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Abstract

Colorectal cancer is one of the most common neoplasia with an high risk to
metastatic spread. Improving medical and surgical treatment is moving along
with improving the precision of diagnosis and patient's assessment, the latter two
aided more and more with the use of artificial intelligence (Al). The management
of colorectal liver metastasis is multidisciplinary, and surgery is the main option.
After the diagnosis, a surgical assessment of the patient is fundamental. Reaching
a RO resection with a proper remnant liver volume can be done using new
techniques involving also artificial intelligence. Considering the recent application
of artificial intelligence as a valid substitute for liver biopsy in chronic liver
diseases, several authors tried to apply similar techniques to pre-operative
imaging of liver metastasis. Radiomics showed good results in identifying
structural changes in a unhealthy liver and in evaluating the prognosis after a
liver resection. Recently deep learning has been successfully applied in estimating
the remnant liver volume before surgery. Moreover Al techniques can help
surgeons to perform an early diagnosis of neoplastic relapse or a better differen-
tiation between a colorectal metastasis and a benign lesion. Al could be applied
also in the histopathological diagnostic tool. Although Al implementation is still
partially automatized, it appears faster and more precise than the usual diagnostic
tools and, in the short future, could become the new gold standard in liver
surgery.

Key Words: Colo-rectal cancer; Liver metastasis; Artificial intelligence; Radiomics; Deep
learning
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Core Tip: Colon cancer is one of the most frequent cancers that unfortunately has a high risk of metastatic
spread especially to the liver. The treatment of liver metastases is multidisciplinary, but surgery remains
undoubtedly the main act. The results in the treatment of liver metastases have improved significantly over
the years, but we continue to seek further paths of improvement. A new path, to which we currently
entrust many hopes, is that of artificial intelligence, which could bring revolutionary solutions both in the
diagnosis of liver metastases, and as a useful guide for surgical techniques. The purpose of this article is to
summarize the latest news reported in the literature and possible research developments on this topic.

Citation: Tonini V, Vigutto G, Donati R. Liver surgery for colorectal metastasis: New paths and new goals with the
help of artificial intelligence. Artif Intell Gastroenterol 2022; 3(2): 28-35

URL: https://www.wjgnet.com/2644-3236/full/v3/i2/28.htm
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INTRODUCTION

Nowadays, colorectal cancer is one of the most common neoplasia in Western countries and among the
main causes of death for oncologic diseases[1,2]. Between 30% and 50% of patients with colorectal
cancer will develop liver metastasis during their life and surgical resection remains a fundamental
treatment[1,2]. The improvement of surgical techniques, along with the use of newer and better schemes
of chemotherapy, will increase the chances of a longer disease free survival for these patients[3].
Meanwhile, artificial intelligence (Al) is infiltrating healthcare exponentially and it has already been
applied to several fields related to gastroenterology and hepatology[4,5].

HEPATOBILIARY SURGERY FOR COLORECTAL METASTASIS

The treatment of colorectal metastasis is generally multidisciplinary, involving many professional
figures and multiples pathways[1,2]. Discussing other therapies, such as chemotherapy or radiotherapy,
is beyond the scope of this article.

Surgical treatment always goes with hepatic resection[1]. All metastatic patients need to undergo
several pre-operative exams for a better definition of the disease and its extent: a thoraco-abdominal
contrast-enhanced CT scan and/or a contrast-enhanced MRI[1,6]. The use of routine PET/CT scan
remains controversial[l,7]. The main goals during the assessment are evaluating the extent of the
hepatic disease and searching for any extra hepatic localization of disease, the latter one is an exclusion
criteria for any kind of hepatic resection[1,8].

Once surgery is considered, the assessment becomes more operative: new main goals are estimating
how complex is performing a R0 resection and evaluating the liver remnant volume[1]. Clearly, a RO
resection should be achieved to increase the disease free survival and the overall survival, but the well-
known lem border of healthy tissue is now reconsidered due to the increasing effectiveness of
chemotherapy and the complexity of the resection[1,9,10]. At the same time, the size of the remnant liver
must be evaluated with a three dimensional CT volumetry and it should be more than 20% in a healthy
liver, more than 30% in post- systemic chemotherapy liver and more than 40% in a cirrhotic liver[1,11].
In case of an insufficient liver remnant volume, a portal vein embolization can be considered to increase
the size to the residual liver[1,12], while, in case of bilateral lesions with a majority of them in one lobe, a
two-stage hepatectomy with or without contralateral limited resections can be done[1,13]. Finally, a
mini invasive approach should be considered if the surgeon is experienced in these techniques,
considering the well-known advantages of mini invasive approaches[14].

RADIOMICS AND ARTIFICIAL INTELLIGENCE APPLIED TO MEDICAL IMAGING

The recent advent of artificial intelligence has changed the paradigm in the field of medical imaging
interpretation together with radiomics. Artificial intelligence is a discipline that aims at mimicking the
function of human brain in solving complex problems using computers. Machine learning and deep
learning are branches of Al in which machines are thought how to learn from data using analytical
models and algorithms. While machine learning methods usually require less computation on the
computer side and more human intervention, deep learning may involve a huge amount of information
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(from which stems the adjective “deep”) and thus requires high performance computers, but less or no
human intervention.

Radiomics is a tool for extensive extraction of quantitative features from medical imaging[4] and can
be applied to ultrasound (US), magnetic resonance imaging (MRI), positron emission tomography (PET)
and computed tomography (CT). The science of radiomics has taken advantage of machine learning
with great benefit for medicine in general. The large amount of information provided by radiomics
together with the improvements in Al have given raise to new methods of reading and interpreting
medical images. Experts in different domains have now the opportunity to make less challenging the
hard task of interpreting images thanks to this machine-aided approach. As shown in Figure 1 the
workflow of conventional radiomics and Al applied to medical imaging is split in image acquisition,
preprocessing, segmentation, features extraction and selection, model construction and training, model
testing and evaluation. In conventional radiomics, one of the main prerequisites during the phase of
image acquisition and preprocessing is a certain degree of standardization of the processes, in order to
obtain a database with images that have comparable characteristics. Images segmentation consists in
locating lesions manually or with the aid of a computer, in order to identify the region of interest o
volumes of interests. Feature extraction and selection is a crucial step in machine learning paradigms in
order to obtain a subset of quantitative parameters that are given as inputs to train the analytical model.
In case of radiomics, these can be shape-based features (e.g. size, shape, location), histogram features (or
others first-order features like standard deviation and variance), textual features (e.g. tumor hetero-
geneity) and other higher order features extracted with wavelet transforms or Laplacian filters. In the
phase of model construction, it is important to choose the analytical engine that gives the best results in
term of performance in relation to the selected features. To do so, several models can be chosen and then
tested such as linear regression, support vector machines, decision tree, random forest, K-Means. The
evaluation of the models and the assessment of their performance is inferred from indicators and
methods such as the receiver operating characteristic, nomograms and the decision curve analysis.

Whereas conventional radiomics is still a widely used approach in medical image analysis, in recent
years, deep learning has been introduced in the clinical practice thanks to its promising results[7]. This
technique can reach high levels of performance while not requiring manual human intervention in the
phases of image segmentation and features extraction (Figure 2). In this paradigm, features are in fact
automatically selected by a neural network to maximize the performance of the algorithm (called
“backpropagation algorithm”). However, a larger amount of data (e.g. of number of medical images) is
commonly needed to train the neural network models using backpropagation. Among the most popular
techniques are multilayer perceptron networks, convolutional neural network, long short-term memory
recurrent neural networks. Such as in conventional radiomics, different deep learning techniques can be
applied to the input data in order to obtain the best performance.

ARTIFICIAL INTELLIGENCE APPLIED TO LIVER SURGERY

Recently, artificial intelligence was applied to various fields in medicine, including general surgery and
hepatology[4,5], as seen in Table 1. Decharatanachart et al[4] published a meta-analysis on Al supported
imaging and standard liver biopsy. They showed a similar prediction rate for liver cirrhosis without the
risk of complications of a biopsy and without the usual interpretation bias of ultrasonography.
Meanwhile, Christou et al[5] focused more on the possibility of integrating diagnosis and management
in several gastroenterological diseases, such as inflammatory bowel disease (IBD), Helicobacter pylori
infection and gastric cancer, and several hepatic diseases, such as HCV infection and cirrhosis[5]. On
one hand, they described how the use of machine learning and CAD can increase sensibility and
specificity of a standard endoscopic or radiologic exam; on the other hand they describe the limitations
of AI[5].

One the of the main application of Al in liver surgery is in the pre-operative imaging. Park et al[15]
described the use of radiomics and deep learning in liver diseases. Radiomics appears to be an effective
way to analyse the structural changes of an unhealthy liver, comparable to the standard techniques like
biopsies[15,16]. Furthermore, radiomics is already in use for determining the prognosis after surgical
resection or radiofrequency[17] for hepatocellular carcinoma, especially related to micro vascular
invasion[15,18]. Deep learning finds its best application in liver segmentation, where it is fundamental
in estimating the liver remnant volume and the fat ratio in post chemotherapy liver[15,19,20]. Fang et al
[21] focused on the implementation of deep learning in CT-guided biopsy to obtain a better localization
of the lesion. In addition they presented a basic algorithm that could offer good results. At the same
time, Winkel et al[22] compared manual segmentation and automatic segmentation with the use of deep
learning showing a similar efficacy of the automatic segmentation with a faster elaboration of the
images.

Focusing on focal liver lesions, Zhou et al[23] illustrated a 5 categories classification based on dynamic
contrast-enhanced CT scan with a deep learning software: applying this classification, the radiologist
would be able to make a diagnosis between a carcinoma and a benign lesion without biopsy[23,24].
They reported the application of deep learning to a contrast-enhanced ultrasonography (CEUS) to better
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Table 1 Main implementation of artificial intelligence in hepatology and liver surgery

Ref.

Type of paper

Main topic

Al implementation

Decharatanachart et al[4], 2021

Christou et al[5], 2021

Park et al[15], 2020

Wang et al[16], 2012

Shan et al[19], 2019

Hu et al[18], 2019
Iranmanesh et al[19], 2014

Wang et al[23], 2019

Fang et al[21], 2020

Winkel et al[22], 2020

Zhou et al[23], 2019

Yasaka et al[24], 2018

Guo et al[25], 2018

Schmauch et al[26], 2019

Tiyarattanachai et al[27], 2021

Perez et al[28], 2020

Vivanti et al[29], 2017

Li et al[30], 2015

Hamm et al[31], 2019

Zhang et al[32], 2018

Preis et al[33], 2011

Chen et al[34], 2020
Nakayama et al[35], 2017
Zhang et al[36], 2018
Vorontsov et al[37], 2019
Chartrand et al[39], 2017

Cancian et al[40], 2021

Meta-analysis

Review

Review

Survey

Research article
Research article
Research article

Research article

Research article

Comparative study

Review

Retrospective study

Research article

Research article

Retrospective study

Review

Research article

Research article

Research article

Research article

Research article

Review
Retrospective study
Prospective study
Retrospective study
Comparative study

Research article.

