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Abstract
Cervical cancer is one of the leading causes of death in 
women worldwide, particularly in developing countries. 
Human papillomavirus has been reported as one of the 
key etiologic factors in cervical carcinoma. Likewise, 
epigenetic aberrations have ability to regulate cancer 
pathogenesis and progression. Recent research su
ggested that methylation has been detected already at 
precancerous stages, which methylation markers may 
have significant value in cervical cancer screening. The 
retinoic acid receptor beta (RARβ ) gene, a potential 
tumor suppressor gene, is usually expressed in normal 
epithelial tissue. Methylation of CpG islands in the 
promoter region of the RARβ  gene has been found to 
be associated with the development of cervical cancer. 
To investigate whether RARβ  methylation is a potential 
biomarker that predicts the progression of invasive 
cancer, we reviewed 14 previously published articles 
related to RARβ  methylation. The majority of them 
demonstrated that the frequency of RARβ  promoter 
methylation was significantly correlated with the se
verity of cervical epithelium abnormalities. However, 
methylation of a single gene may not represent the 
best approach for predicting disease prognosis. Ana
lyzing combinations of aberrant methylation of multiple 
genes may increase the sensitivity, and thus this app
roach may serve as a better tool for predicting disease 
prognosis.

Key words: Methylation; Cervical cancer; Retinoic acid 
receptor beta; Human papillomavirus; Risk correlation; 
Promoter
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Core tip: The frequency of retinoic acid receptor beta 
promoter methylation was significantly correlated with the 
severity of cervical epithelium abnormalities. However, 
a single gene may not represent the best approach for 
predicting disease prognosis. Thus, combinations of 
aberrant methylation of multiple genes may as a better 
tool for predicting disease.

Wongwarangkana C, Wanlapakorn N, Chansaenroj J, Poovorawan 
Y. Retinoic acid receptor beta promoter methylation and risk of 
cervical cancer. World J Virol 2018; 7(1): 1-9  Available from: 
URL: http://www.wjgnet.com/2220-3249/full/v7/i1/1.htm  DOI: 
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INTRODUCTION
Cervical cancer is the leading cause of death in women 
worldwide. The prevalence is high in women in low- 
to middle-income countries[1]. In 2012, approximately 
522000 women globally were diagnosed with cervical 
cancer, and the mortality rate due to cervical cancer 
was reported to be 266,000 cases/year[2]. The highest 
incidence occurred in sub-Saharan Africa while in Asia, 
cervical cancer remains the third most common cancer 
(after breast and lung cancer), with an estimated 
285000 new cases and 144000 deaths in 2012[3]. The 
age-standardized incidence rates (ASRs) of cervical 
cancer estimated by GLOBOSCAN in 2012 indicated 
that the ASR is higher in less developed compared to 
more developed regions[4]. In Thailand, the age group 
with the highest incidence is 45-70 years[5].

Several studies had found that cervical cancer is 
preceded by a pre-invasive stage, in which abnormal 
cells are confined to the cervical epithelium. The pre-
invasive stage is also known as cervical intraepithelial 
neoplasia (CIN). The 2014 Bethesda System categorizes 
squamous epithelial cell abnormalities as atypical 
squamous cell of undetermined significance (AS-CUS); 
low-grade squamous intraepithelial lesion (LSIL), which 
was previously known as CIN Ⅰ; high-grade squamous 
intraepithelial lesion (HSIL), which was previously 
known as CIN Ⅱ and Ⅲ; or squamous cell carcinoma 
(SCC)[6]. SCC represents > 80% of cervical cancers, 
while adenocarcinoma (AC) accounts for the rest.

The standard method for screening for early-stage 
cervical neoplasia is cytological morphologic assessment 
of cervical scrapings. The sensitivity of the conventional 
Pap smear for identifying CIN Ⅱ+ is 55.2%, while the 
sensitivity of liquid-based cytology is 57.1%[7]. High-
risk human papillomavirus (HPV) DNA testing in 
combination with the conventional Pap smear increases 
the sensitivity. Furthermore, biomarkers of oncogenic 
progression would improve the accuracy of cancer 
progression predictions. Epigenetic biomarkers may 

help to fulfil this role, and they have the additional 
benefit predicting the stage of cervical carcinogenesis 
progression[8].

GENOME OF HPV
HPV is a small, non-enveloped and circular double-
stranded DNA virus with a genome of approximately 8 
kb in length[9]. The HPV genome comprises eight protein-
coding genes and a noncoding region that is referred to 
as the regulatory long control region[10]. Only one strand 
of the DNA carries the protein-coding sequence[11]. 
Regarding the protein-coding genes, the genes are 
designated as early (E) or late (L) to indicate when 
the proteins are expressed in the viral life cycle[12]. The 
eight protein-coding gene consist of E1, E2, E4, E5, 
E6, E7, L1 and L2[9]. E1 and E2 are highly conserved 
and involved in viral DNA replication[13-15]. L1 and L2, 
which both have a high degree of sequence variation, 
encode for viral packaging proteins[16]. E4 releases the 
viral particle from the epithelial cells[17]. E6 and E7 are 
viral oncogenes that are involved in the integration of 
the HPV genome into the host genome[18]. There are 
more than 130 genotypes of HPV, which are categorized 
based on sequence variation in their L1 region[19]. Of the 
130 genotypes, at least 40 genotypes infect the genital 
areas of humans via sexual transmission. HPV can 
also be classified into cutaneous or mucosal types[12]. 
The mucosal type can be subdivided into high-, 
intermediate-, or low-risk types[20]. 

HPV AND CERVICAL CANCER
The most important risk factor for cervical cancer 
is HPV infection, which has been found in 90.7% of 
cervical cancer patients worldwide[21]. HPV infection is 
a sexually transmitted disease. It has been estimated 
that more than 80% of sexually active women become 
infected with HPV, while more than 50% of young 
women become infected after they first have sexual 
intercourse[22]. The oncogenic potential of HPV depends 
on the genotype. HPV 16 and 18 are the most common 
types associated with invasive cervical cancer[23]. Other 
HPV genotypes have been found to be related to cancer, 
but their oncogenic risk differs among the various 
populations, geographic regions, and age groups. 

At the country level, collecting baseline data on 
the local burden of specific HPV genotypes related to 
cervical cancer is important. This information can impact 
the local HPV vaccination policies. A meta-analysis 
revealed that HPV 16, 18, 31, 33, 45, 52, and 58 are 
responsible for more than 90% of cervical cancers 
worldwide[20]. These genotypes represent the baseline 
genotypes to include in a vaccine targeting the genotypes 
circulating in the population[4]. The current HPV vaccines 
were developed to prevent HPV infection, and thus 
prevent cervical carcinoma. HPV vaccines have been 
implemented in routine vaccination programs in several 
developed and developing countries worldwide[24]. To 
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date, there have been three HPV vaccines in clinical use: 
Bivalent, quadrivalent, and nanovalent vaccines[25]. 

Other independent risk factors such as immuno
suppression, individual lifestyle, and smoking have been 
found to be associated with the development of HPV-
related cervical cancer[21,26]. Most HPV infection is transient, 
and clearance of the virus can occur spontaneously over 
a 3-year period[27]. However, in some cases, persistent 
infection can result in cervical cancer development. The 
transition from dysplasia to invasive carcinoma may take 
several years to decades to develop. HPV initially infects 
the basal layers of the epithelium through micro-wounds. 
The virus begins to replicate, and when infected daughter 
cells migrate to the upper layers of the epithelium, the 
viral late genes are activated, and viral DNA is packaged 
into capsids. Progeny virions are released to re-initiate 
infection, which can result in persistent and/or asymp
tomatic infection[28]. The integration of HPV into the host 
genome can lead to carcinogenic transformation. Certain 
regions of the human genome are favored for viral DNA 
insertion such as fragile sites, rupture points, translocation 
points, and transcriptionally active regions[29]. Moreover, 
the virus can induce epigenetic modification of viral and 
cellular genes, which affect their expression, leading to 
malignant cell transformation[30,31].

