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Abstract
Emergence from anesthesia (AE) is the ending stage of 
anesthesia featuring the transition from unconsciousness 
to complete wakefulness and recovery of consciousness 
(RoC). A wide range of undesirable complications, 
including coughing, respiratory/cardiovascular events, 
and mental status changes such as emergence delirium, 
and delayed RoC, may occur during this critical phase. 
In general anesthesia processes, induction and AE 
represent a neurobiological example of “hysteresis”. 
Indeed, AE mechanisms should not be simply considered 
as reverse events of those occurring in the induction 
phase. Anesthesia-induced loss of consciousness (LoC) 
and AE until RoC are quite distinct phenomena with, 
in part, a distinct neurobiology. Althoughanaesthetics 
produce LoC mostly by affecting cortical connectivity, 
arousal processes at the end of anesthesia are tri-
ggered by structures deep in the brain, rather than 
being induced within the neocortex. This work aimed to 
provide an overview on AE processes research, in terms 
of mechanisms, and EEG findings. Because most of the 
research in this field concerns preclinical investigations, 
translational suggestions and research perspectives are 
proposed. However, little is known about the relationship 
between AE neurobiology, and potential complications 
occurring during the emergence, and after the RoC. 
Thus, another scope of this review is to underline why 
a better understanding of AE mechanisms could have 
significant clinical implications, such as improving the 
patients’ quality of recovery, and avoiding early and late 
postoperative complications.

Key words: Delirium; Anesthesia; Isoflurane; Propofol; 
Consciousness; Awareness; Electroencephalography

MINIREVIEWS

� October 12, 2018|Volume 8|Issue 2|WJM|www.wjgnet.com

Submit a Manuscript: http://www.f6publishing.com

DOI: 10.5662/wjm.v8.i2.�

World J Methodol  2018 October 12; 8(2): �-16

ISSN 2222-0682 (online)

World Journal of 
MethodologyW J M



© The Author(s) 2018. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Emergence from general anesthesia is not 
simply the reverse process of induction. The exhaustive 
knowledge of its complex neurobiological mechanisms 
is mandatory for avoiding or limiting a large number 
of anesthesia complications including altered mental 
status, and emergency awareness. Moreover, in a 
fascinating translational perspective, the study on this 
topic could provide new insights into the processes 
involved in cortical arousal, offering significant data 
to the research on brain arousal. On the other hand, 
research on the sleep-wake regulatory network, and 
on alterations in arousal processes could provide 
interesting suggestions for the general anesthesia 
research.

Cascella M, Bimonte S, Muzio MR. Towards a better 
understanding of anesthesia emergence mechanisms: Research 
and clinical implications. World J Methodol 2018; 8(2): 9-16  
Available from: URL: http://www.wjgnet.com/2222-0682/full/
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INTRODUCTION
Emergence from anesthesia (AE) is the ending stage 
of anesthesia featuring the transition from uncon
sciousness to complete wakefulness and recovery of 
consciousness (RoC)[1]. Although smooth and safe 
emergence is a primary target of anesthesia, during this 
critical phase a wide range of undesirable complications 
may occur. These AE complications include coughing, 
which may induce an increase in intracranial and intrao
cular pressures, respiratory events (e.g., laryngospasm) 
resulting in oxygenation problems, hypertension, and 
tachycardia as well as mental status changes such 
as emergence delirium (ED)[2], and delayed RoC (i.e., 
hypoactive emergence)[3]. 

From a neurobiological perspective, AE and RoC 
processes should not be simply considered as reverse 
events occurring in the induction of anesthesia. In 
mathematical terms, this nonlinear system between 
induction and AE mechanisms represents a fascinating 
neurobiological example of “hysteresis”; thus, 
anesthesia can be ideally compared as a travel with a 
forward way (induction) which differs from that of the 
return (emergence). Recently, several research groups 
have demonstrated that the anestheticsinduced 
transition from wakeful state to loss of consciousness 
(LoC), and vice versa the RoC phase are subjected to 
the control of distinct neural circuits[4,5]. 

