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Abstract
Stone formation is induced by an increased level of urine crystallization 
promoters and reduced levels of its inhibitors. Crystallization inhibitors include 
citrate, magnesium, zinc, and organic compounds such as glycosaminoglycans. In 
the urine, there are various proteins, such as uromodulin (Tamm-Horsfall 
protein), calgranulin, osteopontin, bikunin, and nephrocalcin, that are present in 
the stone matrix. The presence of several carboxyl groups in these macromo-
lecules reduces calcium oxalate monohydrate crystal adhesion to the urinary 
epithelium and could potentially protect against lithiasis. Proteins are the most 
abundant component of kidney stone matrix, and their presence may reflect the 
process of stone formation. Many recent studies have explored the proteomics of 
urinary stones. Among the stone matrix proteins, the most frequently identified 
were uromodulin, S100 proteins (calgranulins A and B), osteopontin, and several 
other proteins typically engaged in inflammation and immune response. The 
normal level and structure of these macromolecules may constitute protection 
against calcium salt formation. Paradoxically, most of them may act as both 
promoters and inhibitors depending on circumstances. Many of these proteins 
have other functions in modulating oxidative stress, immune function, and 
inflammation that could also influence stone formation. Yet, the role of these 
kidney stone matrix proteins needs to be established through more studies 
comparing urinary stone proteomics between stone formers and non-stone 
formers.
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Core Tip: Several urinary proteins have been found in kidney stone matrix. In vitro and in vivo studies have 
shown that they have an important role in various processes of calcium oxalate crystallization. Many of 
them have other functions in modulating oxidative stress, immune response, and inflammation that could 
also influence stone formation. Yet, the exact role of these kidney stone matrix proteins needs to be 
established through more studies comparing urinary stone proteomics between stone formers and non-
stone formers.
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INTRODUCTION
Healthy people regularly excrete calcium oxalate crystals in urine. Calcium oxalate stones are formed 
only in a small part of the population[1]. Stones develop from crystals that form in the urine, which 
contains a mixture of ions, salts, macromolecules, and metabolites[2]. Crystals undergo different stages 
(nucleation, growth, and aggregation) until they produce a stone.

Induction of stone formation is produced by an increased level of crystallization promoters in the 
urine and reduced levels of its inhibitors[3]. Crystallization promoters are those substances that may 
constitute the crystals by which stones are formed, in particular calcium and oxalate. Idiopathic 
hypercalciuria is probably the principal condition underlying stone formation that produces increased 
levels of urinary calcium[4]. Crystallization inhibitors include citrate, magnesium, zinc, and organic 
compounds produced by renal tubular epithelial cells as glycosaminoglycans. Several proteins, such as 
uromodulin [UMOD; Tamm-Horsfall protein (THP)], calgranulin, osteopontin (OPN), bikunin, and 
nephrocalcin (NC), are present in the urine[5]. These proteins that are frequently found in the kidney 
stone matrix will be the subject of this review (Table 1).

MACROMOLECULES AND CRYSTALLIZATION 
We do not know the exact role of many macromolecules present in urine in calcium salt crystallization. 
The normal level and structure of these macromolecules may constitute protection against formation of 
large, intratubular precipitates of calcium salts. Paradoxically, most of them may act as both promoters 
and inhibitors depending on circumstances (for example urine pH).

Back in the 1970's, Gill et al[7] showed an inhibitory effect of macromolecules from human urine on 
crystallization of calcium oxalate[6]. The presence of several carboxyl groups in these macromolecules 
reduces calcium oxalate monohydrate crystal adhesion to the urinary epithelium[7]. The findings 
showed that macromolecules could potentially protect against lithiasis and that affected patients with 
lithiasis may have a different composition from that in healthy subjects.

Among macromolecules, proteins are present in all stones in a slight proportion, commonly < 5%. 
Several proteins rich in the urine proteome, have been examined in relation to their possible role in renal 
lithiasis. The most abundant component of kidney stone matrix are proteins, and their presence 
indirectly shows the process of stone formation. Urinary stones proteomics has been analyzed in several 
studies[5,8-10]. In a recent study, Kaneko et al[11] conducted a bioinformatic research on the proteomics 
of urinary stones to identify the most frequent stone matrix proteins present and afterwards performed 
immunohistochemistry to detect the top five of those matrix proteins expressed in renal tissue. Among 
the stone matrix proteins, the most frequently identified were UMOD, S100 proteins (calgranulins A and 
B), OPN, and several other proteins that participate in inflammation and immune response. Several 
proteins determined by immunohistochemistry in kidney stones showed increased expression, such as 
S100A8, S100A9 (calgranulins A and B), and OPN, while others such as UMOD decreased. Proteomic 
analysis of exosomes from kidney stone patients also showed higher expression of S100 proteins[12] 
while they were difficult to detect in urine.