HOST GENETIC FACTORS AND 
CERVICAL CANCER
Diverse immunogenetic associations with HPV infection, 
persistence, and transformation have been extensively 
investigated. Recent studies have looked at multiple 
genes in various populations with different environment 
interactions[32]. HPV infection alone might not be 
sufficient for the development of cervical carcinoma, and 
certain antigen-processing machinery (APM) and single-
nucleotide polymorphisms (SNPs) may lead to a smaller 
immunogenic peptide repertoire for presentation to local 
immune cells. This can result in further attenuation of 
cytokine and receptor expression, which leads to an 
ineffective overall immune response and progression 
to carcinoma[33]. The Genome-Wide Association Study 
(GWAS) for polymorphisms of host immune response 
genes showed that variation in several genes contributes 
to different risks of cervical cancer. The integrative 
approach, which is also known as systems biology, could 
help explain the complexity of host–virus interactions 
and provide a better understanding that may eventually 
lead to personalized prevention, diagnosis, and treat
ment[34-36]. 

The detection of methylated genes in cervical specmens 
is a feasible technique and represents a potential source 
of biomarkers that are of relevance to carcinogenesis. In 
particular, there are methylation markers that, among 
HPV-infected women, indicate the presence of CIN Ⅱ+ 
and risk of cancer[37].

High expression levels of certain oncoproteins in 
cervical cells have been found to be associated with 

cervical carcinoma. One study found a strong correlation 
between centromere protein H (CENP-H) expression and 
cervical carcinoma in a Chinese population[38]. Another 
study found that expression of the B-cell-specific Moloney 
leukemia virus insert site 1 (Bmi-1), P16, and CD44v6 
(a CD44 variant) were significantly higher in cervical 
carcinoma tissues compared with precancerous lesions 
and normal tissues[39]. In addition, abnormalities in the 
phosphatidylinositide 3-kinase (PI3K) pathway induced 
by mutations in PI3K catalytic subunit α (PIK3CA) 
were associated with shorter survival in cervical cancer 
patients[40]. Recently, deep sequencing of somatic 
mutations has identified several novel mutations in 
carcinoma cells, including E322K in the mitogen-
activated protein kinase 1 (MAPK1) gene, inactivating 
mutations in the major histocompatibility complex, class 
I, B (HLA-B) gene, and mutations in F-box and WD 
repeat domain containing 7 (FBXW7), tumor protein 
p53 (TP53), and Erb-B2 receptor tyrosine kinase 2 
(ERBB2)[41]. 

EPIGENETIC MECHANISMS AND RISK OF 
CANCER DEVELOPMENT
Recent studies also investigated epigenetic mechanisms 
related to HPV infection, including methylation of the 
host and viral genes, and chromatin modification 
in host cells[42]. Epigenetic mechanisms affect gene 
regulation without changing the genetic sequences, 
and these mechanisms have been increasingly found 
to be associated with cancer development[43]. The 
main epigenetic mechanism is methylation patterning, 
which occurs to various extents in different DNA and 
proteins. DNA methylation is a mechanism of gene 
regulation that typically occurs in CpG dinucleotide 
contexts, resulting in genomic instability. Methylation 
of heterochromatin and promoter regions is associated 
with decreased gene transcription. Several studies 
have found that DNA methylation frequently occurs 
in cervical cells but rarely in normal cells, suggesting 
that their methylation is highly related to the severity 
of cervical neoplasia[44]. Several markers have been 
evaluated extensively in studies involving women with 
precancerous and cancerous cervical lesions[44-46]. 
Epigenetic methylation in the promoter region of several 
tumor suppressor genes (TSGs) has been detected in 
precancerous cervical cells[47,48]. Genes that were found 
to be significantly associated with promoter methylation 
were RASSF1A and MGMT (involved in DNA repair), 
CDKN2A (involved in cell cycle control), PYCARD (involved 
in apoptosis), and APC and SFRP1 (involved in Wnt 
signaling)[49]. 

One striking conclusion of previous studies was 
that methylation frequencies for the same gene vary 
widely between studies. It was difficult to identify 
highly consistent results for most genes even when 
restricting analyses to studies of similar size or those 
that used common specimen sources or similar assays. 

Wongwarangkana C et al . RARβ  promoter methylation in cervical cancer
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This suggests that the frequency of certain methylation 
markers may also vary for reasons related to differences 
in populations, specific features of assay protocols, 
chance, or other unidentified factors. The most impor
tant prerequisite for a potential biomarker is that it must 
be reliable in its measurement. There is a possibility 
that the wide range of frequencies reported for some 
genes (in contrast to the more consistent measurement 
of a few other genes in similar studies) could be related 
to unreliable assays for these specific genes rather 
than biological variation. Another prerequisite for a 
good biomarker is that it has high sensitivity and high 
specificity for disease detection, resulting in a high 
positive predictive value. Several studies have proposed 
the use of methylated gene panels in order to obtain 
optimal assessment performance for cervical cancer 
screening[47,50].

Retinoic acid (RA) is an essential regulator of normal 
epithelial cell differentiation. The effect of RA is mediated 
by two types of nuclear receptors, the retinoic-acid 
receptor (RAR) family and retinoid-X receptor (RXR) 
family. Both of these receptor families have three 
members (alpha, beta, and gamma), which are encoded 
by distinct genes in vertebrates. The retinoic acid 
receptor beta (RARβ) gene encodes a nuclear receptor 
that binds RA and mediates cellular signaling. It is 
important during differentiation of stratified squamous 
epithelium, including cervical epithelium. It is considered 
to be a potential TSG. The RARβ  gene is usually ex
pressed in normal epithelial tissue. The direct roles of 
the RARβ protein include regulating gene expression 
and differentiation, immune modulation, and inducing 
apoptosis. Previous studies revealed that the RARβ gene 
is downregulated in high-grade lesions[51]. RARβ gene 
silencing was observed in carcinoma cells[52]. Recent 
research suggested that the RARβ protein can suppress 
cervical carcinogenesis and may play a role in the early 
development of cancer[51]. CpG methylation of the 5’ 
region of the RARβ gene contributes to gene silencing, 
and this methylation is associated with increased 
grades of SIL and invasive cervical cancer. Many studies 
have revealed that methylation of CpG islands in the 
promoter region of the RARβ gene induces repression 
of RARβ  expression in several epithelial carcinomas, 
including cervical cancer[53-55]. 

The risk of cervical cancer due to RARβ methylation 
remains inconsistent across different studies[51,52,56]. 
Therefore, we reviewed previously published articles and 
summarized the relationship between RARβ promoter 
methylation and cervical cancer (Table 1).

Among the 14 articles reviewed, the majority of 
them (11/14) demonstrated that the frequency of RARβ 
promoter methylation was significantly correlated with 
severity of cervical epithelium abnormalities. Three 
studies did not concur with this finding. The first study 
was conducted in 2003 with a small sample size and no 
cancer patients were involved[37]. The other two studies 
were conducted in 2010 and 2015. Both studies found 
that normal tissue also had RARβ promoter methylation, 

which made it a poor predictor of progression to severe 
disease[62,64]. However, one of the two studies also 
investigated the level of methylation using quantitative 
methylation-specific PCR and found that although 
normal cells were methylated, the level of methylation 
increased in LSIL, HSIL, and invasive cancer tissue[62]. 

