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Abstract
This minireview discusses the benefits and pitfalls of machine learning, and 
artificial intelligence in upper gastrointestinal endoscopy for the detection and 
characterization of neoplasms. We have reviewed the literature for relevant 
publications on the topic using PubMed, IEEE, Science Direct, and Google Scholar 
databases. We discussed the phases of machine learning and the importance of 
advanced imaging techniques in upper gastrointestinal endoscopy and its 
association with artificial intelligence.

Key Words: Artificial intelligence; Upper gastrointestinal endoscopy; Esophageal cancer, 
Gastric cancer, Barrett’s esophagus
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Core Tip: This minireview aims to explore an important topic; the role of artificial 
intelligence in upper gastrointestinal (GI) endoscopy detection of cancer. We tried to 
delineate the most common obstacles encountered when trying to implement artificial 
intelligence in upper GI endoscopy for cancer detection and characterization. 
Moreover, we tried to outline the future prospects of this technique, along with its 
benefits, and uncertainties. This topic summarizes the wide scope for integration of 
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INTRODUCTION
Upper gastrointestinal (GI) cancers affecting the esophagus and stomach are 
responsible for more than one and half million annual deaths worldwide. Both are 
considered aggressive cancers, discovered mostly at an advanced stage, when curative 
measures are no longer applicable[1].

The current standard method for diagnosis of upper GI cancers is upper GI 
endoscopy and biopsy, using a white light endoscopy. The most common upper GI 
cancers encountered are esophageal adenocarcinoma, Barrett's esophagus (BE) and 
gastric cancer[2]. Artificial intelligence (AI) could add more accuracy to early 
cancerous and precancerous lesion detection in the upper GI during endoscopic 
evaluation[3].

Regardless of the great progress of AI in colonoscopy examinations, the integration 
of AI in upper GI endoscopy is still a new area of research with only a few pilot 
studies available, mostly due to unavailability of large datasets annotating upper GI 
cancers[2].

A recent meta-analysis examined the effect of AI in detecting Helicobacter pylori (H. 
pylori) infection during upper GI endoscopy, and found eight studies with pooled 
sensitivity of 87%, and specificity of 86%[4]. Moreover, another study combined the 
effect of neoplasm detection and H. pylori infection status, and found twenty-three 
studies with high pooled diagnostic accuracy in upper GI neoplasms; 96 in gastric 
cancer, 96% in BE, 88% in squamous esophagus and 92% in H. pylori detection[5].

IMPORTANCE OF USING AI IN UPPER GI ENDOSCOPY
The miss rate of detecting upper GI cancers reaches 11.3% according to a meta-analysis 
by Menon and Trudgill[6], and even higher rates could be observed in superficial 
neoplasms, reaching 75% (i.e., gastric superficial neoplasia)[7]. According to a recent 
meta-analysis by Arribas et al[3], using AI integrated upper GI endoscopy yielded 
pooled sensitivity of 90%, and specificity of 89% for detection of neoplastic lesions, 
independent of the type of neoplasia (whether esophageal adenocarcinoma, BE, or 
gastric adenocarcinoma).

Expert sensitivity and specificity criteria in detecting the upper GI tumors differ 
from the detection and characterization of colorectal polyps for a few reasons. First, 
due to over-specialization of certain types of upper GI cancers according to the 
geographical prevalence of the cancer, for example, in the gastroenterologist’s practice, 
resulting in limited training for the detection of non-prevalent types of cancers. AI 
integrated systems don’t suffer the same geographical bias, thus offering better 
detection independent of the prevalence of GI cancer types[3]. Colon cancer preva-
lence is higher, enabling more data storage and more training.

The second reason, lesions that are minimal (in size or in depth) or hard to visualize 
by the inexperienced endoscopist, could be easily detected using the AI assistance[2]. 
Furthermore, gastric cancer lesions can be masked after eradication of H. pylori, this 
masking is due to regression of the mucosal elevation (decrease in its height) caused 
by the regression of chronic inflammatory process of H. pylori infection, or due to the 
coverage of the neoplastic area with atypical mucosa or even healthy columnar 
mucosa[8,9]. Advanced imaging techniques[10], when associated with AI, might help 
in detection of these masked neoplastic lesions.

