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Abstract
Accurate and rapid diagnosis is essential for correct treatment in rectal cancer. 
Determining the optimal treatment plan for a patient with rectal cancer is a 
complex process, and the oncological results and toxicity are not the same in 
every patient with the same treatment at the same stage. In recent years, the 
increasing interest in artificial intelligence in all fields of science has also led to the 
development of innovative tools in oncology. Artificial intelligence studies have 
increased in many steps from diagnosis to follow-up in rectal cancer. It is thought 
that artificial intelligence will provide convenience in many ways from 
personalized treatment to reducing the workload of the physician. Prediction 
algorithms can be standardized by sharing data between centers, diversifying 
data, and creating big data.

Key Words: Rectal cancer; Artificial intelligence; Deep learning; Machine learning
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Core Tip: There is a growing interest in the application of artificial intelligence in 
healthcare to improve disease diagnosis, management, and the development of 
effective treatments. Considering the large number of patients diagnosed with rectum 
cancer and a significant amount of data, artificial intelligence is an important tool to 
improve diagnosis and treatment, follow-up in rectal cancer, develop personalized 
medicine, improve the quality of life of patients, and reduce unnecessary health 
expenses.
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INTRODUCTION
Artificial intelligence (AI) is the computer science that tries to imitate human-like 
intelligence in machines by using computer software and algorithms to perform 
certain tasks without direct human stimuli[1,2]. Machine learning (ML) is a subset of AI 
that uses data-driven algorithms that learn to imitate human behavior based on the 
previous example or experience[3]. Deep learning (DL) is an ML technique that uses 
deep neural networks to create a model. Increasing computing power and reducing 
financial barriers led to the emergence of the DL field[4].

AI has entered our lives as support in every field. In medicine, it helps clinical 
processes and management of medical data and information. AI applications assist 
physicians in diagnosis, research, treatment, and prognosis evaluation of the disease[5]. 
Cancer is the most common cause of death in developed countries, and it is estimated 
that the number of cases will increase even more in aging populations[6,7]. Therefore, 
cancer research will continue to be the top priority for saving lives in the next decade.

In oncology, there are typical clinical questions such as ‘Which patients have the 
highest risk of toxicity?’ and ‘What is the probability of local control and survival in 
this patient?’. Although clinical studies exist as the gold standard for answers to these 
questions, clinical studies are costly, slow, and limited to reachable patients. By using 
the available data, future clinical studies can be better planned, and new findings can 
be obtained. Evidence-based medicine is based on randomized controlled trials 
designed with a large patient population. However, the number of clinical and 
biological parameters that need to be investigated to obtain precise results is 
increasing day by day[8].

New and separate approaches are required for all patient subpopulations. Clinicians 
should use all diagnostic tools (radiological imaging, metabolic imaging, blood and 
genetic testing, etc.) to decide on the appropriate combination of therapy 
(radiotherapy, chemotherapy, targeted therapy, and immunotherapy). In oncology , 
AI, a new methodology that provides information using the large data available, has 
begun to be used to support clinical decisions[9]. It is important to combine a large and 
heterogeneous amount of data and create accurate models. Today, AI in oncology has 
entered our lives in early detection, diagnosis, treatment, and patient follow-up.

Although AI can take place in every step from patient consultation to patient 
follow-up in rectal cancer and can contribute to the clinician and the society, there are 
still many challenges and problems to be solved. Big data sets should be created for AI 
first, and these data sets should be improved. The development of prediction tools 
with a wide variety of variables and models limits the comparability of existing 
studies and the use of standards. Prediction algorithms can be standardized by sharing 
data between centers, diversifying data, and creating big data. In addition, the models 
can be made clinically applicable by updating the models by entering new data into 
the models. Today, the accuracy and quality of the data is also of great importance, as 
no AI algorithm can fix the problems in training data.

Colorectal cancer is the fourth most common type of cancer worldwide, with 
approximately 800000 new cases diagnosed each year and accounting for 
approximately 10% of all cancers[10]. Determining the optimal treatment plan for a 
patient with rectal cancer is a complex process. In addition to decisions regarding the 
purpose of rectal cancer surgery, the possible functional consequences of treatment, 
including the possibility of preserving normal bowel function and genitourinary 
function, should be considered. Achieving treatment goals and minimal impact on the 
quality of life can be challenging at the same time, especially for patients with distal 
rectal cancer. Careful patient selection in terms of specific treatment options and the 
use of sequential multimodality therapy combining chemoradiotherapy (CRT), 
chemotherapy (ChT), and surgical treatment are recommended for most patients[11].

In this review, the role of AI in the diagnosis, treatment, and follow-up of rectal 
cancer is discussed.

https://www.wjgnet.com/2644-3236/full/v2/i2/10.htm
https://dx.doi.org/10.35712/aig.v2.i2.10
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AI IN DIAGNOSIS OF RECTAL CANCER
AI in the detection of lymph node metastasis
Rectal cancers constitute the majority of gastrointestinal tumors. Among the metastatic 
spreading routes of rectal cancer, lymph node (LN) metastasis is the most important 
due to its high risk of local recurrence, which leads to poor prognosis[12]. LN metastasis 
is an important factor in treatment selection and in predicting prognosis. Preoperative 
evaluation of metastatic LNs is critical in determining the optimal treatment strategies 
of rectal cancer cases. Magnetic resonance (MR) imaging is widely used in clinical 
practice for the diagnosis of metastatic LNs in rectal cancer. MR is considered superior 
to computed tomography (CT) for better separation of soft tissue. Radiologists often 
evaluate their shape, boundaries, and signal intensities to identify metastatic LN[13]. 
However, correct evaluation in a short time is a great challenge, especially when 
considering clinics with a high number of cases. Also, when the same MR image is 
evaluated by different radiologists, very different results can be obtained, which 
weakens the sensitivity of LN staging[14-17]. As a result, it is often difficult to accurately 
determine the presence of LN metastasis. In recent years, the development of DL 
technology has greatly improved image recognition capability, making it possible to 
identify specific target areas within an image and allow images to be classified 
according to specified target features[18].

According to some studies, although the AI system is more successful than senior 
physicians in the diagnosis of solid tumors, such as lung, breast, prostate, and thyroid 
cancer, few studies have yet been reported on the determination of metastatic LN[19-25]. 
In the literature, there are studies in which LN metastases have been detected with AI 
in some cancers such as lung, oral cavity, breast, stomach, and thyroid cancer[26-30].

In the study conducted by Ding et al[18] enrolling 414 cases diagnosed with rectal 
cancer by collecting data from six centers, MR images of the cases were evaluated. 
Faster region-based convolutional neural network (Faster R-CNN), a new AI 
algorithm, was evaluated in the study. Patients who underwent surgery with a 
diagnosis of rectal cancer, whose patient data could be accessed, who did not receive 
preoperative RT or ChT, and who had MR images at the stage of diagnosis, were 
included in the study. Radiologist-based diagnosis and pathologist-based diagnosis 
were compared with the Faster R-CNN system. The number of metastatic LNs 
diagnosed between two of the three groups was evaluated using the pair-wise 
correlation analysis. A statistically significant correlation was found in the comparison 
of both groups [radiologist - Faster R-CNN (P < 0.001), pathologist - radiologist (P = 
0.011), and pathologist - Faster R-CNN (P < 0.001). In Faster R-CNN, radiologist, and 
pathologist LN staging, consistency control was performed between groups, and the 
highest consistency was found among the Faster R-CNN - radiologist diagnosis (P = 
0.018). Among the Faster R-CNN - pathologist diagnosis, the P value was 0.039. 
Among the radiologist - pathologist diagnosis, the P value was 0.043[18].

In another study by Ding et al[13], Faster R-CNN was evaluated for metastatic LN 
prediction, and it aimed to create mathematical nomograms for preoperative 
metastatic LN prediction. In the prediction of metastatic LN with Faster R-CNN, the 
MR images of 545 rectal cancer cases who did not receive preoperative RT or ChT were 
divided into training and validation groups at the rate of 2:1. While creating the 
nomogram, 183 cases were used as an outcome variable for the presence of LN 
metastasis, and 153 cases were used as validation for the level of LN metastasis (N1 or 
N2). Variables were age, gender, preoperatively differentiate grade, metastatic LN 
obtained by MR, metastatic LN obtained by postoperative pathology, carcinoembr-
yonic antigen (CEA), carbohydrate antigen 19-9. Important variables in predicting 
metastatic LN positivity with Faster R-CNN in univariate analysis were tumor 
differentiation grade and CEA level (P < 0.05) and age and tumor differentiation 
gradient in multivariate analysis (P < 0.001). Variables determined as important 
variables in multivariate analysis in MR-based and Faster R-CNN-based metastatic LN 
prediction were used in nomogram formation; in the MR-based nomogram and the 
Faster R-CNN-based nomogram, area under curve (AUC) and 95% confidence interval 
(CI) were found to be 0.856 (0.808-0.905) and 0.862 (0.816-0.909), respectively. 
According to this study, the Faster R-CNN nomogram appears to be suitable and 
reliable for predicting the presence of metastatic lymph nodes preoperatively[13].

Lu et al[31] evaluated 28080 MR images of 351 rectal cancer cases with Faster R-CNN 
in their study. Radiologist diagnosis and Faster R-CNN diagnosis were compared 
using receiver operating characteristic curves (ROC), and the Faster R-CNN ROC was 
found to be 0.912. It was accepted as a more effective and more objective method. 
According to the study, the diagnosis was made in 20 s per case with Faster R-CNN, 
while radiologists made the diagnosis in 600 s per case[31].
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The diagnosis of metastatic LN in rectal cancer is very important for treatment 
decisions and prognosis. The diagnosis of metastatic LN by MR is largely based on the 
subjective interpretation of the radiologist. Therefore, it lacks objectivity and 
reproducibility, although it has a variable diagnostic accuracy. Therefore, using AI 
systems in the diagnosis phase can contribute to the ability of radiologists to diagnose 
metastatic LN correctly and in a shorter time and to make a more accurate treatment 
decision with more accurate tumor, node, metastasis (TNM) staging.

AI in the detection of t stage and tumor differentiation
Choosing the most appropriate treatment is important in rectal cancer. A correct 
preoperative stage is important for the surgical and neoadjuvant CRT decision. 
Generally, pathological type, tumor differentiation, infiltration depth, and presence of 
lymph node metastasis determine the prognosis of the tumor. Therefore, 
understanding the pathological features of the tumor is very important for the clinical 
treatment decision[32]. Radiomic analysis is a tool developed to assess tumor 
heterogeneity. Radiomics is a noninvasive method that includes high-quality image 
acquisition, high-throughput quantitative feature extraction, high-dimensional feature 
extraction, and diagnostic, prognostic, or predictive model generation. Radiomic 
models using medical images and clinical data have potential in making clinical 
decision[33]. The MRI-based radiomic model has been used to differentiate cancer from 
benign tissue and reflect the histological features of rectal cancer[34].

In the study conducted by Ma et al[35] with 152 rectal cancer cases, it aimed to predict 
the pathological characteristics of the tumor from the MR-based radiomic model. 
Tumor delineation was performed using 3T MR and high resolution T2-weighted 
images, and 1029 radiomic features were extracted. Multilayer perceptron, logistic 
regression (LR), support vector machine (SVM), decision tree (DT), random forest, and 
K-nearest neighbor (KNN) have been trained and used five-fold cross-validation to 
create prediction models. The best performance of the radiomics model for the degree 
of differentiation, T stage, and N stage was obtained by SVM (AUC, 0.862; 95%CI: 
0.750–0.967; sensitivity, 83.3%; specificity, 85.0%), multilayer perceptron (AUC, 0.809; 
95%CI: 0.690–0.905; sensitivity, 76.2%; specificity, 74.1%), and random forest (AUC, 
0.746; 95%CI: 0.622-0.872; sensitivity, 79.3%; specificity, 72.2%). This study 
demonstrated that the high-resolution T2-weighted images–based radiomics model 
could serve as pretreatment biomarkers in predicting pathological features of rectal 
cancer[35].

AI in detection of distant metastasis
Although advances in treatment strategies and multidisciplinary treatment modalities 
have reduced local recurrences, distant metastasis continues to be the main cause of 
treatment failure in patients with rectal cancer[6]. The most common metastasis site is 
the liver, and liver metastasis develops in 26.5% of cases within 5 years from 
diagnosis[36]. At the stage of diagnosis, there is no liver metastasis in staging, but 
metachronous liver metastasis (MLM) that develops after initial staging and treatment 
is thought to be caused by occult metastases and micrometastases[37,38].

The main treatment strategy for early detected MLM is surgical resection, providing 
better prognosis and survival as well as a chance for cure compared to other 
treatments. However, a significant portion of patients with MLM may have lost their 
surgical chances by the time it is detected[39]. Although studies are reporting that some 
variables increase the risk of MLM, there is still no definite marker that can be used to 
predict the cases that will develop MLM[40]. Radiomics, which have come to the 
forefront recently, are obtained by using automated high-throughput extraction of 
many quantitative properties, offering the chance to capture intratumoral 
heterogeneity in a noninvasive manner[41].

Liang et al[42] predicted MLM by using MR radiomics with ML in a total of 108 rectal 
cancer cases with 54 MLM and 54 nonmetastatic patients. Radiomics were obtained 
from venous phase and T2-weighted MR images, and 2058 radiomic properties were 
evaluated by two separate ML techniques (SVM; LR). After determining the optimal 
radiomic properties, four groups of models were created: A model containing five 
radiomic features from T2 weighted MR images (ModelT2), a model containing eight 
radiomic features from venous phase images (ModelVP), a model containing the sum of 
these radiomics, i.e. 13 radiomics (Modelcombined), and a model containing 22 optimal 
radiomics (Modeloptimal). Modeloptimal was determined as the best prediction model with 
the LR algorithm, and its accuracy, sensitivity, specificity, and AUC were 0.80, 0.83, 
0.76, and 0.87, respectively[42].
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Peritoneal carcinomatosis (PC) has a poor prognosis and is considered a terminal 
stage. PC is present at diagnosis in 5%-10% of the cases diagnosed with colorectal 
cancer and in 25%-44% of recurrent disease. While a median survival of 33 mo can be 
achieved with cytoreductive surgery and hyperthermic intraperitoneal ChT, it is < 10 
mo if incomplete cytoreductive surgery and diffuse PC are present[43]. Survival rates 
can also be high with minimally invasive surgery if PC can be detected early. To 
predict synchronous PC cases, Yuan et al[44] evaluated 19814 tomography images 
obtained from 54 PC and 76 non-PC cases in training, and 7837 images obtained from 
40 cases as the test group. Using the ResNet-three dimensional (3D) algorithm + SVM 
algorithm, an accuracy rate of 94.1% was obtained, AUC: 0.92 (0.91-0.94), sensitivity 
93.7%, specificity 94.4%, positive predictive value 93.7%, and the negative predictive 
value was found to be 94.4%. The performance of the algorithm was determined to be 
better than routine contrast-enhanced CT (AUC: 0.791 vs AUC: 0.92)[44].

Distant metastasis detection can be made more accurately in the earlier period by 
supporting the physician with the prediction models having high accuracy and this 
can reduce the cost of treatment while increasing survival rates.

AI IN RECTAL CANCER TREATMENT AND RESPONSE TO TREATMENT
Contouring in radiotherapy
Contouring is an important step that is routinely performed in RT to determine the 
treatment target and organs at risk (OAR). In a typical clinical workflow, the radiation 
oncologist needs to contour this target volume and OAR on the simulation images. 
Contouring is generally performed on CT and less commonly on MR images in clinics 
where MR guided RT is applied. This contouring process can take hours per patient[45]. 
AI can be used both to minimize the differences between physicians and to shorten the 
duration of this step in RT planning.

Target volume contouring: MR plays an important role in the diagnosis and treatment 
of rectal cancer[46]. It guides the physician in identifying the primary tumor, especially 
in RT planning. Also, MR-based planning increases local control and complete 
response rates, with the potential to facilitate individualized treatment plans for dose 
escalation[47,48]. Also, defining and contouring gross tumor volume (GTV) is time-
consuming, and differences in target volume contouring among physicians may cause 
variability in treatment and different oncological results[49]. Although the application of 
Atlas-based automatic segmentation algorithms can reduce the identification time, 
these methods have low performance in rectal cancer[50]. The main advantage of DL 
methods is that they automatically create the most suitable model from the training 
data sets. In recent years, DL methods have also started to be used in RT steps. Tumor 
contouring with CNNs has been extensively studied in lung and head and neck 
cancers and a reduction in contouring time per patient of up to 10 min was observed 
compared to the contouring time of the physician[51-53].

In rectum cancer, contouring of GTV and clinical target volume (CTV) were 
performed using MR and CT images. Wang et al[54] created a DL-based autosegment-
ation algorithm for GTV delineation using MR (3 Tesla, T2-weighted) images of 93 
locally advanced rectal cancer cases. The model was trained in two phases that are 
tumor recognition and tumor segmentation. Data is divided into 90% training and 10% 
validation groups for 10-fold cross-validation. Hausdorff distance (HD), average 
surface distance (ASD), Dice index (DSC), and Jaccard index (JSC) were used to 
compare and evaluate automatic and manual contouring. For the validation data set, 
DSC, JSC, HD and ASD (mean ± SD) were 0.74 ± 0.14, 0.60 ± 0.16, 20.44 ± 13.35, and 
3.25 ± 1.69 mm, respectively. In the manual contouring of two radiation oncologists, 
DSC, JSC, HD and ASD (mean ± SD) were 0.71 ± 0.13, 0.57 ± 0.15, 14.91 ± 7.62, and 2.67 
± 1.46 mm, respectively. There was no statistically significant difference between the 
DL-based autosegmentation and manual contouring in terms of DSC (P = 0.42), JSC (P 
= 0.35), HD (P = 0.079), and ASD (P = 0.16) values. Before postprocess (erosion and 
dilation), that is, correction of contours and removing small isolated points, a 
statistically significant difference (P = 0.0027) was found only in HD. According to this 
study, results close to manual contouring can be obtained with DL-based algorithms 
using T2-weighted MR images[54].

In another study by Trebeschi et al[55], tumor contouring was performed using 
multiparametric MR images. The study included 140 locally advanced rectal cancer 
cases, and each case was contoured by two experienced radiologists. In this study, the 
CNN algorithm was used to function as a voxel classifier. CNN was trained using the 
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voxel values of the region with and without tumor in MR. In the independent 
validation data set, the DSC value was determined as 0.68 and 0.70 according to CNN 
and both radiologists. The AUC value for both radiologists was found to be 0.99. This 
study showed that DL can perform the correct localization and segmentation of rectal 
cancer in MRI in most patients[55].