The aim of this work is to provide a comprehensive 
review of the literature, for assessing the state of the 
art in research on AE processes. Because most of the 
research in the field concerns preclinical investigations, 
translational suggestions and research perspectives 

are proposed. However, little is known about the 
relationship between AE neurobiology and AE potential 
complications. Thus, another scope of this review 
is to underline why a better understanding of AE 
mechanisms could have significant clinical implications, 
including an improvement of the patients’ quality of 
recovery, and avoiding early and late postoperative 
complications.

NEUROBIOLOGY OF EMERGENCE
Mechanisms of emergence
Explanation of these mechanisms presupposes the 
knowledge of the action mechanisms of anesthetics, 
namely the neural correlates of anestheticsinduced 
unconsciousness. Although it does not represent the 
primary goal of this work, here we will try to underline 
the most recent pieces of evidence on the topic[69]. 
This extremely complex matter can be simplified by 
assuming that anesthetics interfere with cortical and 
subcortical signals, inducing, in turn, changes in the 
functional/effective connectivity across brain regions. 
During general anesthesia, alterations in functional 
and effective connectivity from different brain regions 
(e.g., from frontal to parietal regions) have been 
widely demonstrated[9]. For instance, inhalation 
anesthetic agents impair frontalposterior interactions 
by interfering with the gamma (2060 Hz) oscillations 
which have a key role in arousal and maintenance of 
consciousness[10]. Highdensity electroencephalography 
(hdEEG) demonstrated that propofolinduced LoC 
is characterized by an increase in frontal delta power 
as the result of cortical propagation of processes 
starting from subcortical regions (e.g., lateral sulci and 
cingulate gyrus)[11]. In turn, these slowdelta oscillations 
propagate asynchronously across the cortex, inducing 
a functional disruption of the connectivity between 
distinct cortical areas. Moreover, by using a combination 
of positron emission tomography and functional 
magnetic resonance imaging (PET/MRI), Akeju et al[12] 
demonstrated that the main effect of dexmedetomidine
induced LoC was the impairment of the thalamocortical 
functional connectivity. 

Connectivity changes within distinct brain regions 
lead to different depths of anesthesia (DoA). Thus, loss 
of communication between the thalamus and the cortex 
is responsible for the beginning of LoC. Subsequently, 
changes in the corticocortical functional connectivity, 
and in the functioning of several brainstem nuclei (e.g., 
the ventrolateral preoptic nucleus) as well as in the 
connectivity between these structures and cerebral 
cortex are responsible for completing the induction 
process and, in turn, for maintaining the surgical 
anesthesia status. During the AE period, mechanisms 
responsible for LoC and anesthesia maintenance are 
gradually reversed, whereas other specific awaken
ing mechanisms are activated. These mechanisms 
encompass several ascending arousal brain pathways 
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responsible for the activation and promotion of the 
emergence until the RoC. Among the arousalpromoting 
brain regions involved in the active AE processes, 
the thalamus has a key role[13]. Alkire et al[14] proved 
in rats that midline intrathalamic microinfusion of 
nicotine reversed sevofluraneinduced loss of righting 
reflex (LORR), an indicative sign of unconsciousness 
in rodents. Other preclinical investigations, focusing on 
voltagegated potassium channels, were performed 
to assess the role of thalamic central medial nucleus 
for AE induction[15,16]. However, the thalamic systems 
are not the sole pathways involved in active AE. 
Investigations on the dopaminergic (DA) projections 
from the substantia nigra (SN) and ventral tegmental 
area (VTA) of the midbrain to the pedunculopontine, 
thalamus, dorsal raphe, locus ceruleus (LC), and 
laterodorsal tegmental areas, basal forebrain (BF), 
and lateral hypothalamus)[17,18] suggested the exis
tence of a mesencephalic arousal pathway. It has 
been shown in animals that the intravenous admini
stration of methylphenidate, or dextroamphetamine 
which increases the dopaminergic and adrenergic 
neurotransmission through the reuptake inhibition or 
the use of a D1 receptor agonist (chloroAPB) restores 
LORR and increases theta oscillations (decreasing delta 
and alfapower) during inhaled[19,20] or endovenous 
anesthesia[21]. Furthermore, Taylor et al[22] obtained the 
same results through a selective stimulation of the VTA 
dopaminergic neurons, whereas the administration of 
a D1 antagonist (SCH23390) attenuated the arousal 
response. Thus, they called this active transition from 
the anesthetized state to the awake state “reanimation 
from general anesthesia”[22]. 

