
Artificial Intelligence in
Cancer

ISSN 2644-3228 (online)

Artif Intell Cancer  2022 April 28; 3(2): 17-41

Published by Baishideng Publishing Group Inc



AIC https://www.wjgnet.com I April 28, 2022 Volume 3 Issue 2

Artificial Intelligence in 

CancerA I C
Contents Bimonthly Volume 3 Number 2 April 28, 2022

MINIREVIEWS

Usefulness of artificial intelligence in early gastric cancer17

Panarese A

ORIGINAL ARTICLE

Basic Study

Learning models for colorectal cancer signature reconstruction and classification in patients with chronic 
inflammatory bowel disease

27

Abaach M, Morilla I



AIC https://www.wjgnet.com II April 28, 2022 Volume 3 Issue 2

Artificial Intelligence in Cancer
Contents

Bimonthly Volume 3 Number 2 April 28, 2022

ABOUT COVER

Editorial Board Member of Artificial Intelligence in Cancer, Maher a Sughayer, MD, Full Professor, Department of 
Pathology, King Hussein Cancer Center, Amman 11941, Jordan. msughayer@khcc.jo

AIMS AND SCOPE

The primary aim of Artificial Intelligence in Cancer (AIC, Artif Intell Cancer) is to provide scholars and readers from 
various fields of artificial intelligence in cancer with a platform to publish high-quality basic and clinical research 
articles and communicate their research findings online. 
      AIC mainly publishes articles reporting research results obtained in the field of artificial intelligence in cancer 
and covering a wide range of topics, including artificial intelligence in bone oncology, breast cancer, 
gastrointestinal cancer, genitourinary cancer, gynecological cancer, head and neck cancer, hematologic malignancy, 
lung cancer, lymphoma and myeloma, pediatric oncology, and urologic oncology.

INDEXING/ABSTRACTING

The AIC is now abstracted and indexed in Reference Citation Analysis, China Science and Technology Journal 
Database.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Yu-Xi Chen; Production Department Director: Xu Guo; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL INSTRUCTIONS TO AUTHORS

Artificial Intelligence in Cancer https://www.wjgnet.com/bpg/gerinfo/204

ISSN GUIDELINES FOR ETHICS DOCUMENTS

ISSN 2644-3228 (online) https://www.wjgnet.com/bpg/GerInfo/287

LAUNCH DATE GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

June 28, 2020 https://www.wjgnet.com/bpg/gerinfo/240

FREQUENCY PUBLICATION ETHICS

Bimonthly https://www.wjgnet.com/bpg/GerInfo/288

EDITORS-IN-CHIEF PUBLICATION MISCONDUCT

Mujib Ullah, Cedric Coulouarn, Massoud Mirshahi https://www.wjgnet.com/bpg/gerinfo/208

EDITORIAL BOARD MEMBERS ARTICLE PROCESSING CHARGE

https://www.wjgnet.com/2644-3228/editorialboard.htm https://www.wjgnet.com/bpg/gerinfo/242

PUBLICATION DATE STEPS FOR SUBMITTING MANUSCRIPTS

April 28, 2022 https://www.wjgnet.com/bpg/GerInfo/239

COPYRIGHT ONLINE SUBMISSION

© 2022 Baishideng Publishing Group Inc https://www.f6publishing.com

© 2022 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

E-mail: bpgoffice@wjgnet.com  https://www.wjgnet.com

https://www.wjgnet.com/bpg/gerinfo/204
https://www.wjgnet.com/bpg/GerInfo/287
https://www.wjgnet.com/bpg/gerinfo/240
https://www.wjgnet.com/bpg/GerInfo/288
https://www.wjgnet.com/bpg/gerinfo/208
https://www.wjgnet.com/2644-3228/editorialboard.htm
https://www.wjgnet.com/bpg/gerinfo/242
https://www.wjgnet.com/bpg/GerInfo/239
https://www.f6publishing.com
mailto:bpgoffice@wjgnet.com
https://www.wjgnet.com


AIC https://www.wjgnet.com 17 April 28, 2022 Volume 3 Issue 2

Artificial Intelligence in 

CancerA I C
Submit a Manuscript: https://www.f6publishing.com Artif Intell Cancer 2022 April 28; 3(2): 17-26

DOI: 10.35713/aic.v3.i2.17 ISSN 2644-3228 (online)

MINIREVIEWS

Usefulness of artificial intelligence in early gastric cancer

Alba Panarese

Specialty type: Gastroenterology 
and hepatology

Provenance and peer review: 
Invited article; Externally peer 
reviewed.

Peer-review model: Single blind

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): 0 
Grade C (Good): C, C, C, C 
Grade D (Fair): 0 
Grade E (Poor): 0

P-Reviewer: Cheng H, China; 
Kawabata H, Japan; Luo W, China; 
Yu W, China

Received: December 31, 2021 
Peer-review started: December 31, 
2021 
First decision: March 12, 2022 
Revised: March 27, 2022 
Accepted: April 20, 2022 
Article in press: April 20, 2022 
Published online: April 28, 2022

Alba Panarese, Department of Gastroenterology and Endoscopy, Central Hospital, Taranto 
74123, Italy

Corresponding author: Alba Panarese, MD, Director, Department of Gastroenterology and 
Endoscopy, Central Hospital, Bruno Street, 1, Taranto 74123, Italy. albapanarese@libero.it

Abstract
Gastric cancer (GC) is a major cancer worldwide, with high mortality and 
morbidity. Endoscopy, important for the early detection of GC, requires trained 
skills, high-quality technologies, surveillance and screening programs. Early 
diagnosis allows a better prognosis, through surgical or curative endoscopic 
therapy. Magnified endoscopy with virtual chromoendoscopy remarkably 
improve the detection of early gastric cancer (EGC) when endoscopy is performed 
by expert endoscopists. Artificial intelligence (AI) has also been introduced to GC 
diagnostics to increase diagnostic efficiency. AI improves the early detection of 
gastric lesions because it supports the non-expert and experienced endoscopist in 
defining the margins of the tumor and the depth of infiltration. AI increases the 
detection rate of EGC, reduces the rate of missing tumors, and characterizes 
EGCs, allowing clinicians to make the best therapeutic decision, that is, one that 
ensures curability. AI has had a remarkable evolution in medicine in recent years, 
moving from the research phase to clinical practice. In addition, the diagnosis of 
GC has markedly progressed. We predict that AI will allow great evolution in the 
diagnosis and treatment of EGC by overcoming the variability in performance 
that is currently a limitation of chromoendoscopy.

Key Words: Early gastric cancer; Artificial intelligence; Helicobacter pylori; Endoscopic 
submucosal dissection; Dysplasia; Computer-aided; Detection
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Core Tip: Early diagnosis and treatment of gastric cancer (GC) can benefit from the introduction of 
artificial intelligence (AI) into endoscopic diagnostics of the upper digestive tract. AI improves endoscopic 
diagnosis because it overcomes the difficulty of diagnosis linked to the experience of the endoscopist. 
Improving endoscopic diagnosis will allow for better treatment, which is more likely to be curative, with 
submucosal endoscopic dissection or surgery. However, because research advances in this area continue to 
be rapid, prospective multicenter studies are needed on the application of AI to the diagnosis of early GC.

