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Abstract
The integration of artificial intelligence (AI) has shown promising benefits in 
many fields of diagnostic histopathology, including for gastrointestinal cancers 
(GCs), such as tumor identification, classification, and prognosis prediction. In 
parallel, recent evidence suggests that AI may help reduce the workload in 
gastrointestinal pathology by automatically detecting tumor tissues and evalu-
ating prognostic parameters. In addition, AI seems to be an attractive tool for 
biomarker/genetic alteration prediction in GC, as it can contain a massive amount 
of information from visual data that is complex and partially understandable by 
pathologists. From this point of view, it is suggested that advances in AI could 
lead to revolutionary changes in many fields of pathology. Unfortunately, these 
findings do not exclude the possibility that there are still many hurdles to 
overcome before AI applications can be safely and effectively applied in actual 
pathology practice. These include a broad spectrum of challenges from needs 
identification to cost-effectiveness. Therefore, unlike other disciplines of medicine, 
no histopathology-based AI application, including in GC, has ever been approved 
either by a regulatory authority or approved for public reimbursement. The 
purpose of this review is to present data related to the applications of AI in 
pathology practice in GC and present the challenges that need to be overcome for 
their implementation.

Key Words: Digital image analysis; Digital pathology; Colorectal cancer; Gastric cancer; 
Machine learning; Deep learning
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Core Tip: Recently, based on improvements in efficient computational power and 
learning capacities, various artificial intelligence applications, such as image-based 
diagnosis and prognosis prediction, have emerged in many fields of pathology. This 
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review comprehensively summarizes the current status of artificial intelligence applic-
ations in gastrointestinal cancers. The present data are promising for the use of 
artificial intelligence to diagnose tumors, evaluate prognostic parameters, and detect 
biomarker/genetic alterations. However, many challenges hinder the implication of 
artificial intelligence models in real pathological practice. Therefore, these challenges 
and suggested solutions are also briefly presented to improve the accuracy and 
relevance of artificial intelligence in pathological practice, including in gastrointestinal 
cancers.

Citation: Alpsoy A, Yavuz A, Elpek GO. Artificial intelligence in pathological evaluation of 
gastrointestinal cancers. Artif Intell Gastroenterol 2021; 2(6): 141-156
URL: https://www.wjgnet.com/2644-3236/full/v2/i6/141.htm
DOI: https://dx.doi.org/10.35712/aig.v2.i6.141

INTRODUCTION
Pathology is a medical specialty that performs morphological evaluations of organs, 
tissues, and cells to provide a definitive diagnosis of diseases and contributes to 
treatment by determining the critical parameters in their course[1]. Although 
histopathological assessment under a light microscope is considered a cornerstone, 
especially in oncology, the search for more objective criteria to overwhelm the 
subjectivity related to interobserver and intraobserver variations and to diminish the 
increased workload and time consumption has led to the development of image 
analysis-based digital pathology (DP), which plays a crucial role in modern patholo-
gical practice[2,3].

Following the considerable advances of slide scanner technology that can quickly 
digitalize whole pathological slides at high resolution (whole-slide images, WSI), in 
2017, the approval of the Philips IntelliSite whole-slide scanner (Philips Electronics, 
Amsterdam, Netherlands) by the Food and Drug Administration (FDA) in the United 
States allowed a comprehensive evolution in DP[4]. This digitization not only faci-
litated the application of telepathology and created a valuable resource for education 
but also yielded the analysis of a large spectrum of morphological parameters and 
biomarkers/genetic alterations[5-7]. In addition, such digital images are constituted 
from matrices of numbers that contain much more information that is not accessible to 
the human eye[8,9]. Indeed, it may be possible to extract predictive and prognostic 
biomarkers from such digitized slides by computer-based image analysis. These 
methods are particularly of direct interest to ''computational pathology'', a relatively 
new pathology field driven by artificial intelligence (AI) that is expected to transform 
and improve the diagnosis and staging of cancers[3,10]. As a result, pathological AI 
models have evolved from expert systems to traditional machine learning (ML) and, 
finally, deep learning (DL)[11]. While the traditional supervised ML allows the 
production of data output from previously labeled training sets that can be corrected 
by the users, labeling big data can be time-consuming and challenging[12]. In addition, 
the accuracy depends heavily on the quality of feature extraction. In contrast, 
unsupervised ML is a time-saving model because it provides automatic detection of 
patterns[13]. However, input data that are not labeled by users pose challenges during 
interpretation, leading to varying results.

