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Abstract
Vaccinations for coronavirus disease-2019 (COVID-19) have begun more than a 
year before, yet without specific treatments available. Rifampicin, critically 
important for human medicine (World Health Organization’s list of essential 
medicines), may prove pharmacologically effective for treatment and chemopro-
phylaxis of healthcare personnel and those at higher risk. It has been known since 
1969 that rifampicin has a direct selective antiviral effect on viruses which have 
their own RNA polymerase (severe acute respiratory syndrome coronavirus 2), 
like the main mechanism of action of remdesivir. This involves inhibition of late 
viral protein synthesis, the virion assembly, and the viral polymerase itself. This 
antiviral effect is dependent on the administration route, with local application 
resulting in higher drug concentrations at the site of viral replication. This would 
suggest also trying lung administration of rifampicin by nebulization to increase 
the drug’s concentration at infection sites while minimizing systemic side effects. 
Recent in silico studies with a computer-aided approach, found rifampicin among 
the most promising existing drugs that could be repurposed for the treatment of 
COVID-19.
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Core Tip: Rifampicin may prove pharmacologically effective, supplying a possible and cost-effective 
solution to the global battle against severe acute respiratory syndrome coronavirus 2, not only for 
treatment but also for chemoprophylaxis of those at higher risk. It is also possible to administer rifampicin 
by nebulization. The publications describing the in vitro mechanisms and providing proof of clinical 
efficacy of rifampicin against RNA viruses with their own RNA polymerase have emerged since 1969-
1971. Recent in silico studies using a computer-aided approach, found rifampicin among the most 
promising existing drugs that can be repurposed for the treatment of coronavirus disease-2019.

Citation: Panayiotakopoulos GD, Papadimitriou DT. Rifampicin for COVID-19. World J Virol 2022; 11(2): 90-97
URL: https://www.wjgnet.com/2220-3249/full/v11/i2/90.htm
DOI: https://dx.doi.org/10.5501/wjv.v11.i2.90

INTRODUCTION
The coronavirus disease-2019 (COVID-19) pandemic presents a puzzling challenge without specific 
treatment yet[1], and while vaccinations have been initiated more than a year before[2], there is still a 
long way to go before herd immunity can be achieved, even in the developed countries[3]. In the 
critically ill patients, plasma transfusions from recovered patients have been tried[4] and specific severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) memory T cells could also treat mode-
rate/severe cases of COVID-19[5]. When and with which pharmacological cocktail to intervene is under 
rigorous investigation worldwide[6]. Chemoprophylaxis of exposed healthcare personnel[7], along with 
those at higher risk for severe illness, is also equally exigent, at least until sizable worldwide 
immunization will be achieved[8]. And even if vaccination campaigns do make progress in the Western 
world, this process may take much longer in the developing countries. Even then, the possible 
emergence of SARS-CoV-2 new mutated strains could substantially impact the protection of currently 
available vaccines or the physical immunity acquired from previous illness from the previous SARS-
CoV-2 variants[9] (https://theconversation.com/the-lambda-variant-is-it-more-infectious-and-can-it-
escape-vaccines-a-virologist-explains-164156).

Rifampicin, discovered in 1965, was marketed in Italy in 1968, and approved in the United States in 
1971. It is on the World Health Organization's (WHO) list of essential medicines, classified by the WHO 
as critically important for human medicine. Made by the soil bacterium Amycolatopsis rifamycinica, 
rifampicin is widely available as a generic medication with an extremely low cost compared to any other 
modern antiviral medication. It belongs to the Rifamycins, characterized as antiviral drugs which inhibit 
transformation of cells by viruses[10]. While in the fourth wave of this pandemic, without specific 
medications available yet, along with the ongoing computational analysis of potential drugs[11], it 
becomes clearer that - at least for now and beyond active immunization - we still need to rely on one 
hand on the enhancement of our immune system and on the other hand on the known anti-inflam-
matory and immunomodulatory effects of some antibacterials and the emerging antiviral effects of old 
but precious drugs, such as rifampicin. For the first task, which is to strengthen our immunity, adding 
zinc sulphate increased patients’ discharges, decreasing the need for ventilation, intensive care unit 
admissions, and mortality[12]. Increased intracellular zinc concentrations seem to inhibit RNA-
dependent polymerases, helping to support robust immune responses and modulating immune cell 
activity. For that task, researchers have tried high doses of vitamin C[13]. And last but not least, proper 
supplementation[14,15] or even adjunctive therapy with vitamin-D[16], to capitalize on its extra-skeletal 
immunomodulatory properties, may also prove valuable, playing a crucial role in enhancing and 
coordinating the immune system’s response to SARS-CoV-2 infection[17,18]. For that purpose, person-
alized immunotherapy approaches with agents/monoclonal antibodies that block receptors for 
interleukin-1/6 have been initiated, aiming to control the macrophage activation syndrome which has 
been suggested as a major mechanism of lung impairment in COVID-19[19]. Monoclonal antibodies 
have shown promising results, with prompt administration though being a key issue to exert their 
benefit[20]. Bamlanivimab, a neutralizing monoclonal antibody against SARS-CoV-2, reduced the 
incidence of COVID-19[21].

Herein, we discuss the possibility of repurposing rifampicin for COVID-19, and we call for immediate 
coordinated - international if possible - collaboration[22] in in vitro studies, open-label pilot trials, and 
definitive phase 3 clinical trials.

ANTIVIRAL PROPERTIES OF RIFAMPICIN: MECHANISMS AND FACTS
Careful analysis of the COVID-19 clinical characteristics and computed tomography scans indicates that 
the pulmonary nontuberculous mycobacterial disease, in which azithromycin and rifampicin are among 

https://www.wjgnet.com/2220-3249/full/v11/i2/90.htm
https://dx.doi.org/10.5501/wjv.v11.i2.90
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first line treatment options, seems to share a striking analogy with SARS-CoV-2 pneumonia[23]. Going 
back to 1969, a conventional antibacterial of proved pharmacological acceptability in man, rifampicin (or 
rifampin: https://www.accessdata.fda.gov/drugsatfda_docs/Label/2018/050420s077,050627s020
Lbl.pdf), was found to have a direct antiviral effect in some mammalian viruses as poxviruses including 
the causative agent of smallpox and mainly on viruses which have their own RNA polymerase[24], 
which is the case for SARS-CoV-2 and the main mechanism of action of remdesivir. Initially developed 
against Ebola, remdesivir raised hope, as it incorporates into nascent viral RNA chains and results in 
premature termination of viral replication. Remdesivir showed higher recovery and hospital discharge 
rates, but no significant reduction in mean time to clinical improvement or mortality[25].