Song et al[56] evaluated CTV contouring with CNN in 199 rectal cancer cases. For 
training, validation, and testing, 98 cases, 38 cases, and 63 cases were used, 
respectively. While volumetric DCS showed the volumetric overlap between 
automatic segmentation and manual contouring, surface DCS showed the overlap 
between automatic segmentation and manual contouring surfaces. Two CNN 
techniques were used in the present study that were DeepLabv3 + and ResUNet, and 
the volumetric DSC and surface DCS of CTV were 0.88 vs 0.87 (P = 0.0005) and 0.79 vs 
0.78 (P = 0.008), respectively. According to this study, high quality and shorter CTV 
contouring can be performed with CNNs[56]. Target volume contouring studies with AI 
in rectum cancer are summarized in Table 1.

Contouring of OAR: In radiotherapy, it is necessary to make the contouring of OAR 
correctly to protect them and to evaluate the toxicity correctly. To fully benefit from 
the advantages of technological developments in RT planning and devices, OAR must 
be defined correctly. This step can become a rate limiting step in clinics with a high 
number of patients. Also, there may be differences among the practitioners, and due to 
significant anatomical changes (edema, tumor response, weight loss, etc.) during the 
treatment, it may be necessary to make a new plan with new contouring during the 
treatment. AI, particularly CNN, is a potential tool to reduce the physician’s workload 
and set a standard in contouring. In recent years, DL methods have been widely used 
in medical applications, and CNN has been used in contouring OAR in head-neck, 
lung, and prostate cancer[57-59]. There are also studies on this subject in rectal cancer.

OAR contouring was also evaluated in the study performed by Song et al[56] for CTV 
contouring. As OAR, small intestine, bladder, and femoral heads were contoured. 
With ResUNet, both volumetric and surface DSC values in femoral head contouring 
and surface DSC values in bladder contouring were found to be statistically more 
significant, and contouring performance was better. Higher volumetric and surface 
DSC were obtained with DeepLabv3 + for the small intestine[56].

Men et al[60] conducted a segmentation study using deep dilated CNN based DL 
technique in both CTV and OAR (bladder, femoral heads, small intestine, and colon). 
CT images of 278 rectal cancer cases were included in the study. Images of 218 
randomly selected cases were used for training, and images of the remaining 60 cases 
were used for validation. In this study, DSC was also evaluated and for CTV, bladder, 
left femoral head, right femoral head, small intestine, and colon as 87.7%, 93.4%, 
92.1%, 92.3%, 65.3%, and 61.8%. CTV and OAR contouring time per case was found to 
be 45 s on average[60].

In another study conducted by Men et al[61], the effect of the patient’s position on 
segmentation accuracy was investigated with CNN. The study included 50 supine and 
50 prone cases with planning CT, and three different models were trained: Patients in 
the same position, patients in different positions, and patients in both positions. 
Performance evaluation regarding segmentation was performed using DSC and HD 
for CTV, bladder, and femurs. While the model trained in different positions 
compared to the model trained in the same position was statistically significantly 
better for CTV and bladder (P < 0.05), it was found to be P > 0.05 in femur 
segmentation. DSC values were 0.84 vs 0.74, 0.88 vs 0.85, and 0.91 vs 0.91 for CTV, 
bladder, and femurs, respectively. The accuracy rates for the model trained in both 
positions were similar (P > 0.05). The DSC was 0.84, 0.88, and 0.91 for CTV, bladder, 
and femur, respectively. According to this study, while the patient position is 
important for CTV and bladder in segmentation with the CNN model, it was not 
found to be an important factor for the femur[61]. Studies are summarized in Table 1.

In RT, while providing effective treatment for the tumor, protection of OAR is very 
important in terms of acute and late side effects. For this, it is an important step to 
define the tumor volume and OAR correctly and accurately. However, this step 
requires intensive labor and time and can be rate-limiting. Creating models with DL 
and using them in clinical practice will ensure standardization among physicians in 
contouring and accelerate this step.

Radiotherapy planning
Treatment planning is an important step in the RT workflow. Treatment planning has 
become more sophisticated over the past few decades with the help of computer 
science, allowing for the minimization of normal tissue damage while providing 
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Table 1 Target volume and organs at risk contouring with artificial intelligence

Ref.
Number 
of 
patients

Imaging method Contouring
Artificial 
intelligence 
method

Results

Wang 
et al[54], 
2018

93 MR (3 Tesla, T2 -
weighted)

GTV, CTV CNN Between deep learning-based autosegmentation and manual 
contouring DSC (P = 0.42), JSC (P = 0.35), HD (P = 0.079), and ASD (P 
= 0.16); Before postprocess process only in HD (P = 0.0027).

Trebeschi 
et al[55], 
2017

140 Multiparametric 
MRI (1.5 Tesla, T2- 
weighted)

GTV CNN According to CNN and both radiologists in independent validation 
data set DSC: 0.68 and 0.70; For both radiologists AUC: 0.99.

Song 
et al[56], 
2020

199 CT (3 mm section 
thickness)

CTV and 
OAR

CNNs 
(DeepLabv3+ 
and ResUNet)

CTV segmentation better with DeepLabv3+ than ResUNet (volumetric 
DSC, 0.88 vs 0.87, P = 0.0005; surface DSC, 0.79 vs 0.78, P = 0.008); 
DeepLabv3+ model segmentation was better in the small intestine, 
with the ResUNet model, bladder and femoral heads segmentation 
results were better. In both models, the OAR manual correction time 
was 4 min.

Men 
et al[60], 
2017

278 CT (5 mm section 
thickness)

CTV and 
OAR

CNN (DDCNN) DSC values; CTV: 87.7%, bladder: 93.4%, left femoral head: 92.1%, 
right femoral head: 92.3%, small intestine: 65.3%, colon 61.8%.

Men 
et al[61], 
2018

100 CT (3 mm section 
thickness)

CTV and 
OAR

CNN CTV and bladder contouring were better in the model trained in the 
same position than the model trained in a different position (P < 0.05). 
No statistically significant difference between femoral heads (P > 0.05). 
No statistical difference between accuracy rates in CTV, bladder, and 
femoral heads segmentation in the model trained in both positions (P > 
0.05).

AUC: Area under the curve; ASD: Average surface distance; CNN: Convolutional neural network; CT: Computed tomography; CTV: Clinical target 
volume; DDCNN: Deep dilated convolutional neural network; DSC: Dice similarity coefficient; GTV: Gross tumor volume; HD: Hausdorff distance; JSC: 
Jaccard index; MRI: Magnetic resonance imaging; OAR: Organs at risk.

adequate tumor dose. As a result, treatment planning has become more labor-intensive 
and takes hours and sometimes even days for planners. In RT planning, many 
algorithms have been developed to support planners, and these algorithms focus on 
automating the planning process and/or optimizing dosimetric changes. These 
algorithms have contributed to the improvement of treatment planning efficiency and 
quality[62]. Planning workflow starts with determining dosimetric requirements 
regarding target volume and OARs and makes decisions about basic planning 
parameters, including beam energy, number, and angles, etc., based on the needs of 
each case. While creating a minimally acceptable plan can be quick, improving a plan 
is much more difficult. Also, the plan may need to be improved according to the mid-
plan result evaluation of the physicians, which causes increased effort and time. 
Automatic treatment planning systems, from simple automation to AI, are gradually 
taking their place in planning systems.

The knowledge-based planning system helps to use the previous planning 
information in the database with ML methods in obtaining the best dose distribution 
for target volume and OAR. Knowledge-based treatment planning algorithms use 
geometric and dosimetric information to estimate doses for new patients using the 
information found in training data. The dose volume histogram prediction model was 
created by using a knowledge-based treatment planning system, using 80 plans in 
training, and evaluating 70 plans in the test with simultaneous integrated boost and 
VMAT techniques. Using this model, the multileaf collimator sequences of 70 clinically 
validated plans were re-optimized. While doing this, parameters such as field 
geometry and photon energy were not changed. Dosimetric results were evaluated by 
comparing dose volume histogram data as homogeneity index, conformal index, hot 
spots (volumes taking more than 107% of the prescribed dose), mean dose, femoral 
heads, and bladder mean (Dmeanmesane, Dmeanfemoralhead) and 50% of the dose 
(D50%bladder, D50%femoral head). Similar conformal index was obtained when comparing the 
original plan (1.00 ± 0.05 for planning target volume (PTV)boost and 1.03 ± 0.02 for PTV) 
and the knowledge-based plan (0.99 ± 0.04 for PTVboost and 1.03 ± 0.02 for PTV). Better 
homogeneity index values were obtained in the knowledge-based plan (0.05 ± 0.01 for 
PTVboost and 0.26 ± 0.01 for PTV) compared to the original plan (0.06 ± 0.01 for 
PTVboost and 0.26 ± 0.01 for PTV) (P < 0.05). It has been shown that V107% values in 
the original plan were higher than the knowledge-based plan. The knowledge-based 
plan achieved a statistically significant decrease in D50%femoral head, Dmeanfemoralhead, D50% 
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bladder, and Dmeanmesane values. According to this study, the knowledge-based planning 
system provided a statistically significant advantage in some dosimetric data 
compared to the original plans[63].

Zhou et al[64] aimed to develop a DL model for intensity-modulated RT, which 
provides an estimation of 3D voxel-wise dose distribution. Of the 122 post-op 
intensity-modulated RT treated cases, the plans of 100 cases were used for training-
validation, and the plans of 22 cases were used for testing. To estimate 3D dose 
distributions, a 3D-DL model named U-Res-Net_B was created[60]. No statistically 
significant difference was found between the original plans and the DL model named 
U-Res-Net_B in terms of dosimetric parameters (homogeneity index, conformal index, 
V50, and V45 for PTV and OARs). The DSC value of the model was higher than 0.9 for 
most isodose volumes, and the ratio of 3D gamma passing ranged from 0.81 to 0.90 for 
PTV and OAR. This study has developed a DL model by considering beam 
configuration input; this model has shown that it has potential in terms of automated 
planning for easier clinical evaluation of more comprehensive cases[64].

Evaluation of chemoradiotherapy response
In locally advanced rectal cancer, neoadjuvant CRT improves local control, disease-
free survival, and sphincter preservation rates[65]. However, tumor regression patterns 
after neoadjuvant CRT vary widely, from the pathological complete response (pCR) to 
disease progression. Although cases with pCR have the best survival and tumor 
control, neoadjuvant CRT can provide pCR in only 10%-30% of cases in locally 
advanced rectal cancer[66]. Some studies have shown that cases with pCR have low 
recurrence rates, and therefore less invasive alternative surgical treatments, such as 
sphincter-sparing local excision or a watch-and-wait approach, may be more 
appropriate[67-70]. Therefore, it is very important to determine the cases that are likely to 
have a complete clinical response before surgery.

MR, which enables the evaluation of the therapeutic response noninvasively, is 
promising in the early prediction of pCR. MR images taken at different times of the 
CRT, including before, during, and after treatment, can be analyzed separately or in 
combination to provide anatomical and functional information. With the advancement 
of MR imaging technology, several different sequences can be included in the MR 
protocol within a reasonable imaging time (< 30 min), and this multiparametric MR 
can provide comprehensive information to facilitate quantitative radiomic analysis for 
prediction of tumor response[71]. Radiomics extracts hundreds of quantitative image 
features and then uses advanced statistical analysis to classify different groups. Nie 
et al[72] predicted patients with pCR after CRT was completed with 80%-90% prediction 
accuracy of pretreatment multiparametric MRI-based radiomic analysis.

Shi et al[71] predicted the treatment response with DL from the radiomics they 
obtained from the MR images taken before treatment and in the middle of treatment 
(3-4 wk after the start of treatment) in CRT cases with a diagnosis of locally advanced 
rectal cancer. Of the 51 cases included in the study, 45 cases pre-treatment, 41 cases 
mid-treatment, and 35 cases both pre-treatment and mid-treatment MR images were 
available, and the MR protocol was specified as T2, diffusion-weighted imaging with 
b-values of 0 and 800 s/mm2 and dynamic contrast-enhanced. In the surgical specimen 
performed after CRT, the response of the case depending on the tumor regression 
grade was determined. Total tumor volume and mean apparent diffusion coefficient 
(ADC) were measured on MRI. Using Haralick’s Gray Level Co-occurrence Matrix 
was used to distinguish cases with and without pCR, cases with and without good 
response by applying radiomics using texture, and histogram parameters and CNN. 
Tumor volume decreased in mid-treatment MRI compared to before, and ADC 
increased. In predicting the cases with and without pCR with their radiomic features, 
AUC values were found to be 0.80, 0.82, and 0.86 when the pre-treatment MR, mid-
treatment MR, and both MR, respectively, were evaluated together. In cases that 
respond well and those that do not, these rates were 0.91, 0.92, and 0.93, respectively. 
When MRIs before and during treatment were evaluated together, AUC was found to 
be 0.83 in DL prediction of cases with and without pCR[71].

A study conducted by Fu et al[73] aimed to obtain and compare handcrafted and DL-
based radiomic features from pre-treatment diffusion-weighted imaging-MR images. 
Forty-three cases that underwent CRT with the diagnosis of locally advanced rectal 
cancer were included in the study. MRI was taken before treatment in all patients, and 
total mesorectal excision was applied 6-12 wk after the CRT. GTV from MR images 
was contoured by an experienced radiation oncologist. Postsurgical cases were 
grouped as responsive (n = 22) and unresponsive (n = 21). Handcrafted and DL-based 
radiomic features were extracted from diffusion-weighted imaging ADC map using 
traditional computer-aided diagnostic methods and pretrained CNN, respectively. The 
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ROC curve (AUC) of the model created with handcrafted radiomic features was 0.64, 
while that of the DL-based model was 0.73. Its statistical significance was found to be 
better (P < 0.05). According to this study, radiomic features obtained from MR images 
and the algorithm created using DL were shown to be better in predicting CRT 
response[73].

In another study by Shayesteh et al[74], 98 cases diagnosed with rectal cancer were 
included in the study, and MRI was performed 1 wk before the CRT. Radiomics such 
as density, shape, and texture features were extracted from MR images. For training 
and validation, 53 and 45 cases, respectively, were used. SVM, Bayesian network, 
neural network, and KNN algorithms were used one by one and together for 
predicting response to CRT. Prediction performance was evaluated by AUC. When the 
algorithms were evaluated separately, the best result was obtained with the Bayesian 
network algorithm, and the AUC and accuracy rate were 0.75 and 80.9%, respectively. 
When the algorithms (SVM, neural network, Bayesian network, KNN) were evaluated 
together, the AUC and accuracy rate were 0.97 and 92.8%, respectively. According to 
this study, the prediction process can be improved when algorithms are used 
together[74].

In another study conducted with 89 cases diagnosed with locally advanced rectal 
cancer, 66 cases were included in the training group and 23 cases were included in the 
test group, and resistance prediction to CRT was evaluated. Radiomics obtained from 
pre-treatment MR, ADC images, and clinical features of the cases were evaluated with 
the Random Forest Classifier (RFC) algorithm. Of 133 radiomic features and nine 
clinical features (entropymean, inverse variance energymean, small area emphasis, ADCmin, 
ADCmean, sd Ga02, small gradient emphasis, age, and size) were determined as ten 
important variables. With the RFC algorithm, cases resistant to CRT were estimated 
with an accuracy rate of 91.3% (88.9% sensitivity and 92.8% specificity, AUC: 0.83)[75]. 
According to this study in predicting the response to CRT, when the radiomic and 
clinical parameters are evaluated together, predictions with high accuracy rates can be 
obtained. If these resistant cases can be predicted, treatment strategies can be changed, 
and oncological outcomes can be improved.

In another study conducted with 55 cases diagnosed with locally advanced rectal 
cancer, radiomics obtained from MRI images taken before, during, and after CRT were 
evaluated by the RFC algorithm for treatment response prediction. Images of 28 cases 
from 55 cases were used in the training, and images of 27 cases were used to evaluate 
the performance of the algorithm. pCR was obtained in 16 cases from all cases, and 
good results were obtained with the RFC algorithm in predicting pCR with AI (AUC: 
0.86, 95%CI: 0.70-0.94). In the prediction of unresponsive cases, AUC was 0.83 (95%CI: 
0.71-0.92) with the RFC algorithm[76].

In the study conducted by Bibault et al[77] with 95 cases diagnosed with T2-4N0-1 
rectal cancer, radiomics (1683 radiomic features per case) obtained from CT images 
before CRT were evaluated together with clinical and treatment data, and the response 
prediction was made with AI. While radiomics were used with deep neural network 
and SVM, prediction models were created using only TNM staging in linear 
regression. pCR was obtained in a total of 23 cases. In prediction with deep neural 
network, SVM, and LR algorithms, the accuracy rates were 80.0%, 71.5%, and 69.5%, 
respectively[77]. In another study, artificial neural network, Naïve Bayes Classifier, 
KNN, SVM, and multiple LR models were evaluated in the response prediction of 270 
locally advanced rectal cancer patients who underwent CRT. The most important 
factors affecting pCR were post CRT CEA level, the time between CRT and surgery, 
ChT regimen, clinical nodal status, and nodal stage. The accuracy rates for artificial 
neural network, KNN, SVM, Naïve Bayes Classifier, and multiple LR were 88%, 80%, 
71%, 80%, and 77%, respectively[78]. Studies evaluating the CRT response with AI in 
rectal cancer are summarized in Table 2.

Shen et al[79] predicted response to CRT in 169 rectal cancer cases using positron 
emission tomography (PET)-CT radiomics. A total of 68 features were excluded from 
the metabolic active tumor site. Estimation was made with the RF algorithm, and the 
ROC algorithm was used to evaluate the performance. After CRT, pCR was obtained 
in 22 (13%) cases, and 42 radiomics features were included in the algorithm. 
Accordingly, the sensitivity, specificity, positive predictive value, negative predictive 
value, and accuracy were 81.8%, 97.3%, 81.8%, 97.3%, and 95.3%, respectively[79].

While the correct classification of cases in which pCR is provided helps to identify 
less invasive therapeutic strategies such as mucosectomy or wait-and-watch, early 
prediction of cases that do not respond to CRT will also allow these cases to be 
directed to more effective treatments.
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Table 2 Studies of chemoradiotherapy response prediction with artificial intelligence

Ref. Number of 
patients

Parameters 
evaluated

Imaging 
method Technique used Results

Shi et al[71], 
2019

51 (90% cases for 
training and the 
remaining 10% 
for testing)

Tumor volume, 
mean ADC, 
radiomic

MRI (Pre-CRT 
and mid-CRT) 
(T2-DWI, DCE)

CNN (1) pCR response prediction: (a) Pre-CRT with MR AUC: 
0.80; (b) Mid-CRT with MR AUC: 0.82; and (c) Pre- and 
mid-CRT MR together AUC: 0.86; and (2) Good response 
to CRT: predicting yes/no: (a) Pre-CRT with MR AUC: 
0.91; (b) Mid-CRT with MR AUC: 0.92; and (c) Pre-- and 
mid-CRT MR together AUC: 0.93.