On the other hand, DL extracts features directly from the raw data and utilizes 
multiple layers of hidden data for the output[14-16]. Compared to expert systems and 
handcrafted ML models, DL models are simpler to conduct, have higher precision, and 
are more cost-effective[9,17] (Table 1). Furthermore, a considerable increase in 
computational processing capacity and the development of algorithms, such as 
convolutional neural networks (CNNs), fully CNNs, recurrent neural networks 
(RNNs), and generative adversarial networks, have resulted in numerous investig-
ations on the application of DL-based AI in pathological practice[7,18,19]. The 
strengths and weaknesses of typical ML methods are summarized in Table 1.

In addition, the use of AI in pathology has led to the emergence of many DL-based 
applications[20]. Proscia, DeepLens, PathAI, and Inspirata are DL-based applications 
for the detection, diagnosis, and prognosis of several cancer subtypes[21-25]. In 
addition, Inspirata and PAIGE.AI are spending substantial time and resources on 
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Table 1 Strengths and weaknesses of machine learning methods in development of artificial intelligence models for gastrointestinal 
pathology

AI model Advantages Disadvantages

Allows users to produce a data output from the previously 
labeled training set

Labeling big data can be time-consuming and 
challenging

Traditional ML (supervised)

Users can reflect domain knowledge features Accuracy depends heavily on the quality of feature 
extraction

Users do not label any data or supervise the model Input data is unknown and not labeled by users

Can detect patterns automatically Users cannot get precise information regarding data 
sorting

Traditional ML (unsupervised)

Save time Challenges during interpreting

Detects the important information and features without 
labeling

A large training data is requiredCNN

High performance in image recognition Lack of interpretability (black boxes)

Provides computational speed Requires large amounts of labeled data for trainingFCN

Automatically eliminates the background noise High labeling cost

Can decide which information to remember from its past 
experience

Harder to train the modelRNN

A deep learning model for sequential data High computational cost

Does not require detailed annotation A large amount of training data is requiredMIL

Can be applied to large data sets High computational cost

GAN Generates new realistic data resembling the original data Harder to train the model

AI: Artificial intelligence; ML: Machine learning; CNN: Convolutional neural networks; FCN: Fully convolutional neural networks; RNN: Recurrent neural 
networks; MIL: Multi-instance learning; GAN: Generative adversarial networks.

creating large libraries of digital WSI for use in training AI algorithms[21,24]. 
Interestingly, the landscape of DP is, in parallel, also undergoing important innovation 
and rapid changes[10].

It is also notable that some institutions are digitizing their entire pathology 
workflow, suggesting the routine use of AI-based systems in many areas of pathology 
soon[26,27]. Indeed, many studies have suggested that the integration of AI provides 
benefits for diagnosing and subtyping tumors, detecting histopathological parameters 
related to prognosis, and even identifying biomarker/genetic alterations in many 
fields of pathology[28]. On the other hand, the existence of a broad spectrum of 
difficulties, from AI-based pathology laboratory infrastructures to the robustness of 
algorithms, indicates that there are still many obstacles to be resolved before 
introducing AI applications in real-life pathology practice[29]. Nonetheless, AI-based 
approaches have the potential to contribute to pathological practice by improving 
workflows, eliminating simple errors, and increasing diagnostic reproducibility.

Regarding the gastrointestinal system, the accumulated data indicate that AI-based 
models might provide diagnostic assistance, prognosis prediction, and biomarker 
development for gastrointestinal cancer (GC). There have been few studies in the 
recent past that have addressed the effectiveness of AI models in GC[8,30]. However, 
effective implementation of these methods in real-life pathology practice requires 
further reviews comparing the results of previous studies and highlighting the 
challenges to be overcome.

This review presents recent data about the AI-based pathological evaluation of GC 
and current challenges for its implementation in gastrointestinal pathology practice 
with future directions to consider.

