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Abstract
Artificial intelligence is an emerging technology whose application is rapidly 
increasing in several medical fields. The numerous applications of artificial 
intelligence in gastroenterology have shown promising results, especially in the 
setting of gastrointestinal oncology. Therefore, we would like to highlight and 
summarize the research progress and clinical application value of artificial 
intelligence in the diagnosis, treatment, and prognosis of colorectal cancer to 
provide evidence for its use as a promising diagnostic and therapeutic tool in this 
setting.
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Core Tip: In this editorial, we would like to highlight and summarize the research 
progress and clinical application value of artificial intelligence in the diagnosis, 
treatment, and prognosis of colorectal cancer to provide evidence for its use as a 
promising diagnostic and therapeutic tool in this setting.
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INTRODUCTION
Colorectal cancer (CRC) is a major healthcare concern worldwide. It is the third most 
common cancer in males, the second most common cancer in females and the fourth 
leading cause of cancer death worldwide[1-3]. Furthermore, up to 60%-70% of recog-
nized cases in symptomatic patients are diagnosed at an advanced stage[4-6].

Artificial intelligence (AI) is a form of machine technology in which intelligent 
agents perform functions associated with the human mind, such as learning and 
problem solving[7-9]; AI algorithms are primarily used for disease diagnosis, 
treatment and prognosis[10,11].

In the setting of endoscopic diagnosis, AI has been primarily evaluated in 3 clinical 
scenarios: Polyp detection, polyp characterization (adenomatous vs nonadenomatous), 
and the prediction of invasive cancer within a polypoid lesion[12].

With regard to polyp detection, the adenoma detection rate (ADR), defined as the 
proportion of patients with at least one colorectal adenoma detected at the first scree-
ning colonoscopy among all the patients examined by an endoscopist, represents a 
pivotal quality measure for colonoscopy[6,13]. In fact, it has been reported that a 1% 
increase in the ADR is associated with a 3% decrease in interval CRC inciden-
ce[6,14,15].

The outcomes reported by different mono- and multicenter randomized clinical 
trials are highly promising; the overall ADR of these studies was significantly higher 
when computer-aided diagnosis (CAD) systems were incorporated (up to 80%)[16-20].

With regard to polyp characterization, CAD systems can achieve thresholds of 
preservation and incorporate valuable endoscopic innovations for diminutive, nonneo-
plastic rectosigmoid polyps according to various studies[6,21-25].

With regard to differentiation between invasive cancer and nonmalignant adenoma-
tous polyps, an accuracy of 94.1% and 81,2%, respectively, was achieved in two recent 
studies[26,27].

AI has also been evaluated in the classification and diagnosis of biopsy samples. In a 
recent systematic review performed by Thakur and coworkers, the authors concluded 
that artificial intelligence showed promising results in terms of accuracy in diagnosing 
CRC with regard to tumor classification, tumor microenvironment analysis, and 
prognosis prediction. However, the scale and quality of the training and validation 
datasets of most of these studies are insufficiently adequate, limiting the applicability 
of this technique in clinical practice[28].

With regard to surgical approaches, robot-assisted colorectal surgery has shown 
better performance than human-alone surgery, in terms of short- and long-term 
outcomes[10,29].

Additionally, with regard to the pharmacological approach, some studies evaluated 
targeted drug delivery[30], drug pharmacokinetics[31] and prediction of the rate of 
drug toxicity[32].

Furthermore, the personalization and precision of cancer treatments have become 
major themes in oncology research. For example, “Watson for Oncology” is an AI 
system that can assist in the precision medicine-based treatment of tumors[10,33]. It 
can automatically extract medical language from doctors’ records and translate them 
into a practical language for learning[10]. This model can be used to identify new 
cancer sub-populations, analyze their genetic biomarkers, and find effective drug 
combinations[10].

Finally, the emergence of AI has allowed clinicians to predict the prognoses of CRC 
patients more easily and precisely by using several approaches. For example, in one 
study, genetic markers of CRC were used to train a model based on different algori-
thms[34]. In another study, a computer-aided analysis method for tissue sections 
based on multifractal analyses of cytokeratin-stained tumor sections was proposed to 
evaluate the complexity of tumor-stroma interfaces[35]. Other studies have evaluated 
cytokeratin immunohistochemical images to predict lymph node metastasis[36,37] and 
the infiltration of immune cells in influencing CRC prognosis[38].

