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Abstract
The intestinal lumen harbors a diverse consortium of microorganisms that 
participate in reciprocal crosstalk with intestinal immune cells and with epithelial 
and endothelial cells, forming a multi-layered barrier that enables the efficient 
absorption of nutrients without an excessive influx of pathogens. Despite being a 
lung-centered disease, severe coronavirus disease 2019 (COVID-19) affects 
multiple systems, including the gastrointestinal tract and the pertinent gut barrier 
function. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can 
inflict either direct cytopathic injury to intestinal epithelial and endothelial cells or 
indirect immune-mediated damage. Alternatively, SARS-CoV-2 undermines the 
structural integrity of the barrier by modifying the expression of tight junction 
proteins. In addition, SARS-CoV-2 induces profound alterations to the intestinal 
microflora at phylogenetic and metabolomic levels (dysbiosis) that are 
accompanied by disruption of local immune responses. The ensuing dysregu-
lation of the gut-lung axis impairs the ability of the respiratory immune system to 
elicit robust and timely responses to restrict viral infection. The intestinal 
vasculature is vulnerable to SARS-CoV-2-induced endothelial injury, which 
simultaneously triggers the activation of the innate immune and coagulation 
systems, a condition referred to as “immunothrombosis” that drives severe 
thrombotic complications. Finally, increased intestinal permeability allows an 
aberrant dissemination of bacteria, fungi, and endotoxin into the systemic 
circulation and contributes, to a certain degree, to the over-exuberant immune 
responses and hyper-inflammation that dictate the severe form of COVID-19. In 
this review, we aim to elucidate SARS-CoV-2-mediated effects on gut barrier 
homeostasis and their implications on the progression of the disease.

Key Words: COVID-19; SARS-CoV-2; Intestinal barrier; Dysbiosis; Immunothrombosis; 
Gut-lung axis
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Core Tip: Severe coronavirus disease 2019 (COVID-19) is associated with a multi-layered disruption of 
gut barrier integrity. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inflicts direct 
cytopathic or indirect immune-mediated injury to intestinal epithelial and endothelial cells and enhances 
paracellular permeability by downregulating tight junction proteins. SARS-CoV-2 induces profound gut 
microbiome alterations accompanied by dysregulation of mucosal immune responses. Gut dysbiosis 
attenuates, through the gut-lung axis, the ability of the respiratory immune system to elicit vigorous 
responses to contain SARS-CoV-2. Additionally, intestinal barrier dysfunction promotes endothelial 
activation and predisposes to detrimental COVID-19-related thrombotic complications. Finally, bacterial 
translocation and endotoxemia contribute to over-exuberant immune responses and hyper-inflammation in 
severe COVID-19.

Citation: Tsounis EP, Triantos C, Konstantakis C, Marangos M, Assimakopoulos SF. Intestinal barrier dysfunction 
as a key driver of severe COVID-19. World J Virol 2023; 12(2): 68-90
URL: https://www.wjgnet.com/2220-3249/full/v12/i2/68.htm
DOI: https://dx.doi.org/10.5501/wjv.v12.i2.68

INTRODUCTION
The emergence of the novel, pathogenic, and highly transmissible severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19), triggered an unprecedented 
public health crisis with profound socioeconomic sequelae. In most cases, COVID-19 is associated with 
mild-to-moderate symptoms that mainly involve the respiratory tract. However, in a subset of patients, 
COVID-19 may progress into a more severe disease plagued with complications such as pneumonia, 
acute respiratory distress syndrome (ARDS), coagulopathy, myocarditis, hepatic injury, renal 
dysfunction, sepsis, multiple organ failure, or even death[1]. These detrimental effects are considered to 
be driven by aberrant activation of the host’s immune system in response to viral invasion and prolif-
eration into the pulmonary parenchyma[2]. In particular, the virus-laden pneumonocytes secrete 
excessive amounts of pro-inflammatory mediators and chemoattractant molecules, such as interleukins 
(IL-1β, IL-6, IL-7, IL-8, IL-12), tumor necrosis factor alpha (TNF-α), interferons (IFN-γ, IFN-λ), 
macrophage inflammatory protein-1 alpha (MIP-1α), monocyte chemoattractant protein-1 (MCP-1), and 
granulocyte colony stimulating factor. Subsequently, the recruitment and activation of innate and 
adaptive immune cells into the lungs further aggravate tissue injury and inflammation[2]. In parallel, 
the systemic dissemination of this “cytokine storm” precipitates overactivation of the immune system 
beyond the sites of infection and elicits hyperinflammatory responses that impair the function of several 
organs including the heart, kidneys, liver, nervous system, and gastrointestinal (GI) tract[3].

The GI system harbors an enormous interface that directly communicates with the external 
environment of the body and fulfills multifaceted functions. The GI mucosa serves as a semi-permeable 
membrane, allowing the efficient absorption of water, electrolytes, and nutrients while, in parallel, 
preventing the influx of xenobiotics, intraluminal microbiota, microbial components, or other inflam-
matory stimuli into the organism[4]. This subtle balance is maintained thanks to intestinal barrier 
function, which, apart from providing a physical barrier, regulates complex immune system responses 
and mediates the intricate crosstalk with the gut microbiome[5]. The integrity of the intestinal barrier 
can be compromised in many acute or chronic pathological conditions, leading to increased bacterial 
translocation and excessive penetration of pro-inflammatory signals. This dysfunction is associated with 
infectious complications and the establishment of a systemic pro-inflammatory status that can 
exacerbate or accelerate the pathophysiological processes of the underlying disease[6].

In this review, we summarize the deleterious effects of SARS-CoV-2 infection on gut barrier 
homeostasis. Subsequently, we discuss the mechanisms that explain how intestinal barrier dysfunction 
might drive severe COVID-19 or induce detrimental complications.

GI INVOLVEMENT AND THE MECHANISMS OF INTESTINAL INFECTION IN COVID-19
SARS-CoV-2 is an enveloped, positive-sense, single-stranded RNA virus with a genome of approx-
imately 30000 nucleotides that encodes 29 proteins, including 4 structural proteins: spike (S), nucleo-
capsid (N), membrane (M), and envelope (E) proteins. The S protein consists of the S1 subunit, which 
interacts with angiotensin-converting enzyme 2 (ACE2), and the S2 subunit which promotes membrane 
fusion[7,8]. The principal route of transmission of SARS-CoV-2 is via respiratory droplets or aerosols 
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from person-to-person, and its main target is type II alveolar epithelial cells (AEC2s). The entry of 
SARS-CoV-2 is primarily mediated by the attachment of the S glycoprotein with ACE2 on the cellular 
surface, a process facilitated by proteolytic cleavage at the S1/S2 boundary by host proteins. 
Transmembrane protease serine 2 (TMPRSS2) is a significant host protease that mediates the cleavage of 
S2 protein, leading to conformational changes that precipitate viral entry through membrane fusion[7,
8]. Intriguingly, ACE2 and TMPRSS2 are widely co-expressed on the membrane of intestinal epithelial 
cells (IECs) at a level comparable or even higher to that of the AEC2s, rendering the GI tract a potential 
target for SARS-CoV-2 infection[9].

Multiple studies have demonstrated that the development of GI-related symptoms is a common 
extrapulmonary manifestation, affecting up to one-fifth of patients with COVID-19[10-12]. According to 
a meta-analysis of 108 studies comprising 17776 COVID-19 patients, the pooled prevalence estimates of 
GI symptoms were: 21% for loss of appetite, 13% for diarrhea, 8% for nausea or vomiting, and 4% for 
abdominal pain, while derangement of liver function tests was observed in 24% of the participants[10]. 
Whether the occurrence of GI symptoms is associated with COVID-19 severity or outcomes has been a 
field of debate. Most meta-analyses support that GI-symptoms and predominantly abdominal pain tend 
to appear at higher rates among patients with severe disease[10,13-15]; however, these symptoms are 
not always predictive of mortality or intensive care unit (ICU) admission[16-18]. Importantly, viral RNA 
can be detected in the stool of about half of COVID-19 patients and, especially, in those with GI-related 
symptoms[19,20]. Viral rectal shedding appears to persist long after RNA clearance in respiratory 
samples (mean duration: 21.8 d vs 14.7 d)[20], while RNA concentration in the stool may be as high as 
107 copies/g, exceeding even that in pharyngeal swabs in some cases[21]. The combination of this partic-
ularly high RNA load in the stool and the long-lasting viral presence in fecal samples strongly suggests 
that SARS-CoV-2 invades and proliferates in the intestinal tract. Indeed, COVID-19 elicits acute inflam-
matory responses in the gut, as documented by increased fecal calprotectin levels[22]. Accordingly, 
Livanos et al[18] provided direct evidence of direct infection of IECs by SARS-CoV-2 in vivo, using 
immunofluorescence staining and electron microscopy. Viral subgenomic mRNA (sgmRNA) is 
transcribed in infected cells, but is not encapsulated into virions, which means that sgmRNA is 
vulnerable to enzymatic degradation by intestinal ribonucleases. Therefore, the detection of sgmRNA in 
the stool of COVID-19 patients also indicates that the virus can actively and specifically replicate in the 
gut[21].

Although the data above corroborate the concept of SARS-CoV-2 tropism for the GI system, the 
routes and mechanisms of infection remain less clarified. At least theoretically, the feasibility of the 
fecal-oral route of transmission is supported by prolonged viral excretion in the feces. Nevertheless, 
although SARS-CoV-2 retains viability in stool for 1-2 d at room temperature, this is accompanied by a 
profound 5-log loss of its infectivity[23]. In addition, ingested SARS-CoV-2 needs to overcome the harsh 
gastric acidity, resist the detergent effects of bile acids in the duodenum, and avoid degradation by 
digestive enzymes to preserve its infectivity and spread into the intestinal epithelia[24]. The uninter-
rupted function of these host defense mechanisms hinders the fecal-oral transmission of enveloped 
viruses, such as SARS-CoV-2[25]. Besides, several lines of evidence support that intestinal infection by 
SARS-CoV-2 could occur via the bloodstream[19,26]. The virus replicating in pulmonary alveolar 
epithelial cells or in ciliary cells of the nasal cavity is capable of breaching the basement membrane and 
causing viremia[27]. The GI tract comprises an extended network of capillaries harboring vascular 
epithelial cells, which are potential targets of circulating SARS-CoV-2. Thereafter, the proliferating virus 
is released from the infected cells into the gut, where it can infect neighboring enterocytes or reenter the 
circulation to generate new cycles of infection[27,28].

THE INTESTINAL BARRIER FUNCTION IN HEALTH
The gut barrier function is equipped with three major lines of defense that conjointly serve its complex 
purpose[5]. First, the mechanical barrier consists of tightly linked columnal IECs, the overlying mucus 
layer, and the capillary endothelial cells of the submucosa[29]. Tight junctions (TJs) and adherens 
junctions (AJs) are transmembrane multiprotein complexes that confer structural stability to the 
mechanical barrier and engender the establishment of cell polarity. TJs connect the most apical of the 
lateral surfaces of the adjacent epithelial or endothelial cells (kissing points) and form channels that 
regulate the selective diffusion of ions and salutes through the paracellular space. AJs are more basal 
than TJs and contribute to the establishment and maintenance of cell-cell adhesion[30,31]. The mucus 
layer comprises a hydrated network of polymers, predominantly highly glycosylated mucin proteins, as 
well as several immune regulators, such as antimicrobial proteins (AMPs) and secretory immuno-
globulin A molecules. The mucus lubricates the luminal contents and serves as a physical barrier against 
digestive enzymes, proliferating microorganisms, microbial components and byproducts, food-
associated toxins, or other inflammatory stimuli[32]. In addition, it nurtures a thriving biofilm of 
microorganisms, the gut microbiome, which typifies the second mechanism of protection, the biological 
barrier[29,32]. Luminal microbiota are indispensable for the fermentation of indigestible carbohydrates, 
a process that provides the gut with short-chain fatty acids (SCFAs), mainly consisting of acetate, 
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propionate, and butyrate. Apart from being an important source of energy for host cells, SCFAs exhibit 
significant anti-inflammatory and anti-tumor effects and participate in various host signaling pathways, 
contributing to intestinal barrier integrity and metabolic homeostasis The commensal bacteria regulate 
choline bioavailability, promote the enterohepatic circulation of bile acids, and synthesize vitamin K and 
group B vitamins. In parallel, normal intestinal flora restrains the overgrowth of harmful microor-
ganisms, a phenomenon referred to as colonization resistance, through nutrient antagonism[33]. 
Moreover, the microbiome-derived pathogen-associated molecular patterns (PAMPs) are recognized by 
pattern recognition receptors (PRRs) expressed by intestinal immune cells, indicating a relentless 
reciprocal dialogue between the microbiota and the intestinal immune system[6]. This leads to the third 
line of defense, that is, the immune barrier, which encompasses the gut-associated lymphoid tissue 
(GALT), effector and regulatory T cells (Tregs), immunoglobulin A (IgA)-secreting B (plasma) cells, 
innate lymphoid cells (ILCs), as well as macrophages and dendritic cells (DCs) of the lamina propria[5]. 
The cells of innate immunity carry an armamentarium of PRRs such as toll-like receptors (TLRs), 
nucleotide oligomerization domain-like receptors (NLRs), and retinoic acid-inducible gene-like 
receptors (RLRs) that recognize molecular pathogen-associated molecular patterns (PAMPs) or 
damaged-associated MPs (DAMPs) and orchestrate the well-tuned responses of the adaptive arm of the 
immune system.

The continuous crosstalk of the immune cells with the gut microbiome sustains the delicate balance 
between tolerance to beneficial bacteria and immunosurveillance against pathogenic species[6]. 
Commensal-derived signals and metabolites are recognized by myeloid cells in the lamina propria and 
orchestrate innate and adaptive immune responses[34]. Under homeostatic conditions, innate immune 
cells, such as macrophages and DCs, obtain a regulatory phenotype that promotes the secretion of anti-
inflammatory molecules, i.e., IL-10 and TGF-β. The production of IL-22 by type 3 ILCs supports tissue 
homeostasis and epithelial barrier integrity[35]. Properly-regulated antigen presenting cells (APCs) 
remain in the GALT or migrate to the mesenteric lymph nodes, where priming of naïve CD4+ T cells 
occurs, and stimulate Treg cell activity that plays a central role in the suppression of intestinal inflam-
mation. In this immunomodulatory milieu, B cell activation and effective class-switching generate large 
numbers of IgA-secreting plasma cells that serve multiple functions, including protection against 
infection and maintenance of gut microbiome homeostasis[35].

THE INTESTINAL BARRIER FUNCTION IN COVID-19
SARS-CoV-2 disrupts the intestinal mechanical barrier
SARS-CoV-2 can invade and propagate in IECs by using the vastly expressed ACE2 and TMPRSS2 
receptors on those cells[18,36]. In a mouse model, ACE2 was found to be a key inducer of intestinal stem 
cell proliferation and differentiation under pathologic conditions, while ACE2 deficiency was associated 
with a significant reduction of mucin-2 expression[37]. Accordingly, ACE2 knockout mice exhibited gut 
barrier dysfunction with subsequent leakage of bacterial components into the circulation[38]. Therefore, 
it could be hypothesized that interference of SARS-CoV-2 with ACE2 signaling could destabilize the 
mechanical barrier by interrupting the renewal of epithelial cells or by compromising mucus 
composition. Mucins create a protective matrix covering the epithelium and inhibit viral invasion, 
presumably via steric hindrance[39]. Even though evident macroscopic alterations were usually 
negligible, infection of the human small bowel by SARS-CoV-2 was associated with villi blunting and an 
aberrant accumulation of activated intraepithelial CD8+ T cells in the epithelium[36]. Cell trafficking 
could be driven by direct infection of IECs or could be the result of systemic immune activation due to 
COVID-19. In any case, the recruitment of intraepithelial CD8+ T cells enhanced the apoptotic process of 
IECs, as demonstrated by an upsurge in cleaved caspase-3+ apoptotic epithelial cells. This event was 
accompanied by a regenerative response of the epithelium marked by an increase in Ki67+ proliferating 
epithelial cells that extended beyond their typical localization in the crypts and occupied the villus 
compartment[36]. Evidently, SARS-CoV-2 can inflict a deleterious impact on the mechanical barrier 
through dysregulation of the balance between cell apoptosis and proliferation.

The function and integrity of epithelia and endothelia greatly depend on TJs, reflecting a putative 
mechanism of intestinal barrier injury in COVID-19 patients. The fundamental transmembrane proteins 
that frame TJs include the family of claudins (central regulators of paracellular permeability 
encompassing 26 members in humans), the junctional adhesion molecules, and the three junctional 
MARVEL domain proteins, i.e., occludin, tricellulin, and MARVEL domain-containing protein 3. The 
most prominent intracellular junctional plaque components are zonula occludens (ZO) proteins (ZO1, 
ZO2, and ZO3), cingulin, and protein associated with LIN7 1 (PALS1)[40]. These proteins function as 
adaptor proteins or cytoskeletal linkers and participate in multiple extracellular and intracellular 
signaling pathways. Indeed, impairment of TJs occurs early in the course of COVID-19 and might 
represent the first hit in a multistage model of the disease[41]. SARS-CoV-2 infection decreases the 
expression of TJ proteins, such as occludin, claudin 5, and ZO-1 in vivo, and undermines the coherence 
of TJs between neighboring endothelial cells of the brain. As a result, TJs are haphazardly distributed, 
irregular, or gapped throughout the vascular endothelial layer, leading to derangement of the function 
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of the blood-brain barrier[42]. Cryo-electron microscopy and in silico modeling analyses have shown 
that SARS-CoV-2 uses its envelope (E) protein to interact with the TJ-associated PALS1 protein[43,44]. 
According to in vitro models of lung injury, the interplay between SARS E protein and PALS1 interrupts 
intracellular trafficking of E-cadherin, delays the formation of TJs and AJs, and affects epithelial polarity
[45]. In a proof-of-concept study, Guo et al[46] developed a biomimetic human gut-on-chip model that 
reconstructs basic elements of the gut barrier, as it consists of IECs, endothelial, and mucin-producing 
cells under normal fluid flow and closely reproduces the pathophysiological processes of intestinal 
SARS-CoV-2 infection. Interestingly, IECs exhibit particularly high susceptibility to SARS-CoV-2 
infection. Viral inoculation induces the dispersal of the physiological distribution of mucus-secreting 
cells and a profound reduction of both E-cadherin expression in the epithelium and VE-cadherin in the 
endothelium, which delineate serious impairment of AJs in the corresponding structures. As a 
consequence, widespread destruction of the villus-like complexes along with severe morphological 
remodeling of the vascular endothelium was observed[46]. IL-6 is a prominent mediator of inflam-
mation and a reliable biomarker of disease severity in SARS-CoV-2 infection that was found to increase, 
in a sustained manner, endothelial permeability in a mouse model[47,48]. Administration of IL-6 
induced vascular leakage and disruption of junctional localization of VE-cadherin and ZO-1 via Janus 
kinase-mediated signal transducer and activator of transcription 3 phosphorylation and de novo protein 
synthesis[48].

Serum levels of endotoxin and ZO-1 were significantly increased in patients with COVID-19-related 
pneumonia on admission compared to healthy controls. Importantly, endotoxemia is positively 
correlated with certain markers of inflammation, such as C-reactive protein (CRP) and ferritin[49]. 
Endotoxins are complex lipopolysaccharides (LPS), integral parts of the membrane of gram-negative 
bacteria, and potent drivers of inflammation. Indeed, endotoxemia can occur as a result of gram-
negative bacteremia; however, endotoxemia is most commonly caused by a compromised gut barrier
[50]. ZO-1 is a peripheral membrane scaffolding protein and a basic constituent of TJs that fulfills 
versatile functions including establishment of cell-cell adhesion, modulation of the paracellular barrier, 
regulation of cell migration and angiogenesis, and induction of mucosal repair processes[51,52]. 
Previous studies have confirmed that serum ZO-1 represents a reliable biomarker of disrupted 
paracellular permeability, as it inversely correlates with intestinal ZO-1 expression in diverse pathologic 
conditions[53,54]. These results are consistent with another study, in which severe SARS-CoV-2 
infection presented key features of gut barrier dysfunction in tandem with increased intestinal 
permeability. Specifically, patients with severe COVID-19 presented with endotoxemia and higher 
serum levels of zonulin, occludin, and regenerating family member 3 alpha, indicating severe 
impairment of the intestinal epithelial barrier[55].

SARS-CoV-2-induced gut microbiome dysbiosis
In the course of evolution, hosts and their microbial ecosystems have mutually developed, forging an 
intimate relationship of interdependence. Dysbiosis refers to alterations in the composition, quantity, or 
distribution of the gut microbiome. This condition is characterized by a predominance of pathogenic 
species and has been linked to the pathophysiology of numerous intestinal and extraintestinal disorders
[56]. There is a growing body of data suggesting that COVID-19 is associated with drastic alterations of 
the normal intestinal flora, even when removing the confounding effect of antibiotics (Figure 1)[57-59]. 
In addition, SARS-CoV-2-induced dysbiosis appears to persist long after the resolution of symptoms 
and might be a predisposing factor for long-term complications in COVID-19 patients[57,58,60].