Fu et al[73], 
2020

43 Radiomic MRI (Pre-CRT, 
DWI)

Handcrafted 
traditional computer-
aided diagnostic 
method vs deep 
learning

Deep learning model with handcrafted model CRT 
response prediction AUC values: 0.64 vs 0.73 (P < 0.05)

Shayesteh 
et al[74], 
2019

98 (53 training 
and 45 validation 
set)

Radiomic MRI (1 wk before 
CRT) (3 Tesla, 
T2W-weighted)

Machine learning 
(SVM, BN, NN, 
KNN)

AUC for the BN algorithm: 74%, accuracy: 79%; When 
four algorithms were used together, AUC: 97.8% and 
accuracy rate 92.8%.

Yang 
et al[75], 
2019

89 (66 training 
and 23 testing)

Radiomic and 
clinical features

MRI (Pre-CRT) (3 
Tesla, T2W, 3 
mm section 
thickness)

RFC Predicting the accuracy of tumor resistance with RFC 
91.3%, AUC: 0.83.

Ferrari 
et al[76], 
2019

55 (28 training, 27 
validation)

Radiomic MR (Pre, Mid, 
Post RT) (3 Tesla, 
T2W, 2 mm 
section thickness)

RFC (1) Prediction of cases with pCR by RFC; AUC: 0.86; and 
(2) Prediction of unresponsive cases with RFC; AUC 0.83.

Bibault 
et al[77], 
2018

95 Radiomic, 
clinical 
variables

CT DNN, SVM, LR CRT response prediction accuracy rates; DNN: 80%; SVM: 
71.5% LR: 69.5%.

Huang 
et al[78], 
2020

270 (236 training, 
34 validation)

Clinical 
variables

- ANN, KNN, SVM, 
NBC, MLR

pCR prediction accuracy rates and AUC values; ANN: 
88%, 0.84 KNN: 80%, 0.74 SVM: 71%, 0.76 NBC: 80%, 0.63 
MLR: 83%, 0.77.

ADC: Apparent diffusion coefficient; ANN: Artificial neural network; AUC: Area under the curve; BN: Bayesian network; CNN: Convolutional neural 
network; CRT: Chemoradiotherapy; CT: Computed tomography; DCE: Dynamic contrast-enhanced; DNN: Deep neural network; DWI: Diffusion-weighted 
imaging; KNN: K-nearest neighbors; LR: Linear regression; MLR: Multiple logistic regression; MRI: Magnetic resonance imaging; NBC: Naïve bayes 
classifier; NN: Neural network; pCR: Pathological complete response; RFC: Random forest classifier; SVM: Support vector machine.

Prediction of KRAS mutation in rectal cancer
Kirsten rat sarcoma (KRAS) mutations, which occur in approximately 30%–40% of 
colorectal cancer, have been indicated as a highly specific negative biomarker for the 
antibody-targeted therapies to the epidermal growth factor receptor[80]. Metastatic 
colorectal cancers with KRAS mutations are resistant to anti-epidermal growth factor 
receptor targeted therapy. Therefore, the KRAS mutation test has been recommended 
by the National Comprehensive Cancer Network guidelines to guide targeted therapy 
for cases diagnosed with metastatic colorectal cancer[81].

Determination of the KRAS mutation is usually made by pathological examination 
of the tumor tissue. However, intratumor heterogeneity or heterogeneity of KRAS 
mutation that can occur between different tumor regions limits histological 
approaches[82]. Moreover, the inability to determine mutation status due to poor DNA 
quality of biopsy samples, difficult to access tissue samples from metastatic colorectal 
cancers, repeated tumor sampling, and relatively high costs also limit the feasibility of 
molecular tests to monitor targeted therapy[83]. Therefore, a relatively simple and 
noninvasive method for KRAS mutations can be helpful for personalized treatment 
strategies.

In a study by Cui et al[84], 304 cases with rectal cancer diagnosis from center I 
(training dataset, n = 231; internal validation dataset, n = 91) and 86 cases from center 
II were included as an external validation dataset. It aimed to predict KRAS mutation 
from T2-weighted image-based radiomics. Subsequently, three classification methods, 
i.e. LR, decision tree, and SVM algorithm, were applied to develop the radiomics 
signature for KRAS prediction in the training dataset. The predictive performance was 
evaluated by ROC analysis. A total of seven radiomics properties were accepted as 
important variables for KRAS prediction, and the best predictor was determined as the 
SVM. The AUC was found to be 0.722 (95%CI: 0.654-0.790)[84].
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AI IN FOLLOW-UP IN RECTAL CANCER
Treatment toxicity
Effective toxicity estimation and evaluation schemes are required to limit RT-related 
side effects. High-tech devices and planning systems provide submillimetric precision. 
However, while giving the desired dose to the target volume, the OARs in its 
immediate neighborhood may be affected, leading to RT-induced toxicity. Acute 
toxicity occurs during treatment or within 3 mo of completion of treatment and 
usually, full recovery takes weeks to months. Late side effects such as fibrosis or RT-
induced oncogenesis are generally irreversible and considered progressive over time. 
When planning RT, its potential benefits should be weighed against the possibility of 
damaging healthy organs and tissues to maximize the curative response while 
minimizing the possibility of normal tissue complications. On the other hand, the 
target volume should not be compromised to preserve OARs. In addition to complex 
dosimetric data, AI provides the clinician with the ability to predict complications by 
integrating higher-level information such as detailed clinical and comorbidity data 
into a more comprehensive and quantitative model[85].

Dosimetric parameters include dose volume histogram parameters and threshold 
doses such as maximum point doses. Nondosimetric factors include other variables 
such as age, gender, and histopathology. Normal tissue complication probability and 
tumor control probability prediction models focused on using dosimetric parameters 
alone[86,87]. Also, the necessity of using nondosimetric parameters has been emphasized 
in the Quantitative Analysis of Normal Tissue Effects in the Clinic[88]. Data-driven 
approaches, on the other hand, aim to determine the model that best fits the input data 
(called properties or independent variables) and output data (called the response or 
dependent variable). Toxicity predictors can be examined roughly in three parts as 
dosimetric, clinical, and image-based.

In rectum cancer RT, toxicity can be predicted in advance with AI-based models, 
and appropriate dose-area restrictions, additional treatment planning (simultaneous 
CT, etc.), and prophylactic medical support treatments can be reviewed. There are AI 
studies that predicted rectal toxicity in prostate and cervical cancer radiotherapy, but 
there are no studies predicting toxicity with AI in rectal cancer radiotherapy[89-91]. 
Oyaga-Iriarte et al[92] conducted a study to predict irinotecan toxicity in metastatic 
colorectal cancer with ML models, and leukopenia was estimated with 76% accuracy, 
neutropenia 75%, and diarrhea 91%.

The development of prediction tools with a wide variety of variables and models 
limits the comparability and standard use of existing toxicity studies. Toxicity 
estimation algorithms can be standardized by sharing data between centers and 
creating big data. The application of such models is valuable in many different ways 
for both patients and clinicians.

Survival
In oncological treatments, forecasting is very important in the treatment decision-
making process because accurate survival prediction is critical in making 
palliative/curative treatment decisions. Also, the prediction of remaining life 
expectancy can be an incentive for patients to live a fuller or more fulfilling life. 
Survival statistics assist oncologists in making treatment decisions, but these are data 
from large and heterogeneous groups and are not well suited to predict what will 
happen to a specific patient. AI algorithms for the prediction of RT and ChT response 
have received considerable attention recently. In cases diagnosed with cancer, 
predicting survival is important in improving treatment and providing information to 
patients and clinicians. Considering the data set of rectal cancer patients with specific 
demographic, tumor, and treatment information, it is an important issue whether the 
patient’s survival or recurrence can be predicted by any parameter. Today, many 
hospitals store data in digital media. By evaluating these large data sets with AI 
techniques, it may be possible to predict treatment outcomes of patients, plan 
personalized medicine, improve corporate performance, and regulate health 
insurance.

In a study conducted by Zhao et al[93], survival prediction was made with an ML 
method in cases with metastatic rectal cancer, and 4098 cases were used in training 
and 3107 cases were used as test data. A survival prediction nomogram was created. 
While creating the prediction model, lasso (least absolute shrinkage and selection 
operator), an ML technique that can lead to superior performance compared to 
traditional multivariate regression, was used. The model was designed to predict 3-
year overall survival. The ML model formed the basis of the nomogram. Important 
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variables used in the nomogram were age, Charlson-Deyo score, tumor grade, pre-op 
CEA, liver metastasis, bone metastasis, brain metastasis, lung metastasis, peritoneal 
metastasis, presence of primary surgery, surgery for the metastatic area, the number of 
metastatic lymph nodes, and the presence of ChT. The c-index was used to evaluate 
the performance of the ML technique. Internally validated c-index values were 0.816 
(95%CI: 0.813-0.818), 0.789 (95%CI: 0.786-0.790), and 0.778 (95%CI: 0.775-0.780) for 1-, 
2-, and 3-year survival, respectively. External validated c-index was 0.811, 0.779, and 
0.778 for 1-, 2-, and 3-year survival, respectively[93]. There was great variation in overall 
survival times in cases diagnosed with metastatic rectal cancer. Accurate models with 
ML methods can assist patients and clinicians in setting expectations and clinical 
decisions in this challenging patient group.

Pham et al[94] used AI to discover DNp73 expression in terms of 5-year overall 
survival and prognosis in their study with 143 cases diagnosed with rectal cancer. Ten 
different CNN algorithms were used, and each immunochemical image was resized. 
For the algorithm, 90% of these images were used in training and 10% as test data, and 
the accuracy rates of ten algorithms varied between 90%-96%[94].

Li et al[95] conducted a study with 84 patients diagnosed with locally advanced rectal 
cancer and predicted survival with radiomics obtained from PET, CT, and PET-CT 
images with CNN. They compared the CNN method evaluated in the study with the 
Cox proportional-hazards model and random survival forests method. C-index was 
used in the performance evaluation of the methods. C-indexes of models created with 
radiomics obtained from PET, CT, and PET-CT images for Cox proportional-hazards, 
random survival forests, and CNN were 0.53-0.58-0.60 vs 0.58-0.61-0.58 and 0.62-0.60-
0.64 respectively, and the best performance was obtained when CNN and PET-CT 
were used together[95].

In the study conducted by Oliveira et al[96] to predict the 1-, 2-, 3-, 4-, and 5-year 
survival of cases with rectal and colon cancer, they evaluated 2221 cases in the test for 
colon cancer, 20061 cases in training, 551 cases in the test for rectal cancer, and 4962 
cases in training. Important variables for colon cancer were determined as age, CEA, 
CS site-specific factor 2, TNM stage, localization of the primary tumor, and regional 
lymph nodes. For rectal cancer, important variables were age, tumor extension, tumor 
size, TNM staging, surgery of the primary tumor, and gender. ML performance was 
evaluated by the accuracy rate and AUC. Accuracy rates and AUC for predicting 
survival for colon cancer for 1-, 2-, 3-, 4-, and 5-years were 95.6% (AUC: 0.980), 96.2% 
(0.984), 96.4% (0.988), 96.6% (0.988), and 96.4% (0.985), respectively, and their mean 
was 96.2% (0.984). Accuracy rates and AUC for predicting 1-, 2-, 3-, 4-, and 5-year 
survival for rectal cancer were 94.4% (AUC: 0.957), 94.4% (0.960), 94.0% (0.961), 93.8% 
(0.963), and 94.5% (0.971), respectively, with a mean of 94.1% (0.960)[96].

Accurate survival prediction in cancer patients remains a problem due to the 
increasing heterogeneity and complexity of cancer, treatment options, and different 
patient characteristics (age, Karnofsky Performance Status Scale, comorbid diseases, 
etc.). If reliable predictions can be achieved with AI, it can help with personalized care 
and medicine. Studies on AI-based survival prediction are increasing day by day in 
the literature, and there is still no standard algorithm.

CONCLUSION
In recent years, the increasing interest in AI in all fields of science has led to the 
development of innovative tools in oncology. The development of prediction tools 
with a wide variety of variables and models limits the comparison of existing studies 
and the use of standards.

In order to improve long-term prognosis, it is important to predict the overall 
survival of patients with a diagnosis of rectal cancer and progression of the disease 
receiving multimodal treatment. With the evaluation of clinical, radiological, genetic, 
dosimetric, and epidemiological factors using AI, it is possible to perform accurate 
predictions to achieve personalized treatment. Given high treatment costs, potential 
serious toxicity, harms of early progression, and low survival in cases of ineffective 
treatment, predictive systems with AI are promising. Multicenter studies with large 
data sets can provide algorithms with higher accuracy rates.

AI technology develops day by day in the realization of human behaviors in 
oncology and offers more efficient, faster, and lower cost solutions. Both AI and 
robotic potential are enormous in the follow-up and treatment of rectal cancer. AI and 
robotics are on the way to becoming a part of our health ecosystem.
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Abstract
Artificial intelligence (AI), particularly the deep learning technology, have been 
proven influential to radiology in the recent decade. Its ability in image 
classification, segmentation, detection and reconstruction tasks have substantially 
assisted diagnostic radiology, and has even been viewed as having the potential 
to perform better than radiologists in some tasks. Gastrointestinal radiology, an 
important subspecialty dealing with complex anatomy and various modalities 
including endoscopy, have especially attracted the attention of AI researchers and 
engineers worldwide. Consequently, recently many tools have been developed for 
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lesion detection and image construction in gastrointestinal radiology, particularly 
in the fields for which public databases are available, such as diagnostic 
abdominal magnetic resonance imaging (MRI) and computed tomography (CT). 
This review will provide a framework for understanding recent advancements of 
AI in gastrointestinal radiology, with a special focus on hepatic and pancreatobi-
liary diagnostic radiology with MRI and CT. For fields where AI is less developed, 
this review will also explain the difficulty in AI model training and possible 
strategies to overcome the technical issues. The authors’ insights of possible future 
development will be addressed in the last section.

Key Words: Artificial intelligence; Deep learning; Image diagnosis; Radiology; Magnetic 
resonance imaging; Computed tomography
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Core Tip: Gastrointestinal radiology is a subspecialty that is important and complex, 
and is thus a popular subject in artificial intelligence (AI). Recently many deep-
learning based diagnosis assistance tool have been developed in gastrointestinal 
radiology, particularly in diagnostic abdominal magnetic resonance imaging (MRI) and 
computed tomography (CT). Herein we will review recent advance of AI in 
gastrointestinal radiology, with a special focus on abdominal MRI and CT. Current 
difficulty in less-developed fields will be explained as well.

Citation: Chang KP, Lin SH, Chu YW. Artificial intelligence in gastrointestinal radiology: A 
review with special focus on recent development of magnetic resonance and computed 
tomography. Artif Intell Gastroenterol 2021; 2(2): 27-41
URL: https://www.wjgnet.com/2644-3236/full/v2/i2/27.htm
DOI: https://dx.doi.org/10.35712/aig.v2.i2.27

INTRODUCTION
The field of gastrointestinal radiology includes diagnostic radiology and interventional 
radiology. In the practice of diagnostic gastrointestinal radiology, various imaging 
tools are applied for the diagnosis of lesions in the abdominal cavity. These tools 
include X-ray used in abdominal plain film[1], angiography and abdominal computed 
tomography (CT)[2], magnetic resonance used in abdominal magnetic resonance 
imaging (MRI)[3,4], and ultrasound used in abdominal sonography[5]. For some 
diagnostic tasks, intravenous contrasts are used to enhance lesions for study. Contrast-
enhanced, three-phase CT is the standard for examination of liver tumors and many 
other lesion types[6]. Contrast-enhanced ultrasound and MRI, though less frequently 
used, have some clinical use in examination of pancreatic lesions and inflammatory 
bowel disease[7-9]. Please refer to Ripollés et al[7] for example of contrast-enhanced 
ultrasound for diagnosis for Crohn’s disease.

Artificial intelligence (AI) have been influential in radiology recently, because it has 
potential to reduce workloads of radiologists, and diagnostic radiology tools stated 
above have provided feasible ground for machine learning model development. 
Potential of machine learning models to reduce radiologist workload come from its 
better stability, higher work efficiency, and better accuracy in some selected tasks[10] 
than human workers. Deep learning has proven its suitability for different imaging 
methods, and radiology and has been widely used in image classification, 
segmentation, detection, and reconstruction tasks[11]. There are some optimistic 
radiologists who are willing to let AI assist them in their work so that they can 
enhance their role in other places[12,13]. Of course, there are also pessimistic radiologists 
who worry that the development of AI systems will replace radiologists[14].

The most significant shortcoming of machine learning algorithms require a lot of 
data[15]. At the same time, the lack of unified standard training data will lead to a 
decrease in the efficiency of AI learning, but it is difficult for doctors to label a large 
amount of accurate data in complex diseases. In addition, the algorithm may learn 
false correlations, which may also lead to overfitting. At the same time, it is difficult 
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for AI to explain the causality in the observation dataset. Semi-supervised learning is 
between supervised learning and unsupervised learning. In the training process, a 
small amount of labeled data and a large amount of unlabeled data are used at the 
same time. The development of semi-supervised learning algorithms is mainly because 
data labeling is very expensive or impossible in some fields[16-18]. The development of 
semi-supervised learning can also simultaneously solve the problems of a large 
number of labeling and overfitting.

INTERVENTIONAL RADIOLOGY
Interventional radiology uses imaging techniques in diagnostic radiology to treat 
diseases or take specimens. The practice of interventional procedures in 
gastrointestinal radiology can be best exemplified by the treatment solid organ tumors. 
Among the most-frequently used non-surgical treatment procedures of hepatocellular 
carcinoma (HCC) are transcatheter arterial chemoembolization (TACE) and 
radiofrequency ablation (RFA). In TACE[19], liver tumors are first highlighted by 
angiography, and then embolized by particles coated with chemotherapeutic drugs. In 
RFA[20], the lesion is located by ultrasound rather than angiography and ablated by 
radiofrequency heating. In addition to liver cancer, any solid organ tumors with rich 
vasculature can be treated with this procedure. For example, pancreatic neuroendoc-
rine tumors are frequently hypervascular, therefore are sometimes treated by 
embolization since last century[21,22], especially in patients with multiple endocrine 
neoplasia type 1 syndrome, where multiple tumors may make resection unfeasible[23]. 
are also widely applied in some of pancreatic tumors, such as neuroendocrine tumors. 
Application of RFA, which does not require rich vasculature, is even more versatile 
than TACE. There are reports of successful radiofrequency ablation on unresectable 
pancreatic cancer[24,25], and even intra-abdominal sarcomas such as gastrointestinal 
stromal tumor[26].

Interventional radiology also has broad application on non-tumor diseases, 
especially in vascular diseases. The best well-known example is emergent 
management of gastrointestinal bleeding, where the bleeding artery can be visualized 
by angiography, and embolized[27,28]. A similar approach can be also applied to 
thrombotic diseases such as Budd-Chiari syndrome or celiac artery occlusion[29,30]. In 
management of these disorders, the vessels are visualized and dilated with stents or 
dissolved with thrombolytic agents. Applications of interventional radiology are 
numerous and still developing, so a thorough review is out of scope of this article.