https://www.wjgnet.com/2644-3236/full/v2/i5/124.htm
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Third reason being that training is not adequate in postgraduate courses, either 
because of insufficient interest (due to different cancer prevalence), or insufficient 
resources (especially for the computer simulation programs)[11]. However, an AI 
cumulative sensitivity of 91% for early-stage neoplasia proves that AI integrated 
systems will increase the efficacy of diagnostic upper GI endoscopy immensely. Thus, 
there is an urgent need for AI implementation in the clinical setting, even more urgent 
than the lower GI colonoscopy. Diagnostic settings have the issue of less experienced 
endoscopists compared to intervention intended settings, so early cancerous lesions 
tend to be easily overlooked (undetected)[3]. This of course will not eliminate the need 
for experienced endoscopists; however, integration with AI will have the best yield
[12], considering that most of the upper GI lesions are non-polypoid which require 
higher level of skills for detection than colorectal cancer.

AI IN UPPER GI ENDOSCOPY
Machine learning (ML) must pass through multiple phases for validation in both 
training and testing (as shown in Figure 1). The AI used in endoscopy is ML, the most 
prevalent type of ML is deep learning (DL).

The first wave of AI was logic based handcrafted knowledge. In this logic-based 
handcrafted algorithms were developed separately for each task. This allowed the 
reasoning behind decisions of the first wave to be quite high, because every step of 
decision was handcrafted. However, the machine was unable to learn. The second 
wave of AI (the current wave) is the statistical ML in which the machines can learn 
from data, with an easily implemented learning algorithm, to generate a model used to 
carry out decisions. This eliminates the difficult part of designing and implementing a 
task-specific algorithm. While this raised the level of ML, it also caused a huge decline 
in the reasoning for the decisions. This means that the reasoning behind a wrong 
decision becomes hard to identify, rendering the algorithm a black box. The best way 
to avoid highly wrong decision rates is for provide a large amount of variable data to 
the machine to learn from[13].

ML passes through many phases. First phase is the training phase; where an 
annotated dataset is used to train the ML system, and then validated by determining 
the number of images it correctly identified. Second is the testing phase where a non-
annotated dataset is given to the ML system to examine its diagnostic capabilities in 
comparison to experts in the field, and then using this ML system in a clinical setting, 
either in real time or in prospective trials to evaluate its performance in a real-world 
clinical setting.

There are two types of gastric lesion examinations identified during upper GI 
endoscopy using AI: (as shown in Figure 2): (1) Lesion detection (to know whether it is 
present or absent) and localization (to know its exact location in the GI tract); and (2) 
Lesion characterization (to assess its histological prediction).

The first type uses images with low or moderate quality, but the second type uses 
advanced optical diagnostic tools including: Narrow band imaging (NBI), chromoen-
doscopy, endocytoscopy, optical magnification, among others[14,15]. All types use 
semi-automatic identification, where the endoscopist delineates the affected area and 
centers the polyp near the endoscope lens for better visualization[14]. Invasion depth 
has been successfully predicted (with 89% diagnostic accuracy) through coding 
systems that are not very complicated, a proposed implementation of automated DL 
models in gastric cancers. Furthermore, another proposed implementation of a 
modified version by the same author is faster by 13 min in the test stage on unknown 
data, but has a slightly lower accuracy of 82%, with similar performance to experts and 
higher than trainees[16].

CURRENT STATUS, WHAT IS ACHIEVED AND WHAT IS NOT
If feasibility and usefulness of non-real time can be proved, then technical feasibility of 
real time is achievable, with an increased degree of sophistication of implementation 
and cost. Improvement of this real time feasibility could be accomplished through 
software programming of graphic processing unit (GPU) and central processing unit 
(CPU), along with implementation of specialized hardware systems.

Most implementations in AI use DL algorithms such as convolutional neural 
network (CNN). Wu et al[17] did the only randomized controlled trial (RCT) available 
on the topic. The team examined the diagnostic accuracy of their AI system using a 
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Figure 1 Showing the phases of machine learning.

Figure 2 Showing the Step manner approach from detection to characterization.

deep convolution neural network. The system aimed to decrease the blind spots 
during upper GI endoscopy[17]. Unfortunately, they only examined images of benign 
and malignant lesions, not during a real time endoscopy performance.

Comparing white light alone vs linked color imaging showed that endoscopists had 
a lower miss rate with linked color imaging (30.7% vs 64.9%) in detecting early gastric 
cancers post-H. pylori eradication[18]. Linked color imaging is a technique that 
enhances the color range and brightness of images, developed by Fujifilm, Tokyo, 
Japan[19].