Chronic liver diseases

IBD, GI bleeding and chronic
liver diseases

Liver diseases

Liver imaging

Liver imaging (CT)
Liver imaging (US)
Liver imaging (CT)

Liver imaging (CT/MRI)

Liver imaging

Liver imaging

Liver imaging

Liver imaging (CT)

Liver imaging (US)

Liver imaging (US)

Liver imaging (US)

HCC

Liver neoplasia

Liver imaging (CT)

Liver imaging (MRI)

HCC

Liver imaging (PET)

Liver surgery
Liver surgery
Liver surgery
Liver surgery
Liver imaging

Liver pathology

Diagnosis and staging of liver fibrosis without biopsy
Increasing accuracy of gold standard diagnostic exams
Staging of liver disease and prognosis after liver
resection or chemotherapy

Diagnosis of structural changes in healthy liver
Prediction of early recurrence after HCC resection/RF
Evaluating microvascular invasion in HCC

Evaluating portal pressure without invasive methods

Using liver segmentation to an automatized liver

biometry

Using liver segmentation to more accurate localization
of a hepatic lesion

Comparing a fully automated liver segmentation to a
manual one

Detecting hepatic lesions, characterized them and
evaluate a response after treatment

Differentiation between benign and malignant hepatic
lesions

Differentiation between benign and malignant hepatic
lesions

Differentiation between benign and malignant hepatic
lesions

Detect and diagnose hepatic lesions

Improving diagnosis and evaluation after ancillary
treatments

Evaluating post chemotherapy response

Differentiation between benign and malignant hepatic
lesions

Differentiation between benign and malignant hepatic
lesions

Differentiation between healthy and tumoral tissue in
patient's liver

Differentiation between benign and malignant hepatic
lesions

Implementation in pre and post operative care
Use of 3D modeling to improve hepatice resection
Diagnosis and treatment of perihilar CCC
Improving CRM identification and segmentation
Improving liver segmentation and volumetry

Better assessment pf tumor microenvironment

ALl Artificial intelligence; CCC: Cholangiocarcinoma; CRM: Colo-rectal metastases; CT: Computed tomography; GI: Gastrointestinal; HCC: Hepatocellular

carcinoma; IBD: inflammatory bowel disease; MRI: Magnetic resonance imaging; PET: Positron emission tomography; US: Ultrasound.

distinguish between a benign and malignant lesion of the liver, showing again a better performance
using Al techniques compared to the conventional technique[23,25]. Schmauch et al[26] presented a
glimpse of future implementations of the standard ultrasonography where the use of a deep learning
technique could drastically improve the diagnostic value of a widespread imaging such as US. Similarly,
Tiyarattanachai et al[27] implemented a deep learning software for the US reporting a better outcome
both in prevention and diagnosis of a focal liver lesion. Closely related to our main topic, Perez et al[28]
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Figure 1 Workflow of conventional radiomics with machine learning.
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Figure 2 Deep learning techniques applied to radiomics.
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proposed a review on the management of hepatocellular carcinoma using Al for diagnosis, treatment
and prognosis. Combining the US deep learning software[26] and the contrast-enhanced CT scan deep
learning software[24,29,30], the clinician can reach a diagnosis on a focal liver lesion without the use of
liver biopsy; in case of more doubts, a deep learning MRI software[31,32] and a deep learning PET
software[33] are under external verification, but they appears promising.

Another main application of Al in liver surgery is the pre-operative patient assessment. The second
part of the paper of Perez et al[28] described how the combined effort of US, CT, MRI scan and deep
learning software increase the precision of the hepatic resection and the early recognition of a relapse.
Beside the use of Al in the diagnosis, Chen et al[34] described the intra-operative advantages of using 3D
rendering of the patient’s liver to study and apply the best approach for a liver resection and, at the
same time, to keep the same 3D model during the operation for a more intuitive way to reach the
aforementioned RO resection[34-36].

About colorectal liver metastasis, Voronstov et al[37] proposed a CT-based deep learning software to
automatize and improve the recognition of metastasis rather than benign focal liver lesions. Detection
performance of the software was still lower for lesion smaller than 10 mm, but it became more precise
for lesions between 10 and 20 mm[37]. Manual liver segmentation was still more accurate for lesions
smaller than 10mm, but it reached the same value for lesions greater than 10 mm and it was more
efficient in lesions greater than 20 mm; the same results appeared considering lesion-volume estimation
[37]. The authors also stated that all software calculations for an automatized or semi-automatized
recognition and evaluation of metastasis is a significantly faster procedure than the usual manual one,
as expected[37-39].

Within the same sphere, Cancian et al[40] focused on the analysis of the tumor microenvironment
using a deep learning technique to evaluate the morphology of tumor associated macrophages. The
same group recently described how different macrophages” morphologies are associated with different
outcomes and therapeutic responses in colorectal liver metastasis[41], so they developed a pipeline
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Figure 3 Main implementation of artificial intelligence in diagnosis and treatment of colo-rectal liver metastases.
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using a CAD tool to process faster the histopathological slides. Although the pipeline is still under
verification for a fully automatic application, a combined use of a manual and automatic approach
showed a better and faster identification of macrophages' morphologies[40,41]. In Figure 3 are shown in
a schematic manner the main tools of Al in diagnosis and treatment of colo-rectal liver metastases.

CONCLUSION

Artificial intelligence and deep learning offer new hopes in diagnosis and therapy of the liver
metastasis. Therefore new promising research directions open up in this field, that must be confirmed
with larger studies in the future.
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Abstract

Despite several advances in the oncological management of colorectal cancer
(CRQ), there still remains a lacuna in the treatment strategy, which differs from
center to center and on the philosophy of the treating clinician that is not without
bias. Personalized treatment is essential for the treatment of CRC to achieve better
long-term outcomes and to reduce morbidity. Surgery has an important role to
play in the treatment. Surgical treatment of CRC is decided based on clinical
parameters and investigations and hence likely to have judgmental errors.
Artificial intelligence has been reported to be useful in the surveillance, diagnosis,
treatment, and follow-up with accuracy in several malignancies. However, it is
still evolving and yet to be established in surgical decision making in CRC. It is
not only useful preoperatively but also intraoperatively. Artificial intelligence
helps to rectify the human surgical decision when clinical data and radiological
and laboratory parameters are fed into the computer and may guide correct
surgical treatment.

Key Words: Artificial Intelligence; Colorectal cancer; Clinical implications; Treatment
strategy; Surgical treatment

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Treatment decision making in colorectal cancer significantly affects the
outcome, which is a multidisciplinary team approach and is not without bias. Surgery
plays a significant role in the treatment. Whether artificial intelligence may improve the
outcome of surgery in colorectal cancer is not known. The present review focuses on its
current role in surgical decision making and future impact.

April 28,2022 | Volume3 | Issue2 |


https://www.f6publishing.com
https://dx.doi.org/10.35712/aig.v3.i2.36
mailto:doc.ashokgupta@gmail.com

Jaishideng®

Ghosh NK et al. Al in CRC surgery

Citation: Ghosh NK, Kumar A. Colorectal cancer: Artificial intelligence and its role in surgical decision making.
Artif Intell Gastroenterol 2022; 3(2): 36-45

URL: https://www.wjgnet.com/2644-3236/full/v3/i2/36.htm

DOI: https://dx.doi.org/10.35712/aig.v3.i2.36

INTRODUCTION
Mr. Alan Turing in 1950 hypothesized that a machine can also think like a human being in his book

entitled “Computing Machinery and Intelligence”[1]. The term “artificial intelligence (AI)” was later
coined by John McCarthy in a summer workshop[1,2]. Al has evolved from simple tasks to more
complex tasks similar to a human brain[1].

Al has proven its worth in various day-to-day life and human requirements, including health care
(health tracking devices)[3], automobiles (autopilot)[4], banking and finances (chatbots, robotraders)[5],
surveillance (CCTV cameras), social media, entertainment, education, space exploration, industries
(aluminum, dairy)[6-8], and disaster management[9,10]. One recent example is the efficient production
of facemasks during the coronavirus disease 2019 pandemic[11] (Table 1). Its potential has been
exploited in various fields of medicine, including online appointment scheduling, online check-in at
hospitals, digitization of medical records, follow-up and immunization reminder, drug dosage
algorithm, and adverse effect warnings during the prescription of multidrug combinations. Besides this,
its application in the field of oncology is immense. Al is assisting in generating new approaches for
cancer detection, screening of healthy subjects, diagnosis, classification of cancers using genomics,
tumor microenvironment analysis, prognostication, follow-up, and new drug discovery[12-15].

Colorectal cancer (CRC) is one of the most common types of gastrointestinal (GI) tract malignancy
and is the fourth most leading cause of cancer death globally[16,17]. Al has been used to facilitate
screening, diagnosis (colonoscopy, advanced endoscopic modalities, imaging), genetic testing, and
treatment (chemotherapy, radiotherapy, robotic assisted surgery)[18]. New research and developments
are required for better patient management to improve the outcome.

In the past decade, several developments have taken place in the management of CRC, e.g., revised
anatomy of the rectum and concept of total mesorectal excision by Heald et al[19], concept of complete
mesocolic excision and central vascular ligation by Hohenberger[20] for colon cancer, imaging and
staging techniques, introduction of staplers[21], newer chemotherapeutic agents and biologicals,
radiation therapy, and mode of surgery (laparoscopic and robotic surgery)[22,23] have significantly
improved the outcome and sphincter preservation. However, there still remain numerous challenging
issues like accurate preoperative diagnosis, staging, individualized and personalized treatment
planning, and intraoperative challenges to minimize complications and improve the surgical outcome.
Newer tools of Al have been used in various fields of medicine, including drug development, health
monitoring, managing medical data, disease diagnostics, digital consultations, personalized treatment,
analysis of health plans, and medical and surgical treatment[24] and is quickly finding a role in surgery
and surgical decision making.

Two common fields of the Al used in medicine are: virtual and physical[25]. Virtual field is
commonly used in medical imaging, clinical diagnosis, treatment, and drug research and development.
Surgical and nursing robots are the part of physical fields. Because of ongoing innovations in Al, it is
being used widely in medicine, both for diagnosis and management of tumors. Al has played a
significant role in CRC at various stages and is reported to have improved the 5-year survival. The
subsection of Al used in medicine is deep learning, which is responsible for widespread application of
AI[26]. This method encompasses all the concepts of Al and is based on artificial neural networks
(ANN), which is inspired by the neurons in a biological brain. Deep learning involves application of
training a specific task on a larger data set, extracting information from them, and using them for future
predictions about these tasks through flexible adaptation to the new data. Recently, deep learning has
been used to predict cardiovascular risk based on retinal images[27], classification of skin lesions[28],
mammogram-based breast cancer detection[29], and esophageal carcinoma[30]. However, application of
Al in surgery is challenging, as unlike the use of static images, surgery includes dynamic procedural
data like the patient clinical parameters, different devices used, and knowledge of clinical guidelines
and from the experiences[31]. The uses and applications of various branches of Al in medicine as well as
other fields are shown in Table 1.