In the near future, AI technology will help doctors diagnose and treat their patients 
and provide CRC patients with personalized and accurate prognosis evaluations.

CONCLUSION
In conclusion. AI could play a pivotal role in gastrointestinal oncology, especially in 
the setting of CRC, for tailoring patient treatments and predicting their clinical 
outcomes[9].



Alloro R et al. AI and CRC

AIC https://www.wjgnet.com 9 April 28, 2021 Volume 2 Issue 2

Table 1 Application of artificial intelligence in colorectal cancer

Setting Application Ref.
Diagnosis Polyp identification [16-20]

Polyp characterization [21-25]

Prediction of invasive cancer within a polypoid lesion [26,27]

Search for new diagnostic biomarkers [10]

Pathologic biopsy [28]

Treatment Preoperative evaluation [10]

Robot-assisted surgery [29]

Drug delivering in a targeted manner [30]

Evaluation of drugs pharmacokinetic [31]

Prediction of the rate of toxicity [32]

Watson for Oncology project [33]

Prognosis Search for new prognostic biomarkers [38]

Evaluation of tumour-stroma ratio [35]

Prediction of lymph-node metastasis [36,37]

Future randomized studies could directly increase the overall value (quality and 
costs) of AI by examining its effects not only in diagnosis (by evaluating colonoscopy 
findings, endoscopy durations, polyps and ADRs) but also in prognosis and therapy.

Since AI science continues to grow and evolve, the current limitations must be 
considered as a future challenge; these limitations are also inherited by the medicine 
applications of AI, including the difficult predictability of situations characterized by 
some degree of uncertainty[6]. Table 1 shows the applications of AI in CRC.

Future applications of AI could be implemented in all the settings of CRC 
management, such as the determination of the potential role of noncoding RNAs in 
tumor diagnosis and treatment[10].

Finally, the integration of AI in human-based medicine has to considered. AI has 
never been nor will ever be considered a substitute for the physician; on the contrary, 
it seems to be an extremely helpful tool to be used by the physician who, given his or 
her ability and skills, is the only one able to process and interpret all the information 
extracted by the AI to make decisions on patient management.
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Abstract
Early diagnosis and timely treatment are crucial in reducing cancer-related 
mortality. Artificial intelligence (AI) has greatly relieved clinical workloads and 
changed the current medical workflows. We searched for recent studies, reports 
and reviews referring to AI and solid tumors; many reviews have summarized AI 
applications in the diagnosis and treatment of a single tumor type. We herein 
systematically review the advances of AI application in multiple solid tumors 
including esophagus, stomach, intestine, breast, thyroid, prostate, lung, liver, 
cervix, pancreas and kidney with a specific focus on the continual improvement 
on model performance in imaging practice.
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Core Tip: Many reviews have summarized artificial intelligence applications in the 
diagnosis and treatment of a single tumor type. However, this is the first review to 
systematically review how artificial intelligence relieves clinical workloads and 
changes the current medical workflows while maintaining high quality to provide 
precision medicine in multiple solid tumors. Due to its clear advantage in imaging 
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practice, patients will benefit from early diagnosis and appropriate treatment.
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INTRODUCTION
Cancer is currently a worldwide health problem. Early diagnosis and timely treatment 
are crucial in reducing cancer-related mortality. Medical imaging is a common 
technique used to guide the clinical diagnosis of solid tumors. Accurate interpretation 
of imaging data has become an important but difficult task in the diagnosis process.

Artificial intelligence (AI) refers to an information science that researches and 
develops theories, methods, technologies and application systems used to simulate, 
expand and extend human intelligence[1]. With the rapid development of machine 
learning, deep learning and other crucial AI technologies in the field of image 
processing in recent years, these approaches have made great contributions to disease 
classification, prognosis prediction and therapy evaluation and can identify patterns 
that humans cannot recognize[2-4] (Figure 1). Here, we review the advantage of AI 
applications in imaging examinations of multiple solid tumors and highlight its great 
benefits in optimizing the clinical work process, providing accurate tumor assessment 
for current precision medicine and achieving better diagnosis and treatment results 
based on its practical data and literature reports.