Uromodulin
UMOD, originally known as THP, is a kidney-specific protein synthesized at the thick ascending limb of 
the loop of Henle[13,14]. Nearly 100 mg of this protein is excreted daily, and it is the most abundant of 
all urinary proteins. UMOD is a complex protein with several domains including a zona pellucida 
domain, essential for protein polymerization, and a special anchoring domain[15]. It is composed of 640 
amino acids with 48 cysteine residues that form 24 disulphide bonds and glycosylation accounts for 
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Table 1 Kidney stone matrix proteins as modulators of crystallization

Matrix protein 
name Primary function Celular origin Secondary function Mol. weight 

(KDal)

Uromodulin Inhibits crystal aggregation Epithelial cells of the TALH Reduces local oxidative stress 87

Calgranulins Inhibit crystal growth and aggregation Cells of myeloid origin Participate in innate 
immuneresponse

10.9-13.2

Osteopontin Inhibits/Enhances crystal formation 
and aggregation 

Distal tubular epithelial cells Regulator of immune response 14

Bikunin Inhibits crystal nucleation, growth, and 
aggregation 

Proximal tubules and the thin 
descending segment 

Inhibition of the action of many 
serine proteinases

39

Nephrocalcin Inhibit crystal nucleation, growth, and 
aggregation

Proximal tubule epithelial cells and 
TALH

None 18

TALH: Thick ascending limb of Henle.

nearly 30% of its molecular weight. UMOD monomers are produced by epithelial cells present in the 
thick ascending limb of the Henle loop and then transported and secreted at both cell surfaces. At the 
apical surface, it is cleaved and released to the tubular fluid. Polymerization occurs depending on the 
physiological conditions in the urine. Putative functions of this protein include the modulation of salt 
and water transport, prevention of kidney stone formation by binding calcium oxalate crystals, and 
defense against urinary tract infection[15]. The role of UMOD in health and disease has been provided 
by the study of genetic diseases caused by mutations in the UMOD gene[16].

Measurements of THP in kidney stone formers and healthy subjects have shown decreased urinary 
THP in stone formers[17,18]. Urinary excretion of calcium and oxalate ions positively correlates with 
urinary THP in controls but not in stone formers. Only calcium stone formers show a reduction in THP. 
More recently, Fraser et al[19] studied UMOD level in urine of children with stone disease. They did not 
observe differences in concentration of the protein excreted between the group with symptomatic 
lithiasis, the group endangered with lithiasis, and the control group. In another study in children, those 
with lithiasis had increased UMOD excretion[20]. Similarly, increased excretion of this protein, with its 
different composition at the same time, was observed by Jaggi et al[21] in urine of affected adults with 
high intensity of stone formation. Possible determinants of urinary THP excretion in kidney stone 
formers and control subjects were studied by Glauser et al[22], assessing 24-h THP excretion and 
expressing results in the form of THP/creatinine ratio. They found that in both controls and stone 
formers, urinary THP excretion was related to body size, renal function, and urinary citrate excretion, 
whereas THP excretion was not correlated with age, urine volume, or dietary habits (dietary calcium 
supply or protein consumption). An increase in THP in response to increasing urinary calcium and 
oxalate concentrations was seen only in controls, whereas this self-protective mechanism was absent in 
stone formers. Therefore, the different publications presenting quantitative differences in UMOD 
excretion did not have the same findings, which may indicate a random nature of the differences.

Other authors have found that UMOD structure is different between persons with and without 
kidney stones. Stone formers had lower protein content (32%), sialic acid content (27%), and amino 
sugar content (nearly 20%)[23]. Viswanathan et al[24] have shown that UMOD contains less sialic acid in 
patients with lithiasis, which leads to reduction of its negative charge. This form of protein promotes 
aggregation of calcium oxalate monohydrate, whereas the same protein prevents aggregation in healthy 
subjects with a normal content of sialic residues. Thus, not only UMOD levels but also differences in 
THP biochemical structure may influence the development of calcium nephrolithiasis.

To better understand the in vivo role of THP in kidney stone formation, Mo et al[25] inactivated the 
THP gene[25]. The resultant THP-/- mice had no THP expression in the kidney. Intratubular crystal 
aggregates were seen in the collecting ducts at the inner medulla and renal papillae in these mice, while 
wild type littermates had no crystal deposition in the kidney. This papillary interstitial calcinosis of the 
THP-/- mice is very similar to Randall's plaques seen in calcium oxalate stone formers, but ureteral stones 
have been found in this model[26].

Reactive oxygen species (ROS) and inflammation have a critical role in the pathogenesis of kidney 
stones[27]. ROS production increases when renal tubular cells are exposed to different type of crystals, 
leading to epithelial cell injury[28] and release of inflammatory mediators[29]. THP-/- mouse kidneys 
have increased ROS accumulation in the kidney, particularly in the S3 segment of the proximal tubules
[30]. Targeted proteomic analysis on S3 proximal epithelial cells in these mice showed that free radical 
scavenging proteins were at the top of the proteins that were differentially downregulated in THP-/- 

mice[30]. Thus, it is possible that one of the mechanisms by which UMOD prevents renal lithiasis is 
through reducing local oxidative stress.
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S100 proteins (calgranulins)
S100 proteins constitute a family of calcium-binding proteins present in the cytosol, characterized by 
their dissolution in 100% ammonium sulphate[31]. Several of them have been classified as dan-
ger–associated molecular patterns (DAMPs) of endogenous origin, including S100A7[32], S100A8, 
S100A9, and S100A12[31,33]. DAMPs, also known as alarmins, are a group of endogenous intracellular 
molecules characterized by multiple functions, and they are generally released as inflammatory signal 
mediators after cell death[34].