Both diagnostic and interventional gastrointestinal radiology can be done 
endoscopically. For example, in endoscopic ultrasound (EUS), the ultrasound probe is 
inserted through an endoscope to visualize lesions that are not easily accessible by 
abdominal sonography[31,32]. Biopsy and other interventional procedures can then be 
done to the visualized lesion via the endoscope, as exemplified in publications by 
Williams et al[33]. and Kahaleh et al[34]. Endoscopic radiological images are more difficult 
to be collected in large amount, because like in EUS, most image from endoscopic 
procedures are manually captured with custom angle of the endoscopist, rather than 
in an automatic and standard manner. Therefore, unlike in development of AI in 
regular diagnostic radiology, in which large scale public dataset, such as pancreas CT 
dataset from The Cancer Imaging Archive[35-37], and Beyond the Cranial Vault 
Abdomen data set[38,39], are readily available, most AI studies in endoscopic radiology 
still requires collection and processing of multihospital data. Moreover, lack of 
standardization and technical difficulty can make researchers reluctant or afraid to 
make image public. For example, in the study of computer-aided diagnosis of 
gastrointestinal stromal tumors by Li et al[40], the authors made the research possible 
only after collecting data from 19 hospitals, and did not publish the dataset. To our 
knowledge, there is only one well-known, public database of endoscopic ultrasound, 
published in 2020[41], and we hope that more database will be available in the following 
decade. In the present situation, due to less available resource, endoscopic radiology is 
less developed, so in this review article, we will focus on non-endoscopic radiological 
examination, particularly on CT and MRI.
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DEEP LEARNING IN RADIOLOGY: ACHIEVING STATE OF THE ART IN 
LESION DETECTION
In the last five years, there have been marked progress in deep learning-assisted lesion 
detection for radiology, particularly in computed tomography. The progress can be 
exemplified by the DeepLesion tool developed by National Institutes of Health[42], 
which claims to detect all types of lesion in computed tomography regardless of the 
organ, with a sensitivity of 81.1% and five false-positives per case. DeepLesion was 
published along with an immense dataset with 32120 CT slices. With this annotated 
database in hand as a powerful tool, researchers refined lesion detection algorithm at 
an accelerated pace. For example, with the DeepLesion dataset, researchers from 
Chinese Academy of Sciences were able to develop the MVP-Net tool[43] by feature 
pyramid network, which claims to be 5.65% more sensitive than DeepLesion. With 
more developed advancements in deep learning algorithms and more databases 
available, we can expect that universal lesion detection in computed tomography will 
reach clinical use in reasonable time. An example of lesion detection in DeepLesion 
can be found in Yan et al[42].

For MRI, recent advancements are much less pronounced. Due to complex and 
variable sequencing techniques used in MRI, such as perfusion weighted imaging and 
T2* used in in stroke protocol[44] and diffusion weighted imaging[45] used in various 
organs, development of an universal, organ-neutral lesion detection algorithm is very 
difficult, if not impossible. Nonetheless, for individual organs, there is still marked 
progression. For example, using a deep learning algorithm, Amit et al[46] developed a 
tool for lesion detection in breast MRI. Later, in 2019, with the application of deep 
learning on T1-weighted, fat-suppressed MR images, Kijowski et al[47] further extended 
the technology to predict breast lesion type. Though not as effective as in breast lesion 
detection, the application of deep learning on musculoskeletal system MRI has 
achieved marked success for the detection of variable lesions, such as fracture, 
deformity, and metastatic disease. There are numerous studies about lesion detection 
on MRI in other organs, but it is beyond the scope of this review article.

Given the fact that there are on an average five false-positive lesions detected by 
DeepLesion, deep learning algorithms trained by radiographs are prone to over-
detecting lesions. Researchers are aware of this problem and have tried to overcome it 
by various technologies. The most-used and earliest method applied is multi-view 
convolutional networks (CNN), wherein native 3D shapes are recognized from their 
rendered 2D views[48]. By using multi-view CNN, Setio et al[49], Kang et al[50] and El-
Regaily et al[51] reported significant reduction of false-positive lesions in the lung with 
computed tomography, thus making this algorithm the most effective detection 
training tool for lung image. Recent results of the use of multi-view CNN in lung 
lesion detection are shown in Table 1.

In addition to lung computer tomography, multi-view CNN has been used with 
other imaging subjects as well. It is also used to increase specificity in mammographic 
image classification[52] and longitudinal multiple sclerosis lesion segmentation[53]. 
Besides multi-view CNN, masking techniques during neural network training are also 
used to reduce false positive lesions. For example, Zlocha et al[54] used dense masks to 
improve the performance of RetinaNet[55], and the researchers developing ULDor 
tool[56] used pseudo mask to reduce false positivity in universal lesion detector.

Taken together, in recent years, deep learning for lesion detection in technology has 
shown great progress. In the next section, we will focus on how these technical 
advancements have benefited the diagnosis of gastrointestinal lesions.

DISEASE DIAGNOSIS AND PREDICTION IN GASTROENTEROLOGY
Cholangiographic diagnosis
One of the most advanced achievement in gastrointestinal radiology is the non-
invasive evaluation of for the bile ducts. Before the era of image reconstruction and 
advanced endoscopy, visualization and diagnosis of lesions causing biliary disease 
usually required quite invasive procedures such as transhepatic cholangiography[57]. In 
late 20th century, with the advancements in endoscopy, it was replaced by endoscopic 
methods l ike retrograde cholangiopancreatography (ERCP)[58] and EUS 
cholangiography[59,60]. For achieving both treatment and diagnosis, endoscopic 
procedure maybe necessary and appropriate, but for the sole purpose of diagnosis, 
such as visualization of lesions in primary sclerosing cholangitis (PSC)[61] and 
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Table 1 Recent results in usage of multi-view convolutional networks in lung lesion detection

Dataset Toolset AUC Ref.

LIDC ConvNets (2D) 0.996 Setio et al[49], 2016

LIDC Inception-Resnet (3D) 0.99 Kang et al[50], 2017

LIDC MatConvNet (2D) 0.94 El-Regaily et al[51], 2020

LIDC: Lexington Infectious Disease Consultants; AUC: Area under the curve.

choledochal cyst[62], endoscopic procedure maybe too invasive and inconvenient for 
patients.

Therefore, in the last three decades, with the increasing demand of non-invasive 
procedures and the progress of digital image reconstruction technologies, some 
radiology visualization tools, such as magnetic resonance cholangiopancreatography 
(MRCP)[63] and CT cholangiography[64], have been developed and achieved clinical 
importance. For diagnostic problems, the precision of non-invasive examination has 
become comparable to that of endoscopic procedure. MRCP achieved diagnostic 
accuracy of up to 97% in the diagnosis of choledocholithiasis as early as 2000[65]. In 
2011, MRCP even rivaled the performance of pathologic examination, with an 
accuracy of 82.9% in predicting carcinomatous biliary obstruction[66]. In the meantime, 
CT cholangiography also reached the status of standard care in some situations, such 
as preoperative biliary anatomy assessment when MRCP is inconclusive[67].

These noninvasive diagnostic examinations are, of course, far from perfect. Despite 
early success, in some studies between 2010 and 2020, the sensitivity of MRCP for 
choledocholithiasis was reportedly inferior to that of EUS[68]. This outcome may be 
attributed to subjectivity and inter-observer variability of interpretation, because, even 
though it is less demanding than ERCP, the radiological assessment of the bile duct 
and pancreas still requires high level of expertise to interpret[69]. For more demanding 
tasks, such as detection and classification of pancreatic lesions[70,71], the performance of 
noninvasive tests can be even more disappointing.

To cope with the problem of interpretation difficulty in noninvasive cholangiopan-
creatography, researchers began to use variable deep learning methods in an attempt 
to achieve more subjective and sensitive lesion detection in the bile ducts and 
pancreas. For example, Ringe et al[72] developed a transfer learning-based system for 
automated detection of PSC, achieving a sensitivity of 95%. If this system is used 
clinically, radiologists can avoid all-manual interpretation for difficult PSC detection, 
thus reducing possible the inter-observer disagreement. Some of researchers also used 
deep learning to improve image reconstruction and segmentation in the 
pancreatobiliary region, to reduce pitfall in traditional MRCP and CT cholangiog-
raphy. For example, Tang et al[73] used deep learning to improve highlighting of 
periampullary regions in MRI, which can be difficult with traditional MRCP method. 
Al-Oudat et al[74] used Denoising Convolutional Neural Networks for better 
construction of intrahepatic biliary segmentation in MRI image.

Besides its utility in noninvasive examination, deep learning can also benefit 
imaging difficulty in endoscopic procedure. By a segmentation algorithm trained by 
D-LinkNet34 and U-Net, Huang et al[75] developed a system to evaluate stone removal 
difficulty of ERCP. By training on a deep learning model using ultrasound images and 
videos, Zhang et al[76] developed a system to recognize pancreas segments and stations 
in EUS. With globally increasing computing power and maturing deep learning 
technology, we can expect radiological pancreaticobiliary system assessment to 
continuously improve in the future.

Detection and classification of solid organ tumor
Imaging studies, such as abdominal contrasted CT scan and contrast enhanced 
ultrasound, are crucial for the evaluation of solid organ tumor diagnosis, such as liver 
cancer, pancreatic cancer, and other solid organ tumors. The best example is screening 
for HCC in patients with cirrhosis[77]. Image diagnosis of liver tumor is crucial and 
effective to the point that HCC can be diagnosed by three-phase contrasted CT[78] 
alone, without the need of a biopsy[79]. Despite being less accurate, image diagnosis is 
helpful in more difficult-to-diagnose tumor types, such as focal nodular hyperplasia 
and hepatocellular adenoma[80-82]. CT diagnosis is also crucial and sensitive for 
pancreas cancer diagnosis[83] and prediction of malignant change in cystic lesion[84].
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The first problem in image diagnosis is that, even with state-of-the-art, highly 
sensitive technique, it can have less than ideal specificity. For example, image 
appearance of intrahepatic cholangiocarcinoma (ICC) can mimic HCC both in contrast-
enhanced CT[85] and contrast-enhanced ultrasound[86]. Since the long-term outcome and 
treatment strategy are significantly different between HCC and ICC[87,88], this can be a 
severe misdiagnosis that impacts prognosis. Some vascular tumors like epithelioid 
hemangioendothelioma[89,90] and sclerosed hemangioma[91] may also mimic epithelial 
malignancy, making the image diagnosis even less specific. Moreover, because of a 
large volume of abdominal CT and MRI done for liver cancer screening, the workload 
is quite a lot for radiologists[92,93]. Pancreatic cancer is more problematic, since 
inflammatory process such as autoimmune pancreatitis can mimic adenocarcinoma, 
causing diagnostic difficulty in CT and MRI[94,95]. Less prevalent tumor types, such as 
acinar cell carcinoma of pancreas, can be even more challenging[96]. Therefore, there is 
strong demand for automatic tumor classification algorithm for abdominal imaging, to 
improve the accuracy of tumor classification and reduce radiologists’ workload.

Of the two purposes stated above, the most recent development was on assisted 
lesion detection to relieve radiologists’ workload. Using watershed transform and 
Gaussian mixture, Das et al[97] developed a tool that they claimed can detect 
hemangioma, HCC and metastatic carcinoma with a classification accuracy of 99.38%; 
however, they did not consider ICC in their differential diagnosis, therefore, this tool 
can be used only for screening, and not for final tumor diagnosis. Vorontsov et al[98] 
used fully convolutional network for the detection of liver metastatic colorectal cancer, 
with a sensitivity of up to 85%. There are several other developed for liver tumor 
detection and segmentation with variable success[99,100]. For automatic pancreatic cancer 
detection, there are also variable success. Li et al[101] developed a computer aided 
diagnosis model by Dual threshold principal component analysis for pancreas cancer 
on PET/CT image, with an accuracy of up to 87.72%. By using faster region-based 
CNN on CT image, Liu et al[102] built a diagnosis system which detected pancreatic 
cancer with an area under the curve (AUC) of 0.9632. These studies are only some 
examples of AI detection of digestive system cancer in medical images. For a more 
detailed discussion, readers can refer to the other review article focused on this 
subject[103].

Few researchers have published results about detailed tumor classification based on 
abdominal imaging. By training convolution CNN with both MRI image and clinical 
data, Zhen et al[104]’s model achieved AUC of up to 0.985 in the classification of 
malignant tumors as hepatocellular carcinoma, metastatic carcinoma or other primary 
malignancies. Yasaka et al[105] attempted automatic classification of liver tumor into five 
classes (HCC, other malignancy, indeterminate masses, and two classes of benign 
lesions) using CNN, and achieved an accuracy of 0.84. Scope of these classification 
tools are summarized in Table 2. Due to limited literature available, it is too early to 
predict whether automatic radiological tumor classification will be comparable to 
pathologic diagnosis, but the recent results seem promising, and would be a good 
subject for further research.

Intelligent assistance on endoscopic radiology
Endoscopic radiological procedures, such as EUS and ERCP, can be very difficult to 
perform and interpret, and require a lot of training to achieve competence[106], 
particularly if combined with interventional procedures like ampullectomy or 
biopsy[107,108]. Artificial intelligence assistance to reduce difficulty and allow for a 
reasonable learning curve is therefore desired for these procedures.

Due to the limited availability of public image database of EUS and ERCP, the 
development of AI models for these modalities is, as stated in a previous review 
article, still in its infancy[109]. There are, however, already some promising results in 
assistance of endoscopic radiological procedure. The most pronounced progress is 
with depth assessment in EUS. EUS imaging for evaluation of tumor depth is crucial in 
predicting the safety of endoscopic submucosal dissection[110]; however, the image 
diagnosis can be subjective, and requires much expertise. Cho et al[111] developed a tool 
using deep learning that predicts tumor depth in EUS with a claimed AOC of 0.887. 
For less sophisticated tasks such as detection of pancreatic cancer in EUS, the result is 
even better, with a claimed AOC of 0.940[112]. Therefore, it is evident that deep learning-
assisted diagnosis can be a reliable tool.

In summary, AI has proven helpful in radiological diagnosis. Although few of the 
tools described above have reached clinical use, with current development, we can 
expect AI-assisted diagnosis to advance further in few years, and it may eventually 
become relevant to everyday clinical practice.
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Table 2 Classification scope for recent deep learning-based tumor classification tools

Ref. HCC ICC Metastatic carcinoma Other malignancy Benign tumors

Das et al[97], 2019 O X O X O

Vorontsov et al[98], 2019 X X O X X

Zhen et al[104], 2020 O O O O X

Yasaka et al[105], 2018 O O O O O

HCC: Hepatocellular carcinoma; ICC: Intrahepatic cholangiocarcinoma. X: Yes; O: No.

MAIN CHALLENGES AND PITFALLS OF THE APPLICATION OF AI IN 
RADIOLOGY
Although AI has made a lot of contributions in radiology, there are still some 
challenges and pitfalls, and AI experts should be cautious when working with 
radiologists. One of the biggest challenges is the availability of data. Ordinary deep 
learning algorithms will be learned through millions of training datasets, but it is 
difficult for the medical field to have such a large amount of data, and even if there are 
a large number of training datasets, there is currently no unified classification 
standard[113,114]. If the training dataset is too small, multiple neuron training through 
deep learning will easily lead to overfitting[115,116] and will show poor accuracy in 
independent tests. How to choose the right amount of model depth to adapt to a 
smaller training dataset will be the biggest challenge for AI engineers. In addition, 
generative adversarial networks[117] is also very suitable for small training datasets. At 
the same time, the establishment of a large number of training databases can also 
effectively help improve the efficiency of AI. Physicians and engineers work together 
to establish an open database and set uniform standards, which can also enhance AI 
applicability in radiology and pathology.

In addition, some diseases (usually rare diseases) have a problem of extreme 
disparity in the classification ratio, which is called imbalanced data. Imbalanced data 
training is more difficult, which usually leads to high accuracy but poor results, 
because the machine only needs to guess more. The classification, you can get a good-
looking accuracy. Although there are good solutions already available[118], these are 
still important challenges for using AI with rare diseases.

Finally, when an AI model that can be used clinically is to be developed, proper 
verification settings must be ensured in the experimental verification of the model. 
Lack of sufficient verification can lead to untrustworthy models[119]. It is common that 
the training dataset and the test dataset are not extensive at the time of collection, thus 
resulting in poor results in practical applications.

FUTURE OF AI IN GASTROINTESTINAL RADIOLOGY
With advanced deep learning algorithm, computers can assist clinicians to make an 
accurate diagnostic decision by providing the right information. For difficulties in 
endoscopic and interventional procedure, however, information alone is of little help. 
Complete automation of a manual procedure must be assisted by both deep learning 
and robotics. For example, there have been marked advancements in robot-assisted 
endoscopy devices[120]. If these robots can be combined with an intelligent system that 
detect lesions via ultrasound[112], then it would have a potential to automatically take 
procure a biopsy sample from the lesion, or perform a surgical procedure, thus 
eliminating the difficulties of endoscopic and surgical technique.

The other factor that would augment the power of intelligent system is the 
development of radiological technology itself. The best example would be combination 
of radiology and endoscopic robotic capsule[121,122]. Recently, with the assistance of 
neural network, trajectory control and image visualization of endoscopic robotic 
capsules have been more automatic than they were previously[123]. In the future, if the 
size of ultrasound probe or other radiological device can be reduced to nanoscale, with 
an intelligent robotic capsule and intelligent ultrasound probe, fully automated 
detection and management of any lesion accessible by endoscopic capsules would be 
possible. Possible path to fully automatic diagnosis and intervention in 
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gastroenterology by combining artificial intelligence with various technologies is 
shown in Figure 1.

The problems inherent to AI itself, that is, data acquisition and annotation, will also 
be solved by recent technical developments in deep learning models. The best sample 
would be using unsupervised learning or semi-supervised learning[16,18] to decrease or 
eliminate the need for radiologist annotation, making development of models faster. 
For research topics with large public database and well-developed models, such as 
abdominal CT, transfer learning with pre-trained model and included clinical data can 
also make training easier, more precise, and faster[124]. In addition to improvement of 
deep learning model itself, the advancement of advanced deep learning algorithm will 
enable in-vivo live visualization of lesion detection in endoscope[125], which will be a 
powerful, clinically applicable function. LeNet-5 architecture can be found in 
publication by Lecun et al[126].

However, areas with less data availability, such as EUS, cannot be advanced with AI 
technology alone. For developments of these areas, international collaboration for 
collection of multi-center image database and clinical data must be done to overcome 
data scarcity and facilitate precise training and evaluation of models. These multi-
center database of image and clinical data will not only benefit model training, but also 
validation of previous models. Because multi-center data can be more unbiased than 
data from single source, validation or re-training by multi-center data may improve 
precision of models by eliminating sampling bias.

With future advancement in data science, deep learning algorithm and medical 
robotics, AI can play important role in gastrointestinal radiology in the future and may 
lead a medial revolution.