The mechanisms underlying COVID-19-related dysbiosis have not yet been fully elucidated. The 
interactions between SARS-CoV-2 and the ACE2 receptor can influence the composition of gut 
microbiota by interfering with the secretion of AMPs. The activity of the amino acid transporter B0AT1, 
which mediates the intestinal uptake of tryptophan, depends on ACE2 signaling[61]. Tryptophan 
regulates AMP production through the mammalian target of rapamycin pathway[62]. Therefore, 
tryptophan depletion due to ACE2 blockade can interrupt AMP production, and thus, perturb the 
intraluminal microbial community. Commensal bacteria, in turn, contribute to mucosal homeostasis by 
regulating ACE2 expression in the gut[63]. The release of pro-inflammatory cytokines, particularly TNF-
α, during respiratory infections has a powerful anorexigenic effect via hypothalamic action. The ensuing 
reduction in caloric intake and dietary fibers disturbs the composition of the gut microbiota and the 
production of their metabolites. In animal models of respiratory syncytial virus (RSV) and influenza 
infection, the neutralization of anorexigenic cytokines prevented weight loss and mitigated gut 
microbiome alterations[64]. Alternatively, SARS-CoV-2 infection can cause dysbiosis through an 
imbalance of systemic or intestinal IFNs[65]. In this regard, in an influenza mouse model, the 
microbiome was amenable to significant changes via an IFN-type I-dependent mechanism[66]. Hypoxia 
is a serious feature of severe COVID-19 and hypoxic stress could be an important instigator of dysbiosis 
by dysregulation of hypoxia-inducible factor signaling[67]. Finally, local epithelial injury, which results 
in leaky gut and DAMP secretion, might disrupt the immune control of microbial homeostasis and 
could further aggravate the dysbiotic state[68].

In their recently published meta-analysis, Farsi et al[69] offered a thorough synthesis of the gut 
microbiota changes in COVID-19 patients. At the phylum level, dysbiosis is typified by a decrease in the 
Firmicutes to Bacteroidetes ratio. More specifically, COVID-19 is associated with a decrease in important 
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Figure 1 Schematic representation of intestinal barrier dysfunction in severe acute respiratory syndrome coronavirus 2 infection. Severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a multifaceted dysfunction of the gut barrier as it exerts detrimental effects on all 
of its major levels of defense. A: Systemic inflammation, an imbalance of interferon (IFN) responses, hypoxia or low blood flow, and reduced caloric intake, due to 
coronavirus disease 2019-associated cachexia, contribute to intestinal microbiome alterations. Gut dysbiosis is characterized by an overgrowth of opportunistic 
pathogens, which are a source of harmful substances, e.g., endotoxin, peptidoglycan, β-glucan, as well as a depletion of commensal microorganisms, which 
synthesize beneficial metabolites such as short-chain fatty acids; B: SARS-CoV-2 induces either direct cytopathic injury to angiotensin-converting enzyme 2 (ACE2)-
expressing intestinal epithelial cells (IECs) and endothelial cells, or indirect immune-mediated damage, or both. Moreover, the secretion of mucin glycoproteins, the 
fundamental element of the mucus layer, is severely impaired. In addition, the virus undermines the expression of tight junction and adherens junction proteins, 
leading to increased paracellular permeability and structural destabilization of the epithelium and endothelium. Viral interference with ACE2 signaling attenuates the 
activity of the amino acid transporter B0AT1, which is necessary for intestinal absorption of tryptophan (TRP). As a result, TRP depletion downregulates the 
mammalian target of rapamycin pathway, which promotes the expression of antimicrobial peptides. The overwhelming intraepithelial CD8+ lymphocytes trigger the 
apoptosis of IECs, which is followed by reactive regeneration. In parallel, disease-activated and apoptotic endothelial cells are potent drivers of neutrophil/monocyte 
recruitment, platelet aggregation, and coagulation activation; C: Commensal-derived metabolites modulate innate immune responses by inducing tolerogenic dendritic 
cells and M2-polarized macrophages. SARS-CoV-2-induced dysbiosis eliminates these immunoregulatory effects, inhibits T regulatory (Treg) cell activity, and 
suppresses the secretion of anti-inflammatory cytokines such as interleukin 10 (IL-10) and transforming growth factor beta. The release of damage-associated 
molecular patterns from injured cells and the influx of pathogen-associated molecular patterns, as a result of leaky gut, orchestrate the recruitment and activation of 
innate immune cells that secrete pro-inflammatory mediators (IFN-γ, tumor necrosis factor alpha, IL-1β, IL-6, IL-12). Subsequently, this pro-inflammatory 
microenvironment precipitates the derangement of adaptive immune responses, as demonstrated by increased trafficking of gut-homing T cells and effector T cell 
predominance. Furthermore, interruption of B-cell metabolism, plasma cell differentiation, and immunoglobulin A (IgA) class switching impede the effective secretion 
of protective dimeric IgA. This multi-layered disruption of intestinal barrier integrity allows the dissemination of intraluminal bacteria and endotoxin into the mesenteric 
lymphatic vessel or/and into the systemic circulation (created with biorender.com). IEL: Intraepithelial lymphocyte; LPS: Lipopolysaccharides; MUC2: Mucin 2; NETs: 
Neutrophil extracellular traps; PLTs: Platelets; RA: Retinoic acid; ROS: Reactive oxygen species; sIgA: Secretory immunoglobulin A; SCFAs: Short-chain fatty acids.

butyrate-producing bacteria, including Faecalibacterium and Roseburia[69-71]. The genus Roseburia 
contributes to mucosal integrity and colonic motility and exerts significant anti-inflammatory effects by 
modulating IL-10 production[72]. Similarly, Faecalibacterium prausnitzii is a valuable gut symbiont with 
recognized anti-inflammatory effects in IBD patients via inhibition of the nuclear factor kappa B 
pathway[73]. The gut microbiome of COVID-19 patients is also depleted of several other beneficial 
genera such as Alistipes, Eubacterium, and Bifidobacterium[69]. The genus Eubacterium consists of a 
phylogenetically diverse group of SCFA-producing bacteria that contribute to bile acid metabolism and 
exhibit compelling associations with intestinal health[74]. Bifidobacterium strains prompt Treg responses, 
induce tolerogenic DC phenotypes, and demonstrate vigorous antimicrobial and antiviral activity[75]. 
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Of note, their ability to suppress gut dysbiosis and promote mucosal homeostasis has paved the way for 
researchers to investigate the therapeutic efficacy of Bifidobacterium-based probiotic preparations in 
several diseases, including irritable bowel syndrome, inflammatory bowel disease (IBD), or COVID-19
[76-78]. On the other hand, the COVID-19-derived gut microbiome is relatively enriched in 
opportunistic pathogens such as Streptococcus, Bacteroides, Rothia, Veillonella, Actinomyces, and Eggerthella
[69,70]. Although the genus Ruminococcus is generally underrepresented, certain species such as Rumino-
coccus gnavus and Ruminococcus torques are significantly more abundant in COVID-19 patients. This is 
not surprising considering that Ruminococcus gnavus and Ruminococcus torques are harmful bacteria that 
degrade mucin glycans to harvest energy, secrete pro-inflammatory mediators, and are involved in IBD 
pathogenesis[79,80].

The degree of microbiome alterations correlates well with COVID-19 severity, and identification of 
early patterns of dysbiosis could lead to a microbiome-based stratification of patients according to their 
risk of progressing to severe COVID-19[81]. Indeed, the commensal genera Faecalibacterium and 
Roseburia are depleted in the gut microbiome of patients with critical disease[57,82]. The baseline 
abundance of Clostridium ramosum and Clostridium hathewayi is also associated with COVID-19 severity 
and could represent risk factors for portal vein thrombosis[69,82]. The genus Enterococcus is overrep-
resented in COVID-19 patients who necessitate ICU admission or developed bloodstream infections, 
whereas, surprisingly, the gut microbiome of other critically ill non-COVID-19 patients is devoid of this 
bacterium[83]. The reduction of the Firmicutes/Bacteroidetes ratio is indicative of severe disease, which is 
mainly attributed to the depletion of fiber-utilizing bacteria, namely Faecalibacterium prausnitzii, 
Phocaeicola plebeius, and Prevotella[84]. These findings are consistent with an interesting study exploring 
the role of gut microbiota as predictors of disease severity[81]. A lower Firmicutes/Bacteroidetes ratio, a 
higher prevalence of Proteobacteria, and an exhaustion of commensal butyrate-producing microor-
ganisms are more evident in severely ill patients, while a lower bacterial diversity, defined by the 
Shannon diversity index, is identified as a prognostic biomarker of disease severity[81]. In agreement 
with this, the fecal microbiome of patients requiring mechanical ventilation has demonstrated low 
bacterial richness as assessed by Shannon or Chao1 indices[81,85,86]. Implementation of a multiomics 
approach to decipher the dysregulation of metabolic and microbial signatures during COVID-19 could 
provide a basis for the development of novel microbiome-targeted therapeutics[87].

SARS-CoV-2 deranging mucosal immune system responses
The mucosal immune system is the largest immunologically aware organ in the body, committed to 
maintaining the equilibrium between active protection against pathogens and immune-tolerance to 
commensal microorganisms, dietary substances, and self-antigens. The gut-derived metabolites 
orchestrate immune cell responses and differentiation and impart a critical role in mucosal homeostasis
[56,88]. In particular, the transcriptional “education” of innate immune cells is strongly influenced by 
intestinal microbiota metabolites[56]. Butyrate, for example, induces M2-like polarization of 
macrophages, which shapes an immunomodulatory milieu by increasing the expression of arginase 1 
and suppressing TNF-α, IL-6, IL-12b, and nitric oxide synthase 2[89]. As regards adaptive immunity, 
butyrate enhances transcription of the forkhead box P3 gene in naïve T cells through inhibition of 
histone deacetylases, and thereby, expands Treg cell populations[90]. The capsular polysaccharide A, 
which originates from the prominent human symbiont  fragilis, promotes the proliferation of Treg cells 
in the lamina propria and shapes a pro-inflammatory microenvironment rich in IL-10[91]. Vitamin A or 
RA, produced by the gut commensal Bifidobacterium infantis, enhances the expression of aldehyde 
dehydrogenase 1 family member A2 encoding retinal dehydrogenase 2 in resident DCs of the mucosa. 
Subsequently, gut-modulated DCs secrete high levels of RA that drive naïve T cell differentiation into 
Treg cells[92]. Treg cell generation in the intestinal mucosa is also triggered by β-glucan polysaccharides 
deriving from the cell surface of Bifidobacterium bifidum[93]. In addition, B cell metabolism and differen-
tiation in mucosal and systemic tissues are regulated by gut-derived SCFAs, emphasizing the 
significance of symbionts in effective antibody production[94]. Apparently, the depletion of SCFA-
producing microorganisms or other beneficial species as well as gut metabolome modifications might 
have a detrimental impact on mucosal immunity in the course of COVID-19.

Defensins are prominent members of the AMP family with multifaceted immunomodulatory 
functions and broad antimicrobial and antiviral activity. Defensins provide protection against SARS-
CoV-2 infection not only by maintaining gut microbiome homeostasis but also by inhibiting viral fusion 
via interference with ACE2 receptors[95,96]. Dysregulation in the expression of various defensin genes 
was evident following infection with COVID-19[97]. IFNs are multipotent cytokines of innate immunity 
with crucial role in the containment of viral infections. The proliferation of SARS-CoV-2 in human gut 
cells is effectively inhibited by type I (IFN-α, IFN-β) and type III IFNs (IFN-λs); however, type III IFNs 
elicit a more profound and long-lasting antiviral effect[98,99]. In order to escape immune surveillance, 
SARS-CoV-2 has developed strategies to proliferate stealthily into cells without eliciting strong IFN 
responses[65]. Alternatively, SARS-CoV-2 can interfere with IFN-γ (type II IFN) signaling to boost its 
infectively in the gut. In human colonic organoids, IFN-γ drives cellular differentiation towards ACE2-
expessing epithelial cells, which are highly susceptible to SARS-CoV-2 infection[100]. Moreover, IFN-γ 
acts synergistically with TNF-α to instigate inflammatory cell death and tissue damage[101].
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Elevated levels of plasma markers of inflammation and immune activation are hallmarks of severe 
COVID-19. Similarly, the expression of genes encoding pro-inflammatory mediators, including TNF-α, 
IL-6, chemokine (C-C motif) ligand 5 (CCL5), chemokine (C-X-C motif) ligand 1 (CXCL1), CXCL10, 
CXCL11, and CSF-3 were upregulated in digestive tissues in both in vitro and in vivo models of SARS-
CoV-2 infection[46,102]. Compared to uninfected individuals, patients with COVID-19 have increased 
fecal levels of pro-inflammatory cytokines such as IL-8 and IL-18, whereas IL-23 is higher in patients 
with severe disease[103,104]. Strikingly, analysis of human ileal biopsies has demonstrated that several 
pro-inflammatory genes including IFNG, CXCL8, CXCL2, and IL1B are downregulated. This pro-inflam-
matory response is associated with milder symptoms and improved outcomes, revealing an 
immunomodulatory function of the GI in controlling SARS-CoV-2 infection[18]. Nevertheless, 
molecular events in severe COVID-19, due to increased bacterial translocation and systemic immune 
activation, might eliminate the immunoregulatory functions of the GI. Indeed, post-mortem evaluation 
of COVID-19 patients’ intestinal tissues revealed the overexpression of TNF-α and IL-10, which exerts 
antithetical effects[105]. The presence of IL-10 in the gut and lung may have immunosuppressive effects 
by inhibiting the expression of the human leukocyte antigen DR isotype (HLA-DR) on APCs[105]. 
Depletion of HLA-DR expression on monocytes is a major characteristic of immune dysregulation in 
COVID-19 patients who develop severe respiratory failure[106].

Essentially, changes in the expression of cytokines and downstream dysregulation of their signaling 
networks mirror alterations in the composition of immune cell populations of the lamina propria. 
Imaging mass cytometric analysis showed that the intestinal tract of deceased patients with COVID-19 
accommodated higher numbers of CD11b+ macrophages, CD11c+ DCs, natural killer T cells, and B cells 
compared to healthy controls[105]. Another study, which evaluated post-mortem tissues of COVID-19 
patients, demonstrated severe disorganization of ileal Peyer's patches with loss of B cell/T cell zonation 
and depletion of the germinal center. In addition, impaired interactions between B and T cells, an 
enhanced number of follicular macrophages, the reduction of CD27+ memory B cells, and downregu-
lation of CD74 expression on B cells were reported[107]. Livanos et al[18] in their study, which supports 
an anti-inflammatory function of the GI in SARS-CoV-2 infection, showed that the lamina propria of 
COVID-19 patients was depleted of conventional DCs and plasmacytoid DCs, whereas effector CD4+ 
and CD8+ T cells as well as tissue resident memory T cells were increased. Lehmann et al[36]. revealed 
that the activation and proliferation of antigen-experienced intraepithelial CD8+ T cells into the 
intestinal mucosa was associated with epithelial barrier dysfunction in COVID-19 patients, while 
monocytes and macrophages of the duodenal mucosa expressed markers indicative of their recent 
recruitment from the circulation. In agreement, levels of CCL25, a gut homing marker, were increased in 
the sera of COVID-19 patients, suggesting that intestinal inflammation might result from CCL5/CCR9-
mediated trafficking of gut-specific T cells into the mucosa[108,109]. Humoral immune responses are 
vital for counterattacking viral invasion through the production of neutralizing antibodies. Secretory 
dimeric IgA is the predominant mucosal antibody and an integral component of the immunological 
barrier[6]. IgA antibody overproduction dominates the early pre-specific humoral response to SARS-
CoV-2 infection, while virus-specific IgA antibodies display more robust neutralizing capacity 
compared to their monomeric IgG counterparts[110]. Interestingly, the levels of mucosal SARS-CoV-2-
specific IgA are inversely correlated with age[111]. Therefore, it can be inferred that the inability of B 
cells to mount an effective IgA response contributes to excessive viral propagation in the course of 
severe COVID-19[112].

THE GUT-LUNG AXIS IN COVID-19
As mentioned above, homeostasis of the gut microbiome can be immensely affected in the course of 
respiratory tract infections such as COVID-19. Conversely, intestinal microbiota plays an important role 
in fine-tuning the systemic immune system and eliciting efficient antiviral responses to address lung 
infections[113-115]. Gut bacterial components and metabolites can enter portal circulation or mesenteric 
lymphatics, which drain to the cisterna chyli first, then to the thoracic duct, and finally to the left 
subclavian vein. Intriguingly, the pulmonary vascular bed is the first to interact with the mesenteric 
lymph, implicating the importance of gut-derived signals in shaping lung immune responses in health 
as well as in driving ARDS in critically ill patients[116]. Under normal conditions, commensal-
associated stimuli provide an indispensable for optimal antiviral activity, tonic activation of the host’s 
innate immunity through their impact on alveolar macrophages, resident DCs, and lung epithelial cells 
(Figure 2)[117]. In contrast, germ-free mice are unable to evoke strong innate and adaptive immune 
responses and, thus, experience feeble control of viral infections and unfavorable outcomes[117,118]. 
Although the intestinal and respiratory tracts are anatomically distinct compartments, their mucosal 
immune cells and microbial communities configure a bidirectional “gut-lung” axis cross-talk that is 
highly pertinent to COVID-19 pathogenesis.

The mechanisms through which intestinal flora reinforces lung resilience against viral invasion have 
only recently begun to be unraveled with the assistance of murine models. The gut microbiota orches-
trates the steady-state IFN signature in lung stromal cells, which protects against early influenza virus 



Tsounis EP et al. Gut barrier dysfunction and severe COVID-19

WJV https://www.wjgnet.com 76 March 25, 2023 Volume 12 Issue 2

Figure 2 Overview of the sequelae of gut barrier dysfunction in severe coronavirus disease 2019: dysregulation of lung immune 
responses and establishment of a prothrombotic state. A: Although the intestinal and respiratory tracts are anatomically distinct compartments, their 
mucosal immune cells and microbial ecosystems participate in a bidirectional immunological crosstalk (gut-lung axis). An intact intestinal barrier is pivotal in 
maintaining lung microbiome homeostasis and fine-tuning the respiratory immune system to elicit potent antiviral responses in the case of infection. Commensal 
bacteria provide tonic stimulation (through the production of pattern-recognition receptor-ligands, desaminotyrosine, short-chain fatty acids, etc.) of the epithelial, 
stromal, and innate immune cells of the lungs and modulate the steady-state interferon-signature, which is essential for suppressing the early phase of viral 
proliferation. In addition, gut-derived signals and metabolites orchestrate the effective priming of adaptive immune responses by inducing the differentiation of virus-
specific CD4+ and CD8+ T cells and antibody-secreting plasma cells, which are responsible for viral control and clearance in the later stages of infection. In 
coronavirus disease 2019 (COVID-19), gut barrier dysfunction and depletion of symbiotic microorganisms eliminate the aforementioned immunomodulatory effects 
and compromise the ability of the respiratory immune system to effectively contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; B: The 
gut vascular bed has a massive endothelial surface that is susceptible to SARS-CoV-2 infection. SARS-CoV-2 can inflict direct injury to angiotensin-converting 
enzyme 2 (ACE2)-expressing endothelial cells; interruption of ACE2 signaling can dysregulate both the renin-angiotensin and kinin-kallikrein systems, leading to 
vascular leakage. The activated or apoptotic endothelial cells release phosphatidylserine-rich endothelial microparticles and secrete large amounts of tissue factor, 
VIIIa, von Willebrand factor, and other procoagulant cofactors. Circulating platelets accumulate at sites of vascular injury, adhere to each other, and become 
activated, leading to further secretion of prothrombotic substances. Overexpression of adhesion molecules, such as P-selectin, facilitates the recruitment and 
activation of monocytes and other leukocytes, including neutrophil extracellular trap (NET)-producing neutrophils. COVID-19-associated immunothrombosis refers to 
this concurrent aberrant activation of the innate immune and coagulation systems, which predisposes to serious thrombotic complications. This vicious cycle can be 
further exacerbated by gut barrier dysfunction. Low-grade endotoxemia, due to increased intestinal permeability, enhances the activation of endothelial cells and 
platelets by inducing lipopolysaccharide (LPS)/toll-like receptor 2 (TLR2) and LPS/TRL4 downstream signaling pathways. In parallel, LPS is a potent driver of NET 
formation. Several other bacterial lipoproteins, such as peptidoglycan-associated lipoprotein (Pal) or Pam3Cys, aggravate vascular leakage and precipitate thrombus 
formation through TLR2 activation. Moreover, translocation of fungal components, such as β-glucan, could directly stimulate leukocytes and promote inflammation by 
binding to the Dectin-1 receptor and activating the nuclear factor-κB pathway. Finally, gut dysbiosis is associated with trimethylamine N-oxide overproduction, which is 
a recognized risk factor for clotting events as it enhances platelet hyperresponsiveness, endothelial dysfunction, and NLR family pyrin domain containing 3 
inflammasome activation (created with biorender.com). AngII: Angiotensin II; DCs: Dendritic cells; ECs: Endothelial cells; NK cells: Natural killer cells; NO: Nitric 
oxide; PLT: Platelet; DAT: Desaminotyrosine; SCFAs: Short-chain fatty acids; PRRs: Pattern recognition receptors.

proliferation by driving the expression of IFN-α/β receptor[113]. In line with this, when mice were 
exposed to antibiotics, their macrophage-related type I and type II IFN responses were severely 
impaired, resulting in the uncontrolled spread of systemic lymphocytic choriomeningitis virus or 
mucosal (influenza virus) infection. In a murine model of influenza infection, desaminotyrosine (DAT), 
a degradation product of dietary flavonoids, induced an efficient amplification of the IFN type I loop, 
which suppressed viral gene expression and airway epithelial damage. Notably, a distinct human-
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derived commensal, Clostridium orbiscindens, produced DAT and rescued antibiotically-treated mice 
from viral infection[119]. An outer membrane glycolipid originating from the gut symbiont Bacteroides 
fragilis protected mice against viral infection through the induction and systemic release of IFN-β by 
colonic DCs[120]. Acetate, another metabolite derived from the gut microbiome, is able to enter the 
circulation, enhance IFN-β signal transduction via stimulation of the G-protein-coupled receptor 43 in 
pulmonary epithelial cells, and thus limit severe RSV infection[114]. Moreover, depletion of commensal 
bacteria precipitated significant epigenetic modifications at the level of mononuclear phagocytes 
residing in non-mucosal lymphoid organs. As a result, these cells were unable to induce type I IFN 
secretion, which led to suboptimal NK cell priming and poor antiviral responses[121]. Admittedly, an 
imbalance of IFN signaling is an inherent characteristic of the pathogenesis of respiratory tract 
infections, including SARS-CoV-2-associated pneumonia[122]. Early severe COVID-19 is governed by 
overwhelming IFN-α responses as well as NK cell functional exhaustion, which is manifested by 
abnormal expression of interferon-stimulated genes[123]. Therefore, it is plausible to assume that 
metabolites and signals stemming from luminal bacteria could influence the early response to SARS-
CoV-2 infection by altering the IFN signature and compromising innate immunocompetence in the 
lungs.