In addition, both Narayan et al[56] and Choi et al[60] 
found that RARβ promoter methylation was associated 
with cervical cancer prognosis. Narayan et al[56] found 
that 80% of the patients with RARβ methylation either 
died of cancer or only partly responded to treatment, 
while Choi et al[60] found that absence or reduction of 
RARβ protein expression was associated with a higher 
level of SCC antigen (P = 0.04) and more frequent 
lymph node metastasis (P = 0.023).

A study of the frequency of RARβ promoter methylation 
in urine and cervical samples from Senegalese women and 
cervical epithelial cell abnormalities found that methylation 
was significantly greater in abnormal specimens (and 
the results from the urine samples correlated with the 
results from the cervical swab samples)[58,65]. Another 
study by Zhang et al[52] compared the frequency of 
methylation with RARβ mRNA expression. The authors 
found that in normal cervical cells, the RARβ  gene 
was highly expressed. In contrast, among 17 samples 
from patients with invasive cervical carcinoma, RARβ2 
expression was completely repressed in 13 samples, 
highly repressed in 2 samples, and moderately down
regulated in 2 samples. Among the 13 samples with 
completely repressed RARβ2 expression, the RARβ 
promoter region was methylated in 9 samples and 
unmethylated in 4 samples. The authors then further 
investigated the silencing mechanism and discovered 
that apart from methylation, repressive histone modifica
tions also played a role in gene silencing, which could 
contribute to the development of cervical carcinoma.

Four studies performed a quantitative assessment of 
methylation. The first study was conducted in 2006 by 
Wisman et al[59], who found that the RARβ2 promoter 
was more methylated in cervical cancer than in control 
tissue. Four years later, Kim et al[61] found that the 
RARβ methylation level in normal tissue was 1.59% ± 
3.51% whereas, in HSIL and SCC, it was 21.93% ± 
20.10% and 19.06% ± 19.39%, respectively. The third 
study, by Yang et al[62], also highlighted that although 
the percentage of methylated samples was very high 
in normal tissue, the level of methylation correlated 
with disease severity. The last study was conducted 
by Sun et al[51] in 2015. They found that among 250 
cervical samples from healthy individuals and patients 
with various stages of cervical epithelium abnormalities, 
the percentage of methylation in patients showed that 
68.8% had no RARβ  promoter methylation, 26.4% 
had 0%-5% methylation, and 4.8% had 5%-25% 
methylation. No samples had methylation levels above 
25%.

In addition, two studies performed immunohisto
chemistry staining of the RARβ protein in cervical cells. 
Narayan et al[56] found that in the LSIL group, 11% had 

Wongwarangkana C et al . RARβ  promoter methylation in cervical cancer
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Table 1  The summary of the articles that investigated the methylation of RARβ  gene in tumor tissue from women diagnosed with 
squamous intraepithelial lesion and cervical cancer

Ref. Year of Nationality of Sample size Source of samples Lab technique RARβ  methylation results

publication participants

Virmani et al[57] 2001 American Normal/LSIL = 37 Normal/LSIL/HSIL from 
liquid-based cytology 

specimen

MSP RARβ  methylation positive in

HSIL = 17 ICC from biopsy tissue Normal/LSIL = 11% HSIL = 29%
ICC = 19 ICC = 26%

Narayan et al[56] 2003 Colombians Normal = 8 Normal = cells from 
cervical swab LSIL/HSIL 

= formalin-fixed and 
paraffin-embedded

MSP RARβ  methylation positive in

German LSIL = 9 cervical tissues Normal = 0% SCC/AC = 29.3%
American HSIL = 30 SCC/AC = tumor biopsies Immuno-

histochemistry 
of RARβ  protein

Immunohistochemistry

SCC = 77 LSIL; 11% showed low expression
AC = 5 HSIL; 60% showed complete lack of 

expression 
Gustafson et al[37] 2004 American Normal = 11 Liquid-based cytology 

specimen
Nested MSP RARβ  methylation positive in

LSIL = 17 Normal = 0% LSIL = 0% 
HSIL = 11 HSIL = 9.1%

Feng et al[58] 2005 Senegalese Normal/ASCUS = 
142

Exfoliated cervical cells 
and tissue biopsy

MSP RARβ  methylation positive in

CIN Ⅰ = 39 Normal/ASCUS = 3.2%
CIN Ⅱ = 23 CIN Ⅰ = 0%
CIN Ⅲ = 23 CIN Ⅱ = 0%

ICC = 92 CIN Ⅲ = 15.8% ICC = 38.2%
Wisman et al[59] 2006 Dutch Normal = 19 Cervical scraping QMSP The percentage of RARβ  methylation 

level above control ratio were detected 
in Normal = 0% SCC = 15% AC = 25%

SCC = 20
AC = 8

Choi et al[60] 2007 Korean Normal = 37 Normal cells were from 
hysterectomy due to 

myoma

MSP RARβ  methylation positive in

SCC = 37 Cancer cells were from 
tissue after surgery

Immuno-
histochemistry 

of RARβ  protein

Normal = 0% SCC = 41%

Immunostaining normal = strong 
staining 

SCC = 43% absent staining
Zhang et al[52] 2007 Japanese and 

Chinese
Normal = 6 Cervical tissue by biopsy 

or surgery
Real-time PCR 

for RARβ  mRNA
RARβ  expression level among normal 

cells: All were highly expressed
ICC = 17 RARb2 expression level among cancer 

cells:
Semi-nested 

MSP
13/17: Completely repressed

2/17: Highly repressed
2/17: Moderately down-regulated

Among 13 samples with completely 
repressed mRNA expression

9 promoter methylated, 4 unmethylated
Flatley et al[2] 2009 English Normal = 58 Exfoliated cervical cells 

and cervical biopsy
Nested MSP RARβ  methylation positive in

CIN Ⅰ = 68 Normal = 6.5%
CIN Ⅱ = 56 CIN Ⅰ = 42.6%
CIN Ⅲ = 76 CIN Ⅱ = 6.3%

ICC = 50 CIN III = 0% ICC = 15.9%
Kim et al[54] 2010 Korean Normal = 41 Liquid based cytology 

specimen
Multiplex nested 

MSP
RARβ  methylation positive in

LSIL = 32 Normal = 4.9% LSIL = 15.6%
HSIL = 67 SCC = 

69
HSIL = 46.3% SCC = 53.6%

Kim et al[61] 2010 Korean Normal = 28 Liquid based cytology 
specimen

Multiplex QMSP RARβ  methylation level

Wongwarangkana C et al . RARβ  promoter methylation in cervical cancer
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low RARβ expression whereas, in the HSIL group, 60% 
had a complete lack of RARβ expression. This finding 
suggested that the downregulation of the RARβ gene 
occurs early in the development of cervical carcinoma[56]. 
The second study was carried out by Choi et al[60], who 
discovered that all normal tissues highly expressed the 
RARβ protein, whereas no staining was detected in 43% 
of the SCC tissues.

Almost of cancer cell lines and primary cancer tissues 
examined, the RARβ2 was repressed. The repression was 
frequently associated with promoter methylation, which 
causes lack of gene expression. These results strongly 
support the hypothesis that promoter methylation is 
the epigenetic cause of RARβ2 repression in cervical 
cancers harboring methylated RARβ2 promoters. A DNA 
demethylating reagent can reactivate gene expression 
by inducing drastic demethylation of the promoter in 
repressed cells carrying a methylated promoter[44]. This 
consistency between promoter demethylation and RARβ2 
derepression strongly suggests that the primary cause 
of RARβ2 repression is indeed promoter methylation. 