Citation: Panarese A. Usefulness of artificial intelligence in early gastric cancer. Artif Intell Cancer 2022; 3(2): 17-
26
URL: https://www.wjgnet.com/2644-3228/full/v3/i2/17.htm
DOI: https://dx.doi.org/10.35713/aic.v3.i2.17

THE RELEVANCE DIAGNOSIS OF GASTRIC CANCER
Gastric cancer (GC), the fourth leading cause of cancer in men and seventh in women, is still third for 
cancer-related deaths worldwide[1]. It’s 5-year survival rate is less than 40%[2] and its prognosis is 
related to the stage at the time of detection. The 5-year survival rate of patients with early gastric cancer 
(EGC) is 91.5%, whereas it is 16.4% for patients in the advanced stage[2-4]. The screening programs are 
cost effective in high-incidence regions[1,5] and advanced endoscopic technologies allow endoscopists 
to diagnose EGC[6-8]; however, optical diagnosis requires a period of training[9].

Recently, the practice of medicine has changed with the development of artificial intelligence (AI) 
based on image recognition with deep learning (DL) using the convolutional neural network (CNN), 
which, in upper endoscopy, is trained with endoscopic images and detects GC accurately[10-14]. Several 
AI-assisted CNN computer-aided diagnosis (CAD) systems have been built, with diagnostic precision in 
the detection of GC based on different types of endoscopic images. AI helps endoscopists to achieve the 
accuracy needed for GC screening, surveillance of precancerous, as well as for detecting the depth of 
invasion of gastric lesions, and when applied to radiological imaging techniques, lymph node and 
peritoneal metastasis[11-14].

OPTICAL ENDOSCOPIC DIAGNOSIS OF EGC 
While computed tomography, endoscopic ultrasound, and positron emission tomography are important 
for the diagnosis and staging of advanced GC, endoscopy plays an essential role in the early detection of 
EGC, as it allows the gastric mucosa to be examined directly. Endoscopy with targeted biopsies is the 
gold standard method for diagnosing EGC, and the accurate diagnosis of EGC through endoscopic 
imaging is a primary goal for improving the poor prognosis of patients[4,15-17]. Although the quality 
and accuracy of endoscopic detection are variable between centers and endoscopists, endoscopy is 
crucial because many early-stage tumors (i.e. intramucosal cancer) can be resected endoscopically in a 
curative manner, with an excellent prognosis at 5 years[4,18,19].

Unfortunately, few endoscopists are experts in advanced endoscopic imaging, and diagnostic 
accuracy depends largely on the clinical experience of the experts and is influenced by multiple factors, 
such as training and technologies[9,20]. Ultimately, early diagnosis and curative treatment are 
important for prognosis but can be difficult to achieve depending on the endoscopist[10,21]. The false 
negative rate of GC detected by esophagogastroduodenoscopy is 4.6-25.8[22-24], with higher values for 
inexperienced endoscopists[9,25]. The diagnostic capacity of endoscopists, due to the endoscopic 
appearance of EGC, which is usually very subtle, varies widely with regard to the differentiation 
between GC and gastritis, the prediction of the horizontal extension of GC and the depth of invasion
[26].

As lesions of the gastric mucosa develop according to the Correa cascade, from atrophy to intestinal 
metaplasia, intraepithelial neoplasia and invasive neoplasia[27,28]; improving the accuracy of 
endoscopic diagnosis of precancerous lesions and EGC through screening and surveillance programs, is 
useful to reduce the incidence and mortality of GC[29-31]. The standard modality for the detection of 
EGC is endoscopy with white light imaging (WLI), but its overall sensitivity is not satisfactory (40%-
60%)[32]. Magnified endoscopy (ME) with image-enhanced endoscopy techniques such as narrow-band 
imaging (NBI; Olympus Co., Tokyo, Japan), flexible spectral imaging color enhancement (FICE; Fujifilm 
Co., Tokyo, Japan), and blue laser imaging (BLI; Fujifilm), improve the accuracy of the detection of 
gastric lesions[26,33,34]. In particular, ME-NBI, the most frequent technology used in AI studies, 
achieves significantly better sensitivity, specificity, and accuracy than WLI, facilitating examination of 
the glandular epithelium in the stomach by observing the microvascular architecture and structure of 
the microsurface[32,35-39].

https://www.wjgnet.com/2644-3228/full/v3/i2/17.htm
https://dx.doi.org/10.35713/aic.v3.i2.17
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However, the virtual chromoendoscopic diagnosis of EGC requires considerable skill and experience
[9,38,40,41]. The diagnostic effectiveness of endoscopists non yet trained in differentiating EGC from 
non-cancerous lesions with ME-NBI is disappointing[9,36,41]. Optical diagnosis can improve with AI-
assisted CNN, which has been mainly applied to ME-NBI[14].

AI FOR THE DIAGNOSIS OF EGC
AI, which mimics human cognitive function[42] with its efficient computational power and learning 
capabilities, can be applied to GC because it processes and analyzes large amounts of data with systems 
that classify and recognize lesion images without the need to write complicated image processing 
algorithms[43]. Therefore, AI could help gastroenterologists in clinical diagnosis and decision-making. 
Technically, the DL method approximates complex information using a multilayer system (e.g., CNN), 
in which neural layers connect only to the next layer (Figure 1), overcoming the limitation of the "black 
box" of previous systems because it shows the reasons for the decisions made[44]. Over the years, new 
CNN-based systems have been introduced to analyze lesions of the gastric mucosa, using higher quality 
images and image selection strategies based on evidence from previous experiences. CNN systems in 
the initial training phase take a few hours to generate the identification system, which can then be used 
repeatedly; and has a good adaptability as it can be used on multiple platforms for the real-time analysis 
of JPEG images or video captured by chromoendoscopy. Magnifying chromoendoscopic images can 
improve the speed and accuracy of CNN diagnostics compared to conventional endoscopy alone[45,
46]. Typically, training images are judged by experienced endoscopists and pathologically confirmed, 
and only endoscopic and chromoendoscopic images with appropriate magnification and typical 
manifestation for learning the CNN model are selected.

In recent studies, other important outcomes have been added to the main outcome to establish 
endoscopic resectability, namely the identification of the margins and depth of the lesion[47-49]. Gastric 
tumors of differentiated intramucous type (m) or infiltrating only the superficial layer of the submucosal 
(≤ 500 μm: Sm1) can be resected endoscopically, while those that deeply invade the submucosal (> 500 
μm: Sm2) are surgically resected because of the risk of lymph node and distant metastases. The optical 
differentiation between m/Sm1 and Sm2 is often difficult[19].

Using PubMed, Embase, Web of Science, and Cochrane Library databases to search the literature on 
CAD systems for the diagnosis of EGC, we identified 26 relevant physician-initiated studies through 
November 2021. Table 1 summarizes the main characteristics of the studies (two single-center 
prospective[50,51], two multicenter prospective[49,52], and twenty-two retrospective[14,45-48,53-69]): 
Study design; endoscopic modality; main study aim; and subjects/lesions/images for validation. 
Table 2 describes the endpoints of the studies.

Selected studies included a diagnostic test on the application of AI in endoscopy for the diagnosis of 
EGC; the absolute numbers of true-positive, false-negative, true-negative and false-positive; clear 
information about data and number of images; the description of the algorithms and the process applied 
to the EGC diagnosis.

