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Abstract
It has already been established that in end-stage renal disease, hyperphospha-
temia causes soft tissue calcification including vascular calcifications. It has also 
been supported that there is a connection between increased serum pho-sphate 
and morbidity in subjects, who suffer from renal disease. However, studies in 
these populations conferred mixed results. Several warnings are included in the 
role of serum phosphorus on cardiovascular disease in normal populations. 
Homeostasis of serum phosphate is obtained by the cooperation between 
regulatory hormones, cellular receptors and bone metabolic factors. There is the 
probability that one or more phosphate regulatory factors, rather than phosphate 
directly, may be responsible for observed associations with calcifi-cation and 
cardiovascular events in normal populations. Experimental studies have shown 
that the restriction of dietary phosphate prevents the pro-gression of kidney 
dysfunction, although high dietary phosphate aggravates the renal function. In 
the current review, we discuss the role of serum phosphorus on progression of 
renal dysfunction and cardiovascular outcomes in chronic kidney disease patients 
and its involvement in important health risks in the general population.

Key Words: Phosphorus; Renal insufficiency; Chronic; Dialysis; Cardiovascular diseases
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Core Tip: Disordered phosphorus homeostasis in chronic kidney diseases is associated 
with bad outcomes including cardiovascular morbidity/mortality and progression of 
renal dysfunction in end-stage of renal disease. Potential health consequences in 
cardiovascular and kidney disease could be developed in subjects with a high intake of 
dietary phosphorus despite the apparently normal renal function, due mainly to 
abnormalities in metabolism and in regulatory factors, rather than to serum phosphorus 
itself. The maintenance of serum phosphorus in normal range should be obtained.

https://www.f6publishing.com
https://dx.doi.org/10.5527/wjn.v10.i5.76
http://orcid.org/0000-0002-4290-8426
http://orcid.org/0000-0002-4290-8426
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
mailto:vraikou@med.uoa.gr


Raikou VD. Serum phosphate, CKD and CVD

WJN https://www.wjgnet.com 77 September 25, 2021 Volume 10 Issue 5

Grade C (Good): C, C 
Grade D (Fair): 0 
Grade E (Poor): 0

Received: February 27, 2021 
Peer-review started: February 27, 
2021 
First decision: May 6, 2021 
Revised: May 20, 2021 
Accepted: July 23, 2021 
Article in press: July 23, 2021 
Published online: September 25, 
2021

P-Reviewer: Prasad G, Saracyn M 
S-Editor: Ma YJ 
L-Editor: Filipodia 
P-Editor: Wu RR

Citation: Raikou VD. Serum phosphate and chronic kidney and cardiovascular disease: 
Phosphorus potential implications in general population. World J Nephrol 2021; 10(5): 76-87
URL: https://www.wjgnet.com/2220-6124/full/v10/i5/76.htm
DOI: https://dx.doi.org/10.5527/wjn.v10.i5.76

INTRODUCTION
High serum phosphate concentrations have been connected to adverse health outco-
mes in chronic kidney disease (CKD) including cardiovascular disease, progre-ssion of 
kidney disease and all-cause mortality[1-3]. Hyperphosphatemia in CKD has been also 
associated with the development of secondary hyperparathyroidism, which is 
responsible for bone disease implicating the stimulation of regulatory hormones such 
as fibroblast growth factor-23 (FGF23) and parathyroid hormone (PTH), which in turn 
may promote left ventricular hypertrophy[4,5]. The kidneys are unable to regulate the 
serum phosphorus concentrations despite the wide fluctuations in dietary phosphorus 
intake[6]. In a normal kidney function the phosp-horus urinary excretion is increased 
independently of dietary intake and phosphorus absorption from the gastrointestinal 
tract and fasting serum phosphate is maintained within a tight range. Therefore, 
elevation of serum phosphate due to reduced urinary excretion is a main manifestation 
of advanced renal failure. Previ-ously, we considered the importance of serum phos-
phate in elderly patients with type 2 diabetes mellitus (T2DM) and we observed the 
high serum phosphate to be associated with both low estimated glomerular filtration 
rate (eGFR) and albuminuria, despite the fact that high serum phosphorus levels were 
found to be non-significant risk factor for the occurrence of T2DM[7]. A positive 
phosphate balance occurs in the early stage of renal dysfunction, serum phosphate 
levels mainly increase in advanced stages of CKD and remain elevated in patients in 
the end-stage renal disease (ESRD) without dialysis treatment (Figure 1).

In the meantime, phosphate is needed in mineralization and bone growth and 
phosphorus intake is obtained by a rich diet in meat, grains, and dairy products. 
However, it has been shown that the elevation of serum 1,25-dihydroxyvitamin D 
[1,25(OH)2D] concentrations due to low dietary calcium intake is inhibited by high 
phosp-horus intake. Moreover, phosphorus intake may be a major source of acid load 
in the body[8-10]. Therefore, there remains the question whether high phosphorus 
intake adversely affects bone mass rather than improves bone function. Kidney 
Disease Improving Global Outcomes (KDIGO) clinical guidelines recommended the 
maintenance of serum phosphate concentrations within the normal laboratory range in 
dialysis patients using dietary phosphate restriction or intestinal phosphate binders in 
order to achieve a such as goal[11]. Several studies have also considered the effect-
iveness of these approaches in patients with CKD stages 3–5 before the initiation of 
dialysis[12-17]. It should initiate interventions in early stages of CKD including the 
control of phosphorus and the use of vitamin D analogs, thus the development of 
parathyroid hyperplasia and the skeletal complications of CKD to be prevented[18]. 
Vitamin D analogs are used to suppress hyperparathyroidism having lesser toxicity on 
calcium and phosphorus than calcitriol. However, it is important that PTH is not over-
suppressed, because the decrease of bone turnover to abnormally low levels includes 
the risk for adynamic renal bone disease, which is combined by exacerbation of extra-
skeletal deposition of calcium in blood vessels and other tissues.

In the current review, we discuss the role of serum phosphorus on progression of 
renal dysfunction and cardiovascular outcomes in CKD patients and its involvement 
in potential health risks in the general population. We also report evidence for the 
relationship between dietary phosphate intake and adverse outcomes in these popu-
lations.

RELATIONSHIP BETWEEN SERUM PHOSPHORUS AND PROGRESSION 
OF KIDNEY DYSFUNCTION
Many years ago, experimental studies showed that the restriction of dietary phosphate 
prevents the progression of kidney dysfunction, although high dietary phosphate 
aggravates the renal function[19,20].

https://www.wjgnet.com/2220-6124/full/v10/i5/76.htm
https://dx.doi.org/10.5527/wjn.v10.i5.76
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Figure 1  Influence of hyperphosphatemia on different organs/tissues.

However, few clinical studies were conducted to the effect of serum phosphorus 
concentrations on the rate of CKD progression. It has been shown that in CKD patients 
serum phosphorus concentrations > 4 mg/dL were associated with an increased risk 
of ESRD development in both National Health and Nutrition Examination Survey 
(NHANES) participants and in a United States veterans with CKD study[21,22]. In the 
Ramipril Efficacy In Nephropathy (REIN) Study, an independent risk of elevated 
serum phosphorus for exacerbation of renal function in patients with proteinuric CKD 
was found, although a restriction of the risk was shown caused by the renoprotective 
action of ramipril[23]. Elevated baseline serum phosphate concentrations were found 
to be independently related to progression of renal disease in a post hoc analysis of the 
African American Study of Hypertension and Kidney Disease (AASK) Study[24]. 
Large study including almost 100000 patients showed that increased serum phosphate 
concentrations were combined with high incidence of ESRD[25]. Controversially, the 
Kidney Early Evaluation Program (KEEP) Study did not show an independent 
association between serum phosphorus concentrations and exacerbation of renal 
function in ESRD adjusting for demographic and clinical characteristics in multiva-
riable analysis, despite there being a higher prevalence rate of cardiovascular disease 
(CVD) among patients with higher serum phosphorus[26]. The above studies were 
different regarding follow-up time and, particularly in the KEEP study, the measure-
ments of serum phosphorus became the baseline and an averaged over time value was 
not used.

The positive association between serum phosphorus and progression of kidney 
disease may be attributed to the extension of endothelial dysfunction to the glomerular 
endothelium, due to acute phosphorus loading, in addition to phosphorus-induced 
calcification. Another proposed potential mechanism includes the injury of podocytes 
and overexpression of pituitary-specific positive transcription factor 1 (Pit-1) trans-
porter in rats caused by the elevation of serum phosphorus[27].

Fibroblast growth factor 23 (FGF23) is a hormonal factor, which is significantly 
involved in maintenance of serum phosphate balance. FGF23 concentrations increase 
progressively starting in the early CKD as a physiologic adaptation to serum phos-
phate homeostasis. Eventually, the elevated FGF23 concentrations play an important 
role on bone disease of these patients[28]. ESRD incidence has also been associated 
with increased concentrations of FGF23. Studies including participants with mild CKD 
showed that the risk of all-cause mortality and progression to ESRD was higher in 
combination with increased FGF23[29,30]. However, a more complicated relationship 
between FGF23, phosphorus and CKD progression was suggested, due to the asso-
ciation remained stable despite adjustment for phosphorus concentrations.

Accounting for the daily fluctuation of phosphorus, it seems that vascular calci-
fication, endothelial dysfunction, injury of podocytes and high FGF23 result in 
progression of renal disease, due to high serum phosphorus.

In Figure 2, mechanisms which are connected to the relationship between serum 
phosphorus and the progression of renal dysfunction are shown.
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Figure 2  Actions and pathophysiological implications of hyperphosphatemia in different populations.