Regulation of the mucosal immune system of the respiratory tract, which supervises airway 
colonization, depends on reciprocal signaling with the gut. The respiratory tract is not sterile; instead, it 
harbors a unique microbial ecosystem and its role in homeostasis and disease is being increasingly 
recognized with the advent of culture-independent molecular techniques[124]. Alterations of the lung 
microbiome signature are associated with clinical outcomes in critically ill patients infected with SARS-
CoV-2[125]. The immunomodulatory potential of airway bacteria was exemplified by a pathogen-free 
murine model of influenza virus. Colonization of the upper respiratory tract by Staphylococcus aureus 
induces the recruitment of peripheral macrophages into the alveoli and their polarization toward an 
M2-like phenotype via TLR2 signaling. As a result, Staphylococcus aureus creates an anti-inflammatory 
pulmonary milieu that attenuated immune-mediated injury and prevented lethal influenza infection
[126].

The robust and timely priming of adaptive immunity is necessary to contain SAR-CoV-2 infection. 
Delayed activation of adaptive immune responses and depletion of virus-specific T cells are hallmarks 
of severe or fatal COVID-19[127]. Interestingly, multiple studies have revealed that the gut microbiome 
is actively involved in shaping adaptive immunity in the respiratory tract. In a murine model of West 
Nile virus infection, exposure to antibiotics impaired the ability to elicit potent T cell responses, 
decreased the number of virus-specific CD8+ T cells, and led to worse disease outcomes[118]. Ichinohe 
et al[115] demonstrated that intestinal microflora regulates an even broader spectrum of adaptive 
immunity responses in the respiratory mucosa. More specifically, neomycin-sensitive commensal 
bacteria were essential for the induction of effective humoral responses and the generation of virus-
specific CD4+ and CD8+ T cells in the lungs. Normal intestinal flora provided signals that maintained a 
steady-state IL-1β, pro-IL-18, and NLR family pyrin domain containing 3 (NLRP3) expression. 
Antibiotic-induced immunodeficiency is attributed to impaired inflammasome activation, abnormal 
activation and distribution of respiratory DCs, and inadequate DC migration to draining lymph nodes 
of the lung[115]. In this setting, Gauguet et al[128] demonstrated that the presence of segmented 
filamentous bacteria in the murine microbiome was vital for priming strong Th17 immunity responses 
and IL-22 secretion in the respiratory system. In response to fiber supplementation, the gut microbiome 
generates large amounts of SCFAs, which hinders influenza-induced lung injury through a dual 
mechanism concerning both arms of immunity[129]. First, SCFAs enhances the cellular metabolism and 
the effector functions of CD8+ T cells in the respiratory tract. Second, SCFAs induce an alternative 
activation of macrophages, which exhibit the limited ability to express the chemokine CXCL1. As a 
result, SCFA-modulated macrophages reduce early neutrophil infiltration and subsequent injury in the 
airways[129]. In a randomized controlled trial, non-hospitalized patients with symptomatic COVID-19 
were allocated 1:1 to groups receiving an oral probiotic formulation or placebo for 30 d. Remarkably, 
probiotic supplementation was associated with higher rates of complete remission, decreased 
nasopharyngeal viral levels, and shorter duration of symptoms by inducing vigorous virus-specific IgM 
and IgG antibody responses.

In summary, a well-preserved intestinal barrier function, harboring a diverse consortium of 
commensal bacteria, provides the essential signals for appropriate and effective modulation of immune 
system responses in the lungs. Regardless of being the cause or the result of severe SARS-CoV-2 
infection, gut dysbiosis is not a silent bystander but an active orchestrator of dysregulated immune 
responses in the respiratory tract. Modulation of gut microbiota represents an emerging therapeutic 
intervention to mitigate immune-mediated lung injury and improve COVID-19 outcomes[130].

GUT BARRIER DYSFUNCTION INFLAMING COVID-19-ASSOCIATED COAGULOPATHY
COVID-19-associated coagulopathy (CAC) is a life-threatening condition that can lead to arterial 
thromboembolism (ATE), such as acute coronary syndrome and cerebrovascular accident, or venous 
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thromboembolism (VTE), which manifests as deep vein thrombosis or pulmonary embolism[131]. Mild 
thrombocytopenia, prolonged prothrombin time, and increased serum levels of fibrinogen, CRP, P-
selectin, and d-dimers have all been linked to clotting events in COVID-19 patients; these deviations 
become more pronounced as the disease progresses[131,132]. A recent meta-analysis, comprised of more 
than 90000 patients, concluded that hospitalized COVID-19 patients have a significantly increased 90-d 
risk of VTE in comparison to hospitalized individuals with influenza virus (9.5% vs 5.3%), and that this 
peril persists even after the breakthrough of effective vaccines[133]. COVID-19-related thromboembolic 
events are major burdens of morbidity and mortality, and their incidence increases with disease 
severity, affecting up to one third of patients in ICUs[134-136]. The pathophysiology underlying CAC is 
multifactorial, encompassing endothelial injury, over-exuberant immune responses, and overt dysregu-
lation of coagulation and fibrinolytic pathways, which collectively result in a procoagulant state[131]. 
The activation of these mechanisms can be further aggravated by defects in intestinal barrier integrity 
due to SARS-CoV-2 infection[27,137].

The dysfunction of the endothelium is a hallmark of COVID-19, representing a common feature in 
multiple clinical manifestations of the disease such as thromboembolic events, neurological complic-
ations, and renal dysfunction[138,139]. The intestinal tract accommodates an enormous vascular 
endothelial surface consisting of a monolayer of squamous endothelial cells. Under physiological 
conditions, endothelial cells regulate the vascular tone and secrete anticoagulant and antiplatelet agents 
that preclude clotting events[140]. Human endothelial cells express the key cofactors, namely ACE2 and 
TMPRSS2, which are exploited by SARS-CoV-2 to invade its target cells[141]. There is evidence of viral 
inclusions in endothelial cells and mononuclear cell infiltrates in the walls of small vessels, as well as 
markers of endothelial cell apoptosis[142]. SARS-CoV-2-induced dysfunction of gut microvasculature 
and fragmentation of the endothelial glycocalyx eliminate these protective effects, promote vasocon-
striction due to depletion of endothelium-derived nitric oxide, and drive platelet activation and fibrin 
formation[131]. Indeed, mesenteric thrombosis is not uncommon in critically ill patients with COVID-
19, while focal ischemic lesions, inflammation of the endothelium, vessel wall edema, microhemorrhage, 
and microthrombi are frequent findings in resected bowel segments[27,143-145]. SARS-CoV-2-mediated 
dysregulation of ACE2 signaling in intestinal vascular endothelium might create a prothrombotic 
microenvironment through a dual mechanism. First, ACE2 catalyzes the conversion of angiotensin (Ang 
II) to angiotensin 1-7 (Ang 1-7), which confers important antithrombotic and immunoregulatory effects 
by binding to G-protein coupled Mas receptors. Therefore, ACE2 depletion attenuates the Ang 1-7 
downstream pathway and shifts the balance in favor of Ang II, which binds to its cognate receptor and 
exerts harmful prothrombotic and inflammatory effects[146]. Second, the kinin-kallikrein system is also 
directly modulated by ACE and ACE2. Thus, the ACE/ACE2 imbalance can induce a “kinin storm” and 
amplify vascular permeability, cell migration, platelet activation, and oxidative stress[131,147].

There are data supporting the hypothesis that SARS-CoV-2 inflicts damage on endothelial cells 
(endotheliitis) via both direct cytopathic and indirect immune-mediated mechanisms[148]. Activated or 
apoptotic intestinal endothelial cells retract their margins, release endothelial microparticles (MPs), and 
abolish their ability to confine phosphatidylserine (PS) into the inner layer of the cellular membrane[27,
149]. In this setting, microRNA expression in endothelial-derived extracellular vesicles has been 
associated with cerebrovascular events in COVID-19 patients by compromising the function of the 
blood-brain barrier[150,151]. Endothelial MPs and PS-positive filopods support the formation of the 
prothrombinase complex along with activated coagulation factors Va and Xa and thereby catalyze a 
pivotal step of the coagulation cascade, that is, the proteolytic activation of thrombin[27,152]. In parallel, 
exposure of subendothelial tissues and tissue factor (TF) to plasma procoagulants triggers the extrinsic 
coagulation pathway[132]. Damaged endothelial cells sustain this hypercoagulable milieu and promote 
platelet aggregation by secreting large amounts of factor VIII and von Willebrand factor (VWF), 
respectively[153-156]. Thrombotic microangiopathy is further exacerbated due to relative deficiency in 
metalloproteinase ADAM metallopeptidase with thrombospondin type 1 motif 13 activity in COVID-19 
patients, which leads to insufficient VWF cleavage and enhanced platelet-vessel wall interactions[157]. 
Numerous other endothelial dysfunction markers, such as circulating endothelial cells, soluble (s)E-
selectin, soluble thrombomodulin, and soluble intercellular adhesion molecule 1 are significantly 
increased in COVID-19 patients receiving ICU care[153,155,158]. Furthermore, critically ill patients 
demonstrate functional exhaustion of natural anticoagulants (protein C, protein S, and antithrombin) 
and develop anti-phospholipid antibodies at high rates[154]. This procoagulant state is accompanied by 
suboptimal fibrinolytic potential and remodeling of the clot structure, which displays a denser fibrin 
network as well as thinner and shorter fibrin fibers. In severe COVID-19, hypofibrinolysis is dictated by 
an upregulation of plasminogen activator inhibitor-1 and its stabilizing cofactor vitronectin, which 
reduce plasminogen generation, despite concurrent elevations of tissue plasminogen activator[159].

Immunothrombosis illustrates the intricate cross-talk between the innate immune system and the 
coagulation pathway, which aims to locally contain an infection by facilitating recognition and 
eradication of invading pathogens. An aberrant activation of immunothrombosis is associated with 
severe thrombotic complications in SARS-CoV-2 infection[160]. Endothelium expresses a variety of 
adhesion and chemoattractant molecules, promoting the recruitment of monocytes and neutrophils at 
sites of injury. The release of DAMPs and PAMPs stimulates innate immune cells, which subsequently 
express TF and pro-inflammatory mediators in large amounts and precipitates the formation of 
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neutrophil extracellular traps (NETs)[156]. NETs are web-like structures consisting of DNA complexed 
with histones, bactericidal enzymes, complement factors, and coagulants. NETosis is a potent driver of 
immunothrombosis in COVID-19 and contributes to the procoagulant state in IBD through various 
mechanisms: cleavage of natural anticoagulants, direct activation of the contact-dependent and extrinsic 
pathways of coagulation, and aggregation of platelets[156,161]. In turn, activated platelets overexpress 
P-selectin and other adhesion molecules, which enhance their interactions with monocytes and NETs
[162]. Through the secretion of their intracellular prothrombotic granule substances and externalization 
of their PS-rich membrane, platelets trigger and sustain thromboinflammation[131].

There is evidence that this vicious cycle could be further aggravated by gut barrier dysfunction. In 
particular, Oliva et al[163] reported that serum LPS and zonulin were increased in hospitalized COVID-
19 patients and showed that endotoxemia was an independent predictor of in-hospital thrombotic 
complications. Zonulin is involved in the modulation of gut permeability by orchestrating the 
disassembly of intercellular TJ[53]. In this regard, serum LPS positively correlated with zonulin, 
supporting that low-grade endotoxemia precipitating thrombosis in COVID-19 originates from the gut
[163]. In addition, thrombogenesis in patients with endotoxemia was associated with the TLR4-
dependent activation of platelets[163]. In agreement, LPS/TLR4 and LPS/TLR2 downstream signaling 
pathways have been previously implicated in procoagulant conditions by promoting endothelial cell 
and platelet activation[164]. Several other bacterial lipoproteins, such as Pam3Cys and peptidoglycan-
associated lipoprotein, promote vascular leakage and thrombus formation through TLR2 activation
[165]. In a murine model, microbial translocation and release of related patterns as a result of gut barrier 
leakage enhanced platelet pro-aggregating capacity and thrombus growth by inducing VWF synthesis; 
this effect was mediated via TLR2 activation in the hepatic endothelium[166]. Restoration of endothelial 
function through L-arginine supplementation was followed by improved outcomes in hospitalized 
patients with COVID-19[167]. L-arginine, a semi-essential amino acid, stimulates endothelium 
relaxation by serving as a substrate for the synthesis of nitric oxide by NOS. It also plays a role in 
immunomodulation by controlling T cell proliferation[168]. The importance of gut microbiome 
homeostasis in preventing immunothrombosis and inflammatory damage was evidenced in a model of 
acute mesenteric ischemia/reperfusion injury. More specifically, commensal bacteria mitigated LPS-
induced NETosis by providing tonic stimulation of the neutrophil-intrinsic TLR4 downstream signaling
[169]. Furthermore, perturbation of intestinal microflora due to SARS-CoV-2 infection and the ensuing 
depletion of SCFAs might enhance thromboinflammation by eliminating the inhibitory effects of 
butyrate on the LPS/TLR4/NF-κB pro-inflammatory pathway[170]. Alternatively, dysregulation of 
microorganisms involved in the metabolism of trimethylamine and its metabolite TMA N-oxide 
(TMAO) could contribute to the hypercoagulative state in CAC[171]. TMA is generated by gut bacterial 
metabolism of choline, carnitine, and betaine and is rapidly converted into TMAO in the liver. TMAO is 
a recognized risk factor for clotting events by enhancing platelet hyperresponsiveness, endothelial 
dysfunction, and NLRP3 inflammasome activation[171,172]. Indeed, a recent study revealed significant 
alterations in metabolites pertaining to the choline/TMAO and carnitine/TMAO pathways in COVID-
19 patients; these aberrations were associated with disease symptoms and severity[173].

GUT BARRIER DYSFUNCTION: AN UNDERAPPRECIATED DRIVER OF SYSTEMIC 
INFLAMMATION
The critical form of COVID-19 is governed by multi-layered immune system dysregulation and hyper-
inflammatory responses. Overexpression of pro-inflammatory cytokines (IL-1, IL-6, TNF-α) and 
chemokines (MCP-1, MIP-1β, CCL5), as well as excessive oxidative stress and hyperactivation of the 
complement (C3a) and coagulation (d-dimer) systems are hallmarks of severe COVID-19[55,174]. In 
parallel, SARS-CoV-2 infection is accompanied by a tremendous influx of microbial components and 
metabolites into the systemic circulation due to intestinal barrier dysfunction. Several studies have 
shown that critically ill patients with COVID-19 present with endotoxemia and elevated plasma levels 
of zonulin and LPS-binding protein (LBP), which are surrogate markers of leaky gut[55,59,108,174-177]. 
Additional indices of disrupted intestinal permeability, such as fatty acid binding protein 2, an 
intracellular protein specifically expressed in IECs, and peptidoglycan, a core element of the cell wall in 
Gram-positive bacteria, were also increased in COVID-19 cases[178]. Furthermore, patients with severe 
COVID-19 as well as those with SARS-CoV-2 post-acute sequelae (PASC) had higher circulating levels 
of β-glucan, a fungal cell wall polysaccharide, indicating persistent fungal translocation[55,175,179]. 
Interestingly, the presence of circulating bacteriome in critically ill COVID-19 patients without evidence 
of secondary infections further corroborates the assumption of gut-derived bacterial translocation in 
severe SARS-CoV-2-infection[175]. Essentially, exuberant translocation precipitates microbial-mediated 
myeloid activation as demonstrated by increased serum levels of sCD14 and myeloperoxidase, which 
correspond to monocyte and neutrophil inflammation, respectively[55,174]. Multiple studies have 
revealed strong and unequivocal correlations between intestinal barrier dysfunction and biomarkers of 
inflammation and/or immunological activation, implicating a detrimental role of gut barrier defects in 
triggering or enhancing hyper-inflammatory responses in severe SARS-CoV-2 infection[55,59,108,163,



Tsounis EP et al. Gut barrier dysfunction and severe COVID-19

WJV https://www.wjgnet.com 80 March 25, 2023 Volume 12 Issue 2

174,177]. More specifically, Giron et al[55] reported that LBP, β-glucan, and zonulin levels were all 
significantly associated with higher systemic levels of IL-6. During PASC, β-glucan could directly 
stimulate leukocytes and promote inflammation by binding to the Dectin-1 receptor and activating NF-
κB pathway[179]. In hospitalized COVID-19 patients with cardiac involvement, NLRP3 inflammasome 
activation and subsequent IL-18 and IL-1Ra secretion were linked with circulating LBP levels[108]. In 
line with this, Sun et al[59] demonstrated that plasma levels of LBP were associated with inflammation 
biomarkers (CRP, IL-6, IL-8) as well as with changes in relative frequencies of lymphocytes and 
neutrophils. Endotoxemia was significantly associated with TNF-α, CCL5, and MIP-1β in another cohort 
of COVID-19 inpatients, whereas sCD14 was negatively associated with TGF-β[174].

Furthermore, gut microbiome alterations, which become more pronounced as disease progresses, 
showed solid correlations with markers of inflammation and tissue injury. In particular, gut dysbiosis 
coincided with derangements in the serum levels of IL-10, TNF-α, CRP, erythrocyte sedimentation rate, 
aspartate aminotransferase, and lactate dehydrogenase in patients with COVID-19[60]. A negative 
correlation was found between CRP and the symbiotic microorganisms Faecalibacterium prausnitzii and 
Clostridium butyricum, which perish in critically ill patients[60]. The abundance of commensal bacteria (
Lachnospiraceae, Eubacterium ventriosum, Faecalibacterium prausnitzii) was followed by an increased 
number of CD4+ T cells, CD8+ T cells, and NK cells[69]. Conversely, opportunistic pathogens, which are 
commonly overrepresented in the COVID-19-related gut microbiome, such as Bacteroides dorei and 
Akkermansia muciniphila, were positively correlated with pro-inflammatory cytokines, including IL-1β, 
IL-6, and IL-8[69]. Accordingly, the predominance of the emerging pathogen, Burkholderia contaminans, 
was accompanied by T cell anergy and complement activation[59]. In parallel, the prevalence of 
pathogenic species in SARS-CoV-2-induced gut dysbiosis predisposes to bacteremia, leading to 
secondary microbial bloodstream infections, and thus, to an increased risk of serious complications[178,
180]. It should be noted that dysbiosis induces multifaceted derangements in microbial-mediated 
metabolic functions, including regulation of amino acid, lipid, and carbohydrate metabolism, that could 
further contribute to worsening outcomes. In fact, severe COVID-19 disease is characterized by a drastic 
shift in the composition of gut-modulated biologically active molecules that engage in inflammation 
signaling and immune system activation[55,59]. The long-lasting alteration of the microbial signature 
due to SARS-CoV-2, characterized by the predominance of pathogenic species and activation of pro-
inflammatory pathways, perpetuates intestinal inflammation and could lead to long-term complic-
ations, such as tumorigenesis and colorectal cancer[60,181]. Systemic immune activation in COVID-19, 
which is at least partially fueled by leaky gut, has been linked to all of the severe manifestations of the 
disease, including cytokine storm syndrome, ARDS, renal failure, cardiovascular events, 
thromboembolic disease, and neurological manifestations[182]. The co-existence of intestinal barrier 
dysfunction in individuals with underlying diseases, such as obesity, diabetes, colorectal cancer, or 
immunosuppression, could exacerbate endotoxemia and the consequent immune system overactivation, 
predisposing to a more severe disease course[182,183].

CONCLUSION
Although the respiratory tract is the main target organ of SARS-CoV-2 infection, severe COVID-19 is 
considered a complex disorder affecting multiple systems. The development of GI-related symptoms, 
long-lasting fecal shedding of viral RNA, and identification of the virus in human intestinal tissues have 
brought to the spotlight the potential effects of the GI system in COVID-19 pathophysiology. The 
integrity of the intestinal barrier is a sine qua non for the accomplishment of the diverse digestive and 
immunomodulatory functions of the GI tract. In this setting, SARS-CoV-2 is capable of inducing 
deleterious effects on the gatekeepers of paracellular transport, i.e., TJs, as well as on intestinal epithelial 
and endothelial cells through direct ACE2-dependent or indirect immune-mediated mechanisms, or 
both. Apart from dismantling the mechanical structures of the mucosa, COVID-19 is accompanied by 
profound alterations of the intestinal microflora at taxonomic and functional levels that are associated 
with disease severity and the host’s immune system activation. Furthermore, SARS-CoV-2 hijacks innate 
immune responses, principally through interference with IFN signaling, and, thus, leads to inappro-
priate trafficking and activation of virus-specific T and B cells. In turn, this multi-layered disruption of 
the gut barrier can exacerbate the underlying immunopathology of COVID-19 or precipitate serious 
complications.