Regarding large DNA viruses, the antiviral activity of rifampicin arises from its binding to the F-ring, 
highly conserved across mammalian poxviruses, which cannot mutate in response to rifampicin 
inhibition and thus provide a potential base for the development of broad-spectrum inhibitors against 
infectious poxviruses species in animals and humans[26]. However, the efficacy of rifampicin against 
viruses with their own RNA polymerase shares the same mechanism with its antibacterial activity 
against microbial RNA polymerases. The inhibitory mechanism of rifampicin on the RNA polymerases 
is a simple steric block of transcription elongation due to its ability to bind tightly to non-conserved 
parts of the structure, disrupting a critical RNA polymerase function[27]. The rifampicin molecule is a 
condensation product of 3-formyl rifamycin SV and 1-amino 4-methyl piperazine with the antiviral 
activity existing in the rifamycin part of the molecule. Its antiviral effect is reversible as removal of the 
drug late in the virus cycle leads to a mature and infectious virus even within 1 h. This would mean that 
careful monitoring of rifampicin levels may assure effectiveness. The selective antiviral effect of 
rifampicin involves inhibition of late viral protein synthesis[28], virion assembly[29], and the viral 
polymerase itself[30].

Table 1 summarizes the studies on the possible antiviral properties of rifampicin against SARS-CoV-2 
presenting their main findings.

ADMINISTRATION ROUTE AND POTENTIALS
Studies in volunteers have also shown a dependence of rifampicin’s antiviral effect on administration 
route, with local application resulting in higher concentrations of the drug at the site of viral replication
[31]. This would suggest trying lung administration of rifampicin by nebulization[32], increasing the 
drug’s concentration at infection sites while minimizing systemic side effects. This approach, using 
aerosolized rifampicin-loaded polymeric microspheres, reduced most measures of tuberculosis infection 
in experimental animals[33]. However, since the major cell entry receptor for SARS-CoV-2 is the 
metallocarboxyl peptidase angiotensin receptor 2[34], whose expression is very low in the lung, the 
approach of lung administration may not exhibit the expected systemic antiviral effects of rifampicin 
and requires further investigation.

An effective intracellular concentration of rifampicin without serious toxicity seems possible and 
probable, given its pharmacokinetic profile, suitable also for chemoprophylaxis (https://pubchem.
ncbi.nlm.nih.gov/compound/Rifampicin#section=Drug-Classes). Current studies have evaluated 
intravenous rifampicin 20 mg/kg for 2 wk followed by high dose oral formulation (35 mg/kg for 6-8 
wk) for improved survival from adult tuberculous meningitis[35]. Data concerning intracellular 
rifampicin concentrations to exhibit effective antiviral activity against influenza virus A[36], African 
swine fever virus[37], and cytomegalovirus[38] have been already available.

IN SILICO STUDIES INDICATE POSSIBLE EFFECTIVENESS OF RIFAMPICIN
The above finding may have just been verified by a recent in silico study using a computer-aided drug 
designing approach: Rifampicin was the most promising existing drug that could be repurposed for the 
treatment of COVID-19[39]. Moreover, using a comprehensive drug repurposing and molecular docking 
approach, prediction of potential inhibitors for RNA-dependent RNA polymerase of SARS-CoV-2 
revealed that rifabutin could be an effective drug for COVID-19, having the lowest binding energy 
compared to the positive control remdesivir[40]. Rifabutin, however, belongs to the rifamycins 
(rifampicin, rifapentine, and rifabutin), but with rifampicin being the most used[41]. In silico virtual 
screening within the United States Food and Drug Administration (FDA)-approved drugs targeting the 
RNA-dependent RNA polymerase, which is the critical enzyme for coronavirus replication, also placed 
rifampicin among the five most potent potential anti-SARS-CoV-2 therapeutics[42]. Virtual screening of 
FDA-approved drugs targeting not only the main protease of SARS-CoV-2 but also TNF-α, IL-6, and IL-
1β, which are the key molecules involved in the 'cytokine storm' occurring in COVID-19, indicated 
rifampicin as one of the most promising drugs for the treatment of COVID-19, together with letermovir
[43]. These were systematic docking studies, further confirmed by molecular dynamics simulations and 
molecular calculations; however, such studies are prone to the high probability of artifacts needing 
experimental verification.

https://www.accessdata.fda.gov/drugsatfda_docs/Label/2018/050420s077,050627s020Lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/Label/2018/050420s077,050627s020Lbl.pdf
https://pubchem.ncbi.nlm.nih.gov/compound/Rifampicin#section=Drug-Classes
https://pubchem.ncbi.nlm.nih.gov/compound/Rifampicin#section=Drug-Classes
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Table 1 Studies on the possible antiviral properties of rifampicin against severe acute respiratory syndrome coronavirus 2

Ref. Year Findings

Becker[10] 1976 Rifampicin belongs to the rifamycins, characterized as antiviral drugs which inhibit transformation of cells by 
viruses

[24] 1969 Rifampicin has a direct antiviral effect in mammalian viruses as poxviruses including the causative agent of 
smallpox and on viruses which have their own RNA polymerase

Campbell et al[27] 2001 The inhibition mechanism of rifampicin to the RNA polymerases is a simple steric block of transcription elongation 
due to its ability to bind tightly to non-conserved parts of the structure, disrupting a critical RNA polymerase 
function

Ben-Ishai et al[28], Moss et al
[29], McAuslan et al[30]

1969 Rifampicin inhibits the late viral protein synthesis, the virion assembly, and the viral polymerase itself

Moshkowitz et al[31] 1971 Rifampicin’s antiviral effect is dependent on the administration route, with local application resulting in higher 
concentrations at the site of viral replication

Tewes et al[32] 2008 Administration of rifampicin by nebulization is possible using aerosolized rifampicin-loaded polymeric 
microspheres

And et al[36] 1980

Dardiri et al[37] 1971

Halsted et al[38] 1972

Intracellular rifampicin concentrations exhibit effective antiviral activity against: Influenza virus A, African swine 
fever virus and cytomegalovirus

The SARS-CoV-2 RNA-dependent RNA polymerase (nsp12) catalyzes the replication of RNA from 
RNA templates. Changes in the virus life cycle are exhibited by the fixation of specific ligands in the 
active site of this crucial enzyme. A recent study found the highly conserved nsp12 motifs (A-G), and 
discovered the interactions with rifabutin and rifampicin, among other ligands. Both of them interacted 
with at least two nsp12 motifs, indicating that they could be both used as inhibitors of SARS-CoV-2 
nsp12 protein[44]. Another in silico docking approach also found that rifampicin has good binding 
affinity with the COVID-19 protease[45], proposing its use as therapeutic treatment as well as 
prophylaxis.