AI-BASED APPLICATIONS IN DIAGNOSIS OF GC
Recent studies on the use of AI models in the histopathological classification of gastric 
cancer are summarized in Table 2. Although the models used differ among studies, the 
results support that AI-based classification can be used in histopathological 
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Table 2 Artificial intelligence-based applications in gastric cancer

Ref. Task No. of cases/data set Method Performance 

Duraipandian et al[89] Classification 700 slides GastricNet Accuracy (100%)

Cosatto et al[72] > 12000 WSIs MIL AUC (0.96)

Sharma et al[31] 454 cases CNN Accuracy (69%) 

Qu et al[90] 9720 images DL AUCs (up to 0.97)

Yoshida et al[32] 3062 gastric biopsies ML Overall concordance rate (55.6%)

León et al[91] 40 images CNN Accuracy (up to 89.7%)

Liang et al[92] 1900 images DL Accuracy (91.1%)

Sun et al[93] 500 images DL Accuracy (91.6%)

Tomita et al[94] 502 images1 Attention-based DL Accuracy (83%)

Wang et al[95] 608 images Recalibrated multi-
instance-DL

Accuracy (86.5%)

Iizuka et al[33] 1746 biopsy WSIs CNN, RNN Accuracy (95.6%), AUCs (up to 0.98)

Bollschweiler et al[41] Prognosis 135 cases ANN Accuracy (93%)

Hensler et al[42] 4302 cases QUEEN technique Accuracy (72.73%)

Jagric et al[43] 213 cases Learning vector 
quantization NN

Sensitivity (71%), specificity (96.1%)

Lu et al[36] 939 cases MMHG Accuracy (69.28%)

Jiang et al[37] 786 cases SVM classifier AUCs (up to 0.83)

Liu et al[40] 432 tissue samples SVM classifier Accuracy (up to 94.19%)

Korhani Kangi and 
Bahrampour[38]

339 cases ANN, BNN Sensitivity (88.2% for ANN, 90.3% for 
BNN)Specificity (95.4% for ANN, 
90.9% for BNN)

Zhang et al[39] 669 cases ML AUCs (up to 0.831)

García et al[44] Tumor infiltrating 
lymphocytes

3257 images CNN Accuracy (96.9%)

Kather et al[56] Genetic alterations 1147 cases2 Deep residual learning AUC (0.81 for gastric cancer)

Kather et al[47] > 1000 cases3 NN AUC (up to 0.8)

Fu et al[57] > 1000 cases4 NN Variable across tumors/gene 
alterations. Strongest relations in whole 
genome duplications

1Esophageal adenocarcinoma and Barrett’s esophagus.
2Gastric and colorectal cancers.
3Gastric, colorectal, esophageal, and liver cancers.
4Gastric, colorectal, and pancreatic cancers.
AI: Artificial intelligence; GastricNet: The deep learning framework; WSIs: Whole slide images; MIL: Multi-instance learning; AUC: Area under the curve; 
CNN: Convolutional neural networks; DL: Deep learning; ML: Machine learning; RNN: Recurrent neural networks; ANN: Artificial neural network; 
QUEEN technique: Quality assured efficient engineering of feedforward neural networks with supervised learning; NN: Neural network; MMHG: 
Multimodal hypergraph learning framework; SVM: Support vector machine.

evaluations based on the accuracy and area under the curve (AUC) values determined. 
Different models are considered together in a few studies. For example, in a study 
where two DL-based methods were used to diagnose gastric cancer, the mean 
accuracy of both models was shown to be up to 89.7%[31]. In another study that 
compared the classification results of experienced pathologists with those of the ML-
based program created by NEC Corporation, in gastric biopsy specimens, the 
agreement rate for biopsy specimens negative for neoplastic lesions was found to be as 
high as 90.6%[32]. More recently, Iizuka et al[33], who aimed to classify gastric biopsies 
as gastric adenocarcinoma, adenoma, or nonneoplastic mucosa by using AI algorithms 
based on CNNs and RNNs, revealed that the AUC for gastric adenocarcinoma classi-
fication was 0.9, supporting that AI-based models could be helpful in the diagnosis of 
gastric cancer. Although these results suggest that AI can be used to diagnose gastric 
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cancer, it is difficult to relate these data to performance comparisons alone. In research, 
parameters such as the size of the dataset, resolution of detection, multisite validation, 
the number of categories to be classified, and most importantly, the presence of lesions 
other than malignancies that require diagnosis are also critical variables. In particular, 
the latter could be a potential limitation of AI-based models in actual practice. Indeed, 
a gastric biopsy is evaluated not only for malignancy but also for lesions such as 
gastritis and metaplasia. Therefore, an AI model used only for malignancy screening 
in gastric pathology will not reduce the pathologist's workload, as other findings also 
need to be reviewed.