In 2007, IBM began development of Deep QA technology (Watson). In 2017, Artery’s medical imaging
platform was the first Food and Drug Administration approved cloud-based deep learning application
in healthcare for cardiac disorders, which was faster in giving results as compared to the profes-
sionals(15 s vs 30 s)[32]. The Food and Drug Administration-approved “GI genius” in the year 2019 is
the first device based on machine learning to aid clinicians in detecting polyps or tumors during
colonoscopy.
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Table 1 Subfields of artificial intelligence and its application in day-to-day human life

S. . _
Fields of Al Description
No
1 Machine learning Pattern identification and analysis where machine can help to improve based on past experiences provided
from the given data set
2 Deep learning Consists of multilayered neural networks called artificial neural network, which enables the computer to learn
and make decisions on its own
3 Natural language processing Ability of the computer to extract data from human language and make decisions
4 Computer vision Potential to obtain information from a series of images or videos
5 Mixed-integer linear It is helpful in finding the locational, supply, production, distribution, collection, quarantine, recycling, reuse,
programming model[11] and disposal decisions within a multiperiod multiechelon multiproduct supply chain
6 Covering tour approach[9] Optimizing the distribution and allocation of resources among individuals. It is useful at the time of crisis
7 Mixed-integer linear mathem- This model optimizes economic, social, and environmental objectives simultaneously
atical model[6]
8 Neural network with runner root Minimizing risk and maximizing return in industrial production
algorithm[8]
9 Meta-heuristic algorithms[7] A comprehensive framework to predict the demand for dairy products
10  Hybrid shapley value and An intelligent performance evaluation system for different supply chains in industries

multimoora method[10]

AT Artificial intelligence; S. No: Serial number.

This paper reviews the current status of Al in CRC surgical decision making and its future implic-
ations.

USES OF Al IN GASTROINTESTINAL DISORDERS AND COLORECTAL CANCER

Al is progressively being used in the understanding of GI diseases[33-35]. Imaging such as X-ray,
computed tomography scanning, magnetic resonance imaging, or endoscopic imaging is being used for
diagnosis[36-39]. The application of AI has led to early detection of intestinal malignancies or
premalignant lesions, and inflammatory or other non-malignant diseases or lesions[40].

With IBM Watson for oncology (WFO), Al has found its increasing role in oncology therapy. It has
been used in several malignancies like breast carcinoma, lung carcinoma, gastric cancer, colon and rectal
cancer, etc. Initially, Memorial Sloan Kettering Cancer Center (New York, United States) started the use
of WFO machine learning. WFO uses natural language processing and clinical data from multiple
resources (treatment guidelines, expert opinions, literature, and medical records) to formulate treatment
recommendations[41]. A recent meta-analysis[42] had shown the highest concordance between WFO
and Mass Detection Tool in breast carcinoma and the lowest in stomach carcinoma. The Manipal
Comprehensive Cancer Centre (Bangalore, India) has implemented WFO for treatment in 250 CRC
patients[43]. There was a concordance in 92.7% of rectal and 81.0% of colon cancer patients between
WEFO and Mass Detection Tool recommendations[43].

AlIN COLORECTAL CANCER

Al is used in the diagnosis and treatment of colorectal polyps and cancer. In colorectal cancer, it helps in
diagnosis, staging (lymph node or liver metastasis), preoperative treatment planning, response to
treatment assessment, intraoperative assistance, postoperative prognostic information, etc[44-46].

Al in preoperative surgical decision making: staging and planning
After diagnosis of CRC is made, the most important consideration is staging to determine a further plan
of management, whether upfront surgery, neoadjuvant treatment, or palliative treatment.

In locally advanced rectal cancer, preoperative chemoradiotherapy is known to reduce the local
recurrence. However, selection of patients is essential to avoid unnecessary complications due to
overtreatment. Therefore, there is a need for a system that can differentiate between T2 and T3 rectal
cancers. Kim et al[47] used convolutional neural network models to distinguish T2 from T3 lesions from
magnetic resonance imaging with an accuracy of 94%. Similarly, Wu ef al[48] also used convolutional
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neural network to stage rectal cancers.

In addition to its role in preoperative imaging, Al provides faster interpretation compared to
radiologists (20 s vs 600 s) in the detection of lymph node metastasis in rectal cancer[49]. Preoperatively,
positron emission tomography/computed tomography is commonly used in the case of indeterminate
lesions on contrast-enhanced computed tomography to potentially find curable M1 disease (National
Comprehensive Cancer Network guidelines version 3.2021). Recently, application of Al has improved
the sensitivity and specificity of detection of pulmonary nodules[50]. Al can also be used to reconstruct
the area of interest from two-dimensional data obtained from imaging and endoscopic findings to
generate a three-dimensional structure for better delineation of the tumor in relation to the surrounding
vital structures, which may be useful in preoperative surgical planning[51]. This is extremely useful in
determining which patient will require a pelvic exenteration or which patient will require a lateral
pelvic lymph node dissection. This is also useful to safeguard the important surrounding structures
during surgery to reduce the postoperative morbidity and mortality related to it.

In colon cancer, clinical evidence of bulky nodal disease or T4b lesion entails neoadjuvant therapy
(National Comprehensive Cancer Network guidelines version 3.2021). It is also recommended that the
presence of nodal involvement in T1 cancer requires colectomy and lymphadenectomy. Kudo et al[52]
applied machine learning ANN in 3134 patients with T1 CRC based on the patient’s data on age,
gender, tumor size, location, morphology, lymphatic and vascular invasion, and histologic grade to
predict nodal involvement. ANN model was significantly better in lymph node metastasis detection
compared to guidelines (area under the curve: 0.83 vs area under the curve: 0.73, P value = 0.005).
Therefore, these patients can be subjected to upfront surgery and lymphadenectomy instead of
endoscopic treatment. A meta-analysis by Bedrikovetski et al[53] using 17 studies (12 used radiomics
models and 5 used deep learning models) concluded that Al was more efficient than radiologists in
predicting lymph node metastasis. Similarly, Al was found to be better in detecting metastatic nodes as
compared to conventional positron emission tomography/computed tomography imaging[54].

Al in intraoperative surgical decision making

Execution of a surgery depends upon the operating skill and ability of decision making. In 1978, Dr.
Spencer[55], a cardiovascular surgeon, mentioned that “a skilfully performed operation is about 75%
decision making and 25% dexterity.” The decision making can be both technical or non-technical, which
impacts patient outcome. Studies of surgical errors have shown that over half of the adverse events are
due to cognitive errors[56]. But surgical training is more focused on skill training rather than decision
making as it is a challenging task to train[57]. Decision-making skills may vary with experience of
operating surgeons[58]. Thus, improving the quality of surgical decision making could help to improve
the outcome of surgery.

Decision making is a three-step process, i.e. assessment of the situation, action-taking, and re-
evaluation of the action’s consequences. Al has been used as a decision making aid in a variety of fields,
both in medicine and in surgery[59,60]. Al can help surgeons to assess a given situation (e.g., retrieving
better data about a clinical situation), the types of actions taken (e.g., through decision suggestion), and
the process of re-evaluating the impact of the decision taken. Therefore, it can be achieved in three
different ways: (1) Retrieving data and experience from similar clinical scenarios and to supplement
sensory input during minimal access surgery, which are not available compared to open surgery; (2)
Intraoperative pathology assessment, tumor margin mapping, tumor classification, and tissue identi-
fication; and (3) Suggestion of steps of surgery.

Identification of surrounding structures: Harangi et al[61] used an ANN model to distinguish ureter
from uterine artery during laparoscopic hysterectomy with 94.2% accuracy. Similarly, Quellec et al[62]
applied a system of retrieving related videos of retinal surgery, and subsequent steps were followed
during surgery to minimize the risk of injury. AI made it possible to define dissection planes in the
robotic gastrectomy and to identify the recurrent laryngeal nerve during thyroidectomy[63,64]. Various
studies have shown improved detection of vital structures during laparoscopic cholecystectomy to
prevent bile duct injury using Al (Madani et al[65], Mascagni et al[66], Tokuyasu et al[67]). Table 2
highlights the studies where Al was used for identification of vital structures.

In CRC surgery, Al can be used to detect nearby vital structures (nerve plexus, presacral venous
plexus, ureter, bladder, urethra, prostate, seminal vesicles), lymph node metastasis (lateral pelvic nodes,
nodes near the root of inferior mesenteric artery), determination of the margin of resection, vascularity,
and adequacy of anastomosis.

Augmented reality augments surgeons’ intraoperative vision by providing a semi-transparent
overlay of preoperative imaging on the area of interest[68]. It has been used in several GI surgical
procedures like laparoscopic splenectomy[69] and pancreaticoduodenectomy[70]. Augmented reality
can be applied to CRC surgeries to identify and preserve the nearby vital structures.

Deciding the level of resection: In CRC surgery, determination of margin status is important to decide
the level of resection and consideration for the feasibility of an anastomosis or the creation of a stoma.
Margin status can be obtained with “optical biopsy” (in vivo diagnostic imaging), which can avoid time-
consuming resection and frozen section analysis. Fluorescence-guided surgery is evolving, and it has
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Table 2 Studies having found the role of artificial intelligence in identification of vital structures in surgery

S.No Primary aim Al method used Ref.

1 Recognition of ureter and uterine artery Convolutional neural network Harangi et al[61], 2017
2 Recognition of surgical steps of retinal surgery Content-based video retrieval system Quellec et al[62], 2011
3 To define safe dissection plane in robot assisted gastrectomy Deep learning model based on U-net Kumazu et al[63], 2021
4 Recurrent laryngeal nerve detection during thyroidectomy Deep learning computer vision algorithm Gong et al[64], 2021

AT Artificial intelligence; S. No: Serial number.

shown promising results in determination of liver or peritoneal metastasis, anastomotic perfusion,
detection of sentinel nodes, ureter, and nerves, and intraoperative detection of primary and recurrent
lesions during colorectal cancer surgery[71]. Such a concept can be extrapolated on to Al for more
efficient performance. Modalities used for intraoperative optical biopsy are confocal laser endomic-
roscopy, hyperspectral imaging, optical coherence tomography, and contrast-enhanced ultrasono-
graphy. There are several studies where these modalities have been used to distinguish abnormal
epithelium from normal with the help of Al (Table 3). Using hyperspectral imaging, Jansen-Winkeln et
al[72] reported 94% accuracy in distinguishing carcinoma from adenoma and healthy mucosa using
ANN on post-resection of colonic lesions during surgery. A couple of experimental studies have shown
that laparoscopic hyperspectral imaging can be used to distinguish malignant tissue in CRC from
normal tissue. These modalities can be used to help in surgical decision making in CRC as revisional
surgery can be done intraoperatively rather than waiting for frozen sections or final histology avoiding
another surgery[73,74]. Al has been effective in differentiating glioblastoma, parathyroid gland, and
malignant lesions of the colon from adjacent normal tissues[75-77].