CONCLUSION
As demonstrated in the assistance of liver tumor diagnosis and cholangiography, AI 
has the potential to reduce radiology workload and improve diagnostic specificity, 
thus making radiologic diagnoses faster and more reliable. In some tasks like the 
detection of a malignant stricture, we can even hope for machine diagnosis to surpass 
human diagnosis, making fully automated diagnosis possible. Conversely, for fields 
where training data collection is more difficult, such as endoscopic ultrasound, 
training deep learning models would still be slow using today’s technology.

To overcome the problem of lack of technical advancement due to limited data in 
these areas, particularly in endoscopic procedure, two approaches maybe used. The 
first solution is to use algorithms that are designed to increase data availability in 
small medical dataset, such as generative adversarial network and transfer learning. 
The other suggestion is to build public, global endoscopic image library for model 
training. In conclusion, though a lot have to be done to make AI universally successful 
in gastrointestinal radiology, the researchers and developers actually already have the 
facility to deal with the difficult aspects of this task. Therefore, it is reasonable to 
expect more scientific advancements and clinical use of AI in the coming decade.



Chang KP et al. AI in gastrointestinal radiology

AIG https://www.wjgnet.com 35 April 28, 2021 Volume 2 Issue 2

Figure 1 Illustration of a possible path to automatic diagnostic and interventional system in gastroenterology.
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Abstract
Hepatocellular carcinoma (HCC) is the most commonly diagnosed type of liver 
cancer and the fourth leading cause of cancer-related mortality worldwide. The 
early identification of HCC and effective treatments for it have been challenging. 
Due to the sufficient compensatory ability of early patients and its nonspecific 
symptoms, HCC is more likely to escape diagnosis in the incipient stage, during 
which patients can achieve a more satisfying overall survival if they undergo 
resection or liver transplantation. Patients at advanced stages can profit from 
radical therapies in a limited way. In order to improve the unfavorable prognosis 
of HCC, diagnostic ability and treatment efficiency must be improved. The past 
decade has seen rapid advancements in artificial intelligence, underlying its 
unique usefulness in almost every field, including that of medicine. Herein, we 
sought and reviewed studies that put emphasis on artificial intelligence and HCC.

Key Words: Hepatocellular carcinoma; Artificial intelligence; Diagnosis; Prognosis; 
Therapy; Genomic
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Core Tip: We performed electronic searching in PubMed, Web of Science and 
EMBASE. Artificial intelligence (AI) or in-depth learning and hepatocellular 
carcinoma were used as mesh terms. We found that AI showed favorable results in 
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early diagnosis and treatment response prediction and prognosis estimation in patients 
with hepatocellular carcinoma. The past decade has seen rapid advancements in AI, 
underlying its unique usefulness in almost every field, including that of medicine. 
Herein, we sought and reviewed studies, and we expect that AI will be an important 
complement to traditional diagnosis, treatment and prognosis estimation of 
hepatocellular carcinoma.
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INTRODUCTION
According to GLOBOCAN 2018[1], liver cancer was the sixth most commonly 
diagnosed (4.7%) type of cancer and the fourth leading cause (8.2%) of cancer-related 
mortality. It has been estimated that there are approximately 841000 new liver cancer 
cases and 782000 liver cancer-related deaths annually. Hepatocellular carcinoma 
(HCC) accounts for the majority of primary liver carcinoma[1]. The widely accepted 
risks of HCC include chronic hepatitis B virus/hepatitis C virus infection, alcohol 
consumption, cirrhosis, aflatoxin intake as well as nonalcoholic fatty liver disease. Due 
to its atypical radiological appearance and the possibility of false-negative biopsy 
results, early-stage HCC is likely to be missed. Only a few HCC patients are suitable 
for radical resection, and even fewer can receive a liver transplant due to the limited 
availability. The high recurrence rate of HCC also undermines the benefits of surgery. 
Patients in intermediate and advanced stages can only benefit from noncurative 
treatments, including transarterial chemoembolization (TACE), radiofrequency 
ablation (RFA), targeted agents and systemic therapies, albeit in a limited way[2]. 
Managing HCC is a major challenge in the clinic.

In the past few years, rapid progress has been made in artificial intelligence (AI) due 
to improvements in computer science. AI techniques, including machine learning 
(ML), artificial neural networks (ANNs) and computer vision, were combined with 
surgery, radiology, bioinformatics and pharmaceuticals and played an innovative role 
in boosting the development of those techniques[3,4]. At present, AI is applied in drug 
design, patient monitoring, diagnostics and imaging, risk prediction and management, 
wearables and virtual assistants[5].

As AI is now frequently used in diagnosis, treatment and patient managing of many 
types of cancer, including lung, gastric, prostate and colon cancers[6-17], the assistance of 
AI in enhancing our diagnostic, therapeutic and prognostic ability to control HCC was 
not unexpected. In addition, the combination of AI and big data also performed much 
better than traditional methods[18].

Recent studies have exhibited promising applications of AI in HCC. In the present 
study, the latest developments in the use of AI in HCC were studied, and both 
methods and improvements were reviewed.

DIAGNOSTIC ASSISTANCE FROM AI
An HCC diagnosis is based mostly on imaging and laboratory tests. Radiological and 
nonradiological imaging holds a dominant position in the diagnosis, staging, 
therapeutic decisions and management of patients, while laboratory biomarkers [e.g., 
α-fetoprotein (AFP)] offer some support. For certain patients, histological examination 
is recommended[19]. By introducing AI into the evidence-based diagnostic procedure, 
more accurate classification was provided to assist clinical determination. Recent 
developments were summarized in Table 1.

In a study in 2010, a total of 250 HCC patients, including 200 patients who 
underwent hepatectomy and 50 who underwent liver transplantation, were randomly 
divided into a test group (n = 75; 30%) and a training group (n = 175; 70%)[20]. Factors 
including serum AFP, preoperative tumor number, maximum tumor size and tumor 
volume were found by univariate analysis to be strongly related to tumor grade 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/2644-3236/full/v2/i2/42.htm
https://dx.doi.org/10.35712/aig.v2.i2.42


Yi PS et al. AI in HCC

AIG https://www.wjgnet.com 44 April 28, 2021 Volume 2 Issue 2

Table 1 Recent developments in artificial intelligence assisted diagnosis

AI category Data adopted Advantages Control Ref.

ANN Preoperative serum AFP, tumor 
number, size and volume

The ANN showed higher AUCs in 
identifying tumor grade (0.94) and MVI 
(0.92)

LR model (0.85 and 0.85) [20]

CNN Enhanced MRI The CNN showed comparable accuracy 
(90%)

Traditional multiphase MRI 
(89%)

[24,25]

Open-source framework 
“caffe” based CNN model

DWI CNN trained with three sets of b-values 
found better grading accuracy (80%)

CNN trained with different 
b-values (65%, 68%, 70%)

[26]

CNN Nonenhanced MRI The deeply supervised and pretrained CNN 
model performed better in characterizing 
HCC (accuracy 77.00 ± 1.00%)

CNN-based method 
pretrained by ImageNet 
(65.00 ± 1.58%)

[27]

DL-based segmentation 
model

Contrast-enhanced CT The model with a combination of 2D 
multiphase strategy showed higher ability 
of segmenting active part from the tumors

Traditional CT estimation [28-30]

RF based ML model HE-stained histopathological 
images

The classifying model showed an AUC of 
0.988 in the test set and 0.886 in the external 
validation set

- [31]

1D CNN Hyperspectral and HE-stained 
images

The models had a higher average AUC of 
0.950

RF (0.939) and SVM (0.930) 
models

[33]

Shiny and Caret packages-
based prediction model

Clinical and laboratorial 
information

The optimal model had an AUC of 0.943 Single factor-based 
predictors (0.766, 0.644 and 
0.683)

[34]

1D: One-dimensional; 2D: Two-dimensional; AFP: α-fetoprotein; AI: Artificial intelligence; ANN: Artificial neural network; AUC: Area under the curve; 
CNN: Convolutional neural network; CT: Computed tomography; DL: Deep learning; DWI: Diffusion-weighted imaging; HE: Hematoxylin and eosin; LR: 
Logistic regression; ML: Machine learning; MRI: Magnetic resonance imaging; MVI: Microvascular invasion; SVM: Support vector machine; RF: Random 
forest.

and/or microvascular invasion. Those four factors were used to build both a 
traditionally used logistic regression (LR) model and an ANN, which was set as a 3-
layer feedforward neural network with a learning rule of backpropagation of error, 
endowing the ANN with a capacity of reducing overall error. It was clear that ANN 
[area under the curve (AUC) = 0.94; 95% confidence interval (CI): 0.89-0.97] had a 
notably higher (P < 0.001) predictive ability for tumor grade than LR analysis (AUC = 
0.85; 95%CI: 0.78-0.89). At the same time, its ability to predict microvascular invasion 
was also significantly stronger (AUC = 0.92, 0.85; 95%CI: 0.86-0.96, 0.74-0.89; P < 
0.001). Compared with single factor prediction, which cannot effectively predict tumor 
grade and microvascular invasion[21-23], ANN provided a significantly improved ability 
to stratify tumors in a multidimensional way.

Magnetic resonance imaging (MRI) is highly valued in clinical diagnosis due to its 
outstanding ability to locate lesions. Recent research has shown the potential of deep-
learning systems to distinguish HCC from other hepatic diseases, in which all 494 
typical imaging features of six types of hepatic lesions were divided into a training set 
(n = 434) and a test set (n = 60)[24]. An AI model was used to classify hepatic lesions 
through multiphasic contrast-enhanced MRI scans. A custom convolutional neural 
network (CNN) with iteratively optimized architecture was trained by 43400 samples 
generated from 434 patients of the training set via augmentation techniques. The test 
set included 60 lesions (10 lesions from each category) randomly selected by Monte 
Carlo cross-validation. Eventually, the CNN consisted of three convolutional layers for 
generating filtered images, two maximum pooling layers for providing spatial 
invariance and two fully connected layers for outputting matched lesion types. As a 
result, a 90% sensitivity and an AUC of 0.992 for HCC classifying were observed in the 
test set, with an average 90% sensitivity and 98% specificity for a total of six classes of 
lesions. It had comparable efficiency to traditional multiphase MRI, which was 
reported to have an overall sensitivity of 89% and specificity of 96% for HCC[25].

Another recent study, in which imaging data was partitioned into a training and 
validation set (60 HCCs) and a fixed test set (40 HCCs), paid attention to the tumor 
grading potential of diffusion-weighted imaging[26]. An AI model was constructed 
based on an open-source deep-learning framework, “caffe”, to grade HCC by 
diffusion-weighted imaging. Edmondson grade I and II HCCs were defined as low-
grade (n = 47), while Edmondson grade III and IV HCCs were defined as high-grade (
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n = 53). Diffusion-weighted imaging was performed with three sets of b-values (0, 100, 
600 s/mm2), logarithmically transformed into log maps and then extracted by a 
specifically designed two-dimensional CNN to collect spatially deep features for 
grading tumors. The two-dimensional CNN was established with two convolutional 
layers, two pooling layers, two fully connected layers and a softmax layer. A deeply 
supervised loss functioned as the cross-entropy loss of the proposed CNN, which 
combined the three loss functions of CNN in the three b-value images and the loss 
function of the concatenated deep features. In terms of grading accuracy, the proposed 
CNN (80%; AUC, 0.83) performed better than other CNNs derived from original b 0 
(65%), b 100 (68%), b 600 (70%) images and an apparent diffusion coefficient map 
(72.5%).

Jian et al[27] reported a novel method of training a deep-learning HCC diagnosis 
model with nonenhanced MRI scans. A total of 112 HCC patients (115 HCC tissue 
samples) with histological HCC proofs and enhanced MRI scans (including 
precontrast phase, arterial phase, portal vein phase and delayed phase) were classified 
into four Edmondson grades and further defined as low-grade (Edmondson grades I 
and II) and high-grade (Edmondson grades III and IV) HCCs. A deep-learning 
framework was established in two steps. The first step was the pretraining process, in 
which the relationship between precontrast (nonenhanced) and enhanced MRI scans 
was identified in order to find out malignant characterizations of nonenhanced MRI 
scans. The identified characterizations were transferring-learnt using a supervised 
cross modal method in the second step. Results showed that the CNN-based method 
performed better in characterization than the traditional way, and the deeply 
supervised model pretrained by the cross modal from the three phases (precontrast, 
arterial and portal vein phase) performed the best compared with nonsupervised CNN 
and deeply supervised methods pretrained by the cross modal from two out of three 
phases (precontrast + arterial phase and precontrast + portal vein phase). This result 
revealed a new diagnostic approach for patients not receptive to enhanced imaging.

A deep-learning automatic segmentation model was built on multiphase computed 
tomography (CT) images to discriminate tumors from healthy liver tissue and further 
identify between active and necrotic tumor areas[28]. A total of 13 contrast-enhanced CT 
sequences from 7 HCC patients were manually segmented by four experts into 104 
labeled CT scan slices, containing images captured before contrast agent injection and 
images reflecting the arterial phase and the portal venous phase. The U-Net 
architecture was configured in a hierarchical method to specially segment by applying 
separate networks for each type of specific tissue. Two opposite strategies were 
investigated: Dimensional MultiPhase strategy, in which single-phase images were 
processed in a multi-dimensional feature map and the MultiPhase Fusion strategy, in 
which each phase was independently processed and then merged into the final 
segmentation. The softmax was introduced in the final layers of the different networks. 
The weighted cross-entropy functioned as the cost to optimize the weights and balance 
classes problem. Finally, a commonly used Dice similarity coefficient was used to 
estimate segmentation quality. Results indicated a better competency of multiphase 
methods in segmenting the liver and active part of tumors as compared with single 
phase ones. Between the two multiphase methods, Dimensional MultiPhase 
outperformed MultiPhase Fusion in the segmentation of the liver (P = 0.004) and active 
part of the tumors (P = 0.005). Furthermore, the combination of two Dimensional 
MultiPhase methods displayed the highest ability in spotting active areas from tumor 
tissues, making it reliable (mean error rate = 13.0%) in estimating the necrosis rate in 
which traditional CT estimation is not[29,30]. With a more accurate assessment method, 
more beneficial clinical decisions may be made.

Histological examination provides solid evidence for the diagnosis, grading and 
prognosis analysis of HCC. Hematoxylin and eosin staining is the most common 
method used for biopsy. A total of 491 whole-slide hematoxylin and eosin-stained 
histopathological images of HCC and adjacent normal tissues downloaded from the 
Genomic Data Commons data portal were used for supervised training of ML 
classifier based on Breiman’s random forest (RF)[31]. The 31 most valuable image 
features (IFs) identified from the training set by principal component-based analysis 
(PCA) were used during the establishment of the classification model. An external 
validation set of tissue microarray images from the West China Hospital was 
employed in addition to the randomly partitioned training (70%) and test (30%) sets. 
The IF classification model showed an AUC of 0.988 (95%CI: 0.975-1.000) in the test set, 
while that of the external validation set was 0.886 (95%CI: 0.844-0.929). This 
outstanding performance of the IF model indicates its possible applications in the 
future.
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Hyperspectral imaging (HSI) was regarded as a promising diagnostic technique[32]. 
A one-dimensional CNN was designed to discriminate HCC from normal tissues 
through HSI images[33]. HCC samples were cut into two adjacent slices, one of which 
was hematoxylin and eosin-stained and the other one underwent HSI. A total of 14 
sets of HSI images, each containing 107 images photographed under different 
wavelengths, were used in a leave-one-out cross-validation approach, resulting in 14 
different models. The framework consisted of a convolution layer, a max-pooling layer 
and a fully connected layer. The convolution layer could extract features from HSI 
images supervised by annotated tumor areas on the paired hematoxylin and eosin-
stained slice, with a rectified linear unit that was shown to avoid gradient vanishing 
and accelerate the training process. Extracted features were processed in the max-
pooling layer to reduce dimension and classified afterward in the fully connected 
layer. The average accuracy, sensitivity, specificity and AUC of those models was 
0.881, 0.871, 0.888 and 0.950, respectively. Further evaluation was carried out and 
exhibited a salient capacity of the one-dimensional CNN model as compared with the 
RF and support vector machine (SVM) models.

Information was extracted from 539 HCC patients and 1043 non-HCC patients to 
train and test a predictive ML framework developed using R version 3.4.3 and the 
Shiny and Caret packages[34]. Patients were randomly divided into the training (80%), 
development and test sets. Clinical information, including AFP, AFP-L3, des-g-
carboxy prothrombin (commonly referred to as DCP), aspartate aminotransferase, 
alanine transaminase, platelet count, alkaline phosphatase, gamma-glutamyl 
transferase, albumin, total bilirubin, age, sex, height, body weight, hepatitis B surface 
antigen and hepatitis C virus antibody, was obtained for ML. The framework had 
several classifiers and two components. In the first component, a grid search was 
performed to select the best classifier and its specific hyperparameter, which would be 
introduced in the second component to output probabilities of HCC. Among a total of 
seven classifiers, gradient boosting showed an AUC of 0.940 as the highest one, with 
that of the optimal, based on the framework, classifier at 0.943; single-factor prediction 
using thresholds of 200 ng/mL for AFP, 40 mAu/mL for DCP and 15% for AFP-L325 
performed AUCs of 0.766, 0.644 and 0.683, respectively.

THERAPY RESPONSE PREDICTION BY AI
Surgical resection remains the first-line treatment for early-stage patients, with 5-year 
survival in appropriately selected cases exceeding 70%. However, it has been reported 
that HCC diagnosis is usually delayed, especially in countries with limited screening 
resources[19]. Out of patients who miss the optimum surgical time window or are 
unsuitable for operative therapy, only a few benefit from loco-regional (e.g., RFA), 
intra-arterial (e.g., TACE), systemic and targeted therapies[2]. Thus, enhancing the 
accuracy of surgical indications and promoting treatment benefits of nonoperative 
therapies would effectively improve the clinical prognosis of patients. In the past 
years, some AI models with great potential were built, as referred in Table 2.

HCC has been estimated as the fourth highest cause of all cancer-related mortality 
worldwide[1], indicating a high malignancy and poor prognosis of HCC. Accurate 
prognostic prediction of tumor resection is needed to identify high-risk patients and 
enable more favorable clinical decisions. As Qiao et al[35] reported, the independent risk 
factors (including tumor size, number, AFP, microvascular invasion and tumor 
capsule) found by linear regression to be significantly related to survival were selected 
to assist in predicting the prognosis of early HCC after partial hepatectomy, both in a 
Cox model and using an ANN method. A feed-forward neural network was built as a 
perceptron with several layers, outputting a prognosis condition (survival or death) 
for certain time points. In addition to the training and cross-validation cohort in which 
patients from the Eastern Hepatobiliary Surgery Hospital were randomly selected, an 
external validation cohort was obtained from the First Affiliated Hospital of Fujian 
Medical University. AUCs demonstrated that the ANN (0.855) outperformed the Cox 
model (0.826), Tumor, Node, Metastasis 6th (0.639), Barcelona Clinic Liver Cancer 
(BCLC) (0.612) and HepatoPancreato-Biliary Association system (0.711), and consistent 
results were observed in the external validation cohort. It drew attention to the 
potential of the ANN model to provide clinical assistance and improve benefits of 
early-stage HCC patients.