SERUM PHOSPHATE AND CARDIOVASCULAR DISEASE IN ADVANCED 
CHRONIC KIDNEY DISEASE
The patients in advanced CKD present increased calcifications, even those at a young 
age[31]. It has already been established that in ESRD patients, hyperphosphatemia is 
the reason of soft tissue calcification including vascular calcifications. Loss of the 
smooth muscle phenotype, expression of bone-specific markers and mineralization of 
the extracellular matrix was caused by the addition of exogenous phosphate to 
cultured vascular smooth muscle cells[32,33]. These processes collectively have as an 
effect calcification of the medial blood vessel wall (Mönckeberg’s arteriosclerosis) 
resulting in the loss of normal vessel compliance. It has been shown that inferior epiga
-stric arteries removed from ESRD patients undergoing renal transplantation 
presented medial arterial calcification in a 44% prevalence rate[34,35].

High evidence connecting phosphate overload with medial arterial calcification in 
renal failure was provided by animal models.

Moreover, it has been highly supported that extended vascular calcification, 
especially coronary artery calcification may play a potential role in the dispropor-
tionately increased prevalence rate of CVD in this population of patients[36]. Μany 
years ago, an independent association between serum phosphate ≥ 5.5 mg/dL and all-
cause and cardiovascular mortality in hemodialysis patients was shown[37]. Another 
large study including > 40000 hemodialysis patients showed that serum phosphorus 
concentrations ≥ 5 mg/dL were associated with a high risk of death[38]. However, 
such an association is not restricted to hemodialysis patients in different countries. A 
serum phosphate concentration > 3.5 mg/dL was independently associated with 
mortality and this risk was linearly elevated with an increase in concentration equal to 
each 0.5 mg/dL in a large retrospective study including 6730 CKD patients from 
Veterans Affairs Medical Centers[3]. An Italian study including > 1700 CKD patients 
showed a significant relationship between serum phosphorus and the likelihood of 
death[39]. Furthermore, the evidence for significant relationship between higher 
serum phosphorus and mortality in CKD patients was confirmed by a meta-analysis 
including 47 studies and 327644 CKD participants[40].

Currently, a multinational, randomized controlled large simple trial including a 
total of 3600 adult ESKD patients receiving dialysis is ongoing with primary endpoints 
the cardiovascular death, non-fatal major cardiovascular or peripheral arterial events 
(ClinicalTrials.gov Identifier: NCT03573089). The participants were randomized either 
to intensive (≤ 1.50 mmol/L) or liberalized (2.0-2.5 mmol/L) serum phosphate target. 
The choice and dose of phosphate binders is at the treating physician's discretion and 
local practice to achieve and maintain serum phosphate concentration within the 
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required target range according to randomization.
Furthermore, HiLo is currently running as another multicenter, cluster-randomized 

clinical trial of approximately 4400 patients with ESRD undergoing hemodialysis with 
a primary hypothesis the targeting serum phosphate levels of < 5.5 mg/dL to be 
compared to less stringent control of serum phosphate to target levels of > 6.5 mg/dL 
having as a goal the reduction of all-cause mortality and all-cause hospitalization 
among these patients (ClinicalTrials.gov Identifier: NCT04095039). Secondarily, this 
trial will test if less stringent control of serum phosphate results in increased serum 
albumin and protein catabolic rate (PCR), as markers of diet and nutrition.

The main mechanism for the relationship between hyperphosphatemia and adverse 
cardiovascular outcomes has been attributed to vascular calcification caused by 
phosphorus, but there may be additional potential explanations including acute 
endothelial dysfunction particularly in cases of an acute elevation of serum phosp-
horus. It has been used a diet containing either low (400 mg) or high (1200 mg) 
phosphorus and serum phosphate concentrations were measured before and 2 h after 
the meals in combination with flow-mediated dilation of the brachial artery 
measurement. It was found that the high dietary phosphorus load increased serum 
phosphorus at 2 h (by an average of 0.8 mg/dL) and significantly decreased flow-
mediated dilation (by an average of 4.5%)[41]. Such a finding supports that a 
significant elevation of serum phosphorus, due to oral phosphorus loading, may be 
important in the pathogenesis of CVD. We recently considered the importance of 
serum phosphate in elderly patients with T2DM, strongly related to endothelial 
dysfunction, vs non-diabetes mellitus in relation to renal function[7]. We enclosed 110 
subjects and 29 of the participants had T2DM (a ratio equal to 26.4%). We found high 
serum phosphate to be associated with hypertension, albuminuria, smoking, low 
estimated glomerular filtration rate (eGFR) and metabolic disorders including higher 
body mass index (BMI), higher serum glucose and higher uric acid levels, possibly due 
to phosphorus contribution to diabetes mellitus-induced endothelial dysfunction 
and/or vascular calcification.

In vitro experiments also showed that high phosphorus loading inhibited nitric 
oxide (NO) production due to increased reactive oxygen species release and endo-
thelial NO synthase inactivation via conventional protein kinase C (PKC), resulting in 
impaired vasodilation[41].

Furthermore, there are reports that phosphorus might result in direct actions on the 
myocardium, causing fibrosis[42]. Although one such as conception was supported by 
in vitro studies, direct clinical evidence has been provided by studies, which have 
connected hyperphosphatemia with left ventricular hypertrophy in CKD[43] and 
ESRD patients[44]. A relationship between high serum phosphorus and arterial 
compliance, which may indirectly result in left ventricular hypertrophy, has also been 
reported[45].

High FGF23 concentrations have been already found to be a significant risk factor 
for adverse outcomes including death in patients with CKD[29,46,47]. Higher risk of 
heart failure, stroke, and death among individuals with preserved renal function were 
also associated with increased FGF23 concentrations[48].

According to the above, calcification of the medial blood vessel wall (Mönckeberg’s 
arteriosclerosis), endothelial dysfunction and inhibition of nitric oxide (NO) produ-
ction caused by increased reactive oxygen species release, mainly in cases of acute 
overload of phosphorus, are involved in the pathophysiological mechanisms of CVD 
in advanced CKD due to phosphorus. Regulatory factors of serum phosphorus 
including FGF23 are also implicated in bad outcomes in these patients and high 
phosphorus may have an additional direct action on myocardium inducing fibrosis 
(Figure 2).

SERUM PHOSPHATE AND CARDIOVASCULAR DISEASE IN EARLY 
RENAL DYSFUNCTION AND IN GENERAL POPULATION
A connection between increased serum phosphate and adverse outcomes in patients 
who suffer from mild to moderate renal dysfunction or even in subjects who have 
apparently a normal kidney function has been supported. However, studies in these 
populations conferred mixed results. Among 3490 male United States veterans with 
stage III–IV CKD it was demonstrated that there is a significant relationship between 
higher serum phosphate concentrations and mortality and incident myocardial 
infarction[3]. Controversially, another previous study did not find any adjusted associ-
ation of serum phosphate concentrations with all-cause mortality or progression of 



Raikou VD. Serum phosphate, CKD and CVD

WJN https://www.wjgnet.com 81 September 25, 2021 Volume 10 Issue 5

renal dysfunction among 10672 individuals who had early CKD in the community-
based Kidney Early Evaluation Program (KEEP)[26]. Different demographic character-
istics, causes of CKD, comorbidities and the timing of serum phosphate measure-
ments, which vary throughout the day as 1.0 mg/dL, may have contributed to hetero-
geneous associations[49]. Data from the CARE (Cholesterol And Recurrent Events) 
study showed an independent association between increased phosphorus and risk of 
mortality in subjects who had underwent a myocardial infarction[50]. It is worth 
mentioning that most of the enrolled patients in this study had baseline serum 
phosphate in normal range and the baseline eGFR was more than 60 mL/min per 1.73 
m2. Supportively, a number of large epidemiological studies have suggested that mild 
elevations of serum phosphorus even within the normal range are associated with the 
risk of CVD including cardiovascular events, vascular calcification and cardiac valve 
calcification in general population[51-54]. Interestingly, a previous study found that 
the risk of mortality increases by 1.09 (HR: 1.09; 95%CI: 1.06, 1.84) per every 1.0 mg/dL 
increase in serum phosphorus considering the relationship between elevated serum 
phosphorus concentrations over time and mortality in participants with eGFR > 60 
mL/min per 1.73 m2[25]. Another study found that young men and women with rela-
tively high serum phosphate concentrations (> 3.9 mg/dL) had a greater pre-valence 
rate of coronary artery calcification 15 years later[55].

Many warnings are included in the role of serum phosphorus on CVD in normal 
populations. Phosphate homeostasis is obtained by regulatory hormones, cellular 
receptors and bone metabolic factors[56-58]. Common genetic variants located within 
or near multiple genes of mineral metabolism have been identified, which were 
associated with serum phosphate concentrations among 16264 individuals without 
apparently kidney dysfunction[59]. It is probable that one or more regulatory factors 
of phosphorus, rather than phosphate directly, may be responsible for observed associ-
ations with calcification and cardiovascular events in normal populations.

On the other hand, in early CKD and general populations the range of serum 
phosphate concentrations is typically found within or just above the normal laboratory 
range. In experimental models higher concentrations of phosphorus were used to 
induce calcification, ruling out the manifestation of calcification to be a plausible 
mechanism for the observed associations between serum phosphorus and cardio-
vascular events in normal populations. Coronary artery calcium represents calcified 
atherosclerosis rather than medial arterial calcification in normal populations in 
contrast to advanced renal disease population of patients[60].

Findings related to the risk due to high phosphorus were shown to be controversial 
in early stages of CKD, because of different demographic characteristics, causes of 
CKD, comorbidities and the timing of serum phosphate measurements, which vary 
throughout the day. One or more phosphate regulatory factors including FGE23 
and/or cellular receptors, due to genetic variants linked to multiple genes of mineral 
metabolism, rather than serum phosphate itself directly, are responsible for observed 
associations between high serum phosphate and both calcification and cardiovascular 
events in normal populations.