To form a training dataset, 11 studies used only WLI images[47,50-53,55-58,60,61], 9 only virtual 
chromoendoscopy images[48-49,59,63-68], 1 only WLI and chromoendoscopy images[54], and 5 WLI, 
chromoendoscopy and NBI images[14,45,46,62,69]. The identified studies were largely published in the 
last 3 years.

Overall, current CNN systems work quite well in detecting the endoscopic/chromoendoscopic 
characteristics of EGC and other gastric lesions and could provide diagnostic support to experienced 
and non-expert endoscopists in future practice. AI-assisted CNN CAD systems can avoid subjectivity 
during the processing and diagnosis of endoscopic/chromoendoscopic images; moreover, in the 
screening of GC, they work as a “confirmer” or “corrector,” providing a second opinion to reduce the 
diagnostic errors committed by endoscopists and suggesting optimal treatment. Current studies by 
Asian authors[54,59] confirm that CAD systems detect EGCs and estimate the depth of infiltration and 
extension, overcoming the problem of operator training and the subjectivity of diagnosis. Moreover, if 
the first studies report comparable results between experts and CAD systems, the most recent ones 
show that AI has reached a sensitivity even higher than that of experts, with similar specificity[46]. Over 
time, images used for CAD system training have improved and, at present, advanced training strategies 
and videos are being used.

Namikawa et al[58] first reported the usefulness of AI systems in GC detection, developing the 
“original convolutional neural network (O-CNN),” with a relatively low positive predictive value 
(PPV). The same authors developed an advanced AI-based diagnostic system, “advanced CNN (A-
CNN)”, by adding a new training dataset to the O-CNN and evaluated its applicability for the classi-
fication of GC and gastric ulcer. The diagnostic performance of A-CNN was evaluated retrospectively 
using an independent validation dataset and compared to that of the O-CNN by estimating the overall 
accuracy of the classification. The sensitivity, specificity, and PPV rates of A-CNN for the classification 
of GC at the lesion level were 99.0%, 93.3%, and 92.5%, respectively, and 93.3%, 99.0%, and 99.1% for the 
classification of gastric ulcers. The overall accuracy of O-CNN and A-CNN in the classification of GC 
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Table 1 Studies involving computer-aided diagnosis for early gastric cancer detection

Ref. Study design Endoscopic 
modality Main study aim Subjects for 

validation

Kubota et al[53], 2012 Retrospective WLI Prediction of invasion depth 344 patients

Miyaki et al[63], 2013 Retrospective ME-FICE Differentiation of cancerous areas from non-cancerous 
areas

46 patients

Miyaki et al[64], 2015 Retrospective ME-BLI Differentiation of cancerous areas from non-cancerous 
areas

95 patients

Kanesaka et al[65], 
2018

Retrospective ME-NBI Delineation of cancerous areas 81 images

Hirasawa et al[14], 
2018

Retrospective WLI, CE, NBI Delineation of cancer 69 patients

Zhu et al[54], 2019 Retrospective WLI, NBI Prediction of invasion depth 203 lesions

Cho et al[50], 2019 Prospective validation 
dataset

WLI Differentiation of cancerous areas from non-cancerous 
areas

200 patients

Ishioka et al[55], 2019 Retrospective WLI Detection of GC 62 patients

Yoon et al[56], 2019 Retrospective WLI Detection of GC 800 patients

Tang et al[57], 2020 Retrospective WLI Differentiation of cancerous areas from non-cancerous 
areas

279 patients

Namikawa et al[58], 
2020

Retrospective WLI Differentiation of cancerous areas from non-cancerous 
areas

220 lesions

Li et al[66], 2020 Retrospective ME-NBI Detection of cancer 341 images

An et al[62], 2020 Retrospective WLI, CE, ME-NBI Delineation of EGC margins 355 images

Horiuki et al[67], 
2020

Retrospective ME-NBI Differentiation of cancerous areas from non-cancerous 
areas

258 images

Nagao et al[45], 2020 Retrospective WLI, CE, NBI Prediction of invasion depth of GC 1084 GC

Wu et al[52], 2021 Prospective WLI Detection of Blind spotsAnd early gastric cancer 1050 patients

Ueyama et al[59], 
2021

Retrospective ME-NBI Differentiation of cancerous areas from non-cancerous 
areas

2300 images

Ling et al[48], 2021 Retrospective ME-NBI Differentiation status and margins for EGC 139 + 58 + 87 EGCs

Ikenoyama et al[46], 
2021

Retrospective WLI, CE, NBI Detection of cancer 140 lesions

Hu et al[68], 2021 Retrospective ME-NBI Detection of cancer 295 lesions

Oura et al[60], 2021 Retrospective WLI Missing GC and point out low-quality images 855 lesions + 50 
lesions

Zhang et al[61], 2021 Retrospective WLI Detection of cancer 1091 images

Wu et al[51], 2021 Prospective WLI Screening gastric lesions 10000 patients

Hamada et al[69], 
2022

Retrospective WLI, CE, BLI Depth of invasion of EGC 68 patients

Nam et al[47], 2022 Retrospective WLI Lesion detection, differentiation and depth 1366 patients

Wu et al[49], 2022 Prospective ME-NBI GC and EGC detection, EGC invasion depth and differ-
entiation status

BLI: Blue laser imaging; CE: Color enhancement; EGC: Early gastric cancer; ME-NBI: Magnification endoscopy; NBI: Narrow-band imaging; WLI: White 
light imaging.

and gastric ulcer was 45.9% (GC: 100%, gastric ulcer 0.8%) and 95.9% (GC: 99.0%, gastric ulcer 93.3%), 
respectively, at the lesion level. The A-CNN system can effectively classify GC and gastric ulcer. Yu et al
[36] explored the diagnostic capacity of the CNN system with ME-NBI to distinguish EGC from 
gastritis. CNN accuracy with ME-NBI images was 85.3% (220 of 258 images correctly diagnosed). Rates 
of sensitivity, specificity, PPV, and negative predictive value (NPV) were 95.4%, 71.0%, 82.3%, and 
91.7%, respectively. In total, 7 of 151 EGC images were identified as gastritis, while 31 of the 107 gastritis 
images were recognized as EGC. The overall test speed was 51.83 images/s (0.02 s/image). CNN with 
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Table 2 Endpoints of the extracted studies

Ref. Main outcome

[45,53,54,69] Accuracy rate of diagnosing the depth of wall invasion of gastric cancer

[64] Detection rate of gastric cancer 

[63] Identification rate of cancerous lesions, reddened lesions and surrounding tissue

[48,62,65] Detection rate of early gastric cancer and its margins

[14] Identification rate of gastric cancer and gastric ulcer

[50] Identification rate of advanced gastric cancer, early gastric cancer, high grade dysplasia, low grade dysplasia and non-neoplasm

[46,51,55,57,59,60,
66,68] 

Detection rate of early gastric cancer

[56] Detection rate of early gastric cancer and its localization. Accuracy rate of diagnosing the depth of wall invasion of gastric cancer

[58] Identification rate of early gastric cancer, advanced gastric cancer and benign gastric ulcer

[67] Identification rate of early gastric cancer and gastritis

[52] Identification rate of early gastric cancer and number of blind spots

[61] Identification rate of early gastric cancer and other gastric lesions (high grade dysplasia, peptic ulcer, advanced gastric cancer, gastric 
submucosal tumors and normal gastric mucosa)

[47] Identification rate of early gastric cancer, advanced gastric cancer and benign gastric ulcer. Accuracy rate of diagnosing the depth of 
wall invasion of gastric cancer

[49] Detection rate of early gastric cancer. Accuracy rate of diagnosing the depth of wall invasion of gastric cancer

Figure 1  The multilayer system in the diagnosis of early gatric cancer.