AI models can also help identify predictive factors of surgery outcomes. In a 
multicenter retrospective study that included 976 BCLC 0-B HCC patients who 
underwent hepatectomy, Tsilimigras et al[36] generated homogeneous groups of 
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Table 2 Artificial intelligence models that can help in predicting therapy responses

AI Data adopted Advantages Control Ref.

ANN Cox-identified risk factors The ANN had the highest AUC (0.855) Cox model, TNM 6th, BCLC and 
HPBA system (0.826, 0.639, 0.612, 
0.711)

[35]

CART model Clinical and laboratorial 
parameters

The model successfully identified pre- 
and postoperative prognosis predictive 
factors

- [36]

Weka-based ANNs Cox-identified risk factors (15 
factors for DFS and 21 for 
OS)

The ANNs showed higher abilities of 
predicting DFS and OS

LR and decision tree model [37,38]

Radiomics-based DL 
CEUS model 

Contrast-enhanced 
ultrasound

The model showed an AUC of 0.93 in 
predicting therapy response to TACE

Radiomics-based time-intensity 
curve of CEUS model (0.80) and 
radiomics-based B-Mode images 
model (0.81)

[40]

Pretrained CNN 
"ResNet50"

Manually segmented CT 
images

The model showed AUCs for predicting 
CR, PR, SD and PD in training (0.97, 0.96, 
0.95, 0.96) and validation (0.98, 0.96, 0.95, 
0.94) cohorts

- [41]

Automatic predictive 
CNN model

Quantitative CT and BCLC 
stage

The model had a better prediction 
accuracy of 74.2%

ML model based on BCLC stage 
(62.9%)

[42]

ANN Clinical features The models showed higher AUCs in 
predicting 1- and 2-yr DFS (0.94, 0.88) 
after RFA

Model built with 8 features for 1-yr 
DFS (0.80), and model built with 6 
features for 2-yr DFS (0.76)

[45]

AI: Artificial intelligence; ANN: Artificial neural network; AUC: Area under the curve; BCLC: Barcelona Clinic Liver Cancer; CART: Classification and 
Regression Tree; CEUS: Contrast-enhanced ultrasound; CNN: Convolutional neural network; CR: Complete response; CT: Computed tomography; DFS: 
Disease-free survival; DL: Deep learning; HPBA: HepatoPancreato-Biliary Association; LR: Logistic regression; ML: Machine learning; OS: Overall survival; 
PD: Progressive disease; PR: Partial response; RFA: Radiofrequency ablation; SD: Stable disease; TACE: Transarterial chemoembolization; TNM: Tumor, 
Node, Metastasis; Weka: Waikato Environment for Knowledge Analysis.

patients based on their 5-year overall survival (OS) and identified clinical factors, 
which can be used to predict OS after resection using the nonparametric Classification 
and Regression Tree (CART) model based on pre- (preoperative CART model) and 
postoperative (postoperative CART model) factors. CART is a risk prediction model 
with a performance to recursively partition the ‘covariate space’. As a result, the CART 
model successfully identified several prognosis predictive factors. Among BCLC-0/A 
patients, the CART model selected AFP and Charlson comorbidity score as the first 
and second most important preoperative factors and lymph vascular invasion as the 
best postoperative predictor of OS. Radiological tumor burden score and pathologic 
tumor burden score were selected as the best pre- and postoperative factors for 
predicting surgical outcomes for BCLC-B HCC patients.

Consecutive studies of Ho et al[37,38] have been reported in which AI models were 
predictively capable of classifying patients into different groups with distinctive 
disease-free survival (DFS) and OS after hepatic resection. Data from HCC patients 
who underwent liver resection were examined and merged for further construction of 
survival predictive models. The input variables were identified by the univariate Cox 
proportional hazard model to be closely related (log-rank test; P < 0.05) to DFS or OS. 
Eighty percent of the data were used for training, and the other 20% for validation, 
while no significantly different effect of input variables was observed between training 
and validation (P > 0.05). The proposed ANNs in both studies, which shared 
homologous structures based on the Waikato Environment for Knowledge Analysis 
software using a backpropagation algorithm, were framed with input, hidden and 
output layers. Each of the identified variables was inputted into one of the input 
neurons, and then a trial-and-error process was performed in the hidden layer to 
optimize its neuron numbers before generating DFS and OS status in the output layer, 
which contained only one neuron.

In the first reported study showing the capacity of the ANN to predict DFS based on 
15 statistically significantly associated variables, two comparative models were tested: 
An LR and a decision tree model. The receiver operating characteristics curves and 
AUCs for the 1-, 3- and 5-year DFS models constructed using ANN, LR and decision 
tree demonstrated an acceptable and exceeding performance of the ANN model as 
compared with the LR and decision tree models.
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In another study, attention was paid to OS after resection with 21 potential variables 
serving as inputs. An LR model was used for performance comparison. The accuracy, 
sensitivity, specificity and AUC of the ANN and LR models were calculated. As a 
result, the prediction performance of the ANN model was significantly stronger than 
that of the LR model. In both studies, the possible usage of the ANN as a clinical 
supplementary tool for decision-making was emphasized, suggesting it might be able 
to enhance the profit-risk ratio of HCC resection.

TACE has been widely accepted as the standard and effective treatment for HCC 
patients at the intermediate stage[39]. Recent studies have paid considerable attention to 
deep-learning and TACE, highlighting treatment response prediction and AI-assisted 
clinical decision-making.

Contrast-enhanced ultrasound (CEUS) and B-mode ultrasound images of 130 HCC 
patients who received first-time TACE treatment were obtained for retrospective 
analysis using AI, which was trained to predict patient response (objective-response 
and nonresponse) to TACE[40]. A total of three models were framed by applying CEUS 
images (deep-learning radiomics-based CEUS model), the time-intensity curve of 
CEUS (ML radiomics-based time-intensity curve of CEUS model) and B-mode images 
(ML radiomics-based B-Mode images model). AUCs were compared between the three 
models, and the hepatoma arterial-embolization prognostic score was used to predict 
the outcomes of patients with HCC undergoing TACE. In the training (n = 89; 68.5%) 
and validation (n = 41; 31.5%) cohorts, the three models markedly outperformed the 
hepatoma arterial-embolization prognostic score [AUC = 0.98 (0.92-0.99), 0.84 (0.74-
0.90), 0.82 (0.73-0.91) and 0.623 in the training and 0.93 (0.80-0.98), 0.80 (0.64-0.90), 0.81 
(0.67-0.95) and 0.617 in the validation cohorts for deep-learning radiomics-based CEUS 
model, ML radiomics-based time-intensity curve of CEUS model, ML radiomics-based 
B-Mode images model and hepatoma arterial-embolization prognostic score, 
respectively]. A high reproducibility of this predictive accuracy was displayed by 
robustness experiments performed in triplicate in both the training and validation 
cohorts. The predictive capability of human readers with a deep-learning feature map 
showed an advantage over that of ML radiomics-based time-intensity curve of CEUS 
model or ML radiomics-based B-Mode images model but not over that of deep-
learning radiomics-based CEUS model.

In two analogous studies, the ML network displayed a strong ability to predict 
TACE therapy outcomes using CT images. Peng et al[41] trained a pretrained deep 
CNN, ResNet50, with manually segmented CT images to predict treatment response to 
TACE. Tumor regions of interest segmented by experienced radiologists were divided 
into one training set (n = 562) and two validation sets (n = 89; 138). The weights of 
earlier layers (1-174) in this network were frozen to prevent overfitting and speed up 
the training process. The trained model showed AUCs of 0.97 (0.97-0.98), 0.96 (0.96-
0.97), 0.95 (0.94-0.96) and 0.96 (0.96-0.97) in the training cohort (n = 562), 0.98 (0.97-
0.99), 0.96 (0.95-0.98), 0.95 (0.93-0.98) and 0.94 (0.90-0.98) in the validation cohort 1 (n = 
89), and 0.97 (0.96-0.98) and 0.96 (0.94-0.98), 0.94 (0.92-0.97), 0.97 (0.95-0.98) in the 
validation cohort 2 (n = 138) for complete response, partial response, stable disease 
and progressive disease, respectively. Morshid et al[42] built a fully automated ML 
algorithm that can predict response to TACE using quantitative CT scan features and 
BCLC stage. A total of 105 HCC patients who had received TACE were defined by 
time to progression as TACE-susceptible (time to progression ≥ 14 wk) or TACE-
refractory (time to progression < 14 wk). A total of five imaging features that were 
different between background liver and tumor were extracted, including tumor 
volume, maximum two-dimensional axial diameter of the background liver, small area 
low gray-level emphasis within the background liver, maximal correlation coefficient 
within the background liver and long-run high gray-level emphasis within the tumor. 
Those features were added to the AI model to promote prediction accuracy. Compared 
with the model based on the BCLC stage alone (prediction accuracy = 62.9%, 95%CI: 
0.52-0.72), the model based on CT scan features and BCLC stage showed a better 
prediction accuracy of 74.2% (95%CI: 0.64-0.82).

Abajian et al[43] established an LR and an RF model to predict TACE treatment 
response using MRI scans. The quantitative European Association for the Study of the 
Liver response criteria were used to measure TACE response. A total of 36 patients 
were defined as treatment responders (8/36; 22.2%) and nonresponders (28/36; 77.8%) 
using a cut-off value of 65% changes in quantitative European Association for the 
Study of the Liver response criteria. During the training process of both models, five 
features, including cirrhosis, pre-TACE tumor signal intensity, pre-TACE number of 
tumors, performing method of TAC and existence of sorafenib treatment, were used in 
30 different combinations to identify the most accurate predictive model. A leave-one-
out cross-validation method was used for a predictive accuracy test. When trained on 



Yi PS et al. AI in HCC

AIG https://www.wjgnet.com 49 April 28, 2021 Volume 2 Issue 2

all five features, the LR model displayed an accuracy of 72.0%, sensitivity of 50.0% and 
specificity of 78.6%, while an accuracy of 66.0%, sensitivity of 62.5% and specificity of 
67.9% were validated for the RF model. Notably, these two models shared a best 
performance (accuracy 78%, sensitivity 62.5% and specificity 82.1%) when trained 
using only two (pre-TACE tumor signal intensity > 27.0 and presence of cirrhosis) of 
those five features but still remained inferior to that of MR scan using a baseline 
apparent diffusion coefficients value threshold of 0.83 × 10-3 mm2/s, which 
demonstrated 91% sensitivity and 96% specificity to predict TACE response at 1 mo 
after treatment and an AUC of 0.965[44].

RFA is considered a viable option for HCC patients who are unsuitable for resection 
or on the waiting list for a liver transplant. A prognostic prediction ANN model was 
reported to be promising for clinical practice[45]. Patients were divided into a 1- (n = 
252) and a 2-year (179) DFS group. A total of eight and six variables from a total of 
fifteen potential variables (total bilirubin, aspartate aminotransferase, alanine 
transaminase, albumin, platelet, age, gender, tumor size, tumor number, AFP, HCC 
treatment history, TACE, recurrence events after TACE, BCLC stages and liver 
cirrhosis events) were found to be significantly associated with 1- and 2-year DFS and 
were used as inputs for building prediction models, which was based on a multiple-
layer perceptron structure and a backpropagation learning rule. This ANN model was 
designed with the ability of selecting structure depending on its predictive 
performance. Between two 1-year DFS models, the one built with 15 features (the 
accuracy, sensitivity, specificity, and AUC were 0.92, 0.87, 0.94 and 0.94, respectively) 
was better than the one with 8 significant features (the accuracy, sensitivity, specificity 
and AUC were 0.78, 0.37, 0.96 and 0.80, respectively). Consistently, a 2-year DFS model 
with 15 features (the accuracy, sensitivity, specificity and AUC were 0.86, 0.79, 0.91 
and 0.88, respectively) showed a considerable advantage over that with 6 significant 
features (the accuracy, sensitivity, specificity and AUC were 0.68, 0.47, 0.84 and 0.76, 
respectively) and traditional methods including acoustic radiation force impulse 
elastography (AUC = 0.821; 95%CI: 0.747-0.895) and transient elastography(AUC 0.793; 
95%CI: 0.712-0.874)[46,47]. Although some of the 15 features were evaluated by χ2 test to 
be nonsignificantly related with 1- or 2-year DFS, the better outcome of models with all 
15 features might have prompted their implicit roles in RFA response prediction.

PROGNOSIS ESTIMATION USING AI
In order to correctly identify the development characteristics and improve the 
outcomes of existing therapies, accurate prognostic information is indispensable. 
Individualized precise treatment based on risk and prognostic data would 
substantially enhance curing efficiency in HCC[48]. Table 3 displayed some of the 
effective models which can provide prognosis estimation.

Two deep-learning algorithms, CHOWDER and SCHMOWDER, which adopted 
whole-slide digitized histological slides of HCC patients that had undergone surgery 
were set up to predict OS after resection[49]. CHOWDER could automatically recognize 
survival-related patterns on the tiles derived from the slides and assess the risk score 
for each whole-slide digitized histological slide in three steps: Preprocessing, tile-
scoring and prediction. SCHMOWDER has an identical preprocessing step as 
CHOWDER and a two-branch tile-scoring and predicting pipeline. The upper branch, 
which generated a representation of highly-probably tumoral tiles with an attention 
mechanism used, was trained by annotations from pathologists; the lower branch, 
which generated a representation of only a few tiles, was weakly supervised. 
Representations from the two branches were merged to calculate a survival risk score. 
The discriminatory capacities of the two models assessed by cross-validation were 
demonstrated as better than baseline factors (including microvascular invasion, serum 
AFP, largest nodule diameter and satellite nodules) and composite score by combining 
survival-related clinical, biological and pathological features.

In a prospective study including 442 patients with Child A or B cirrhosis, an HCC 
development prediction model based on ML algorithms, known as RF, was compared 
using conventional regression analysis[50]. Previously determined clinically relevant 
parameters (age, body mass index and presence of diabetes) and those identified by 
univariate analysis (AFP level, bilirubin, male gender, aspartate aminotransferase, 
alanine transaminase, Child-Pugh score and viral etiology) were selected to build a 
predictive regression model and an ML classifier. Multiple decision trees were 
constructed and used as “votes” to create the final classification prediction model. 
Cross-validated accuracy estimation and external validation in the hepatitis C antiviral 
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Table 3 Prognosis prediction models built with artificial intelligence algorithms

AI category Data adopted Advantages Control Ref.

DL algorithms CHOWDER 
and SCHMOWDER

Whole-slide digitized histological 
slide

C-indexes for survival prediction of 
SCHMOWDER and CHOWDER reached 
0.78 and 0.75

Baseline factors and composite 
score

[49]

ML classifier Previously determined relevant 
parameters and those identified 
by univariate analysis

The ML algorithm performed a c-statistic 
of 0.64 for HCC development prediction

Regression model (0.61) and the 
model built on the HALT-C 
cohort (0.60)

[50]

DL survival prediction 
model

RNA, miRNA and methylation 
data from TCGA

The DL model showed better potential in 
classifying HCC patients into two 
subgroups with different survival

PCA and the model built with 
manually inputted features

[51]

OS prediction model based 
on SVM-RFE algorithm

134 methylation sites identified 
using Cox regression and SVM-
RFE algorithm

This algorithm showed a higher accuracy 
of classifying HCC patients

Traditionally set classifying 
methods based on DNA 
methylation

[54-56]

ANN Mortality-related variables The ANN showed higher AUCs (0.84 and 
0.89) in predicting in-hospital and long-
term mortality

LR model (0.76 and 0.77) [57,58]

AI: Artificial intelligence; ANN: Artificial neural network; AUC: Area under the curve; DL: Deep learning; HALT-C: Hepatitis C antiviral long-term 
treatment against cirrhosis; HCC: Hepatocellular carcinoma; LR: Logistic regression; ML: Machine learning; OS: Overall survival; PCA: Principal 
component-based analysis; RFE: Recursive feature elimination; SVM: Support vector machine; TCGA: The Cancer Genome Atlas.

long-term treatment against cirrhosis trial cohort, which included 1050 patients, was 
conducted. The ML algorithm performed the best classifying characteristics with a c-
statistic of 0.64 (95%CI: 0.60-0.69) compared with the regression model (0.61; 95%CI: 
0.56-0.67) and the model built on the hepatitis C antiviral long-term treatment against 
cirrhosis cohort (0.60; 95%CI: 0.50-0.70), raising the possibility of prospectively 
predictive HCC development by ML.

Two HCC subgroups were found to have a notably discrepant prognosis by 
survival analysis and were focused on to build a deep-learning survival prediction 
model[51]. RNA, miRNA and methylation data from 360 HCC patients were collected 
from The Cancer Genome Atlas (TCGA) and were split to train an SVM model. Five 
additional confirmation datasets were obtained to estimate the predictive accuracy. 
TCGA HCC omics data were regarded as the input of the proposed autoencoder, in 
which three hidden layers with different numbers of nodes were implemented using 
the Python Keras library. The autoencoder was trained for ten epochs with a 50% 
dropout in the gradient descent algorithm. A total of 37 features of the TCGA omics 
data significantly (log-rank test, P < 0.05) associated with survival were identified by 
the autoencoder. With those features, a classification model using the SVM algorithm 
was built and validated in the test group and five additional groups of HCC patients. 
C-index, Brier score and log-rank test were carried out to evaluate the performance of 
the AI model, and two alternative methods, including PCA and a model based on 37 
manually identified features from the omics data. The proposed model showed a 
clearly better potential than that of PCA and the model with manually-inputted 
features, and intended prediction robustness was validated in additional datasets.

Anomalous DNA methylation was found to be highly related to HCC[52,53] and able 
to predict survival in HCC patients that had undergone surgery[54]. DNA methylation 
data from 377 HCC samples and 50 adjacent normal tissue samples were obtained and 
analyzed using the ChAMP tool in R software. A total of 2785 sites from 40799 sites 
that had been methylated differently between HCC tissue and adjacent normal tissue 
were assessed via Cox regression and found to be significantly related to OS (P < 0.05). 
The SVM-recursive feature elimination algorithm behaved as a classifier to identify 
valuable sites that could be used to build a predictive model. Finally, 134 methylation 
sites were used to build the predictive model. A total of 163 patients were divided into 
a “high-risk” (died within 1 year after surgery, n = 58), “intermediate-risk” (survived 
1-5 years after surgery, n = 64) and “low-risk” (survived > 5 years after surgery, n = 41) 
groups and were separated into a training (n = 130) and a test (n = 33) set. A total of 26 
(78.8%) patients were successfully classified into the test set. Further validation of 19 
paired HCC and normal tissue samples from the GSE77269 dataset in the Gene 
Expression Omnibus database demonstrated no incorrect classification of normal 
tissues and a similar ratio of HCC samples classified as “high-risk.” Although this 
algorithm showed a higher accuracy of classifying HCC patients than some 
traditionally-set classifying methods based on DNA methylation[55,56], validation in a 
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larger sample size was needed.
Liao et al[31] built an IF-based prognosis prediction model (IF model) that can divide 

HCC patients who underwent resection into two groups, the high- and low-score 
groups, with a different OS according to the cut-off value of the training set. A total of 
46 informative IFs, identified by Cox proportional hazard regression and an RF 
minimal depth algorithm, were found to be significantly (P < 0.05) associated with OS 
and were used to train the IF model. As a result, the IF model successfully 
distinguished patients with higher scores from those with lower scores in all three sets 
(log-rank test; P < 0.0001 in the training set, P = 0.013 in both the test and external 
validation sets), exhibiting a well-performed prognosis prediction ability. 
Furthermore, time-dependent receiver operating characteristics curves were used to 
compare the prognosis performance between the IF model and the Tumor, Node, 
Metastasis staging system, with no significant difference observed (adjusted P = 0.848-
1.000) at each time point (1-9 years after treatment), indicating that the IF model may 
have a comparable predictive accuracy with that of the Tumor, Node, Metastasis 
staging system.