In Figure 3, potential mechanisms which are involved to the relationship between 
serum phosphorus and cardiovascular disease in different stages of renal dysfunction 
are shown.

IMPORTANCE OF DIETARY PHOSPHORUS INTAKE
Previous studies have supported that the elevated dietary phosphorus intake is 
connected to endothelial dysfunction[41] and increased FGF23 concentrations[61]. 
Particularly in subjects with a normal kidney function it has been shown a significant 
relationship between high FGF23 Levels and acute oral phosphorus loads[62]. In 
disagreement, in the Chronic Renal Insufficiency Cohort (CRIC) Study an association 
between dietary phosphorus intake and FGF23 concentrations was not found[63]. It 
seems that the interrelation between FGF23 and phosphorus intake is influenced by 
the kidney function and a preserved kidney function rather than CKD is required thus 
the association between them to be significant. Moreover, the usage of foods contai-
ning inorganic phosphorus additives confuses the results, because inorganic 
phosphorus is not captured completely by dietary surveys resulting in invalid findings 
regarding the association between FGF23 and dietary phosphorus intake. On the other 
hand, a strong, independent association between dietary phosphorus intake and left 
ventricular mass assessed by magnetic resonance was shown in MESA (Multi-Ethnic 
Study of Atherosclerosis) Study[64]. Increased oral phosphorus load was also found to 
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Figure 3  Mechanisms, which are involved to the relationship between serum phosphorus and cardiovascular disease in different stages 
of renal dysfunction.

promote the generation of tumors and a significant association between phosphorus 
and cancer may occur[65].

According to above discussed, the elevated intake of dietary phosphorus seriously 
disrupts phosphate homeostasis in healthy individuals. A disordered phosphorus 
homeostasis has potential health consequences in bones, cardiovascular, and kidney 
disease, even in the presence of reserved kidney function. Furthermore, the increased 
serum phosphorus, even without elevated oral phosphorus intake, as in advanced 
CKD patients, may be linked to worse outcomes.

The dietary phosphorus intake is reflected by the serum phosphate concentrations 
in dialysis patients. It has been established that a significant fall in serum phosphorus 
is clearly obtained by the restriction of dietary phosphorus or the use of oral 
phosphate binders[66]. Therefore, serum phosphate levels could be used as a marker 
of dietary intake in this population. However, a such as relation has not been com-
pletely established in CKD patients without dialysis or in normal population, despite a 
cross-sectional study in NHANES III which showed a mildly significant association 
between dietary and fasting serum phosphorus concentrations[67]. Since kidney 
function maintains the balance of serum phosphorus independently on phosphorus 
intake, fasting serum phosphorus is a very poor indicator of dietary phosphorus intake 
in normal population or in patients without dialysis. In these subjects repeated 
measurements of serum phosphorus throughout the day could reflect the wide 
fluctuation in phosphorus intake.

Moreover, it has been shown a circadian variation of serum phosphorus in healthy 
subjects and in patients with early renal failure[49,68]. The phosphorus concentrations 
might vary to 2 mg/dL during a 24-h time. It has been proved that the lowest serum 
phosphate concentration is in morning specimens and the least difference in serum 
phosphate concentrations on high- compared with low-phosphate diets also to be at 
this time of day, without an increase of urine phosphate excretion, PTH or FGF23 to be 
combined[49]. The mechanisms for phosphorus circadian variation phenomenon are 
still unclear. Nevertheless, the high variation of serum phosphorus during daytime, 
due to high oral phosphate load, could result in adverse outcomes, even in normal 
kidney function[41]. Other factors which influences the relation between dietary 
phosphorus intake and serum phosphate levels may be the use of foods with additives 
containing inorganic phosphate and the different bioavailability of phosphorus from 
various food sources. Phosphorus in meat can be absorbed more than the same 
amount of phosphorus in cereals. The ratio between calcium and phosphorus dietary 
intake is also other confounder in the relation between intake and serum phosphorus 
concentrations.
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Table 1 Dietary phosphorus recommendations

Dietary phosphorus recommendations

Restricting dietary phosphorus intake in dialysis patients, thus serum phosphate levels to be maintained within normal range with the use of intestinal 
phosphate binders or intensive hemodialysis

Restricting dietary phosphorus intake in adults CKD stages 3-5, thus serum phosphate levels in repeated measurements to be maintained within normal 
range with the use of intestinal phosphate binders

Consideration of bioavailability of phosphorus sources (animals, vegetables, additives) in patients with CKD stages 1-5

Control of serum phosphorus to be in normal range in healthy individuals

Prescribing a high phosphorus intake (diet or supplements) in adult kidney transplant recipients with hypophosphatemia, because a severe drop in serum 
phosphorus 1.5 mg/dL or below can cause neuromuscular disturbances, due to impaired cellular metabolism

CKD: Chronic kidney disease.

Figure 4  Phosphate control is schematically depicted in different populations.

Although many observational studies have been conducted on the relation between 
serum phosphorus concentrations/dietary intake and outcomes, it still remains 
undetermined whether phosphorus is a real toxin or is a simple marker for adverse 
events. The cause for this would be the lack of a reasonable approach. However, 
clinical studies including The Modification of Diet in Renal Disease (MDRD) study 
observed a significant reduction in the risk of ESRD or death with reduced dietary 
protein intake and, by extension, reduced intake of dietary phosphorus, as the main 
intervention[69,70]. Even though the comparisons of randomized groups in previous 
studies do not prove a beneficial cause effect of either protein restriction or 
phosphorus restriction on morbidity/mortality, such a restriction should be recom-
mended, thus serum phosphorus could be retained within normal range for the 
reduction of risk for cardiovascular events and the protection of renal function.

In Table 1, recommendations of dietary phosphorus are listed and in Figure 4, 
phosphate control in different populations of patients are included.

CONCLUSION
Disordered phosphorus homeostasis in CKD is associated with bad outcomes 
including cardiovascular morbidity/mortality and progression of renal dysfunction in 
ESRD. Elevated intake of dietary phosphorus seems to disrupt phosphate homeostasis 
even in healthy individuals, due mainly to abnormalities in regulatory factors 
including FGE23 connected to genetic variants of mineral metabolism multiple genes, 
eventually resulting in potential health consequences in bones, cardiovascular, and 
kidney disease. Therefore, the maintenance of serum phosphorus in normal range 
should be obtained. However, further studies are still required to clarify the 
underlying pathophysiologic mechanisms and, particularly, to define interventions, 
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which would attenuate the adverse outcomes due to phosphorus.
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Abstract
Nephrotic syndrome (NS) is relatively common in children, with most of its 
histological types being minimal changed disease. Its etiology has long been 
attributed to lymphocyte (especially T-cell) dysfunction, while T-cell-mediated 
vascular hyperpermeability increases protein permeability in glomerular 
capillaries, leading to proteinuria and hypoproteinemia. Based on this etiology, 
steroids and immunosuppressive drugs that are effective against this disease have 
also been considered to correct T-cell dysfunction. However, in recent years, this 
has been questioned. The primary cause of NS has been considered damage to 
glomerular epithelial cells and podocyte-related proteins. Therefore, we first 
describe the changes in expression of molecules involved in NS etiology, and then 
describe the mechanism by which abnormal expression of these molecules 
induces proteinuria. Finally, we consider the mechanism by which infection 
causes the recurrence of NS.
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Core Tip: There is no doubt that some vascular hyperpermeability factor is involved in 
the incidence of proteinuria in idiopathic nephrotic syndrome (INS). However, no 
etiological molecule has been identified in INS as a factor for increasing the 
permeability of renal glomerular capillaries with reproducibility and clinical 
consistency. In addition, since the onset is sometimes observed in the family, there is 
high incidence of INS in East Asian children and there is the association of steroid-
sensitive NS in childhood in Japan with the HLA-DR/DQ region, it is highly possible 
that some genetic factors are involved in the onset of NS. In our opinion, INS is a 
multifactorial disease in which immunological stimuli, trigger the production of 
substances that impair podocytes, resulting in dysfunction of the slit membrane and 
cause proteinuria.
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INTRODUCTION
Nephrotic syndrome (NS) is a chronic kidney disease that is relatively common in 
children, with an annual incidence of 2 to 7 per 100000 in the pediatric population[1]. 
An epidemiological study of pediatric idiopathic NS (JP-SHINE study) was conducted 
in Japan, and found an incidence of 6.49 per 100000, which is 3 to 4 times that reported 
for Caucasians[2]. The male-female ratio was 1.9%, and 32.7% of patients had frequent 
recurrences during the 1- to 4-year observation period, which was similar to previous 
reports[2].

NS is classified into idiopathic (INS), secondary, and congenital depending on the 
cause and timing of proteinuria. INS accounts for 90% of NS in children. Furthermore, 
since more than 80% of INS in children is minimal change NS (MCNS), more than 70% 
of NS in childhood is MCNS. This epidemiology differs strongly from that in adults[1].

Focal segmental glomerulosclerosis (FSGS) is the second most common disease in 
pediatric INS after MCNS. However, the difference between MCNS and FSGS has 
been debated for many years, with no conclusions being reached[3,4]. It remains 
unclear whether they are distinct due to differing etiologies or stages/severity 
(early/mild for MCNS and advanced/severe for FSGS). The etiology of MCNS and 
FSGS has not yet been concluded.

TOPICS IN NS
Relationship between INS and T-cell function
Regarding INS etiology, the involvement of T-cell dysfunction proposed by Shalhoub
[5] in 1974 has long been supported[5]. In this study, steroid therapy showed a rapid 
and significant effect in INS patients, whose lymphocytes released vascular hyperper-
meability factors into the culture supernatant. Additionally, INS patients were in 
remission when they suffered from measles, and malignant lymphoma patients often 
had INS. Finally, the recurrence of INS patients was significantly higher during upper 
respiratory tract inflammation.