ME-NBI can differentiate between EGC and gastritis with high sensitivity and NPV in a short period of 
time. Thus, the A-CNN system can complement current clinical practice of diagnosis with ME-NBI.

Nam et al[47] have developed and validated CNN-based AI models for lesion detection, differential 
diagnosis (AI-DDx), and depth of invasion (AI-ID; pT1a vs pT1b among EGC). AI-DDx is comparable to 
experts and outperforms novice and intermediate endoscopists in the differential diagnosis of gastric 
mucosal lesions. AI-ID performs better than endoscopic ultrasound to assess depth of invasion. Ling et 
al[48] have developed a system to identify in real time with precision with ME-NBI the state of differen-
tiation and delineate the margins of the EGC, fundamental to determine a surgical strategy and achieve 
the curative resection. In the unprocessed videos of EGC, the system obtained a real-time diagnosis of 
EGC differentiation and its margins ME-NBI endoscopy. This system has achieved higher performance 
than experts and has been successfully tested in real EGC videos.

Zhu et al[54] represented a further step forward because they developed an algorithm capable of 
differentiating lesions with Sm2 invasion depth from m/Sm1. AI has presented 76% sensitivity and 96% 
specificity in identifying “Sm2 or deeper” cancers, resulting in significantly higher sensitivity and 
specificity than those achieved through visual inspection of endoscopists. The specificity of 96% could 
minimize the overdiagnosis of invasion, which would contribute to a reduction of unnecessary surgeries 
for m/Sm1 cancers.

Wu et al[52], in a prospective multicenter randomized controlled trial, developed a CNN system to 
monitor blind spots during esophagogastroduodenoscopy, updating the previous system 
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(ENDOANGEL), verifying efficacy in improving endoscopy quality, and pretesting performance in 
detecting EGC.

Ultimately, AI is even superior to endoscopists experienced in identifying and classifying ECC, 
eliminates interobserver variability, and can train inexperienced endoscopists. Yet, it must optimize the 
ability to recognize all lesions (PPV) and not interpret the inflammatory or benign aspects of the mucosa 
as neoplastic (NPV). Over time, CAD systems have improved image selection strategies with strict 
criteria, using high-quality data and videos, and eliminating overlearning and misdiagnosis. Videos 
improve the performance of AI[55] because they represent real-life scenarios, and compared to static 
images improve PPV and NPV. Regarding the selection of images, gastritis, that is, the presence of 
inflammation, reduces the performance of AI[14] and endoscopists[70]. The small (diameter ≤ 5 mm) 
and depressed EGCs, difficult to distinguish from gastritis even for experienced endoscopists, influence 
the rate of false negatives; and gastritis with redness, atrophy and intestinal metaplasia affects the rate 
of false positives. In dedicated studies, CAD systems detect Helicobacter pylori (H. pylori) infection 
(sensitivity 89%, specificity 87% and diagnostic time 194 s)[71,72], but, regarding the diagnosis of EGC 
with AI sistems, we propose to evaluate the gastric mucosa after the eradication of H. pylori to reduce 
the intensity of redness of gastritis.

Integrating in appropriate algorithms, through the intersection of engineering and medical expertise, 
high-quality image sets, poor images, and images from regular sites, will increase clinical effectiveness. 
Moreover, the products obtained through collaboration among centers specialized in the diagnosis and 
treatment of gastric lesions are reproducible and the limitation in applying AI to the diagnosis of EGC is 
the acquisition of new technologies, which requires investment. Finally, prospective multicenter trials 
are needed.

CONCLUSION
The application of AI to the clinical practice of the upper digestive tract increases the rate of EGC 
compared to all GCs, exceeding the subjectivity of the diagnosis and reducing the chance of missing 
EGCs. AI recognizes those lesions that not even the most experienced endoscopists can detect, as if 
“illuminating” the images with its third artificial eye. Of course, AI increases the accuracy of endoscopic 
diagnosis of EGC, especially when combined with the experience of endoscopists. However, since its 
introduction in this field is very recent, the results in clinical practice must be further validated, 
considering all possible aspects, both technical and technological concerning endoscopy, and organiza-
tional ones.
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Abstract
BACKGROUND 
In their everyday life, clinicians face an overabundance of biological indicators 
potentially helpful during a disease therapy. In this context, to be able to reliably 
identify a reduced number of those markers showing the ability of optimising the 
classification of treatment outcomes becomes a factor of vital importance to 
medical prognosis. In this work, we focus our interest in inflammatory bowel 
disease (IBD), a long-life threaten with a continuous increasing prevalence 
worldwide. In particular, IBD can be described as a set of autoimmune conditions 
affecting the gastrointestinal tract whose two main types are Crohn’s disease and 
ulcerative colitis.

AIM 
To identify the minimal signature of microRNA (miRNA) associated with 
colorectal cancer (CRC) in patients with one chronic IBD.

METHODS 
We provide a framework of well-established statistical and computational 
learning methods wisely adapted to reconstructing a CRC network leveraged to 
stratify these patients.

RESULTS 
Our strategy resulted in an adjusted signature of 5 miRNAs out of approximately 
2600 in Crohn’s Disease (resp. 8 in Ulcerative Colitis) with a percentage of success 
in patient classification of 82% (resp. 81%).

https://www.f6publishing.com
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CONCLUSION 
Importantly, these two signatures optimally balance the proportion between the number of 
significant miRNAs and their percentage of success in patients’ stratification.

Key Words: Inflammatory bowel disease; microRNA; Muti-group comparison; Machine learning; Colorectal 
cancer; Sparse partial least squares-discriminant analysis

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This study provides an optimised strategy based on classic learning methods and multi-group 
variable selection combination from 2600 microRNAs of 225 patients with one chronic inflammatory 
bowel disease to identify the minimal signature of microRNAs associated with the development of 
colorectal cancer in these patients.

Citation: Abaach M, Morilla I. Learning models for colorectal cancer signature reconstruction and classification in 
patients with chronic inflammatory bowel disease. Artif Intell Cancer 2022; 3(2): 27-41
URL: https://www.wjgnet.com/2644-3228/full/v3/i2/27.htm
DOI: https://dx.doi.org/10.35713/aic.v3.i2.27

INTRODUCTION
The emergence of high-through experiments, image-based analysis and massive sequencing techniques
[1-3] has disrupted the way clinicians make decision on a disease therapy. Now the usage of the grade 
of expertise in their respective do- mains to decide a treatment, frequently considered as a subjective 
evaluation, is strengthened by an overwhelming capability of support. However, this overabundance of 
available information does not make their task that straightforward. In this context, the use of 
interpretable mathematical methods can decipher the underlying complexity of data, generating 
systemic hypothesis that really help practitioners with their treatment outcomes. In this study, we 
introduce a learning framework based on a combination between unsupervised hierarchical clustering 
and weakly supervised classification approaches. These methods are applied to the analysis of a pool 
with approximately 6000 miRNAs extracted from biopsies of 216 inflammatory bowel disease (IBD) 
patients with and without colorectal cancer (CRC).