Of course, all the above findings require further validation by in vitro studies and clinical trials. 
Table 2 summarizes the in silico studies indicating effectiveness of rifampicin against SARS-CoV-2.

DRUG MONITORING AND INTERACTIONS
Experience from coadministration of antitubercular use of rifampicin with antiretroviral therapy may, 
however, be complicated by drug-to-drug interactions concerning drug metabolism and transport[46], 
which warrants caution in clinical trials designed to test the efficacy of rifampicin against SARS-CoV-2 
in case of co-administration with other drugs that are also metabolized in the liver. A plan is needed to 
treat COVID-19 in the special group of patients with advanced liver disease[47], as rifampicin is an 
agonist of the nuclear pregnane nuclear receptor that regulates CYP3A4[48,49], a part of cytochrome 
P450 enzymes that metabolizes 60% of prescribed drugs. Thus, rifampicin can cause serious drug-to-
drug interactions in combination with other medications for COVID-19 treatment. Also, it should be 
noted that concerning rifampicin, therapeutic drug monitoring is needed when extracorporeal 
membrane oxygenation is to be used as a life-saving system for critically ill patients with cardiac and/or 
respiratory failure[50]. The co-administration of plant-derived compounds such as gallic acid and tannic 
acid, which are effective potentiators  resulting in a 4-fold increase in the potency of rifampicin, 
warrants further study[51]. A known infrequent occurrence, with few cases reported in the literature, of 
rifampicin-induced pneumonitis mimicking acute respiratory distress syndrome and requiring SARS-
CoV-2 testing[52], merits caution. Because of an uncommon immuno-allergic reaction, following 
intermittent rifampin administration, with disseminated intravascular coagulation including fever, 
hypotension, abdominal pain, and vomiting within hours of ingestion[53], awareness is warranted for 
COVID-19 patients suffering from the life-threatening cytokine storm syndrome[54]. Hence, even in the 
latter case, as in an allergic reaction to rifampicin, apart from targeted anti-cytokine therapy[55], broadly 
immunosuppressive glucocorticoids would be of value.

SAFETY AND ADVANTAGES OF RIFAMPICIN
Rifampicin is not the only antibiotic that could be repurposed for COVID-19. Quinupristin, for example, 
is an antibiotic in clinical use for two decades now with minor side effects and has also proven in silico 
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Table 2 In silico studies indicating rifampicin’s possible effectiveness against coronavirus disease-2019

Ref. Year Findings

Mishra et 
al[39]

2020 Using a computer-aided drug designing approach, rifampicin was the most promising existing drug that could be repurposed for the 
treatment of COVID-19

Parvez et 
al[40]

2020 Using a comprehensive drug repurposing and molecular docking approach, prediction of potential inhibitors for RNA-dependent 
RNA polymerase of SARS-CoV-2 revealed that rifabutin could be an effective drug for COVID-19, having the lowest binding energy 
compared to the positive control remdesivir

Forrest et 
al[41]

2010 Rifabutin belongs to the rifamycins (rifampicin, rifapentine and rifabutin); rifampicin is the most used

Pokhrel et 
al[42]

2020 In silico virtual screen within the United States Food and Drug Administration-approved drugs targeting the RNA-dependent RNA 
polymerase, which is the critical enzyme for coronavirus replication, placed rifampicin among the five most potent potential anti-
SARS-CoV-2 therapeutics

Pathak et 
al[43]

2021 A similar approach, by targeting the main protease of SARS-CoV-2 but also TNF-α, IL-6, IL-1β, revealed rifampicin as one of the most 
promising drugs

Elkarhat et 
al[44]

2020 The SARS-CoV-2 RNA dependent RNA polymerase (nsp12) catalyzes the replication of RNA from RNA templates. Changes in the 
virus life cycle are exhibited by the fixation of specific ligands in the active site of this crucial enzyme. A recent study found the highly 
conserved nsp12 motifs, and discovered the interactions with rifabutin and rifampicin, concluding that both could function as 
inhibitors of the SARS-CoV-2 nsp12 protein

Soni et al
[45]

2020 An in silico docking approach also found that rifampicin has good binding affinity with the COVID-19 protease, proposing its use as 
therapeutic treatment as well as prophylaxis

COVID-19: Coronavirus disease-2019; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2.

potentially effective against SARS-CoV-2[42]. However, the knowledge and clinical experience as well 
as the safety profile of rifampicin even in neonates, infants[56], and pregnant woman[57] make a 
compelling case where alternative therapeutic options are limited. Last, but not least in this instance, the 
particularly low cost and the potential for worldwide availability of rifampicin as a generic medication 
may prove a worthy solution, for early intervention protocols against SARS-CoV-2.

RIFAMPICIN IN COVID-19 IN CLINICAL PRACTICE
A recent case report described the favorable outcome under treatment with chloroquine and rifampin of 
an unusual association of COVID-19, pulmonary tuberculosis, and human immunodeficiency virus 
infection[58], attributed either to rifampicin inhibiting the formation of mRNA of SARS-CoV-2 and/or 
the possible synergistic effect of chloroquine and rifampin, despite that anti-tubercular drugs such as 
rifampicin are powerful enzyme inducers that can reduce the effectiveness of chloroquine. Up to now, 
there are no clinical studies available on the treatment of COVID-19 patients with rifampicin. 
Anecdotally, experienced pediatricians have also successfully treated neonates and infants[59] found 
positive for SARS-CoV-2 with rifampicin, clearly aiming for their protection with their parents suffering 
overt COVID-19 with an eventful clinical course.

CONCLUSION
Timely administration, though, is important for all current regimens on trial: It must not be too late 
when treatment starts. Specifically, rifampicin interferes with the viral replication, and thus, early 
administration after diagnosis of COVID-19 could make a significant difference to its presumed effect-
iveness against SARS-CoV-2 infection. Similarly, for rifampicin’s use for postexposure prophylaxis to 
people exposed to index cases of invasive meningococcal infection, pre-exposure together with post-
exposure prophylaxis could also be a potential strategy, at least for unvaccinated people[60]. The WHO 
proposed a similar approach for people at elevated risk for infection, before or after exposure, during 
the influenza pandemic.