From these observations, it was concluded that lymphocytes (mainly T cells) in INS 
patients are dysfunctional and overproduce vascular hyperpermeability factors. These 
factors have been thought to increase vascular protein permeability in renal glome-
rular capillaries and lead to proteinuria[6,7].

In fact, when the supernatant from immortalized T cells from NS patients is admini-
stered to rats, it effaces foot processes and causes proteinuria, but the normal control 
T-cell supernatant does not show such changes[8].

T cells include helper T cells (CD4 antigen-positive) that are presented with antigens 
from monocytes and macrophages and regulate immune responses, and killer T cells 
(CD8 antigen-positive) that damage virus-infected cells. Furthermore, helper T cells 
include Th1 and Th2 cells, which differ in cytokine secretion and effector functions. 
Th1 cells produce interleukin (IL)-2, interferon (IFN)-γ and tumor necrosis factor 
(TNF)-α, and Th2 cells produce IL-4, IL-5, IL-6, IL-9, IL-10 and IL-13. So, far, many 
groups have investigated the dynamics of blood cytokine levels in MCNS patients[9].

It has been reported that there is no significant difference between cytokine levels in 
remission in MCNS patients and controls, but IL-4 and IL-13 levels are elevated at the 
onset of NS, that is, Th2-dominant fluctuations are observed. On the other hand, there 
have been some reports denying these fluctuations, and no consensus has been 
reached[10,11].

Reasons for the different observations may be differences in patient backgrounds, 
lack of standardization of analysis methods (such as sampling and timing), and there 
are no suitable in vitro cultured cells or in vivo animal models. At present, there is no 
established evidence that Th1 or Th2 dominance causes NS. Yap et al[12] found the 
elevated mRNA expression of IL-13 in the T cells of NS patients[12]. After that, an 
increase IL-13 concentration in blood and T-cell were confirmed by other groups[13,
14].

https://www.wjgnet.com/2220-6124/full/v10/i5/88.htm
https://dx.doi.org/10.5527/wjn.v10.i5.88
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IL-13 receptors are expressed in glomerular epithelial cells, and the addition of IL-13 
to cultured glomerular epithelial cells reduces barrier function[15]. Furthermore, since 
strong expression of IL-13 in rats causes MCNS-like nephropathy[16], it is possible that 
an increase in IL-13 in MCNS patients has an effect on the pathology. However, there 
is a report that the blood concentration of IL-13 is not necessarily high in MCNS 
patients[17], and future examinations of cytokine concentration in the renal region are 
necessary.

It has been reported that the expression of a molecule called c-mip (c-maf inducing 
protein) is increased in MCNS T cells[18]. Subsequent analysis revealed that c-mip 
expression was increased not only in T cells but also in glomerular epithelial cells 
when NS recurred[19]. Mice in which c-mip is overexpressed in glomerular epithelial 
cells show proteinuria, with c-mip modifying the tyrosine kinase signal by the slit 
membrane. C-mip has been suggested as a mediator causing glomerular epithelial cell 
damage in MCNS[19].

There have also been reports of the effectiveness of TNF-α inhibitors in nephrotic 
patients[20] and of nuclear factor-κB (NF-κB) pathway activation in the blood cells of 
MCNS patients[21], but the number of cases was small, and then no further examin-
ations have been reported.

The CD25- and CD4-positive regulatory T-cell population has an inhibitory effect on 
the immune response and specifically expresses the transcription factor Foxp3. The 
forkhead box P3 (FOXP3) gene is thought to be the master gene in regulatory T-cell 
development and function. Examination of recurrence of MCNS revealed that the 
number of suppressive T cells was the same as normal, but the regulatory T cells of 
ability to suppress T-cell proliferation was reduced at the time of MCNS recurrence
[22]. In addition, immune dysregulation, polyendocrinopathy, enteropathy, X-linked 
syndrome, multiple endocrine disorders and digestive diseases caused by mutations in 
the FOXP3 gene are complicated by NS. A relationship between MCNS and regulatory 
T cells has been strongly suggested, while epigenomic changes in the lymphocytes of 
MCNS patients are also being investigated[23]. Changes in histone methylation[24] 
and DNA methylation[25] in MCNS have been reported, but there is currently no data 
on whether these are related to changes in lymphocyte function leading to MCNS. 
Since steroids induce epigenetic changes, this field is expected to gain interest, speci-
fically in understanding the mechanism of steroid sensitivity in MCNS.

Relationship between INS and B cell function
Although the function of B cells in MCNS is extremely poorly understood compared to 
that of T cells, rituximab (a human monoclonal antibody against the B cell antigen 
CD20) is clinically effective against frequently relapsing NS. That is, it became clear 
that depletion of B cells is a treatment for MCNS[26]. However, it is unclear whether 
this arises from an effect of rituximab on B cells or a change in T-cell function mediated 
by B cells.

On the other hand, rituximab binds to acid sphingomyelinase-like phosphodi-
esterase 3b (SMPDL-3b), a protein expressed in glomerular epithelial cells. Serum from 
NS patients reduces SMPDL-3b expression levels in cultured glomerular epithelial 
cells, induces cytoskeletal changes, and reduces the filtration barrier function, whereas 
rituximab increases SMPDL-3b expression level and suppresses the changes obtained 
with NS patient serum[27].

This suggests that rituximab may exert a proteinuria-suppressing effect directly on 
glomerular epithelial cells without the intervention of immune cells. However, the 
extent of involvement of this mechanism in the clinical effects of rituximab is unknown 
at this time.

Other factors
Hemopexin: Hemopexin is a blood factor potentially associated with MCNS. It is an 
enzyme involved in heme metabolism, and its administration to rats induces reversible 
proteinuria[28]. Hemopexin activity is increased in MCNS patients[29], and since 
hemopexin acts on the cytoskeleton of glomerular epithelial cells via nephrin in vitro
[30], it may be involved in MCNS. However, this report included a small number of 
cases, and it is unclear whether its observations can be generalized.

Angiopoetin-like 4: In 2011, Clement et al[31] found an increase in Angiopoetin-like 4 
(Angptl4) levels in the blood of MCNS patients[31]. Angptl4 expression is also 
enhanced in epithelial cells in the glomeruli of MCNS patients, and proteinuria occurs 
when Angptl4 is strongly expressed specifically in glomerular epithelial cells in mice
[31]. Therefore, it was suggested that an increase in Angptl4 Leads to MCNS, but this 
possibility has now been refuted. Subsequent analysis revealed that mice expressing 
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Angptl4 in the liver did not exhibit proteinuria, and that Angptl4 in the blood acted on 
glomerular endothelial cells and had a proteinuria-lowering effect[32]. Interestingly, 
Angptl4 levels are elevated by lowering blood albumin, but Angptl4 suppresses 
lipoprotein lipase activity, which suppresses the conversion of triglycerides to free 
fatty acids and causes hyperlipidemia[32]. Therefore, Angptl4 may play a role in NS 
hyperlipidemia.

CD80: CD80 (B7-1) is a membrane protein that is expressed on activated B cells and 
antigen-presenting cells. It binds to CD28 on CD4 + T cells in response to T-cell rece-
ptor activation and promotes T-cell proliferation. Thus, interaction co-stimulation 
signaling between CD80 and CD28 mediates the interaction between T cells and B cells 
or antigen-presenting cells and regulates the adaptive immune response. On the other 
hand, cytotoxic lymphocytes-associated antigen-4 (CTLA-4), which is a negative co-
stimulatory receptor, also binds to CD80 as a ligand, but its affinity is ten times higher 
than that of CD28 and CD80, and therefore strongly inhibits the binding of CD28 and 
CD80.

Animal experiments have shown that when glomerular epithelial cells are 
stimulated and injured, they express CD80[33]. Urinary CD80 levels increase during 
recurrence of MCNS, which is not seen in FSGS patients or those in remission, sugge-
sting that changes in CD80 expression may be specific to MCNS[34]. The addition of 
serum from MCNS patients to cultured podocytes has been shown to increase CD80 
expression in vitro[35], suggesting that there is a close relationship between MCNS and 
CD80 expression. It is believed that these are not only involved in the onset and 
recurrence of MCNS, but are also potential biomarkers for differentiating MCNS from 
FSGS.

A two-hit hypothesis has been proposed, whereby the induction of CD80 expression 
by a serum stimulus is the first hit, and the subsequent decrease in CTLA4 expression 
that suppresses the CD80 signal is the second hit[36].

Abatacept is a chimera of CTLA4 and IgG that binds to CD80 and suppresses the 
CD80-CD28 signal, attenuating the immune response. Therefore, several groups have 
recently investigated whether suppressing CD80 on glomerular epithelial cells by 
abatacept leads to an attenuation of proteinuria. Yu et al[37] reported the adminis-
tration of abatacept to 5 FSGS patients [4 rituximab-resistant and 1 steroid-resistant NS 
(SRNS)] and the improvement of nephrotic-level proteinuria in all of them[37].

On the other hand, Garin et al[38] reported that abatacept had a temporary 
inhibitory effect on proteinuria in MCNS patients, whereas there was no change in 
proteinuria in FSGS patients despite a decrease in urinary CD80 antigen[38]. Another 
group has reported that abatacept has a poor effect on proteinuria in FSGS patients
[39]. Future cases need to be collected to analyze the involvement of CD80 and aba-
taept on NS.