IBD consist of various disorders that cause prolonged inflammation of the digestive tract. Its 
prevalence rises more and more in the western developed countries[4] largely affecting their health-care 
systems. Besides that fact, the treatment of such disorders requires an early assessment of the response 
to the medical treatment[5]. Thus, the finding of a reduced signature optimally predicting the strata a 
patient will be lying on is of paramount importance during therapy. The main goal of our methodology 
is using the above approaches to reconstructing a minimal network that stratifies patients with a chronic 
IBD[5,6] having developed CRC as indicated in[7,8].

Unsupervised hierarchical clustering[5] is a robust method successfully used in the comparison of 
more than two groups. Particularly, this method enables the identification of biologically meaningful 
biomarkers, i.e. miRNAs, reducing significantly the amount of data in the study. Powered by parse 
partial least squares discriminant analysis (sPLS-DA) this signature becomes minimal[9] in the 
description of the required CRC network in IBD. And the later application of random forests (RF)[10] 
and support vector machines (SVM)[11,12] to the adjusted signature of selected miRNAs ensures the 
classification of patients is less sensitive to data heterogeneity. Regarding the calibration of classifiers, 
the performance of each algorithm is assessed by means of leave-one-out (LOO) cross validation[13] and 
their confusion matrices[14]. Overall this methodology shortens clinicians’ efforts, enhancing a reduced 
set of important features and avoiding unnecessary time delays prior to make any decision on the 
course of a disease therapy.

Motivation
There exist intra patient differences in miRNA expression between the inflammatory and healthy tissue, 
between the healthy tissue of an inflammatory and non-inflammatory patient and between the healthy 
tissue of a cancer and non- cancer colic patient. We want to identify a minimal miRNA profile of 
developing or not cancer in patients with a chronic inflammatory bowel disease. In other words, a 
miRNA profile of healthy tissue from patients with chronic IBD with (case) vs without cancer (control). 
In that way, provided a specific miRNA profile is of interest, this one could be prospectively validated, 
and its predictive marker maybe also developed. Ultimately, this would allow clinicians to in- crease the 
diagnosis colonoscopy pace in IBD patients where a miRNA profile of risk is detected and conversely 

https://www.wjgnet.com/2644-3228/full/v3/i2/27.htm
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decreasing that pace in patients tagged as at lower risk.

MATERIALS AND METHODS
Samples and mi RNA extractions
Patients were recruited from various public French hospitals for this study. Our sample consists of 225 
IBD patients with 75 cases developing dysplasia in colon. These cases matched with 150 controls, i.e., 
patients with IBD who did not develop dysplasia, yielding a total ratio of 1 case for each 2 controls. The 
extraction of 6609 miRNAs in each sample resulted from the biopsies of 216 quantified patients. A 
posteriori, 10 out of these 216 patients were discarded because of their difficulty in extracting miRNAS.

Biological variability
At least 40 biopsies were extracted from each sample during diagnostic chromo-endoscopies in IBD. The 
anatomopathological grading of inflammation described in[15,16] is adopted on the Hematoxylin Eosin 
Saffron slide of each sample. To not get affected the miRNA signature by a mucosa inflammation, only 
the healthy mucosa (non-inflammatory nor dysplastic) corresponding to the grade 0 in GOMES classi-
fication was collected. Finally, the absence of histological inflammatory lesion in the mucosa has been 
considered in preference to the colic segments.

Quality control
Following the Affymetrix hybridisation standards[17], the intensity of miRNA was log2-transformed 
(Supplementary Figure 1). A first quality control on all miRNA was performed using a principal 
component analysis (PCA). PCA by[18] allows transforming a set of correlated data, herein their 
intensity in the gene-chip of Affimetrix GeneChip miRNA 4.0 chips, in a new data set, uncorrelated, by 
following the top ranked principal components. These components are used as axes of a new space 
where detect patients with an ambiguous score of intensity, i.e., those intensity outputs generated by 
unsuitable experimental condition, and exclude them all. Just after one of the two RNA strands becomes 
functional the miRNA is prepared to participate in intricate biological processes within the cell. This 
maturation process leads the miRNA to a “steady-state” that provides a more valuable biological 
information. Thus, we opted for considering only mature transcript miRNAs defined in[19], noted by 
MIMAT, in the completion of this study. Those transcripts amount to 2578 miRNAs in total. In addition, 
miRNAs with an average intensity > 8 were also removed being considered as outliers of the overall 
expression profile.

Technical variability
The Affymetrix Genechip 4.0 encompasses around 36000 probes, more than 6000 of which are humans 
(each probe corresponds to a complementary sequence of nucleotides). Details on each miRNA and 
sample are provided by the Affymetrix database. The intensity values of 6609 miRNAs are considered 
from the 216 patients. Notably, both the RNA extraction and the miRNA technical analysis were 
performed twice with similar library sizes (see Supplemental Material) detecting a very low bias attrib-
utable to a defective sample collection or a poor miRNA quality.

STATISTICAL LEARNING ANALYSIS
Reconstruction of the miRNA signature
Differential expression using general linear models: A first signature of differentially expressed (DE) 
miRNAs is inferred from general linear models implemented in the limma R-package[20]. During this 
process we estimate variance for other miRNAs, weight to incorporate unequal variations in data, and 
pre-process to reduce noise.

Multiclass DE analysis: The signature identified by linear models returned an amount of miRNAs 
larger than expected to be considered in practice as biologically significant. We decided, then, to reduce 
the size of miRNA signature by means of a multi-group comparison strategy. Firstly, we cal- culated the 
mean expression of each miRNA according to the four analysed groups [i.e., Ulcerative colitis (UC) and 
Crohn’s disease (CD) cases and controls respectively]. Next, we construct the tree related groups. Thus, 
we assume an underlying tree structure to compare groups based on recursive binary splits along the 
tree. Then each mean expression was compared, using a simple t test as in[21]. Any miRNA with a 
significant t test (i.e., threshold = 0.005) was included in the final model.

We propose different strategies to test in pairwise all the possible combinations of groups: (1) Use the 
CD patients or the UC patients exclusively; and (2) Use each one of the groups to construct the tree 
(Figure 1 and Table 1): (1) Strategy 1: Comparison between the CD controls and the three remaining 
leaves (UC controls, CD cases and UC cases), then UC controls compare to CD cases and UC cases, etc.; 

https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
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Table 1 Possible comparisons to be made during the unsupervised (i.e., we do not rely on the type of disease) global analysis of 
patients following the considered three different strategies

Strategy Comparison

1 vs (2,3,4)

2 vs (3,4)

Strategy 1 (classic)

3 vs 4

1 vs 2; 1 vs 3; 1 vs 4

2 vs 1; 2 vs 3; 2 vs 4

3 vs 1; 3 vs 2; 3 vs 4

Strategy 2 (1&1)

4 vs 1; 4 vs 2; 4 vs 3

1 vs (2,3,4)

2 vs (1,3,4)

3 vs (1,2,4)

Strategy 3 (pairwise)

4 vs (1,2,3)

Figure 1 Pairwise leaves comparison to be tested. Hierarchical structure amounts to strategy 1 while horizontal and bottom arrows describe strategies 2 
and 3 respectively. Highlighted in red, green, blue, and black the 4 possible comparisons amongst group of patients. UC: Ulcerative colitis; CD: Crohn’s disease.