Two similarly framed ANN models, expected to respectively predict in-hospital and 
5-year mortality in HCC, were trained with data from a large population of 22926 
patients who had been diagnosed with HCC and had undergone resection[57,58]. The 
structure of ANNs consists of an input layer, a hidden layer and an output layer. To 
identify related variables, continuous and categorical variables were respectively 
tested by one-way analysis of variance and Fisher’s exact test, and significant 
predictors (P < 0.05) were verified by univariate analysis. The following steps were 
repeated 1000 times: (1) Data were randomly divided into a training set (n = 18341; 
80%) and a test set (n = 4585; 20%); (2) the LR and ANN models were established 
based on the training dataset; and (3) Paired t-tests were used to compare indices 
between the two models. Statistically in-hospital mortality-related variables, including 
age, gender, comorbidity (estimated by Charlson comorbidity index), hospital volume, 
surgeon volume and length of stay) were extracted by the ANN, and an outcome 
(death/survival) was generated. Compared to the LR model, the ANN showed a 
substantial advantage with a higher accuracy rate (97.28 vs 88.29, P < 0.001), a lower 
Hosmer-Lemeshow statistic (41.18 vs 54.53, P < 0.001) and a higher AUC (0.84 vs 76, P 
< 0.001). The other ANN model was built and tested similarly with six identical 
variables to predict 5-year mortality, and ANN was found to significantly outperform 
the LR model (accuracy rate 96.57% vs 87.96%; Hosmer-Lemeshow statistic 0.34 vs 0.45; 
AUC 88.51% vs 77.23%). Those two models combined with the deep-learning 
technique showed unique prognosis prediction performance, revealing their possible 
applicability in the prediction of in-hospital and long-term mortality.

OMICS RESEARCH PERFORMED WITH AI
Genomic data have exhibited efficient and unique advantages in both research and 
clinical experience. A recent study managed to correlate tumor samples and their 
original tissue types using an ML prediction model[59]. RNA-seq data of 14 tumors and 
at least 10 corresponding adjacent normal tissue samples for each tumor were 
downloaded from TCGA, Therapeutically Applicable Research to Generate Effective 
Treatments and the Genotype-Tissue Expression. An autoencoder neural network 
based on Pytorch with a rectifying activation function, dropout and normalization 
between layers was built. The mean squared error between the input and output was 
introduced as the loss function. After 10000 iterations for converging loss, the 
autoencoder demonstrated an outstanding ability to identify tissue sites for cancers 
with increasing accuracy in parallel with the mounting number of varying genes, 
noticeably surpassing the predominant PCA method, which identified only 8/14 
cancers. In the distinction of HCC samples, the autoencoder with all features utilized 
showed a highly specific capacity of capturing biological information. This study 
provided a solid reference for further research in HCC and might be able to promote 
sample usage in a precise way.

A novel approach of seeking HCC-related genes by ML was established[60]. Gene 
expression profiles of 43 tumor and 52 normal tissue samples were downloaded from 
NCBI Gene Expression Omnibus. A maximum relevance-minimum redundancy 
(mRMR) method, referred to as mRMRe, was used to rank the features. The mRMR is 
a proven ML approach for phenotype classification; it can classify transcriptional 
features based on both the redundancy between features and their relevance to the 
target. An incremental feature selection method was combined with the mRMRe 
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algorithm, generating a possible feature subset for further analysis. A subset consisting 
of 117 features with a satisfying accuracy of 0.895 was finally selected as the criteria to 
distinguish HCC from non-HCC samples, in which several previously identified HCC-
related genes (such as MT1X, BMI1 and CAP2) were found, justifying the rationality of 
this model. Furthermore, some genes, such as TACSTD2, that were not considered to 
be HCC-related before (one of which was identified by protein-protein interaction) 
might be crucial during the pathogenesis of HCC, namely ubiquitin C was identified 
by this model.

CONCLUSION
AI showed a substantial enhancement throughout the pre- and postclinical process of 
HCC in terms of both investigation and treatment. Due to the low diagnostic rate of 
early-stage patients, its high recurrence rate and unsatisfactory treatment effectiveness, 
HCC is one of the deadliest types of cancer worldwide. The emerging and fast-
developing techniques of AI offer the possibility of improving the survival of HCC 
patients. Brought by deep-learning methods, a higher accuracy of diagnosis and 
treatment response prediction combined with individual prognosis assessment could 
potentially improve the time and quality of survival for HCC patients to a 
considerable extent.

AI has also been used in a wider range of clinical practice. Hyer et al[61] released an 
ML approach to predict postsurgical prognosis. The novel method referred to as 
Complexity Score outperformed several currently used indices of prognosis 
estimation. Mueller-Breckenridge et al[62] identified two hepatitis B virus quasispecies 
by ultra-deep sequencing and developed a ML model to determine the viral variants 
and assist clinical decision-making with regards to anti-hepatitis B virus strategies. A 
newly-established ML model was reported as an alternative method in the prediction 
of liver fibrosis caused by chronic hepatitis C virus infection[63]. While none of those 
studies were directly related to HCC, their findings might significantly help preclinical 
prevention, early diagnosis and surgical planning.
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Abstract
Artificial intelligence (AI) has been increasingly utilized in medical applications, 
especially in the field of gastroenterology. AI can assist gastroenterologists in 
imaging-based testing and prediction of clinical diagnosis, for examples, detecting 
polyps during colonoscopy, identifying small bowel lesions using capsule 
endoscopy images, and predicting liver diseases based on clinical parameters. 
With its high mortality rate, pancreatic cancer can highly benefit from AI since the 
early detection of small lesion is difficult with conventional imaging techniques 
and current biomarkers. Endoscopic ultrasound (EUS) is a main diagnostic tool 
with high sensitivity for pancreatic adenocarcinoma and pancreatic cystic lesion. 
The standard tumor markers have not been effective for diagnosis. There have 
been recent research studies in AI application in EUS and novel biomarkers to 
early detect and differentiate malignant pancreatic lesions. The findings are 
impressive compared to the available traditional methods. Herein, we aim to 
explore the utility of AI in EUS and novel serum and cyst fluid biomarkers for 
pancreatic cancer detection.

Key Words: Artificial intelligence; Machine learning; Deep learning; Endoscopic 
ultrasound; microRNA; Pancreatic cancer; Pancreatic cyst
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Core Tip: Artificial intelligence (AI) aided endoscopic ultrasound (EUS) and 
microRNA analyses are sensitive and effective for pancreatic cancer detection with 
sensitivity of more than 95%. The size of pancreatic lesion does not affect the 
diagnostic performance by artificial intelligence. This will help overcome the delayed 
diagnosis and high mortality of pancreatic cancer. Recent studies showed that the speed 
of AI system in EUS can be performed in real time fashion. This will be adjunctive to 
the conventional EUS examination for future utility.
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INTRODUCTION
Pancreatic cancer has been notorious for late detection and high mortality rate[1,2]. The 
main contributing factor is the difficulty of diagnosis from imaging studies[3]. 
Differentiation between benign disease like chronic pancreatitis and malignancy is 
challenging[4]. Malignant pancreatic diseases [i.e., pancreatic ductal carcinoma, 
intraductal papillary mucinous neoplasms (IPMN), and mucinous cystic neoplasm] 
can present differently in radiologic imaging[3]. Endoscopic ultrasound (EUS) has been 
recognized as an effective method for detecting pancreatic cancer with a reasonable 
sensitivity but low specificity[5]. Compared to computed tomography (CT) and 
magnetic resonance imaging (MRI), EUS had a superior performance in small 
pancreatic tumors[6,7].

The use of computer aided diagnosis for cancer detection has been introduced since 
1960[8]. In the past 10 years, the use of artificial intelligence (AI) has been exponentially 
increased in every field, including medicine[9-11]. Machine learning and deep learning 
are two major techniques in AI used for analyzing a large dataset and creating a 
predictive model[12-14]. The advance of AI in gastroenterology field has played an 
important role in pancreatic cancer regarding detection and survival prediction[15-17].

Given the emerging role of AI in this field, we conducted the systematic review on 
AI and pancreatic cancer with keywords of “artificial intelligence” and “pancreatic 
cancer” from PubMed and Institute of Electrical and Electronics Engineers databases. 
We aim to elaborate the advancement of AI application in pancreatic cancer detection 
by imaging studies focusing on endoscopic ultrasound and novel serum and cyst fluid 
marker analysis.

AI CONCEPT AND TERMINOLOGY
AI is the use of mathematical models and computer algorithms to mimic human 
intelligence. It has been increasingly used to predict risk and diagnose pancreatic 
cancer with imaging and personal health features[15,18-20]. Most medical AI is considered 
narrow AI, which focuses on single or limited tasks[19]. There are different AI 
techniques for creating predictive models, including machine learning and deep 
learning.

Machine learning is a subfield of AI that uses mathematical techniques to create a 
predictive model by recognizing patterns in the dataset without being explicitly 
programmed[18,19]. There are many machine learning algorithms available such as 
regression, decision trees, k-nearest neighbors, and neural network[21]. Machine 
learning shows great promise in medical research as it can detect complex patterns in a 
large dataset that human doctors would likely miss[22,23].

Deep learning, a subfield of machine learning, is basically a neural network with 
multiple hidden layers (usually a large number) to automatically detect higher-level 
features of input data. A neural network is also known as artificial neural network. As 
shown in Figure 1, neural network is a system of interconnected neurons with three 
type of layers: (1) Input layer; (2) Hidden layer; and (3) Output layer. Each layer 
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Figure 1 Neural network with input layer, hidden layers, and output layer. Each circle represents a neuron within the network. Within each neuron, 
weights and bias are applied to the input values to produce an output value. w: Weight; b: Bias.

amplifies certain aspects of the input that are important for discrimination by applying 
a weight to each input[24,25]. Besides requiring a large and well-annotated dataset, the 
major drawback of deep learning is a long training time, which could take hours or 
days. One method that can significantly improve the training time of deep learning is 
the use specialized hardware such as graphic processing unit or tensor processing 
unit[26].

A convolutional neural network (CNN) is a class of deep learning that apply a filter 
to capture the characteristic of the data. In image analysis, CNN use different filters to 
capture various aspects of the image[27,28]. The most significant advantage of CNN in 
the medical field is its ability to detect image features automatically and objectively, 
for instance, the detection of pancreatic cancer based on EUS images[19,29].

Three major types of machine learning problems are supervised learning, 
unsupervised learning, and reinforcement learning. Most machine learning problems 
in medicine are supervised learning, in which the response variable must be already 
known or labeled. To create a predictive model for solving supervised learning 
problem, the first step is the collection and annotation (label) of input data. The data is 
then divided into training and testing sets. The training data is used for training 
machine learning models, including applying different learning algorithms or 
architectures, optimizing model parameters, and selecting a final predictive model. 
Once the final predictive model is selected, the model will be evaluated using the 
testing data to assess the model performance on the data that has not been used before. 
These are common steps used to create a predictive model for both machine learning 
and deep learning[21,30]. In fact, the choice of using machine learning or deep learning 
usually depends on the type of inputs. Typically, CNN-based deep learning is the 
preferred choice for image classification. Additionally, deep learning model had a 
higher diagnostic ability than the subjective measurement of tumor feature values 
(tumor width, shape, and color) by doctors because of its objectivity[31-33].

APPLICATION OF AI IN IMAGING STUDIES FOR PANCREATIC CANCER 
DETECTION
Modern imaging modalities, including CT scan, MRI, ultrasound, and endoscopy, 
contain far more visual information than humans can distinguish with the naked 
eye[18]. Since 2010, significant progress has been achieved in applying AI to the 
gastroenterology imaging[15]. The pancreas is one of the most challenging organs in CT 
segmentation. Each patient produces more than 300 images that a radiologist must 
discern, creating intense reading efforts that sometimes succumb to unavoidable 
misdiagnosis[34]. Many machine learning and deep learning models have been created 
to aid physicians in making diagnosis based on medical imaging, including the 
detection of pancreatic neoplasms. There are two major types of AI systems used in the 
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detection of cancer: Computer-assisted detection (CADe) and computer-assisted 
diagnosis (CADx) and they serve different purposes. CADe systems are used for 
locating lesions in medical images. CADx systems characterize lesions and can 
distinguish between benign and malignant[35].

COMPUTED TOMOGRAPHY
CADx AI systems have been created with the analysis of segmented CT images of the 
pancreas. These systems work by creating an experimental group of image data and a 
control group of image data which are imported into a program. The data is fed 
through two matrices and a filter, statistics, and other data are applied. Then the 
pancreatic cancer and the normal control images are distinguished by data processing 
and statistical analysis[36].

An extension of CADx systems is the use of radiomics in CT images. Radiomics is 
an AI process that not only answers simple clinical questions (e.g., benign or 
malignant), but can also be used to extract quantitative imaging features from 
radiology images to produce more detailed information about the areas of interest (
e.g., determining risk of malignancy in pre-malignant lesions)[18]. A study by Wei et al[37] 
used a machine learning based model to determine serous cystic neoplasms from non-
serous cystic neoplasms based on 409 quantitative radiomic features from preoperative 
CT images. The model outperformed clinicians with an area under the receiver 
operating characteristic curve (AUC) of 0.84.

Segmentation of the pancreas in CT imaging is a difficult but essential task for a 
successful diagnosis of pancreatic cancer. The main challenges lie in its close proximity 
to other organs, shape variance and low contrast blurring[27,38-40]. Notably, the ideal type 
of CT imaging in patients with suspected pancreatic cancer is a contrast-enhanced, 
multidetector CT, which has sensitivity of 70% to 100% whereas traditional CT has an 
accuracy of 83.3%, sensitivity of 81.4%, and specificity of 43% for pancreatic 
adenocarcinoma detection[41].

Liu et al[42] used a faster region-based CNN (faster R-CNN) model to form a CADx to 
solve the challenging pancreas segmentation problem in CT images. Their faster R-
CNN model assisted had an AUC of 0.96 and mean average precision of 0.7664, 
indicating a high discriminating ability and precision. Consequently, the time required 
to establish a diagnosis using their model was 3 s compared to 8 min by an imaging 
specialist. Another study used multi-scale segmentation-for-classification to detect 
pancreatic ductal adenocarcinoma (PDAC). This method functioned by performing 
tumor segmentation at the same time as tumor classification. This information was 
helpful for radiologists when determining tumor location. Their method reported a 
sensitivity of 94.1% and a specificity of 98.5%, implying that their model for tumor 
segmentation was strong in screening for PDAC[43]. Interestingly, Chu et al[44] used 
random forest algorithm to classify PDAC based on CT images. The overall accuracy, 
AUC, sensitivity, and specificity were 99.2%, 0.999, 100%, and 98.5%, respectively.

To classify pancreatic cancer, a custom method using a combination of support 
vector machine and random forest technology was applied to PET/CT images[45]. Their 
proposed model achieved accuracy of 96.47%, sensitivity of 95.23%, and specificity of 
97.51%. They demonstrated that their model outperformed other models based on an 
external dataset.

MAGNETIC RESONANCE IMAGING
It is challenging to obtain multi-modal MRI images and then effectively fuse the 
information from these images due to the heterogeneity of the pancreas and the ill-
defined tumor boundary[46-48]. PDAC diagnostic value by traditional MRI has an 
accuracy of 89.1%, sensitivity of 89.5.%, and specificity of 63.4%[41].

Barriers to machine learning algorithm development for MRI include limited 
availability of MRI data, reduced image quality, and unstandardized nature of MRI[49]. 
In addition, overfitting can be an issue due to small datasets in MRI and CNN 
studies[48]. However, CADx systems for the diagnosis of pancreatic cancer have been 
developed with MRI images. One study used a CNN was used for feature 
representation for IPMN diagnosis with MRI[47]. This approach led to a 30% 
improvement in specificity of IPMN diagnosis compared to single modality-based 
approaches (T1 or T2 imaging). The multi-modal fusion approach for IPMN detection 
had an accuracy of 82.80%, sensitivity of 83.55%, and specificity of 81.67%. It is only 
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needed to identify a single slice where pancreatic tissues could be obviously observed. 
Zhang et al[34] used support vector machine in combination with MRI detection to 
classify pediatric pancreatic cancer; their proposed model achieved a higher accuracy 
when compared to the normal detection algorithm. Corral et al[50] created a CNN which 
diagnosed intraductal papillary mucinous neoplasm (IPMN) on MRI images in 1.82 s 
with a sensitivity of 75% and specificity of 78%. Another study by Gao et al[51] created a 
deep learning model that graded pancreatic neuroendocrine tumors using MRI 
images, reaching an accuracy of 81.1% and AUC of 0.89. In a 2020 retrospective study, 
the research group assessed baseline CT images from 207 patients with proven PDAC 
and developed a machine learning model that used radiomics to predict molecular 
subtypes. The classification algorithm achieved a sensitivity, specificity and ROC-AUC 
of 0.84, 0.92, and 0.93, respectively[49]. Table 1 demonstrates the studies on CT and MRI 
of pancreatic cancer.

ULTRASONOGRAPHY
AI is used in transabdominal ultrasonography and endoscopic ultrasonography. In 
transabdominal ultrasonography, AI is used primarily for detecting liver fibrosis stage 
and chronic liver disease by using the histogram analysis and RGB-to-stiffness inverse 
mapping technique[19]. The role of transabdominal ultrasonography for pancreatic 
cancer detection is very minimal because the pancreas visualization is obscured by 
bowel gas. Due to this, there are no available studies in the evaluation of pancreatic 
cancer with transabdominal ultrasound.

ENDOSCOPIC ULTRASOUND
Among MRI, CT, and EUS, only EUS enables observation of the pancreas with high 
spatial resolution. EUS has higher tumor detection rates than contrast enhanced CT by 
allowing detection of the echo structure in lesions as small as 1 cm[52]. The sensitivity of 
EUS is superior to CT scan, 94% and 74%, respectively[5]. However, the accuracy of 
EUS is currently highly operator dependent.