Call for studies
Facing this unprecedented global emergency and given the experience, safety, and knowledge behind 
rifampicin, we call for international collaboration proposing in vitro studies, open-label pilot trials, and 
definite phase 3 clinical trials for testing treatment and chemoprophylaxis efficacy of rifampicin against 
COVID-19. With all the above compelling evidence, rifampicin merits evaluation against COVID-19.
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Abstract
Several mechanisms may explain how exercise training mechanistically confers 
protection against coronavirus disease 2019 (COVID-19). Here we propose two 
new perspectives through which cardiorespiratory fitness may protect against 
severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Physical 
exercise-activated adenosine monophosphate (AMP)-activated protein kinase 
(AMPK) signaling induces endothelial nitric oxide (NO) synthase (eNOS), 
increases NO bio-availability, and inhibits palmitoylation, leading to specific and 
immediate SARS-CoV-2 protection. AMPK signaling also induces angiotensin 1-7 
release and enhances eNOS activation thus further mediating cardio- and reno-
protection. Irisin, a myokine released from skeletal muscles during aerobic 
exercise, also participates in the AMPK/Akt-eNOS/NO pathway, protects 
mitochondrial functions in endothelial cells, and antagonizes renin angiotensin 
system proinflammatory action leading to reductions in genes associated with 
severe COVID-19 outcomes. Collectively, all the above findings point to the fact 
that increased AMPK and irisin activity through exercise training greatly benefits 
molecular processes that mediate specific, immediate, and delayed SARS-CoV-2 
protection. Maintaining regular physical activity levels is a safe and affordable 
lifestyle strategy against the current and future pandemics and may also mitigate 
against obesity and cardiometabolic disease syndemics. Move more because a 
moving target is harder to kill.
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Core Tip: Increased nitric oxide bio-availability through exercise training-induced activation of the master 
regulator of metabolism, the energy-sensing cellular enzyme adenosine monophosphate-activated protein 
kinase and irisin, the fat browning exercise hormone, released from skeletal muscles during aerobic 
exercise may mediate specific, immediate, and delayed severe acute respiratory syndrome coronavirus-2 
protection. Move more because a moving target is harder to kill.

Citation: Papadopoulos KI, Sutheesophon W, Aw TC. Too hard to die: Exercise training mediates specific and 
immediate SARS-CoV-2 protection. World J Virol 2022; 11(2): 98-103
URL: https://www.wjgnet.com/2220-3249/full/v11/i2/98.htm
DOI: https://dx.doi.org/10.5501/wjv.v11.i2.98

INTRODUCTION
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the cause of the coronavirus 
disease 2019 (COVID-19), has to date (December 2021) infected over 270 million people worldwide and 
the death tally approaches 5.5 million[1]. Evolutionary evidence supports the survival of the fittest 
through natural selection for pathogen resistance, with effects mediated through younger age, lifestyle 
choices and importantly, genetics[2]. Epidemiological data support a lower COVID-19 incidence and 
severity in children and adolescents[3], individuals with high cardiorespiratory fitness (CRF) and 
muscle strength[4] as well as certain protective erythropoietin (EPO) augmenting genetic variants[3]. At 
the other end of the spectrum, inactivity, obesity, insulin resistance, diabetes, and hypertension, are 
associated with worse SARS-CoV-2 infection course and disproportionate COVID-19 mortality risk[5,6]. 
Public policies should promote increased physical activity and endeavor to increase the overall physical 
fitness in society by all available means. This is especially imperative for the population groups 
associated with worse SARS-CoV-2 prognosis[7]. The scope of this minireview is to focus on the 
mechanistical perspectives of two novel pathways, namely adenosine monophosphate (AMP)-activated 
protein kinase (AMPK) and irisin, through which exercise training may mitigate against SARS-CoV-2 
infection and improve COVID-19 prognosis.

We conducted a PubMed literature search for publications in the English language since the start of 
the pandemic until September 2021, using the keywords: “AMPK”; “Irisin”; “physical exercise”; “renin 
angiotensin system (RAS)”; “angiotensin-converting enzyme 2 (ACE2)”; “nitric oxide (NO)”; 
“endothelial nitric oxide (NO) synthase (eNOS)”; “beta common receptor (βcR)”; “SARS-CoV-2”; and 
“COVID-19”. We noticed a veritable dearth of publications, especially when the keywords “eNOS”, 
“Irisin”, “AMPK” were used in different combinations together with “physical exercise” and “SARS-
CoV-2 or COVID-19” which prompted us to focus on AMPK/eNOS and Irisin. Those pathways are 
known for their cardiometabolic, and vascular protective properties and suggest concrete mechanisms 
that offer immediate and delayed SARS-CoV-2 protection[8].

HOW DOES EXERCISE IMPROVE IMMUNITY? 
Several reviews have described numerous immune mechanisms which may explain how exercise 
training mechanistically confers protection against COVID-19. First, exercise downregulates the 
expression/activation of proinflammatory Toll-like receptors (TLR)[5]. Second, exercise training 
demonstrates an anti-inflammatory cytokine profile with increased levels of anti-inflammatory 
interleukin (IL)-10, IL-1 receptor antagonist (IL-1ra), and IL-37, which in turn inhibits the TLR-inflam-
mation pathway and counteracts the inflammatory response induced by the inflammasomes[5]. In 
general, exercise promotes the recirculation of key immune cells and mediates an anti-inflammatory and 
antioxidant state through multiple mechanisms[5]. Effective rehabilitation programs for sarcopenia, 
could reduce inflammation and the need for IL-37 to exert its negative feedback to control the release of 
inflammatory cytokines[9].