APPLICATION OF AI IN GASTROINTESTINAL TUMORS
Gastric cancer is one of the most common gastrointestinal malignancies at present, 
with a poor prognosis and high mortality. Endoscopy and pathological biopsy are still 
the “gold standard” for the diagnosis of gastric cancer, but they have shortcomings[5]. 
For example, the sensitivity of endoscopic diagnosis of atrophic gastritis is only 42%, 
so the rate of missed diagnosis is relatively high[6]. Multipoint biopsy sampling 
increases the risk of tissue injury and gastrorrhagia[7,8]. Some advanced endoscopic 
techniques, such as color endoscopy combined with magnification endoscopy and 
laser confocal microscopy, can provide only images of the mucosal surface of the 
gastrointestinal tract[7-9]. Billah et al[10] used capsule endoscopy along with a convo-
lutional neural network (CNN) and color wavelet features to identify gastrointestinal 
polyps. Urban et al[11] applied deep neural networks to identify colonic polyps from 
colonoscopy. Lahner et al[12] established a decision support system (DSS) for the 
diagnosis of atrophic gastritis without endoscopy. The diagnostic accuracy of these 
three protocols was above 96%, which supports the promising generalization of AI-
based technologies.

Esophagus squamous cell cancer
Narrow-band imaging (NBI) is an emerging advanced, noninvasive endoscopic 
technology that can strengthen the evaluation of the surface structure and microvas-
cular morphology of the esophagus and improve the accuracy rate of endoscopic 
diagnosis[13]. Using NBI to diagnose squamous cell carcinoma can lead to various 
results due to different judgments from doctors[14,15]. Fukuda et al[16] applied a deep 
CNN model to examine NBI endoscopy video images of squamous cell carcinoma, 
showing higher detection sensitivity (91.1%) than experts and high detection accuracy 
(88.3%). Those authors suggested that the AI system can discover tumors > 30 mm or 
with muscularis mucosa invasion that were missed diagnosis by experts. Compared to 
endoscopic experts, AI has a better diagnostic performance.

Atrophied gastritis
The CNN-chronic atrophic gastritis approach developed by Zhang et al[7] has a good 
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Figure 1 A flowchart of artificial intelligence model construction. AI: Artificial intelligence.

classification performance for recognizing chronic atrophic gastritis based on gastric 
antrum images whose area under the curve (AUC) was close to 0.99. The accuracy, 
sensitivity and specificity of CNN-chronic atrophic gastritis in the field of atrophic 
gastritis diagnosis are all above 0.94. In this study, 1458 mild cases, 1348 moderate 
cases and 38 severe cases of atrophic gastritis were tested by the CNN model, and the 
accuracy rates were 0.93, 0.95 and 0.99, respectively, indicating good consistency of the 
CNN model recognition with the clinical diagnosis of atrophic gastritis.

However, the literature has reported that AI technology used for stomach cancer or 
esophageal stomach adenocarcinoma is susceptible to problems related to tumor 
morphology, atrophic change, uneven mucosal background, etc., which leads to low 
specificity and high false positive rate (FPR)[17]. Several studies indicated that the 
application of AI in the clinic has high accuracy. If AI technology is combined with 
endoscopy doctors, then endoscopy can help doctors better diagnose atrophic gastritis, 
increase the rate of early gastric cancer diagnosis and avoid unnecessary pathological 
biopsy[18,19].

Early gastric cancer
Regarding small early gastric tumors, Abe et al[18] showed that AI technology can find 
anomalies faster than endoscopy doctors (45.5 s vs 173.0 min), and it also shows higher 
sensitivity (58.4% vs 31.9%). However, the positive predictive value (PPV) and 
specificity of AI technology were relatively lower than those of endoscopy doctors 
(26.0% vs 46.2% and 87.3% vs 97.0%, respectively)[18]. A computer-aided design 
(CAD) system is used in stationary images of magnifying endoscopy combined with 
NBI, which have an accuracy rate for early gastric cancer diagnosis of 85.3%[20]. When 
endoscopy cannot identify and capture images of lesions, magnifying endoscopy 
combined with NBI video in the CAD system can help the real-time clinical diagnosis 
of early gastric cancer. Horiuchi et al[19] proposed that the diagnostic performance of 
the CAD system using magnifying endoscopy combined with NBI video is equal to or 
better than that of 11 experienced endoscopic experts in early gastric cancer. The AUC 
was 0.8684, and its accuracy, sensitivity, specificity, PPV and negative predictive value 
were 85.1%, 87.4%, 82.8%, 83.5% and 86.7%, respectively[19].