Several hypotheses have been proposed regarding 

the mechanisms of DNA methylation that lead to 
silencing of genes. In some cancer cells and tissues 
examined, RARβ2 was repressed without promoter 
methylation. These facts indicate that although DNA 
methylation is the major epigenetic mechanism for gene 
silencing, there are other epigenetic silencing pathways 
independent of DNA methylation. RARβ2 is frequently 
silenced in cervical cancers by one of two epigenetic 
mechanisms. One is DNA methylation, a well-known 
epigenetic mechanism leading to transcriptional silencing 
of genes, while the other involves the formation of 
repressive histone modifications near the promoter, by 
unknown mechanisms independent of DNA methylation. 
At present, the initial causes of these epigenetic changes 
during carcinogenesis are unclear. RARβ2 silenced by 
promoter methylation can be reactivated by promoter 
hypomethylation. This result indicates the importance 
of examining promoter methylation if epigenetic modula
tion drugs are to be used for chemotherapy in patients 
with cervical cancers.

In conclusion, DNA methylation of TSGs likely 
contributes to the development of cancer. Although DNA 

LSIL = 26 Normal = 1.59+3.51% LSIL = 
3.67+9.09%

HSIL = 45 SCC = 
63

HSIL = 21.93+20.10% SCC = 
19.06+19.39%

Yang et al[62] 2010 Dutch Normal = 20 Biopsy tissue QMSP RARβ  methylation positive (from 
tissue) in

LSIL = 20 Normal = 85% LSIL = 65%
HSIL = 20 Cervical scraping only 

available in subset of 
samples

HSIL = 75% SCC = 85% AC = 85%

SCC = 40 RARβ  methylation positive (from 
scraping) in

AC = 20 Normal = 44% LSIL = 37.5%
HSIL = 55.6% SCC = 83.8% AC = 100%
The median methylation level increased 
significantly with the severity of lesion 

(P < 0.05)
Pathak et al[63] 2012 Indian Normal = 35 Normal cells from 

hysterectomy SIL from 
excision ICC from tissue 

biopsy

MSP RARβ  methylation positive in

SIL = 27 Normal = 11.4% SIL = 55.5% ICC = 
57.8%

ICC = 38
Milutin Gašperov et al[64] 2015 Croatian Normal = 40 Cervical scraping MSP RARβ  methylation positive in

CIN Ⅰ = 40 Normal = 62.5%
CIN Ⅱ = 40 CIN Ⅰ = 35%
CIN Ⅲ = 42    CIN Ⅱ = 61.5%

SCC = 8 AC = 3 CIN Ⅲ = 61.9% SCC/AC = 90% 
Sun et al[51] 2015 Chinese Normal = 48 Liquid based cytology 

specimen
Methylation 
specific high 

resolution 
melting analysis 
(Quantitative)

RARβ  methylation positive in

CIN Ⅰ = 54 Normal = 31.3% CIN Ⅰ = 35.2%
CIN Ⅱ = 47 CIN Ⅱ and Ⅲ = 28.2% SCC = 33.3%
CIN Ⅲ = 56 RARβ  methylation level: none = 68.8% 

SCC = 45 0-5% methylation = 26.4% 5-25% = 4.8%

CIN: Cervical intraepithelial neoplasia; SIL: Squamous intraepithelial lesion; LSIL: Low-grade squamous intraepithelial lesion; HSIL: High-grade squamous 
intraepithelial lesion; SCC: Squamous cell carcinoma of the cervix; AC: Adenocarcinoma of cervix; ICC: Invasive cervical cancer; MSP: Methylation-Specific 
Polymerase Chain Reaction; QMSP: Quantitative methylation-specific polymerase chain reaction; ASCUS: Atypical squamous cells of undetermined.
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methylation of only one gene may not represent the 
complete process of epigenetic silencing, it has been 
shown to be significantly correlated with cervical 
cancer. Analyzing combinations of aberrant hyper- or 
hypo-methylation of multiple genes may increase the 
sensitivity of prognoses. Thus, this approach may serve 
as a better tool for predicting disease progression. Risk 
factors should also be further characterized to better 
understand the pathogenesis of cervical carcinoma.
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Abstract
AIM
To identify cell culture models supportive for Zika virus 
(ZIKV) replication.

METHODS
Various human and non-human cell lines were infected 
with a defined amount of ZIKV Polynesia strain. Cells 
were analyzed 48 h post infection for the amount 
of intracellular and extracellular viral genomes and 
infectious viral particles by quantitative real-time PCR 
and virus titration assay. The extent of replication was 
monitored by immunofluorescence and western blot 
analysis by using Env and NS1 specific antibodies. 
Innate immunity was assayed by luciferase reporter 
assay and immunofluorescence analysis.

RESULTS
All investigated cell lines except CHO cells supported 
infection, replication and release of ZIKV. While in 
infected A549 and Vero cells a pronounced cytopathic 
effect was observed COS7, 293T and Huh7.5 cells 
were most resistant. Although the analyzed cell lines 
released comparable amounts of viral genomes to 
the supernatant significant differences were found for 
the number of infectious viral particles. The neuronal 
cell lines N29.1 and SH-SY5Y released 100 times less 
infectious viral particles than Vero-, A549- or 293T-cells. 
However there is no strict correlation between the 
amount of produced viral particles and the induction of 
an interferon response in the analyzed cell lines.

CONCLUSION
The investigated cell lines with their different tissue 
origins and diverging ZIKV susceptibility display a 
toolbox for ZIKV research.

Key words: Zika virus; Cell lines; Quantitative real-time 
PCR; Plaque assay; Interferon
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Core tip: In this study ten different cell lines, human and 
non-human, from various tissues (e.g. , hepatocytes, 
keratinocytes and neuronal cells) were tested upon their 
susceptibility to Zika virus (ZIKV) infection. Except CHO 
cells all cells supported ZIKV life cycle, but differed in 
parts strongly in the intracellular and released amount 
of infectious viral particles. Investigating the interferon 
response showed no clear correlation between high 
and low producer cell lines.

Himmelsbach K, Hildt E. Identification of various cell culture 
models for the study of Zika virus. World J Virol 2018; 7(1): 
10-20  Available from: URL: http://www.wjgnet.com/2220-3249/
full/v7/i1/10.htm  DOI: http://dx.doi.org/10.5501/wjv.v7.i1.10

INTRODUCTION
The Zika virus (ZIKV) is known since 1947 when it was 
isolated from a rhesus macaque monkey in a yellow 
fever research institute in the Zika forest of Uganda[1]. 
ZIKV has reached global attention during the epidemic 
in Brazil in the years 2015/2016. This mosquito-borne 
virus (Aedes aegypti and Aedes albopictus) was found 
to circulate only in East and West Africa[2] until a bigger 
outbreak occurred on the Yap Islands in Micronesia in 
the year 2007[3]. Another outbreak took place in French 
Polynesia in the year 2013. Here for the first time the 
congenital ZIKV syndrome (CZVS), microcephaly, the 
Guillain-Barré syndrome (GBS) and non-vectorborne 
transmission (mother to child, sexual, posttransfusion) 
was retrospectively documented[4–7]. However, the 
virus came into public focus in the beginning of 2016, 
when the WHO declared the Public Health Emergency 
of International Concern (PHEIC) since in context of 
the Brazil epidemic (WHO Zika Strategic Response Plan 
2016) a clear correlation between ZIKV infection of 
pregnant women and fetal microcephaly development 
was observed[8,9]. This changed the attention from a 
side note to a headline, initiating a variety of research 
efforts to investigate the virus in more detail with 
respect to epidemiology, virus-associated pathogenesis 
and virus cell interaction. 