https://www.wjgnet.com/2220-3249/full/v11/i2/98.htm
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NEWER PERSPECTIVES ON EXERCISE PROTECTION IN COVID-19
AMPK
A more specific mechanism with immediate antiviral effects involves AMPK. We propose two new 
perspectives through which high CRF may protect from SARS-CoV-2. AMPK is an energy-sensing 
heterotrimeric enzyme, able to detect minute changes in cellular ADP and AMP as well as glucose 
availability[10]. Located in various cells and organs, AMPK modulates numerous downstream targets 
through switching phosphorylation on-off, including targets in the RAS[11]. AMPK is activated through 
several physiological and pathological conditions, such as hypoxia, caloric restriction, and physiological 
exercise but also via certain well known pharmacological agents as metformin, aspirin, canagliflozin, 
telmisartan, and herbal substances such as resveratrol, berberine, and quercetin[11,12]. Since activating 
AMPK has been shown to suppresses the Angiotensin II-induced vascular smooth muscle proliferative 
pathway and improve cardiometabolic disease, we believe that physical exercise-induced AMPK 
regulation of diverse cellular pathways is a reasonable mechanism in mediating both immediate and 
delayed SARS-CoV-2 protection (Figure 1)[11,13,14]. Physiological exercise induces AMPK activation as 
an important molecular mechanism of adaptation after physical activity. AMPK-eNOS phosphory-
lation-activated formation of NO appears to be a signal that impacts metabolic activity[15]. Mice with an 
eNOS mutation that prevents AMPK-dependent phosphorylation and impedes NO-biosynthesis 
develop hyperinsulinemia and insulin resistance with high fasting blood sugar, increased adiposity, 
elevated inflammatory markers and weight gain when fed a high-fat diet[16]. eNOS phosphorylation 
through AMPK will lead to increased NO generation and NO bio-availability in the lung and blood 
vessels[17]. Host endothelium is where the critical COVID-19 battle between SARS-CoV-2 and the host 
is fought with NO as one of the main contenders (Figure 1)[18]. SARS-CoV-2 spike (S) protein induces 
endotheliitis via downregulation of angiotensin-converting enzyme 2 (ACE2) and NO impairment[18]. 
At the same time, increased generation and bio-availability of NO inhibits SARS-CoV-1/2[19] 
replication through two clearly different mechanisms: (1) Decline in the production of viral RNA in the 
very first stages of viral replication; and (2) decrease in the palmitoylation of nascently-expressed S 
protein that impacts the fusion of the S protein with ACE2[20]. Similar NO effects are presumed for 
SARS-CoV-2, given both SARS-CoV-1/2 engage ACE2 in the same manner[21]. Palmitoylation of SARS-
CoV-2 S protein is critical in controlling membrane fusion and virion infectivity[22]. Inhibition of acetyl-
CoA carboxylase by AMPK will directly inhibit palmitate synthesis thus engendering additional SARS-
CoV-2 protection[23]. In addition, orlistat, a pharmaceutical substance used in weight loss treatment 
also inhibits fatty acid synthase[23]. Through both mechanisms of increased NO bio-availability and 
directly reducing palmitate synthesis, physical exercise engenders specific and immediate SARS-CoV-2 
protection[20,22,23].

Chronic exercise induces EPO elevation, a well-known neuroprotective hormone, which mediates 
COVID-19 protection[3]. EPO’s protective effects are mediated through AMPK-dependent signaling, 
leading to enhanced phosphorylation of the beta common receptor (βcR) and eNOS, increased βcR-
AMPK-eNOS complex formation, NO production, increased NO bio-availability, and ultimately tissue 
protection (Figure 1)[24]. Elevated, protective EPO mRNA levels were recently reported to be 2.6 times 
higher in nasopharyngeal swab samples of adult SARS-CoV-2 patients that were asymptomatic or 
showing mild COVID-19 symptoms, as compared to a control group[25]. Patients with acute respiratory 
distress syndrome (ARDS) in a moderate-sized COVID-19 cohort showed lower soluble eNOS levels, 
implying that greater eNOS activity and the presumed increased NO synthesis probably prevent 
patients from serious lung complications[26]. Fluvoxamine, intensely investigated as a SARS-CoV-2 
protective agent, also mediates its action through sigma-1 receptor (S1R) agonism that induces eNOS, 
albeit via phosphatidylinositol-3-kinase and protein kinase B signaling[27].

Moreover, AMPK signaling exerts beneficial effects through RAS by elevating the protective arm of 
ACE2 and angiotensin (Ang) 1-7 through the Mas receptor (MasR) (Figure 1)[11]. Phosphorylation of 
ACE2 by AMPK enhances the stability of ACE2 and increases Ang 1-7 and eNOS-derived NO bio-
availability further sustaining increased, protective NO levels[28]. Reduced inflammatory responses in 
lung emphysema, mitigation of pulmonary hypertension and protection against lipopolysaccharide-
induced acute lung injury and ARDS have been reported with increased AMPK signaling[28-30]. Later 
in the course of SARS-CoV-2 infection, AMPK/ACE2/Ang 1-7/MasR-induced NO-increase may be 
cardio-, and renoprotective through lower oxidative stress, apoptosis, and systemic inflammatory 
responses[11,31].

Irisin perspectives in COVID-19
Irisin is a myokine, cleaved as a peptide hormone of 112 amino acids from fibronectin type III domain 
containing 5 in skeletal muscle and secreted during aerobic exercise[32]. Irisin is positively correlated 
with an active lifestyle and vigorous intensity physical activity[32]. Both aerobic and resistance exercise 
are associated with high irisin levels, especially in older age groups[32]. Irisin is involved in muscle 
hyper-trophy and controls energy levels in muscle, participates in glucose homeostasis and browning of 
white adipose tissue, and has been implicated in exercise-induced neuroprotection as it is highly 
expressed in the brain[33,34]. Furthermore, exercise-derived irisin reduces arterial stiffness and lowers 
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Figure 1 Molecular mechanisms of exercise. Chronic exercise induces transient hypoxia and elevates erythropoietin (EPO) that induces endothelial nitric 
oxide synthase (eNOS) via the tissue protective receptor (EPOR/βcR). Exercise activates adenosine monophosphate-activated protein kinase (AMPK) and releases 
Irisin, resulting in eNOS activation and subsequent nitric oxide production inhibiting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication and 
mitigating cell entry (X). AMPK stabilizes angiotensin-converting enzyme (ACE) 2 and increases protective angiotensin (Ang) 1-7 conversion which in turn activates 
eNOS via the MasR. Irisin also exerts protective functions on mitochondria. AMPK: Adenosine monophosphate-activated protein kinase; EPO: Erythropoietin; EPOR: 
EPO receptor; βcR: β-common receptor; TPR: Tissue protective receptor; eNOS: Endothelial nitric oxide synthase; NO: Nitric oxide; L-Arg: Arginine; ACE2: 
Angiotensin-converting enzyme 2; Ang II: Angiotensin II; Ang1-7: Angiotensin 1-7; MasR: Mas receptor; P: Phosphorylation; SARS-CoV-2: Severe acute respiratory 
syndrome coronavirus 2.

blood pressure through activation of the AMPK/Akt-eNOS/NO pathway and has thus the potential to 
impact cardiovascular health (Figure 1)[8,35]. Irisin also protects mitochondrial function in endothelial 
cells and benefits endothelial barrier integrity through the integrin αVβ5 receptor and activated AMPK 
signaling[36]. Moreover, irisin can directly antagonize Ang II-induced cardiac profibrotic response in 
vitro as well as in vivo[37]. In addition, serum irisin levels were decreased and negatively correlated with 
disease severity and mortality in ARDS patients[36]. Recently, irisin modulation of genes associated 
with severe COVID-19 outcomes was reported in human subcutaneous adipocyte cell culture[38].