Colorectal cancer
Colorectal colonoscopy is the key technique for the diagnosis of colorectal polyps. 
However, several studies have shown that 15.4% of colorectal lesions (≤ 3 mm) were 



Shao Y et al. AI improvement on solid tumor imaging

AIC https://www.wjgnet.com 15 April 28, 2021 Volume 2 Issue 2

diagnosed as adenomas under endoscopy but were judged as normal mucosa via 
pathological examination[21]. Intraobserver and interobserver discrepancies are the 
main problem[22]. Therefore, some studies have suggested that using AI techniques 
combined with endoscopy and imaging may help physicians identify colorectal lesions 
and perform pathological classification and prognosis prediction[22].

Shahidi et al[21] established a real-time AI-based clinical DSS to assess the diffe-
rences between results from endoscopy and pathology in lesions ≤ 3 mm. Of the 644 
lesions, 458 lesions reached agreement, while significant differences were found in 99 
cases (adenoma under endoscopy but normal mucosa by pathologic examination). 
When using the clinical DSS for further evaluation, they found that the clinical DSS 
data of 90 cases conformed to those from endoscopy (coincidence rate was 90.9%), 
supporting AI objectivity prior to pathological examination and interpretation[21]. 
Yang et al[22] proposed a CNN model whose diagnosis accuracy was better than or 
similar to that of endoscopic experts (71.5% vs 67.5%), and applications that support 
the CNN model can help endoscopic physicians identify colorectal lesions to reduce 
the misdiagnosis rate. The CNN model can also extend the discrimination ability 
between advanced colorectal cancer and noncancerous lesions, helping endoscopy 
doctors choose the best treatment strategy effectively[22]. Randomized clinical trials 
are needed to determine if the CNN model applied to real-time endoscopic video can 
help endoscopic doctors detect tiny or negligible lesions in the examination.

Wang et al[23] explored the feasibility of faster region-based CNN technology. They 
used transfer learning technology and images and features of the ImageNet VGG16 
model to automatically identify the positive circumferential resection margin in high-
resolution magnetic resonance imaging (MRI) of rectal cancer, and the accuracy, 
sensitivity and specificity were 93.2%, 83.8% and 95.6%, respectively[23]. The use of 18F 
fluorodeoxyglucose-positron emission tomography (PET)/computed tomography 
(CT) to assess early changes in glucose metabolism parameters during neoadjuvant 
chemotherapy can predict treatment efficacy[24,25]. Traditional 18F fluorodeoxyglu-
cose-PET/CT cannot accurately and safely select patients for organ preservation 
strategies[26]. Williams et al[27] suggested that random forest is one type of AI 
technique used for tumor classification and regression evaluation. Shen et al[28] used 
random forest to demonstrate that the radiomics obtained from baseline 18F 
fluorodeoxyglucose-PET could accurately predict pathological complete response with 
95.3% accuracy.

APPLICATION OF AI IN BREAST TUMORS
Ultrasound and radiology are common imaging techniques in breast examination for 
cancer screening, diagnosis and treatment. Ultrasound is important for the nonin-
vasive measurement of cancer lesions and lymphatic metastasis, increasing the posi-
tive diagnostic rate for tiny, aggressive and lymph node-negative breast cancer[29]. 
However, ultrasound has lower diagnostic specificity and PPV for breast cancer[30]. 
For example, the axillary positive detection rate of pathological biopsy is 15% to 20%, 
which is often neglected by ultrasound, especially in those with unspecific charac-
teristics, such as unclear, irregularly shaped edges or fat loss[31]. Although MRI is 
highly sensitive for the diagnosis of breast cancer, its FPR is as high as 74%[32]. 
Molybdenum target X-rays are sensitive to microcalcification with the advantage of 
high cost performance. However, regarding dense breasts where lesions are probably 
hidden, molybdenum target X-ray has limitations with a lower detection rate[33].