Genetic factors
More than 50 genes mutated in hereditary podocytopathies have been identified 
(Table 1). The causative gene of congenital and SRNS is being elucidated. Depending 
on the gene mutated, NS can be roughly classified into three types for convenience: 
congenital NS developing symptoms early in life (NPHS1, NPHS2, NPHS3, CD2AP, 
MYO1E, PTPRO etc.), NS with an adult onset in the form of autosomal dominant 
inheritance (TRPC6, ACTN4, INF2 etc.), and NS with symptoms in other organs (WT1, 
LAMB2, LMX1B, MYH9 etc.). Many of these genes encode proteins that are strongly 
expressed in glomerular epithelial cells, so these genetic diseases are considered 
podocyte diseases. In Western studies, two-thirds of infant NS cases developing within 
the first year of life are explained by four gene mutations (NPHS1, 24%; NPHS2, 38%; 
LAMB2, 5%; and WT1, 3%). It has also been reported that in steroid-resistant 
congenital NS that develops under 2 years of age, mutations in 24 of the currently 
known genes are found in nearly 90% of cases[40]. The analysis of more than 2000 
cases of SRNS found that 30% of cases were explained by 27 known genes[41].

It is important to understand to what extent genetic background is involved in the 
onset of steroid-sensitive NS (SSNS) and MCNS. Familial onset of SSNS is rare, in fact, 
it was reported that the onset of SSNS in the sibs is 3%[42]. Certainly, the frequency of 
known genetic abnormalities in SSNS is extremely lower than that in SRNS. For 
example, the analysis of 38 SSNS patients did not find any genetic abnormalities[43]. 
Minor nephrin abnormalities have been reported in siblings with proteinuria[44]. In 
addition, a mutation in LMX1B, the causative gene of Nail-Patella syndrome, has been 
found in patients with proteinuria without extrarenal symptoms[45]. Furthermore, a 
gene mutation in EMP2 was found by analysis of familial SSNS that developed in early 
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Table 1 Genetic forms of podocytopathies

Gene Inheritance OMIM ID Pathology Function Features
NPHS1 AR 602716 FSGS/MCD Slit membrane Congenital. Finish type

NPHS2 AR 604766 FSGS/MCD Slit membrane Develop ESRD in the first or second decades 

CD2AP AR 607832 FSGS Slit membrane Severe early-onset SRNS 

CRB2 AR 609720 FSGS Slit membrane Child onset SRNS

FAT1 AR 600976 FSGS Slit membrane First or second decade onset SRNS. Tubular ectasia, haematuria and 
facultative neurological involvement 

TRPC6 AD 603652 FSGS Slit membrane Both child and adult onset SRNS 

MYO1E AR 601479 FSGS Actin binding Child onset SRNS 

PLCE1 AR 608414 FSGS/MCD Actin binding Infantile to child onset SRNS 

INF2 AD 613237 FSGS Actin binding Complicated by Charcot-Marie-Tooth disease 

ACTN4 AD 604638 FSGS Actin binding Adult onset SRNS 

MYH9 AD 160775 FSGS/MCD Actin binding Complicated by Epstein syndrome 

ANLN AD 616027 FSGS Actin binding Both child and adult onset SRNS

KANK1 AR 607704 MCD Actin regulation

KANK2 AR 614610 MCD Actin regulation Early-onset SSNS 

KANK4 AR 614612 FSGS Actin regulation Early-onset SRNS 

ARHGDIA AR 601925 FSGS/DMS Actin regulation Onset age is younger than 3 yr 

ITSN1 AR 602442 FSGS/MCD Actin regulation SSNS

ITSN2 AR 604464 FSGS Actin regulation SSNS

MAGI2 AR 606382 MCD Actin regulation SSNS

TNS2 AR 607717 FSGS/MCD Actin regulation SSNS

DLC1 AR 604258 FSGS Actin regulation SSNS

ARHGAP24 AD 610586 FSGS Actin regulation

LAMB2 AR 609049 DMS/FSGS Integrin and 
laminin

Pierson syndrome

ITGA3 AR 605025 FSGS Integrin and 
laminin

Infantile onset SRNS. Congenital interstitial lung disease and mild 
epidermolysis bullosa

ITGB4 AR 147557 FSGS Integrin and 
laminin

Congenital or infantile onset SRNS. Epidermolysis bullosa and pyloric 
atresia 

WT1 AD 256370 DMS/FSGS Nucleus Denys-Drash syndrome. Frasier syndrome. Wilms tumor

LMX1B AD 161200 FSGS/MCD Nucleus Nail-patella syndrome 

SMARCAL1 AR 606622 FSGS Nucleus Schimke immunoosseous dysplasia 

NUP93 AR 614351 FSGS Nucleoporins Child onset SRNS 

NUP107 AR 607617 FSGS Nucleoporins Child onset SRNS 

NUP205 AR 614352 FSGS Nucleoporins Early onset SRNS 

XPO5 AR 607845 FSGS Nucleoporins Speech development delay 

COQ2 AR 609825 FSGS/CG CoQ10 
biosynthesis

Early-onset NS

COQ6 AR 624647 FSGS CoQ10 
biosynthesis

Early-onset NS. Hearing loss

PDSS2 AR 610564 FSGS CoQ10 
biosynthesis

Leigh syndrome 

MTTL1 AR 590050 FSGS CoQ10 
biosynthesis
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SGPL1 AR 603729 FSGS S1P metabolism Hyperpigmentation, increased ACTH, hypoglycemia, and hypocalcemia 
with seizures, ichthyosis, primary hypothyroidism and developmental 
delay 

SCARB2 AR 602257 FSGS Lysosome Progressive myoclonic epilepsy 

FSGS: Focal segmental glomerulosclerosis; MCD: Minimal change disease; ESRD: End-stage renal disease; ACTH: Adrenocorticotropic hormone; SRNS: 
Steroid-resistant nephrotic syndrome; DMS: Diffuse mesangial sclerosis; CG: Collapsing glomerulopathy.

childhood[46]. EMP2 is expressed in glomerular epithelial and endothelial cells, 
regulates the expression of the membrane protein caveolin, and its mutation is thought 
to cause morphological changes to epithelial cells. Additionally, mutations of the 
kidney ankyrin repeat-containing proteins 1, 2 and 4 known as the cause of SRNS have 
also been found in SSNS patients[47].

Ashraf et al[48] focused on a family with SSNS and performed a whole exome 
analysis of its members. A novel causative gene, called ITSN2, was identified in this 
family. By combining this result with those from the genomic analysis of NS families 
with a blood relative, six novel causative genes were identified. The 17 families with 
mutations in this gene had an NS which was partially sensitive to steroid treatment. 
Interestingly, all identified genes were involved in the same pathway (Rho signaling) 
and were found to interact with each other. This pathway also includes genes involved 
in SRNS, which is indicative of a common mechanism in SSNS and SRNS. In addition, 
this study suggested that steroids also act on this signaling pathway[48].

These facts suggest that gene mutations affect glomerular epithelial cell function.
Large-scale studies have begun on not only causative genes whose mutations 

determine the onset of disease, but also polymorphisms in susceptibility genes that 
increase the risk of onset. In the case of diseases affected by multiple susceptibility 
genes, the magnitude of the risk of developing the disease is expressed by the “odds 
ratio.” Specifically, it is expressed as a numerical value indicating how many times the 
risk of developing the disease is higher in a person who has a susceptibility gene than 
that of a person who does not have the susceptibility gene.

Genome-wide association studies (GWAS) are comprehensive analyses of the single 
nucleotide polymorphisms (SNPs) an individual has in their genome. A GWAS was 
performed in less than 200 cases of acquired NS in Japan, and an SNP in the intron of 
GPC5, which encodes Glypican-5, was found to correlate with NS onset. Glypican-5 is 
expressed in glomerular epithelial cells and its specific knockdown in these cells turns 
mice resistant to the development of experimental proteinuria. It is believed that the 
expression levels of this gene define susceptibility to glomerular epithelial cell damage
[49].

In a GWAS of about 200 childhood-onset SSNS cases, the proportion of HLA-DQA1 
polymorphisms on chromosome 6 was significantly increased in SSNS (odds ratio 2.1)
[50]. Jia et al[51] performed a GWAS using an SNP array optimized for Japanese 
patients, including 224 pediatric SSNS patient and 419 healthy subject control speci-
mens. As a result, SNPs showed a significant genome-wide association in the HLA-DR, 
DQ region of the short arm of chromosome 6. This result was also confirmed in 
another cohort consisting of 213 pediatric SSNS patients and 710 healthy controls[51].

A GWAS using an SNP array optimized for Japanese patients was performed on 987 
pediatric SSNS patients and 3206 healthy controls. As a result, in addition to the HLA-
DR, DQ region, variants (polymorphisms) showing a significant genome-wide 
association with the NPHS1-KIRREL2 region of chromosome 19 19q13.12 were 
identified. Furthermore, the relationship between multiple NPHS1 variants and 
glomerular NPHS1 mRNA expression was investigated. The expression of NPHS1 
mRNA from chromosomes having haplotypes with these risk variants was reduced. It 
has been clarified that NPHS1 is involved in expression regulation[52].

Although polymorphisms in the multiple susceptibility genes do not cause the 
disease, they can have a significant impact on the risk of developing NS. These 
macroscopic genome analyses, which are expected to gain popularity in the future, are 
effective not only for clarifying the dynamics of susceptibility genes but also for 
establishing the genetic differences found in populations such as specific ethnic groups 
and races.

Mechanism of glomerular epithelial cell damage in NS
As mentioned above, various genetic abnormalities can cause NS. It has also been 
suggested that changes in circulatory factors and local tissues may be involved in the 
onset of non-genetic NS. Despite these various causes, changes in glomerular epithelial 
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cells are common throughout NS. In particular, fusion of the foot process is observed 
in most cases, and basement membrane detachment, vacuolar degeneration, and 
inclusion body formation are strongly associated with barrier rupture.