AI applications have also been developed to diagnose colorectal cancer (CRC), 
which may allow classification of lesions as normal, hyperplasia, adenoma, adenocar-
cinoma, and histological subtypes of polyps or adenocarcinomas (Table 3). In an 
elegant study, Korbar et al[34] observed that their AI models could classify five 
colorectal polyp types with a 93% accuracy. In another study, a created DL model was 
able to reclassify colorectal polyps in a manner comparable to those of the pathologist, 
even in datasets from other hospitals[35]. From this perspective, the results of most 
studies are encouraging for the use of AI models in the diagnosis of CRC. However, 
this does not exclude the fact that comparing the performance of those models reliably 
necessitates a common task using a standardized dataset with standardized 
annotations because each model is derived from different datasets with different 
explanations and is focused on different tasks in current studies.

AI-BASED APPLICATIONS FOR PROGNOSTICATION OF GC
Because gastric cancer has more complex and heterogeneous morphological features 
than CRC, most AI-based studies performed on these tumors focus on diagnosis rather 
than prognostication studies (Table 2). Nevertheless, there is some evidence showing 
that AI models can be helpful to evaluate histopathological parameters, such as differ-
entiation and lymphovascular involvement, which are essential in determining the 
survival time[36-38], recurrence risk[39,40], metastasis[41-43], and, accordingly, 
treatment of gastric cancer. In the survival analysis, a higher predictive accuracy for 
overall survival and disease-free survival than the tumor-node-metastasis staging 
system defined by the American Joint Committee on Cancer by SVM application has 
been demonstrated[37]. In addition, this method can also be used to predict adjuvant 
chemotherapeutic benefits, which can facilitate individualized therapy. Another study 
combining the demographics, pathological indicators, and physiological characteristics 
of the study group found that a method using a new multimodal hypergraph learning 
framework to improve the accuracy of survival prediction outperformed random 
forests and SVM in survival prediction[36]. Furthermore, when the artificial neural 
network and Bayesian neural network (BNN) values were compared in survival 
estimation, it was shown that BNN was superior to the artificial neural network 
method[38].

The application of neural networks significantly improves the prediction of lymph 
node metastasis[41]. In addition, in a study to determine the microenvironment that 
can predict tumor behavior, García et al[44]observed that a CNN model could be used 
to detect tumor-infiltrating lymphocytes (accuracy, 96.9%). However, the number of 
these studies should be increased to draw a better conclusion about the application of 
AI-based DP in the prognostication of gastric cancer.

In CRC, DL was found to be effective in predicting prognosis at all stages. For 
example, in a study where RNN analyzed tissue microarrays to predict 5-year disease-
specific survival, the hazard ratio and AUC were determined to be 2.3 and 0.69, 
respectively[45]. In another study, a 99% accuracy was observed in estimating the 
course of the disease using more than 1000 histological images collected from three 
institutions[46]. Finally, in comparing five separate DL networks using 934 cases, 
Kather et al[47] observed that the hazard ratio was 1.99 in determining overall 
survival. In studies investigating the microenvironment with AI-based models in these 
tumors, AUC values ranged from 0.91 to 0.99[47-49]. In another interesting study, 
Weis et al[50] pointed out that detecting tumor bud hot spots with CNN may influence 
determining tumor budding, which plays a role in determining tumor behavior. The 
characteristics of these studies are briefly presented in Table 3. Although this needs to 
be supported and standardized by further comparative studies, all these findings 
suggest that AI can be applied for determining the behavior of CRC.
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Table 3 Artificial intelligence-based applications in colorectal cancer

Ref. Task No. of cases/data set Method Performance 

Xu et al[96] 717 patches (N, ADC 
subtypes)

AlexNet Accuracy (97.5%)

Awan et al[97] 454 cases (N, ADC grades 
LG vs HG)

NN Accuracy (97%, for 2-class; 91%, for 
3-class)

Haj-Hassan et al[98] 30 multispectral image 
patches (N, AD, ADC)

CNN Accuracy (99.2%)

Kainz et al[99] 165 images (benign vs 
malignant)

CNN (LeNet-5) Accuracy (95%-98%)