Zhou et al[29] proposed a CNN-based deep learning model to predict lymph node 
metastasis according to the characteristics of primary breast cancer under ultrasound. 
The data showed that its AUC was approximately 90%, and the sensitivity and 
specificity were above 80% and 70%, respectively. Mango et al[30] integrated their AI-
based decision support system into ultrasonic images, and the results showed that this 
technique is helpful in Breast Imaging Reporting and Data System classification, 
reducing the intraobserver and interobserver variabilities. The variability incidence of 
ultrasound only in Breast Imaging Reporting and Data System 3 to Breast Imaging 
Reporting and Data System 4A or above was 13.6%, and it decreased to 10.8% when 
ultrasound was combined with decision support.

Spick et al[34] showed that adding diffusion-weighted imaging into MRI-guided 
vacuum-assisted breast biopsy could reduce the FPR by more than 30%. Penco et al[32] 
verified the accuracy of MRI-guided vacuum-assisted breast biopsy in comparison 
with histopathological results. The results exhibited 94% accuracy, 84% sensitivity and 
77% specificity, with a negative predictive value of up to 97%. Adachi et al[31] com-
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pared the diagnostic performance in dynamic contrast-enhanced magnetic resonance 
for breast cancer detection of AI using RetinaNet to that of expert readers; the former 
had a higher diagnostic performance than the latter (AUC 0.925 vs 0.884). With the 
support of AI, the diagnostic performance of expert readers was significantly 
improved (AUC was 0.899). The sensitivity and specificity of independent AI, experts 
not using AI and experts using AI in breast cancer diagnosis were 0.926, 0.847, 0.889 
and 0.828, 0.841, 0.823, respectively. However, AI may misdiagnose normal breast 
tissue as malignant due to background parenchymal enhancement or tissue density or 
misdiagnose invasive ductal carcinoma near the axilla as normal axillary lymph 
nodes[31].

Sasaki et al[35] proposed that AI-based Transpara systems reduced the differences 
between computers and experts in the detection sensitivity to breast cancer via molyb-
denum targets. The expert detection sensitivity was 89%; with the Transpara system, 
the detection sensitivity for malignant lesions was increased to 95%[35]. When 
interpreting breast images, the Transpara system can significantly increase AUC and 
diagnostic sensitivity without increasing reading time[36].

In summary, AI technology increases the detection sensitivity of latent breast lesions 
while maintaining higher specificity. This technology also reduces the variability in 
interpretation and helps to improve the clinical diagnostic performance.

APPLICATION OF AI IN THYROID TUMORS
In recent years, with the increasing incidence rate of thyroid cancer, the accurate classi-
fication of thyroid lesions and the prediction of lymph node metastasis have been 
prioritized to be the core of clinical intervention[37,38]. Ultrasound is a noninvasive, 
easily accessible and economical examination tool, but its accuracy may vary accor-
ding to the different professional backgrounds of the readers.

Barczyński et al[39] verified that the S-DetectTM model in real-time CAD system had 
no significant difference from experienced radiologists in sensitivity, accuracy and 
negative predictive value of thyroid tumor classification. The overall accuracy of 
disease evaluation was 76% for surgical doctors who had basic ultrasonic skills not 
using the CAD system but 82% for doctors with experience using the CAD 
system[39]. The sensitivity and negative predictive value of lesion classification by the 
CAD system was similar to those by ultrasonic experts. It further helped to locate the 
thyroid nodules for further puncture cytology. Nevertheless, the S-DetectTM model had 
defects in identifying calcifications[40].

Postoperative lymph node metastasis is a key factor in the local recurrence of 
thyroid carcinoma. It is necessary to use CT or ultrasound to judge whether lymph 
node metastasis is present before surgery[37,38]. A study conducted by Lee et al[41] 
confirmed that the AUC of the CAD system based on deep learning in the classifi-
cation of thyroid neck lymph node metastasis from preoperative CT images was 0.884, 
and its diagnostic accuracy, sensitivity, specificity, PPV and negative predictive value 
were 82.8%, 80.2%, 83.0%, 83.0% and 80.2%, respectively.