ZIKV belongs to the Flaviviridae family, which is 
closely related to the Spondweni virus serocomplex. As 
member of the Flavivirus genus, ZIKV contains a single-
stranded, RNA with positive polarity. The viral genome 
encodes a single polyprotein processed by host and viral 
proteases into three structural proteins - core (C) that 
forms the capsid, the precursor of the membrane protein 
(prM), and the envelope protein (E) - and into seven 
nonstructural proteins NS1, NS2A, NS2B, NS3, NS4A, 
NS4B, and NS5 that are responsible for the replication of 
the viral RNA[10]. The virus replication and morphogenesis 
occurs in the extranuclear compartment. In ZIKV-infected 

cells a massive remodeling of the endoplasmic reticulum 
(ER) to form membranous replication factories and a 
drastic reorganization of microtubules and intermediate 
filaments can be observed[11].

There is a variety of reports describing the infection 
of various primary cells or immortalized cell lines. 
Moreover, ZIKV was shown to replicate in various human 
cell types already like skin cells[12] and lung epithelial 
cells[13]. Not unexpected was the finding that the Aedes 
C6/36 cells were infectable[12], since this was described 
for other related viruses already[14]. Furthermore, a lot 
of animal cell lines were described to be susceptible 
to ZIKV infection[15]. When mice lacking receptors for 
IFN-α/β (A129) were infected with the ZIKV, viral RNA 
could be found in the brain, ovary, spleen and liver[16]. 

In order to further characterize the virus in human 
cell lines and to identify cell culture systems that allow 
the robust production of high amounts of infectious viral 
particles, ten cell lines were comparatively analyzed for 
their susceptibility to the ZIKV. Keratinocytes (HaCaT) 
were included in the following experiments, since the 
skin is the first tissue the virus comes in contact with via 
mosquito bite. Moreover neuronal cells (N29.1 and SH-
SY5Y) were of special interest due to the neurological 
disorders ZIKV infections may cause. Furthermore the 
infectivity of the well-established standard cell lines 
293T cells, CHO cells, Vero cells, A549 cells, HepG2C3A 
cells, Huh7.5 cells and COS7 cells was studied. 

MATERIALS AND METHODS
Cell culture
A549, CHO, COS7, HepG2/C3A, Huh7.5, HaCaT, 
N29.1, SH-SY5Y, Vero and 293T cells (Table 1) were 
grown in Dulbecco’s modified eagle medium (DMEM) 
supplemented with 2 mmol/L L-Glutamine, non-
essential amino acids, 100 U/mL penicillin and 100 μg/mL 
streptomycin in a humidified incubator at 37 ℃ with 5% 
CO2. Passaging of the cells was carried out three times 
a week, reaching a maximum density of 90%.

ZIKV strains
The cells were infected with the ZIKV strain French 
Polynesia (PF13/251013-18) (this clinical low passage 
strain was kindly provided by Professor Musso, Institute 
Louis Marlade in Papeete, Tahiti).

Infection procedure
The inoculum for the infection experiments was derived 
from Vero cells that were infected for 72 h with ZIKV 
Polynesia. The obtained cell culture supernatant was 
filtrated and characterized by titration using plaque 
assays. Defined aliquots were stored at -80 ℃. The cell 
lines were infected with ZIKV at a MOI = 0.1 for 16 h. 
The inoculum was removed, cells were washed with 
prewarmed PBS, cultivated with medium for 32 h and 
harvested after 48 h if not stated differently.

The obtained cell culture supernatant was filtrated 
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and characterized by titration using plaque assays. 
Defined aliquots were stored at -80 ℃. The cell lines 
were infected with ZIKV at a MOI = 0.1 for 16 h. At 
the present stage of knowledge no detailed information 
about the velocity of the infection process in the different 
cell culture systems is available. To avoid effects that 
reflect potential differences in the velocity of the infection 
process cells were infected for 16 h (overnight) to ensure 
a high infection level. The inoculum was removed, cells 
were washed with prewarmed PBS, cultivated with 
medium for 32 h and harvested after 48 h if not stated 
differently.

Virus titration assay (plaque assay)
Vero cells were seeded at a density of 3 × 105 cells 
per well in standard six well plates and infected with 
cleared, serial dilutions of either cell culture supernatant 
or cleared cellular lysate 6 h later. Another 2 h later, 
the inoculum was removed and the cells were washed 
twice with PBS. Then the cellular monolayers were 
overlaid with DMEM complete containing 0.4% 
seaplaque agarose. Four days later, the agarose overlay 
was removed and the wells were washed with PBS. 
Afterwards, the cells were fixed with 4% formaldehyde 
for 10 min and stained with 0.1% crystal violet for 
plaque visualization.

RNA isolation and cDNA synthesis
RNA from total lysate was isolated using peqGOLD 
TriFast (PEQLAB Biotechnologie GmbH, Germany) 
according to the manufacturer’s protocol. cDNA 
synthesis was performed after DNA digest with DNaseI 
(Promega, Mannheim, Germany), using 4 µg total RNA, 
RevertAid H Minus Reverse Transcriptase and random 
primer (Thermo Scientific, Dreieich, Germany) as 
suggested by the manufacturer.

RNA from cell culture supernatant was isolated using 
QIAamp viral RNA Mini Kit (Qiagen, Hilden Germany) 
as described by the manufacturer. However, the elution 

volume was decreased to 40 µL per sample.

Quantitative real-time PCR from total lysate and cell 
culture supernatant
Quantitative real-time PCR (qPCR) from total RNA was 
performed as described[17]. All relative quantifications 
were normalized to the amount of RPL27 transcripts. 
The following primers were used: Zika fwd (5’
agatcccggctgaaacactg 3’-bp 1924-1943), Zika rev (5’
ttgcaaggtccatctgtccc 3’-bp 1996-1977), ribosomal 
protein L27 - RPL27 fwd (5’ aaagctgtcatcgtgaagaac 3’) 
and RPL27 rev (5’ gctgctactttgcgggggtag 3’).

qPCR using RNA isolated from cell culture superna
tant was analyzed using Zika LightMix Kit (TIB MOLBIOL, 
Berlin, Germany) in combination with LightCycler® 
Multiplex RNA Virus Master (Roche, Mannheim Germany) 
as described by the companies protocols. In brief, 
2.7 µL PCR grade water, 0.25 µL Zika Light Mix, 2 µL 
Roche Master, 0.05 µL RT Enzyme were mixed with 5 
µL purified RNA and measured in the LightCycler 480 
or Light cycler 1.2 (Roche, Mannheim Germany) with 
the following program: (1) RT-Step: 55 ℃/5 min; (2) 
Denaturation: 95 ℃/5 min; and (3) Cycling (45 times): 
95 ℃/5 s, 60 ℃/15 s, 72 ℃/15 s; Cooling: 40 ℃/30 s.

Western blot analysis
The samples were resolved by sodium dodecyl sulfate-
polyacrylamid electrophoresis (SDS-PAGE) at 10% and 
transferred by semi-dry blotting onto a polyvinylidine 
difluoride membrane (PVDF) (0.45 µm; Carl Roth, 
Germany). The membrane was blocked with 5% skim 
milk solution and then incubated with anti NS1 specific 
antibody at a 1:1000 dilution (Biofront, United States) 
overnight. Then the membrane was incubated with 
a mouse specific secondary antibody coupled with 
horseradish peroxidase at a 1:2000 dilution (HRP) (GE 
Healthcare, United Kingdom) and signals were detected 
with X-ray films (GE Healthcare, United Kingdom). 
Signals were quantified using ImageJ software.