Deciding the site of anastomosis: Studies have shown the incidence of colocolic and colorectal
anastomosis leak to be 3.3% and 8.6%, respectively[78] and has adverse clinical outcomes and economic
burden[79]. It can lead to anastomotic site stricture, recurrence of malignancy, and poor evacuatory
function. The literature has shown poor predictive value of surgeons’ perceptions of possible
anastomotic site leaks that led to investigating other methods like the use of indocyanine green[80]. The
robotic platform provides an inbuilt near infrared camera for assessment of vascularity at the resection
margin and to reduce anastomotic site leakage[81]. A study by Mazaki et al[82], where auto-artificial
intelligence was used to develop a predictive model for anastomotic leakage, showed that triple-row
staplers can decrease the leak rate. There is an ongoing study by Taha et al[83] known as the PANIC
study (The Prediction of Anastomotic Insufficiency risk after Colorectal surgery), which utilizes
machine learning principles to formulate an algorithm for prediction of anastomotic leak following
colonic (PANIC-C) or colorectal (PANIC-R) anastomosis. The results of the study are expected to be
available by December 2022.

Helping in operative step suggestion: Operative step suggestion in CRC is at a developmental stage. In
the literature, Al has been used in cataract surgery and spinal cord surgery with satisfactory results.
Tian et al[84] developed VeBIRD (Video-Based Intelligent Recognition and Decision system) to track and
classify the cataract grade on videos of phacoemulsification surgeries. It helped to decide the amount of
ultrasonic energy needed to emulsify a cataract based on the grade. Therefore, a less experienced
surgeon can perform the procedure with as much efficiency as that of an experienced surgeon. Somato-
sensory evoked potential is used during spinal cord surgeries to detect spinal cord injury. A decrease in
somatosensory evoked potential value needs to be confirmed with awakening the patient and checking
spinal cord function and this decrease in somatosensory evoked potential can be due to the effect of
anesthesia. Fan et al[85] applied support vector regression and multi-support vector regression to
distinguish spinal cord injury from anesthetic effect. Similarly, in CRC surgery such methods can help
to find the area of interest to formulate standardized resection and differentiate intraoperative
lymphorrhea from ureter or bladder injury using AL

Colorectal cancer surgery requires accurate and judicious preoperative decisions to optimize the
outcome of surgery (personalized treatment). The decision can be augmented by the use of AI, which is
expected to be precise and without errors. It can assist in imaging, tissue diagnosis, and staging before
surgery. It can be used preoperatively to choose patients for neoadjuvant therapy and those requiring
upfront surgeries. Intraoperatively, it helps in the identification of tumor tissue (to determine the
margin of resection), metastatic lymph nodes (for the extent of lymphadenectomy), and important
surrounding structures. Its assistance is also useful in assessing the adequate vascularity at the
anastomotic site that can decrease the postoperative anastomotic leak and thereby reduce the morbidity
and mortality.
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Table 3 Studies of artificial intelligence differentiating normal epithelium from abnormal or malignant cells

S. . ; f

No Modality used Primary aim of study Al method used Ref.

1 CEUS To differentiate glioblastoma from normal tissue Support vector machines Ritschel et al[75], 2015

2 OCT To distinguish parathyroid tissue from thyroid, Texture feature analysis and back propagation Hou et al[76], 2017

lymph node, and adipose tissue artificial neural network

3 CLE Normal colonic mucosa from malignant lesion Fractal analysis and neural network modelling  Stefinescu et al[77],
2016

4 Hyperspectral Differentiation of colonic carcinoma from adenoma  Artificial neural network Jansen-Winkeln et al

imaging and healthy mucosa [72], 2021

Al Artificial intelligence; CEUS: Contrast-enhanced ultrasonography; OCT: Optical coherence tomography; CLE: Confocal laser endomicroscopy; S. No:

Serial number.
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Like the application of Al in several domains of medicine and health, it may play a significant role in
surgical decision making, enhancing the outcome, in addition to diagnosis (imaging, endoscopy, tissue
diagnosis).

FUTURE IMPLICATIONS

The future is promising, where Al is likely to play a significant role in reducing the bias of the Mass
Detection Tool in deciding the treatment strategy and reducing the diagnosis and planning time with
uniformity and with no or minimum error. The day is not far when the surgical world may be able to
find a personalized surgical treatment for each and every patient of CRC, with improved intraoperative
technical execution and reduced complications. The overall time taken in the management of CRC will
be reduced, the treatment will be standardized, and the outcome will be maximized.

CONCLUSION

The role of Al'in CRC is currently limited to preoperative staging and assessment of surgical resection
margins and anastomotic sites. Its application to surgical decision making is still evolving, and the
literature is very limited. However, the future is promising,.
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Abstract

Non-alcoholic fatty liver disease (NAFLD) and chronic viral hepatitis are among
the most significant causes of liver-related mortality worldwide. It is critical to
develop reliable methods of predicting progression to fibrosis, cirrhosis, and
decompensated liver disease. Current screening methods such as biopsy and
transient elastography are limited by invasiveness and observer variation in
analysis of data. Artificial intelligence (Al) provides a unique opportunity to more
accurately diagnose NAFLD and viral hepatitis, and to identify patients at high
risk for disease progression. We conducted a literature review of existing evidence
for Al in NAFLD and viral hepatitis. Thirteen articles on Al in NAFLD and 14 on
viral hepatitis were included in our analysis. We found that machine learning
algorithms were comparable in accuracy to current methods for diagnosis and
fibrosis prediction (MELD-Na score, liver biopsy, FIB-4 score, and biomarkers).
They also reliably predicted hepatitis C treatment failure and hepatic enceph-
alopathy, for which there are currently no established prediction tools. These
studies show that Al could be a helpful adjunct to existing techniques for diag-
nosing, monitoring, and treating both NAFLD and viral hepatitis.

Key Words: Non-alcoholic fatty liver disease; Non-alcoholic steatohepatitis; Fatty liver;
Artificial intelligences; Steatosis; Fibrosis; Machine learning
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Core Tip: Non-alcoholic fatty liver disease (NAFLD) exists on a spectrum from simple hepatocyte steatosis
to non-alcoholic steatohepatitis (NASH) with ballooning and fibrosis. Given the lack of efficient screening
methods and high rate of asymptomatic disease, it is challenging to identify patients with NAFLD in its
various stages. Although liver biopsy remains the gold standard for diagnosing NASH, it is an invasive,
costly, and painful procedure. Conventional imaging modalities including ultrasound, computed
tomography, magnetic resonance imaging and transient elastography are limited by inter- and intra-
observer variability depending on the stage of fibrosis. Similarly, despite recent progress in the prevention
and treatment of viral hepatitis, predicting sustained virological response and disease progression remains
challenging. Artificial intelligence (AI) is an exciting and increasingly pertinent field in medicine as
clinicians incorporate augmenting technology into their daily practice. This review summarizes recent
literature on the application of Al in NAFLD and viral hepatitis. Specifically, the review will assess the
performance of Al as a non-invasive method for the diagnosis and staging of liver fibrosis and steatosis, as
well as for the detection and treatment of chronic viral hepatitis. It will also aim to highlight the potential
for Al based methods on their ability to develop therapeutic targets.
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) exists on a spectrum from simple hepatocyte steatosis to
inflammation, ballooning and fibrosis. Given the lack of efficient screening methods and high rate of
asymptomatic disease, it is challenging to identify patients with various stages of NAFLD[1,2]. Non-
alcoholic steatohepatitis (NASH) patients with significant fibrosis are at increased risk for cirrhosis and
progressive liver failure, which has led NASH to become one of the leading causes of liver
transplantation in the United States[3]. NASH affects approximately 3% to 6% of the US population, and
this number continues to increase. It affects approximately 25% of the population worldwide[4].

Although liver biopsy remains the gold standard for diagnosing NASH, it is an invasive, costly, and
painful procedure. Therefore, serial liver biopsies for surveillance are not always feasible. Conventional
imaging modalities including ultrasound, computed tomography (CT), magnetic resonance imaging
(MRI) and transient elastography are limited by inter- and intra-observer variability depending on the
stage of fibrosis[1,2]. Similarly, despite recent progress in the prevention and treatment of viral hepatitis,
predicting sustained virological response (SVR) and disease progression remains challenging.

Artificial intelligence (Al) is an exciting and increasingly pertinent field in medicine as clinicians
incorporate augmenting technology into their daily practice. Al is the concept of teaching a computer to
simulate the cognitive abilities of the human brain. Machine learning (ML) entails allowing the
computer to simulate the human brain independently. It can either be supervised (through specific
feedback from humans) or unsupervised, in which case there is no guidance provided and the computer
is able to independently synthesize and analyze the output[1]. Al is increasingly applied to the
diagnosis and prediction of various diseases. Researchers are developing machine learning (ML)
algorithms to predict risk and outcomes using multiple demographic, clinical, biochemical, and imaging
parameters for diagnosis and prognosis related to liver fibrosis and steatosis, including NAFLD and
viral hepatitis[1].

Current methods of assessing liver fibrosis progression and mortality in both NAFLD and viral
hepatitis have many limitations. These include the intra- and inter-observer variability in staging
fibrosis, the inability to place fibrosis along a continuum, and the lack of identifiable markers for disease
progression[1,2]. These limitations and the ability of ML models to overcome them will be discussed
further in this review. This review will also highlight how ML models have the potential to present
opportunities for drug discovery and prediction of therapeutic and toxic effects of drugs. Machine
learning models based on Al provide promising features that could not only enhance screening for
NAFLD, but also help with fibrosis staging in patients with NASH and viral hepatitis.

This review summarizes recent literature on the application of Al in NAFLD and viral hepatitis. The
main objective is to assess the performance of Al as a non-invasive method for the diagnosis and staging
of liver fibrosis and steatosis, as well as the detection and treatment of chronic viral hepatitis.

AIG | https://www.wjgnet.com 47 April 28,2022 | Volume3 | Issue2 |


https://www.wjgnet.com/2644-3236/full/v3/i2/46.htm
https://dx.doi.org/10.35712/aig.v3.i2.46

Gunasekharan A ef al. Al in NAFLD and viral hepatitis

Jaishideng®

METHODS

A review of current literature in the areas of Al in NAFLD and viral hepatitis was conducted using two
separate searches on PubMed. First, we used the search terms “non-alcoholic fatty liver disease”,
“NAFLD”, and “deep learning” in combination with “artificial intelligence”, “histology”, “omics” and
“radiology.” The second search was conducted using the search terms “viral hepatitis” in combination
with “hepatitis A”, “hepatitis B”, “hepatitis C”, “hepatitis E”, “machine learning”, “artificial
intelligence”, “histology” and “radiology”.

Most articles on NASH and NAFLD published between 2018 and 2021 were included in this review.
Articles were excluded if they did not offer comparisons between Al modalities and existing methods
for screening or prediction (MELD score, elastography, efc.). Twenty-seven articles were included in our
review, 13 on NAFLD and 14 on chronic viral hepatitis. For studies on viral hepatitis, described machine
learning algorithms fell into one of three categories: Predicting prevalence, screening for complications
(including fibrosis, hepatocellular carcinoma, decompensated cirrhosis, and death), and predicting

response to treatment.