(2) Strategy 2: Comparison between each leaf and the others; CD controls compare to UC controls, CD 
cases and UC cases, then UC controls compare to CD controls and cases, and UC cases, and so on; and 
(3) Strategy 3: Comparison among leaves one by one; CD controls compare to UC controls, then CD 
controls compare to CD cases, and so on.

Upon setting the methodology, we analyse two related data set in tandem. Initially, we applied the 
method only to the miRNA labeled as MIMAT; to repeat the same approach, on a second occasion, with 
a set of 152 miRNAs previously selected by sparse PLS Discriminant Analysis (sPLS-DA).

In brief, PLS is an exploratory variable selection technique successfully proven in classification[22]. In 
particular, the sPLS-DA[9] is an extension of PLS applied in multi-class classification. It selects the most 
discriminant variables to classify patients, using Lasso penalization. By means of the mixOmics R 
package[23] three components of miRNAs were identified to predict cancer in all patients. The number 
of selected variables for each of the three components was chosen based on the lowest average balanced 
classification error rate with centroids after tuning of the sPLS-DA model using the selected number of 
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components and 5-fold cross-validation with 10 repeats. The linear programming problem associated 
with sPLS-DA may be succinctly described as:

Where  ,  is applied component-wise in the vector 

 (i.e., the left singular vector from the Singular Value Decom-
position (SVD) of the miRNA matrix expression M) and acts as the relaxed thresholding function that 
scales the Lasso penalty functions[24]. Thus, λ is the penalization parameter to tune.

Each sPLS-DA axe is constructed by a convex linear combination of a miRNA. Hence, the coordinate 
of any given patient on that axe is described by:

Then applying the majority vote criterion, any given individual having been calculated to have a 
probability > 0.5 in at least 2 out of 3 PLS-DA axes is considered misclassified.

Classification of patients
In an early exploratory classification, we based our results on the Euclidian distance of miRNA 
intensities across patients. Nevertheless, the high sensitivity of the Euclidean-based norm to hetero-
genous data and non-linearity produced a poor classification (Supplementary Figure 2). Anyway, this 
first classification definitively clued us in on the miRNA signature’s optimisation. Next, to prevent the 
non-linear effect of our measurements in classification, we contemplated the employment of learning 
methods. Thus, the main purpose random forests and support vector machines pursue is the re-
construction of a minimal CRC network that could lead to optimally stratify the IBD patients evaluating 
the associated miRNA signature. These two methods are powerful tools to predict patients developing 
CRC that perform well in different classification issues. Briefly, RF is a machine learning method for 
classification based on decision tree and probabilities, introduced in[10], whereas SVM is a strong 
classifier with the aim of finding the optimal separation hyperplane of data by maximising the margin
[25]. A total of 5,000 trees were conducted for RF analysis. The SVM was implemented using a linear 

kernel, i.e.,  with bandwidth and including soft-regularisation with 
Sequential Minimal Optimization (SMO) as solver to find the optimal hyperplane well separating 
classes. The general out- put of a binary SVM classifier can be computed by the following expression:

where αi ≥ 0 are Lagrangian multipliers obtained by solving a quadratic optimisation problem, b is the 
bias, and K is the above defined kernel function. We evaluated the performance of each patient’s classi-
fication using cross-validation with the LOO method. The RF classification was performed using the 
randomForest function of the random-Forest R-package[26]. Complementary, the variable importance 
(VIMP) of each miRNA for RF[27] was also calculated using the varImp and varImpPlot functions of the 
same pack- age. The Matlab© classification app implemented the SVM analysis and results are 
confirmed using svm function of the e1071 R-package.

Performance evaluation of classification methods
We evaluate how optimal a miRNA signature is by means of its confusion matrix, using the confusion-
Matrix function of the caret R-package[28], and the so-called Receiver Operating Characteristic (ROC) 
curve along the calculus of its area under curve (AUC) using the plotROC R-package[29]. Percentage of 
true classification, sensibility, specificity, and the AUC were also calculated for each strategy using these 
two packages.

In summary, all the calculations of the statistical learning analysis were implemented using in-house 
scripts based on R and Matlab© (2014a, The MathWorks Inc., Natick, MA), and figures were depicted 
with ggplot2 R-package.

RESULTS
A previous work of denoising is required if we want to reduce possible issues of bias and overfitting in 
our algorithms. Thus, the analysis was performed on 206 patients; excluding 4 patients considered as 
outliers, and 6 unmatched controls with cases. In addition, 101 miRNAs were removed since their 
expression was higher than 8. These miRNAs highly influenced to broke inconsistently down large 
clusters in the construction of tree and though considered as outliers. Yet, note that the unsupervised 
clustering can be biased by the lack of linearity in data. Hence, the way we use the hierarchical classi-
fication is limited to track a definite signature trend to be further learned by more robust methods. The 
best result was always obtained by the strategy 1. For clarity, we only show those results yielded by 

https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
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Table 2 Summary of patients’ classification predicted by random forests/support vector machines respectively. From left to right: 
Group of patients, amount of selected miRNA, percentage of success in true positive classification, sensitivity, specificity and their 
area under the curve

Methods Nº miRNA % True classification 
(95%CI) Sensitivity Specificity AUC

All miRNA

Strategy 1 56 69 (62-75)/69 (62-75) 0.25/0.43 0.93/0.83 0.76/0.74

CD 9 87 (78-93)/86 (77-92) 0.70/0.73 0.96/0.93 0.89/0.92

UC 30 72% (63-80)/76 (67-83) 0.45/0.55 0.86/0.87 0.77/0.81

miRNAs selected by sPLS-DA

Strategy 1 11 69 (62-75)/68 (62-75) 0.36/0.36 0.87/0.86 0.72/0.74

CD 5 80 (70-88)/82 (67-86) 0.67/0.60 0.87/0.87 0.84/0.86

UC 8 73 (64-80)/81 (73-88) 0.48/0.57 0.86/0.93 0.73/0.81

AUC: Area under curve; CD: Crohn’s disease; UC: Ulcerative colitis.

Table 3 All patients contingence matrix of the 56-selected miRNAs by means of random forests and support vector machines methods

Predicted by RF Predicted by SVM

Cases Controls Cases Controls

True Case 18 54 31 41

Controls 10 124 23 111

RF: Random forests; SVM: Support vector machines.

means of this strategy. We address to supplemental material for further details on the other two 
remaining strategies (Supplementary Figures 3-5 and 7-8). Naturally, the performance of this approach 
depends on each initial tree re- construction. The Table 2 summaries patients classification performed by 
all the methods using the strategy 1.

The overall signature associated with CRC
A priori, one would expect to find here a tree with two well separated branches making distinction 
between CD and UC patients. Nevertheless, the tree this first comparison returned describes a structure 
composed of three branches that mixes up cases with controls. Hence, the primary leaf groups the CD 
cases, the second one binds UC cases together, whereas the third leaf consists of control patients. See 
Supplementary Figure 1 to visualise the tree corresponding to the analysis of all the IBD patients.