S100A8 and S100A9 are also known as calgranulins A and B, respectively. They are constitutively 
expressed and produced by cells of myeloid origin, such as neutrophils and monocytes[35], and 
dendritic cells[36]. In other cell types, they can be induced upon activation. S100A8 and S100A9 
constitute nearly half of all cytosolic proteins in neutrophils, but only 1% in monocytes[35]. S100A8 and 
S100A9 in the presence of zinc and calcium ions form a heterodimer called calprotectin that promotes 
phagocyte migration by polymerization and stabilization of tubulin microfilaments in a calcium 
dependent manner[37].

Toll-like receptor 4 (TLR4) and RAGE (the receptor for advanced glycation end products) are thought 
to be the innate immune receptors of calgranulin[38,39]. Upon binding, TLR4 signaling is triggered, 
which is mediated by MyD88, thus leading to NF-kB activation and secretion of pro-inflammatory 
cytokines[40,41]. Interaction of calgranulin with TLR4 has been shown to be involved in the path-
ogenesis of autoimmune diseases, systemic infections, malignancy, and acute coronary syndrome[42-
45].

Momohara et al[46] showed the ability of calgranulins to inhibit crystallization, aggregation, and 
adhesion to the urinary epithelium of calcium oxalate monohydrate crystals. Mushtaq et al[47] also 
observed the presence of calgranulin in CaOx deposits but it promoted crystal aggregation. Bergsland et 
al[48] observed that the concentration and composition of calgranulin differed in subjects with a family 
history of urinary tract lithiasis in comparison with a healthy population. In children with stone disease, 
no statistically significant difference in calgranulin urine concentrations was observed between the 
study and control groups.

Osteopontin
OPN, also known as secreted phosphoprotein 1 (SPP-1), is a highly phosphorylated, strongly anionic 
glycophosphoprotein, with a molecular weight that ranges between 41 and 75 kDa, composed of 314 
amino acids[49,50]. OPN was originally discovered in bone, as a member of the small integrin-binding 
ligand N-linked glycoprotein (SIBLING) family of proteins, implicated in bone mineralization and 
remodeling[51]. OPN suffers multiple post-translational changes that modify the OPN responses in 
several tissues[50,52].

In addition to bone metabolism, OPN can regulate the immune response through interactions with 
multiple surface proteins localized in its target cells: Macrophages, dendritic cells, and T cells. Indeed, 
this protein has chemotactic properties on these cells[50]. Integrin receptor binding to OPN activates the 
intracellular nuclear factor kappa B (NF-kB)[53]. OPN is also able to stimulate T-cell chemotaxis and 
adhesion, and it inhibits interleukin (IL)-10 release by macrophages[53]. In the kidney, OPN is produced 
and secreted into the urine by distal tubular renal epithelial cells, becoming a normal macromolecular 
constituent of the kidney[54].

Multiple observations support the concept that OPN may play an important role in modulating renal 
stone formation, such as: (1) OPN is one of the protein components of renal stone matrix[11]; (2) OPN 
can regulate the renal calcification process[55]; (3) OPN renal expression is altered in hyperoxaluric rats 
and urinary levels are changed in human subjects with urolithiasis[56]; (4) In vitro cell culture based 
studies and in vivo OPN knockout animal models suggest an important role of OPN in various phases of 
renal stone formation[57-59]; and (5) OPN polymorphisms have shown association with urolithiasis in 
different ethnic groups in candidate gene association studies[60,61].

Bikunin 
Bikunin is a small chondroitin sulfate proteoglycan with a single glycosaminoglycan chain. It is the light 
chain of inter-alpha-inhibitor known for its inhibition of the action of many serine proteinases like 
trypsin and chymotrypsin. It exhibits a strong calcium oxalate crystal nucleation and aggregation 
inhibitory activity[62]. Immunohistochemical studies have shown that bikunin is localized in proximal 
tubules and the thin descending segment of the loop of Henle. It is absent in the glomeruli, distal 
tubules, or collecting ducts[63]. In subjects with lithiasis, bikunin does not prevent crystallization so well 
as in healthy subjects[64]. In a study by Médétognon-Benissan et al[65], strong inhibitory effect of 
bikunin on CaOx crystallization was confirmed by in vitro studies. On the other hand, a comparison of 
this protein in urine of adults with calcium oxalate lithiasis with urine of healthy subjects by means of 
the ELISA method, confirmed that bikunin level was 50% lower in affected subjects. On the contrary, a 
statistically significantly higher excretion of this protein in urine was observed in children with lithiasis
[48].
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Nephrocalcin 
NC was the first urinary protein found to have crystal inhibitory properties[66]. This is a 14-kDa 
glycoprotein. It is a very potent inhibitor, compared to THP and OPN, the two other inhibitors, and is 
probably of major importance in protecting the kidneys against urinary supersaturation. NC contains γ-
carboxyglutamic acid and has been shown to inhibit crystal growth, nucleation, and aggregation. The 
absence of γ-carboxyglutamic acid in the NC molecule from stone forming patients reduces its ability to 
inhibit nucleation and growth of calcium oxalate crystals[66,67].