USE OF Al FOR DIAGNOSING VIRAL HEPATITIS AND NAFLD/NASH

It is estimated that half of patients infected with hepatitis C worldwide are unaware of their diagnosis
and only 17% have undergone liver fibrosis staging[5]. This rate is even lower for hepatitis B, for which
only 10.5% of infected patients are aware of their status. In March 2020, the USPSTF recommended
hepatitis C screening for all adults over 18; however, there are currently no population-based screening
recommendations for hepatitis A and B. Primary care offices do not routinely test for hepatitis B.
Machine learning has been used both to determine regional prevalence of chronic hepatitis and to
identify undiagnosed cases.

Zheng et al[6] compared two algorithms (Elman neural network and autoregressive integrated
moving average, or ARIMA) designed to predict incidence of hepatitis B in Guangxi, China. ARIMA is a
type of model that can capture the randomness of data and is often used for infectious disease
prediction. Predictions were compared to the reported cases of hepatitis B cases from the Health
Commission of Guangxi, China. The neural network was the more predictive model, with a root-mean-
square error (RMSE) of 0.89 and mean absolute error (MAE) of 0.70, while the ARIMA had an RSME of
0.94 and an MAE of 0.81.

A 2020 study by Doyle et al[7] aimed to predict chronic hepatitis C (HCV) positive status by using
patient claims data to develop four algorithms, all with a predictive accuracy of over 95%. Algorithms
included logistic regression, gradient boosted trees, a stacked ensemble, and random forests. The
stacked ensemble performed the best, with a precision of 97% at recall levels > 50%. Key predictors of
HCV infection included nonsteroidal anti-inflammatory drug use, opioids, healthcare utilization,
patient age and osteoarthritis or glomerulonephritis treatment. We were unable to find any study to
date using Al to screen for NAFLD/NASH.

USE OF Al TO ASSESS FIBROSIS IN VIRAL HEPATITIS AND NAFLD/NASH

Existing histologic models not only rely on scoring of fibrosis by a pathologist but are also unable to
place fibrosis along a continuum. Artificial intelligence enables the placement of fibrosis along a
continuum, identifies risk factors for progression of fibrosis, allows enhanced scoring of fibrosis stages,
leading to better selection of patients for clinical trials This also allows for identification of therapeutic
targets[2].

Lu et al[8] developed a light gradient-boosting machine model to predict liver fibrosis and cirrhosis in
treatment-naive chronic hepatitis B patients at four centers in China. The model, named Fibro Box,
outperformed transient elastography, APRI, and FIB-4, with area under the curve (AUC) 0.88 in external
validation sets for significant fibrosis and 0.87 for cirrhosis. Input variables included fibroscan results,
platelets, alanine aminotransferase (ALT), Prothrombin time (PT), and splenic vein diameter.

A 2013 study by Zheng et al[9], used an artificial neural network (ANN) to predict 3-month mortality
of individuals with acute-on-chronic liver failure due to hepatitis B (HBV-ACLF). Patient characteristics
included in this model were age, PT, serum sodium, total bilirubin, E antigen positivity status and
hemoglobin. The ANN predicted mortality more accurately than MELD-based scoring systems, with
area under the curve receiver operating characteristic (AUCROC) 0.765 in the validation cohort
compared to 0.599 for MELD.

Similarly, Huo et al[10] developed ANNs to predict 28- and 90-d mortality in HBV-ACLF. Data were
retrospectively reviewed from 684 patients admitted for ALF at 8 hospitals in various Chinese provinces
with 423 cases in the training cohort and 261 in the validation cohort. In the training cohorts, the neural
network had a significantly higher accuracy than MELD, MELD-Na, CLIF-ACLF, and Child-Pugh score,
with AUC 0.948 and 0.913 for 28- and 90-d mortality, respectively. In the validation cohort, the model
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performed significantly better than MELD and insignificantly better than other scoring systems, with
AUC 0.748 and 0.754 for 28- and 90-d mortality. Significant mortality predictors included age, presence
of HE, sodium, PT, gamma-glutamyl transpeptidase (GGT), e antigen, alkaline phosphatase, and
bilirubin.

In another study, Wang et al[11] used deep learning radiomics of elastography (DLRE) to assess
stages of liver fibrosis in patients with chronic hepatitis B. DLRE was compared to 2D shear wave
elastography and biomarkers (AST: Platelet ratio, fibrosis index), with liver biopsy as the reference
standard. 1990 images from 398 patients were used to develop the models. AUCROCsSs for DLRE were
0.97 for cirrhosis, 0.98 for advanced fibrosis, and 0.85 for significant fibrosis; this performed better than
other methods except for elastography in severe fibrosis.

Like viral hepatitis, there are several studies establishing the role of Al in assessing fibrosis in
NAFLD/NASH. In one study by Forlano et al[2], liver biopsy specimens were annotated by two expert
pathologists using the clinical research network (CRN) score as a measurable scale of degree of steatosis,
inflammation, ballooning and fibrosis. The machine learning model was built using 100 patients with
NAFLD in the derivation group and 146 patients in the validation group. There was good concordance
when the machine learning model was compared to the scoring of the expert histopathologist on the
liver biopsy specimens; the interclass correlation coefficients were 0.97 (95%CI, 0.95-0.99; P value <
0.001) for steatosis, 0.96 (95%CI, 0.9-0.98; P value < 0.001) for inflammation, 0.94 (95%CI, 0.87-0.98; P
value < 0.001 for ballooning, and 0.92 for fibrosis (95%CI, 0.88-0.96; P value < 0.001). A subgroup
analysis showed that quantitative analysis performed better than the CRN score in differentiating
between the various stages of NAFLD. Another CNN model developed by Qu ef al[12], showed that a
convolutional neural network (CNN) model had an area under the curve (AUC) of 63% for all four
subsets of the NAFLD scoring, while the AUC’s were 90.48% for steatosis, 81.06% for ballooning, 70.18%
for inflammation and 83.85% for fibrosis. These studies underscore the utility of ML models in
illustrating the heterogeneity of liver pathology in NAFLD[9,26].

In another study by Taylor-Weiner et al[13],a CNN model was developed that allowed for
assessment of fibrosis along a continuum, which is not possible with pathologist scoring alone. The
CRN and Ishak scores were applied to each pixel within a given image, allowing for evaluation of
heterogeneity in fibrosis as well. In addition, the CNN served as a prediction model allowing for identi-
fication of features associated with disease progression. The model’s predictions correlated significantly
with the pathologist scoring in all three studies, the STELLAR-3, STELLAR-4, and ATLAS, whose
participants were used to build and validate the ML model - steatosis, p = 0.60; P value < 0.001; lobular
inflammation, p = 0.35; P value < 0.001; and HB, p = 0.41; P value < 0.001. The model’s level of
agreement with pathologist scoring was within the range of agreement between individual pathologists.
The weighted Cohen’s kappa was 0.801 for NASH CRN and 0.817 for the Ishak classifications.

Another study by Gawrieh et al[14] built a ML model using support vector machines (SVM) to better
characterize architectural patterns in fibrosis. This ML model was built to differentiate between six
different patterns of fibrosis and had a strong correlation with the pathologist’s semi-quantitative scores
for fibrosis, with a coefficient of determination of automated CPA ranging between 0.60 to 0.86 when
compared with the pathologist score. The model was built using a trichrome-stained liver biopsy
specimen which was marked with 987 annotations for different fibrosis types. As noted in the study, the
model’'s AUROCs were 78.6% for detection of periportal fibrosis, 83.3% for pericellular fibrosis, 86.4%
for portal fibrosis, and > 90% for detection of normal fibrosis, bridging fibrosis and presence of
nodules/ cirrhosis.

Al USING METABOLOMICS FOR NAFLD/NASH

There is an increasing number of studies focusing on metabolomics that allow for non-invasive identi-
fication of targets associated with development and progression of NAFLD. These biomarkers may
differentiate between patients with and without cirrhosis, and between a healthy liver and NAFLD or
NASH][3,15,16]. Several direct and indirect blood-based biomarkers currently exist to assess fibrosis.
These have been incorporated to form scoring systems such as NAFLD fibrosis score (NFS), Fibrosis-4
(FIB-4), AST to platelet ratio index (APRI), BARD Score, FibroSURE and Enhanced liver fibrosis score
[3]. ML allows for analysis of many multi-omics and clinical variables to screen for NASH and NAFLD
and to build models for disease progression.

An eXtreme Gradient Boosting Model (XG Boost) was developed using the NIDDK database by
Docherty et al[16], which contains a large real-world patient population. This model used confirmed
NASH and non-NASH patients within this subset. The unique feature of this study is that it used
several demographic variables and clinical biomarkers run through recursive feature elimination in
combination with confirmed histologic cases to build an efficient model with a high specificity. When a
greater number of markers were used in predicting patients with NASH, the AUROC was 0.82,
sensitivity 81%, and precision 81%.

In a study of adults of European ancestry by Atabaski-Pasdar ef al[15], patients with type 2 diabetes
and others with high-risk features for the development of NASH were assessed for liver fat content
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using MRI. Several multi-omics and clinical data, including laboratory markers, were entered into the
least absolute shrinkage and selection operator to select the most relevant features, which then
underwent random forest analysis for the development of the algorithm. The model developed using
this method produced a cross-validated AUROC of 0.84 (95%CI 0.82, 0.86; P value < 0.001) and outper-
formed existing prediction tools for NAFLD. However, unlike other studies, the model was built in
comparison to MRI fat content, which is not reflective of the continuum of NAFLD, and thus cannot be
used to monitor disease progression.

Another study based in China by Ma et al[17] identified BMI, triglycerides, GGT, the serum ALT and
uric acid as the most common features contributing to NAFLD when a Bayesian network model was
used. The model had an accuracy of 83%, specificity of 0.878, sensitivity of 0.675, and F-measure score of
0.655. The F-measure score is an indicator of whether there can be a balance between precision and
recall of these variables, and it was higher than for logistic regression models in machine learning.

AlIN IMAGE INTERPRETATION FOR NAFLD/NASH

Like markers discussed previously, many studies have combined machine learning with imaging
modalities to more effectively assess liver fat content and to better define fibrosis scores. This would
allow for more accurate monitoring of patients for disease progression and their selection for clinical
trials.

Current modalities for estimation of liver fat content include conventional ultrasound (US), which is
limited by variable accuracy, operator dependency, and its qualitative nature. The measurement of
proton density fat fraction (PDFF) by MRI is proving to be an effective method for quantification of
hepatic steatosis, but it is expensive and there is variability in results due to dependence on calibration.
In a study by Han et al[18], one-dimensional CNN was applied to ultrasound radiofrequency signals for
the diagnosis of NAFLD and quantitation of hepatic fat content with an AUC of 0.98 (95%CI: 0.94, 1.00).
In diagnosing NAFLD, the model had an accuracy of 96%, sensitivity of 97%, and specificity of 94%,
PPV of 97% and NPV of 94%. The ML model also correlated with MRI-PDFF with a Pearson correlation
coefficient of 0.85 (P value < 0.001). The same method was applied to animal models in a study by
Nguyen et al[19] and it showed that CNN outperformed quantitative ultrasound in differentiating
between NAFLD and normal liver. Further support for ML comes from a recent study by Das et al[20]
on pediatric patients which used an ensemble model comprising SVM, Neural Net and XG Boost that
had an AUC of 0.92 (95%CI, 0.91-0.94) when tested in an external validation cohort.