The gut and the lungs, albeit anatomically distinct, participate in a bi-directional immunological 
crosstalk through their respective microbes and immune cells. A well-tuned intestinal barrier harboring 
a diverse community of commensal microorganisms is pivotal in modulating lung immune responses 
and the lung microbiome. Therefore, gut dysbiosis impairs the ability to prime vigorous immune 
responses in the respiratory tract to effectively contain viral infections such as SARS-CoV-2. Moreover, 
the gut vascular bed provides an enormous endothelial surface susceptible to SARS-CoV-2-mediated 
injury. Disease-activated and apoptotic endothelial cells are potent drivers of neutrophil/monocyte 
recruitment, platelet aggregation, and coagulation activation. In parallel, dysbiosis, endotoxemia, and 
systemic hyperimmune reactions shape a procoagulant state within the gut microvasculature that 
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possibly contributes to extraintestinal thrombotic complications or ARDS pathogenesis, which are 
common manifestations of severe COVID-19. A compromised gut barrier allows an excessive influx of 
intraluminal microbiota into otherwise sterile extraintestinal compartments. This systemic dissem-
ination of microbial constituents and metabolites contributes, to a certain extent, to immune system 
activation and hyper-inflammatory responses that govern the severe form of COVID-19. Preexisting 
comorbidities plagued with impaired intestinal permeability, such as obesity, diabetes, cirrhosis, and 
autoimmune disorders, might act synergistically with SARS-CoV-2 to further aggravate endotoxemia 
and endotoxin-mediated immune activation, predisposing to a more complicated disease course. 
Modulation of the gut barrier function emerges as a promising intervention to prevent or alleviate 
severe COVID-19 and related complications.
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Abstract
The coronavirus disease 2019 (COVID-19) disease was first detected in December 
2019 in Wuhan, China. This disease is currently one of the most important global 
health problems. The novel coronavirus COVID-19 is a respiratory illness, that has 
caused a deadly pandemic that is spreading rapidly around the world. It is not 
only a respiratory system virus that causes severe lung disease, but also a 
systemic disease agent that can affect all systems. People with COVID-19 disease 
usually have respiratory signs, however, the liver disorder is not an uncommon 
presentation. In addition, many studies around the world have revealed that the 
liver is injured to various degrees in patients with severe acute respiratory 
syndrome coronavirus 2 disease. This review mainly focuses on the impact of 
COVID-19 on Liver Injury at various ages.
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coronavirus 2; Minireview
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Core Tip: Studies have shown that neonates have rare evidence of liver damage, and in terms of age, they 
show the least amount of liver damage in the face of coronavirus disease 2019 (COVID-19) among 
affected people. Also, many studies reported different patterns of liver damage among children with 
COVID-19 much less than in adults, which is probably related to differences in their innate immune 
system and adaptation. The highest rate of liver damage is in adult patients and aspartate aminotransferase 
levels had the highest relevance with mortality compared to other indices reflecting liver injury.

Citation: Sadeghi Dousari A, Hosseininasab SS, Sadeghi Dousari F, Fuladvandi M, Satarzadeh N. The impact of 
COVID-19 on liver injury in various age. World J Virol 2023; 12(2): 91-99
URL: https://www.wjgnet.com/2220-3249/full/v12/i2/91.htm
DOI: https://dx.doi.org/10.5501/wjv.v12.i2.91

INTRODUCTION
Coronaviruses are a big family of viruses belonging to the realm Riboviria, order Nidovirales, family 
Coronaviridae and subfamily Coronavirinae. This virus contains an RNA genome and belongs to the 
Coronaviridae family[1,2]. This virus is spread in a wide spectrum of humans, other mammals, and 
avian species, also inducing acute respiratory infections[3]. Types of coronaviruses including HCoV-
NL63, HCoV-HKU1, HCoV-229E, and HCoV-OC43 have been presented as mild virulent human 
viruses worldwide[4]. These viruses cause mild to severe acute respiratory illnesses in humans[3]. 
Coronavirus disease 2019 (COVID-19) was identified for the first time in December 2019, in Wuhan, 
located in the capital of Hubei Province in the People's Republic of China[1]. Coronavirus disease 2019 
is an infectious illness that has caused a lethal pandemic that rapidly extends worldwide[5,6]. The signs 
of COVID-19 appear approximately 5.2 d after the disease and last for a minimum of 41 d and a 
maximum of 14 d until the end of life[4,7].

In the early stages of COVID-19, it has been found that severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) is not only a respiratory system virus that generates severe lung disease 
but a systemic disease factor that can involve all systems[8,9]. Some extrapulmonary involvement of 
SARS-CoV-2 disease is in organs like the liver, heart, or kidneys[10]. Many studies throughout the 
world have demonstrated that the liver is injured to differing degrees in patients affected by SARS-CoV-
2 disease[8,9].

The liver is a vital member that is mostly responsible for the storage of glycogen and regulation of 
blood glucose levels, protein synthesis, metabolism of toxic substances, and very other physiological 
processes[8,9]. Liver dysfunction has been reported in 54% of hospitalized patients affected by COVID-
19 disease, most of which are more severe in COVID-19[11]. Liver injuries have been documented in 
patients affected by COVID-19, and commonly have mild increasing liver enzymes range from 14% to 
53%[12]. Patients with severe disease, especially those hospitalized in ICU, have shown a higher 
increase in transaminase enzymes than patients with mild to moderate severity[13]. Furthermore, few 
studies investigated the dynamic change of liver function during the COVID-19 pandemic. Also, no 
study to date has documented the incidence of a simultaneous increase in liver transaminases and total 
bilirubin levels in COVID-19 patients[14].

The purpose of this review is to evaluate the effect of COVID-19 on liver injury in various ages.

DEFINITION OF LIVER INJURY
Patients who make severe acute liver injury in the absence of preexisting chronic liver disease, usually 
indicate noteworthy liver dysfunction marked with coagulopathy, which is described as an interna-
tional normalized ratio ≥ 1.5 and is classically defined as acute liver failure (ALF) when any degree of 
hepatic encephalopathy (HE) is existing[15]. The ALF types include: (1) Hyperacute: < 7 d; (2) Acute: 
7–28 d, and (3) Subacute: 28 d to 6 mo, depending on latency between the beginning of signs and 
development of encephalopathy and coagulopathy[16,17].

HOW DOES COVID-19 CAUSE LIVER INJURY?
Liver injury is seen in patients with COVID-19, and its harshness is altered depending on the patient's 
age, geographical area, and disease severity[18]. Viral direct damage[19], immune damage, systemic 
inflammatory response, drug-induced, ischemia-reperfusion injury, mechanical ventilation, and 
underlying diseases may donate to liver injury[20] (Figure 1).

https://www.wjgnet.com/2220-3249/full/v12/i2/91.htm
https://dx.doi.org/10.5501/wjv.v12.i2.91
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Figure 1 Summary of liver injury in coronavirus disease 2019 patients. ACE2: Angiotensin-converting enzyme 2.

There is much evidence that COVID-19 causes abnormal liver function experiment outcomes with 
increased levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in people with 
liver damage[21,22]. Studies performed in Wuhan, China, recorded mildly elevated ALT and AST levels 
in 14%–53% of cases, with higher rates of both enzymes in patients with intense infection, mostly in 
patients requiring admission to the intensive care unit[23]. In COVID-19 patients with injured biliary 
tract were increased serum bilirubin, alkaline phosphatase (ALP), and gamma-glutamyl transferase 
(GGT) levels[24]. Also, in cases where the virus causes notable liver injury and intense clinical 
symptoms, varying levels of ALP and GGT along with high levels of ALT and total bilirubin have been 
reported in 58%-78% of patients[25].

The pathophysiology of liver damage may include the cytopathic result, in which spike (S) protein of 
coronaviruses 2019 attaches to the angiotensin-converting enzyme 2 (ACE2) receptor, leading to 
reduced liver function and hepatobiliary disease[26]. S protein viral entry into the liver cells 
(hepatocytes and cholangiocytes), a process that involves binding to the surface of the host cell through 
binding of the surface unit (S1) to a receptor[27,28]. The virus attains access to the host via the ACE2 
receptor (a type I integral membrane protein containing zinc, which indicates enzymatic action through 
cleaving the vasoconstrictor peptide angiotensin II to angiotensin I, a strong vasodilator peptide, 
therefore decreasing blood pressure). ACE2 receptor was abundantly demonstrated in epithelial cells 
that line a three-dimensional network of bile ducts named cholangiocytes (60%), hepatocytes (3%) in the 
liver, alveolar cells of the lungs, and in various organs such as the pancreas, kidney, and heart[29,30].

FACTORS RELATED TO THE COVID-19 DISEASE THAT CAUSE LIVER DAMAGE
Drugs: There are several drugs that prescribed to manage the treatment of patients with COVID-19 and 
associated symptoms, including therapeutic agents such as antivirals, antibiotics, acetaminophen, 
immunomodulators, corticosteroids, steroids, and antipyretics, that are metabolized through the liver 
and their use may lead to hepatotoxicity[31,32]. It has been reported that liver damage caused by these 
drugs is reason of anomalies in liver experiments and histological variation like micro-vesicular 
steatosis and liver inflammation in COVID-19 patients. Drugs like oseltamivir, arbidol, hydroxy-
chloroquine, as well as ritonavir, and lopinavir in the treatment of patients may induce variable degrees 
of hepatotoxicity[33].

Hypoxia: Hypoxia in patients with COVID-19 is known as a major factor that causes a decrease in 
oxygen saturation values and finally reduction in systemic blood pressure[34]. This will ultimately 
cause a reduction in liver arterial perfusion via liver ischemia and hypoxia reperfusion injury via liver 
cell hypoxia[35].
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Cytokines storm: Another factor related to COVID-19 that causes liver damage is the occurrence of a 
cytokine storm. In cases of the moderate and severe phase of the disease, which includes endothelial 
damage, it is related via a strong immune response to the SARS-CoV-2 virus[36]. This step is 
accompanied by the stimulation of inflammasomes (cytosolic multiprotein oligomers) that are 
responsible for the activation of caspase-1 and the release of pro-inflammatory cytokines [Interleukin 
(IL)-1β, IL-6, and IL-18][37]. In the next step, these cytokines stimulate the expression of genes relevant 
to the immune response, and through intracellular signaling, especially using IL-6, other pro-inflam-
matory cytokine biomarkers like tumor necrosis factor-alpha, IL-2, IL-8, IL-10, IL-17, granulocyte 
colony-stimulating factor monocyte chemoattractant protein, and interferon-inducible protein[38]. In 
addition, IL-6 activates numerous downstream signal pathways using creating complexes with its 
receptor[39], and also the reason for raised ferritin and C-reactive protein levels, reduced lymphocytes 
and enhanced neutrophils[40].

Underlying liver diseases: Underlying liver diseases can aggravate liver damage in the face of COVID-
19. The prevalence of underlying liver diseases in patients with COVID-19 has been reported to be 
between 3% -11% in large observational studies[27,41,42]. From cases of these underlying diseases can 
be mentioned chronic liver disease and cirrhosis, non-alcoholic fatty liver disease, and liver 
transplantation[27].

THE ASSOCIATION DIFFERENT AGES AND LIVER INJURY CAUSED BY COVID-19
Many studies have demonstrated various patterns of disease and their outcomes between adults and 
children, possibly associated with the difference in their innate and adaptive immune systems. Children 
with or without chronic sickness are less likely to have a severe illness from COVID-19 confirmed in 
various studies[43]. However, children affected by COVID-19 have a milder infection than adults, 
possibly related to children having preserved effector and immunosuppressive components[44]. The 
differences in age, gender, and population are probably due to differences in immune responses and 
different variants of SARS-CoV-2[45]. Furthermore, children are less likely to have multiple chronic 
conditions than older people[44]. Children with a weakened immune system, such as liver illnesses 
considered at higher risk of coronavirus[43]. Some reports showed children to have higher ACE2 
expression than older adults, that it conversion ang I (angiotensin I enzyme) into angiotensin 1-7 (ang 1-
7) enzyme, thus ang 1-7 enzyme protecting against pulmonary capillary leak and inflammation. This 
issue can be the reason why children are more resistant to COVID-19 than adults. The mechanism of 
liver injury in cases by COVID- 19 is indistinct[46]. The liver damage associated with COVID-19 is 
described as any liver injury happening during the progression and treatment of this disease in cases 
with or without underlying liver illness[47]. The most common presentation of liver damage in patients 
is with COVID-19 shown by increasing liver enzymes and also decreasing Serum albumin in severe 
cases. However, reports of death in affected by COVID-19 patients due to severe liver injury rarely 
happen[48,49].

THE EFFECTS OF COVID-19 ON LIVER INJURY IN NEONATES
A clinical study of 10 neonates (including twins) to 9 born to mothers with COVID-19 showed that only 
two infants have thrombocytopenia accompanied using abnormal liver function[50]. Clinical Analysis of 
48 Neonates Born to Mothers with COVID-19 (confirmed or clinically diagnosed) or without it 
accomplished by Liu et al[51] polymerase chain reaction (PCR) test of all neonates was negative. 
Evidence of vertical transmission and liver injury was not observed. Similarly, a clinical investigation of 
19 neonates born to mothers with COVID-19 was investigated at Tongji Hospital, China. The COVID-19 
real-time reverse-transcription–PCR Test of all neonates was negative. In this study also, vertical 
transfer of SARS-CoV-2 was not found[52]. Wang et al[53] investigated a case report of neonates with 
positive test results for coronavirus 36 h after birth. Nevertheless, whether this Newborn is vertical 
transfer from the mother to the neonate is yet to be verified. In this case, was observed a significant 
increase in AST and abnormalities in liver function tests. Stolfi et al[54] reported a neonate of vertical 
transmission of COVID-19 with liver injury, confirmed using an increase in serum transaminases in 
Italy. The positive PCR test of COVID-19 in a neonate less than 24 h after C-section probably indicates 
vertical transmission, therefore proposing a transplacental transfer of SARS-CoV-2. Liver damage in this 
neonate was created probably using a direct virus-mediated mechanism that correlated to ACE2 
receptor expression, But the details are unknown. Out of 33 neonates born to mothers affected by 
COVID-19 in China, three cases have positive PCR tests for COVID-19. One neonate had observed 
increasing transaminases[55].
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THE EFFECTS OF COVID-19 ON LIVER INJURY IN ADULTS 
Guan et al[56] extracted information about 1099 patients with positive PCR tests for COVID-19 in 30 
provinces in China (from 552 hospitals). Out of 1099 patients, 112 cases (with an average age of 47 years) 
had a slight increase of AST with mild illness, and 56 adults had a high increase of AST with severe 
illness. In 2020, in a national retrospective cohort study in France, Mallet et al[57] examined the danger 
of mortality after COVID-19 disease in adult with chronic liver disease. The study contained 259,110 of 
all adults with COVID-19 who were released from post-acute care and acute, public and private 
hospitals in France in 2020. From a total of 259,110 patients who were between 54 and 83 years old 
(average age 70 years) and 52% were men, including 10,006 (3.9%) and 15,746 (6.0%) patients with 
alcohol use disorders and chronic liver disease, respectively. The results of this study demonstrated that 
patients with uncompensated cirrhosis, primary liver cancer, and alcohol use disorders were at high risk 
for COVID-19 fatality, while patients with compensated cirrhosis, mild liver disease, organ, including 
liver transplant, or acquired depressive syndrome were not at risk of COVID-19 mortality. Overall, 
mortality was in 38,203 (15%) of the patients, including chronic liver disease 2,941 (19%) and 7,475 (28%) 
after mechanical ventilation.

In another study, Mantovani et al[42] evaluated the widespread outbreak of chronic liver disease 
among patients affected by COVID-19 with a meta-analysis of data in observational studies and invest-
igating the association between the liver injury and COVID-19 disease. The number of 11 observational 
studies included 2034 adults aged between 45 and 54 years (average age of 49 years), and 57.2% were 
men. The results of this study revealed that the widespread outbreak of chronic liver disease was 3% 
and people with severe disease of COVID-19 had associated changes in liver enzymes and coagulation 
profiles, which were reported to be possibly due to an innate immune response to the virus. In addition, 
the findings of this study displayed that the gain in AST level in hospitalized severe patients was more 
frequent and significant than the gain in ALT, and AST levels had the highest relevance with mortality 
compared to other indices reflecting liver damage, and it was reported that common factors related with 
the increase in liver damage indicators were the enhance in the number of neutrophils, the decrease in 
the number of lymphocytes, and male gender. The association between liver damage and adverse 
events of Coronavirus disease is indistinct. In adult studies, a higher rate of liver enzymes was reported 
in adults with severe diseases than in milder diseases[43]. One of the limitations of this study is that it is 
a retrospective study, which may have inadvertently missed some studies with basic keyword searches. 
In addition, the mechanism of liver damage at COVID-19 patients with different ages in used studies 
has not been clarified. However, this study was summarized existing evidence on the effects of COVID-
19 on the liver injury at various ages. Furthermore, this study might have helped in clinical diagnosis 
and treatment for COVID-19related liver disease.

Figure 2 shows a summary of the effects of COVID-19 on Liver Injury at various ages.

RECOMMENDATIONS AND FUTURE RESEARCHES
The mechanisms of liver damage in either adults or children with COVID-19 are not fully unclear and 
the impact of liver injury caused by new variants of COVID-19 in patients is unexplained. Furthermore, 
further investigation is required to determine liver involvement and the consequence of COVID-19 on 
various ages with liver disease. Also, the pathogenetic mechanisms of COVID-19 on liver injury of 
patients in different age groups need to be investigated.

CONCLUSION
Liver damage is seen in patients affected by COVID-19, and factors including viral direct damage, 
immune damage, systemic inflammatory response, drug-induced, ischemia-reperfusion injury, 
mechanical ventilation, and underlying diseases contribute to liver injury. The association between liver 
damage and adverse clinical outcomes in patients affected by COVID-19 and the mechanism of SARS-
CoV-2 in creating this injury is also unclear. Studies have shown that neonates have rare evidence of 
liver damage, and in terms of age, they show the least amount of liver damage in the face of COVID-19 
disease among affected people. Most patients with COVID-19 have maintained their normal liver 
function during the disease, but patients with more severe disease probably had an abnormal liver 
function. Also, many studies reported different patterns of liver damage among children with COVID-
19 much less than in adults, which is probably related to differences in their innate immune system and 
adaptation. Most patients with COVID-19 have a mild increase in aspartate aminotransferase, alanine 
aminotransferase, or total bilirubin. The highest rate of liver damage is in adult patients and AST levels 
had the highest relevance with mortality compared to other indices reflecting liver injury.
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Figure 2 Summary of liver injury of coronavirus disease 2019 according to the age of patients.
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Abstract
Liver injury secondary to vaccination is a rare adverse event that has recently 
come under attention thanks to the continuous pharmacovigilance following the 
widespread implementation of coronavirus disease 2019 (COVID-19) vaccination 
protocols. All three most widely distributed severe acute respiratory syndrome 
coronavirus 2 vaccine formulations, e.g., BNT162b2, mRNA-1273, and ChAdOx1-
S, can induce liver injury that may involve immune-mediated pathways and 
result in autoimmune hepatitis-like presentation that may require therapeutic 
intervention in the form of corticosteroid administration. Various mechanisms 
have been proposed in an attempt to highlight immune checkpoint inhibition and 
thus establish causality with vaccination. The autoimmune features of such a 
reaction also prompt an in-depth investigation of the newly employed vaccine 
technologies. Novel vaccine delivery platforms, e.g., mRNA-containing lipid 
nanoparticles and adenoviral vectors, contribute to the inflammatory background 
that leads to an exaggerated immune response, while patterns of molecular 
mimicry between the spike (S) protein and prominent liver antigens may account 
for the autoimmune presentation. Immune mediators triggered by vaccination or 
vaccine ingredients per se, including autoreactive antibodies, cytokines, and 
cytotoxic T-cell populations, may inflict hepatocellular damage through well-
established pathways. We aim to review available data associated with immune-
mediated liver injury associated with COVID-19 vaccination and elucidate 
potential mechanisms underlying its pathogenesis.

Key Words: Adverse effects; COVID-19 vaccines; mRNA vaccine; Autoimmune Hepatitis; 
Chemical and Drug Induced Liver Injury; Autoimmunity
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Core Tip: Following the worldwide implementation of severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) vaccination protocols, several reports suggest an increase in the occurrence of 
autoimmune phenomena involving the liver. Studies on vaccine-induced liver injury point to a specific 
pattern of hepatocellular injury that involves immune-mediated pathways. This minireview explores the 
underlying pathophysiology of immune-mediated liver injury following SARS-CoV-2 vaccination and 
examines the most widely distributed vaccine formulations’ autoimmune and hepatotoxic potential.

Citation: Schinas G, Polyzou E, Dimakopoulou V, Tsoupra S, Gogos C, Akinosoglou K. Immune-mediated liver 
injury following COVID-19 vaccination. World J Virol 2023; 12(2): 100-108
URL: https://www.wjgnet.com/2220-3249/full/v12/i2/100.htm
DOI: https://dx.doi.org/10.5501/wjv.v12.i2.100

INTRODUCTION
As of August 4, 2022, approximately 5.3 billion people around the world have received at least one dose 
of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. Widespread 
implementation of vaccination protocols has successfully contained the spread of the pandemic and has 
reduced the disease burden for patients and health systems alike[1]. Newly employed vaccination 
platforms, e.g., mRNA- and adenovirus (AdV)- based formulations, have achieved high efficacy rates 
combined with a good safety profile[2]. SARS-CoV-2 vaccines have undergone the most intensive safety 
monitoring in the history of mankind. Both active and passive monitoring systems have been employed 
in order to timely detect and properly identify adverse events related to vaccination[3,4]. This 
worldwide vigilance has proved fruitful for epidemiological purposes and has been instrumental in 
ensuring public support for vaccination. Most frequently reported adverse events have been mild in 
nature and local in character. They primarily concern injection site-related reactions, e.g., topical pain 
and redness or generalized systemic symptoms, like fever and fatigue[5,6]. As far as serious, organ-
specific adverse events are concerned, a very low risk of myocarditis mainly in younger individuals has 
been linked to vaccination with an mRNA vaccine, whereas adenoviral vector vaccines have been 
associated with incidents of thrombosis accompanied by thrombocytopenia and possibly Guillain–Barré 
Syndrome (GBS) cases. A rather rare side effect that has recently come under attention is that of liver 
injury following vaccination with a SARS-CoV-2 vaccine.