APPLICATION OF AI IN PROSTATE CANCER
Serum prostate specific antigen (PSA), digital rectal examination and transrectal 
prostate ultrasound-guided prostate puncture are the main methods for the early 
diagnosis of prostate cancer[42]. High-level PSA (> 2 ng/mL) is an important indicator 
of postoperative monitoring and identifying the recurrence of prostate cancer[43].

Biopsy technology guided by MRI/ultrasound improves the clinical detection of 
prostate cancer[44,45]. MRI detects pathological changes of Prostate Imaging Repor-
ting and Data System classification is affected by poor intrareader and inter-reader 
consistency, leading to a 40% difference in targeted biopsy. By adding AI, it will 
converge Prostate Imaging Reporting and Data System and improve reader consis-
tency, achieving a better (86%) agreement of detected results and pathological 
diagnosis[46].

Deep learning applications in the field of prostate malignant tumors have been 
widely used with MRI[47,48]. Although some patients were treated with radical 
prostate surgery and serum prostate specific antigen < 1, 11C-choline PET/CT still 
showed a 20.5% positive rate[49]. Prostate uptake of 18F-choline is associated with the 
overall survival rate, making it as important as serum prostate specific antigen and 
Gleason scores in identifying high-risk and low-risk patients. Polymeri et al[50] used 
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an automatic estimation method based on deep learning, and the obtained 18F-choline 
uptake value (71 mL) could reach radiologists’ visual estimates (65 mL and 80 mL) 
within seconds. This approach significantly improved the accuracy and precision of 
PET/CT imaging in the diagnosis of prostate cancer.

Raciti et al[43] used the software Paige Prostate Alpha to significantly increase the 
detection rate of prostate cancer while maintaining high specificity. Especially for 
small, poorly differentiated tumors, the sensitivity can be increased to 30% up to 90%. 
Similar AI systems can also be used to detect micrometastases in prostate cancer.

APPLICATION OF AI IN LUNG CANCER
When using CT to screen pulmonary nodules, lung-Reporting and Data System can 
increase sensitivity, but its FPR is also high[51]. The CAD method has 100% sensitivity, 
but its specificity is extremely low (up to 8.2 false positive nodules per scan)[51]. The 
negative predictive value of PET/CT for lymph node lesions of peripheral T1 tumors 
(≤ 3 cm) is as high as 92%-94%[52].

Chauvie et al[51] attempted to apply new methods to digital tomosynthesis: (1) 
Binomial visual analysis, PPV (0.14) and sensitivity (0.95); (2) Pulmonary-Reporting 
and Data System, PPV (0.19) and sensitivity (0.65); (3) Logistic regression, PPV (0.29) 
and sensitivity (0.20); (4) Random forest, PPV (0.40) and sensitivity (0.30); and (5) 
Neural network, PPV (0.95) and sensitivity (0.90). These data indicated that the neural 
network was the only predictor of lung cancer with a high PPV value and no loss in 
sensitivity. Tau et al[52] used CNN to analyze the characteristics of the primary tumor 
based on PET and to evaluate the existence of lymph node metastasis in newly 
diagnosed non-small cell lung cancer patients. The sensitivity, specificity and accuracy 
of predicting positive lymph nodes were 0.74 ± 0.32, 0.84 ± 0.16 and 0.80 ± 0.17, 
respectively; those of predicting distal metastasis were 0.45 ± 0.08, 0.79 ± 0.06 and 0.63 
± 0.05, respectively. The sensitivity of predicting distant lymph node metastasis was 
low (24% at prophase and 45% at the end of the monitoring period). CNN had high 
specificity (91% in the M1 group and 79% in the follow-up group), but the PPV and 
negative predictive value in class M were lower at the end of follow-up (54.5% and 
68.6%).