Collectively, all the above findings point to the fact that increased AMPK and irisin activity with 
exercise training greatly benefits molecular processes that mediate specific, immediate, and delayed 
SARS-CoV-2 protection.

CONCLUSION
Evolution arms us with ingenious and adaptive defense structures - our immune system, musculature, 
and cardiovascular system. Increased CRF through regular aerobic exertion and resistance exercise, 
greatly benefits all the above systems promoting survival and longevity[5]. Regular physical exercise 
enhances vaccination response and immunoprotection[5]. Maintaining regular physical activity levels 
along with prudent and balanced nutrition are safe and affordable lifestyle strategies against the current 
and future pandemics. Physical exercise may also reverse insulin resistance, alleviate hypertension, and 
mitigate against obesity and cardiometabolic disease syndemics[39]. While observing social distancing, 
exercise is still possible in public indoor spaces or outdoors. Exercise prescription for vulnerable groups 
and free or subsidized use of digital technology with online platforms delivering exercise classes could 
be employed to achieve the recommended exercise guidelines. For greater health benefits, 300 min of 
aerobic activity is recommended along with strength training exercises for all major muscle groups at 
least two times a week[40]. “Work from home” directives along with time savings from daily 
commuting have potentially freed up time for exercise that can be achievable in the home environment. 
The beneficial effects of exercise training in communicable and non-communicable disease prevention 
must remain central when deciding appropriate public health policies and subsidies. Government 
bodies should heed the Damoclean warning in this pandemic of the excess mortality threatening over 
500 million people affected with obesity and diabetes worldwide or risk new hecatombs. We may have 
to learn to live with the virus for many years to come. It is thus imperative, on an individual level, to 
devise personal strategies for exercise training that do not depend on access to public gymnasiums. The 
takeaway message is once again to move more because a moving target is harder to kill.
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Abstract
N-acetyl cysteine (NAC) is a promising drug for prophylaxis and treatment of 
coronavirus disease 2019 (COVID-19) based on antioxidant and anti-inflammatory 
mechanisms. Further studies with cautious approach are needed to establish the 
benefits and risks before considering NAC as an adjuvant treatment for COVID-
19.
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Prophylaxis; Treatment
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Core Tip: Risk of coagulopathy is noteworthy in coronavirus disease 2019 (COVID-19) 
and cerebral hemorrhage could be a potential risk in COVID-19 patients receiving N-
acetyl cysteine (NAC). Results of well-designed randomized controlled trials should be 
awaited before NAC becomes a common practice for prophylaxis and treatment of 
patients with COVID-19.
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TO THE EDITOR
The impact of coronavirus disease 2019 (COVID-19) pandemic resulting in substantial mortalities and 
morbidities has driven the quest to accelerate the treatment options for containment of this public health 
emergency. We read with interest the review by Dominari et al[1]. The authors have reviewed the 
pharmacology, efficacy, and safety of N-acetyl cysteine (NAC) as an adjuvant therapy of COVID-19. 
NAC is a nutraceutical precursor of vital antioxidant glutathione. Based on a broad range of antioxidant 
and anti-inflammatory mechanisms, NAC seems to be a promising drug to attenuate the risk of 
developing COVID-19, and in high doses might play an adjuvant role in the treatment of severe COVID-
19 and alleviate its fatal complications[2]. We agree with author’s insight that NAC is a worthy 
candidate to be evaluated for COVID-19; however, we consider that a cautiously optimistic approach is 
required to assess the risk–benefit profile of this medication in the current scenario.

Patients with COVID-19 suffer from coagulopathy and prolonged prothrombin time (PT)[3]. 
Hypercoagulation due to elevated D dimer and fibrinogen could lead to ischemic stroke in COVID-19 
patients. Though less common, intracerebral haemorrhage resulting from consumption coagulopathy 
related to fibrinogen depletion has been reported in more than 10% of COVID-19 patients with stroke
[4].

As documented in the review, adverse effects from NAC could vary from mild gastrointestinal 
symptoms to severe anaphylactoid reactions[1]. Abnormal hemostatic activity, such as anticoagulant 
and platelet-inhibiting properties with increased bleeding risk, has been documented in patients 
receiving NAC[5]. NAC interacts with human vitamin K epoxide reductase at the same binding site and 
causes interruption in the vitamin K reduction pathway. A recent study warns regarding prolonged use 
of NAC in COVID-19 patients and suggests the monitoring of international normalized ratio, PT, and 
partial thromboplastin time. In addition, considering the lipophilicity, and hence, easy passage of NAC 
through blood brain barrier, this study cautioned about the risk of cerebral hemorrhage in COVID-19[6].

The possible benefits of NAC in COVID-19 seem to outweigh the risks, but an important issue 
plaguing the usefulness of NAC is its uncertain efficacy in mild cases[7] and potential of unregulated 
use in the current scenario where there are limited drugs available for the management of COVID-19. 
Hence, as is rightly stressed upon by the author[1], before the use of NAC in COVID-19 spreads, further 
research is warranted to avoid another failure story[8]. Clinical trials are already underway to establish 
efficacy of NAC in COVID-19[9,10], and recent review by Wong et al[11] (2021) elaborated the potential 
role of NAC as adjunctive remedy for COVID-19[11]. However, there is no in vivo research to 
specifically examine its effects in COVID-19.