Glomerular epithelial cells receive chemical or mechanical stimuli from the 
glomerular blood vessels and Bowman's cavity to transmit intracellular signals[53]. 
These signals control the development, morphogenesis, and maintenance of 
morphology of glomerular epithelial cells, and are closely related to proteinuria[54].

Slit membrane complexes such as Nephrin, Neph1, and Podocin play a major role in 
controlling the cytoskeletal structure of glomerular epithelial cells, and various 
adapter proteins are used in the intracellular region of slit membrane proteins, due to 
stimulation-dependent phosphorylation[55,56]. The slit membrane functions as a 
conversion point for receiving extracellular signals such as humoral factors[19,57]. This 
signaling system is extremely important for executing reversible morphological 
changes in epithelial cells and as the point of action of NS drugs.

Significance of viral infection in the onset and recurrence of INS in children
There are many reports on the immunological background of INS patients and 
abnormalities in renal glomeruli. In recent years, there have been an increasing 
number of research papers on relationship between upper respiratory tract infection 
(URI) and the onset and recurrence of INS.

In children, it has been known for over 30 years that the onset and recurrence of INS 
are observed in URI. Specifically, about 70% of INS recurrences are triggered by URI
[58]. Despite interesting findings reported in recent years, the molecular mechanism 
that links URI to the onset and recurrence of INS has not been elucidated.

Involvement of Toll-like receptors in INS pathology
Innate immunity plays an important role in the initial recognition of pathogens (e.g., 
bacteria, viruses, and parasites), phagocytosis or digestion, and the subsequent 
induction of an inflammatory response and the induction of acquired immunity. 
Macrophages, neutrophils, and phagocytes such as dendritic cells play a central role in 
this process. These cells express pattern recognition receptors (PRRs) that recognize 
pathogen-associated molecular patterns (PAMPs) and transmit activation signals 
through PRRs. The Toll-like receptor (TLR) family of PRRs, consist of 13 types 
reported in humans, each of which recognizes different PAMPs such as proteins lipids, 
and nucleic acids of bacteria, viruses, and parasites. TLRs have specific signaling 
pathways depending on the adapter molecule which lead to the induction of differ-
ential gene expression patterns. The main signal transduction pathways are the 
MyD88-dependent and TRIF-dependent pathways. The former is involved in the 
induction of the inflammatory response through NF-κB activation, and the latter 
activates the IFN regulatory factor (a transcription factor) which finally induces type I 
IFN and is involved in the antiviral response.

There are some reports that the expression of TLR-3 and TLR-4 in peripheral blood 
mononuclear cells (PBMC) is enhanced at the time of INS onset or recurrence[59,60]. 
Mishra et al[60] compared the mRNA expression levels of TLR-3, TLR-4, and CD80 
using PBMC of 40 SSNS cases (25 of whom were initial or recurrent and 15 were in 
remission; histological type was mainly MCNS), 30 cases of SRNS (tissue type was 
mainly FSGS) and 23 control children. The mRNA expression levels of these molecules 
were increased in patients with initial and recurrent SSNS. On the other hand, patients 
with SRNS displayed a decreased expression compared to those of normal controls
[60].

TLR-3 is localized in the cell and recognizes viral double-stranded RNA, while TLR-
4 is present on the cell surface and recognizes sugars, lipids, and proteins derived from 
the virus[61]. Therefore, the fact that the expression of these TLRs is enhanced is 
consistent with the fact that many INS recurrences are triggered by URI.

Involvement of alveolar surfactant protein in recurrence of INS
When MCNS patients relapse with URI, their levels of pulmonary surfactant proteins 
surfactant protein A (SP-A) and surfactant protein D (SP-D) in the serum increase. As a 
result of activating signal-regulatory protein-α (SIRPα), structural changes (such as 
disappearance of podocyte foot protrusions) occur, resulting in the appearance of 
proteinuria[62].

This inference is based on the elevation of SP-A and SP-D levels in the serum 
collected at the time of recurrence of MCNS patients. SIRPα is stimulated by adding 
the MCNS patient's serum at the time of recurrence to cultured podocytes, and protein 
phosphatase non-receptor type 1 is released, which dephosphorylates nephrin, 
activates podocyte NF-κB, promotes CD80 and pro-inflammatory cytokine production, 
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and causes structural podocyte changes. SIRPα is a transmembrane protein that 
contains a tyrosine phosphorylation site in the cytoplasmic region and is expressed in 
dendritic cells, macrophages, nerve cells, and microglia. SIRPα is also expressed in 
podocytes, and it was clarified that it is involved in the regulation of podocyte 
structure and function as one of the major tyrosine phosphorylated proteins in renal 
glomeruli[63-65].

In addition, SP-A and SP-D, which are mainly produced by alveolar type II 
epithelial and Clara cells, are known as useful biomarkers of interstitial pneumonia, 
but they are also SIRPα agonists[66]. Therefore, a hypothesis that SP-A and SP-D 
serum levels increase during URI causing abnormalities SIRPα in podocytes and leads 
to recurrence of INS can be formulated.

Certain viruses that are prone to the onset and recurrence of INS in children
Approximately 85% of microorganisms that cause URI, the so-called cold syndrome, 
are viruses. The main causative viruses are rhinovirus and coronavirus, followed by 
RS virus, parainfluenza virus, and adenovirus. It is well known that pediatric INS 
patients are prone to recurrence when suffering from cold syndrome. There were 
various studies examining the link between recurrence and the causative virus such as 
RS virus, influenza virus A and B, parainfluenza virus, varicella herpes zoster virus, 
and adenovirus, but it was unclear whether a specific pathogen was involved in 
recurrence. In 2017, two facilities reported that infection with a specific virus was 
involved in recurrence. Lin et al[67] proposed the hypothesis that rhinovirus (HRV) 
infection leads to increased expression of CD80 in the renal podocytes of patients and 
causes recurrence[67]. Lin et al[67] examined 32 MCNS patients who relapsed during 
URI due to HRV, using PBMC and renal biopsy tissue, and compared the patients with 
CD80-positive T cells of PBMC to control children with PBMC. The ratios of CD80-
positive T cells to CTLA-4 positive T cells and the ratios of Th17 to Treg increased at 
the time of recurrence in MCNS when compared to those in control children, but they 
normalized during the remission period. Furthermore, in an immunostaining study 
using renal tissue of MCNS patients who underwent renal biopsy at the time of 
recurrence, CD80 was strongly expressed renal glomeruli, but CTLA-4 was weakly 
expressed. It is speculated that HRV infection increases the CD80 CTLA-4 ratio of 
PBMC in MCNS patients, resulting in an increase in the Th17 Treg ratio. As a result, 
the expression of CD80 in podocytes is enhanced and structural podocyte changes 
occur, leading to recurrence[67].

The Epstein-Barr (EB) virus is a double-stranded DNA herpesvirus found in 
cultured cells of Burkitt lymphoma that frequently occurs in children in equatorial 
Africa. It is also called human herpesvirus type 4. A characteristic of herpesviruses, 
including EB virus, is that they cause latent infections centered on B lymphocytes[68]. 
Dossier et al[69,70] have proposed the etiologic significance of the EB virus in INS 
because of findings of infection and reactivation of the EB virus in pediatric patients 
with initial INS[69,70]. According to them, about half of children with INS have 
amplification of EB virus DNA. This amplification occurs in a locus with a previously 
reported monobasic polymorphism in children with SSNS (6p21.32), associated with 
the ability to produce EB virus nuclear antigen 1. Additionally, depletion of B cells 
with rituximab relieves INS, but the cells that are persistently infected with EB virus 
are B cells. These facts were cited as the basis for the EB virus etiology[70].

On the other hand, it is a well-known fact that pediatric INS resolved due to viral 
infections, such as influenza and measles[71,72].

It has been reported that CD25, CD4, Foxp3, and regulatory T cells (Tregs) levels 
increase in the blood during measles, and that changes in the T-cell-producing 
cytokine balance during measles are involved in NS remission[73]. An increase in the 
number of Tregs was observed in response to intercurrent influenza B virus infection 
and prednisolone administration, along with a parallel decrease in the amount of 
proteinuria[74]. Moreover, both influenza virus infection and glucocorticoid (GC) 
administration, which is the key treatment for INS, increase the number of Tregs[75,
76]. Therefore, it may be hypothesized that Tregs play an important role in INS 
pathogenesis in patients with INS complicated by influenza B and measles infections.

New insights in the drugs of MCNS
(1) GC: Approximately 80% of pediatric MCNS patients are in remission with GC, but 
how GC improves MCNS remains unclear. GC may act directly on podocyte receptors 
to suppress the appearance of proteinuria. In fact, dexamethasone has a significant 
effect on the structure and function of human podocytes[77], and has been shown to 
suppress the intracellular signaling of podocyte NFκB[78]; (2) Cyclosporine (CsA): The 
suppression of intracellular signal transduction of activated T cells was thought to be a 
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possible mechanism of CsA in MCNS. CsA acts on the calcineurin-dependent dephos-
phorylation of synaptopodin in podocytes to stabilize the actin cytoskeleton and 
reduce proteinuria[79]; and (3) Rituximab (RTX): RTX, a monoclonal antibody that acts 
against the B cell surface antigen CD20, is also highly effective in MCNS. However, its 
mechanism of action is not well known.

It speculated that the depletion of B cells may reduce self-reactive T cells through 
cell-cell interactions[80]. Fornoni et al[27] indicated that RTX not only recognizes CD20 
on the surface of B cells, but also binds to and protects podocyte SMPDL-3b 
preventing the destruction of the actin cytoskeleton and suppressing proteinuria[27].