White light for detection of upper GI neoplasms is the most common and the 
standard technique. Other methods using advanced high-quality imaging are 
becoming increasingly available in most endoscopy centers. These advanced imaging 
techniques increase the sensitivity and specificity of diagnostic accuracy, especially in 
BE. There is a noticed "synergy" between AI integrated systems and advanced imaging 
techniques. On the other hand, the bias in having good quality images is apparent 
when identifying artifacts and lighting errors as cancerous lesions, or as called 
"spectrum bias" (this is a systematic error, where the data used do not represent the 
patients in question). This is equal in AI and humans[20,21].

While, dye-based imaging enhanced endoscopy (IEE) uses a dye to enhance 
detection of neoplastic lesions, this might not be helpful for examining a wide tract for 
lesions, nor for spraying the whole GI tract with dye. However, equipment enhanced 
IEE (eIEE) solves these problems. eIEE was originally classified into lightening-only 
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techniques along with blue laser imaging (BLI), BLI-bright and NBI (Olympus), 
autofluorescence imaging (Olympus), and post-processing-only techniques such as: 
Flexible spectral image color enhancement - (Fujifilm) and iSCAN - (Pentax), all from 
Tokyo, Japan[22,23].

LCI merges the two techniques by low frequency intensity light, red color 
extraction, and variation enhancement in a red-green-blue color space digital image 
post-processing. The post-processing system has three modes of color enhancement 
(A, B and C) with varying grades. This yields enhancement of hemoglobin-related 
information and neoplastic lesion in C2 and C3 modes or enhancement of neoplastic 
structures in B7 and B8[10].

The visualization using a NBI was mostly used to detect the histological features in 
the research studies. NBI is an advanced imaging technology that uses digital optical 
methods to visualize more enhanced images than the standard white light[24]. NBI 
helps to examine the vascularity and abnormal histological features on site during 
colposcopy, thus adding AI to narrow band could improve the detection of the exact 
histology of polyps and saves time and effort waiting for histopathological assessment 
that may delay the intervention[25]. In addition, the NBI technique is easier than other 
more sophisticated techniques as chromoendoscopy[26].

Shin et al[27] used high resolution microendoscopy to detect esophageal cancer 
using AI integration, showing sensitivity of 93% and specificity of 92% in the training 
set and similar results, albeit slightly lower, in the test and independent sets.

Moreover, in other techniques like, capsule endoscopy, images taken couldn't be 
adjusted in position lightening or quality as they are dependent mainly on gut 
motility, plus their role in upper GI tract evaluation is still limited[28,29].

Online processing causes limitation on the acceptable latency requiring it to be low, 
so real time application mostly uses parallelization of the machine process. Current 
high-end GPU offer higher parallelization than current high-end CPUs, due to larger 
number of cores. An example for this issue appears when Nvidia Tensor RT, a 
software development kit SDK for highly parallel machine learning, marketed to reach 
up to 40 × performance speed than CPU only applications. Tensor RT runs only on 
CUDA (compute unified device architecture), which runs only on Nvidia graphic card. 
Furthermore, other libraries, as "Caffe", can be used either by CPU or GPU, through 
switching a flag in the source code[30,31].

Localized data sets and implementations, limited to specific institutions, will cause 
bias in methodological validation. Thus, public records of images and datasets are 
preferable to decrease this bias. On the other hand, implementation doesn't suffer the 
same urgency for public recording[32].

While latency in offline detection could reach days, this is not acceptable in online 
real time detection, as the latency during endoscopy procedures will cause missing of 
the lesions in vivo, but improvement is more beneficial, as the ideal scenario is no 
latency.

While some studies showed promising results in vitro, there is still work to do 
offline in order to get a real time implementation which can detect neoplasia during 
the endoscopy conduction in vivo[33]. However, of 36 included studies in a recent 
meta-analysis exploring the AI integration in all types of upper GI cancers[3], only 
three studies were in a clinical setting and one was RCT, but even the RCT was on 
images not real time, and the rest of studies were on stored images offline. 
Furthermore, very few studies included videos or live in vivo validation.

The first real time study for detection of gastric cancer was performed using an 
online AI system with Raman spectroscopy integrated to GI endoscopy in vivo. Total 
computation time ranged from 100-130 milliseconds for analysis, with diagnostic 
accuracy of 80%[34].