Nonenhanced CT also remains superior to histopathologic quantification of liver fat content like MRI-
PDFF, but it is also more commonly performed in clinical practice for other reasons when compared to
MRL It currently uses a manual region-of-interest (ROI) for estimation of liver fat content. A study by
Graffy et al[21] developed a deep-learning based automated liver segmentation tool and applied it to
estimate liver fat content using three-dimensional CNN, without having to depend on manual ROI The
pearson correlation coefficient was 0.93. This allows for large population level estimation of liver fat
content to determine the prevalence of NAFLD. It would also determine normal liver fat content based
on a large sample. Used in combination with other non-invasive modalities such as serum biomarkers, it
could help identify patients who will need closer monitoring for NAFLD progression to cirrhosis. In a
similar study by Hou et al[22], the automated liver attenuation ROI-based measurement model had a
pearson coefficient of 0.94 when compared with manual ROIL

In addition to differentiating healthy liver from NAFLD, ML models have also been used to reduce
variability in detecting fibrosis, specifically F2 fibrosis, which is a limiting feature of shear wave
elastography. A study by Brattain et al[23] combined the use of shear wave elastography with CNN to
better assess F2 fibrosis. This approach not only assessed image quality, but also selected ROI, unlike the
previous studies. This ML model detected F2 fibrosis with AUC of 0.89 compared to AUC of 0.74 when
image quality and ROI were not incorporated into a ML model. This demonstrates the importance of
ML models once again in selecting patients for clinical trials, and in assessing response to treatment.

Al IN VIRAL HEPATITIS TREATMENT

The rate of SVR for hepatitis C with modern direct acting antiviral (DAA) regimens is estimated to be
over 90%; however, variability remains in treatment length and efficacy. Patients with prior DAA
exposure, cirrhosis, and other risk factors may require a longer treatment course[18,24]. Machine
learning has been applied to predicting treatment response and duration based on patient-specific
factors.

Haga et al[24] applied nine machine learning algorithms to identify the optimized combination of
HCV genotypic variants that predict SVR after DAA therapy. HCV genomes were sequenced from the
serum of 173 patients (including 64 without SVR). The support vector machine algorithm was found to
be the most predictive, with a validation accuracy of 0.95. Feldman et al[25] used data from 60 million
beneficiaries of a managed care plan (including 3943 cases of hepatitis C who received sofos-
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buvir/ledipasvir), to identify demographic and medical factors that may predict a prolonged course of
DAA. Machine learning algorithms included extreme gradient boosting (XG Boost), random forest and
support vector machine, with XG Boost being the optimal predictive model at an AUC of 0.745. Patient
age, comorbidity burden, and type 2 diabetes status were significant predictors. Wei et al[26] developed
an ANN and logistic regression model to predict fibrosis reversal after 78 wk of hepatitis B treatment.
Significant predictors included AST and ALT, platelets, WBC, gender, and Fibroscan results. The ANN
outperformed the logistic regression model, with an AUC of 0.81 vs 0.75.

The only approved treatment for NAFLD is weight reduction. We were unable to find Al based
algorithms and predictive models for NAFLD due to lack of pharmacologic management options.

DISCUSSION

Among the algorithms described, more complex models performed better, with machine learning
consistently outperforming more basic logistic regression models. The highest-performing models
incorporated both demographic and radiologic/serologic variables. Al models also predicted complic-
ations more accurately than biomarkers and scoring systems like MELD and FIB-4. These models could
be used to predict the incidence and prevalence of viral hepatitis in regions without robust, widespread
screening programs. Additionally, they could be helpful in the initiation of treatment and predicting
response to antivirals for individual patients, for which no gold standard currently exists.

Limitations of the current AI models are notably due to the lack of large scale, randomized controlled
trials. Further research is necessary to demonstrate the utility of AI. With further advancements, ML
models could potentially be incorporated into all aspects of a patient’s care, from screening the general
population for NAFLD or NASH, to monitoring disease progression and treatment response in clinical
trials by enhancing classification of steatosis, ballooning, inflammation, and fibrosis. In this regard,
more population-based studies are needed to study the applications of ML models in screening.
Additionally, large scale, randomized controlled trials are needed to study serologic and histologic
markers for disease progression. Further studies are also warranted to explore the potential of ML
algorithms to provide target-specific medications, yielding efficacious pharmacotherapy in a disease
such as NASH where good treatment options are lacking at this time. Though Al is promising in terms
of its potential to develop therapeutic targets, we were unable to find any studies to date describing the
use of Al in drug discovery.
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Future directions also include using Al to actively improve outcomes with viral hepatitis by
increasing adherence to DAAs or identifying individuals at risk for contracting viral hepatitis. Machine
learning models could also help identify barriers to accessing treatment.

CONCLUSION

Machine learning models focus on various aspects of liver disease, including demographics,
biochemical labs, histologic assessment and patterns, identification of non-invasive biomarkers, and
liver imaging techniques (Figure 1). Overall, the studies outlined above are promising in their reliance
on non-invasive methods as opposed to conventional liver biopsy to study the stages of fibrosis, as well
as their ability to place fibrosis along a continuum and identify markers for disease progression. This
could reduce healthcare costs by allowing better selection of patients in whom a liver biopsy is
performed. It would also benefit patients by decreasing the number of them who undergo this invasive
procedure. Al can also improve efficiency of pathologist and sonographer scoring of samples when
added to existing methods. This will allow for a better understanding of the pathophysiology of
diseases like NAFLD, which would not only allow for appropriate screening for disease progression,
but also improve the ability to develop therapeutic targets.
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Abstract

Pancreatic diseases have a substantial burden on society which is predicted to
increase further over the next decades. Endoscopic ultrasonography (EUS)
remains the best available diagnostic method to assess the pancreas, however,
there remains room for improvement. Artificial intelligence (Al) approaches have
been adopted to assess pancreatic diseases for over a decade, but this metho-
dology has recently reached a new era with the innovative machine learning
algorithms which can process, recognize, and label endosonographic images. Our
review provides a targeted summary of Al in EUS for pancreatic diseases.
Included studies cover a wide spectrum of pancreatic diseases from pancreatic
cystic lesions to pancreatic masses and diagnosis of pancreatic cancer, chronic
pancreatitis, and autoimmune pancreatitis. For these, AI models seemed highly
successful, although the results should be evaluated carefully as the tasks,
datasets and models were greatly heterogenous. In addition to use in diagnostics,
Al was also tested as a procedural real-time assistant for EUS-guided biopsy as
well as recognition of standard pancreatic stations and labeling anatomical
landmarks during routine examination. Studies thus far have suggested that the
adoption of Al in pancreatic EUS is highly promising and further opportunities
should be explored in the field.

Key Words: Artificial intelligence; Pancreas; Endoscopic ultrasonography; Pancreatic
cancer; Autoimmune pancreatitis; Pancreatic cystic lesions

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

April 28,2022 | Volume3 | Issue2 |


https://www.f6publishing.com
https://dx.doi.org/10.35712/aig.v3.i2.54
mailto:lslee@partners.org

Jaishideng®

Simsek C et al. ML in EUS and the pancreas

Core Tip: Several reviews in the literature have discussed the use of artificial intelligence in pancreatic
disease. However, this is the first review that focuses on the application of artificial intelligence (AI)
specifically to endoscopic ultrasonography (EUS) of the pancreas, including pancreatic cystic lesions,
pancreatic cancer, chronic pancreatitis, and autoimmune pancreatitis, where it appears to enhance EUS
diagnosis. Al may also offer real-time assistance during procedures to direct biopsy towards the highest
yield areas as well augment EUS training.
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INTRODUCTION

Pancreatic diseases create a substantial burden on society. Pancreatic cancer is the third leading cause of
cancer-related death in the United States, and its death count is expected to rise to 460000 by 2040,
becoming the second leading cause of cancer related death in 2040[1-3]. Chronic pancreatitis is another
cause of the burden with significant morbidity from chronic pain, diabetes mellitus, and even pancreatic
cancer[4,5]. Additionally, pancreatic cystic lesions are reported to be detected up to 20% of abdominal
imaging studies[6]. Endoscopic ultrasonography (EUS) has surpassed magnetic resonance imaging
(MRI), computed tomography (CT) and transabdominal ultrasonography in the diagnosis of pancreatic
diseases; however, there remains room for improvement in the diagnostic sensitivity of EUS[7]. In this
regard, utilization of artificial intelligence (AI) with EUS has emerged as a promising strategy (Figure 1).
Although EUS has better performance than the alternative radiology imaging methods, it is also more
operator dependent. The endosonographer’s experience and skills can significantly alter the diagnostic
or therapeutic outcomes of an EUS procedure. Al may decrease this operator dependency as it can assist
the endosonographer in several tasks that include, but are not limited, to identifying anatomical
landmarks, detecting lesions, interpreting sonographic findings, and guiding obtaining optimal tissue
biopsy with higher diagnostic yield. Because Al algorithms use higher resolution EUS imaging data,
they might distinguish patterns and identify details from the images which may not be recognizable
with human detection alone currently. Finally, Al research with EUS is more convenient because
imaging data used to train the Al models often have readily available definitive histologic diagnoses.

Targeted summary of Al and research

Al is an umbrella term for the computerized performance of complex tasks that normally require
human intelligence, such as visual perception, learning, pattern recognition and decision-making][8]
(Figure 2). Current medical applications using Al have made significant progress due to advancements
in computer technology, data science, and the digitalization of health care. From the development of
more complex machine learning algorithms, Al has progressed rapidly to its current front-line role in
image-based diagnosis, speech recognition, robotic surgery, drug discovery and patient monitoring[9].
However, the progress of Al in medicine has just begun and has yet to realize its full potential.

