 
An additional inhibitory effect on the adaptive T-cell 
response might be due to HRV-induced upregulation of  
CD274 and sialoadhesin (Siglec-1) on dendritic cells[180]. 
Both molecules inhibit the T-cell stimulatory function of  
DCs, but the mechanisms involved are unknown.

HAV 
Experimental elimination of  HAV infections in human fi-
broblast cultures by exogenously added IFN-α/β showed 
that HAV is not resistant to these IFNs[9,181] but reports 
on the presence of  type Ⅰ IFN during the acute phase 
of  HAV infections are controversial. Some indicate that 
patients do not produce IFN[182-184], while in other reports 
evidence for the presence of  IFN is announced[185-187].

At the cellular level, HAV infections result in a persis-
tent noncytopathic infection[9,188,189] and neither measur-
able IFN-α/β levels[9,190] nor interference with the infec-
tion by other viruses[190] could be detected in lymphocytes 
and fibroblasts infected with HAV. Further investigations 
showed that HAV does inhibit IFN-β transcription[191] 
by effectively blocking IRF-3 activation[192], presumably 
due to a cooperative effect of  the HAV proteins 2B and 
3ABC[193] (Figure 2). While MAVS is targeted for HAV 
protease 3C-mediated proteolysis by 3ABC, an interme-
diate product of  HAV polyprotein processing localized 
to mitochondria by 3A[194], 2B seems to interfere with 
MAVS as well as with the kinases IKKε/TBK1 by a so 
far unknown mechanism[193]. It is assumed that the effects 
of  2B on MAVS and the kinases indirectly result from 
interactions of  2B with cellular membrane structures. It 
could also be demonstrated that HAV is able to affect 
the TLR3 transduction pathway by direct interaction with 
TRIF[192] (Figure 2).

These results strongly suggest that IFN-β does not 
play a role in preventing HAV infections, and that the abil-
ity of  HAV to interfere with the RIG-I/MDA-5 signaling 
pathway allows this slowly replicating virus to establish in-
fection. Furthermore, this strategy of  inhibiting IRF-3 ac-
tivation through interference with MAVS and the kinases 
may allow HAV to preserve the infection for a longer time 
by preventing IRF-3-mediated down-regulation of  the 
liver cell metabolism[195], and by evading the cellular IFN 

response at later stages of  infection, a time point when 
RIG-I/MDA-5 may be upregulated by IFN-γ secreted by 
HAV-specific CTLs (see “Adaptive Immune Response”), 
enhancing cell responsiveness to viral RNA[196,197].

HAV also has the ability to prevent apoptosis in-
duced by accumulating dsRNA[191], but the underlying 
mechanism is not clear. It was found that HAV enhances 
activation of  the transcription factor NF-κB[192], and as 
this pleiotropic factor is involved in expression of  anti-
apoptotic genes[198], the ability of  HAV to activate NF‑κB 
might play a role in the inhibition of  apoptosis.

A transient suppression of  hematopoiesis with granu-
locytopenia is frequently observed in the preicteric phase 
of  HAV infections[199,200], and in studies with long-term 
human bone marrow cultures, HAV-induced inhibition 
of  hematopoiesis was demonstrated[201-203]. As shown with 
human peripheral blood monocytes, inhibition of  the dif-
ferentiation of  monocytes to macrophages by HAV may 
be involved in the perturbations of  hematopoiesis[204]. This 
might result in an attenuation and retardation of  the in-
flammatory response and of  the induction of  the adaptive 
immune response against HAV. The mechanism of  this 
effect is not known. The importance of  NK cells for the 
elimination of  HAV is controversially discussed[110,205,206].

CONCLUSION
The data presented here give an overview of  the immune 
responses against PV, coxsackievirus, human rhinovi-
rus and HAV, which are the four best-studied members 
of  the picornavirus family. They illustrate that much is 
known about the defense mechanisms of  the human 
host against infection with these viruses and about the 
viral countermeasures, but also that many open questions 
exist. The immune responses against these viruses, like 
against other viruses, are complex and as diverse as the 
viruses themselves. 

Processes which are demonstrated for a particular vi-
rus do not necessarily also apply to an other virus of  this 
family, not even to a different strain of  the same virus. 
In many cases the viruses were not examined under the 
same conditions and circumstances. But there may also 
be similarities between the different viruses which have 
not been investigated or clearly shown so far. It becomes 
evident that the time points at which certain responses 
occur during an infection are very variable and seem to 
depend on the tissue/cell type infected as well as on indi-
vidual physiological conditions of  the patient, like age or 
immune status.

Although investigated for many years, some data are 
incomplete, like type and duration of  the antibody re-
sponses. The significance of  some findings is not clear, as 
they were obtained using animal models or cultivated cell 
lines, which do not represent the natural targets for the 
viruses. For some observations and findings, the mecha-
nisms involved are unknown. For example, it is not to-
tally clear which intracellular receptors are involved in the 
sensing of  picornaviral infections, which signaling path-
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ways are involved in cytokine production or mediate the 
effects of  the cytokines, and which signaling pathways 
are involved in the induction of  the expression of  cellular 
receptors participating in the regulation of  the immune 
responses. It is not clear which role the innate immunity 
plays in recovery from acute infection, and whether the 
viruses are able to persist, at least for a certain time, in 
patients with immunoglobulin deficiencies as well as in 
immunocompetent hosts, and if, in which cell type.

It is not only of  importance to find out by which 
abilities and mechanisms the human picornaviruses inter-
fere with the immune system, but also to identify certain 
pathogenicity factors which allow the viruses to establish 
and maintain infection, like the picornaviral 3C protease, 
which inhibits induction of  IFN-β by cleavage of  RIG‑I/
MDA-5 signaling components. This knowledge may al-
low the prediction of  interspecies transmissions from 
animals to humans by certain members of  this large, het-
erogeneous family. The risk of  such transmissions result-
ing in new emerging diseases is evident by recent epidem-
ics caused by viruses like SARS or hemorrhagic fevers.
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