Why don’t we still understand the cause of MCNS?
Among the genetic abnormalities identified for congenital NS and SRNS, many have 
been found to be explained by glomerular epithelial cell abnormalities, however, many 
aspects of MCNS pathogenesis remain unknown. There are various possible reasons 
for this. (1) Factors other than the currently analyzed blood factors; (2) Involvement of 
not one but multiple factors (Genetic, immunological or circulatory factors etc.); and (3) 
Caused by a combination of such factors (e.g., glomerular epithelial cell factor + 
immunological factor, T cell factor + B cell factor,1st hit + 2nd hit, etc.)

Considering these problems, carrying out comprehensive analysis, such as analysis 
of genome, epigenome, proteome, and transcriptome using a large cohort will be 
essential for future studies. Additionally, clarifying the genetic background of patients 
with a familial history may provide an opportunity to approach the more common 
cause of idiopathic INS.

CONCLUSION
There is no doubt that some vascular hyperpermeability factor is involved in the 
incidence of proteinuria in INS. However, no etiological molecule has been identified 
in INS as a factor for increasing the permeability of renal glomerular capillaries with 
reproducibility and clinical consistency.

In addition, since the onset is sometimes observed in the family, there is high 
incidence of INS in East Asian children[2] and there is the association of SSNS in 
childhood in Japan with the HLA-DR DQ region[51], it is highly possible that some 
genetic factors are involved in the onset of NS.

In our opinion, INS is a multifactorial disease in which immunological stimuli, 
trigger the production of substances that impair podocytes, resulting in the 
dysfunction of the slit membrane and causing proteinuria.
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Abstract
BACKGROUND 
Lemierre's syndrome is a disease that causes anaerobic sepsis, internal jugular 
vein thrombosis, and septic embolism in the lungs and other organs after acute 
oropharyngeal infection. It was named after André-Alfred Lemierre in 1936.

CASE SUMMARY 
Here, we have reported a case of Lemierre’s syndrome in a 56-year-old female 
patient who presented with a sore throat. The patient had septic shock, had not 
voided, and had severe hyperglycemia at the time of her visit. Imaging tests 
revealed bilateral pneumonia, pleural effusion, pulmonary embolism, and renal 
vein thrombosis. The patient was admitted to the intensive care unit and placed 
on mechanical ventilation due to acute respiratory distress syndrome. Continuous 
renal replacement therapy was administered to treat renal failure with anuria. 
Klebsiella pneumoniae was cultured from blood and sputum samples. After 
reviewing various results, the patient was ultimately diagnosed with Lemierre’s 
syndrome. The patient was treated with appropriate antibiotics and thrombolytic 
agents. She was discharged from the hospital after recovery.

CONCLUSION 
Lemierre’s syndrome is associated with a high mortality rate. Therefore, clinicians 
should be familiar with the signs and symptoms of this disease as well as the 
preemptive examinations, procedures, and treatments.

Key Words: Lemierre's syndrome; Klebsiella pneumoniae; Diabetes Mellitus; Pulmonary 
embolism; Septic pneumonia; Case report
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Core Tip: Lemierre’s syndrome is mostly caused by Fusobacterium. However, we 
present a rare case of Lemierre’s syndrome caused by Klebsiella pneumoniae in a 
patient with poor glycemic control. Uncommon in Lemierre’s syndrome, renal vein 
thrombosis and acute kidney injury occurred, continuous renal replacement therapy 
was performed, and mechanical ventilation was performed for serious pulmonary 
complications. The incidence of Lemierre's syndrome decreased after antibiotics were 
developed. However, when Lemierre’s syndrome occurs, the mortality rate from its 
complications is high, so we want to emphasize that patients with systemic symptoms 
accompanied by fever and sore throat should be suspicious of Lemierre's syndrome.
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INTRODUCTION
Lemierre’ syndrome, also known as postanginal sepsis, was first named in 1936 after 
the French microbiologist André-Alfred Lemierre. This syndrome is characterized by 
anaerobic sepsis and blood clots in the internal jugular vein (IJV) after acute 
oropharyngeal infection. It also causes septic embolism in the lungs and other organs
[1].

Lemierre’s syndrome is typically caused by Fusobacterium necrophorum, which is a 
part of the normal flora of the oropharynx. However, the recent development of 
various antibiotics and advancements in medical care have led to diversified and 
antibiotic-resistant strains.

Therefore, after referring to the current literature, we have reported a single case of 
Lemierre’s syndrome caused by Klebsiella pneumoniae (K. pneumoniae). In accordance 
with the course of this disease, pulmonary embolism, occurring after oropharyngeal 
infection, developed into acute respiratory distress syndrome.

CASE PRESENTATION
Chief complaints
A 56-year-old female patient presented to the emergency department of our institution 
with sore throat, dyspnea, abdominal pain, and diarrhea.

History of present illness
The patient was unable to eat due to a sore throat and had been unable to take her 
diabetes medication for 5 d prior to the visit.

Subsequently, the patient visited the hospital with abdominal pain, diarrhea, and 
shortness of breath.

History of past illness
The patient had been prescribed medication for diabetes and hypertension 2 years 
previously. She also had a history of a canceled surgery for chronic right-sided otitis 
media.

Personal and family history
The patient had diabetes, hypertension, and chronic otitis media.

Physical examination
At the time of admission, the patient’s blood pressure, pulse rate, respiratory rate, 
body temperature, and oxygen saturation level were 11.3/7.8 kPa, 104, 22, 36 °C, and 
90%, respectively. The patient was conscious. Swelling and redness were observed in 
the left neck and both tonsils. Rales were auscultated throughout the chest. 
Auscultation of the abdomen revealed a normoactive bowel sound with no tenderness.

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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No urine was produced after catheter insertion.

Laboratory examinations
Blood tests revealed an evaluated white blood cell count (16.47 × 103/µL), anemia 
(hemoglobin level, 7.2 g/dL; hematocrit level, 24.4%), renal failure (blood urea 
nitrogen, 78.8 mg/dL; creatinine level, 4.22 mg/dL). The patient was hyperglycemic, 
with a glucose level of 32.6 mmol/L. The patient had uncontrolled diabetes, with a 
glycated hemoglobin level of 11%. The C-reactive protein level was also elevated at 
207.58 mg/dL. An arterial blood gas test revealed acidosis of pH 7.27. Additionally, a 
pCO2 level of 25 mmHg, a pO2 level of 83 mmHg, and a bicarbonate level of 11.5 
mEq/L indicated metabolic acidosis.

The anion gap was 21.5 mEq/L, and the serum lactate level was 1.8 mmol/L. 
Therefore, a provisional diagnosis of lactic acidosis was established. Urine ketone was 
present in trace amounts. Spot urine microalbumin/creatinine ratio was 123.6 
mg/gCr.

Imaging examinations
Chest radiography showed multiple patchy infiltrations in both lungs (Figure 1).

Chest computed tomography (CT) revealed peribronchial consolidation and 
ground-glass opacity with cavitary nodules in both lungs. Pulmonary thromboem-
bolism (PTE) in the segmental and subsegmental pulmonary arteries of the right lower 
lobe was suspected (Figure 2).

Abdominal computed tomography showed extensive thrombosis in the left renal 
vein, extending to partial thrombosis in the suprarenal inferior vena cava (IVC).

A neck angio CT was performed on the third day to assess left neck swelling. A 13 
mm × 10 mm nodular lesion was observed on the left parotid gland (Figure 3).

Further diagnostic work-up
For further evaluation, blood, sputum, and urine cultures, hypercoagulability test 
were performed.

The hypercoagulability test showed decreased protein S activity and less free 
protein S antigen but normal total protein S antigen, protein C activity, and protein C 
antigen. The von Willebrand factor and factor V Leiden were normal, and lupus anti-
coagulant level was elevated. However, anticardiolipin and anti-β2 glycoprotein-1 
antibodies were absent.

Additionally, the following findings were noted: prothrombin time, 14.5 s; antith-
rombin III, 72.1; D-dimer, 2.01; and fibrinogen, 926.1. These results did not meet the 
diagnostic criteria for disseminated intravascular coagulation.

On the fourth day of hospitalization, as pneumonia was worsening, sputum 
analysis was performed using bronchoalveolar lavage.

A fine-needle aspiration biopsy of the nodule on the left parotid gland was 
performed on day 14. The nodule was found on neck angio CT. Biopsy results 
indicated that the nodule consisted of inflammatory cells. Although there was a 
possibility of cervical lymphadenopathy, the mass was not removed and was closely 
observed.

The patient had a history of discontinued treatment for chronic right-sided otitis 
media. Therefore, she underwent otoscopy after being transferred to a general hospital 
unit. Chronic otitis media with cholesteatoma was suspected. An additional temporal 
bone was identified on CT. The focal bone defect was suspected to be the right tegmen 
mastoideum. Therefore, surgical therapy was considered after the acute inflammation 
was controlled.

Follow-up chest CT was performed as there was no further clinical improvement in 
pneumonia. Progression of invasive aspergillosis was observed.

Microbiological identification of the causative agent
K. pneumoniae was identified on culture of blood samples taken immediately after 
admission and on culture of sputum samples extracted via bronchoscopy. Except for 
piperacillin and ampicillin, the bacteria were susceptible to other antibiotics.

Aspergillus niger (A. niger) was identified on a follow-up sputum culture. The (1-3)-β-
D-glucan assay confirmed the presence of invasive Aspergillus.
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Figure 1  Chest radiography showed multiple patchy infiltrations at both lungs.

Figure 2  Computed tomography scan of the chest showed suspicious pulmonary thromembolism in segmental and subsegmental 
pulmonary arteries of right lower lobe (orange arrow).

FINAL DIAGNOSIS
The final diagnosis was Lemierre’s syndrome due to K. pneumoniae.

TREATMENT
After admission, the patient was transferred to the intensive care unit to undergo 
treatment for anuria and metabolic acidosis. After continuous renal replacement 
therapy and administration of a large amount of fluid, the patient started to urinate on 
the first day of hospitalization. Acute renal failure improved on the second day. 
However, oxygen demand gradually increased, and pneumonia was aggravated in 
both lungs on chest radiographs. Therefore, mechanical ventilation was initiated.