Drug-induced liver injury (DILI), under the umbrella of which such a clinical syndrome would 
initially be examined, is characterized by new-onset, profound increases in liver function enzyme levels. 
According to the latest expert panel update, this is defined as a ≥ 5 × upper limit of normal (ULN) 
elevation of alanine (ALT) or aspartate aminotransferase (AST) and/or ≥2× ULN increase in alkaline 
phosphatase (ALP) levels or ALT/AST ≥ 3 × UNL and bilirubin ≥ 2 × ULN[7]. Upon removal of the 
offending agent, most cases of DILI are usually self-contained; corticosteroids are sometimes added to 
the therapeutic regimen if autoimmune features are demonstrated. In fact, most of the reported cases’ 
clinical and histological features closely resemble those encountered in autoimmune hepatitis (AIH)[8,
9], steering the focus of the causality investigation onto the immune-mediated background of the 
reaction. However, it remains unclear whether the reported association of AIH with vaccination is 
coincidental, represents unique SARS-CoV-2-induced antigen-specific immune activation or is 
associated with transient drug-induced liver injury. In this study, we aim to review underlying 
mechanisms driving immune-mediated liver injury following COVID-19 vaccination and discuss 
potential implications

METHODS
We carried out broad searches of PubMed, Scopus, and Embase between 1 January 2021 and 1 
September 2022 to identify literature describing immune-mediated liver injury or autoimmune hepatitis 
following COVID-19 vaccination. Relevant publications were identified based on the titles and abstracts. 
No restriction on the type of paper or language was set, even though the main focus was put on 
underlying mechanisms. Two reviewers independently screened all titles/abstracts and hand-searched 
references of retrieved articles. Data were assessed for their quality based on overall judgement and not 
aggregate scores. Disagreements were discussed and resolved and duplicates were removed.

https://www.wjgnet.com/2220-3249/full/v12/i2/100.htm
https://dx.doi.org/10.5501/wjv.v12.i2.100
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VACCINE-INDUCED AUTOIMMUNITY
Throughout the vaccine rollout period, there have been reported cases of presumed AIH that were 
attributed to COVID-19 vaccination because they were observed shortly after either the first or second 
dose of the vaccine, with the initial case described as early as January 2021[10]. AIH is part of a diverse 
group of chronic inflammatory liver conditions that include primary biliary cholangitis and primary 
sclerosing cholangitis, and its complex pathophysiology involves underlying genetic predisposition and 
interactions with environmental triggers[11]. Viral infections, drug exposure, and vaccinations have 
been implicated in the pathogenesis of AIH[12]. AIH had fallen under the radar during the phase 3 
clinical trials of all vaccines, and like every other rare adverse event, much debate has ensued over its 
association with the vaccination. New onset autoimmune reactions following vaccination have 
previously been described in the literature[13]. Both Hepatitis A and Hepatitis B vaccines have been 
linked to the development of AIH-like conditions[14]. Human papillomavirus, Hepatitis B, and 
Influenza vaccines have been held accountable for autoimmune reactions[15,16]. Molecular mimicry 
theory has been the platform upon which causality with vaccination has been determined[17]. It has 
been hypothesized that individuals with a genetic predisposition to autoimmunity undergo vaccination, 
and similarly to other environmental inputs, e.g., smoking and nutrition, their immune tolerance 
becomes compromised. Reportedly, susceptible groups include those with systemic lupus erythem-
atosus, GBS, multiple sclerosis, and narcolepsy. Concerning SARS-CoV-2 vaccination, immune-based 
phenomena such as GBS, IgA nephropathy, immune thrombotic thrombocytopenia, and myocarditis 
have been linked to both novel vaccine platforms, i.e., mRNA- and AdV-based formulations[18].

VACCINE-INDUCED LIVER INJURY
As of early 2021, case reports of documented AIH following COVID-19 vaccination have begun to 
emerge[19-21]. We estimate that AIH related to COVID-19 is almost 1 in 14 million, even though we do 
acknowledge that many cases remain undocumented[19]. Data mostly deriving from comprehensive 
case-series reporting liver injury following vaccination with SARS-CoV-2 vaccines, point to the fact that 
most cases are in fact, immune-related, with 57% of all patients displaying both autoantibody presence 
and IgG hyperglobulinemia. They mostly affected elderly females, with most of the reports originating 
from European countries, followed by the United States[20]. The mean time of symptom onset is close to 
three weeks following the first vaccination, with some individuals presenting as early as 3 d after and 
others coming in as late as a month later, suggesting some heterogeneity in the underlying response 
mechanism. The mean duration between receiving the first or second vaccine dose and subsequent 
onset of liver injury was 17.3 (11.2–23.4) days and was mostly associated with mRNA vaccines, possibly 
to their stronger immunogenic potency[20]. The presence of underlying autoimmune diseases (e.g, 
Hashimoto thyroiditis, primary sclerosing cholangitis) is evident in approximately 25% of patients and 
could explain temporal and spatial differences in manifestations and prevalence, respectively, according 
to genetic predispositions[22]. Antinuclear antibody (ANA) was by far the most prevalent autoantibody, 
followed by spinal muscular atrophy and anti-myocardial antibody (AMA), resembling a type 1 AIH 
pattern. Biopsy findings were also consistent with AIH in most individuals. Around 1/3 of those who 
did not undergo the diagnostic procedures fit the clinical profile of AIH. Icteric manifestations, 
including jaundice, choluria, and pruritus, account for around 2/3 of all presentations. Outcomes were 
similar in all three vaccine products, i.e., BNT162b2, mRNA-1273 and ChAdOx1 nCoV-19. Although 
recovery time varied greatly among study populations, the mean time for transaminase normalization 
was calculated at 46 d[21]. Corticosteroid treatment proved safe and effective for all those who were 
prescribed. No relapse was noted in the subgroup of patients whose immunosuppressant treatment was 
discontinued and remission was maintained in all those who spontaneously recovered.

CAUSALITY OR CASUALITY
Establishing causality is by definition, a difficult task, while the mechanism of action of such a reaction 
remains elusive. Several theories have been proposed in an attempt to link clinical manifestations of 
hepatocellular injury to patterns of immune mediation involving vaccine ingredients and products. 
Molecular mimicry-based reactivity and pro-inflammatory interactions involving the SARS-CoV-2 spike 
protein have been explored (Figure 1)[23]. The vaccine adjuvants have also come under scrutiny. The 
BNT162b2 and mRNA-1273 vaccines employ lipid nanoparticle (LNP) coated mRNA technology, 
whereas the ChAdOx1 nCoV-19 vaccine is deoxyribonucleic acid based and utilizes AdV vectors. Both 
AdV and mRNA vaccine platforms are newly licensed; hence, many rare in vivo interactions are to be 
explored and clarified. A deeper look into the active ingredients of the vaccines may provide us with a 
plausible mechanism. The mRNA itself has been carefully designed and tested as to its immunogenic 
properties[24,25]; however, prior to translation, it may still be recognized by cytosolic and endosomal 
toll-like receptors. The encoded S-spike protein elicits a strong immune reaction that involves the 
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Figure 1 Schematic of the vasculature components showing vaccination-produced S protein/subunits/peptide fragments in the 
circulation, as well as soluble or endothelial cell membrane-attached angiotensin-converting enzyme 2. A: Parallel to immune system activation, 
circulating S protein/subunits/peptide fragments; B: Binding to angiotensin-converting enzyme 2 (ACE2) may occur not only to ACE2-expressing endothelial cells, but 
also in multiple cell types of the vasculature and surrounding tissues due to antigen diffusion (e.g., in fenestrated or discontinuous capillary beds) (A, red arrows). 
These series of molecular events are unlikely for any severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related antigen in the absence of severe 
coronavirus disease 2019, where SARS-CoV-2 is contained in the respiratory system; C: In the two counteracting pathways of the renin–angiotensin system (RAS), 
namely the ‘conventional’ arm, that involves ACE which generates angiotensin II (ANG II) from angiotensin I (ANG I), and the ACE2 arm which hydrolyzes ANG II to 
generate angiotensin (1–7) [ANG (1–7)] or ANG I to generate angiotensin (1–9) [ANG (1–9)] are depicted. ANG II binding and activation of the ANG II type 1 receptor 
(AT1R) promotes inflammation, fibrotic remodeling, and vasoconstriction, whereas the ANG (1–7) and ANG (1–9) peptides binding to MAS receptor (MASR) activate 
antifibrotic, anti-inflammatory pathways and vasodilation. Additional modules of the RAS (i.e., renin and angiotensinogen, AGT) are also shown. AT1R: Angiotensin II 
type 1 receptor. Citation: Trougakos IP, Terpos E, Alexopoulos H, Politou M, Paraskevis D, Scorilas A, Kastritis E, Andreakos E, Dimopoulos MA. Adverse effects of 
COVID-19 mRNA vaccines: the spike hypothesis. Trends Mol Med 2022; 28: 542-554. Copyright ©The Author(s) 2022. Published by Elsevier.

activation of the innate inflammatory cascade, as well as that of the adaptive humoral response. 
Regarding the former, SARS-CoV-2 vaccines employ the type I interferon pathway in particular, in 
order to maintain an adequate and effective immune response, that in turn, may increase the probability 
of an autoimmune occurrence in certain individuals[26]. Concerning the latter, reactivity between anti-S 
protein antibodies and human tissue antigens has been confirmed by a recent report[27]. The systemic 
distribution of the spike protein has also been postulated as a mechanism to explain adverse events by 
mRNA-based vaccines as well. Its interaction with soluble Angiotensin-converting enzyme 2 (ACE-2) 
and ACE-2-ligands may point to an organ-specific pattern of insult[28]. The presentation and/or 
production of the spike protein by the hepatocytes may induce the activation of cytotoxic T-cell subsets. 
Under this scope, the formation of immune complexes cannot be excluded. Their subsequent deposition 
on the liver may cause inflammation or exacerbation of the underlying autoimmune disease. 
Matyushkina et al[27] have identified the susceptibility of human leukocyte antigen (HLA) B15:01 and 
HLA B39:01 allele carriers to autoimmunity following COVID-19. HLA B15 has been strongly associated 
with the development of infliximab-induced liver injury[29], while HLA B39 has been recorded as one 
of the most prevalent alleles in AIH patients in Pakistan[30]. In the same report, although most autore-
active antibodies were associated with nuclear products, cross-reactivity with cytokeratin 18 (CK18), a 
prominent liver disease biomarker, was noted. Elevated anti-CK18 antibody titers have been described 
in AIH patients[31], and their relationship to the soluble liver antigen (SLA) has been established in the 
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literature. CK18’s immunoreactivity has even been proposed but disproved as a potential diagnostic 
marker for the SLA subgroup of AIH patients[32]. The presence of SLA antibodies has been reported 
twice following vaccination with the mRNA-1273 vaccine, a fact that prompted investigators to conduct 
a genomic sequence analysis study which revealed, however, no homology between the SARS-CoV-2 
spike protein and soluble liver antigen[33].

As far as AdV vectors are concerned, their clinical application as potential gene therapy delivery 
particles has been hindered by their hepatotoxic properties since the start of the century[34]. Recent 
reports have attributed this to their inherent liver tropism[34]. It should also be noted that the 
recombinant ChAdOx1-S AdV used in Vaxzervria formulations is likely hepatotropic since it is derived 
from a subset of non-human, Y25-coded adenoviruses that have been linked to viral hepatitis outbreaks 
in chimpanzees in the past[34]. In the same report, the authors build a case for a post-transcriptional 
modification taking place inside the nucleus of AdV-transduced host cells, resulting in alternate gene 
splicing and subsequent truncation of produced S-protein proteins that may in turn, be released in 
circulation. In addition to that, they demonstrated that in ChAdOx1-S-transduced hepatocytes, the 
truncated S-protein is the main splicing product, thereby providing us with another plausible 
mechanism to explain liver injury by AdV-based formulations. Of note, the spike protein produced by 
Vaxzervria has comparable receptor binding selection and affinity to its original counterpart[35]. 
Regarding common vaccine adjuvants, CpG 1018 and Aluminum, although widely used for immune 
response enhancement purposes and deemed safe by clinical trials[36] and regulatory authorities alike, 
have the potential to induce liver injury[37] and likely precipitate the development of auto-immune 
disease in a small percentage of the population[38]. Reportedly, none of the vaccines discussed in this 
review contain the aforementioned adjuvants, but future formulations may include them. Furthermore, 
we need to consider other vaccine formulation specificities, like the active ingredient’s delivery system. 
The immunogenicity of the mRNA-containing LNPs has recently come under question, despite the fact 
that prior to their use in COVID-19 vaccines, they were being hailed as a potential genetic treatment 
platform for inherited liver disease[39]. The mRNA delivery particles have been linked to the 
development of allergic reactions[40], suggesting a plausible, if not definite, role as immune mediators. 
The LNP platform mounts a strong immune response, which relies on the medium’s pro-inflammatory 
properties for its efficacy. Such an immune response-provoking environment could potentiate a loss in 
self-tolerance. LNPs have been known to act as adjuvants to vaccine-induced immune reactions[41,42]. 
In particular, LNPs seem to trigger the NLRP3 inflammasome pathway that has been implicated in the 
pathogenesis of other autoimmune phenomena, like pericarditis, rheumatoid arthritis and AIH[43-46]. 
The intense immunogenic character of LNPs has been demonstrated both histochemically and 
graphically in animal models through multiple route administration of its purified form, e.g., intramus-
cularly and intranasally.

The hepatocellular type of injury that is predominantly associated with post-vaccination liver injury 
can also be attributed to the direct action of cytotoxic T-lymphocytes, as rapid and sustained activation 
of this cell subset has been confirmed in the context of SARS-CoV-2 vaccination[47]. In a recent report, 
vaccination with the BNT162b2 vaccine resulted in a CD8+ rich lymphocytic infiltrate in the liver of a 
patient that presented with probable AIH. The clonal expansion and peripheral activation state of this 
particular subset of lymphocytes correlated closely with the clinical course of hepatitis in this 
individual, suggesting T-cells’ involvement in the development and resolution of the disease[48]. It has 
also been demonstrated, in animal models, that cytokine-activated, “bystander” CD8+ lymphocytes 
may cause hepatocellular injury even in the absence of a direct antigen[49]. Accumulation of cytotoxic 
infiltrates in the liver has been reported in the literature following acute infection in influenza 
pneumonia[50]. All the plausible mechanisms resulting in immune-mediated liver injury discussed 
above are presented concisely in Table 1.

DIAGNOSIS
The immune-mediated mechanism of a clinical syndrome involving hepatocellular injury would most 
likely be highlighted by an elevation in ANA and/or AMA titers in a similar fashion to AIH. A report 
from early on in the pandemic noted the presence of elevated autoimmunity markers, including ANA 
and AMA, in SARS-CoV-2 antibody-rich plasma, thereby suggesting their self-reactive potential[51]. 
However, otherwise typical AIH auto-antibodies may be present in the acute phase of liver injury by 
multiple causes[52]. In order to distinguish between them, a biopsy is the preferred option, with fibrosis 
being the prime differentiating factor[53]. Features of widespread fibrosis would be evident in an AIH-
stricken liver[54], whereas evidence of acute or chronic inflammation with eosinophilic infiltration 
between or within the portal triads is to be expected in the case of direct liver toxicity, i.e., DILI[55]. It is 
important to note that centrilobular necrosis is not a pathognomonic clue and should not be interpreted 
as such[56]. All in all, a definitive diagnosis of AIH may be challenging to make, as it relies on a constel-
lation of clinical, serological and histological findings. Response to treatment with immunosuppressants 
is the only way to confirm a diagnosis[57]. AIH is a chronic condition with a high relapse rate if 
immunosuppression is withdrawn, whereas causes closely resembling AIH do not usually relapse[58].
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Table 1 Immune-mediated phenomena concerning the liver, following severe acute respiratory syndrome coronavirus 2 vaccination

Mechanism of injury Liver antigens Immune mediators

Molecular mimicry SLA

CK-18

Autoreactive antibodies

Cytotoxicity/Humoral response S protein (membrane expression) Activated CD8 + clone/protective anti-S antibodies

Humoral response ACE-2 transmembrane receptor

S protein (soluble)Immune complex deposition

Soluble ACE-2/ACE-2 ligand + S protein

Protective anti-S antibodies

“Bystander” toxicity Activated CD8 + clone

Loss of self-tolerance/Fibrosis Type I IFN

NLRP3 inflammasome activation LNPs

TLR-mediated innate immune response mRNA

SLA: Soluble Liver Antigen; CK-18: Cytokeratin 18; S protein: Spike protein; anti-S: Anti-Spike protein; ACE-2: Angiotensin Converting Enzyme-2; IFN: 
Interferon; LNPs: Lipid nanoparticles; NLRP3: NLR family Pyrin domain containing 3; TLR: Toll-like receptor.

CONCLUSION
Immune-mediated liver injury remains an elusive but rare entity following COVID-19 vaccination. It is 
the responsibility of investigators and scientists worldwide to maintain a vigilant eye and continue 
reporting rare incidents related to vaccination with a high index of suspicion. However, adverse events 
as such, are significantly less frequent than potentially serious complications of COVID-19 disease[59] 
and should by no means discourage vaccination programs worldwide.
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Abstract
There have been numerous concerns about the disease and how it affects the 
human body since the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) pandemic began in December 2019. The impact of SARS-CoV-2 on the 
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liver is being carefully investigated due to an increase in individuals with hepatitis and other liver 
illnesses, such as alcoholic liver disease. Additionally, the liver is involved in the metabolism of 
numerous drugs used to treat comorbidities and coronavirus disease 2019 (COVID-19). 
Determining how SARS-CoV-2 affects the liver and what factors place individuals with COVID-19 
at a higher risk of developing liver problems are the two main objectives of this study. This 
evaluation of the literature included research from three major scientific databases. To provide an 
update on the current impact of COVID-19 on the liver, data was collected and relevant 
information was incorporated into the review. With more knowledge about the effect of the 
disease on the liver, better management and therapeutics can be developed, and education can 
ultimately save lives and reduce the long-term impact of the pandemic on our population.

Key Words: Coronavirus; COVID-19; SARS-CoV-2; Liver; Hepatic complications

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: We investigated the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
on the liver due to an increase in individuals with hepatitis and other liver illnesses, such as alcoholic liver 
disease. Additionally, the liver is involved in the metabolism of numerous drugs used to treat 
comorbidities and coronavirus disease 2019 (COVID-19). Determining how SARS-CoV-2 affects the liver 
and what factors place individuals with COVID-19 at higher risk of developing hepatic issues are the two 
main objectives of this study.
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URL: https://www.wjgnet.com/2220-3249/full/v12/i2/109.htm
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INTRODUCTION
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious pathogenic 
coronavirus that appeared in late 2019 causing a pandemic of acute respiratory disease, which is known 
today as coronavirus disease 2019 (COVID-19)[1]. At a fast rate, the virus spread worldwide, replicated, 
and mutated into multiple major variants, posing a threat to global public health. SARS-CoV-2 is part of 
the order Nidovirales, family Coronaviridae, subfamily Orthocoronavirinae, Betacoronavirus genus, and 
Sarbecovirus subgenus[1,2]. It is a single-stranded, positive-sense, enveloped ribonucleic acid (RNA) 
virus that is 79.6% identical to SARS-CoV-2 and 96.2% like a bat-derived coronavirus strain[2]. The host 
receptor for SARS-CoV-2 cell entry is identical to SARS-CoV-2, the angiotensin-converting enzyme 2 
(ACE-2)[3]. SARS-CoV-2 binds to ACE-2 with a higher affinity to the receptor-binding domain (RBD) of 
its spike protein[3]. Therefore, SARS-CoV-2 is more infectious. Since the first reports, which were 
discovered in Wuhan, China's Hubei Province, at the end of 2019, cases have been documented on every 
continent[3]. Globally, more than 500 million confirmed cases of COVID-19 from exposure to SARS-
CoV-2 have been reported[3]. SARS-CoV-2 tends to replicate in the upper and lower respiratory tract 
and is transmitted by droplets and aerosols from asymptomatic and symptomatic infected subjects[4]. 
Most infections occur between 2-14 d (about 2 wk) with an incubation period of 5-7 d[4]. These 
infections tend to be uncomplicated. A small percentage of patients are hospitalized due to severe 
inflammation and pneumonia. Complications tend to be respiratory and multiorgan failure[4]. Risk 
factors for complicated diseases are older age, diabetes, hypertension, chronic cardiovascular disease, 
chronic pulmonary disease, and immunodeficiency[4]. The distribution of COVID-19 cases across most 
countries is highest in the age group of 20-59 years old[4]. Major reductions in social interactions have 
been implemented in many countries with SARS-CoV-2 outbreaks, leading to rapid reductions. An 
estimate of the infection fatality rate that is currently reported is 0.5%-1.0%[4]. Despite a rapid 
worldwide spread, attack rates have been lowered in most regions, demonstrating the efficacy of control 
measures[4].

Based on initial COVID-19 data, both healthy individuals and those with pre-existing liver disease 
infected with the SARS-CoV-2 virus exhibit abnormal liver function tests (LFTs), implying that the virus 
may play a direct role in liver damage[5]. The incidence of liver injury in patients with COVID-19 has 
been estimated to range from 14.8% to 53.0%[6]. A clinical study showed that patients with stable liver 
cirrhosis who contracted the SARS-CoV-2 virus can experience rapid deterioration as evidenced by an 
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increase in the Child-Pugh score[6]. The incidence of liver injury in cases of death from COVID-19 is 
58.0%[6]. Liver injury following the contraction of the SARS-CoV-2 virus is characterized by hypoalbu-
minemia, hyperbilirubinemia, and an increase in alanine transaminase (ALT) and aspartate transa-
minase (AST)[5,6]. There may also be an increase in gamma-glutamyl transferase (GGT) and alkaline 
phosphatase (ALP), indicating injury to liver bile duct cells[6]. The degree of liver injury has a positive 
correlation with the severity of the infection. Mortality is statistically correlated with elevated AST and 
low albumin levels of 26.3-30.9 g/L[6]. The mechanism by which SARS-CoV-2 damages hepatocytes is 
still unclear; however, pathogenic mechanisms may include direct damage, immune-mediated, ischemia 
and hypoxia, thrombosis, and drug-induced[5,6]. This article aims to investigate the effects of SARS-
CoV-2 on the liver and the risk factors for liver problems in coronavirus-infected patients.