To date, four isoforms of NC in urine have been reported. NC A and B isoforms are strong inhibitors, 
and C and D isoforms act as promoters for kidney stones[68].

A fifth NC was identified, called NC-PreA found in patients with renal cell carcinoma and in calcium 
oxalate renal extractions. In a recent study in children, Noyan et al[69] included 41 boys and girls with 
urinary stones and 25 age- and sex-matched healthy controls. The NC-PreA/creatinine ratio is 
significantly higher in patients with renal stones than in controls. This finding observed in stone-
forming patients indicates that this ratio, too, may also be an important stimulatory molecule for urinary 
stone disease.

CONCLUSION
Despite many studies that have explored the proteomics of urinary stones, we still do not know the 
exact role of many of these matrix proteins found in kidney stones in calcium salt crystallization. The 
invariable presence of proteins in stones matrix raises the possibility that they play a role in stone 
formation, like the role that proteins have in healthy biomineralization. Are they protective molecules 
that were overwhelmed by mineral supersaturation? Can mineralization be promoted by these proteins? 
Are they merely a response to the disease process, including oxidative stress and inflammation? More 
studies are needed comparing urinary stone proteomics between stone formers and non-stone formers 
to elucidate the role of stone matrix proteins in stone formation.
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Abstract
Onco-Nephrology is an emerging subspecialty of Nephrology that focuses on a 
broad spectrum of renal disorders that can arise in patients with cancer. It 
encompasses acute kidney injury (AKI), complex fluid, electrolyte, and acid-base 
disorders, as well as chronic kidney disease caused or exacerbated by cancer 
and/or its treatment. In many such scenarios including AKI and hyponatremia, 
objective evaluation of hemodynamics is vital for appropriate management. Point 
of care ultrasonography (POCUS) is a limited ultrasound exam performed at the 
bedside and interpreted by the treating physician intended to answer focused 
clinical questions and guide therapy. Compared to conventional physical 
examination, POCUS offers substantially higher diagnostic accuracy for various 
structural and hemodynamic derangements. In this narrative review, we provide 
an overview of the utility of POCUS enhanced physical examination for the 
Onconephrologist supported by the current evidence and our experience-based 
opinion.

Key Words: Point of care ultrasonography; Onco-nephrology; Acute kidney injury; 
Hyponatremia; Volume assessment
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Core Tip: Point of care ultrasonography is a valuable adjunct to physical examination in 
patients with cancer and renal dysfunction or fluid/electrolyte disorders. It provides 
better diagnostic accuracy than conventional physical examination. Proper training is 
the key to effectively integrate this diagnostic tool into routine clinical practice.
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INTRODUCTION
Point of care ultrasonography (POCUS) is a focused ultrasound examination performed by the clinician 
at the bedside to guide patient management[1]. Recent years have witnessed a swift uptake of POCUS 
in almost all the clinical specialties and several medical schools have started teaching this skill to their 
students. According to a 2020 survey, 57% of the responding United States medical schools (69 out of 
122) integrated POCUS instruction into undergraduate medical curriculum[2]. Once confined to 
procedural guidance such as dialysis catheter placement, the scope of POCUS in nephrology has now 
greatly expanded to include a wide array of diagnostic applications ranging from kidney ultrasound to 
focused echocardiography[3,4]. Some nephrology fellowship programs have even incorporated detailed 
hemodynamic monitoring using advanced Doppler techniques into their curricula[5]. Figure 1 
illustrates the sonographic applications that can be performed by nephrologists trained in POCUS. We 
have also seen in these past few years the emergence of Onco-Nephrology as a subspecialty within 
Nephrology[6,7]. This field focuses on management of kidney disorders in patients who have an active 
malignancy and are undergoing treatment for this. The breadth of kidney disorders seen and addressed 
in Onco-Nephrology practice includes acute kidney injury, hypertension, proteinuria, chronic kidney 
disease, fluid and electrolyte disorders to name a few. This article seeks to discuss the role and potential 
of POCUS in positively impacting the clinical practice of Onco-Nephrology by providing a few repres-
entative clinical scenarios.