Ohmori et al[35] introduced a new AI system that could process 36 images per 
second, making it adequate for RT integration in upper GI endoscopy. One concern of 
the authors is that limiting their processing to high quality images could impair the RT 
usage at the time being.

A recent meta-analysis by Arribas et al[3], concluded that we need to focus more on 
real time AI systems in upper GI endoscopy, because due to small number of studies 
(only two were retrieved in this metaanalysis[36,37], we are still uncertain of the 
feasibility of integration of AI with the endoscopists in RT situations.

In Ebigbo et al[37], they used a live-stream camera, examining the classification and 
segmentation of 14 BE patients, with diagnostic accuracy of 89.9%. AI prediction takes 
1.19 s with "ensembling" and 0.13 s without "ensembling".

Luo et al[36] performed the first aided AI RT implementation study in upper GI 
endoscopy. During a case-control study in six different hospitals in China, they 
developed a new AI system for RT examination named Gastrointestinal Artificial 
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Intelligence Diagnosis System (GRAIDS), with latency of only 40 ms, and high 
diagnostic accuracy irrespective of the level of training of the endoscopists.

Imaging techniques, such as volumetric laser endomicroscopy, are used in BE to 
characterize different layers of the mucosa[38]. Characterization ideally includes the 
location, type and stage of neoplasia in the GI tract. A future prospect is the prognosis 
of this type.

"AI system is watching" is a statement that shows how endoscopists are more keen 
on clear videos and imaging when they know that an AI system will use those datasets
[3,39].

The "blackbox" nature of CNN learning algorithms, means that we don’t know how 
the AI system reached its diagnosis, thus no human learning could be benefited from 
AI neoplasia recognition[40]. This is accompanied by the lack of training and lack of 
learning interest in postgraduates, mostly due to the cancer prevalence problems 
mentioned before. The story is different in colonoscopy, where in most studies, experts 
in the field usually beat the AI systems or show equal diagnostic efficacy, also where 
experts beat beginners or junior physicians[41-44].

Another solution presented by the AI implementation, is that only one system could 
be used in all types of upper GI endoscopy. In a multicenter study done by Luo et al
[36], they used a new system called GRAIDS. This system allowed for the examination 
of all types of upper GI neoplasms including both esophageal and gastric in a single 
system. In addition, the system showed similar diagnostic accuracy when compared to 
experts[36].

AI implementation in upper GI endoscopy proceeds first from detection (the lesion 
is present or not), to segmentation (the lesion is differentiated from the surrounding 
normal tissue), and then to characterization (the lesion is histologically predicted). A 
quality assessment tool for diagnostic accuracy studies called QUDAS score and its 
modified version are used for quality assessment of these diagnostic accuracy trials
[45].

FUTURE ASPIRATIONS
One of the most promising findings was the early detection of precancerous lesions 
with chronic inflammatory background (chronic atrophic gastritis) with high 
specificity of all grades (mild, moderate and severe)[46]. This research might offer a 
solution to the hypothetical problem of background inflammatory state confusion with 
cancer. However, future validation is needed to reach our goal.

Accumulation of datasets, with the help of experts in annotating the pictures and 
videos of lesions in the upper GI endoscopy and linking them to the histopathological 
findings is mandatory for the progress of the AI in upper GI endoscopy. And public 
datasets will allow researchers to conduct their algorithm freely, without limitation to 
geographical regions or expert specialization in certain types of cancers.

Using a single system for detection of pan GI neoplasms with acceptable diagnostic 
accuracy for all GI regions is the ultimate goal, in addition to resolving the real time 
delay for image processing, which is still only scarcely examined in upper GI 
endoscopy.