METHODOLOGY
PubMed, Google Scholar, and Med Line Plus were used to conduct an electronic literature review. For 
the data compiled, the search was limited to peer-reviewed articles published between January 1, 2015, 
and July 1, 2022. The articles were chosen based on keywords such as coronavirus, COVID-19, SARS-
CoV-2, and the effects of the virus on the liver. The articles were then examined and included 
depending on the topic's applicability.

REPORTED SYMPTOMS OF SARS-CoV-2 LIVER INJURY 
Elevated LFTs in COVID-19
Altered LFTs have been observed in almost half of the hospitalized patients with COVID-19 infection
[7]. In particular, elevated levels of liver enzymes glutamic-pyruvic transaminase (ALT), glutamic-
oxaloacetic transaminase (AST), glutamyl transpeptidase (GGT), alkaline phosphatase (ALP), and 
bilirubin have been seen to manifest as liver injury in such patients[6,8]. Previous studies have shown 
that the incidence of COVID-19 liver damage with elevated ALT ranges between 9.6% and 37.6%, 
elevated AST between 14.8 and 36.0%, and the proportion of abnormal GGT between 13.0%-24.4%[9]. 
These abnormal tests are the result of increased AST and ALT, whereas AST was more common than 
ALT. In addition, 10.5% to 69.0% of hospitalized COVID-19 patients showed abnormal LFTs. Hypoalbu-
minemia has also been reported as a consequence of COVID-19-related liver injury and was observed 
more significantly in men with COVID-19 compared to women[10]. When comparing and analyzing 
those with severe and non-severe COVID-19 cases, liver function abnormalities like hypoalbuminemia, 
GGT, aminotransferase, and bilirubin elevations were more frequent in those with severe disease as 
opposed to mild/moderate forms of the infection[11]. The liver injury caused by COVID-19 was related 
to the degree of severity of the infection and manifested as different degrees of liver function 
abnormalities[12].

Pathological changes in liver biopsies
Histopathological findings from liver biopsies of COVID-19 patients showed moderate microvascular 
steatosis with lobular and portal vein involvement[13]. Hepatocyte degeneration, with neutrophil infilt-
ration of the hepatic lobes and sinusoidal enlargement of the central lobule, was observed. Congestion 
of hepatic sinuses with micro thrombosis and sinusoidal expansion, lymphocytic infiltration of the 
lobes, and hepatic necrosis in the periportal and centrilobular segments was also identified in patients
[14]. Furthermore, pathological findings showed hepatocellular necrosis, cellular infiltration, an increase 
in the number of mitotic hepatocytes, and fatty degeneration[15]. In addition, COVID-19 Liver injury 
showed an elevation of eosinophilic bodies along with dilated hepatocytes[6]. Sinusothelial micro 
thrombosis disease was evident in approximately 20.0% of cases with focal endothelial damage[16]. 
Acinar atrophy was depicted in autopsy specimens in the late course of the infection[17]. Increased liver 
stiffness is also correlated with increased levels of biomarkers of liver injury, such as ALT and GGT, 
suggesting underlying hepatocellular and cholangiocellular damage at the biochemical level[18]. 
Changes in liver elasticity, viscosity, and steatosis levels were also observed in liver tissues in COVID-19 
patients, with increased fibrosis compared to the control group (P < 0.001)[18]. In some studies, the liver 
appeared pale and yellowish on sectioning, with a nutmeg appearance[19]. The infection has been 
studied to cause cholangiocellular injury and cholestasis and consequently bile duct proliferation, with 
bile plug formation. In general, analyses have revealed that as the severity of COVID-19 in a patient 
increase, the levels of AST, ALT, total bilirubin, GGT, and ALP increase, resulting in a greater degree of 
liver injury, as observed in hepatocytes[20].
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SARS-CoV-2 RELATED LIVER INJURY: PATHOGENIC MECHANISMS
Liver injury in patients infected with SARS-CoV-2 occurs via several mechanisms[21]. Several studies 
indicate that liver injury in patients with SARS has manifested through the elevation of liver enzymes, 
mainly ALT and/or AST in the early stage of the infection[21]. The incidence of liver injury in SARS 
patients ranges from 14.8% to 53.0%[21]. One hypothesis for the cause of liver injury is a direct invasion 
of the hepatic parenchyma by SARS-CoV-2[21]. Autopsy of patients with SARS found a large number of 
virus particles in the parenchyma and vascular endothelium of the liver[21]. The main receptor used by 
SARS to enter cells is ACE-2 which is abundantly present in cholangiocytes, endothelial cells, and the 
progenitor cells of the liver[22]. This results in acute liver and hepatitis biopsies in postmortem patients 
showing a significant increase in macrovesicular steatosis with eosinophilic bodies and high levels of 
mitotic cells suggesting hepatocyte apoptosis[21]. The results suggest that SARS infection causes direct 
injury to the hepatic parenchyma and concomitantly compromises the regenerative capability of the 
liver[22]. Hepatic injury is further exacerbated by the body’s immune response to severe COVID-19 
infection[23]. SARS activates both the innate and acquired immune system resulting in the release of 
high levels of several inflammatory cytokines by immune cells[23]. The resulting cytokine storm in 
severe SARS infections is the cause of death in 28.0% of fatal cases of COVID[24]. Multiorgan failure is a 
sequela of the cytokine storm, and the liver is no exception. Critically ill patients exhibited increased 
levels of interferon-lambda (IFN- λ), transforming growth factor-alpha (TGF-α), thymic stromal 
lymphopoietin, interleukin-16 (IL-16), IL-23, IL-33, and markers linked to coagulopathy, such as 
thrombopoietin. Patients with severe COVID are commonly anoxic due to respiratory failure. This 
requires patients to be mechanically ventilated and/or on vasopressor support. Lower cardiac output 
has a detrimental impact on the hemodynamics of the liver[23]. The resultant reduced hepatic blood 
flow can lead to anoxic hypoxic hepatitis and/or cholestasis[24]. Another complication of hepatic injury 
due to the high levels of inflammatory cytokines released by the body includes thrombosis and vascular 
congestion of the liver, which have been observed in autopsy samples of patients with severe COVID-
19. Patients with severe COVID-19 were found to have elevated levels of total bilirubin and ALT, as well 
as elevated levels of inflammatory biomarkers such as IL-6, IL-10, C-reactive protein (CRP), and D-
dimer. One of the mechanisms contributing to the damage observed in the liver of these patients is due 
to the SARS-CoV-2 infected cells which upregulate and produce large amounts of cytokines to help 
combat the virus, resulting in collateral damage to both infected and uninfected cells. This hyper-
stimulated systemic inflammatory response induces macro- and micro-circulatory dysfunction, leading 
to global hypo-perfusion resulting in hypoxia, hypo-tension, and a hypercoagulable state. Therefore, 
microvascular thrombosis should be considered an important cause of liver injury and dysfunction in 
patients with COVID-19[25]. Hepatic injury during COVID-19 infection can be exacerbated by 
medications leading to elevated levels of ALT and AST. Remdesivir has shown in vitro antiviral activity 
against SARS-CoV-2 and a shorter recovery time in clinical trials, but elevated hepatic enzymes have 
also been reported as a major adverse drug reaction. Although some studies attribute this abnormal 
increase to viral infection rather than the side effect of the drug, others proposed that, whether or not it 
was affected by SARS-CoV-2, remdesivir increased the risk of hepatotoxicity. Other commonly used 
drugs to treat COVID-19 such as lopinavir/ritonavir have also resulted in hepatic injury. ACE 
medications and angiotensin II receptor blockers, which take a more focused approach, have also been 
reported to raise liver enzymes in COVID-19 patients. In autopsies of COVID-19 deaths, moderate 
microvesicular steatosis and mild lobular and portal activity were observed and probably associated 
with drug-induced liver injury. Other medications used for patients with COVID-19 that can trigger 
liver injury include antibiotics such as macrolides and quinolones, antivirals such as ribavirin, and even 
steroids[26].

SARS-CoV-2 INFECTION AND PRE-EXISTING LIVER DISEASES
The effect of COVID-19 on pre-existing liver diseases discussed below are hepatitis B and C virus 
infection, liver cirrhosis, liver cancer, liver transplant, non-alcoholic fatty liver disease (NAFLD), and 
alcoholic liver disease (Figure 1).

COVID-19 effect on hepatitis B virus and hepatitis C virus infection
Hepatitis C virus (HCV) and hepatitis B virus (HBV) were reported as the leading causes of liver 
diseases, but no specific data on the prevalence of these infections were provided. Many studies 
involving patients with COVID-19 showed a relatively low prevalence of chronic liver disease (CLD) at 
baseline, equal to 3.0%. Similarly, a prevalence rate of 3.0% CLD is associated with documented 
underlying chronic HBV or HCV infections in specific populations[27]. In one study of patients 
admitted to hospitals for COVID-19 in the northeastern United States, HCV infection was observed in P 
< 0.1% of patients, but information on HCV RNA levels was insufficient. In the same study, 23 cases 
(3.8%) presented positive HCV serology, of whom six patients (0.99%) had detectable viral HCV load at 
the time of hospital admission for the diagnosis of COVID-19[27]. In contrast, 2.0% of all patients 
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Figure 1 Effect of coronavirus disease 2019 and preexisting liver disease.

showed hepatitis B surface antigen (HBsAg) positive chronic infection[27]. The study showed patients 
with recorded chronic HBV or HCV infection did not experience a more severe clinical course of 
COVID-19 compared to patients with HBsAg negative or undetectable HCV RNA, which measured the 
delay in SARS-CoV-2 clearance in HBV patients. Similarly, median viral clearance was not affected by 
preexisting HBV or HCV infection[27]. Lastly, chronic HBV or HCV infection (in the absence of 
cirrhosis) did not affect the prognosis of COVID-19 in the United States population.

COVID-19 effect on liver cirrhosis 
Liver cirrhosis (Figure 2) increases the mortality of SARS-CoV-2 viral infection[28]. The path-
ophysiological mechanism for the SARS-CoV-2 virus begins with the spike glycoprotein (S) to allow 
viral entry into the target cell. The virus replicates to infect other surrounding cells through the ACE-2 
receptor in cholangiocytes and hepatocytes to cause biliary and liver symptoms. Elevated liver enzymes 
are multifactorial and strongly associated with liver injury. A prevalent hepatic phenomenon associated 
with SARS-CoV-2 infection presents with elevated ALT and AST levels, with abnormal ALP and 
bilirubin readings[29]. Elevated serum levels of GGT, a marker of hepatobiliary cell injury, are found in 
a quarter of patients hospitalized with COVID-19[28]. Higher levels of a hepatocellular enzyme 
associated with severe cases of COVID-19 directly affect mechanisms that include increased cytokine 
release in the viral presence or microthrombotic ischemic liver injury[29]. Although respiratory 
symptoms are the most reported among COVID-19 patients, these pulmonary manifestations are 
vulnerable to decompensated liver cirrhosis but are currently understudied. A cohort study with 250 
patients with prior CLDs reported high mortality in patients with cirrhosis (RR: 4.6, 95.0%CI: 2.6-8.3)
[28]. In an international study, a positive correlation was shown that patients with cirrhosis are 
predisposed to significant toxic liver injury due to SARS-CoV-2 infection, as acute-on-chronic liver 
failure had occurred in 20.0% of patients who experienced severe cirrhosis with COVID-19[28]. The viral 
ability of SARS-CoV-2 to bind to ACE-2 receptors on epithelial cells of the bile duct demonstrates its 
ability to affect liver regeneration capabilities and immune response[28]. By affecting the innate 
immunity of the reticuloendothelial system, the immunosuppressed state causes a cytokines-mediated 
reaction, resulting in liver decompression[28].

COVID-19 effect on liver cancer
Pre-existing liver diseases are considered risk factors for poorer prognosis in COVID-19 as various 
pathophysiological processes result in liver damage due to SARS-CoV-2 infection. Biochemical present-
ations of liver injury include elevated levels of ALT/AST, ALP, GGT, or total bilirubin above the normal 
range. The decrease in lymphocyte count and the increase in neutrophil counts demonstrate the role of 
innate immunity in COVID-19-associated hepatic injury. Postmortem studies in liver histology in 
COVID-19 patients show moderate microvascular and macrovascular steatosis with mild inflammation 
of the lobular portal. This highlights the pathological changes observed in hepatocellular carcinoma 
(HCC). Elevated levels of eosinophils are observed in autopsy studies in centrilobular steatosis, in 
addition to the increased number of mitotic cells[30]. Patients with HCC are closely monitored, as 
increased inflammation due to COVID-19 may predispose patients to post-hepatectomy liver failure. 
Furthermore, COVID-19 can potentially exacerbate CLD and alter treatments for cancer patients with a 
higher risk of infection and poor outcomes[30]. The management and monitoring of patients with HCC 
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Figure 2 Healthy and cirrhosis liver.

are performed by imaging (magnetic resonance imaging, ultrasound) and measuring alpha-fetoprotein 
levels[29]. The practice guidelines recommend the establishment of surveillance intervals to reduce the 
radiologic capacity of at-risk patients, with a 98.0% estimate that at-risk patients would not develop 
HCC during each surveillance interval. Locoregional and systematic therapies are recommended for 
advanced HCC treatment. However, oral therapy with tyrosine kinase inhibitors (i.e., sorafenib and 
lenvatinib) and immunotherapy effectively serve as first-line therapies to reduce exposure[29].

COVID-19 effect on liver transplantation
With the severity of SARS-CoV-2 infection dependent on comorbidities (i.e., cardiovascular disease and 
diabetes mellitus), underlying liver diseases do not necessarily influence the outcome of COVID-19 
infection. Solid-organ transplants, including liver transplant (LT) recipients, are increasingly susceptible 
to severe infections due to chronic immunosuppression, thereby increasing the risk for severe COVID-
19 infection. A meta-analysis that included 17 articles and the outcomes of 1481 COVID-19 LT patients 
was compared with 239704 non-LT patients infected with COVID-19. From 17 articles, a cumulative 
incidence of mortality of 17.4% (95.0%CI, 15.4-19.6) was found among LT recipients with COVID-19 
with causes of death reported as 62.54% by COVID-19-related complications (95.0%CI, 56.24-68.55), 
29.88% by pulmonary failure (95.0%CI, 24.28-36), and 1.6% liver-related (95.0%CI, 0.1-2.84). Mortality 
was proportionate between LT and non-LT patients [OR, 0.8 (0.6-1.08); P = 0.14][31]. Twelve studies in 
the same meta-analysis reported that 23.0% of LT patients who had developed a severe COVID-19 
infection were positive with symptoms that included fever (49.7%), cough (43.76%), dyspnea (29.27%), 
and symptoms gastrointestinal (27.26%)[31]. Eight studies from the same meta-analysis reported 
modification change immunosuppression in 55.9% of LT recipients infected with COVID-19[31]. 
Comorbidities such as hypertension, diabetes, and obesity were common in infected patients where 
72.0% of the patients were hospitalized, and 16.0% required care in the intensive care unit (ICU)[31]. 
Although hospitalization of LT recipients far exceeded non-LT patients [OR, 1.99 (1.41-2.8), P < 0.001], 
the ICU care requirement was comparable between groups, as the cumulative incidence of graft 
dysfunction was 2.3% (1.3-4.1)[31].

COVID-19 effect on non-alcoholic fatty liver disease
Many observational studies have shown that patients with comorbidities such as cardiovascular disease, 
arterial hypertension, diabetes mellitus, CLD, or cancer are susceptible to more severe episodes of 
COVID-19, as seen in NAFLD and other less common disorders[32]. Recently, several meta-analyses 
have shown that obesity and diabetes (both strongly associated with NAFLD) are significantly 
associated with the progression of more severe disease and increased mortality in patients with COVID-
19[32]. They have reported a six-fold increased risk of severe COVID-19 in the presence of obesity in 
NAFLD. In addition, a meta-analysis showed that obesity could exacerbate COVID-19 infection. Patients 
with severe COVID-19 disease had higher body mass indices, and obesity was associated with the 
development of the disease, the need for care, and admission to an ICU[32]. The risk of severe COVID-
19 in obese patients was more significant than in younger patients. This suggests that NAFLD patients 
are at increased risk of liver damage, although liver enzyme levels at admission or during hospital-
ization were generally not significantly elevated. Furthermore, NAFLD was not associated with adverse 
clinical outcomes in younger patients with COVID-19. Another study found that NAFLD was more 
common in patients with severe COVID-19 than in stable patients. However, the mean age and the 
number of comorbidities were also significantly higher in patients with severe COVID-19 infections[32]. 
Patients with NAFLD had a substantially higher risk of disease progression, more likely changes in liver 
enzymes, and longer viral shedding times than non-NAFLD patients. Non-NAFLD patients showed 
that moderate to high Fibrous-4 and NAFLD fibrosis scores were strongly and independently correlated 
with the severe progression of COVID-19 disease[32].
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COVID-19 effect on alcoholic liver disease
The ACE-2 receptor is exceedingly expressed in alveolar type II cells and liver and bile duct cells, 
making it significantly feasible for SARS-CoV-2 to infect cells in those areas. Especially, cholangiocytes 
have a specific ACE-2 receptor in more concentrations than hepatocytes, making them more susceptible 
to COVID-19 infection. However, because the liver harbors a widespread quantity of macrophages, 
generating an ample cytokine-mediated immune reaction, hepatocytes can also be prone to a SARS-
CoV-2 infection. Patients with COVID-19 patients with liver cirrhosis have always shown elevated 
levels of ALT, AST, D-dimer, CRP, IL-6, and ferritin. Although the current literature is limited, research 
has proven that people with CLDs could have increased models for end-stage liver disease and undergo 
extended liver and pulmonary complications while infected with COVID-19. Specifically, the mortality 
rate in patients with preexisting liver disease is 1.8%. Lastly, the severity of liver harm due to COVID-19 
infection tends to be substantially worse and more widespread in people with pre-existing alcoholic 
liver cirrhosis than in those without[33].

ANTI-SARS-CoV-2 TREATMENTS EFFECTS ON THE LIVER 
Currently, various treatments for COVID-19 (SAR-CoV-2) are being investigated, some of which may be 
associated with hepatotoxicity[34]. Remdesivir (RDV), an antiviral medication, was initially developed 
and tested for the treatment of hepatitis C and later the Ebola and Marburg viruses. Amid the COVID-
19 pandemic, RDV was approved for emergency use to treat COVID-19 in many countries[35]. In 
patients diagnosed with COVID-19, in vitro and in vivo studies indicate that RDV has an antiviral effect 
on SARS-CoV-2[36]. Various medication-related adverse events include but are not limited to 
reasonable degrees of nausea and vomiting, headache, fatigue, renal dysfunction, and rash[37]. The risk 
of an adverse event involving the liver exists as one of the clearest potential risks from RDV[38]. RDV 
therapy is administered intravenously for 3 to 10 d and is often accompanied by reversible mild to 
moderate elevations in serum AST levels, but has been rarely associated with clinically apparent liver 
injury. Effects on the liver range from asymptomatic to mild-with elevations in serum ALT and AST 
upon introduction of RDV therapy in patients with COVID-19. The systemic effects of COVID-19 likely 
overshadow the outcomes of hepatic involvement[37]. However, there is uncertainty regarding if the 
effect on liver enzymes is due to remdesivir, COVID-19 solely, or both[39,40]. It is recommended that 
patients remain under the supervision of health professionals to monitor liver health before and during 
remdesivir infusions[37]. To fully assess the risk of remdesivir-associated liver damage, more studies 
are necessary for this area[40]. Lopinavir (LPV) is an antiretroviral protease inhibitor, used together 
with ritonavir (booster) in the prevention and treatment of human immunodeficiency virus (HIV) 
infection[41]. Lopinavir/ritonavir (LPV/r) was developed to inhibit HIV protease, the primary 
distinction for the SARS-CoV-2 counterpart (3CLpro) lies within the varying spatial structure of the HIV 
aspartic protease as compared with 3CLpro cysteine protease[41]. The LPV/r combination improves 
LPV pharmacokinetics by decreasing liver metabolism by inhibiting the cytochrome (CYP) P450 3A4 
enzyme[41].

A randomized controlled study in adult patients hospitalized with COVID-19 shows that of those 
adults treated with LPV/r, only one individual in the LPV/r group presented elevated ALT, more than 
2.5 times above the normal limit[41,42]. When comparing patients treated with LPV/r to patients in the 
control group, there was no evidence of liver dysfunction noted in controls. It is important to 
acknowledge that the patient presenting with an elevated ALT had a pre-existing chronic liver 
condition, possibly contributing to the liver disturbance[42]. Another research study suggests that no 
observable side effects were found in the LPV/r group, except for transient elevation of ALT elevation 
(< 125 U/L) in three patients[43]. Given that none of the patients progressed to a severe clinical status at 
the end of the follow-up period, it is believed that LPV/r treatment rarely causes harm in patients 
recovering from COVID-19[42]. LPV/r is considered an independent factor for liver injury[44]. 
Interferons (IFNs) are natural antiviral immune modulators that help the body’s immune system defend 
against infection and disease, including viruses and cancer[45]. Studies have shown that during SARS 
and middle east respiratory syndrome, Type I IFNs are markedly suppressed and the administration of 
exogenous Type I IFNs has been shown to reduce the severity of the symptoms of these diseases[46]. To 
assess the effectiveness and safety of interferon β-1a (IFN β-1a) in patients with severe COVID-19, a 
randomized clinical trial was conducted[47]. Comparisons were made between patients receiving IFN 
and those receiving controlled standard therapy. Hepatic complication rates were measured between 
patients in the treatment group and those patients receiving standard care while the preexisting liver 
disease was considered[44]. The frequency of hepatic failure did not differ between the IFN and control 
groups (11.90% vs 23.07%), suggesting that IFN-β-1a may not be a major factor in the liver damage seen 
by COVID-19 patients[47]. Studies show that IFNs used to treat patients with COVID-19 are unlikely to 
be associated with liver disease. IFNs may lead to hepatic toxicity when combined with other drugs[44]. 
To authenticate these results, additional studies are necessary[44]. Baricitinib is a JAK-STAT inhibitor 
used to treat individuals with rheumatoid arthritis who cannot tolerate more than one tumor necrosis 
factor (TNF) antagonist[6]. By decreasing adaptor-associated kinase 1 activity, a regulator of clathrin-
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mediated endocytosis, baricitinib has been shown to affect the hyperinflammatory state that developed 
during SARS-CoV-2 infection and may prevent endocytosis and viral infection[6,48]. Furthermore, the 
oral administration of baricitinib and the excellent pharmacokinetic profile (very short half-life, low 
plasma protein binding, and minimal interference with CYP enzymes) make it a viable combination 
therapy with direct-acting antivirals such as LPV/r and RDV[48]. The growing number of reports of 
infections and thrombosis following the use of JAK inhibitors for the treatment of COVID-19 should be 
taken seriously as liver damage, cholestasis, and hepatitis unexpectedly manifested in a non-negligible 
fraction of individuals[6]. Furthermore, these unfavorable hepatic consequences should be evaluated. 
Tocilizumab is a monoclonal antibody that is used to block the inflammatory protein IL-6. Tocilizumab 
improves joint pain and swelling from arthritis and reduces other symptoms caused by inflammation. 
More recently, tocilizumab use has been indicated for the treatment of cytokine release syndrome in 
patients with COVID-19 infection[49]. Common side effects of tocilizumab include a runny or stuffy 
nose, sinus pain or sore throat, headache, or dizziness. The most common side effects of tocilizumab 
include headache and hypertension but, rarely, hepatotoxicity ranging from mild transaminase 
elevation to severe drug-induced liver injury can occur[50].