THE RATIONALE FOR POCUS ENHANCED PHYSICAL EXAMINATION
Unlike a consultative ultrasound study which is expected to image an entire area in question (e.g., 
abdominal ultrasound) with documentation of predefined measurements and parameters, POCUS is 
intended to answer focused questions that either narrow the differential diagnosis or provide a final 
diagnosis when interpreted in conjunction with history and physical examination by the treating 
physician. Moreover, it allows monitoring of a particular parameter in response to therapy without 
having to repeat the whole comprehensive study. For example, a nephrologist can follow a patient with 
uremic pericardial effusion in the outpatient dialysis unit with serial POCUS exams thereby avoiding 
repeated trips of the patient to the echocardiography laboratory. It is analogous to using a stethoscope (
point of care device) to listen to heart and lung sounds, which is why some authors describe POCUS as a 
fifth pillar of bedside physical examination in addition to inspection, palpation, percussion, and 
auscultation[8]. This raises the question why we need an enhancement to physical examination in the 
first place and does POCUS have better diagnostic accuracy. The diagnostic performance of conven-
tional physical examination is poor for several clinical questions that nephrologists deal with in day-to-
day practice. For example, in a study including 50 patients with severely reduced left ventricular 
ejection fraction, the combined sensitivity of rales, edema, and elevated jugular venous pressure (JVP) 
was only 58% to detect an elevated pulmonary capillary wedge pressure of > 22 mmHg[9]. Similarly, in 
another study including 58 non-edematous patients with serum sodium less than 130 mEq/L, clinical 
assessment was able to accurately identify only 47% of hypovolemic and 48% of euvolemic patients[10]. 
Likewise, in a meta-analysis of 22 studies, pooled sensitivities of orthopnea, peripheral edema, JVP, 
third heart sound and rales were only 50%, 51%, 39%, 13% and 60% respectively to diagnose congestive 
heart failure[11]. Further, there is no conventional physical examination parameter to answer focused 
questions requiring visualization of internal anatomy such as the presence or absence of hydro-
nephrosis, systemic venous congestion etc. POCUS aids in answering such questions at the bedside 
without having to wait for multiple consultative ultrasound studies and potentially avoiding 
unnecessary radiation. The diagnostic superiority of POCUS is well established in various clinical 
settings compared to conventional examination. For instance, in a study including 79 patients on 
hemodialysis, the sensitivity of lung crackles and peripheral edema was only 9% and 3% respectively to 
detect severe lung congestion found on lung POCUS[12]. In the context of critical illness, a study 
including 926 patients admitted to the intensive care unit found that 51% of those who had pulmonary 
edema on lung POCUS demonstrated normal auscultatory findings[13]. With respect to focused cardiac 
ultrasound, in a recent meta-analysis of 9 studies, the sensitivity of POCUS-assisted examination for 
diagnosing left ventricular dysfunction and valvular disease was found to be significantly higher 
compared to conventional assessment (84% vs 43%, and 71% vs 46% respectively)[14]. In addition, the 
utility of POCUS for rapid evaluation and management of patients with undifferentiated hypotension, 
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Figure 1 Scope of nephrology-related point of care ultrasonography. Organ-specific focused questions that can be answered by bedside 
ultrasonography. Those marked with asterisk (*) indicate advanced sonographic applications requiring a higher operator skill level/additional training. Figure reused 
from reference # 3 with kind permission of the American Society of Nephrology.

chest trauma and possible pericardial tamponade is well-recognized[15]. All these studies highlight the 
need for enhancing our bedside examination with POCUS. Furthermore, there are emerging data 
suggesting that POCUS enhances patient satisfaction and shared diagnostic understanding between 
patients and clinicians[16,17]. Even in developing countries and low-resource settings where one might 
expect slow adoption of technological advances due to cost issues, POCUS has shown to favorably 
impact clinical care. In fact, POCUS might be more beneficial in these scenarios to facilitate timely and 
accurate diagnosis as patients often present with advanced disease. For example, in a Tanzanian cohort 
of 55 hospitalized patients, a change in management plan was supported by POCUS findings in 53% 
cases leading to earlier initiation of appropriate treatment[18]. Similar findings were observed in a study 
from Sri Lanka where POCUS utilization in critically ill patients facilitated early diagnosis and/or 
interventions[19].

Below are a few situations commonly encountered in Onco-Nephrology practice where POCUS 
enhanced physical examination can provide valuable information.