Table 1  Summary of the cell lines used in this study

Cell line Species Tissue Origin

A549 Homo sapiens; human Lung epithelial 1972; D. Giard
CHO  Chinese Hamster Ovarie 1957; T. Puck
COS7 Chlorocebus aethiops Kidney 1964; F. Jensen

African Green Monkey
HepG2/C3A Homo sapiens Liver 1980; B. Knowels

Human
Huh7.5 Homo sapiens Liver 1980; B. Knowels

Human
HaCaT Homo sapiens Skin 1988; P. Boulkamp

Human
N29.1 Mus musculus Hypothalamus Cedarlane Laboratories

Mouse
SH-SY5Y Homo sapiens Bone marrow Neuroblastoma 1973; J. Biedler

Human
Vero Chlorocebus aethiops Kidney 1962; Y. Yasumura

African Green Monkey
293T Homo sapiens Kidney 1973: van der Eb

Human

Himmelsbach K et al . Zika virus models
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Immunofluorescence analysis
Immunofluorescence staining was analyzed with a con
focal laser scanning microscope (CLSM 510 Meta; Carl 
Zeiss) and ZEN 2009 software. Cells were fixed with 
absolute ice-cold ethanol for 10 min. ZIKV envelope 
protein was stained using anti Flavivirus Group antigen 
Antibody (clone D1-4G2-4-15 from Merck-Millipore, 
Darmstadt Germany) and a polyclonal rabbit antiserum 
was used to detect STAT1 (Merck AB16951). As 
secondary antibodies served Alexa 488 and Alexa 546 
(Thermo, Darmstadt Germany). Nuclei were stained with 
DAPI.

CPE detection
Cytolysis was monitored by LDH release assay (Clontech, 
Japan) and cell viability was assessed by Presto Blue 
staining (Thermo, Darmstadt Germany) according 
to the instructions of the manufacturer. Upon cellular 
damage lactate dehydrogenase (LDH) is released into 
the cell culture supernatant. This release is indirectly 
measured based on a calorimetric assay detecting an 
enzymatically formed formazan product. Presto Blue is a 
red compound that is taken up by the cells and due to the 
reducing interior environment turns into a red color that is 
detectable at 570 nm.

Transfection and luciferase reporter assay
The used cell lines were transfected with the pISREluc 
construct (Agilent, United States), using polyethylenimine 
(PEI) directly after infection. In brief, 3 × 105 cells per six 
well were infected as described and transfected directly 
after the addition of virus, using a transfection mix 
containing 1 µg plasmid DNA, 12 µL PEI (1 mg/mL) in a 
total volume of 150 µL PBS (1/10 total volume of media). 
The media was changed the next day and cells were 
analyzed 48 h post transfection. Here for cells were lysed 
in a passive lysis buffer (25 mmol/L Tris, 2 mmol/L DTT, 
2 mmol/L EGTA, 10% glycerol (v/v), 1% TX-100 (v/v), 
pH7.5) for 10 min on ice. Afterwards, lysate was cleared 
by centrifugation at 4 ℃ and 5000 × g for 10 min and 
the luciferase activity of the supernatant was measured 
in 96 well Orion II plate reader (Berthold) for 10 s after 
the addition of luciferase buffer (20 mmol/L Tris-HCl 
pH7.8, 5 mmol/L MgCl2, 0.1 mmol/L EDTA, 33.3 mmol/L 
DTT, 470 µmol/L Luciferin, 530 µmol/L ATP). Relative light 
units were normalized to the total protein amount by 
Bradford protein assay.

Statistical analysis
All statistical analyses were performed with Prism 
GraphPad 7.0, using multiple t tests for determination 
of P-values. Error bars are displayed as value ± SEM.

RESULTS
ZIKV replicates efficiently in various cell lines but not in 
CHO cells
The capacity of various human- and non-human-derived 
cell lines to produce high amounts of infectious ZIKV 

particles was analyzed. For this purpose, ten different 
(human and non-human) cell lines (Table 1) derived 
from various tissues (neuronal cells, kidney cells, 
keratinocytes, hepatoma cells and lung epithelia cells) 
were tested with respect to their susceptibility to ZIKV 
infection. The investigated cells were infected with an 
identical MOI of 0.1, using ZIKV Polynesia strain. The 
intracellular amount of ZIKV-specific genomes was 
determined by RT-PCR 48 h after infection, revealing 
that for all analyzed cell lines with the exception of CHO 
cells a productive infection could be established. With 
respect to the number of intracellular genomes detected 
in the various cell lines (Figure 1A), only moderate 
differences between the permissive cell lines were 
found. However, the amount of viral genomes must 
not necessarily correlate with the amount of infectious 
viral particles. To address this point, the number of 
infectious particles in the cell lysates was determined. 
Quantification of the intracellular amount of infectious 
viral particles by plaque assay (Figure 1B) revealed 
strong differences between the investigated cell lines 
of up to 105-fold. The highest amount of intracellular 
infectious viral particles was found for Vero containing 
3.6 × 107 PFU/mL followed by the Huh7.5, COS7, 293T 
and A549 cells. Again, N29.1 and SH-SY5Y cells showed 
significantly lower amounts of intracellular viral particles 
(8.7 × 103 - 2.3 × 103 PFU/mL). The HaCaT cells 
showed besides the CHO cells, which did not contain 
infectious viral particles, the lowest amount amongst the 
investigated cell lines (3 × 102 PFU/mL). Comparison 
between the quantification of the intracellular viral 
genomes and the infectious viral particles reveals that 
there is a correlation, but the differences between 
the various cell lines are much more pronounced with 
respect to the amount of infectious viral particles in 
comparison to the viral genomes.

ZIKV-infected cells differ significantly with respect to the 
intracellular amount of NS1
Quantification of intracellular viral genomes does not 
automatically reflect replication. To further analyze 
ZIKV replication, the intracellular amount of NS1 was 
determined by western blot analysis and referred to the 
amount of actin (Figure 1C). The quantification of the 
western blots demonstrates that between the different 
cell lines significant differences with respect to the 
intracellular amount of NS1 can be observed. Nearly the 
same pattern for the amount of NS1 can be observed 
as found for the intracellular genomes by RT-PCR. 
A549, COS7, HepG2/C3A, Huh7.5, Vero and 293T cells 
showed strongest signals, while lower amounts of NS1 
were detected in N29.1 cells. No NS1 was measurable in 
SHY5Y and CHO cells. For the HaCaT cells in contrast to 
the qPCR data only a low amount of NS1 was observed.

Analysis of the amount and subcellular distribution of 
ZIKV envelope protein by confocal immunofluorescence 
microscopy
To estimate the intracellular amount of ZIKV envelope 

Himmelsbach K et al . Zika virus models
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protein and to analyze the amount of infected vs non-
infected cells, confocal immunofluorescence microscopy 
was performed (Figure 1D). The staining showed that 
based on the plaque assays the highest producer 
cells also showed the best ratio between infected vs 
non-infected cells. The confocal immunofluorescence 
microscopy shows for the A549, Vero and 293T cells a 
susceptibility between 72%-66%, while from the Huh7.5 
and HaCaT cells approximately 52% and 42% and only 
approximately 10% of the HepG2/C3A, N29.1 and SH-
SY5Y were infected after 48 h. In case of the CHO cells, 
no specific staining was observed confirming that these 
cells are not permissive for ZIKV.

Pronounced cytopathogenic effect of ZIKV in A549 and 
Vero cells
To study the impact of ZIKV on cell viability and 
integrity in the different analyzed cell lines Presto Blue 
assays for determination of the cell viability and LDH 
assays for analysis of the cell integrity were performed. 
For this purpose the cells were infected for 48 h and 
stained for Presto Blue assays or the supernatant from 
ZIKV-infected cells was collected 48 h after infection 
and the LDH activity was determined (Figure 2). Both 
assays revealed that ZIKV heavily affects cell integrity/
cell viability in A549 and Vero cells. Less cell death was 
observed for HepG2/C3A, HaCaT and N29.1 cells. Based 
on the data from these assays and microscopic analysis 
COS7, 293T and SH-SY5Y cells were found to be most 

resistant to ZIKV induced cytolysis.