SARS-CoV-2 VACCINES EFFECT ON THE LIVER 
It is not yet clear whether RNA or DNA-based vaccines have any direct effect on the liver, resulting in 
hepatotoxicity. Although anti-coronavirus treatments have been found to cause mitochondrial and 
endoplasmic reticulum dysfunction, the effects of vaccines require further testing[6]. Patients receive 
what are often considered benign mRNA vaccines for Crigler-Najjar syndrome and rabies, which have 
some form of hepatotoxicity. While there is no definitive cause, there seems to be a potential link 
between the two. This is not the case with DNA vaccines, which makes them strikingly different. 
Immune system stimulation occurs via a completely different mechanism than mRNA vaccines, with 
IFN-1 secretions triggering the immune response. Unlike mRNA vaccines, DNA vaccines do not require 
subsequent doses to maintain monoclonal antibody protection, making DNA vaccines not only 
potentially more efficacious than mRNA vaccines, but requiring lower amounts to achieve a less toxic 
overall therapeutic effect. More research is needed to fully understand the mechanisms involved and 
how they affect the liver. Existing studies exclude patients with chronic liver disease as they are 
contraindicated by mRNA vaccines, making little information available regarding the pathophysiology, 
and comparing that of otherwise healthy individuals[6]. Patients with CLD are at an increased risk of 
infection, which is expected given the insufficient immune response. Vaccinations are imperative to 
reduce mortality in patients with CLD[51]. According to the Advisory Committee on Immunization 
Practices (ACIP), patients with CLD should be vaccinated against SARS-CoV-2 and influenza, pneumo-
coccus, tetanus, diphtheria, pertussis, herpes zoster, hepatitis A, and hepatitis B[52]. Specifically, with 
the COVID-19 vaccine, ACIP suggests an mRNA vaccine with a booster dose five months after 
completing the two scheduled doses. For severely immunosuppressed patients, a booster dose is 
recommended after three months to strengthen the immune response[53]. A double-blind randomized 
trial studying the administration of a third dose of the mRNA vaccine in transplant recipients showed a 
strong immune response compared to the placebo group[54]. In a case report of healthy patients with no 
history of liver disease, patients developed jaundice and elevated liver enzymes after administration of 
the mRNA vaccine, either after the first or second dose. In these cases, the laboratory values and 
symptoms resolved without treatment after several weeks. The data suggests that this response is due to 
a neutrophil-predominant inflammatory response[55]. Comparatively, much data shows contraindic-
ations to multiple COVID-19 vaccines, including booster doses, specific to CLD patients. Data are still 
needed to assess the efficacy and long-term effects of multiple COVID-19 vaccines in patients with CLD.

The severity of the liver disease may be assessed using the Child-Pugh scale. This scale anticipates 
mortality in CLD and is categorized into three stages: good hepatic function, moderately impaired 
hepatic function, and advanced hepatic dysfunction[56]. Multiple factors, including the stage of CLD, 
can be a determinant of the efficacy of a vaccine, and those in later stages are more susceptible to 
infections and adverse events. This is possibly due to the inefficiency of the body in producing an 
adequate immune response[51]. However, the World Health Organization (WHO) currently 
recommends that COVID-19 vaccines for those with deficient immune systems be given additional 
boosters to help increase a sufficient immune response[57]. It is recommended that vaccinations be 
administered as early in the disease process as possible to gain the best performance of the vaccine[52]. 
In a study on the antibody response of the vaccine in CLD patients, subjects were given the 
recommended series of the mRNA vaccine. The results showed that 24.0% of the subjects had a poor 
antibody response[58]. Additional research is needed to further assess the success of the vaccine in 
varying severities of CLD.
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DISCUSSION
Lessons from previous coronavirus outbreaks and other viral epidemics indicate that the combination of 
systemic and partial inflammatory responses induced by these infections may result in severe 
respiratory syndromes and related complications (such as abnormal liver function, cardiac insufficiency, 
and renal failure)[6]. Manifestations of liver damage from SARS-CoV-2 include a decrease in albumin 
and an increase in ALT, AST, liver enzymes, and bilirubin[9]. Increases in GGT and ALP are also seen in 
COVID-19 patients, indicating liver damage to bile duct cells[7] (Figure 3). Since liver biopsies taken 
from a small number of COVID-19 patients did not reveal viral inclusions, but rather a macro-vesicular 
steatosis, liver damage may also be the result of bile duct cell damage[59]. The pathogenic alterations 
frequently take the form of macro-vesicular steatosis and mild lobular and portal inflammation[59,60]. 
According to earlier research, severe instances of coronavirus infection had a strikingly higher 
frequency and severity of liver impairment than moderate cases. The mechanism by which 
coronaviruses harm hepatocytes and influence hepatic function is still unknown, even though multiple 
clinical studies have shown a high link between coronaviruses and liver damage[6]. Potential 
mechanisms of liver injury that have been reported include immune-mediated damage because of the 
severe dysregulated inflammatory response, direct cytotoxicity, systemic hypoxia with hypoxic 
hepatitis, drug-induced liver injury, reactivation of pre-existing liver disease, mitochondrial 
dysfunction, SARS-CoV-2-induced hepatic steatosis, microthrombotic disease, ischemic hepatitis, 
cardiomyopathy with hepatic congestion, and extrahepatic release of transaminases[61]. Ischemic, 
hypercoagulable, and hyperinflammatory states are independent predictors of death in patients with 
COVID-19 and not liver injury[62]. Coronavirus infection significantly increases immunological 
activation. Numerous cytokines and chemokines (IL-6, IL8, IFN, and TNF, among others) are generated 
by immune cells after coronavirus infection and released into the blood, causing inflammation in 
different organs or even acute respiratory distress syndrome and multiple organ failure, suggesting that 
coronavirus-induced systemic inflammatory response syndrome (SIRS) and cytokine storms are 
important causes of liver damage[6,25]. This shows that immunotherapy is necessary for individuals 
with coronavirus infection, and as a result, corticosteroids and interferons are frequently utilized due to 
their ability to reduce inflammation[6]. Hypoxia may result in a long-term increase in reactive oxygen 
species, which may encourage the release of a variety of inflammatory mediators that harm the liver[6,
25]. As a result, it will be important to keep an eye on patients' hypercoagulable conditions, such as 
thrombocytopenia and elevated levels of D-dimer and ALP, to prevent thrombosis and additional 
ischemia and hypoxia[6,23].

Immune compromise is typically caused by hepatitis B and C, liver cirrhosis, liver malignancy, and 
immunosuppressive medications after liver transplantation[6]. The severity and mortality rate in HBV 
infection patients are higher than in those with negative HBV due to delayed clearance of SARS-CoV-2
[6]. The Child-Pugh scores of those who have already developed liver cirrhosis are likely to rise due to 
liver injury caused by COVID-19[56]. Furthermore, COVID-19 complications occur earlier and to a 
greater extent in patients with systemic immunocompromised status[6]. COVID-19 also has a significant 
impact on the treatment of liver diseases[11]. The discontinuation of high-dose corticosteroid therapy in 
hepatitis B and C patients receiving anti-HBO treatment may result in HBV reactivation during SARS-
CoV-2 infection[6]. In addition, lopinavir and ritonavir have been shown to increase the risk of 
developing liver injury in HBV or HCV infection patients[6,11]. Coronavirus infection is currently 
treated with redelivering, lopinavir/ritonavir, interferon-a, baricitinib, and tocilizumab. The difficulty in 
developing optimized drugs for coronavirus infection is mainly due to severe side effects. Remdesivir, 
lopinavir, and ritonavir have all been linked to an increased risk of liver injury, with the severity of the 
injury being closely related to the dose of these drugs. IFNs have the potential to trigger a non-specific 
immune response, resulting in hepatocyte damage and autoimmune hepatitis, as well as an increased 
risk of developing severe complications such as systemic inflammatory reaction syndrome and acute 
respiratory distress syndrome[6]. Baricitinib, as a JAK inhibitor, can increase the risk of thrombosis and 
cause liver damage[6,48]. Tocilizumab can also reactivate HBV in SARS-CoV-2 co-infection, causing 
both viral hepatitis and COVID-19 recovery to be delayed; whereas other studies have shown hepato-
toxicity as a potential side effect[50]. Overall, coronavirus vaccines will be critical in preventing 
outbreaks, but several factors must be considered to avoid an activated innate inflammatory response, 
an increase in the incidence of autoimmune diseases, and vaccine-induced liver injury[6].

Furthermore, a study observed 900 patients (32.2% in the 18-39 age group, 39.7% in the 40-69 age 
group, and 28.1% in the 70+ age group) with SARS-CoV-2[63]. It was seen that those with comorbidities, 
median D-dimer, and CRP levels all increased with age. AST/ALT and ALP/GGT levels also increased 
significantly during COVID-19[63]. Patients with elevated hepatocellular transaminases (AST/ALT) and 
cholestasis parameters (ALP/GGT/bilirubin) were found in 40.3% (n = 262/650) and 45.0% (n = 287/
638), respectively[61]. Importantly, patients between the ages of 40 and 69 were more likely to 
experience COVID-19-associated liver injury (16.0%, P < 0.001), abnormal liver chemistry, and liver-
related death (6.5%, P < 0.001)[61]. After the initial SARS-CoV-2 polymerase chain reaction result was 
positive, elevated AST and bilirubin levels independently predicted mortality in the entire population 
and patients aged 40 to 69 years[63].
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Figure 3 Manifestations of liver damage from severe acute respiratory syndrome coronavirus 2. ALT: Alanine transaminase; AST: Aspartate 
transaminase; GGT: Gamma-glutamyl transferase; ALP: Alkaline phosphatase.

CONCLUSION
The incidence of liver injury in patients with COVID-19 has been estimated to be as high as 53.0%. 
Those affected by COVID-19-associated liver injury generally fall between the ages of 40 and 69. The 
mechanism by which SARS-CoV-2 damages hepatocytes is still unclear. However, the SARS-CoV-2 
virus may play a direct role in liver damage because both healthy individuals and those with 
preexisting liver disease exhibit abnormal LFTs. The liver injury caused by COVID-19 is related to the 
degree of severity of the infection and manifests itself with different degrees of liver abnormalities. The 
degree of liver injury manifested by AST, ALT, total bilirubin, GGT, and ALP has been shown to have a 
positive correlation with the severity of the disease. Interestingly, some studies have even shown that 
mortality correlates with elevated AST and low albumin levels. Furthermore, SIRS and cytokine storms 
augment liver injury and dysfunction. Commonly used medications may play a role in liver hepato-
toxicity, however further studies are necessary. Pre-existing liver diseases are considered risk factors for 
worse prognosis in COVID-19, specifically, liver cirrhosis was shown to increase the mortality in these 
patients. Although vaccines have significantly changed the course of this pandemic, CLD is a contrain-
dication of multiple COVID-19 vaccines. However, the increased severity of liver disease in determining 
the immune response to the COVID-19 vaccine is still unclear, and more studies are required in this 
area.  As more information about the virus becomes available, it will be critical to comprehend the 
pandemic's effects on the liver, as well as the possible long-term consequences, especially in the 
immunocompromised population.
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Abstract
BACKGROUND 
Understanding the transmission dynamics of severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) infection among healthcare workers (HCWs) and 
their social contacts is crucial to plan appropriate risk-reduction measures.

AIM 
To analyze the socio-demographic risk factors and transmission of SARS-CoV-2 
infection among HCWs in two tertiary care hospitals in Dubai, United Arab 
Emirates.

METHODS 
The demographic and clinical characteristics were available for all HCWs in both 
facilities from the human resources department. A cross-sectional survey was 
conducted from January-April 2022 among HCWs who tested positive through 
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Reverse Transcriptase Polymerase Chain Reaction of the nasopharyngeal swab for SARS-CoV-2 
between March 2020 and August 2021 in two tertiary-level hospitals. The survey included 
questions on demographics, work profile, characteristics of coronavirus disease 2019 (COVID-19), 
and infection among their household or co-workers. The survey also checked the knowledge and 
perception of participants on the infection prevention measures related to SARS-CoV-2.

RESULTS 
Out of a total of 346 HCWs infected with SARS-CoV-2, 286 (82.7%) HCWs consented to participate 
in this study. From the sample population, 150 (52.5%) of participants were female, and a majority 
(230, 80.4%) were frontline HCWs, including 121 nurses (121, 42.4%). Only 48 (16.8%) participants 
were fully vaccinated at the time of infection. Most infected HCWs (85%) were unaware of any 
unprotected exposure and were symptomatic at the time of testing (225, 78.7%). Nearly half of the 
participants (140, 49%) had co-infection among household, and nearly one-third (29.5%) had co-
infection among three or more household. Another 108 (37.8%) participants reported cross-
infection among co-workers. The frontline HCWs were significantly more infected (25.1% vs 8.6%, 
P < 0.001) compared to non-frontline HCWs. Another significant risk factor for a high infection 
rate was male sex (P < 0.001). Among the infected frontline HCWs, a significantly higher 
proportion were male and shared accommodation with family (P < 0.001). COVID-19 vaccination 
significantly reduced the infection rate (83.2% vs 16.8, P < 0.001) among HCWs. Most participants 
(99.3%) were aware about importance of appropriate use of personal protective equipment. 
However, only 70% agreed with the efficacy of the COVID-19 vaccination in preventing an 
infection and severe disease.

CONCLUSION 
The risk profiling of the HCWs infected with SARS-CoV-2 found that working at frontline and 
being male increase the rate of infection. COVID-19 vaccination can effectively reduce the rate of 
transmission of SARS-CoV-2 among HCWs.

Key Words: Coronavirus disease 2019; Risk factors; Disease transmission, infectious; Infectious disease 
transmission, Professional-to-patient; Health personnel; Socioeconomic factors

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The healthcare workers (HCWs) are vulnerable to infection with severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2). In the current study, the authors found that the frontline and male 
HCWs were at higher risk of infection. Among the infected frontline HCWs, a significantly higher 
proportion were male and staying in a rented accommodation with family. The coronavirus disease 2019 
vaccination is effective in preventing the transmission of SARS-CoV-2 among HCWs. This information 
can be utilised for the healthcare workforce management and to formulate strategies to mitigate the risk of 
transmission of SARS-CoV-2 to the HCWs.
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INTRODUCTION
The coronavirus disease 2019 (COVID-19) pandemic has overwhelmed the healthcare resources across 
the globe. Since the inception of the pandemic, reports have been published on the increased vulnerab-
ilities of healthcare workers (HCWs) compared to the general community for infection with severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2)[1,2]. A prospective cohort study conducted among 
99795 HCWs reported that the HCWs are at a threefold higher risk of acquiring COVID-19 compared to 
the general community. However, the risk of exposure is not uniform and depends on multiple factors, 
such as the nature of work (frontline), race or ethnicity (Black, Asian, and other ethnic minorities), and 
access to or reuse of the personal protective equipment (PPE)[1]. Besides the risk of illness, the HCWs 
are at considerable risk of adverse mental health during the COVID-19 pandemic[3]. Moreover, the 
social and household contacts of the HCWs are also potentially vulnerable to SARS-CoV-2 infection[4]. 

https://www.wjgnet.com/2220-3249/full/v12/i2/122.htm
https://dx.doi.org/10.5501/wjv.v12.i2.122
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On the other hand, the absenteeism of HCWs from work is further detrimental to the already stretched 
healthcare services during the pandemic[5].

From the start of COVID-19 pandemic, the experts strongly expressed concerns regarding the 
nosocomial transmission of SARS-CoV-2[6,7]. HCWs were assumed to play a pivotal role in the 
transmission chain during a nosocomial outbreak of SARS-CoV-2. However, limited information exists 
on the transmission characteristics and dynamics of SARS-CoV-2 infection among the HCWs or their 
social contacts. In this scenario, it is crucial to explore the dynamics of SARS-CoV-2 transmission among 
the HCWs and their social contacts to develop and implement appropriate risk-reduction measures[6].

In the current study, the authors performed a retrospective analysis of HCWs infected with SARS-
CoV-2 to analyze the socio-demographic risk factors and the characteristics of SARS-CoV-2 infection 
among HCWs and their social contacts.

MATERIALS AND METHODS
The demographic and clinical characteristics were available for all HCWs in both facilities from the 
human resources department. A cross-sectional survey was conducted between January and April 2022 
among the HCWs who tested positive for reverse transcriptase polymerase chain reaction (RT-PCR) for 
SARS-CoV-2 between March 2020 and August 2021 in two multi-specialty tertiary-level hospitals 
located in Dubai. The cross-sectional survey was conducted to extract further information from the 
infected HCWs on their social contacts, including household. The survey included Multiple-Choice 
Questions and questions with 5-point Likert scale. The survey questionnaire, attached in the Supple-
mentary material, has a total of three sections: (1) Demographic details of the participants, including 
age, gender, department, nature of work, and COVID-19 vaccination status; (2) Details about SARS-
CoV-2 infection, the reason for RT-PCR testing, severity and duration of the symptoms, and infection 
among their household contacts and co-workers; and (3) Knowledge and perception among the 
participants on PPE and infection prevention measures related to SARS-CoV-2. The human resource 
department, who were not part of the data analysis, sent the survey questionnaire through e-mail. The 
identity of the participants was kept confidential. Frontline HCWs were those who provide care for 
patients with COVID-19 or worked in areas with direct patient contact during the pandemic. As per the 
local health regulatory requirements, the HCWs were tested with RT-PCR only in case of symptomatic 
infections, contact tracing, or pre-travel screening during this period. The study considered only the first 
SARS-CoV-2 infection for further analysis. In the United Arab Emirates (UAE), seven COVID-19 
vaccines were approved for use and are made available to the public for free of cost. The data on the 
average number of new cases in the community was extracted from the website of National Emergency 
Crisis and Disaster Management Authority, UAE (https://covid19.ncema.gov.ae/en). The study was 
approved by the scientific and ethical committee of the hospital and Dubai Scientific Research Ethics 
Committee (DSREC/09/2020_32).

Statistical analysis
Descriptive statistical analysis was conducted for frequencies, percentages, medians, and ranges. 
Continuous data was presented as mean [standard deviation (SD)] or median with Interquartile Range 
(IQR). Two groups were compared in this study using the 2-sample test for equality of proportions with 
continuity correction (Chi-square). A comparison was made between the categorical paired data with 
McNemar Test. The authors used Fisher exact test to compare less than five-count cells. All the tests 
were 2-tailed, and P < 0.05 was considered to be significant. The statistical analyses were conducted 
using R version 3.4.2 from the Comprehensive R Archive Network (R Core Team, 2020).

RESULTS
Out of a total of 1568 HCWs working in both hospitals, 346 (22.1%) tested positive for SARS-CoV-2 RT-
PCR during the study period. Amongst this study population, 16 (4.6%) HCWs were found to be re-
infected with SARS-CoV-2. However, as mentioned earlier, only the first infection was considered for 
the analysis. From the 346 infected HCWs, 286 (82.7%) HCWs agreed to participate in the cross-sectional 
survey. Amongst the participants, 150 (52.5%) were female, whereas a majority of the participants (230, 
80.4%) were frontline HCWs, including 121 nurses (121, 42.4%). Only 48 (16.8%) participants were fully 
vaccinated at the time of infection.