CLINICAL SCENARIO 1: ACUTE KIDNEY INJURY IN CANCER
Acute kidney injury (AKI) is a frequent complication of either the underlying malignancy or its 
treatment and is an independent predictor of mortality in patients with cancer[20,21]. The incidence of 
AKI in a large Danish cohort of cancer patients was reported to be 17.5% at 1 year and 27% over the 
course of 5 years, which highlights the enormity of the problem[22]. Similarly, in a Chinese study, the 
incidence of AKI in hospitalized cancer patients was reported to be 7.5% (hospital acquired in 6% of the 
cases)[23]. The etiologies of AKI vary across solid organ and hematological malignancies as well as in 
patients undergoing stem cell transplantation. Hemodynamic AKI resulting from volume depletion is 
the predominant cause of AKI in patients with an underlying cancer[24] as they may develop nausea, 
vomiting or diarrhea as complication of cancer chemotherapy or due to the underlying cancer. Post 
renal obstructive etiology may be the driver of AKI in patients with genitourinary malignancies or 
locally invasive primary gynecological or gastrointestinal malignancies or metastatic disease[25]. 
Moreover, as a significant proportion of malignancies treated with radiotherapy are in the abdomen and 
pelvis, complications such as radiation-induced ureteral and urethral stenosis must be considered in the 
differential diagnosis of obstructive nephropathy in these patients[26]. Intrinsic renal injury may be 
mediated by nephrotoxic chemotherapy, paraproteins, glomerulopathies, contrast exposure, infiltration 
by the primary malignancy or progression of ischemic kidney injury[25].
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POCUS considerations
Renal sonography is frequently ordered as part of the initial diagnostic algorithm to rule out obstructive 
etiology, which is potentially reversible if treated promptly. Bedside POCUS can easily identify 
hydronephrosis and bladder masses that may be causing urinary obstruction[27]. POCUS can also help 
delineate intrinsic processes such as infiltrative diseases which may be arising secondary to lymphoma 
for instance[28]. The kidney size tends to be preserved or larger than expected in these cases with 
alterations noted in cortical echogenicity. Determination of kidney size and cortical echogenicity while 
keeping in context the clinical picture can help understand if the renal impairment appears to be a 
chronic vs. acute process and the realistic probability of renal recovery which can then impact the future 
diagnostic and therapeutic considerations for these patients[29]. We previously proposed SECONDS 
checklist for systematic interpretation of renal POCUS, which is helpful for novice users[30]. It stands for 
Size (renal length and thickness), Echogenicity (cortical brightness), Collecting system (obstruction), 
Outline (smooth vs irregular), Notable lesions (such as cysts and stones), Doppler (to distinguish 
between hydronephrosis and vasculature) and Surroundings (peri-nephric collections). Figure 2 
illustrates some of the pathologies seen on renal ultrasound in cancer patients. It is also important to 
evaluate urinary bladder by POCUS in any patient with AKI and/or oliguria to exclude etiologies such 
as obstructed Foley catheter or bladder outlet obstruction due to extrinsic compression. Moreover, 
automated bladder scanners cannot distinguish between pelvic ascites and urinary bladder, which may 
cause confusion in some cases where POCUS aids in correct diagnosis[31]. As hemodynamic AKI is the 
most frequent etiology of AKI in patients with cancer, the role of POCUS in this clinical scenario 
deserves a special mention and is discussed in more detail under volume management below.

CLINICAL SCENARIO 2: VOLUME ASSESSMENT AND MANAGEMENT
Patients with a diagnosis of cancer are often administered intravenous fluids around chemotherapy 
with the hope of mitigating the risk of AKI, which can lead to iatrogenic fluid overload if the volume 
status is not objectively assessed. Further, the volume status in these patients is often tenuous, 
complicated by increased losses through vomiting and diarrhea as well as third spacing due to hypoal-
buminemia. Additionally, certain types of chemotherapies may cause cardiac dysfunction predisposing 
to volume overload. An important reason for Onco-Nephrology consultation on the inpatient 
Nephrology service is volume assessment and management in patients undergoing stem cell 
transplantation (SCT) where volume overload occurs frequently. Allogeneic SCT is a well-established 
treatment for various hematological malignancies as well as a few nonmalignant disorders[32]. Fluid 
overload in these patients significantly impacts mortality and is associated with poorer survival[33]. As 
such, it is imperative that we use objective bedside tools such as POCUS to assess hemodynamic status 
and guide therapy.

POCUS considerations
Multiorgan POCUS in these cases allows accurate volume assessment. We call this the Pump, Pipes and 
Leaks approach. The pump denotes focused cardiac ultrasound, pipes represent inferior vena cava (IVC) 
ultrasound and systemic venous Doppler, and the leaks indicate assessment of the extravascular lung 
and abdominal fluid[29] (Figure 3). This way, the whole hemodynamic circuit is assessed instead of 
relying on isolated parameters such as lung or IVC ultrasound, which are error prone. For example, B-
lines on lung ultrasound (vertical artifacts signifying interlobular septal thickening) can be seen in 
cardiogenic pulmonary edema or an infectious process or even fibrosis. In addition to paying attention 
to parameters such as irregular pleural line suggestive of local pathology, assessment of left ventricular 
diastolic function using Doppler aids in proper diagnosis. Similarly, IVC is not reliable to assess right 
atrial pressure in mechanically ventilated patients. Moreover, it can be chronically dilated in patients 
with pulmonary hypertension and may not provide meaningful information when interpreted in 
isolation with respect to guiding therapy. Doppler assessment of systemic venous congestion (VExUS) 
aids in the management of such patients[34-36]. Detailed discussion of VExUS grading to quantify 
systemic venous congestion is beyond the scope of this manuscript and is concisely illustrated in 
Figure 4. On the other hand, IVC can be small despite elevated right atrial pressure in intra-abdominal 
hypertension. Furthermore, a small collapsible IVC can be seen both in euvolemia and hypovolemia and 
cannot be used in isolation to distinguish between these two conditions. Bedside assessment of stroke 
volume helps in this situation as it is expected to be low in hypovolemia. Therefore, a multiparametric 
POCUS approach is the key to appropriate diagnosis and management of volume disorders and these 
findings must be interpreted in the right clinical context. As most of this information can be obtained by 
consultative imaging, some might question the need for clinician-performed POCUS. There are two 
important justifications for this: (1) Hemodynamics are dynamic. For example, a patient with a normal 
echocardiogram few days ago might have a completely different hemodynamic picture now. Moreover, 
it is not prudent to obtain a formal echocardiogram daily to monitor selected hemodynamic parameters 
in response to treatment when POCUS can accomplish the same during daily rounds; and (2) POCUS 
reduces fragmentation of care. For instance, to assess the pump, pipes and leaks, multiple consultative 
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Figure 2 Renal ultrasound images demonstrating. A: Severe hydronephrosis (branching anechoic area); B: Enlarged kidney with hyperechoic cortex in a 
patient with myeloma; C and D: Bilateral renal involvement with lymphoma. Note irregular outline and heterogenous parenchyma.