Virus release differs strongly in tested cell lines
To investigate whether the data obtained for the 
analysis of the intracellular amount of viral genomes and 
infectious viral particles are reflected by the numbers of 
genomes and infectious viral particles in the supernatant, 
media from the infected cell cultures were analyzed 48 h 
after infection. The RT-PCR (Figure 3A) revealed that in 
accordance to the results obtained for the quantification 
of the intracellular genomes, CHO released no viral 
genomes. As observed for the intracellular amount of 
viral genomes, there were no major differences in the 
amount of released viral genomes between the different 
cell lines. The difference between the highest amount 
observed for A549, HaCaT and Vero cells on the one 
side and N29.1 or SH-SY5Y cells on the other side is 
less than 2 fold. As the amount of viral genomes in 
the supernatant must not correlate with the amount of 
infectious viral particles, the number of infectious viral 
particles in the cell culture supernatants was determined 
by virus titration assays (Figure 3B). In contrast to the 
moderate differences that were found analyzing the 
number of viral genomes, strong differences (more than 
102-fold) were revealed with respect to the number 
of infectious viral particles released by the different 
cell lines. The highest amounts were detected for 
supernatants derived from Vero-, A549-, COS7-, HepG2/
C3A-, Huh7.5-, HaCaT- and 293T-cells that produced 

Cell line VTotal cell count Env pos. cell count Percentage pos. cells

A549 158 105    66.46
CHO 300     0 0
COS7 493 149   30.22
HepG2/C3A 421   48 11.4
Huh7.5 461 244  52.93
HacaT 263 111  42.21
N29.1 679   54   7.95
SH-SY5Y 487   36   7.39
Vero 371 266  71.70
293T 200 134  67.00
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Figure 1  ZIKV-infected cells differ significantly with respect to the intracellular amount of infectious viral particles. A: Cells were infected with an identical 
MOI of 0.1, using ZIKV Polynesia strain. Forty-eight hours after infection the intracellular amount of ZIKV-specific genomes was determined by RT-PCR. The data are 
the mean from four independent experiments. Amounts of Zika genomes are calculated using a Zika virus standard. A threshold value of 10 viral genomes was used. 
The bars represent the standard deviation of the mean. Statistical analysis was done by using 2-way ANOVA with Vero cells as reference value. aP < 0.05, bP < 0.01, 
dP < 0.0001; B: Cells were infected with an identical MOI of 0.1, using ZIKV Polynesia strain. Forty-eight hours after infection the cells were lysed and intracellular 
amount of infectious viral particles was determined by plaques assay using Vero cells. The data are the mean from four independent experiments. A threshold value of 
10 plaques was used. The bars represent the standard deviation of the mean. Statistical analysis was done by using 2-way ANOVA with Vero cells as reference value. 
dP < 0.0001; C: Cells were infected with an identical MOI of 0.1, using ZIKV Polynesia strain. Forty-eight hours after infection the cells were lysed and intracellular 
amount of NS1 was determined by western blot analysis and referred to the amount of actin. The experiment was done in triplicate; one representative experiment is 
shown. Two different western blots from two independent experiments were quantified using Image J software. The relative NS1 amount represents the ratio between 
NS1 and actin; D: Cells were grown on cover slips and infected with an identical MOI of 0.1 using ZIKV Polynesia strain. Forty-eight hours after infection the cells 
were fixed by ethanol. To quantify the intracellular amount of ZIKV envelope protein and to analyze the subcellular distribution of the envelope protein in the different 
cell lines, confocal immunofluorescence microscopy was performed using an envelope-specific antibody (green fluorescence). Nuclei were stained by DAPI (blue 
fluorescence). The pictures were taken at 450-fold magnification; E: In two visual fields the total number of cells were determined by counting the number of DAPI-
labelled cells. For quantification of ZIKV-positive cells immunofluorescence microscopy was performed using the envelope protein specific antibody 4G2. The amount 
of ZIKV-positive cells was determined based on the env-staining. The percentage of ZIKV-positive cells was calculated and depicted in a diagram. ZIKV: Zika virus.
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nearly the same quantity of infectious viral particles 
(about 107/mL). The neuronal cell lines N29.1 and SH-
SY5Y cells released more than 100 times less infectious 
viral particles than Vero cells. For CHO cells no significant 
amount of released viral particles was detectable.

Interferon response does not necessarily correlate with 
the extent of viral infection
Induction of interferon-stimulated genes (ISGs) was 
analyzed by luciferase reporter assay using the Interferon-
stimulated response element (ISRE) as promoter-driving 
luciferase expression. Cells were infected as described, 
transfected with pISREluc plasmid and the cellular 
luciferase activity was analyzed 48 h post infection (Figure 
4A). Luciferase assay showed an induction of ISGs only 
for the N29.1 cells. In the rest of the tested cells ISGs 
were slightly repressed. However, staining of STAT1 

suggests a delocalization by ZIKV (Figure 4B). If ZIKV 
was present in the cells it occurred like STAT1 is drawn 
to the replication factories and no longer is evenly 
distributed as seen in uninfected cells.

Taken together, these data indicate that the analyzed 
cell lines strongly differ with respect to the amount of 
released viral particles, although comparable amounts 
of viral genomes are detectable in the supernatant. 
With respect to the identification of cell culture systems 
that are suitable to produce high amounts of infectious 
viral particles, Vero- and COS7 cells as a non-human-
derived cell lines and Huh7.5-A549 and 293T cells as 
human-derived cell culture systems were identified.

DISCUSSION
ZIKV first isolated from a sentinel monkey in the Zika 
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forest in Uganda in 1947[1] is an emerging virus that 
has spread over the years from Africa, over Asia, 
Micronesia, French Polynesia to Brazil[18]. Since the Brazil 
epidemic in 2015/2016[19] ZIKV research has increased 
dramatically. In this study a ZIKV isolate from Polynesia 
that also belongs to the Asian lineage like the ZIKV 
strain causative for the epidemic in Brazil, was used 
to characterize its potential to infect various human 
cell lines with the aim to provide cell culture models 
for investigating the ZIKV life cycle in more detail and 
to test the suitability of various cell culture systems 
to produce high amounts of this virus[20]. The French 
Polynesia strain was utilized since this was described first 
to cause GBS and microcephaly, like later for the Brazil 
outbreak[4,7,20]. The virus targets different cell types such 
as macrophages, fibroblasts, trophoblasts as well as 
mesenchymal stem cells[21]. 

In light of the correlation between ZIKV infection of 
pregnant women and the development of microcephaly 
in the fetus it is of major interest that ZIKV can be 
detected in the maternal decidua, fetal placenta and 
umbilical cells.

In interferon receptor type I-deficient mice (IFNAR 
KO) ZIKV causes systemic infections in all tissues 
providing a useful tool for drug target testing[16,22-24]. 
Moreover, several publications have shown to replicate 
ZIKV in various primary cells like neuronal cells, dendritic 
cells or keratinocytes[12,14,25,26]. Immortalized cells are 
already described for infection with ZIK[11,12,14,27]. 