The hypothalamus is another brain structure involved 
in the AE mechanisms. The orexinergic neurons are 
localized in a hypothalamic area around the fiber bundle 
of fornix. This orexin system (OS) plays a key role in 
induction of sleeptowake transitions, and maintenance 
of wakefulness[23]. A series of studies proved that 
it facilitated AE in both intravenous[24], and inhaled 
general anesthesia[25]. More recently, Zhang et al[26] 
demonstrated in rats that isoflurane depressed the 
excitability of orexinergic neurons. Although both orexins 
(i.e., orexinA, OXA, and orexinB, OXB) promoted 
emergence, OXA played a more significant role (through 
orexin receptor1). 

Functionally, the OS is related to the locus coeruleus 
norepinephrine system (LC NE), and the posterior 
hypothalamic histaminergic tuberomammillary nuclei 
(TMN HA)[27] which are wellknown wakepromoting 
cell groups of the sleepwake regulatory network[28], 
and implicated in the action mechanisms of inhaled 
anesthesia[29]. In particular, LCNE is functionally connected 
to the posterior cingulate cortex (PCC), thalamus, and 
basal ganglia forming the LCNE arousal system, which 
has been suggested to have an important role in the 
AE[30]. Orexinergic projections to the hippocampus, and 
basal ganglia have been also demonstrated[31]. 

In this complex scenario, there is a functional con
nection between OS, BF cholinergic structures (i.e., 
medial septum, vertical limbs of the diagonal band 
of Broca, nucleus basalis of Meynert, and substantial 
innominate), and the brainstem ascending reticular 
arousal system (ARAS). Indeed, the BF has diffuse 
projections to all parts of the neocortex, basolateral 
amygdala, and hippocampus, whereas the ARAS has 
cholinergic cortical projections, and connection with 
the thalamus, hypothalamus, and the BF region, which 
in turn modulate the OS (feedback mechanism). The 
OS contributes to arousal processing by increasing 
cortical activity due to excitatory projections to wake
promoting cell groups in the posterior hypothalamus, 
BF, and brainstem. On the other hand, orexin neurons 
are controlled by positive and negative feedback 
mechanisms mainly mediated by the hypothalamus and 
other areas (e.g., perifornical area)[32] and more details 
on orexin pathways could be found in literature[33]. 
Taken together, these data suggest that arousal 
processes at the end of anesthesia are triggered by 
structures deep in the brain, rather than being induced 
within the neocortex.

Electrical activity during recovery from anesthesia 
The brain’s response to anesthetics recorded with scalp 
electroencephalogram (EEG) represents the cortical 
synaptic activity of both excitatory and inhibitory 
postsynaptic potentials from cortical or thalamic 
neurons[34]. Apart from this noninvasive EEG modality 
used in human studies, other approaches such as the 
electrocorticogram (ECoG, EEG measured directly from 
the cortical surface), stereoelectroencephalography 
(SEEG), an EEG performed via depth probes, are used 
in specific clinical settings (e.g., SEEG in epilepsy) or 
for experimental investigations in animals. Moreover, 
neurophysiological changes in the brain under general 
anesthesia are often studied through a combination 
of EEG (including hdEEG methods) with brain activity 
measures such as functional nearinfrared spectro
scopy (fNIRS)[35], and neuroimaging modalities, (e.g., 
functional magnetic resonance imaging, fMRI) [36], or by 
combining EEG with electrodiagnostic methods, including 
electromyography and evoked potentials (EP)[37].

Studies on EEG activity during anesthesia induced a 
significant impetus to research aimed at elucidating the 
dynamics of anesthesia. Again, technological advances, 
and mathematical approaches, allowed to apply several 
brain monitoring devices which are commonly used in 
clinical practice. However, explanation of features and 
clinical utility of DoA monitoring systems is not the 
scope of this review[38]. 