Strategy 1: When this first strategy is considered, we are able to identify 56 miRNAs whose expression 
is differential between the CRC cases and controls. Those miRNAs are potentially good candidates to be 
associated with a CRC network that can achieve an optimal stratification of patients. A heatmap 
enhancing these miRNAs are depicted below in Figure 2. However, data heterogeneity and non-
linearity negatively influence the measures captured by our multi-class strategy producing a poor strati-
fication performance when re- constructing the sought minimal CRC network. To overcome such an 
obstacle, we keep using the selected miRNAs, but applied to classifiers such as RF and SVM which are 
more robust in presence of non-linear heterogeneous data. This combination enables better learning 
how patients stratify according to CRC. In that way, we attained to correctly classify the 69% of patients 
by means of RF and using linear SVM (see Table 2 and Figure 2B and C). However, the SVM 
performance overtakes at large that one given by RF in every case of patient stratification. Notice the 
large number of selected miRNAs in this first analysis. For clarity, the VIMP analysis shown in 
Supplementary Figure 6A only discloses the top 30 miRNA. The results obtained in the performance of 
patients’ classification is represented as a confusion matrix in Table 3. In general control patients were 
correctly classified, but a remarkable number of cases was muddled with controls. This situation can be 
explained by the, pointed out in the literature, divergent genetic source of the two types of IBD. The 
ROC curve displayed in Figure 2B and C reported sensitivity-specificity ranges of 0.25-0.93 and 0.43-0.83 
associated with RF and SVM respectively (Table 2).

https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
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Figure 2 All patients hierarchical and leaning performance. A: Heatmap of the 56- selected miRNA intensity. Colour corresponding to the status of the 
patients: Purple: Ulcerative colitis patients; light blue: Crohn’s disease patients; green: cases and yellow: Controls; B: Receiver operating characteristic curve for the 
classification using random forests analysis; C: Using L-SVM models for the 56 selected miRNA. AUC: Area under the curve.

Constructing the local signature of CD patients
For this analysis we provide a sample data composed of 85 patients with CD, whose 30 are cases and 55 
controls. As observed in panel (A) of Figure 3, we detect 9 miRNAs differentially expressed between 
cases and control in CD patients. But the use of the Euclidian distance misleads their percent- age of 
classification as occurred in the previous case-control study. The results obtained by the above indicated 
RF and SVM learning methods may be observed in Figure 3B and C and Table 2. The variable 
importance of each miRNA is also considered to simplify the calibration of the RF models (data not 
shown, see Supplementary Figure 6B). Moreover, their associated sensitivity-specificity ranges are 0.70-
0.73 and 0.96-0.93 to RF and SVM respectively (Table 2). With these selected miRNAs, patients are 
correctly classified in the 87% and 86% of cases. These percentages are also shown in terms of a 
confusion matrix in Table 4. The adopted non supervised - supervised strategy returns rather good 
candidates to conform the network associate to CRC in IBD also providing the signature with an 
accurate predictive ability.

https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
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Table 4 Contingence matrix of the 9-selected miRNA and random forests methods for Crohn’s disease patients

Predicted by RF Predicted by SVM

Cases Controls Cases Controls

True Case 21 9 22 4

Controls 2 53 8 51

RF: Random forests; SVM: Support vector machines.

Figure 3 Crohn’s disease patients hierarchical and leaning performance. A: Heatmap of the 9-selected miRNA intensity. Colour corresponding to the 
status of the patients: Purple: green: Cases and yellow: Controls; B: Receiver operating characteristic curve for the classification using random forests analysis; C: 
Using L-SVM models for the 9 selected miRNA. AUC: Area under the curve.

The local signature of UC patients
To identify a significant signature of UC patients we analysed a data set of 121 individuals. These 
patients are distributed in 42 cases and 79 controls respectively. Upon applying the previous approach 
to these samples, a signature of 30 miRNAs differentially expressed between cases and control in UC 
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was detected. The results derived from this calculation are plotted below in Figure 4.
As occurred with the two previous results, see Figure 2 and Figure 3, the presence of data hetero-

geneity hampers a right classification of patients when using the Euclidean norm across the expression 
profile of the detected 30 miRNAs. Additionally, the classification results yielded by the two learning 
methods used in this work are displayed by their ROC curves in Figure 4B and C. These curves attain a 
sensitivity-specificity ranges of 0.45-0.86 and 0.55-0.87 to RF and SVM respectively. And the miRNAs 
selected by multiple comparison of the annotated miRNAs achieved a percentage of success in classi-
fication of 76% across the mean expression of each group of patients. These amounts are slightly lower 
than in CD patients. Such a drop can be explained by a more scatter matching distribution among UC 
patients as well as a greater control-case ratio. The confusion matrix corresponding to this calculation is 
introduced above in Table 5.

Minimising the size of the overall signature by parse PLS discriminant analysis
Despite the relative low size of the prognostic signature identified so far, we wonder if it was possible to 
minimise the amount of miRNAs involved in the analysis without harming the overall classification 
performance. The statistical robustness of the parse PLS Discriminant Analysis in supervised feature 
selection makes us to consider its application before performing the unsupervised hierarchical 
clustering introduced in methods. The stratification of all patients is plotted in Figure 5A while 
Figure 5B describes the diseases tree architecture. The synergy between the two complementary 
statistical methods, supervised later unsupervised, still allow us to conclude the predictive power of the 
miRNAs minimal signature associated with CRC in IBD.

Reconstructing the overall signature: After having applied the proposed sPLS-DA to the miRNAs, the 
reconstruction of the tree structure based on the multi-class comparison strategy 1 improved the 
previous classification of patients between clusters (Figure 5B). The analysis of patients following such 
architecture resulted in a final signature composed by 11 miRNAs. Hence, these selected miRNAs 
correctly classified the 69% and 68% of cases (RF and SVM respectively). Both percentages are similar in 
accuracy to those obtained without the use of sPLS-DA, but with a signature consisting of only 11 out of 
initial 56 miRNAs. Nevertheless, the effect of the genetic drift of CD and UC origin could not have been 
prevented. We also provide the overall performance of the methods as a confusion matrix in the Table 6. 
For further details on the variable importance of this signature in the RF calculation see supplemental 
information (Supplementary Figure 9A).

Reconstructing the local signature of the CD patients: In this analysis 5 miRNAs were selected with 
the recursion cluster for CD patients. The SVM allows a better classification of true patients in the 82% 
of cases, and particularly the controls patients. The RF and SVM performances along their feature 
selection refining are presented in Figure 6B. See supplemental material for details on variable 
importance for each miRNA (Supplementary Figure 9B) of the RF computation. We also obtain their 
patients classification in a confusion matrix presented in Table 7. The accuracy and sensitivity are 
consistent with the above percentage of classification in CD patients reducing the signature in 4 
miRNAs up to a final figure of 5 predictive profiles.

Reconstructing the local signature of UC patients: The overall signature of UC patients after making 
use of sPLS-DA was composed of 8 miRNAs. We also calibrated models by feature selection of these 
miRNAs, which results are shown in the Figure 6C. The attained percentage of success goes to the 81% 
upon computation of a SVM model across UC samples what improved the RF performance as had 
already occurred with previous counterpart calculations. For further details on the RF analysis see 
Supplementary Figure 9C. Strikingly the use of sPLS-DA enabled reducing the quantity of miRNAs 
required to predict UC patients developing or not CRC from 30 to 8 while increasing in a 5% the 
percentage of success. This may be due to the detection and later removal of features largely 
contributing to the dispersal form of the matching distribution among UC patients. Finally, the 
confusion matrix corresponding to this miRNAs signature is described below in Table 8.