In this comparative study here, ten cells lines were 
tested for their capacity to support replication and 
production of infectious virus. After infection of the cells, 
the ongoing replication was monitored by qPCR, western 
blot and immunofluorescence microscopy analysis, 
while the capacity to produce infectious virus was 
investigated by qPCR and plaque assay. It was found 

that ZIKV replicates in neuronal cells, keratinocytes, 
lung carcinoma cells, liver carcinoma cells and kidney 
cells. Vero cells always served as positive control 
and standard for quantification. ZIKV showed best 
replication and virus production in A549, COS7, Huh7.5 
and 293T cells, followed by HepG2/C3A and HaCaT 
cells. Significantly lower support was measured for 
N29.1 and SH-SY5Y cells. In contrast to these cells, 
CHO cells could not be infected. The finding that 293T 
cells are susceptible to ZIKV stands in contrast to a 
previous publication by Hamel et al[12] (2015). Huh7 
cells have also been used in some studies and demon
strated to support viral replication[11], but here we used 
the Huh7-derived Huh7.5 cells clone[28] that has a 
defect in the RIG-I gene[29]. However, comparable titers 
were reached for the Huh7 cells measured by Cortese 
et al[11] and the Huh7.5 cells in our hands, so that there 
seems to be no benefit using the Huh7.5 cells at least 
for the production of high titer viral stock, indicating 
that ZIKV replication is not significantly affected by the 
functionality of the RIG-I gene. ZIKV propagation in 
primary keratinocytes has been shown already[12]. Here 
we used the immortalized keratinocyte cell line HaCaT[30] 
which turned out to be susceptible to viral infection and 
also produced a good viral titer. Moreover, the virus 
replicates very efficiently in COS7 cells[31], showing 
release of infectious virus to a titer of over 10E7 viral 
particles/mL. This was not unexpected since these cells, 
like Vero cells, derive from the kidney of an African 
green monkey. By using a MOI of 0.1, which is in the 
lower range if compared to Dengue virus titers used for 
infections in cell culture, we assured to only identify cells 
that support viral infection efficiently. The measured viral 
genomes in the corresponding supernatants resembled 
the findings from the intracellular quantification, in which 
the measured genomes in case of CHO cells represent 
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input RNA from the infection procedure. However, 
comparable amounts of viral RNA were observed inside 
and outside of the cells.

When comparing the intracellular and the extracellular 
titers of infectious virus, in general higher titers were 
measurable in the supernatant of the cells compared 
to the intracellular amount of virus. But for the high 
producer cell lines like A549, COS7, Huh7.5, Vero and 
293T nearly the titers measured outside the cells were 
reached already inside the cells. This is also reflected by 
the detection of NS1 in cellular lysate by western blot and 
by analyzing the Env-protein by immunofluorescence. 
Here also more NS1 was detectable for the high producers 
and more infected cells were visualized. However, for 
unknown reasons only low titers were detected inside the 
HepG2/C3A cells, but nearly 10E4 more infectious virus 
was secreted by these cells. This enhancement of viral 
release may be based on efficient packaging and export 
of the viral cargo or a lower turnover of viral proteins.

To investigate if the activation of IFN-signaling is 
causative for the diverging susceptibility of the analyzed 
cell lines, the induction of ISGs was monitored by pISRE-
luciferase reporter experiments upon viral infection. 
The luciferase assay showed for all infected cell lines 
a reduction on ISRE activity, except for N29.1 cells. 
Inhibition of Type Ⅰ and Ⅲ IFN production by interfering 
with the STAT signaling has been demonstrated in 
several recent publications for the ZIKV[32–34]. Particularly 
NS5 is described to counteract IFN signaling by binding 
STAT2 and to promote STAT2 degradation by the 
proteasome[32]. Moreover, NS1, NS4B and NS2B3 were 
also shown to inhibit IFN signaling[34]. In contrast to wt 
mice having a functional adaptive immune response, 
IFNAR KO mice are susceptible to ZIKV infection[16,23]. 
This also emphasizes the importance of the IFN response 
which has to be trapped by the virus in order to establish 
infection. Astonishingly, the ISRE promoter element was 
also reduced in its activation in CHO cells, although they 
do not support viral infection and replication. Since it 
is not known if the lack of susceptibility of CHO cells for 
ZIKV infection is due to impaired attachment, entry or 
post entry steps there exist a variety of possibilities that 
could lead to an interference with the interferon signaling. 
The results from the luciferase assay were strengthened 
by STAT1 staining in infected A549 cells. The changed 
distribution in infected vs uninfected cells is obvious, 
but from these experiments it stays uncertain if this is 
causative for the reduced ISRE activation. The results of 
this study support ZIKV research by providing different 
cell culture models based on various tissues, so that the 
information at hand enables the investigation of ZIKV life 
cycle in more detail. Also drug testing and pathogenicity 
studies can be fostered by the shown cell culture models 
susceptible to ZIKV.

ARTICLE HIGHLIGHTS
Research background
Zika virus (ZIKV) is an emerging virus transmitted mainly by mosquitos, that 

has spread during the last decades from Africa, to Asia, over Micronesia to the 
Americans causing an epidemic in Brazil in the years 2016/2017. In order to 
propagate the virus in cell culture we investigated various cell lines for their 
susceptibility to ZIKV infection.

Research motivation
To date ZIKV is mainly propagated in Vero cells derived from kidney epithelial 
cells from African green monkey. This study aimed to investigate the potential 
of various cell lines to support the viral life cycle in order to provide researchers 
with suitable cell culture systems for different issues in the field of ZIKV 
research.

Research objectives
The objectives of this research were to investigate ten human and non-
human cell lines from various tissues (e.g., hepatocytes, keratinocytes and 
neuronal cells) with regard to their intracellular amount of viral genomes and 
infectious viral particles upon ZIKV-infection. Moreover, the amount of secreted 
viral genomes and infectious viral particles was analyzed in the cell culture 
supernatants. Furthermore, the amount of infected cells was analyzed by 
immunofluorescence using an Envelope-specific antibody and the amount of 
NS1 was analyzed by western blot. In order to draw a conclusion whether parts 
of the innate immune response are responsible for the found differences in viral 
support, STAT1 distribution and expression was analyzed.

Research methods
Quantification of viral genomes was performed by qPCR. For the detection of 
genomes from whole cell lysate a standard PCR protocol with SYBR green 
was used with cDNA as template transcribed from total RNA that was isolated 
with a Tri-reagent. Viral genomes released into the cell culture supernatant 
were isolated with a viral RNA isolation kit and subjected to a Taqman-PCR 
based on a ZIKV-Lightmix Kit. The detection of infectious virus was performed 
by virus titration assay using serial dilutions from the supernatant or from 
cleared cellular lysates. The amount of infected cells was analyzed with 
immunofluorescence microscopy by using an Env-specific antibody and with 
western blot using NS1-specific antibody. The effect on the innate immunity 
was monitored by luciferase-reporter assay and STAT1 analysis distribution in 
the immunofluorescence microscopy.

Research results
All investigated cell lines except CHO cells supported infection, replication and 
release of ZIKV. While in infected A549 and Vero cells a pronounced cytopathic 
effect was observed COS7, 293T and Huh7.5 cells were most resistant. 
Although the analyzed cell lines released comparable amounts of viral genomes 
to the supernatant significant differences were found for the number of 
infectious viral particles. The neuronal cell lines N29.1 and SH-SY5Y released 
100 times less infectious viral particles than Vero-, A549- or 293T-cells. 
However there is no strict correlation between the amount of produced viral 
particles and the induction of an interferon response in the analyzed cell lines.

Research conclusions
The results presented so far provide a toolbox of cell culture systems for ZIKV 
research in general. However, the analyzed cells differ strongly with respect 
to the amount of released viral particles, whereas the amount of genomes 
amongst the cells in the supernatant and inside of infected cells are more or 
less equal. This is an important finding, since a lot of research and diagnostic is 
based on qPCR analysis only. 

Research perspectives
Further research should aim on the differences of released viral genomes 
vs released infectious virus. Are there differences in the release pathway? 
Which pathways are used for viral egress? Why are certain cell lines not 
succeptible?
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Papeete, Tahiti) for disposing ZIKV Polynesia strain (PF 
13/251013-18). 
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