Anesthesiarelated electrical activity consists of 
a wide range of EEG patterns, mainly depending on 
the anesthesia phase (induction, maintenance and 
emergence), the DoA status, and the type of anesthetics 
used. Before induction, the awake subject with eyes 
closed shows a prominent alpha activity (10 Hz) which 
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It can be assumed that the occurrence of different 
EEG patterns at the emergence reflects the different 
degrees of influence of brainstem activity on cortical 
reconnectivity, through the thalamus mediation[13]. 
This evidence could prove that AE modulation can be 
mostly obtained by controlling brainstem activity (e.g., 
by opioids). Although we adopted a general descriptive 
scheme (i.e., anesthesiainduced EEG changes at the 
emergence), it is important to underline that because of 
the distinct mechanisms of action, different anesthetics 
may induce different types of EEG dynamics, also 
in the AE phase. Recent studies are increasingly 
characterizing these profiles[49], especially with regard to 
dexmedetomidine[50].

CLINICAL IMPLICATIONS 
A better understanding of AE mechanisms has 
significant clinical implications, such as improving the 
quality of recovery of patients following surgery. It has 
been proved that the EEG modality at the emergence 
affected the residual level of sedation and postoperative 
pain[47]. Thus, in a hypothetical scenario, it could be 
possible to modulate the path of emergence, choosing 
the one which correlates with the desired target. The 
possibility to increase the predictability of the time of 
emergence may help prevent delayed emergence  
defined as the failure to regain consciousness 30-60 min 
after general anesthesia[51]  and other more frequent AE 
complications, such as ED, and respiratory complications. 
This is a significant issue as delayed emergence was 
associated with a longer postoperative hospital stay[52], 
whereas ED in children may lead to physical harm in 
the children and distress in patients, parents and staff. 
Moreover, although usually selflimiting, it can last up to 
48 h, and children who manifested ED are more likely 
to suffer from newonset postoperative maladaptive 
behavioral changes[53]. Again, ED in adults can lead to 
serious complications, such as selfextubation, accidental 
removal of catheters and injury[54]. 

Although about 20% of accidental awareness with 
recall during general anesthesia (AAWR) occur at the 
AE, and 90% of these cases are potentially preventable 
(e.g., through the use of neuromuscular monitoring)[55], 
in very rare AAWR cases there is no readily identifiable 
cause[56]. A more precise AE management can help avoid 
these unexpected awakening events, which are often 
associated with severe psychological consequences, such 
as posttraumatic stress disorder (PTSD).

TRANSLATIONAL DATA AND RESEARCH 
PERSPECTIVES
Positive results from preclinical and clinical studies 
on this topic should encourage additional research 
(Table 1). For instance, clinical investigations should 
translate preclinical findings to evaluate possible 
interventions for inducing active AE, and in turn for 

is maximal over parietooccipital scalp locations. After 
inducing anesthesia, EEG pattern shows an increase 
in beta activity (1325 Hz) until the LoC[39], whereas 
during the maintenance phase, different EEG patterns 
are observed, depending on the DoA level. During a 
light anesthesia, a decrease in EEG beta band (1330 
Hz) and an increase in both EEG alpha (812 Hz) and 
delta activities (04 Hz) may occur. As the DoA state 
becomes deeper, beta activity decreases, and there 
is an increase in delta and in alpha frequency band 
oscillations, with the latter being anteriorly located (“alpha 
anteriorization”)[40]. A further DoA status features an 
EEG pattern comprising flat periods interspersed with 
periods of alpha and beta activity. This characteristic 
EEG pattern, is known as burst suppression. It can be 
also recognized in deeper coma status due to various 
conditions including cerebral anoxia, cancers, drug 
intoxications, encephalopathies, or hypothermia[41]. 
The anesthesiainduced burst suppression seems to 
be associated with a state of cortical hyperexcitability 
generated by decreased inhibition[42]. 