CONCLUSION
Using AI integration with upper GI endoscopy could benefit trainees and general 
practitioners. Building a dataset library that is accessible to the researchers, with upper 
GI lesions apparent irrespective of the geographical area could be of great benefit to 
even experts in the fields with limited knowledge of the non-prevalent cancers in their 
area of practice.
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Abstract
Infectious or noninfectious liver disease has inexorably risen as one of the leading 
causes of global death and disease burden. There were an estimated 2.14 million 
liver-related deaths in 2017, representing an 11.4% increase since 2012. Traditional 
diagnosis and treatment methods have various dilemmas in different causes of 
liver disease. As a hot research topic in recent years, the application of artificial 
intelligence (AI) in different fields has attracted extensive attention, and new 
technologies have brought more ideas for the diagnosis and treatment of some 
liver diseases. Machine learning (ML) is the core of AI and the basic way to make 
a computer intelligent. ML technology has many potential uses in hepatology, 
ranging from exploring new noninvasive means to predict or diagnose different 
liver diseases to automated image analysis. The application of ML in liver diseases 
can help clinical staff to diagnose and treat different liver diseases quickly, 
accurately and scientifically, which is of importance for reducing the incidence 
and mortality of liver diseases, reducing medical errors, and promoting the 
development of medicine. This paper reviews the application and prospects of AI 
in liver diseases, and aims to improve clinicians’ awareness of the importance of 
AI in the diagnosis and treatment of liver diseases.
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Core tip: Liver disease has inexorably risen as one of the leading causes of global death 
and disease burden. As a hot research topic in recent years, the application of artificial 
intelligence (AI) in medical fields has attracted extensive attention. The application of 
machine learning in the liver diseases can help clinical staff to diagnose and treat 
different liver diseases quickly, accurately and scientifically, which is of importance 
for reducing the incidence and mortality of liver diseases, reducing medical errors, and 
promoting the development of medicine. This paper reviews the application and 
prospects of AI in liver diseases.
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INTRODUCTION
Infectious or noninfectious liver diseases cause a significant disease burden. There 
were an estimated 2.14 million liver-related deaths in 2017, representing an 11.4% 
increase since 2012[1]. Traditional diagnosis and treatment methods have various 
dilemmas in different causes of liver disease. With the development of artificial 
intelligence (AI) technology, new technologies have brought more ideas for the 
diagnosis and treatment of some liver diseases.

AI is an algorithm-based application field that simulates human mental processes 
and intellectual activities, enabling machines to solve problems with knowledge. In the 
information age, AI is widely used in the medical field and can provide accurate 
diagnosis and treatment for complex diseases, reduce medical errors, and promote the 
development of medicine[2]. For example, using deep learning architecture visual 
pattern analysis to detect basal cell carcinoma and distinguish malignant and benign 
lesions, the diagnosis accuracy rate is > 90% compared with experts[3]. There are two 
common types of AI. The first type is expert systems and the second is machine 
learning (ML), which is the core of AI and the basic way to make a computer 
intelligent (Figure 1). ML requires many data to train, which systematically improves 
computer performance in the process. By doing so, computers are able to shed light on 
previously unascertainable relationships that traditional statistical methods could not 
detect. ML is also capable of analyzing data types that were previously unavailable for 
advanced computer analysis, such as image and text data.

The area offering the most exciting new applications in healthcare is ML. Many 
studies in recent years have suggested that ML technology has many potential uses in 
hepatology, ranging from exploring new noninvasive means to predict or diagnose 
different liver diseases to automated image analysis. From the identification of liver 
areas at risk of radiation toxicity to the use of drug structures to predict the risk of liver 
injury, the accuracy of diagnosis and the effectiveness of treatment can be improved, 
and the efficiency can also be improved through automation. Although promising data 
from preclinical studies are now available, the application of AI in liver disease is far 
from being applied in clinical practice, so the application of AI in liver disease and 
other diseases remains challenging and deserves further study.

NEW ROUTES OF LIVER DISEASE DIAGNOSIS
Liver disease is not an independent disease. Because the specific types of lesions are 
different, the diagnostic methods differ. Different examination methods can be 
selected according to the specific types of liver diseases to be examined. For example, 
at present, the common diagnostic method for nonalcoholic fatty liver disease 
(NAFLD) is liver ultrasound (US)[4,5]; the common diagnostic method for liver 
fibrosis is liver biopsy[4]; the diagnosis of liver cancer (LC) mainly uses imaging 
images and biomarkers, and the staging mainly uses the Barcelona staging system. 
However, due to subjective and invasive factors, the current examination methods 
have certain limitations in the diagnosis of some liver diseases. The sensitivity and 
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Figure 1 Timeline of the main concepts of artificial intelligence.

specificity of liver US decrease with increasing body mass index because US is 
subjective. As a solid tumor, hepatocellular carcinoma (HCC) has significant temporal 
and spatial heterogeneity, which can predict the treatment response and prognosis of 
HCC[6]. The Barcelona staging system does not include the histological and molecular 
characteristics of tumors. The application of AI has filled the gaps in these respects. By 
designing noninvasive examination means to intelligently analyze images and 
pictures, AI has improved the diagnostic efficiency and accuracy of clinicians.