Piperacillin-tazobactam and levofloxacin were used as empirical antibiotics. They 
were used to simultaneously manage Streptococcus pneumoniae and Pseudomonas spp., 
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Figure 3  Computed tomography scan of the neck showed the 13 mm × 10 mm size nodular lesion (orange arrow) in left parotid gland.

the causative agents of severe community-acquired pneumonia. These antibiotics were 
selected based on previous reports of fluoroquinolone combination therapy leading to 
a better prognosis than β-lactam alone in severe cases[2].

Enoxaparin, a low-molecular-weight heparin, was initiated on the second day to 
treat the pulmonary thromboembolism.

However, the patient’s clinical condition further deteriorated due to pneumonia. 
Therefore, on the fourth day, the initial antibiotics were replaced with vancomycin and 
meropenem.

As there was no improvement in pneumonia after the antibiotics were changed, 
mechanical ventilation was continued. On the ninth day, vancomycin was discon-
tinued due to a lack of evidence of a gram-positive bacterial infection. Amikacin was 
added to meropenem. On day 13, improvement was seen in pneumonia. The patient’s 
oxygen demand decreased, and therefore, she was weaned from mechanical 
respiratory support. She was subsequently transferred to a general hospital unit.

Moreover, A. niger was isolated in a follow-up sputum culture. Therefore, we 
started administering amphotericin following consultation with the infectious disease 
medical staff.

Subsequently, the patient recovered gradually, amphotericin was switched to 
itraconazole and low-molecular-weight heparin was switched to apixaban. She was 
ultimately discharged from the hospital.

OUTCOME AND FOLLOW-UP
Leukocytosis occurred on the 12th day after discharge; therefore, the patient was re-
hospitalized. There was suspicion of an abscess in the right lung field. An air-fluid 
level was identified (Figure 4).

A. niger was not identified in the follow-up culture performed after hospitalization. 
K. pneumoniae susceptible to third-generation cephalosporins was identified, consistent 
with the initial culture result. Therefore, during hospitalization, piperacillin-
tazobactam was administered. The patient was discharged with a prescription of 
cefditoren and itraconazole.

Itraconazole was discontinued after 3 mo. The lung lesion with bilateral ground-
glass opacity on radiography did not improve. Therefore, the patient continued taking 
cefditoren and received continuous respiratory rehabilitation treatment. To reduce the 
risk of PTE recurrence, apixaban was administered for ≥ 6 mo.

DISCUSSION
In 1989, Sinave et al[3] summarized the key symptoms of Lemierre’s syndrome and 
suggested the following diagnostic criteria: (1) Primary infection of the oropharynx; (2) 
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Figure 4  Chest radiography showed large cavitary consolidation with internal air-fluid level in right upper and middle lobes.

Sepsis with at least one bacteria identified on a blood culture; (3) Clinical or imaging 
findings of IJV thrombosis; and (4) At least one metastasis.

Lemierre’s syndrome was a common disease until the development of antibiotics. 
However, recently it has become a rare disease and has been called the “forgotten 
disease”[1].

This disease occurs mainly in adolescents and young adults. However, its cause has 
not been clearly established.

In young adults, pharyngitis symptoms are observed during the initial stages of the 
disease. In contrast, elderly individuals manifest early metastatic complications, such 
as pneumonia and brain abscesses. This suggests that infection of the IJV causes 
complications in other organs through blood circulation. In recent studies, 7% cases of 
Lemierre’s syndrome progressed to septic shock[4]. Pulmonary impairment was the 
most common metastatic complication, leading to pneumonia, pulmonary embolism, 
pleural effusion, pneumothorax, and thoracic empyema. A total of 10% cases required 
mechanical respiratory assistance for acute respiratory distress syndrome. This was 
the case in our study.

Less than 5% patients receive renal replacement therapy for acute renal failure[4]. 
However, for 2 d, our patient underwent continuous renal replacement therapy for 
acute kidney injury caused by septic shock and renal vein thrombosis.

Lemierre’s syndrome is primarily caused by Fusobacteria, which are a part of the 
normal flora in the oropharynx, genitourinary tract, and gastrointestinal tract. Among 
the 13 species of Fusobacterium, F. necrophrum is the most common pathogen[5]. In 
other case reports, Bacteroides spp., Streptococcus spp., Enterococcus spp., Peptostre-
ptococci, and Proteus mirabilis have been identified as pathogens.

In the present case, K. pneumoniae was the causative pathogen. However, K. 
pneumoniae has rarely been reported as a cause of Lemierre’s syndrome in previous 
case reports. Based on some retrospective studies, only 2.5% cases have been reported 
to be caused by K. pneumoniae[6].

In a study published in 2015, eight of nine patients with Lemierre’s syndrome 
associated with K. pneumoniae had poorly controlled diabetes[7].

Similarly, our patient had poor blood glucose control with a glycated hemoglobin 
level of 11% and a serum glucose level of 32.6 mmol/L at the time of admission.

Patients with type 2 diabetes mellitus are vulnerable to infection because of the 
decreased activity of neutrophils[8]. The underlying mechanism of the increased 
susceptibility of patients with type 2 diabetes mellitus to K. pneumoniae is as follows. 
The hypermucoviscosity phenotype of K. pneumoniae, especially K1/K2 isolates, is 
resistant to phagocytosis[9]. Poor glycemic control significantly reduces phagocytosis 
of virulent K1/K2 K. pneumoniae. Additionally, Lin et al[10] showed that older patients 
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with poor glycemic control had decreased phagocytosis activity.
Beta-lactamase-resistant beta-lactam antibiotics are recommended for typical 

Lemierre’s syndrome. Beta-lactamase produced by F. necrophorum may lead to therapy 
failure[7].

Therefore, treatment should be changed from empirical antibiotics to targeted 
antibiotics based on the results of the blood culture and antibiotic susceptibility 
analysis.

If K. pneumoniae is the likely cause of Lemierre’s syndrome, drugs that can also treat 
gram-negative aerobic rods should be used until the causative pathogen is identified. 
Additionally, the appropriate drug must be selected based on the susceptibility data of 
K. pneumoniae in the region and the risk of an Extended-spectrum beta-lactamases-
producing strain[11,12].

In our patient, IJV thrombosis was not observed. Instead, pulmonary thromboem-
bolism, partial thrombosis of the suprarenal IVC, and extensive thrombosis of the left 
renal vein were observed.

The hypercoagulability test results led to the suspicion of protein S deficiency. 
However, protein S deficiency is difficult to diagnose solely based on the results 
obtained once in the acute phase[13].

We have scheduled another test for the protein S deficiency diagnosis 3 mo later. 
Since prolonged prothrombin time and decreased antithrombin III levels are common 
in sepsis, the result was considered to be non-specific.

We compared the hypercoagulability properties of F. necrophorum and K. pneumoniae 
because they are related to the pathogenesis of Lemierre’s syndrome.

F. necrophorum produces a component of the cell surface called hemagglutinin, 
which forms thrombi[4]. Russo et al[14] have suggested that this is because K. 
pneumoniae causes more frequent metastatic spread in the K1/K2 group. Another 
possibility is increased capsule production in the hypervirulent type.

Although the hypothesis has not been tested, it appears that the mucoviscosity of 
the strain’s thick capsules persists in the bloodstream and causes greater aggregation 
of bacterial cells to form thrombi[14].

The role of anticoagulation for IJV thrombosis is controversial. As Lemierre’s 
syndrome has a low incidence rate, there is a lack of controlled investigations for 
anticoagulation treatment.

Also, anticoagulation medication was introduced to prevent respiratory failure and 
propagation of the septic thrombus to the intracranial sinuses.

There is no clear evidence to outline the appropriate duration of anticoagulation 
treatment. Previously reported findings suggest a duration of 4 wk to 6 mo[15]. 
Schubert et al[16] analyzed 23 patients diagnosed with septic thrombosis of the IJV 
from 1998 to 2010. The primary infection site in 11 patients was the middle ear[16]. 
Otitis is a common disease. However, it can progress to systematic infection by 
forming septic thromboses in the IJV. Therefore, source control is fundamental even if 
it is a local infection.

In addition, the incidence rate of Lemierre’s syndrome is increasing again in recent 
years. The development of various antibiotics and advancements in medical care have 
led to the emergence of various new pathogenic strains and multidrug-resistant 
strains. The syndrome may be fatal as it is accompanied by numerous systemic 
complications. Therefore, Lemierre’s syndrome must be suspected in cases of fever or 
throat pain associated with infections of the oropharynx and middle ear. Preemptive 
examinations, consultation with other specialists, appropriate procedures, and 
targeted treatments are essential.

CONCLUSION
The primary site of infection in Lemierre’s syndrome is the oropharynx. 
Oropharyngeal infections cause IJV thrombosis and anaerobic sepsis. The disease 
typically manifests as sore throat, a symptom of oropharyngeal infection. This can lead 
to metastatic complications and death. Lemierre’s syndrome is a rare disease[17]. 
Therefore, it is difficult for doctors with no experience with this syndrome to suspect it
[5]. In addition, symptoms of oropharyngeal infection are often resolved when the 
patient visits the hospital. This disease should be considered in the differential 
diagnosis when systemic complications caused by upper respiratory tract infection are 
suspected.

Atypical Lemierre’s syndrome should be suspected in cases in which a typical 
causative strain is not identified or cases of thromboembolism at a site other than the 
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IJV thrombosis. After diagnosis, it is essential to assess whether surgery or 
intervention is necessary through active consultation with other specialists. 
Appropriate antibiotic treatment according to the causative strain must be initiated.
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