Korbar et al[34] 697 cases (N, AD subtypes) ResNet Accuracy (93.0%)

Yoshida et al[100] 1328 colorectal biopsy 
WSIs

ML Accuracy (90.1% for adenoma)

Wei et al[35] 326 slides (training), 25 
slides (validation) 157 
slides (internal set)

ResNet 157 slides: Accuracy 93.5% vs 
91.4%(pathologists) 238 slides: 
Accuracy 87.0% vs 
86.6%(pathologists)

Ponzio et al[101] 27 WSIs (13500 patches) 
(N, AD, ADC)

VGG16 Accuracy (96%)

Kather et al[47] 94 WSIs1 ResNet18 AUC (> 0.99)

Yoon et al[102] 57 WSIs (10280 patches) VGG Accuracy (93.5%)

Iizuka et al[33] 4036 WSIs (N, AD, ADC) CNN/RNN AUCs (0.96, ADC; 0.99, AD)

Sena et al[103]

Classification

393 WSIs (12565 patches) 
(N, HP, AD, ADC)

CNN Accuracy (80%)

Bychkov et al[45] 420 cases RNN HR of 2.3, AUC (0.69)

Kather et al[46] 1296 WSIs VGG19 Accuracy (94%-99%)

Kather et al[46] 934 cases DL (comp. 5 networks) HR for overall survival of 1.63-1.99 

Geessink et al[104] 129 cases NN HR of 2.04 for disease free survival

Skrede et al [105]

Prognosis

2022 cases Neural networks with 
MIL

HR 3.04 

Kather et al[47] TCGA-DX (93408 patches)1

TCGA-KR (60894 patches)
ResNet18 AUC (0.77), TCGA-DXAUC (0.84), 

TCGA KR)

Echle et al[55]

Genetic alterations

8836 cases (MSI) ShuffleNet DL AUC (0.92-0.96 in two cohorts)

Kather et al[47] Tumor microenvironment 
analysis

86 WSIs (100000)1 VGG19 Accuracy (94%-99%)

Shapcott et al[48] 853 patches and 142 TCGA 
images

CNN with a grid-based 
attention network

Accuracy (65-84% in two sets)

Swiderska-Chadaj et al[49] 28 WSIs FCN/LSM/U-Net Sensitivity (74.0%)

Alom et al[106] 21135 patches DCRN/R2U-Net Accuracy (91.9%)

Sirinukunwattana et al
[107]

Molecular subtypes 1206 cases NN with domain-
adversarial learning

AUC (0.84-0.95 in the two validation 
sets)

Weis et al[50] Tumor budding 401 cases CNN Correlation R (0.86)

1Gastric, colorectal, esophageal, and liver cancers.
AI: Artificial intelligence; N: Normal; ADC: Adenocarcinoma; LG: Low grade; HG : High grade; NN: Neural networks; AD: Adenoma; CNN: 
Convolutional neural networks; WSIs: Whole slide images; ML: Machine learning; VGG: Visual geometry group; AUC: Area under the curve; RNN: 
Recurrent neural networks; HR: Hazard ratio; DL: Deep learning; MIL: Multi-instance learning; TCGA: The cancer genome Atlas; MSI: Microsatellite 
instability; FCN: Fully convolutional neural networks; LSM: Locally sensitive method; DCRN: Densely connected recurrent convolutional network; R2U-
Net: Recurrent residual U-Net.

AI-BASED APPLICATIONS FOR GENETIC AND MOLECULAR TESTING IN 
GC
In routine practice, evaluating surgical and biopsy specimens of GI cancers is essential 
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for identifying molecular biomarkers that predict the response to targeted therapies. 
This evaluation requires the use of immunohistochemistry or advanced molecular 
techniques.

The detection of genetic alterations called microsatellite instability (MSI), especially 
in CRC, is very important for treatment with immunomodulators[51-53]. In addition, it 
is possible to determine the MSI-related phenotype and identify conditions that 
require family information and close follow-up of the patient, such as Lynch syndrome
[54]. The revelation that some of the genetic events in these cancers are associated with 
certain morphological events has led to several attempts to use AI-based algorithms in 
WSIs. Furthermore, due to the large number of samples available, CRC was seen as a 
prototype for these studies. In this context, accumulated data indicate that AI-based 
models are influential in determining both MSI and other genotypic changes[47,55-
57]. In particular, the DL algorithm developed by Echle et al[55] to detect MSI in CRC 
using more than 8800 images recently showed an AUC of 0.96 in the multi-institution 
validation cohort (Table 3).