Machine learning (ML) is a field of artificial intelligence in which algorithms learn and improve from
interactions with the data, obviating the need for explicit programming. Deep learning (DL) is a subfield
of ML inspired by the organization and working principle of the human brain and is made up of
individual neurons which form multilayered artificial neural networks (ANN). These networks are
comprised of input and output layers each of which can execute simple tasks and sequentially interact
with one another to produce a conclusion. Among ANNs, Multi-Layered Perceptron are earlier models
that are simpler with fewer layers and can only use linear functions[10]. Convolutional neural networks
(CNN) include more layers that can also operate in a non-linear fashion allowing more complex tasks
such as image classification and have been the most popular DL algorithm. CNNs were inspired by the
human visual cortex and designed to process grid pattern data such as images. They have serial neural
network layers to recognize and extract features from the input data, learn the patterns of features, and
perform hierarchical organization through the layers to search for the intended output (Figure 3)[11].
Most commonly used CNN algorithms are AlexNet, ResNet, U-Net, which all work using the same
principle, and the technical details are beyond the scope of this review[12]. Another type of ANN is
recurrent neural network (RNN), which also contains a multi-layered structure. In addition, each
neuron in this network has its own internal memory, which taken altogether constitutes a collective
memory of the network. This neural network can remember previous input data and use it to process
subsequent inputs. Therefore, these algorithms are beneficial in processing sequential data such as
before and after an intervention or time series data. An example of RNN is the long short-term memory
model[13].
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Advantages of AI in EUS
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Figure 1 Potential benefit of artificial intelligence in pancreatic endoscopic ultrasonography. Current state of the pancreatic endoscopic
ultrasonography (EUS) demonstrates that the procedure yields high resolution pancreatic imaging data, it is operator dependent, and allows acquisition of fine-needle
aspiration (FNA) and fine-needle biopsy (FNB). Potentials with artificial intelligence (Al) implementation are utilizing of this higher resolution imaging data for training
the algorithms with the readily available histologic ground truth from the FNA and FNB, as well as providing procedural assistance to address operator dependency.

DeepMind AlphaGo

Artificial Neural Networks

MLP

DOI:10.35712/aig.v3i2.54 Copyright © The Author(s) 2022.

Figure 2 Overview of machine learning domains. Traditional machine learning algorithms rely on being trained by annotated and processed datasets to
perform simpler tasks such as classification and regression. Deep learning algorithms are more autonomous, generally do not require annotation and processing of
data for training and can perform more complicated tasks such as image detection and speech recognition. Reinforcement learning algorithms are self-teaching
systems that can perform actions and learn by trial and error to achieve the best outcome; they perform most complex tasks such as game playing and learning to
walk. CNN: Convolutional neural networks; MLP: Multi-layered perceptron; RNN: Recurrent neural networks.

Machine learning can perform two different types of tasks: Supervised and unsupervised. Supervised
algorithms aim to reach a previously defined targeted outcome and are used for classification and
prediction tasks. Labeled input data is presented to the algorithm and the model is trained with direct
feedbacks to predict corresponding outputs. The spectrum of supervised approaches includes statistical
methods such as logistic regression, linear regression, decision trees as well as support vector machines
and random forest. Unsupervised algorithms do not have a predefined target and are used for clustering
and dimensionality reduction. Unsupervised models are currently used for disease subtype and
biomarker discovery studies[14,15]. Supervised learning has been more commonly used in EUS
research; therefore, several important nuances will be summarized to better understand the presented
literature. To train supervised learning algorithms, the dataset should be pre-annotated for the targeted
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outcome, which may be a diagnosis, class, or feature. The algorithm aims to optimize its feature
detection ability to match the presented inputs to this annotated targeted output, which is defined as
“ground truth”. This optimization, or training, task requires large datasets, therefore, learning
algorithms are data hungry. However, such datasets are not commonly available, which necessitates
data augmentation techniques be used to expand the dataset by inserting slightly changed copies of
previously collected data or by creating new synthetic data with computerized approaches.

During training of the algorithm, available data is split into three sets: Training, validation, and test.
Training and validation sets are used to develop and fine-tune the model, whereas the test set is used to
assess the performance of the final model product. Of note, this validation is different from its conven-
tional use in medicine and seeks to optimize parameters of the model during the training phase. Two of
the most common validation approaches in medical Al research are cross-validation and hold-out
validation. Cross-validation occurs when the dataset is randomly resampled and split repetitively - the
number of repetitions is designated with k- into training and test sets. Each training and test set is then
used to develop a new model, and k repetitions yield new k models. In contrast, hold-out validation is a
constant single split of a training set and an independent test set to develop one final model which is
simpler to perform but brings an increased risk of sampling error. Another important concept in
machine learning is overfitting, which is defined as a falsely superior performance of the model caused
by learning irrelevant features of the dataset or ‘noise” as well as the intended signals. Therefore, a
separate test set is important to accurately assess the model’s performance.

There are several nuances in the performance assessment of a machine learning model. Sensitivity (
recall), specificity, positive predictive value (precision), negative predictive value and area under the rule
operator characteristic (AUC) curve are commonly used for assessing the performance of classification.
The area under the precision-recall curve (AUPRC) is used instead of the AUC when observations are not
equally distributed for two groups. The Dice coefficient (F1 score) is the harmonic mean of precision and
recall. It is commonly used to assess the labeling performance of an image recognition model. In a
model where a ground truth area X is labeled by an image recognition model as area Y, Dice coefficient
equals the overlap of X and Y areas divided by the total of X and Y areas, multiplied by two. Another
similar metric is the Jaccard index, or intersection over union (IoU), defined as the ratio of overlap and
union of two areas: the algorithm labeled area and the ground truth area. Both Jaccard index and Dice
coefficient’s values range from 0 to 1 signifying 0% to 100% accuracy of labeling with 1 being the highest
level of accuracy for both.

While AI has been utilized to investigate numerous gastrointestinal diseases, the study of pancreatic
diseases using Al and EUS is limited[5]. In this review, we provide a targeted overview of Al with a
summary of the current literature on the use of Al in EUS for the diagnosis of pancreatic diseases.

METHODS

A nonsystematic search of the current literature was performed for 2015 and 2021 in the MEDLINE,
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PubMed, Google Scholar, Scopus, Web of Science and Embase databases with the following terms:
Machine learning, deep learning, artificial intelligence, EUS, endosonography, endoscopic ultrasound,
pancreas, pancreatic disease, pancreatitis, and pancreatic cancer. Review articles were manually
screened for any additional studies of interest. Congress abstracts, reviews, correspondences, editorials,
and book chapters were excluded. Two authors reviewed all the studies after the initial search and
confirmed the appropriateness of each study for inclusion. Our literature search yielded fifteen studies
with modern machine learning algorithms (Table 1). Of note, five of the fifteen studies were published
in 2021 with only two prospective clinical trials from the same group.

APPLICATIONS OF Al IN PANCREATIC EUS

The application of Al was divided into sonographic image recognition, procedural assistance, and
training. Endosonographic images contain cues that may not be recognizable by human visual
perception. In this context, deep learning algorithms are promising tools to recognize the patterns from
these cues. As such, several important diagnostic challenges in pancreatic diseases with EUS have been
addressed, including the classification and risk stratification of pancreatic cysts and the diagnosis of
autoimmune pancreatitis (AIP) and pancreatic ductal adenocarcinoma (PDAC).

Pancreatic cystic neoplasms

Pancreatic cysts are increasingly detected in patients undergoing abdominal cross-sectional imaging
with up to 20% detection rate on MRI[6,16,17]. Since pancreatic cysts carry a risk of malignancy, this risk
should be stratified to guide clinical management. However, in most cases, imaging results are not
sufficient for the classification of pancreatic cysts, especially for small lesions[18]. Additionally,
assessing the risk of malignant progression remains challenging with current imaging modalities,
clinical criteria, cyst fluid analysis or their combinations[18,19]. In this context, ML may help classify
pancreatic cysts.

Several studies have investigated the utility of EUS ML models in pancreatic cysts, focusing on
malignancy risk assessment and classification. Two studies by Kuwahara et al[23] and Nguon et al[21]
used still images of EUS examinations with data augmentation, while Springer et al[20] and Kurita et al
[22] applied multimodality approaches that included cyst fluid analyses and clinical data[20-23].

The 2019 study by Kuwahara et al[23] assessed the accuracy of ML to predict malignant intraductal
papillary mucinous neoplasms (IPMN). This single-center study included 50 IPMN patients who
underwent surgical resection. Therefore, all diagnoses were made from histopathological examination
of surgical specimens. A total of 3970 still images were collected from 50 EUS examinations, and the
CNN was fed over 500000 images using data augmentation. Ten-fold cross-validation was performed
for training. For each case, the output of the CNN model was given as a predictive continuous value
ranging from 0 to 1 for benign and malignant assigned probabilities, respectively. When the final
model’s predictive values were compared with the surgical diagnoses, predictive values for the benign
cases were significantly lower than values for the malignant cases (0.104 vs 0.808, respectively). The
optimal cutoff for the predictive value was determined using the Youden Index. This cutoff value (0.49)
generated an AUC of 98% for the diagnosis of malignancy. The accuracy of the final model (94%) was
significantly higher than that of human preoperative diagnosis which incorporated contrast enhanced
EUS examination findings of mural nodule size, diameter main pancreatic duct, cyst size, and growth
rate (56%). Multivariate analysis showed that the Al predictive value was the only significant factor for
diagnosing malignant IPMN. ML outperformed currently used criteria, including serum CA 19-9,
presence of mural nodule, and type of IPMN. This study demonstrated the promise of EUS ML
algorithms in predicting malignant IPMNs. However, further prospective studies with larger sample
sizes that do not rely solely on internal validation are necessary.

Kurita et al[22] used a multimodality approach to differentiate benign from malignant cysts. This
single center study used 85 patients with pancreatic cystic lesions and final diagnosis from surgical
pathology or combination of cyst fluid analysis, radiology imaging, and clinical follow-up. The input
data consisted of sex, cyst fluid protein markers, cytologic diagnosis and EUS imaging features of the
cyst. A Multi-layered Perceptron was used as the ML model. The final model achieved 95.7% sensitivity,
91.9% specificity, and 0.97 AUC for classifying lesions as benign or malignant, which was the primary
endpoint. The model showed 92.9% accuracy which was significantly higher than carcinoembryonic
antigen (CEA) (71.8%) and cytology (85.9%) alone[22]. An external data set was not available to test the
algorithm. In addition, it is unclear why the algorithm did not mention inclusion of known high-risk
features including enhancing nodule, solid mass, and dilated main pancreatic duct.