There are previous studies on the application of AI in EUS for pancreatic cancer 
detection (Table 2). The overall accuracy of AI based approach were 80%-97% with 
sensitivity of 83%-100%. The findings are comparable to a sensitivity of 94% by 
endoscopist driven EUS according to the meta-analysis[5]. The first study of AI based 
EUS analyzed a single EUS image per patient obtained from the total of 21 patients[53]. 
Machine and human demonstrated a similar diagnostic performance. However, this 
study was done before the introduction of modern deep learning framework, which 
has demonstrated much better performance in general than earlier neural network 
architecture. Based on the observation that there is an age-related change of pancreas 
shape, Ozkan et al[54] used three different neural network models to classify pancreatic 
cancer in three age groups: Below 40, 40 to 60, and above 60. As a result, a higher 
performance was achieved by using a different model for each age group.

There were different techniques being used for image analyses and creating 
classification models in pancreatic cancer studies, including deep pocket inspection[55], 
support vector machine[56], region of interest, principal component analysis[57], neural 
network, and deep learning. We noticed that these requires were evolved with the 
major progress of AI development; machine learning techniques were used at the 
beginning and gradually evolved to CNN-based models (deep learning).

Interfering factors associated with misdetection of pancreatic cancer include chronic 
pancreatitis with more false negative results[4]. The compromised ability of pancreatic 
cancer detection in patients with chronic pancreatitis decreased to 54%-75%. Tonozuka 
et al[33] found that non-PDAC is the significant factor of misdetection which means the 
system tends to work towards preventing the overlooking of tumors than 
overdiagnosis of tumors. On the other hand, tumor size is not associated with 
misdetection. Thus, AI guided diagnosis can help with early detection of small tumor 
and prevent the progression of pancreatic cancer. Another consideration is that the 
control group with a few cases of mass forming pancreatitis makes the results not 
generalizable to the group of focal pancreatitis (pseudotumorous pancreatitis) as more 
included in Norton et al[53]. The main limitations of prior studies on AI-guided EUS 
diagnosis are small sample size. Data augmentation has been used to increase the 
number of images in later study[33]. Slow processing time and low-quality image are 
other constraints. They hinder the development of this approach to be real time 
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Table 1 Summary of studies assessing computed tomography and magnetic resonance using artificial intelligence-based approach for 
pancreatic cancer

Model performance on testing data
Ref. Overall 

dataset Testing data Model
Accuracy (%) AUC Sensitivity (%) Specificity (%) PPV (%) NPV (%)

CT

Zhu et al[43], 2019 
(United States)

439 cases 23 cases CNN NA NA 94.1 98.5 NA NA

Liu et al[42], 2019 
(China)

338 patients 100 patients CNN NA 0.9632 NA NA NA NA

Chu et al[44], 2019 
(China) 

380 patients 125 patients ML 99.2% 0.999 100 98.5 NA NA

Li et al[75], 2018 
(China) 

206 patients No separate 
testing data (10-
fold CV)

CNN 72.8%1 NA NA NA NA NA

Wei et al[37], 2018 
(China) 

260 patients 60 patients SVM NA 0.837 66.7 81.8 NA NA

MR

Kaissis et al[49], 
2020 (Germany) 

207 patients 26 patients ML NA 0.93 84 92 NA NA

Corral et al[50], 
2019 (United 
States) 

139 cases No separate 
testing data (10-
fold CV)

DL NA 0.781 921 52%1 NA NA

Gao et al[51], 2019 
(China) 

96 patients No separate 
testing data (5-
fold CV

DL 85.131 0.91171 NA NA NA NA

1The performance was based on n-fold cross-validation on training data.
AUC: Area under the curve; CNN: Convolutional neural network; CT: Computed tomography; CV: Cross-validation; DL: Deep learning; IPMN: 
Intraductal papillary mucinous neoplasm; MR: Magnetic resonance; NA: Not available; NN: Neural network; NPV: Negative predictive value; PCA: 
Principal component analysis; PPV: Positive predictive value; SVM: Support vector machine.

analysis. Interestingly, real time EUS video using CNN for pancreas segmentation and 
station recognition has been studied[58]. The real-time system works as a monitoring 
safety net and remind endoscopist to make up the unobserved part. It can also increase 
trainee performance in learning how to detect pancreatic cancer using EUS, which can 
lead to the reduction of training time and cost.

AI also plays important role in two new EUS techniques, including contrast 
enhancing EUS (CE-EUS) and EUS elastography. CE-EUS is a technique that uses gas-
containing contrast agents intravenously injected for better visualization and 
differential diagnosis of focal pancreatic lesions. A study found machine learning 
assisted CE- EUS provided higher sensitivity of 94% compared to 87.5% of qualitative 
CE-EUS without machine learning aid[59]. EUS elastography is a technique that 
measure the tissue stiffness, which help differentiate a mass from normal or 
inflammatory area. The real-time performance of neural network provided 
comparable efficacy to standard EUS elastography. The predictive performance of EUS 
elastography is similar to the b-mode EUS with AUCs of 0.94-0.965[60,61].

Regarding a real-time application, Marya et al[62] demonstrated the high accuracy of 
PDAC detection from other pancreatic diseases with AUC of 0.98. The author claimed 
that the speed of image processing is eligible for real-time system but it was not 
performed. Future application is warranted which can guide biopsy in patients with 
diffuse inflammation as chronic pancreatitis to avoid unnecessary biopsies.

AI has not only been studies in PDAC, but also in pancreatic cystic lesions. One 
study on the differentiation of malignant vs benign IPMN by EUS revealed the 
superior accuracy in identifying malignancy; 94% by AI vs 56% by the physician 
diagnosis performing EUS. However, the AI’s prediction on EUS images was not 
performed during the EUS procedure in a real time. The real-time integration will help 
aid clinicians to make a clinical judgement[63]. EUS guided needle confocal laser 
endomicroscopy is a novel technique for pancreatic cystic lesions. A study was 
conducted in 15027 videos from 35 subjects with IPMN. The CNN algorithm for high 
grade dysplasia or adenocarcinoma diagnosis had higher sensitivity (83.3% vs 55.6%) 
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Table 2 Summary of endoscopic ultrasound using artificial intelligence-based approach studies pancreatic cancer and malignant 
pancreatic cyst detection

Model performance on testing data
Ref. Overall 

dataset
Testing 
data Model Accuracy 

(%) AUC Sensitivity 
(%)

Specificity 
(%)

PPV 
(%)

NPV 
(%)

Marya et al[62], 
2020 (United 
States)

583 patients 
(1174461 
images)

123 patients CNN NA 0.976 95 91 87 97

Tonozuka et al[33], 
2020 (Japan)

139 patients 
(920 images)

47 patients 
(470 images)

CNN NA 0.94 92.4 84.1 86.8 90.7

Ozkan et al[54], 
2016 (Turkey)

332 images 72 images NN 87.5 NA 83.3 93.33 NA NA

Saftoiu et al[59], 
2015 (Multicenter 
in Europe)

167 cases 15% of cases NN NA NA 94.64 94.44 97.24 89.47

Zhu et al[56], 2013 
(China)

388 images 50% of all 
data (200 
trials)

SVM 93.86 NA 92.52 93.03 91.75 94.39

Zhang et al[55], 
2010 (China)

216 patients 50% of all 
data (50 
trials)

SVM 97.98 NA 94.32 99.45 98.65 97.77

Das et al[57], 2008 
(United States)

319 images 50% of all 
data

NN NA 0.93 93 92 87 96

Norton et al[53], 
2001 (United 
States)

21 patients 4 patients ML 80 NA 100 50 NA NA

Elastography

Saftoiu et al[61], 
2012 (Multicenter 
in Europe)

258 cases No separate 
testing data 
(10-fold CV)

NN 84.272 0.942 87.592 82.942 96.252 57.222

Saftoiu et al[60], 
2008 (Denmark 
and Romania)

68 cases No separate 
testing data 
(10-fold CV)

NN NA 0.9572 NA NA NA NA

IPMN

Machicado 
et al[64], 2021 
(United States)1

35 cases of 
EUS-nCLE 
(15027 
frames)

No separate 
testing data 
(5-fold CV)

(1) CNN 
(segmentation); and 
(2) CNN (holistic)

(1) 82.92; and 
(2) 85.72

NA (1) 83.32; and 
(2) 83.32

(1) 82.42; and 
(2) 88.22

(1) 83.32; 
and (2) 
88.22

(1) 82.42; 
and (2) 
83.32

Kuwahara et al[63], 
2019 (Japan)

50 cases No separate 
testing data 
(10-fold CV)

CNN 942 NA 95.72 92.62 91.72 96.22

1Presented two designs of CNN algorithms: segmentation based model and holistic based model.
2The performance was based on n-fold cross-validation on training data.
AUC: Area under the receiver operating characteristic curve; CE-EUS: Contrast enhanced endoscopic ultrasound; CNN: Convolutional neural network; 
CV: Cross-validation; EUS-nCLE: Endoscopic ultrasound-guided needle based confocal laser endomicroscopy; IPMN: Intraductal papillary mucinous 
neoplasm; NA: Not available; NN: Neural network; NPV: Negative predictive value; PCA: Principal component analysis; PPV: Positive predictive value; 
SVM: Support vector machine.

and accuracy (82.9%-85.7% vs 68.6%-74.3%) than the Fukuoka and American 
Gastroenterology Association diagnostic criteria[64].

APPLICATION OF AI IN BIOMARKER ANALYSIS FOR PANCREATIC 
CANCER DETECTION
Conventional markers
The most used biomarker in monitoring pancreatic cancer is currently carbohydrate 
antigen (CA) 19-9[65]. It is usually used in monitoring progression and treatment of 
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pancreatic cancer due to the low specificity and sensitivity. The combined sensitivity 
and specificity were 78.2% and 82.8% respectively. The relatively low specificity and 
sensitivity, and low positive predictive value in asymptomatic patients, would indicate 
that CA19-9, would be a poor biomarker if applied as a screening test, causing 
unnecessary and wasteful workups for patients[66]. Another biomarker that has been 
explored is carcinoembryonic antigen (CEA), which exhibits an even poorer sensitivity 
and specificity for classifying pancreatic cancer than the CA19-9[65].

Some methods using more targeted screening have been suggested such as using 
multiple biomarkers together or screening only high-risk populations, but those have 
yet to be universally defined. A screening model was suggested to separate high risk 
populations into those with inherited pancreatic cancer and those who are at high risk 
for non-inherited. Even between those two categories non-inherited high-risk could 
only narrowed to individuals with new onset diabetes[66]. Using this as an example 
would still provide for a very large screening population with low sensitivity and 
specificity if only using CA19-9[67]. Other biomarkers have been identified that are 
present in early pancreatic adenocarcinoma but none of them alone have produced 
high enough quality data to prove even non-inferiority vs no screening, let alone 
CA19-9[66,68].

A study utilized neural network for multiple tumor marker analysis (CA19-9, CEA, 
and CA125) for pancreatic cancer diagnosis in 913 serum specimens. AUCs of neural 
network derived model was superior to logistic regression model with AUCs of 0.905 
and 0.812, respectively. The diagnostic performance of single marker is lower than the 
AI model with AUCs of CA19-9, CA125, and CEA of 0.845, 0.795, and 0.800, 
respectively[69].

Kurita et al[70] used AI to differentiate between malignant and cystic lesions of the 
pancreas using a dataset consisting of biomarkers, sex, characteristics of cystic lesion, 
and cytology. It is worth noting that the authors clearly stated that the deep learning 
was used, but it is technically a neural network with two hidden layers; each layer 
contains nine nodes. In terms of discriminating performance of classifiers, their AI 
approach with an AUC of 0.966 well outperformed CEA (AUC = 0.719) and cytology 
(AUC = 0.739). Although this study is limited by its low sample size and retrospective 
nature, it showed that a predictive model based on a combination of biomarkers and 
other factors could achieve a higher performance in classifying the malignancy status 
of pancreatic cyst fluid in comparison to the use of single biomarker.

Novel biomarkers
In the past, conventional markers like CEA, CA72-4, CA125, and CA19-9, have been 
used to identify, differentiate, and monitor pancreatic cyst fluid. CA19-9 and CA125 
can be used to assess for if a cyst has mucinous characteristics, while CEA can help to 
differentiate a malignant cyst from benign cyst[65,70]. Advances in genomic sequencing 
and identification have introduced the ability to isolate microRNA (miRNA) sequences 
in pancreatic cyst fluid and serum as potential biomarkers for pancreatic 
adenocarcinoma.

It was first suggested in 2010, that miRNA could be used as a marker for pancreatic 
adenocarcinoma. miRNA-21 and miRNA-155 in pancreatic juice were present in 
statistically significantly higher levels in pancreatic adenocarcinoma as compared to 
benign pancreatic cysts[71]. miRNA are exosome sequences that, in the setting of 
pancreatic adenocarcinoma, encode for proteins that are oncogenic or have tumor 
suppressor function. Several specific miRNAs have been identified to have a higher 
expression in pancreatic ductal adenocarcinoma, including miRNA-21 and miRNA-
155[68]. These miRNAs are detected in the pancreatic juice. miRNAs are mostly 
expressed in pancreatic cyst fluid, but Yoshizawa et al[72] have gone on to examine 
miRNA in the urine. Looking the ratio of miR-3940-5p/miR-8069 in the urine of 
patients with pancreatic ductal adenocarcinoma, they found that an elevated ratio with 
an elevated CA19-9 better predicts pancreatic ductal adenocarcinoma than CA19-9 
alone. These studies all examine the viability of miRNA in various types of fluid to 
detect disease states of the pancreas, none though utilize AI to determine which 
miRNA may produce the highest yield results. A limitation is that they represent small 
sample sizes with limited application at a population level.

Several studies have identified several miRNAs that potentially represent 
significant value in determining malignancy of pancreatic cystic lesion or identifying 
pancreatic adenocarcinoma at an early stage by AI, but each study has decided which 
miRNAs to utilize based on identifying and isolating very few sequences. Alizadeh 
et al[73], combined several AI and data mining techniques to best determine the miRNA 
sequences that have the greatest diagnostic and prognostic capabilities. Particle Swarm 
Optimization (PSO) and neural network, two forms of AI deep learning, identified a 
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set of five miRNAs: miR-663, miR-1469, miR-92a-2-5p, miR-125b-1-3p, and miR-532-
5p. These were identified from 671 serum samples of patients with pancreatic ductal 
adenocarcinoma and healthy controls. This model had the greatest AUC score in 
differentiating pancreatic adenocarcinoma from controls with a sensitivity of 0.93, 
specificity of 0.92, and accuracy of 0.93.

Cao et al[74] employed machine learning to identify two panels of plasma miRNA to 
distinguish between chronic pancreatitis and pancreatic neoplasm from 361 plasma 
samples in China. Panel 1 consisted of miR-486-5p, miR-126-3p, and miR-106b-3p, and 
had an AUC of 0.891. Panel 2 consisted of miR-486-5p, miR-126-3p, miR-106b-3p, miR-
938, miR26b-3p, and miR-1285, and had an AUC of 0.889. Both panels had a higher 
AUC than CA 19-9, which was 0.775.

The most robust path to create a new screening test for pancreatic adenocarcinoma 
must contain a combination of biomarkers and patient data to maximize both the 
sensitivity and sensitivity of the test[68,70,71,74]. AI creates the potential to assess patient 
characteristics, miRNA, and classical biomarkers, which allows for a comprehensive 
screening analysis of a patient. With the use of neural network and PSO, AI thinks, 
acts, and analyzes data at much faster speed and in more depth pattern recognition 
that forms the perfect environment for the development of high yield screening tests 
that have previously evaded us in diagnosing and screening for pancreatic cancer. 
Pancreatic juice for multiple exosomes of miRNA that are known to be associated with 
increased risk for pancreatic cancer, like oncogenes and tumor suppressor mutations, 
provides the opportunity to examine multiple pancreatic adenocarcinoma biomarkers 
with one test.

FUTURE PROSPECT
Pancreatic cancer is notorious for late detection. The studies on this area have been 
conducted mainly to identify the best approach for early detection by imaging studies 
and biomarkers. The advancement of EUS and the application of AI technology 
showed a promising performance. The modes of EUS: B-mode and elastography do 
not provide different accuracy and predictive value for pancreatic cancer. However, no 
data is available for EUS with contrast enhancement. B-mode which is generally used 
among centers can be the first step of AI implication. Ultimately, the data of imaging 
studies, biomarkers, and clinical parameters will be combined to build the 
sophisticated algorithm and implemented in the electronic medical records where 
clinicians use it as the predictive tool. There are a few limitations of AI application for 
EUS. First, the collection of EUS images as the big data is difficult. The collaboration of 
gastroenterologists, radiologists, and hospital administration will help facilitate the 
retrieval of images into the system. Multicenter participation is required to create the 
large dataset of EUS images of which it will optimize the efficiency of AI. The platform 
of dataset in one institution can be the good example that other centers can adopt and 
join the group. Second, the root of clinical decision based on AI results is possibly 
affected by the black box issue (inability to identify the ground of decision). Although 
there are ways that enable AI to be more interpretable, it is still an active area of 
research in computer science. Third, the diagnosis is most often made by examination 
of static images after EUS procedure. Further research on real-time implication of 
pancreatic malignant lesion diagnosis by AI method is warranted to aid clinician at the 
examination time to avoid unnecessary biopsy. Regarding biomarkers, although still a 
mainstay of current practice, the use of singular biomarkers like CA19-9, CEA, and 
CA-125, may soon become a thing of the past for pancreatic cancer detection. Recent 
studies showed that moving toward AI aided multiple fluid and serum analysis for 
biomarkers, like miRNA, potentially provide more sensitive and specific detection. AI 
not only provides a pathway for the computational, multilayered analysis of multiple 
patient variables and biomarkers, but also can provide indications for which of those 
EUS and biomarkers will be highest yield. Combining the knowledge in the field of 
and the capability of AI introduces a new world of exploration into both screening and 
diagnosis of pancreatic cancer. AI capabilities allow research to be more finely tuned 
and the implementation of the most effective method for research into developing 
screening and diagnostics for pancreatic adenocarcinoma and malignant pancreatic 
cysts.
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CONCLUSION
AI applications for pancreatic cancer has are emerging. New studies come out and 
showed the promising results of AI in radiological imaging and biomarkers for 
pancreatic cancer detection. There are still some limitations which need to be 
addressed in the future studies before incorporating this technology in the clinical 
practice. The accuracy of AI aided EUS for pancreatic cancer diagnosis is high. 
However, it has been derived from the small training dataset. The generalizability 
needs to be considered before using it. Larger studies with population of various 
pancreatic diseases and third-party validation will demonstrate a greater confidence 
for adopting AI. For novel biomarkers, our review demonstrated that AI guided 
analysis of combination of candidate miRNAs have high predictive performance 
compared to standard tumor markers. The availability of miRNA testing is not 
widespread in every medical facility. To adopt this implication, further studies on the 
diagnostic performance are warranted to strongly support the evidence of utility.
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