There have been other attempts to develop models that directly predict gene 
mutations from the WSI of gastric cancer. In addition, it has been observed that AI 
could also predict gene expression and RNA-seq data, and these models have 
remarkable potential for clinical translation[47,56,57] (Table 2).

However, further additional and prospective validation studies are necessary for GI 
cancers before applying AI in real life to reduce the molecular testing workload and 
allow testing in health care centers with limited resources.

CHALLENGES AND IMPLEMENTATION OF AI-BASED APPLICATIONS IN 
REAL-LIFE PRACTICE
In general, the need for a close review of the steps involved in ethics, design, financing, 
development, validation and regulation, implementation, and impact on the workforce 
in the application of AI in pathology has been highlighted[58].

From this perspective, although AI-based models are likely to play a critical role in 
gastrointestinal pathology, including GC, in the future, several problems similar to 
those in other fields of pathology need to be addressed to ensure implementation. Brief 
information about the difficulties encountered in applying AI models in pathology, 
including GC, and suggested solutions are presented in Table 4.

Ethical considerations
Although consent can be obtained from patients to use data for research purposes, a 
lack of approval for commercial use can cause problems in developing AI models[59]. 
Some researchers argue that this can be resolved by developing a framework for global 
data sharing by obtaining approvals that convey the possibility of commercial use for 
research and product development[30].

Design of AI models
The primary expectation of AI in pathology is to fill gaps and address unmet needs in 
the daily workflow. These needs mainly include workload-intensive and repetitive 
procedures, such as calculating tumor necrosis, mitotic count, and lymph node 
metastases, and diagnosing lesions prone to interobserver variabilities. The main goal 
to consider in developing AI applications in pathology is to solve a real clinical need. 
However, the development of models for AI application in this field of medicine 
involves a variety of stakeholders, including not just pathologists but computer 
scientists, IT, and pharmaceutical companies, which inevitably leads to different 
expectations and perspectives. For example, some may have academic publishing 
purposes, while others may be profitable commercial products. Therefore, an expected 
solution in pathology may not meet the expectations in finance, leading to the 
company not preferring to develop. To overcome these challenges and develop AI 
algorithms that are effectively used in DP, GC, pathologists, academic professionals 
who can develop technology, and companies that will promote the product must 
collaborate in harmony.

Development of AI models
Once AI models are designed and built, their development requires an accurate 
definition of the output, straightforward design of the algorithm, collection of a large 
follow-up sample or even pilot data, data disclosure and processing, and statistical 
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Table 4 Summary of challenges and suggested solutions in development process of artificial intelligence applications

Process Challenges Suggested solutions

Ethical considerations Lack of patient’s approval for commercial use Approval for both research and product development 

Design of AI models Underestimation of end-users’ needs Collaboration with skate holders

CNN: Large amounts of images Augmentation techniques, transfer learningOptimization of data-
sets

Rare tumors: Limited number of images Global data sharing 

Variations in preanalytical and analytical phases AI algorithms to standardize staining, color properties, and WSIs 
quality

Interobserver variations in diagnosis MIL algorithmsAnnotation of data-sets

Discrepancies among performances for trained 
algorithms

Validation Presence of ground truth without objectivity Multicenter evaluations that include many pathologists and data-set

Regulation Lack of current regulatory guidance specific for AI tools New guidelines and regulations for safer and effective AI tools

Implementation Changes in work-flow Selection of AI applications that will speed up the work-flow

IT infrastructure investment Augmented microscopy directed to the cloud network service

The relative inexperience of pathologists Training about AI, integration of AI in medical education

AI applications that lack interpretability ( Black-box) Constructions of interpretable models, generating attention heat map

Lack of external quality assurance Sheme for this purpose should be designed

Legal implications The performance of AI algorithms should be assured for reporting

CNN: Convolutional neural networks; MIL: Multi-instance learning.