Design noninvasive examination 
The prevalence of NAFLD is currently increasing, and there are currently no accurate 
diagnostic means or targeted medicines. The application of AI can realize the early 
diagnosis of NAFLD, which is expected to reduce the further deterioration of the 
disease. Current research has developed automatic liver segmentation based on deep 
learning tools used for quantitative abdominal computed tomography (CT) of liver fat. 
This fully automated CT tool provides rapid and objective assessment that can be used 
in a large retrospective cohort for future studies. If hepatic steatosis proves to be an 
independent risk factor for future adverse events, the automated tool can also be used 
for opportunistic NAFLD screening with any nonenhanced CT, including liver 
(abdomen or chest) scan, regardless of the clinical indications of imaging[7]. In 
addition, a technique that combines noninvasive markers with the ML approach is 
suitable for optimal identification of NAFLD risk assessment and can also be extended 
to predict other types of disease caused by metabolic syndrome[8]. The use of ML 
algorithms to establish a prediction model of NAFLD based on laboratory parameters 
is also a current research direction. A prediction model named the NAFLD ridge score, 
which can be easily calculated and obtain a high negative predictive value, is 
recommended as the simplest and most predictive ML model to exclude NAFLD[9].

Liver fibrosis, regardless of the etiology, is believed to be key to the progression of 
any form of chronic liver disease (CLD), and persistent fibrosis is widely believed to be 
a major driver of the eventual development of cirrhosis and liver failure[10,11]. Liver 
biopsy is considered to be the gold standard for staging liver fibrosis; however, it is 
invasive and is limited by sample error, interobserver variability and various potential 
complications[12]. Radiological and serum markers of fibrosis are also used to assess 
liver fibrosis[13], and it is not reliable to accurately distinguish the stages of fibrosis in 
these patterns. There is a clear need for safe, effective and reliable noninvasive 
assessment modalities. A study that aimed to develop and validate a deep learning 
system (DLS) for staging liver fibrosis by using portal venous phase CT images 
demonstrated that a DLS trained by using a large amount of CT data allowed for 
highly accurate staging of liver fibrosis. In this study, DLS was superior to radiologists 
and serum fibrosis tests in diagnosing significant fibrosis, advanced fibrosis and 
cirrhosis[14]. In addition, an existing model called deep learning radiomics of 
elastography has shown the best overall performance in predicting liver fibrosis stage, 
which has certain value and practical value for the accurate noninvasive diagnosis of 
liver fibrosis stage in hepatitis-B-virus-infected patients[15].

Dig deeper into the medical images
HCC is the most common primary liver cancer and has significant temporal and 
spatial heterogeneity. AI-based imaging, i.e., imaging omics, can quantitatively 
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analyze tumor imaging to reveal the imaging manifestations of these heterogeneous 
characteristics. The concept of imaging omics was first proposed by Lambin et al[16] in 
2012. It mainly extracts a large number of influential features from high-throughput 
radiological images and then uses statistics and AI algorithms to select the most 
valuable imaging omics to construct tumor predictive models. In essence, the 
significance of imaging omics is to dig deeper into the information of traditional 
medical images to compensate for the deficiency of the human eye.

Similarly, there is a need for better clinical classification of indeterminate liver 
nodules; however, the use of a single biomarker to predict the presence of cancer is 
difficult due to its multifactorial nature[17]. An AI-based predictive model of HCC 
reduced the misclassification rate by approximately half compared with that of a 
single tumor marker[18]. In addition, radiomics ML can be trained to diagnose hepatic 
nodules using the European Association for the Study of the Liver (EASL) guidelines 
in patients with HCC disease classified as uncertain cirrhosis[19]. According to EASL, 
indeterminate nodules include all nodules that do not provide arterial enhancement 
and washout [two major Liver Imaging Reporting and Data System (LI-RADS) 
features] and require biopsy regardless of LI-RADS; however, biopsies of cirrhosis 
carry life-threatening risks, including bleeding and tumor spread[20]. A study 
demonstrated that ML-based radiometric features using arterial and portal phase 
quantitative CT feature changes can enable the noninvasive diagnosis of HCC in 
patients with indeterminate nodules of cirrhosis. This feature will help to identify 
patients at high risk of HCC who should be prioritized for treatment to achieve 
significant clinical benefits[19].