AI APPLICATION IN OTHER SOLID TUMORS
Hepatocellular carcinoma
The texture analysis of contrast-enhanced magnetic resonance is considered an image 
tag for predicting the early reaction of hepatocellular carcinoma patients before 
transarterial chemoembolization (TACE) treatment[53]. Its accuracy for the evaluation 
of complete remission and incomplete remission was 0.76. Preoperative dynamic CT 
texture analysis in the prediction of hepatocellular carcinoma response to TACE 
treatment has certain value. Peng et al[54] used a CT-based deep learning technique 
(transfer learning) that compensated for the inaccuracy of the result caused by 
insufficient image information. Further studies showed that the three groups (one 
training set and two validation sets) of data showed a high AUC for predicting the 
response to TACE treatment: complete response (0.97, 0.98, 0.97), partial response 
(0.96, 0.96, 0.96), stable condition (0.95, 0.95, 0.94) and disease progression (0.96, 0.94, 
0.97); simultaneously, the accuracy reached 84.0%, 85.1% and 82.8%[54]. Therefore, the 
CT-based deep learning model helps physicians preliminarily estimate the initial 
response of hepatocellular carcinoma patients to TACE treatment and helps to predict 
the therapeutic effect of TACE.

Cervical cancer
Colposcopy is widely used in the detection of cervical intraepithelial neoplasia, and it 
can guide cervical biopsy in women suspected of having cytological abnormalities or 
human papillomavirus infection[55,56]. In low- and middle-income countries with a 
lack of tools for colposcopy, the diagnostic accuracy of cervical biopsy to detect 
cervical intraepithelial neoplasia is quite low (30%-70%)[57]. The development and 
application of AI-guided (e.g., support vector machine) digital colposcopy helped 
solve the bottlenecks and improved the screening effectiveness of cervical cancer to 
better understand the characteristics of cervical lesions[58]. Another advantage of AI is 
the “real-time” diagnosis report, which continues to optimize clinical workflows[58].
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Pancreatic cancer
Accurate segmentation of the pancreas is important to AI training and AI assisted 
guidance. Wolz et al[59] used multi atlas technology, which only achieved a dice 
similarity coefficient (DSC) of 0.70. Summers et al[60] used deep learning technology, 
which reached a DSC of 0.78%. Wang et al[61] proposed that interactive fully convo-
lutional network for the segmentation of the pancreas did not achieve satisfactory 
results. Boers et al[62] assumed that the latest interactive U-Net neural structure is 
better than interactive fully convolutional network because it can produce a better 
initial segmentation (DSC 78.1% ± 8.7% vs DSC 72.3% ± 11.4%), achieving expert 
performance faster than artificial division (interactive U-net 8 min to 86% DSC, 
artificial segmentation 15 min to 87.5% DSC). The average time cost fell 48.4%, but 
simultaneously due to the low content of visceral fat in some patients, the boundary 
between the pancreas and surrounding tissues was not clear, which may lead to poor 
segmentation performance.

Renal cancer
Histopathology is the gold standard for clear cell renal cell carcinoma evaluation[63]. 
The World Health Organization/International Society of Urological Pathology grading 
system is used to predict the prognosis of renal clear cell carcinoma[64-66]. Using CT 
or MRI indications to describe the grading of clear cell renal cell carcinoma is often 
influenced by subjective factors[67-70]. Cui et al[71] studied the machine learning 
algorithm to extract and analyze the profiles of tiny tumors. Further grading predic-
tion of clear cell renal cell carcinoma by multiparameter MRI or multiphase CT-based 
machine learning provides a valuable noninvasive assessment for clinicians in the 
preoperative treatment of renal tumors[71].

CONCLUSION
AI has clear characteristics of high efficiency, specificity and sensitivity in the classi-
fication, identification and diagnosis of solid tumor. After its integration into imaging 
technology, AI optimizes clinical workflows, decreases the discrepancy between the 
readers and reduces the misdiagnosis rate, which helps clinicians effectively choose 
appropriate therapeutic strategies and accurately predict the prognosis (Table 1). All 
these improvements bring great advantages and convenience to current precision 
medicine. Nevertheless, problems still exist. For example, the FPR increases due to the 
morphology of the tumors or the uneven mucosal background and the identification 
failure of calcification because of technical defects. Therefore, AI cannot be a complete 
replacement of humans in the contemporary situation. We believe that with the 
continuous improvement of AI technology, the application of AI in tumor diagnosis 
and treatment will have better prospects in tumors not limited only to solid tumors.
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Table 1 Summary of artificial intelligence application in clinical imaging examination

Publish 
date Ref. AI Application 

scenarios Sensitivity Accuracy Specificity PPV NPV Detection 
time Variation Volume AUC DSC

10/2020 Fukuda 
et al[16]