analysis.
From this perspective, high-quality dataset optimization can be considered one of 

the biggest obstacles to the development of AI in DP. CNNs require a large number, 
even thousands, of pathological image datasets, to perform adequately[60]. Especially 
in rare tumors, the inability to obtain a very high number of images is quite limiting. 
To overcome this situation, the use of data augmentation techniques and learning 
methods is recommended. In contrast, Jones et al[61] indicated that small-scale datasets 
of < 100 digital slides might be sufficient in the case of transfer learning. Recently, it 
was proposed to develop publicly available datasets for global data sharing. However, 
it cannot be ruled out that very few such datasets are available in pathology, partially 
due to privacy, copyright, and financial issues[62]. Although The Cancer Genome 
Atlas provides many WSIs and associated molecular data, it does not contain enough 
cases for training AI applications for clinical practice[63,64]. Hartman et al[63] pointed 
out that another potential source of datasets could be public challenges provided for 
developing DL algorithms.

Again, developing high performance in AI applications in DP requires training on 
large datasets, which can be affected by the preanalytical (variations in fixation 
protocols and variations in the thickness of tissue sections) and analytical (variations 
in staining techniques and scanning protocols) phases applied to acquire digital 
images[65,66]. Indeed, converting a glass slide to WSI is not a simple task, and color 
modifications may influence the accuracy of AI. For this purpose, several AI 
algorithms have emerged to standardize data in recent years, including staining and 
color properties[67-69]. In addition, several automated algorithms have also been 
provided to standardize WSI quality, which automatically detects regions of optimum 
quality and removes out-of-focus or artifact-related regions, such as DeepFocus[70,71].

Annotation of the dataset
The curation of the dataset should be followed by annotation, which is another 
complex task. The limits of this annotation are broad, depending on AI, ranging from 
classification at the slide level to labeling at the pixel level[7,30]. For pathologists, the 
task of annotating many images is a time-consuming, sometimes challenging effort 
that can affect the accuracy of the models being trained, especially when the task is 
complex, especially if, as in gastrointestinal pathology, the disease selected for 
diagnosis differs significantly among observers (e.g., intramucosal carcinomas) and if 
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the accuracy of dataset descriptions cannot be warranted[72]. Moreover, the trained 
algorithm may not produce the same performance in the dataset when used in other 
medical centers. Recently, many efforts have been made to solve the annotation 
problems that hinder the application of AI in pathology practice[67,73]. The data 
support that multi-instance learning (MIL) algorithms can be applied without detailed 
annotation. In particular, there is evidence that MIL can be effective when there is a 
large dataset and detailed annotations are impossible to obtain[60].

Validation and regulation
The preparation of the annotated dataset is followed by the model development 
process (preparation of the datasets for training, testing, and validation) and the 
selection of the learning method with the ML technique. In this context, the validation 
of AI-based technologies requires an evidence-based approach, and it is emphasized 
that analytical validation should also be considered in a laboratory-centered medical 
discipline, such as pathology[58,73]. Therefore, it is essential to establish steps and criteria 
for validating new tests according to the standards. For example, to validate the image 
analysis used to determine the expression of a biomarker, the technique can often be 
compared to a detailed manual tumor assessment. However, the performance of the 
AI technique compared with that of pathologists is not straightforward, given the 
intraobserver and interobserver variability. Today, there are difficulties associated 
with determining "ground truth" to AI applications. This situation leads to the need for 
repeated validation of the robustness and reproducibility of AI applications in large 
and variable patient groups[30].

There may be a relative lack of validation cohorts in the development of AI-based 
applications in DP. This shortcoming is also contributed by the potential limitation in 
sharing histopathological sections. Although the interobserver variability and 
subjectivity in the evaluations of pathologists also indicate the uncertainty of "ground 
truth" in this aspect, the best measure to overcome this obstacle may be multicenter 
evaluations that include more than one pathologist and dataset. From the perspective 
of GC, the lack of external validation in a substantial number of studies for AI applic-
ations may limit the practical use of AI.

Regulation of AI
Although appropriate regulations are necessary for the safe and effective use of AI in 
pathology, as highlighted by Allen[74], regulatory approval should be structured to 
define the risk-benefit balance, reduce potential harm, produce appropriate verifi-
cation standards, and encourage innovation. On the other hand, the presence of 
various challenges should not be ignored in this regard.

Various regulatory authorities [such as the FDA, Centers for Medicare and 
Medicaid Services (CMS), and the European Union Conformité Européenne (EUCE)] 
are not yet fully prepared for the implementation of AI applications in clinical 
medicine. As a result, AI-based devices are being controlled by old and potentially 
outdated guidelines for testing medical devices.