As the anesthesia state deepens, EEG shows a 
progressive stretching between the alpha activities. The 
amplitudes of the alpha and beta activities progressively 
decrease, and in turn, the EEG assumes isoelectric 
form. In this context, the deepest DoA status has 
been reached[43]. As to the correlation between EEG 
findings and different anesthetic agents, previous 
studies showed that this general scheme is particularly 
applicable for halogenated inhalational anesthetics, and 
propofol whereas, in contrast, opioids and ketamine 
usually induce less marked EEG changes. Furthermore, 
etomidate and barbiturates lead to a rapid shift toward 
the high voltage delta and theta frequencies[44]. 

Classically, during emergence it is possible to observe 
a loss of delta activity, combined with a progressive 
decrease in frontal alpha power and increased higher 
frequencies[45]. Moreover, ECoG studies showed that 
specific findings (i.e., slow oscillation in largescale 
functional networks) are maintained during the LoC and 
RoC phases[46]. However, the canonical EEG sequence 
during AE can undergo changes. In a fascinating 
clinical study, Chander et al[47] described different AE 
patterns. At the beginning of AE, they recognized a 
pattern characterized by high power of alpha and beta 
bands (in 95% patients) and termed it as “SlowWave 
Anesthesia” (SWA). The minority of patients had an 
EEG with a very low spindle and delta power (called “Non 
SlowWave Anesthesia”, NSWA). Interestingly, they also 
found that EEG patterns between start of emergence 
and RoC vary, and described four trajectories between 
the beginning of AE and the RoC. More recently, Liang 
et al[48] classified emergence EEG patterns in sevoflurane 
anesthesia. Using an integrated approach obtained 
by a multivariate statistical model, they identified four 
types of emergence EEG patterns. Interestingly, some 
of these emergence modalities were agerelated and 
could be associated with postoperative mental changes. 
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preventing AE complications. For this purpose, thanks 
to its actions consisting of arousal promotion, and 
breathing enhancement, the dopamine uptake inhibitor 
methylphenidate was the first drug to be tested in 
humans. Researchers from the Ohio State University 
assessed, in adult patients, whether methylphenidate 
(given orally 20 mg, 2 h before induction) decreased 
the emergence time from isoflurane general anesthesia, 
and gave rise to a fast cognitive improvement with 
efficient pain control and postoperative nausea 
and vomiting (PONV) prevention (NCT02327195). 
To date, the recruitment status of this prospective, 
randomized, doubleblind, placebocontrolled trial 
(RCT) is indicated as completed (n = 54) and we are 
waiting for the publication of the results. Probably, this 
RCT will encourage further research with a multicenter 
involvement and a greater sample. Another RCT in adult 
patients scheduled for pancreatic surgery is ongoing 
at Massachusetts General Hospital (NCT02051452). 
Apart from the AE time effect, the investigators 
focused on safety and tolerability of methylphenidate 
in this clinical setting, and the impact on postoperative 
delirium (PD) and postoperative cognitive function 
(POCD). The study is expected to be completed in 
December 2018. We hope that results from this RCT 
will offer clinical data to better define the correlation 
between AE and postoperative mental status changes. 
Data from preclinical research suggested that other 
interesting molecules should be tested for evaluating 
their effects on emergence features and postoperative 
cognitive outcomes. Zhang et al[57] demonstrated that 
amantadine, a dopamine agonist used to treat Parkinson’s 
disease and parkinsonism syndromes, attenuated post
operative learning and memory decline via inhibition 
of neuroinflammation in rodents. Interestingly, this 
study may suggest that interventions focusing on AE 
modulation may interfere with microglial activation and 
the cascade of neuroinflammation, implicated in POD/
POCD pathogenesis[58].

Clinical investigations should be carried out to 
better clarify results, and discrepancies of preclinical 
and clinical studies. Although OXA has been proved 
to be involved in arousal from general anesthesia in 
rodents[24,26], and the Kushikata[59]’s studies showed 
that plasma OXA significantly increased at AE from 
both propofol and sevoflurane anesthesia, Wang et al[60] 
proved that higher plasma OXA concentrations were 
not associated with a reduction in AE time in elderly 
patients. However, these patients showed a higher 
level of plasma OXA compared to young patients[60], 
suggesting an agedependent difference in the orexin
induced anesthesia arousal regulation. Probably, the 
lower density of orexin receptors in elderly can offer a 
potential explanation to the evidence that the elderly 
require a longer AE time[61] despite a higher orexinergic 
activation. 