AN ALTERNATIVE TREATMENT OPTION FOR LIVER DISEASES
Worldwide, CLD is a leading cause of morbidity and mortality[21]. There are a few 
therapeutic approaches for liver dysfunction, such as direct antiviral drugs (DAAs) for 
hepatitis C virus (HCV) and transarterial chemoembolization (TACE) for HCC[22]. 
Because some patients are resistant to DAAs and do not respond well to antiviral 
therapy and individualized responses to primary TACE vary among patients, AI 
seems to be an alternative option. AI has attracted attention for treatment of liver 
diseases in recent years, especially hepatitis C and LC[23]. AI can go beyond human 
reasoning to build drug-resistance predictive models from many complex combin-
ations and overcome the limitations of traditional techniques, which may be effective 
in avoiding the emergence of a resistant virus, reducing medical costs and providing 
precise and personalized treatment advice for doctors and patients.

Build predictive models
With the popularization of DAAs and the application of new detection technologies 
and service models, global progress has been made in the detection and treatment of 
HCV. However, some patients with HCV are resistant to DAAs and do not respond 
well to antiviral therapy, and the current lack of means to screen these patients may 
delay disease treatment. AI algorithms can go beyond human reasoning to build 
predictive models from many complex combinations. A current study identified all 
variants of HCV whole-genome sequences that could be evaluated, and a support 
vector machine (SVM) based on a machine algorithm was the best prediction model. 
Similar models can be used to determine the best treatment for other viral infections 
and cancers[24].

Coinfection with human immunodeficiency virus 1 and HCV is common in some 
populations today; however, treating coinfections is a challenge. A previous study 
demonstrated that a multiple quantitative structure–activity relationship model 
showed high performance in predicting multitarget inhibitors with anti-HIV and -
HCV activity[25]. The application of ML methods enables us to identify variables 
associated with reduced HCV treatment intake. The most recent variable, people who 
inject drugs (PWIDs), was identified as a major limiting factor associated with 
therapeutic intake deficit, even when priority criteria were met. PWIDs refers to 
people who have been injected at some point but are not currently using oral contra-
ceptives or abusing drugs. In fact, intelligent network interruption analysis has been 
used as a targeted strategy to effectively interrupt HCV transmission between PWIDs
[26]. Its application in clinical decision-making of infectious diseases should be 
expanded to optimize treatment and prevention strategies.
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Provide personalized treatment advice
Due to the well-known limitations of TACE, AI seems to be an alternative treatment 
option for HCC. Some studies have reported the use of fusion imaging (FI) techniques 
to overcome the limitations of traditional techniques. FI is an AI-based technology that 
allows the fusion of two different imaging modes[27]. A prospective randomized 
study conducted by Huang et al[28] showed that the technical response rate of FI in 
ablation for hepatic nodules < 5 cm was close to 100% and reported the special 
usefulness of FI in tumors at less obvious and dangerous sites, not only to accurately 
delineate the target lesion and critical organs, the structures that may be close to the 
target area of ablation can also be accurately delineated.

The clinical decision support system (CDSS) is the software that is designed to be a 
direct aid to clinical decision-making, in which the characteristics of an individual 
patient are matched to a computerized clinical knowledge base and patient-specific 
assessments or recommendations are then presented to the clinician or the patient for a 
decision[29]. One study applied AI technology to clinical realworld data of patients 
with primary HCC, explored the precise treatment of disease and built up the AIbased 
CDSS, HCC CDSS. In the internal use verification process of HCC CDSS in West China 
Hospital, the matching accuracy rate between HCC CDSS and the multidisciplinary 
team treatment scheme reached 95.10%. This scheme is conducive to optimizing the 
clinical treatment decision of LC and can provide precise and personalized treatment 
advice for doctors and patients[30].

AI-DRIVEN PREDICTION FOR LIVER INJURY
Drug-induced liver injury (DILI) is a serious problem in clinical treatment and a 
common cause of drug development failure or withdrawal from the market[31]. 
Therefore, compound hepatotoxicity is important to determine.