Currently, in the United States, the FDA is working on new regulations to make AI-
based devices safer and more effective[75]. On the other hand, appropriate validation 
for all laboratory tests using human tissue prior to clinical application is required by 
CMS regardless of FDA approval, and this organization has no specific regulations to 
validate AI applications. Furthermore, the EUCE reported that in vitro diagnostic 
medical device directives will be replaced by in vitro diagnostic regulations in May 
2022[76]. In addition, it is necessary to take into account the regulatory trends of the 
country where AI is implemented.

Implementation
The implementation of AI models in daily pathology practice depends on meeting 
specific requirements by overcoming various challenges. First, a laboratory 
infrastructure equipped to enable AI applications in a time frame that does not 
interfere with patient care is essential. Currently, many pathology laboratories only 
use tissue sections for diagnostic evaluations. However, the implementation of AI 
models will require new DP-related equipment, software, a specific data management 
system, data storage facilities, and, more importantly, a substantial investment to 
cover their cost[77]. In addition, an institutional IT platform is required to enable 
practitioners to operate on-site and cloud-based computing systems. Thus, DP applic-
ations may require significant investment, hindering the implementation of these 
technologies. It has been demonstrated that augmented microscopy directly connected 
to the cloud network service can solve the whole slide scanner setup problem[78]. The 
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cloud-based AI application developed by GOOGLE can also aid in the search for 
morphologically similar features in a target image, regardless of the annotation status
[79].

The relative inexperience of pathologists with AI-based technologies should not be 
overlooked. Therefore, pathologists need to improve their knowledge of both the 
installation of DP systems and the application of AI. Another problem is that, given 
the reported performance of some algorithms, automated AI models are believed to 
outperform pathologists, causing pathologists to be hesitant about these applications
[79-81]. However, current results suggest that AI models are more likely to help 
improve the overall quality of pathological diagnosis and provide relevant additional 
information rather than replacing pathologists[82,83]. Indeed, there will always be a 
need for pathologists to audit technologies and control systems in AI implementation. 
Therefore, pathologists must be aware of the long-term risk-benefit balance of AI 
applications[84]. Since current DL-based AI applications lack interpretability, it may be 
helpful to develop AI solutions that end-users can interpret, thus providing them with 
detailed explanations of how their predictions are made. Although DL's "black box" 
problem has not been fully resolved, several solutions have been reported, such as 
constructing an interpretable model, generating an attention heatmap, and 
constructing an external interpretive model[85-88].

While AI assistance in pathological diagnosis may reduce the opportunities for 
learning diagnostic skills during pathology training, resident pathologists should be 
trained and encouraged to learn the utility, limitations, and pitfalls of AI application as 
an adjunct method to improve the quality and precision of clinical diagnoses. 
Therefore, some reforms may be required in pathology training, starting with medical 
education followed by a pathology education program to address a more accurate and 
safer implementation of AI in pathology practice[84].

Like other clinical tests, quality assurance is an important issue for the effective use 
of AI in DP, and consequently, a scheme of external quality assurance for applications 
should be urgently prepared for its implementation. Furthermore, laboratory staff 
should be aware of the quality management system.

Beyond all this, the legal implications of signing a report prepared by a pathologist 
using AI should not be ignored. Therefore, to include AI findings in a pathological 
report, the performance of the algorithm must be assured. This legal issue also 
supports the notion that AI cannot replace pathologists but that AI can be used to 
support pathologists in clinical trials.

CONCLUSION
AI-based approaches have the potential to contribute to the pathological diagnosis and 
staging of GC by improving workflows, eliminating simple errors, and increasing 
diagnostic reproducibility. It is also the case that it encourages biomarker discovery by 
revealing impossible predictions using traditional visual methods. However, there are 
many hurdles to overcome, including infrastructure and the generalization of 
algorithms. Overcoming these obstacles requires the efforts of computer scientists, 
pathologists, and clinicians, who will deal with each challenge separately and 
cooperate in harmony. In this way, AI applications that are user-friendly, explainable, 
manageable, and cost-effective can play a crucial role in the development of 
pathological assessments to be used in the diagnosis, prognosis, and treatment of GC.
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