Most of the participants (225, 78.7%) were symptomatic at the time of RT-PCR testing. Among the 
asymptomatic HCWs, 35 (12.2%) were tested for close contact tracing. Nearly half of the participants 
(140, 49%) had a co-infection with their household contacts. Moreover, half (48, 51.6%) of the infection in 
the households occurred in a single person, while nearly one-third (29.5%) had infection among three or 
more households. Further, 108 (37.8%) participants reported cross-infection among their co-workers 
(Table 1).

https://f6publishing.blob.core.windows.net/57316d0f-1266-40ba-992d-6116ca3e79da/WJV-12-122-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/57316d0f-1266-40ba-992d-6116ca3e79da/WJV-12-122-supplementary-material.pdf
https://covid19.ncema.gov.ae/en
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Table 1 Descriptive data on demographic and risk-profile of the healthcare workers infected with severe acute respiratory syndrome 
coronavirus 2

Variables n (%)

Age, yr 36 (IQR-10)

Female 150 (52.5)

Staff travelling in hospital accommodation 454/1467 (29)

Doctor 34 (11.9)

Nurses 121 (42.4)

Technician 37 (12.9)

Pharmacy 11 (3.8)

Paramedical staff 10 (3.5)

Work profile of healthcare workers 

Non-clinical staff 73 (25.5)

Symptomatic 225 (78.7)

Contact tracing 35 (12.2)

Travel screening 8 (2.8)

Reason for testing with RT-PCR 

Other 18 (6.3)

Asymptomatic 36 (12.6)

Mild 220 (76.9)

Moderate 25 (8.7)

Severity of COVID-19

Severe 5 (1.7)

Institutional 50 (17.4)

Home isolation 189 (66.1)

Place of isolation

Hospitalization 49 (17.1)

< 1 wk 99 (34.6)

1-2 wk 128 (44.8)

2-3 wk 49 (17.1)

Symptom duration

> 3 wk 10 (3.5)

Diabetes Mellitus 33 (11.5)

Hypertension 31 (10.8)

Chronic respiratory disease 6 (2.1)

Chronic kidney disease 2 (0.7)

Other 4 (1.4)

Pre-existing chronic illness

None 210 (73.5)

Total 140 (49)

Earlier (3-14 d) 49 (35)

Same time (within 2 d) 55 (39.3)

HCWs with households infected within 14 d 

Later (3-14 d) 36 (25.7)

1 48 (51.6)

2 18 (18.9)

3 16 (16.8)

Number of infected households 

> 3 12 (12.7)

Total 108 (37.8)

Earlier (3-14 d) 38 (35.2)

HCWs with co-workers infected within 14 d 
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Same time (within 2 d) 33 (30.5)

Later (3-14 d) 37 (34.3)

1 23 (24.2)

2 16 (16.8)

3 3 (3.1)

Number of infected co-workers

> 3 17 (17.9)

COVID-19: Coronavirus disease 2019; HCWs: Healthcare workers; RT-PCR: Reverse transcriptase polymerase chain reaction.

When compared between the infected and the uninfected HCWs, frontline HCWs (25.1% vs 8.6%, P < 
0.001), who were males (54% vs 46%, P < 0.001) recorded a significantly high infection rate. The infection 
rate among the unvaccinated HCWs (83.2% vs 16.8%, P < 0.001) was nearly five times higher than those 
HCWs who were vaccinated against COVID-19. The study found that the type of accommodation (self-
owned vs hospital sponsored) showed no significance effect on the infection rate (Table 2). A 
significantly high proportion of the infected frontline HCWs were males who stayed in rented 
accommodation with family (P < 0.001) (Table 3). Finally, the trend chart of a month-wise comparison of 
the infected HCWs and the average new cases in UAE showed three peaks.

The survey also tried to assess the knowledge and perception of the participants about safety 
precaution, vaccination, and the disease. Most of the participants were aware about the appropriate 
usage of PPE (99.3%) and did not agree to unprotected exposure to a patient with COVID-19 (85%). 
Around 74% of the participants agreed with the importance of social precautions like face mask, social 
distancing, and hand hygiene in preventing the SARS-CoV-2 infection. Only 70% agreed on the efficacy 
of COVID-19 vaccination in preventing infection or progression to the severe disease. The deficiency of 
PPE at the workplace was reported by 23.4% of the participants, whereas 29.7% participants wanted an 
improvement in the quality and availability of the PPE (Table 4).

DISCUSSION
This cross-sectional analysis of RT-PCR-positive HCWs from two tertiary care hospitals showed that 
frontline HCWs had a significantly higher infection rate. The study infers that being a male is a 
significant risk factors for getting infected with COVID-19. Among the infected frontline staff, a 
significantly higher proportion were male who shared their accommodation with family members. 
COVID-19 vaccination was effective in reducing the rate of infection among HCWs.

From the start of COVID-19 pandemic, various studies recorded a higher infection rate among the 
frontline HCWs. The risk was higher due to the reuse or inadequate availability of the PPEs and due to 
which the studies advocated strategies like access to high-quality PPEs and early COVID-19 vaccination 
to curb the spread of the virus[2,8]. Nearly one-fourth of the participants in this study reported 
insufficient access to the PPEs, while most were unaware of any unprotected exposure with COVID-19 
patients. Limited access to adequate PPE has been linked with higher odds of infection[9-11]. Hence, 
ensuring access to high-quality PPEs for HCWs is an important workplace risk-reduction measure. The 
rate of infection was significantly higher among the male HCWs as found in other studies[2,12].

Around 13% of the study participants had asymptomatic infection. The number of asymptomatic 
infections could have been higher, if the hospitals had routine surveillance testing for the HCWs. 
However, the impact of the routine surveillance testing of asymptomatic HCWs in preventing 
nosocomial transmission of SARS-CoV-2 is unknown[13]. A consensus experts’ panel recommended 
testing the HCWs to get tested for SARS-CoV-2 only when they are symptomatic or when they 
encountered unprotected exposure over routine testing[14].

Around 38% of the infected participants agreed to infection among their co-workers within 14 days of 
their own infection, and nearly one-fifth of them agreed to have three or more infected co-workers. 
Moreover, sharing accommodation with family or friends was significantly higher among the infected 
frontline HCWs. In the absence of epidemiological investigation and genomic sequencing, these 
infections cannot be segregated as an outbreak. However, the absenteeism of multiple HCWs from the 
same department can disrupt the services of already overwhelmed frontline departments during the 
pandemic. Despite various published reports on a nosocomial outbreak of SARS-CoV-2, ambiguity 
exists regarding the role of HCWs in initiating or amplifying the nosocomial outbreaks[6,15].

Most epidemiological research on SARS-CoV-2 infection among the HCWs has focused on 
transmission dynamics within the hospital setting. However, the research on the impact of social-
cultural and demographic factors on the transmission of SARS-CoV-2 among HCWs is lacking. 
Recently, a large prospective study conducted in the United Kingdom found the effect of socio-
demographic characteristics on the risk of infection among the vulnerable HCWs. The study found that 
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Table 2 Comparison of risk-factors among infected and non-infected healthcare workers, n (%)

Uninfected HCWs, n = 1282 Infected HCWs, n = 346 P value
Accommodation 

Hospital sponsored 381 (29.7) 89 (25.9) 0.15

Self-owned 901 (70.3) 257 (74.1) (χ2 statistic value, 2.12)

Work profile 

Frontline 689 (53.7) 278 (80.4) < 0.001 

Non-frontline 593 (46.3) 67(19.6) (χ2 statistic value, 81.19)

COVID-19 vaccination

Vaccinated 1198 (93.2) 58 (16.8) < 0.001 

Unvaccinated 88 (6.8) 287 (83.2) (χ2 statistic value, 895.49)

Sex

Male 511 (39.9) 187 (54.0) < 0.001 

Female 771 (60.1) 159 (46.0) (χ2 statistic value, 22.38)

COVID-19: Coronavirus disease 2019; HCWs: Healthcare workers.

Table 3 Comparison of demographics among frontline vs non-frontline healthcare workers infected with severe acute syndrome 
coronavirus 2, n (%)

Frontline healthcare workers, n = 238 Non-Frontline healthcare workers, n = 48 P value
Accommodation

Shared with family 167 (70.2) 23 (47.9) < 0.001 

Shared with friends 60 (25.2) 24 (50) (χ2 statistic value, 31.07)

Non-shared 11 (4.6) 1 (2.1)

Accommodation

Self-rented 140 (58.8) 18 (11.4) < 0.001 

Hospital provided 49 (20.6) 25 (33.8) (χ2 statistic value, 42.68)

Others 49 (20.6) 5 (9.3)

Sex

Male 205 (86.1) 35 (72.9) 0.02

Female 33 (13.9) 13 (27.1) (χ2 statistic value, 5.17)

amongst the demographic and household risk factors, young age, living with a co-worker, and high 
religiosity are associated with high infection odds among the HCWs[9]. In another study, high odds of 
infection were observed among the HCWs from community contact with a suspected or a confirmed 
COVID-19 individual, instead of the workplace[16]. Socio-demographic risk factors may differ based on 
the culture and geographical differences, and the availability of resources. The cross-transmission of 
SARS-CoV-2 among the household is well-established concept and persists even during the low-
community transmission[17].

The current study also found a significantly higher proportion of the infected frontline HCWs were 
staying in shared accommodation. When comparing infected HCWs per month with average new cases 
in the community, an agreement was observed in the peaks of two trend charts (Figure 1). This pattern 
reveals a synchronization in the infection rate among the HCWs and the transmission rate of SARS-
CoV-2 infection in the community. Hence, the HCWs are vulnerable to contracting the infection from 
their households and social contacts, especially with a higher rate of SARS-CoV-2 transmission in the 
community. Hospital leadership can utilize this valuable insight for workforce management and to 
develop strategies to mitigate the risk of exposure to HCWs. Theoretically, public transport can be 
another risk factor for transmission. However, as reported in the literature, the current study authors 
did not find any increased transmission risk with public transport[18].
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Table 4 Attitude and perception of the infected healthcare workers, n (%)

Are you aware about appropriate personal protective equipment for the care of COVID-19 patients? Yes: 99.3%; No: 0.7%

Have you ever been exposed to a COVID-19 patient without adequate PPE? Yes: 43 (15); No: 243 (85)

There was always enough PPE in my workplace Agree: 183 (64); Neutral: 36 (12.6); Disagree: 67 
(23.4)

PPE availability and quality should be improved at my workplace Agree: 85 (29.7); Neutral 49 (17.1); Disagree: 152 
(53.2)

Proper precautions (face mask, hand hygiene, social distance) are most important tools to save you from 
SARS-CoV-2

Agree: 213 (74.4); Neutral: 12 (4.2); Disagree: 61 
(21.3)

Vaccines for SARS-CoV-2 can reduce infection rate and can prevent severe disease and hospitalisation Agree: 201 (70.2); Neutral: 27 (9.6); Disagree: 58 
(20.2)

SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; COVID-19: Coronavirus disease 2019; PPE: Personal protective equipment.

Figure 1 Trend-chart showing the month-wise distribution of infected healthcare workers and new cases in the community. Infected 
healthcare workers (HCWs) are displayed in absolute numbers per month (orange color) and average cases of severe acute respiratory syndrome coronavirus 2 
cases in the community (blue color). Median cases per month are displayed through dashed lines. There are three peaks observed in trend-line. The peaks coincided 
in the trend charts, representing an increased rate of infection among HCWs with high community transmission. HCWs: Healthcare workers.

According to a study conducted earlier, the vaccination of the HCWs effectively reduces the risk of 
severe disease and the transmission of SARS-CoV-2[19]. Advanced age (≥ 65 years), male sex, and other 
co-morbidities like diabetes mellitus, chronic respiratory disease, hypertension, chronic kidney disease, 
and cardiovascular disease are risk factors for severe illness and mortality[20]. COVID-19 vaccination is 
highly effective in reducing the progression and the severity of disease and intensive care unit (ICU) or 
hospital admission, especially in the elderly population and patients with co-morbidities[21]. 
Vaccination is an essential intervention for the HCWs to protect them from getting infected and severe 
illness that may require hospital or ICU admission. However, the effectiveness of the vaccine in 
reducing the risk of disease reduces considerably after six months of the last dose. So, a booster dose is 
recommended for the vulnerable population, including HCWs[19]. Vaccine hesitancy among the HCWs 
is a major issue in the successful implementation of the COVID-19 vaccination programme. Only 70.2% 
of the participants have agreed upon the efficacy of the COVID-19 vaccines. Other studies also found 
more vaccination hesitation among the previously infected people[22,23]. Hospital leadership and 
infection preventionist should address the issue of vaccine hesitancy strategically and through collab-
oration.

Strength and limitations
This is the first study to the best of the author’s knowledge from the UAE or the countries in the Gulf 
Cooperation Council on risk profiling of RT-PCR-positive HCWs with COVID-19 using socio-
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demographic factors. The study also evaluated the impact of COVID-19 vaccination on cross-
transmission among the HCWs. The current study has a few limitations that are listed herewith. Firstly, 
the information on social contacts and households was collected through a cross-sectional survey. 
Hence, there exists a potential recall bias because of the time-gap between the period of infection and 
data collection. However, to avoid this bias, the data collected from the cross-sectional survey was 
validated through the human resource records maintained by the hospital.

There is missing data for about 17% of the eligible HCWs who did not participate in the cross-
sectional survey due to reasons like resignation and immigration to other countries. Secondly, genomic 
sequencing was not used to confirm the phylogenetic linkage in infection among co-workers or the 
household. Thirdly, the small cohort size could have missed portraying the complete statistical 
correlation of various socio-demographic factors. Finally, the impact of the COVID-19 vaccination 
booster on transmission dynamics was not assessed.

CONCLUSION
The risk profiling of the HCWs, infected with SARS-CoV-2 from two tertiary care hospitals showed that 
the frontline HCWs had a significantly higher infection rate. Another significant risk factor was male 
sex. COVID-19 vaccination can effectively reduce the rate of SARS-CoV-2 transmission among HCWs.

ARTICLE HIGHLIGHTS
Research background
There is paucity of the research on the transmission dynamics of severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) among the healthcare workers (HCWs) and their co-workers and 
household. The current study conducted a retrospective analysis of the infected HCWs to analyze the 
socio-demographic risk factors and characteristics of SARS-CoV-2 transmission among HCWs and their 
social contacts.

Research motivation
HCWs are vulnerable to SARS-CoV-2 infection during their work, and the potential risk of transmission 
of SARS-CoV-2 infection from the household and co-workers of HCWs is unclear. This study provides 
valuable insights for workforce management and helps formulate strategies to mitigate the risk of 
exposure to the HCWs.

Research objectives
The current study evaluated the risk factors of SARS-CoV-2 infection among HCWs and explored the 
potential of transmission of SARS-CoV-2 among the household and co-workers of infected HCWs.

Research methods
The health records of all infected HCWs between March 2020 and August 2021 were analysed. The 
information on the coronavirus disease 2019 (COVID-19) vaccination, household and co-workers of the 
infected HCWs was collected through a cross-sectional survey.

Research results
The cross-sectional analysis of health records of 346 reverse transcriptase polymerase chain reaction 
(RT-PCR)-positive HCWs showed that the risk of infection was significantly higher among frontline 
HCWs. Being male was a significant risk factor for SARS-CoV-2 infection. Among infected frontline 
staff, a significantly higher proportion were male, and were staying with their families in rented 
accommodation. COVID-19 vaccination was effective in reducing the infection rate among HCWs.

Research conclusions
Working at the frontline and being male are the significant risk factors for SARS-CoV-2 infection among 
the HCWs. COVID-19 vaccination is effective in reducing the infection rate among HCWs.

Research perspectives
Future research should explore the role of community transmission of SARS-CoV-2 in the infection of 
HCWs.
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Abstract
The relationship between coronavirus disease-19 (COVID-19) and cardiovascular 
diseases has been an important issue. Therefore, cardiac biomarkers and cardiac 
imaging have an important place in the diagnostic phase. It is important to know 
the relationship of biomarkers in COVID-19 so that we can understand the 
diagnosis of the disease, the predicted course and results after diagnosis.

Key Words: Cardiac bioenzymes; Coronavirus disease - 19; Treatment; Diagnosis; Triple 
rule-out computed tomography angiography; Dual energy computed tomography
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Core Tip: Recommends biomarkers, especially troponin, in patients with Coronavirus 
disease-19-associated myocarditis and other myocardial damage; however, they have 
proven that in addition to traditional biomarkers, new cardiac bioenzymes such as 
prepesin, copeptin also increase and significantly worsen the prognosis. Knowing this, 
evaluation together with other imaging methods is also important in diagnosis.
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TO THE EDITOR
We read with interest and attention the review written by Muthyala et al[1]. One of the main effects of 
the coronavirus disease 2019 (COVID-19) pandemic is on the cardiovascular system. Therefore, it is 
important to know and use cardiac biomarkers well, and to come to an advanced point in the diagnosis 
stage by combining them with cardiac imaging methods. Therefore, the authors discussed the 
importance of these biomarkers in COVID-19 in order to determine the ways to diagnose the disease, 
follow-up after diagnosis and treatment. Although biomarkers are important, we also mentioned them 
in our evaluation since it is important to evaluate them with imaging methods. We think that when we 
combine cardiac biomarkers and imaging methods, a very important point will be reached in the 
diagnosis.

Including troponin[2], which provides us with information about the prognosis in the diagnosis of 
cardiac acute coronary syndromes and myocardial damage, as well as Brain Natriuretic Peptide (BNP)
[3] and pro-BNP, which gives us an advantage in the early detection of heart diseases and und-
erstanding the morbidity status of such diseases. Natriuretic peptides, especially natriuretic peptides, 
tend to be elevated and associated with poor prognosis in patients with heart disease, which is 
independently thought to be associated with COVID-19 even though the patients have no history of 
cardiac disease. In this review, the authors summarized the role of biomarkers in determining and 
diagnosing the extent of involvement of heart damage in people with COVID-19, as well as the 
permanent damage they may cause in the future. In the review, the researchers divided it into three 
main sections, considering the diagnosis, prognosis, and mortality in order to simplify the role of 
cardiac biomarkers in COVID-19 disease. These three sections are as follows: (1) The relationship 
between cardiac troponin and COVID-19-related myocardial disease; (2) The relationship between 
natriuretic peptides and COVID-19-related myocardial disease; and (3) The rest of the biomarkers are 
associated with myocardial disease.

Troponin consists of three main proteins in a complex structure[4]; Troponin C binds calcium and 
regulates the work of thin filaments during contraction[5]. Troponin T provides the connection of 
troponin in a complex with tropomyosin[6]. Troponin I acts as an inhibitory unit, and troponin C 
prevents contraction in the absence of calcium[7]. The amount of troponin that rises during myocardial 
injury has been observed to be higher among patients with COVID-19 who died compared to those who 
survived. In studies concentrating on this subject, a significant relationship has been shown between 
troponin and mortality with additional patient and hospital-related conditions, even in patients without 
comorbidities[8,9,10].

BNP is first proteolytically processed from its precursor proBNP to BNP. Afterwards, it is secreted 
from the heart as N-terminal proBNP (NT-proBNP), undivided proBNP and mature BNP and NT-
proBNP in ventricular myocytes, and the amount of secretion increases in patients with heart failure
[11]. In the review, it is concentrated that the main reason for the increase in natriuretic peptides in 
severe acute respiratory syndrome coronavirus 2 is some inflammatory processes that can lead to 
fulminant myocarditis. However, heart damage and hypoxia are thought to be some of the important 
causes of the increase in natriuretic peptides.

However, the cardiac markers mentioned in the review alone cannot rule out cardiovascular disease. 
Although it is supported by electrocardiogram (ECG), it may show atypical symptoms. Therefore, the 
differential diagnosis of acute chest pain after the new types of COVID-19 has become complicated. The 
viscosity increase due to COVID-19 hypoxia also causes damage to endothelial cells, resulting in 
increases in coagulation. In cases where biomarkers and ECG are insufficient at this stage, Triple rule-
out computed tomography angiography (TRO CTA) provides us an advantage in examining the entire 
thoracic vascular system and detecting cardiovascular vascular diseases.

One of the important points of the new COVID-19 disease is that this disease has the potential to 
cause acute presentations. One of the most important of these tables is acute chest pain, which also 
includes respiratory tract diseases, which is the most common symptom of COVID-19. In these cases, 
one of the important causes of acute chest pain is diseases that affect the lung parenchyma or 
accompanying vascular pathologies in COVID-19 cases. In a study conducted in these cases, it is 
emphasized that TRO CTA is an important diagnostic method that is effective and does not require 
intervention to the patient in those who apply to the emergency department with sudden onset 
symptoms[12].

One of the important points apart from acute presentations is the long-term effects of COVID-19. In 
one study, persistent long-term COVID symptoms such as shortness of breath, chest pain, cough, and 
muscle weakness were proven to be associated with computed tomography (CT) severity values[13]. In 
this review, it is also emphasized that the relationship of CT with persistent symptoms yields better data 
than laboratory parameters. Knowing the relationship between CT severity and long-term COVID 
symptoms can also help to identify at-risk patients and establish follow-up programs to support these 
cases.

COVID-19 damages the myocardium by various mechanisms. The review focused on multiple viral 
infections causing sympathetic activation, direct viral invasion and proinflammatory cytokines inducing 
heart failure. The main reason for the increase in natriuretic peptides increased as a result of myocardial 
damage is thought to be due to interleukin (IL)-1β and similar proinflammatory cytokines. Magnetic 
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Resonance Imaging (MRI), which has an important place in the diagnosis of myocarditis, also has an 
important place in imaging in myocarditis formed in this way; however, Cardiac MRI has some 
disadvantages such as not being ubiquitous, high cost, claustrophobia, incompatibility with pacemaker 
and its application due to prostheses. In these cases, in a study conducted, Dual Energy CT (DECT) has 
proven to be significantly superior to MRI[14].

The authors recommend natriuretic peptides such as troponin and BNP in patients with myocarditis 
and other myocardial damage mentioned in the study; however, they proved that in addition to 
traditional biomarkers, new cardiac bioenzymes such as prepesin, soluble ST2 and copeptin also 
increase and cause marked worsening of prognosis.  In addition to biochemical markers, imaging 
methods, especially CT, have an important place in the diagnosis of myocardial damage and 
comorbidities in COVID-19 patients. To give an example, DECT is used in practice as an important 
imaging method in the diagnosis of myocarditis-like conditions with myocardial damage[14]. TRO CTA 
is a frequently used imaging method in the detection of hypercoagulation, which we can give as an 
example of comorbidity conditions[12].

In summary, we have seen that there is a significant relationship between COVID-19 and 
cardiovascular system findings. After understanding this relationship, we learned that we should make 
the best use of the data we have at the point of diagnosis. Here, we know that we need to proceed to 
diagnosis by combining many cardiac biomarkers such as laboratory values such as BNP and pro-BNP 
with imaging methods such as ECG, CT, DECT and TRO CTA. In conclusion, we should make the best 
use of all available methods for diagnosis and treatment in order to reduce cardiovascular-related 
mortality and morbidity rates and improve prognosis in these patients.
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