A retrospective cohort study of hospitalized patients with moderate or severe COVID-19 pneumonia 
documented lower risk of progression to serious respiratory failure in patients treated with NAC[12]. 
However, we would like to emphasize that the results of the randomized controlled trials should be 
awaited before incorporating NAC to improve prognosis and clinical outcomes in the treatment of 
COVID-19.
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Abstract
Microbial co-infections are another primary concern in patients with coronavirus 
disease 2019 (COVID-19), yet it is an untouched area among researchers. 
Preliminary data and systematic reviews only show the type of pathogens 
responsible for that, but its pathophysiology is still unknown. Studies show that 
these microbial co-infections are hospital-acquired/nosocomial infections, and 
patients admitted to intensive care units with invasive mechanical ventilation are 
highly susceptible to it. Patients with COVID-19 had elevated inflammatory 
cytokines and a weakened cell-mediated immune response, with lower CD4+ T 
and CD8+ T cell counts, indicating vulnerability to various co-infections. Despite 
this, there are only a few studies that recommend the management of co-
infections.
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Core Tip: The immune systems of coronavirus disease 2019 patients are already compromised, making 
them vulnerable to bacterial, fungal, and viral co-infections. These secondary infections, also known as co-
infections, are hospital-acquired/nosocomial infections, and mechanically ventilated patients are especially 
vulnerable. There are no specific guidelines or treatment options for these types of co-infections at the 
moment, which is contributing to an increase in morbidity and mortality among these patients.
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TO THE EDITOR
The first case of coronavirus disease 2019 (COVID-19) was reported in Wuhan, China, in December 
2019, and the World Health Organization declared it a pandemic in March 2019. Approximately one-
third of patients experienced severe complications of COVID-19 and required hospitalization[1]. 
Recently, secondary bacterial/fungal infections or co-infections are another major concern in COVID-19 
patients, impacting mortality but lacking attention. Less evidence of bacterial and fungal infection was 
documented in earlier coronavirus pandemics and epidemics, such as severe acute respiratory 
syndrome (SARS)-1 and Middle East respiratory syndrome[2]. Recently, we have seen a paper by Saeed 
et al[3] entitled “Bacterial co-infection in patients with SARS-CoV-2 in the Kingdom of Bahrain”[3] in 
your well-regarded journal World J Virol. We appreciate the work done by Saeed et al[3] as they reported 
the microbial infections in patients with COVID-19 in the Kingdom of Bahrain.

The most common bacterial species they reported were K. pneumonia, P. aeruginosa, A. baumannii, E. 
coli, S. aureus, E. faecalis, and E. faecium. Among all of these, hospital-acquired (HAI)/nosocomial 
infection was higher (73.8%) than community-acquired infection. Similar results were reported by 
Mahmoudi[4] and Sharifipour et al[5] in the neighboring country Iran. Both authors reported the same 
species of bacterial strains, which are the most common. Later on, a descriptive study conducted in the 
United Arab Emirates found bacterial co-infection in patients with COVID-19 and especially Klebsiella 
pneumonia, Escherichia coli, Staphylococcus aureus, and Acinetobacter baumannii were most predominant 
strains[6]. The recent reviews and meta-analysis also show that Klebsiella pneumonia, Haemophiles 
influenzae, Streptococcus pneumoniae, and Staphylococcus aureus are the most frequently identified bacteria 
among co-infected patients[7,8]. A unique case series from Saudi Arabia reported Middle East 
respiratory syndrome coronavirus co-infection in 12% of patients already suffering from severe acute 
respiratory syndrome coronavirus 2[9]. At the same time, another case series from Saudi Arabia by 
Shabrawishi et al[10] reported 7 cases of COVID-19 and tuberculosis co-infection[10]. The interesting 
results of Hashemi et al[11] showed influenza A (H1N1) virus, human metapneumovirus, bocavirus, 
adenovirus, respiratory syncytial virus (RSV), and parainfluenza viruses in 105 dead patients with 
COVID-19 in northeastern Iran[11].

Other than bacteria, fungal and viral co-infections are also severe issues with COVID-19 patients. In 
the present article, the authors reported fungal co-infection in about 10% of total microbial co-infection. 
The most common isolated fungi were Candida galabrata, Candida tropicalis, Candida albicans, and 
Aspergillus fumigatus. They also found that the death rates in patients with fungal co-infection were very 
high (70.4%)[3]. Studies from other different regions found aspergillosis or invasive candidiasis as the 
common fungal co-infections[12]. In contrast, influenza type A, type B, and RSV were the most common 
viral co-infections in patients with COVID-19[7]. These co-infections are associated with an increased 
probability of death. Most of the articles reported that microbial co-infections were HAI/nosocomial 
infections, similar to Saeed et al[3], who found 71% were HAI.

Further, the authors have described well different microbial co-infections in patients of COVID-19. 
Furthermore, the study has some limitations, such as the authors not providing any treatment or 
management options for COVID-19 infected patients. That is the most crucial concern for the patient’s 
benefit. In this context, we would like to draw your attention to the management and recommendations 
for the infection. Chedid et al[13] reviewed the most common antibiotics used by COVID-19 hospitalized 
patients, primarily in an intensive situation, by analyzing the use of antibiotics in different types of 
bacterial secondary and co-infection[13].

On the other hand, Sieswerda et al[14] gave evidence-based recommendations for antibacterial 
therapy for secondary microbial and co-infection[14]. Wu et al[15] described the management of 
respiratory co-infection and secondary bacterial pneumonia in patients with COVID-19[15]. For the 
treatment of fungal co-infections, Song et al[16] suggested the regimen, which is currently in an 
induction phase and includes amphotericin B deoxycholate and flucytosine, followed by (1) 
Fluconazole; alternative options for fluconazole + flucytosine or amphotericin B deoxycholate + 
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fluconazole; (2) Consolidation phase for fluconazole; and (3) Maintenance (or secondary prophylaxis) 
phase for fluconazole[16].

Depending upon disease severity, patients with influenza A or B viral co-infection should be treated 
with oseltamivir or its substitute[17]. Treatment options for other viral co-infection, such as RSV, are 
restricted and beneficial only in specific circumstances, such as immunosuppression or hypogamma-
globulinemia[18,19].