studies must be obtained – echocardiography performed by the cardiology department, a chest 
radiograph (lung ultrasound is typically not performed by the ultrasound department), an abdominal 
sonogram (to look for ascites), a right upper quadrant Doppler (for hepatic and portal vein Doppler [a 
part of VExUS]) and a Doppler renal ultrasound (for renal venous congestion). Conversely, a POCUS-
trained physician with knowledge of the patient’s clinical history/course can perform a focused 
assessment answering all the key questions in less than 15 min and tailor therapy accordingly.

CLINICAL SCENARIO 3: EFFUSIONS
Pleural effusion secondary to an underlying malignancy is seen in about 15% of cancers. Metastatic lung 
(in males) and breast cancer (in females) account for 50%-65% of all cases of malignant pleural effusion. 
Patients presenting with pleural effusion will require additional imaging for diagnosis and planning of 
therapeutic interventions. Bedside POCUS is increasingly being utilized for guidance for thoracentesis
[37]. Pericardial effusions are noted in 5%-20% patients with an underlying malignancy and 
significantly impacts the survival and prognosis in these cases[38,39]. Pericardial involvement may 
result from direct extension of the tumor into the pericardial cavity or hematogenous spread. 
Opportunistic infections in patients undergoing cancer chemotherapy as well as deranged liver, kidney 
or cardiac function arising as a result of the underlying cancer or cancer chemotherapy and radiation 
(like anthracyclines, docetaxel, busulfan, tyrosine kinase inhibitors, arsenic trioxide which can affect the 
myocardium) may play a role as well in causing pericardial effusion. Majority of the pericardial 
effusions associated with malignancies are moderate to large in size with pericardial tamponade being 
noted in one third of the patients with malignant pericardial effusion with poorer outcomes reported in 
these patients[39]. In addition, ascites is a frequent accompaniment of gastrointestinal and metastatic 
malignancy.

POCUS considerations
The diagnostic superiority of POCUS to detect multiple effusions is well-established. For example, lung 
POCUS is more sensitive than physical examination or chest radiography for the detection of small 
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Figure 3 Figure illustrating the integration of multi-point sonographic assessment including focused cardiac, lung and venous Doppler 
ultrasound. Normal waveforms are shown. IVC: Inferior vena cava. Adapted from corresponding author’s prior open access publication.

pleural effusions and can detect as small as 3-5 cc of fluid in the pleural space[40-42]. In addition to 
visualization of pleural effusion, POCUS can help identify loculations in the fluid, thickening and 
nodularity of the diaphragm, findings which are relatively specific for the diagnosis of malignant 
pleural effusion. Ultrasound guided pleural biopsies may also be undertaken. The diagnostic accuracy 
of ultrasound is comparable to computed tomography (CT) in these cases while avoiding the radiation 
exposure associated with CT imaging. POCUS has also shown to be highly accurate for detecting 
pericardial effusions of any size and can detect tamponade physiology prior to that of physical 
examination or vital signs[43]. Therefore, POCUS-performing physician can seek timely consultations 
prior to clinical decompensation of the patient. Of note, the classic Beck classic triad (jugular venous 
distension, hypotension, and muffled heart sounds) is a late finding and is neither sensitive nor specific 
for tamponade[44,45]. With regard to ascites, ultrasound is substantially better than physical 
examination and can detect as little as 100 cc of peritoneal fluid. In an interesting study from 1982 
comparing the diagnostic accuracy of physical examination with that of ultrasound for ascites, overall 
accuracy of physical examination maneuvers was only 58%[46]. POCUS guidance for paracentesis is 
essentially a standard procedure in developed countries and has shown to be associated with lower 
rates of bleeding, decreased hospital length of stay, and cost savings compared to the traditional 
landmark-based technique[47]. Recently, Nauka et al[48] have proposed a FASC protocol (Focused 
Assessment with Sonography in Cancer), a simple six-point assessment technique to assess multiple 
effusions in cancer patients that can be easily used by physicians with limited training. Figure 5 
illustrates the sonographic appearance of various effusions.