Accurate estimation of the prognosis of patients with liver disease can help 
clinicians make appropriate treatment plans for different individuals; however, due to 
the complex process of CLD, the extensive impact on the systemic system and organs, 
and the lack of an adequate understanding of the nature of the development of liver 
disease, the understanding of the prognosis of different liver diseases is still limited. In 
recent years, HCV infection among LC patients and the mortality rate of HCV have 
been on the rise. Therefore, prediction of the prognosis of HCV patients has also 
attracted attention. Cirrhosis is a common, high-risk disease with slow clinical 
progression, and readmission and death in patients with cirrhosis are common and 
unpredictable. None of the clinically available predictive scores for cirrhosis can 
account for the broad range of clinical and psychosocial factors that may be associated 
with cirrhosis mortality. Individualized responses to primary TACE vary among 
patients with HCC. In addition, identifying a robust survival subgroup for HCC 
would also significantly improve patient care. The application of the prediction model 
of disease prognosis based on AI can improve the understanding of the prognosis of 
some liver diseases to a certain extent and provide an auxiliary reference for doctors’ 
decision-making.

Analyze drug structure
AI is a low-cost, fast method to collect information on potential toxicity, and great 
efforts have been made in hepatotoxicity prediction in recent years. A study proposed 
that the integration of the Top-5 model could significantly improve the performance of 
hepatotoxicity prediction. The integrated Top-5 model consists of five base classifiers: 
Random Forest (RF) using Substructure Count, SVM using Chemistry Development 
Kit Extended, SVM using Chemistry Development Kit, SVM using PubChem, and RF 
using Klekota–Roth Count[32]. The deep learning model is also a stable and highly 
accurate predictive model of DILI, which can provide very useful safety information 
for early drug discovery and rational clinical drug use[33].

Predict risk of deterioration and mortality
The prediction of the prognosis of HCV patients has attracted attention in recent years. 
One study showed that the recurrent neural network model was superior to the 
logistic regression (LR) model in predicting HCC risk in patients with HCV-associated 
cirrhosis, including patients with supraventricular tachycardia following antiviral 
therapy; thus, it can be used to identify patients at high risk for HCV-associated 
cirrhosis to develop HCC and to inform risk-based HCC expansion and surveillance 
strategies[34].
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None of the clinically available predictive scores for cirrhosis can account for the 
broad range of clinical and psychosocial factors that may be associated with cirrhosis 
mortality. ML techniques have been used to help fill these gaps in cirrhosis but are not 
yet widely available. In one study, three AI models were established, including LR, 
kernel SVM and RF classifier, and showed that these models had difficulty predicting 
readmissions and deaths in cirrhosis at 30 and 90 d. The accuracy of the AI model is 
comparable to that generated using the model for the end-stage liver disease-NA 
(MELD-NA) score alone, requiring additional biomarkers to improve the predictive 
power[35].

Another study developed and validated a cirrhosis mortality model (CIMM) using 
variables selected from ML algorithms. The results showed that ML can help select 
important variables for more transparent risk scoring while maintaining high 
accuracy. The synthetic hybrid CIMM performed better than the widely used model 
for MELD-NA score[36].

Speculate personalized response 
For patients with LC, individualized responses to primary TACE vary. An AI-based 
radiomics strategy quantitatively analyses contrast-enhanced US images to predict 
personalized responses to primary TACE in HCC. There is potential for better 
selection of Barcelona Clinical Liver Cancer stage B patients receiving hepatic TACE 
and for better optimization of treatment planning and follow-up monitoring in the 
HCC management process[37].

Identifying a robust survival subgroup for HCC would also significantly improve 
patient care. Currently, few studies have integrated multiomics data to definitively 
predict HCC survival in a multipatient cohort. The survival-sensitive subtype model-
deep learning model is of importance for the prognostic prediction and treatment 
intervention of HCC[38].

CONCLUSION
AI has become an important part of liver disease research, improving diagnostic 
accuracy, improving decision-making by enhancing predictive power, increasing 
efficiency through automation, and even predicting liver disease prognosis. Analysis 
of key biomarkers using ML can also provide deeper insights into the pathophysiology 
of liver disease. Despite the challenges, the application of AI in the field of liver 
disease is promising and worthy of further study. Researchers need to further develop 
new models of AI in liver disease diagnosis and precise treatment and conduct clinical 
verification to improve the accuracy of the results and promote the clinical application 
of AI. However, we must also be wary of over-reliance on such algorithms. AI will 
support rather than replace doctors, although computers and healthcare workers will 
have to work together. Ultimately, healthcare workers will have to make decisions for 
their patients based on their preferences, circumstances and ethics.
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