Patients with COVID-19 had elevated levels of inflammatory cytokines and a debilitated cell-
mediated immune response, with lower CD4+ T and CD8+ T cell counts, indicating vulnerability to 
various co-infections. Furthermore, COVID-19 patients who are immunocompromised, such as those 
with extended neutropenia, hematopoietic stem cell transplantation, hereditary or acquired immunode-
ficiencies, or tumor, are more likely to develop co-infection. Co-infection and superinfection of 
pathogens in COVID-19 patients is a critical issue as it is difficult to distinguish the associated complic-
ations. Specific diagnostic tests should be recommended for proper treatment and management of these 
infections to reduce morbidity and mortality.
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Abstract
In a recent meta-analysis the prevalence of coronavirus disease 2019 (COVID-19)-
associated hyperglycemia was 25%, and that of COVID-19-associated new-onset 
diabetes was 19%. An association between hyperglycemia or new-onset diabetes 
and COVID-19 has been suggested. In a recent relevant study of critically and 
non-critically ill patients with COVID-19, we found that indeed beta-cell function 
was compromised in critically ill patients with COVID-19 and that these patients 
showed a high glycemic gap. Nevertheless, one quarter of critically ill patients 
with no history of diabetes have stress hyperglycemia, a finding which could 
obscure the prevalence of hyperglycemia or new-onset diabetes that could be 
attributed to COVID-19 per se.
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Core Tip: An association between hyperglycemia or new-onset diabetes and coronavirus 
disease 2019 (COVID-19) has been suggested. Nevertheless, one quarter of critically ill 
patients with no history of diabetes have stress hyperglycemia, a finding which could 
obscure the prevalence of hyperglycemia or new-onset diabetes that could be attributed 
to COVID-19 per se.
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TO THE EDITOR
We have read with great interest the work by Shrestha et al[1] regarding new-onset hyperglycemia/ 
diabetes (DM) in patients with coronavirus disease 2019 (COVID-19). With an erudite meta-analysis the 
authors found that the pooled prevalence of COVID-19-associated hyperglycemia was 25.23% and that 
the prevalence of COVID-19-associated new-onset DM was 19.70%[1].

An association between hyperglycemia/new-onset DM and COVID-19 has been suggested[2], via 
decreased insulin secretion and increased insulin resistance[2,3]. In a recent relevant study, of critically 
and non-critically ill patients with COVID-19, we found that indeed beta cell function (based on glucose 
and insulin measurements and using the Homeostasis Model Assessment HOMA2 estimate of steady 
state beta cell function[4]) was compromised in critically ill patients with COVID-19. Furthermore, these 
patients showed a high glycemic gap (based on admission glucose and glycated hemoglobin 
measurements)[5]. Nevertheless, we acknowledged that on average, 25% of critically ill patients with no 
history of DM have stress hyperglycemia[5-7], a finding which could obscure the prevalence of 
hyperglycemia/new-onset DM that could be attributed to COVID-19 per se.

Thus, it would be interesting if the results of the study by Shrestha et al[1] were presented separately-
if possible-for critically and non-critically ill patients with COVID-19 and compared to non-COVID-19 
patients.

FOOTNOTES
Author contributions: Ilias Ι conceived and wrote this letter.

Conflict-of-interest statement: The author declares no conflict of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by 
external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-
NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license 
their derivative works on different terms, provided the original work is properly cited and the use is non-
commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Greece

ORCID number: Ioannis Ilias 0000-0001-5718-7441.

S-Editor: Fan JR 
L-Editor: A 
P-Editor: Fan JR

REFERENCES
Shrestha DB, Budhathoki P, Raut S, Adhikari S, Ghimire P, Thapaliya S, Rabaan AA, Karki BJ. New-onset diabetes in 
COVID-19 and clinical outcomes: A systematic review and meta-analysis. World J Virol 2021; 10: 275-287 [PMID: 
34631477 DOI: 10.5501/wjv.v10.i5.275]

1     

Muniangi-Muhitu H, Akalestou E, Salem V, Misra S, Oliver NS, Rutter GA. Covid-19 and Diabetes: A Complex 
Bidirectional Relationship. Front Endocrinol (Lausanne) 2020; 11: 582936 [PMID: 33133024 DOI: 
10.3389/fendo.2020.582936]

2     

Lim S, Bae JH, Kwon HS, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat 
Rev Endocrinol 2021; 17: 11-30 [PMID: 33188364 DOI: 10.1038/s41574-020-00435-4]

3     

Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care 2004; 27: 1487-1495 [PMID: 
15161807 DOI: 10.2337/diacare.27.6.1487]

4     

Ilias I, Diamantopoulos A, Pratikaki M, Botoula E, Jahaj E, Athanasiou N, Tsipilis S, Zacharis A, Vassiliou AG, Vassiliadi 
DA, Kotanidou A, Tsagarakis S, Dimopoulou I. Glycemia, Beta-Cell Function and Sensitivity to Insulin in Mildly to 
Critically Ill Covid-19 Patients. Medicina (Kaunas) 2021; 57 [PMID: 33466617 DOI: 10.3390/medicina57010068]

5     

Bellaver P, Schaeffer AF, Dullius DP, Viana MV, Leitão CB, Rech TH. Association of multiple glycemic parameters at 
intensive care unit admission with mortality and clinical outcomes in critically ill patients. Sci Rep 2019; 9: 18498 [PMID: 
31811218 DOI: 10.1038/s41598-019-55080-3]

6     

Ali Abdelhamid Y, Kar P, Finnis ME, Phillips LK, Plummer MP, Shaw JE, Horowitz M, Deane AM. Stress hyperglycaemia 
in critically ill patients and the subsequent risk of diabetes: a systematic review and meta-analysis. Crit Care 2016; 20: 301 
[PMID: 27677709 DOI: 10.1186/s13054-016-1471-6]

7     

https://creativecommons.org/Licenses/by-nc/4.0/
http://orcid.org/0000-0001-5718-7441
http://orcid.org/0000-0001-5718-7441
http://www.ncbi.nlm.nih.gov/pubmed/34631477
https://dx.doi.org/10.5501/wjv.v10.i5.275
http://www.ncbi.nlm.nih.gov/pubmed/33133024
https://dx.doi.org/10.3389/fendo.2020.582936
http://www.ncbi.nlm.nih.gov/pubmed/33188364
https://dx.doi.org/10.1038/s41574-020-00435-4
http://www.ncbi.nlm.nih.gov/pubmed/15161807
https://dx.doi.org/10.2337/diacare.27.6.1487
http://www.ncbi.nlm.nih.gov/pubmed/33466617
https://dx.doi.org/10.3390/medicina57010068
http://www.ncbi.nlm.nih.gov/pubmed/31811218
https://dx.doi.org/10.1038/s41598-019-55080-3
http://www.ncbi.nlm.nih.gov/pubmed/27677709
https://dx.doi.org/10.1186/s13054-016-1471-6


Published by Baishideng Publishing Group Inc 

7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA 

Telephone: +1-925-3991568 

E-mail: bpgoffice@wjgnet.com 

Help Desk: https://www.f6publishing.com/helpdesk 

https://www.wjgnet.com

© 2022 Baishideng Publishing Group Inc. All rights reserved.

mailto:bpgoffice@wjgnet.com
https://www.f6publishing.com/helpdesk
https://www.wjgnet.com