In addition, we believe that further preclinical 
research may be necessary to evaluate correlations 
between AE mechanisms and postoperative cognitive 
complications. More detailed investigations in rodents 
should investigate the effect of AE modulation on early 
postoperative behavioral changes. In a translational 
perspective, indeed, a paramount aim should be 
to demonstrate whether any potential intervention 
on active AE processes can effectively induce an 
improvement in cognition, rather than just reducing the 
AE times. 

Again, studies on the pathophysiology of PD, 
and POCD offer interesting prospects for further 
research. Alterations in the prefrontal cortex, and in 
the dopaminergic projection to the LC are implicated in 
the genesis of PD and POCD. Moreover, the orexinergic 
system is connected through the functional mediation of 
the TMN HA to the hippocampus, neostriatum, nucleus 
accumbens, and amygdala, which represent key regions 
involved in the pathogenesis of PD, and POCD[62].

Further research is also warranted to better ex
plain the mechanisms which induce AE activation. 

Table 1  Suggestions for additional research on emergence from anesthesia

Type of study Topic(s)

Multicenter RCTs Effects of drugs on AE time, features, and postoperative complications 
including mental status changes

Multicenter RCTs Effects of antinociceptive interventions (e.g., neuraxial anesthesia) on 
accelerating emergence and improving patient outcomes

Animal research (molecular/behavioral research) Effects of AE modulation on molecular targets of neuroinflammation
Animal research (behavioral research) Effects of AE modulation on early postoperative behavioral changes
Animal research (molecular/imaging/behavioral research) Anesthetics mechanisms; Linkage between brain areas involved in cognitive 

functioning and AE features
Animal research/in humans Neurophysiological changes under general anesthesia (e.g., by combining 

EEG approaches with electrodiagnostic methods, including EMG and EPs, 
or with brain activity measures such as fNIRS, and neuroimaging modalities 

like fMRI) 
In vitro/In vivo (e.g., mutant analysis in Drosophila) Anesthetic mechanisms (e.g., genes encoding for second-messengers, 

memory formation substrates, ion channels, synaptic proteins) 

RCT: Randomized controlled trial; AE: Anesthesia emergence; EMG: Electromyography; EPs: Evoked potentials; fNIRS: Functional near-infrared; fMRI: 
Functional magnetic resonance imaging.
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Certainly, many aspects of the anesthetics are still to 
be elucidated. For instance, it has been demonstrated 
that the OS could be another possible target for 
isoflurane[26], whereas the role of serotonergic neurones 
in dorsal raphe nucleus implicated in the mechanisms of 
general anesthesia[63] on the orexinergic signal should 
be an interesting field of research for investigating the 
linkage between AE modalities and RoC features, such 
as pain and mood. Effects of specific antinociceptive 
interventions (e.g., neuraxial anesthesia) as potential 
mechanisms interfering with emergence processes 
and clinical consequences should be addressed in 
order to prove specific experimental findings such as 
the brainstem involvement in arousal dynamics. AE 
translational approaches could promote a feedback 
between different neuroscience fields of study. Thus, 
general anesthesia research could offer significant 
information to the research on mechanisms controlling 
arousal processes involved in physiological and 
pathological phenomena, such as sleep and coma[43]. 

CONCLUSION
Neurobiologically, the ending stage of anesthesia is 
not simply the reverse process of induction. Recent 
findings demonstrated that induction and emergence 
are partly subjected to the control of different neural 
pathways. The exhaustive knowledge of these 
mechanisms may help prevent a large percentage of 
anesthesia complications, including altered mental 
status, and AAWR phenomena. Consequently, a 
better understanding of AE neurobiology could open 
a new era in anesthesia aiming to design new and 
safer anesthetic strategies. Moreover, in a fascinating 
translational perspective, the study on this topic could 
offer new insights into the complex mechanisms 
involved in cortical arousal, and provide significant data 
to the research on brain arousal processes and relative 
alterations. On the other hand, research on the sleep
wake regulatory network, and on alteration in arousal, 
and cognitive processes, could provide interesting 
suggestions for the general anesthesia research.
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