DISCUSSION
The soundness of the signature has been improved accordingly to the incremental combination of 
learning methods presented in this study until attaint a sensitivity of 73% in CD and 57% in UC with a 
specificity of 87% and 93% in CD and UC respectively (see Table 2). These results are depending on the 
assumption of an initial hierarchical tree structure. The usage of PLS-DA decreases a bit its global 
sensitivity but gaining more in CRC signature optimisation. Noteworthy, the final overall signature is 
composed by only 5 miRNAs in CD and 8 in UC. These miRNAs are molecules extremely resistant and 
highly preserved. In general, low percentages of true classification are obtained is no difference on 
disease type is made on the IBD patients. This is in accordance with previous works that suggest the 
genetic divergence between CD and UC. However, if we consider the two types of the disease 
separately, the aim of classifying false controls, i.e., controls with a closer profile to cases and 

https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
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Table 5 Contingence matrix of the 30-selected miRNA and random forests methods for Ulcerative colitis patients

Predicted by RF Predicted by SVM

Cases Controls Cases Controls

True Case 19 23 23 19

Controls 11 68 10 69

RF: Random forests; SVM: Support vector machines.

Table 6 Contingence matrix of the 11-selected miRNA and random forests methods for all patients

Predicted by RF Predicted by SVM

Cases Controls Cases Controls

True Case 27 45 26 46

Controls 18 116 19 115

RF: Random forests; SVM: Support vector machines.

Table 7 Contingence matrix of the 5-selected miRNA and random forests methods for Crohn’s disease patients

Predicted by RF Predicted by SVM

Cases Controls Cases Controls

True Case 20 10 20 10

Controls 7 48 5 50

RF: Random forests; SVM: Support vector machines.

Table 8 Contingence matrix of the 9-selected miRNA and random forests methods for Ulcerative colitis patients.

Predicted by RF Predicted by SVM

Cases Controls Cases Controls

True Case 20 22 24 18

Controls 11 68 5 74

RF: Random forests; SVM: Support vector machines.

monitoring whether those samples are developing cancer can be approached now. Indeed, the 
introduced methodology would allow us to provide the identified molecular signature with predictive 
power. Additionally, the eventual availability of a second independent cohort could improve possibly 
the precision of results. Thus, we claim that in any case a clinician having this information will 
potentially benefit from an accurate prediction tool of prognosis rather than only using his or her own 
experience-based criteria[30,31]. This clinical scenario enhances the paramount importance of statistical 
learning-based applications in clinical practice since CRC is a feared life-threatening factor among 
patients with IBD[32,33]. In particular, the analysis of eventual miRNAs signatures associated with CRC 
in patients with IBD has been successfully proven previously in such contexts[34-36]. That way, these 
methodologies will contribute to shorten unnecessary delays prior to make any decision on a proper 
therapy in individuals with a IBD developing CRC[37,38].

CONCLUSION
In this study we provide a wise combination of statistical learning methods for patients’ stratification 
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Figure 4 Ulcerative colitis patients hierarchical and leaning performance. A: Heatmap of the 30-selected miRNA intensity. Colour corresponding to the 
status of the patients: Purple: Green: Cases and yellow: Controls; B: Receiver operating characteristic curve for the classification using random forests analysis; C: 
Using L-SVM models for the 30-selected miRNA. AUC: Area under the curve.

based on biologically meaningful characteristics, and its application in IBD based on a minimal miRNA 
network associated with CRC is demonstrated. The time constraint affecting the assessment of the 
response to the medical treatment indicates the interest of our method in improving the classification 
accuracy, minimising the signature of miRNAs required in the IBD patients’ stratification, and avoiding 
unnecessary time delays. The findings are also consistent with the physio-pathological knowledge. 
Comparison with other existing classifying method shows that SVM makes our method yields better 
mean performances, using a reduced miRNA signature and reporting a much lower sensitivity to data 
heterogeneity. The application of the proposed method to a multi-class classification further points out 
the robustness and efficiency of our strategy particularly in the CD and UC group of patients. 
Additionally, the use of parse PLS Discriminant Analysis is also concluded for a minimal signature with 
accurate enough performances. In the next future, we will combine this method with other approaches 
such as deep learning methods enabling more intricate relationships between the elements of the 
signature and possibly another robust clinical data. Finally, we are convinced our methodology will be 
also instrumental for other diseases broadening the general framework herein provided.
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Figure 5 Partial least squares discriminant analysis base. Left-hand side panel: Patient-control stratification (i.e. orange-blue) in three dimensional view 
with 152 miRNAs; Right-hand side panel: Classification tree with the 152 miRNAs selected by sPLS-DA.

Figure 6 Final performance of each reconstructed sub-signature. A: Receiver operating characteristic curve amounts to all patients learned classification 
by a signature corresponding to 13 selected miRNA; B: Similarly to the Crohn’s disease patients classification of 5 selected miRNA; C: Ulcerative colitis patients 
classified according to 9 selected miRNA.

ARTICLE HIGHLIGHTS
Research background
Face the overabundance of information, it is not easy to clinicians discriminating amid biological 
indicators that potentially could be helpful during an inflammatory bowel disease (IBD) disease 
therapy.

Research motivation
There exist intra patient differences in miRNA expression between the inflammatory and healthy tissue, 
between the healthy tissue of an inflammatory and non-inflammatory patient and between the healthy 
tissue of a cancer and non- cancer colic patient. We want to identify a minimal miRNA profile of 
developing or not cancer in patients with a chronic inflammatory bowel disease. In other words, a 
miRNA profile of healthy tissue from patients with chronic IBD with (case) vs without cancer (control). 
In that way, provided a specific miRNA profile is of interest, this one could be prospectively validated, 
and its predictive marker maybe also developed. Ultimately, this would allow clinicians to in- crease the 
diagnosis colonoscopy pace in IBD patients where a miRNA profile of risk is detected and conversely 
decreasing that pace in patients tagged as at lower risk.

Research objectives
In this scenario, the identification of an optimal signa- ture, for example composed by microRNA 
(miRNA), associated with colorectal cancer (CRC) in patients with one chronic IBD is of vital 
importance.
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Research methods
We provide a framework of well-established statistical learning methods (i.e., RF, SVM, PLS-DA, ...) 
wisely adapted to reconstructing a CRC network leveraged to stratify these patients.

Research results
Our strategy provides an adjusted signature of 5 miRNAs with a percentage of success in patient classi-
fication of 82% in Crohn’s disease (resp. 81% in Ulcerative Colitis).

Research conclusions
The application of the proposed method to a multi-class classification further points out the robustness 
and efficiency of our strategy particularly in the CD and UC group of patients. Additionally, the use of 
parse PLS Discriminant Analysis spots a minimal signature with accurate enough performances.

Research perspectives
In the next future, the combination of this method with deep learning models will enable more intricate 
relationships between the elements of the signature and possibly another robust clinical data. Finally, 
we are convinced our methodology will be also instrumental for other diseases broadening the general 
framework herein provided.
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