CNN Diagnosis of 
esophagus 
squamous cell 
cancer

91.1% 88.3%

05/2020 Zhang 
et al[7]

CNN Diagnosis of 
chronic 
atrophic 
gastritis

94.5% 94.2% 94.0% 0.99

10/2020 Horiuchi 
et al[19]

CAD Diagnosis of 
early gastric 
cancer

87.4% 85.1% 82.8% 83.5% 86.7% 0.8684

02/2020 Wang 
et al[23]

Faster R-
CNN

Circumferential 
resection 
margin of 
rectal cancer

83.8% 93.2% 95.6%

03/2020 Shen 
et al[28]

RF Pathological 
complete 
response of 
rectal cancer

95.3%

01/2021 Abe 
et al[18]

CNN Diagnosis of 
gastric cancer

58.4% 87.3% 26.0% 45.5 s

01/2020 Zhou 
et al[29]

CNN Lymph node 
metastasis 
prediction from 
primary breast 
cancer

> 80% > 70% 0.9

03/2020 Penco 
et al[32]

DWI MRI-guided 
vacuum-
assisted breast 
biopsy

84.0% 94.0% 77.0% 97.0%

RetinaNet 92.6% 82.8% 0.925

Readers 
without 
RetinaNet

84.7% 84.1% 0.884

05/2020 Adachi 
et al[31]

Readers with 
RetinaNet

Diagnosis of 
breast cancer

88.9% 82.3% 0.899

Experts 89.0%02/2020 Sasaki 
et al[35]

Experts with 
Transpara 
system

Diagnosis of 
breast cancer

95.0%

US 13.6%06/2020 Mango 
et al[30]

US+DS

Diagnosis of 
BI-RADS 3 to 
BI-RADS 4A or 
above of breast 
cancer

10.8%

Doctors 
without 
CAD

76.0%02/2020 Barczyń
ski 
et al[39]

Doctors with 
CAD

Classification 
of thyroid 
tumor

82.0%

06/2020 Lee 
et al[41]

CAD Diagnosis of 
thyroid neck 
lymph node 
metastasis

80.2% 82.8% 83.0% 83.0% 80.2% 0.884

03/2020 Polymeri 
et al[50]

CNN Prostate gland 
uptake in 
PET/CT

71 mL

Paige 
Prostate 

10/2020 Raciti 
et al[43]

Diagnosis of 
prostate cancer

90.0%
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Alpha

Binomial 
visual 
analysis

95.0% 14.0%

Pulmonary-
RADS

65.0% 19.0%

Logistic 
regression

20.0% 29.0%

RF 30.0% 40.0%

07/2020 Chauvie 
et al[51]

Neural 
network

Lung DTS

90.0% 95.0%

Diagnosis of 
lymph node 
metastasis of 
lung cancer

74% ± 32% 80% ± 17% 84% ± 16%07/2020 Tau 
et al[52]

CNN

Predicting of 
distal 
metastasis of 
lung cancer

45% ± 8% 63% ± 5% 79% ± 6% 54.5% 68.6%

01/2020 Peng 
et al[54]

Transfer 
learning

Predicting of 
TACE 
treatment 
response of 
hepatocellular 
carcinoma

> 82.8% > 0.94

09/2013 Wolz 
et al[59]

Multi atlas 
technology

70.0%

08/2020 Gibson 
et al[62]

Deep 
learning 
technology

78.0%

iFCN 72.3% 
± 
11.4%

Artificial 
segmentation

Segmentation 
of the pancreas

15 
min 
to 
87.5% 
DSC

AI: Artificial intelligence; PPV: Positive predictive value; NPV: Negative predictive value; AUC: Area under the curve; DSC: Dice similarity coefficient; CNN: 
Convolutional neural network; Faster R-CNN: Faster region-based convolutional neural network; RF: Random forest; DWI: Diffusion-weighted imaging; US: 
Ultrasound; DS: Decision support; CAD: Computer-aided design; DTS: Digital tomosynthesis; TACE: Transarterial chemoembolization; iFCN: Interactive fully 
convolutional network; BI-RADS: Breast Imaging Reporting and Data System; MRI: Magnetic resonance imaging; PET/CT: Positron emission 
tomography/computed tomography; RADS: Reporting and Data System.
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