CLINICAL SCENARIO 4: HYPONATREMIA
Hyponatremia is a very common electrolyte abnormality and may be noted in up to 50% of cancer 
patients[49]. It negatively impacts prognosis in these patients and may be reflective of advanced 
underlying disease, chemotherapy toxicity and new or progressive liver or cardiac involvement[50]. 
Syndrome of inappropriate antidiuresis and volume depletion are the most common etiologies for 
hyponatremia that complicates an underlying malignancy[50,51]. The traditional diagnostic workup for 
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Figure 4 Venous excess ultrasound grading. When the diameter of inferior vena cava is > 2 cm, three grades of congestion are defined based on the 
severity of abnormalities on hepatic, portal, and renal parenchymal venous Doppler. Hepatic vein Doppler is considered mildly abnormal when the systolic (S) wave is 
smaller than the diastolic (D) wave, but still below the baseline; it is considered severely abnormal when the S-wave is reversed. Portal vein Doppler is considered 
mildly abnormal when the pulsatility is 30% to 50%, and severely abnormal when it is ≥ 50%. Asterisks represent points of pulsatility measurement. Renal 
parenchymal vein Doppler is mildly abnormal when it is pulsatile with distinct S and D components, and severely abnormal when it is monophasic with D-only pattern. 
Adapted from NephroPOCUS.com with permission.

Figure 5 Sonographic images demonstrating various effusions. A and B: Pericardial effusion (*) as seen on subxiphoid and apical 4-chamber cardiac 
views respectively; C: Right pleural effusion (*) seen from the lateral scanning window; D: Ascites (*) seen from the right upper quadrant. RA: Right atrium; LA: Left 
atrium; RV: Right ventricle; LV: Left ventricle.

hyponatremia begins with measurement of plasma and urine osmolality, urine sodium concentration 
and assessment of volume status[52]. Unfortunately, physical examination has been reported to have 
poor sensitivity and specificity in this setting, underscoring the void in our bedside assessment[10].
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POCUS considerations
A bedside focused ultrasound examination using proven diagnostic parameters can provide objective 
assessment of volume status, which would make a case for its incorporation in the initial diagnostic 
algorithm of hyponatremia[53]. The Pump, Pipes and Leaks approach mentioned above works well in 
this setting. For example, a small collapsing IVC with low stroke volume suggests hypovolemia whereas 
the same IVC with normal stroke volume suggests euvolemia. A plethoric IVC is more in favor of 
hypervolemia though Doppler parameters such as VExUS and transvalvular flow assessment are 
needed in patients with chronically dilated IVC. Several case reports have been published thus far 
demonstrating the utility of POCUS in the evaluation and management of hyponatremia as we 
furnished in our prior publication[53].

SUMMARY AND FUTURE DIRECTIONS
Current evidence clearly indicates that POCUS is superior to that of conventional physical examination 
in terms of diagnostic accuracy and thereby enhances physicians’ confidence in clinical decision making. 
Future studies must aim to investigate how to better integrate this diagnostic tool in day-to-day Onco-
nephrology practice to positively impact measurable outcomes. While one cannot expect mortality 
benefit just by incorporating a diagnostic modality, outcomes such as duration of hospitalization, time 
to appropriate diagnosis and treatment, effective decongestion at hospital discharge, recovery of 
hemodynamic AKI, improvement in patient-reported quality of life, patient and family members’ 
understanding of the diagnosis are all important practical outcomes that POCUS can impact. On a note 
of caution, POCUS is operator dependent like anything else in medicine (history taking, physical 
examination, communication with patients) and proper training is the key to avoid unintentional 
patient harm. With the availability of low-cost ultraportable ultrasound equipment, POCUS is being 
increasingly utilized by physicians with limited or no training. It is particularly problematic when the 
user overestimates their skills and/or capabilities of the equipment (e.g., a novice user with limited 
understanding of Doppler principles assesses stroke volume using suboptimal image obtained by a low-
quality handheld ultrasound device resulting in false conclusions and subsequent patient misman-
agement). The burden of regulating and overseeing its use falls on the individual institutions till there 
are uniform guidelines put forth by professional societies for POCUS training and competency 
assessment. As a matter of fact, Emergency Care Research Institute has listed the increased adoption of 
POCUS outpacing institutional safeguards as one of the top health technology hazards[54]. One cannot 
expect to master physical examination by attending a half- or a one-day workshop and the same applies 
to POCUS; longitudinal training with emphasis on image acquisition, interpretation and clinical 
integration is the key to achieving competency and avoiding untoward consequences. As POCUS 
expertise among nephrologists is sparse at this time, collaboration with experts from various POCUS-
performing specialties (e.g., emergency medicine, critical care) is vital for establishment of robust 
POCUS training programs with quality assurance measures in place.

CONCLUSION
POCUS is a valuable adjunct to physical examination in patients with cancer and renal dysfunction or 
fluid/electrolyte disorders. It provides better diagnostic accuracy than conventional physical 
examination. Proper training is the key to effectively integrate this diagnostic tool into routine clinical 
practice.
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