Another large multicenter study used a ML based approach called CompCyst to guide the
management of pancreatic cystic lesions and relied heavily on molecular analysis of cyst fluid in
addition to clinical and radiologic imaging features. The study population consisted of 862 patients
recruited from 16 centers who underwent surgical resection with final diagnosis based on histologic
analysis. DNA from cyst fluid were extracted and evaluated for four types of molecular abnormalities
including mutations, loss of heterozygosity, aneuploidy as well as protein markers CEA and vascular
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Table 1 Summary of included machine learning studies on endoscopic ultrasonography in pancreatic disease

: Study population used Machine learning  Performance (in test
Field Ref. e Task . ance in t
for training (n) method population if available)
Pancreatic Kuwahara  Benign IPMN (27); Differentiate benign from Convolutional AUC=10.98
Cysts et al[23], Malignant IPMN (23) malignant IPMN neural network
2019
Springer et Mucinous cystic neoplasms ~Guide clinical management by Not available First group: 100% specificity,
al[20],2019  (153); Serous Cystic classify into three risk groups: No 46% sensitivity. Second group:
Neoplasms (148); IPMN risk of malignancyLow risk of 54% specificity, 91% sensitivity.
(447); Malignant cysts (114)  progression. High-risk of Third group: 30% specificity,
progression or malignant 99% sensitivity.
Kuritaetal ~ Mucinous cystic neoplasms Differentiate benign from Multi-layered AUC = 0.96, sensitivity: 95%,
[22], 2019 (23); Serous Cystic malignant cyst perceptron specificity: 91.9%
Neoplasms (15); IPMN (30);
Other cyst types (17)
Nguon etal Mucinous cystic neoplasms  Differentiate mucinous cystic Convolutional AUC =0.88
[21], 2021 (59); Serous Cystic neoplasm and serous cystadenoma neural network
Neoplasms (49)
Pancreatic Saftouiu et  PDAC (32); Normal Differentiate benign from Multi-layered AUC =0.96
Cancer al[27],2008  pancreas (22); Chronic malignant masses perceptron
pancreatitis (11); Pancreatic
neuroendocrine tumor (3)
Saftoiu etal PDAC (211); Chronic Differentiate cancer from benign Multi-layered AUC=0.94
[28], 2012 pancreatitis (47) masses perceptron
Ozkanetal PDAC (202); Normal Differentiate cancer from normal ~ Multi-layered Accuracy: 87.5%, sensitivity:
[30], 2016 pancreas (130) pancreas perceptron 83.3%, and specificity: 93.3%
Udristouet  PDAC (30); Chronic pancre- Diagnose focal pancreatic mass Convolutional Mean AUC = 0.98 (Includes
al[31],2021  atitis (20); Pancreatic neural network and PDAC, CP and PNET)
neuroendocrine tumor (15) long short-term
memory
Tonozuka et  PDAC (76); Chronic pancre- Differentiate pancreatic cancer Convolutional AUC=0.94
al[32],2021  atitis (34); Control (29) from chronic pancreatitis and neural network and
normal pancreas pseudo-colored
heatmap
Autoimmune  Zhu et al AIP (81); Chronic pancre- Differentiate AIP from chronic Support Vector Accuracy: 89.3%, sensitivity:
pancreatitis [34], 2015 atitis (100) pancreatitis Machine 84.1%, and specificity: 92.5%
Maryaetal AP (146); PDAC (292); Differentiate of AIP from PDAC Convolutional AUC for AIP from all other =
[36], 2021 Chronic pancreatitis (72); neural network and  0.92
Normal pancreas (73) pseudo-colored
heatmap
Procedural Iwasaetal  Pancreatic mass (100) Segmentation of pancreatic masses Convolutional Intersection over unit = 0.77
assistance [38], 2021 neural network
Zhangetal  EUS videos (339) Recognition of stations, and Convolutional Accuracy for classification of
[40], 2020 segmentation of anatomical neural network stations (average) = 0.824, Dice

landmarks

coefficient for segmentation of
pancreas (average) = 0.715

AUC: Area under the rule operator characteristic; AIP: Autoimmune pancreatitis; CP: Chronic pancreatitis; EUS: Endoscopic ultrasonography; IPMN:

Intraductal papillary mucinous neoplasms; PDAC: Pancreatic ductal adenocarcinoma; PNET: Primitive neuroectodermal tumors.
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endothelial growth factor-A (VEGF-A). Then the CompCyst test was used to classify cysts into one of
the three following groups using a combination of molecular and imaging features. The first group was
defined as cysts without any malignant potential which would not need surveillance. VHL and GNAS
were used in this step and achieved 100% specificity and 46% sensitivity. The second group was cysts
with small risk of malignant progression which would require surveillance. Multiple gene mutations
and solid component in imaging was used in this step yielding 91% sensitivity and 54% specificity in the
test cohort. The third group included cysts with high likelihood of malignant progression or malignancy
which should be resected. VEGE-A protein expression was used in this step with 99% sensitivity and
30% specificity. The system was compared to standard of care and demonstrated significantly higher
accuracy (69% vs 56%, respectively)[20]. This study used a separate validation set and a comprehensive
model that incorporated clinical and radiologic findings, however, the wide-ranging molecular analysis
is not readily available for routine clinical use.
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A recent 2021 study focused on differentiating mucinous cystic neoplasms from serous cystadenomas
using a total of 109 cases from two centers[21]. Final diagnoses were determined by endosonographers
with over 5 years of experience. Additional cyst fluid or histopathologic examinations were available for
only 44% of patients. A total of 221 still images were obtained followed by data augmentation, but the
final number of input images was not provided in the study. The ResNet framework was used as the
CNN model. Three hold-out validations were performed with 10 cases for testing, and the remaining
cases used for training. The result of the study showed 82.75% accuracy and 0.88 AUC to correctly
classify mucinous cystic neoplasms and serous cystadenomas from the still EUS images. A pseudo-
colored decision map [gradient weighted class activation mapping (GradCAM)] was used to visualize
the decision-making process. Presentation of the pseudo-colored decision map is an important asset
because it highlights and color codes (red for higher impact and blue for lower impact) the areas in the
image which affected the algorithm’s final decision; therefore, this allows clinicians to better
comprehend the decision-making process by the model. However, this study has several limitations.
First, the most commonly encountered cyst, IPMN, was not included in the dataset that decreases the
generalizability of the model. Second, ground truth was endosonographers’ expert opinion and only
44% of patients had cyst fluid or histologic confirmation of diagnosis. Despite various limitations, the
studies presented demonstrate the feasibility of image recognition ML models to perform classification
tasks for pancreatic cysts and guide clinical management.

Pancreatic cancer

PDAC is currently the fourth leading cause of cancer-related mortality in Western countries and is
predicted to become the second by 2030[24]. Most cases are diagnosed at later stages with 5-year
survival rates less than 10%. A promising strategy is earlier diagnosis to combat this disease[25]. For
this, EUS with FNA has superseded the cross-sectional imaging modalities such as CT and MRI,
especially in the earlier diagnosis of PDAC[26]. However, EUS is operator dependent, and EUS
diagnosis of PDAC is more challenging in patients with baseline abnormal pancreatic imaging (e.g.,
chronic pancreatitis) who also carry a higher risk. Within this context, ML has been used to improve the
diagnostic performance of EUS for pancreatic masses. Four studies used histologically confirmed PDAC
cases with normal pancreas as control. Additional control groups were used in different studies to
reflect clinical scenarios including chronic pancreatitis and neuroendocrine tumors. EUS images served
as inputs for the algorithms. Additional EUS diagnostic technology, such as elastography, digital
characteristics, contrast-enhancement, and Doppler imaging were also used. Regarding ML methods,
Support-Vector-Machines were used in earlier studies to select the best combination of digital imaging
features. In later studies the preferred methods were neural networks with different complexity levels
depending on the year of the study. Although the models and populations varied, all studies achieved
over 80% specificity and 0.94 AUC, demonstrating the feasibility of ML in this area.

In an early 2008 study by Saftoiu et al[27], ML for EUS elastography images was evaluated to
discriminate pancreatic tumors from ‘pseudotumoral’ chronic pancreatitis. The prospective study
enrolled 68 patients including PDAC, pancreatic neuroendocrine tumor, chronic pancreatitis, and
normal pancreas. Final diagnoses were confirmed with additional pathology, imaging findings, and 6-
mo follow-up of patients. From each patient, EUS elastography images were converted to vector data.
As the sample size was small, 10-fold cross-validation was performed. The vector data was then
analyzed with simple three and four layered ANNs. This ML algorithm yielded an AUC of 0.93 to
classify malignant tumors from normal and pseudotumoral pancreatitis. This study was followed by a
larger prospective blinded study in 2012 with 258 patients enrolled from 13 European centers. The
population consisted of 211 PDAC confirmed by pathology diagnosis and 47 chronic pancreatitis
patients diagnosed by clinical, imaging and EUS criteria (at least four of the following: hyperechoic foci,
hyperechoic strands, lobularity, calcifications, hyperechoic duct wall, dilated main pancreatic duct,
irregular main pancreatic duct, dilated side branches, and cysts). EUS elastography images of the
regions of interests were converted to vector data and then analyzed with similar ANNs. One hundred
training iterations were performed with the model to increase the statistical power of the results. The
mean performance of one hundred models to correctly classify PDAC from chronic pancreatitis showed
0.94 (0.91-0.97) AUC with 85.6% sensitivity and 82.9% specificity compared with 0.85 AUC for hue
histogram analysis[28]. These two studies present an excellent example for the roadmap of ML research
with an initial proof-of-concept study followed by a larger prospective study. Of note, less complex
neural networks were used with fewer layers. Multi-layered Perceptron only accepts numeric data as
the input unlike newer CNN algorithms that can directly process the image itself. Therefore, the
performance of ML in these studies can be improved.

An early study in 2013 used analysis of digital image characteristics as input to the ML model[29].
The study population consisted of 262 PDAC patients diagnosed by cytology with 126 chronic pancre-
atitis controls diagnosed by standard EUS criteria and over 2-year follow up. Regions of interests were
manually selected by blinded endosonographers. Then 105 digital imaging characteristics of these
images were extracted with dedicated software. The final combination of 16 characteristics yielded a
strong discriminative performance with 94.2% accuracy, 96% sensitivity and 93% specificity.
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Another older study evaluated the use of ML to classify PDAC from normal pancreas[30]. This
retrospective study in 2016 included 202 PDAC patients and 130 patients with normal pancreas as
controls. The regions of interests from EUS images were annotated by endosonographers. Then digital
characteristics of the images (wavelet decomposition energy, boundary fractal, gray level cooccurrence
matrix, standard statistical) were extracted. Among 112 digital characteristics, 20 were identified as
more effective for classification, and therefore served as the input for the ML algorithm. A three-layered
Multi-layered Perceptron model was used as the neural network, which is a less-complex approach
accepting numerical data such as the digital characteristics of EUS images and does not require extra
image processing. As such, because the images themselves are not being used, important information
may not be included in the model. The final model yielded 83% sensitivity, 93% specificity and 87%
accuracy for differentiating PDAC from normal pancreas. This model also only compared PDAC images
to normal pancreatic tissue and not to other commonly encountered differential diagnoses such as
chronic pancreatitis, which limits its adoptability to clinical use.

A recent study in 2021 evaluated the performance of ML to classify focal solid lesions. The study
population consisted of 30 patients with PDAC, 20 patients with pseudo tumors in chronic pancreatitis,
and 15 patients with pancreatic neuroendocrine tumors[31]. The final diagnoses were confirmed with
histologic evaluations of fine-needle specimens and clinical follow-ups. From each EUS examination, 5
sets of images were extracted including grayscale images, color Doppler, contrast-enhanced imaging,
and elastography. A total of 1300 collected images was increased to 3360 with data augmentation.
Regarding the ML method, a CNN algorithm was combined with a Long Short-Term Memory model.
Long Short-Term Memory model is a supervised ML model that has additional feedback learning
functions and allows the use of sequential pre- and post-contrast appearance from the same EUS
images. Cross-validation was performed for each dataset with 80% of images used as training and 20%
as test sets. The final combined model’s overall specificity was 96.4%, and sensitivity was 98.6% for
classifying the pancreatic masses. For PDAC cases, the algorithm yielded 96.7% specificity, 98.1%
sensitivity, 97.6% accuracy, and 0.97 AUC. When compared to previous studies, Udristoiu et al[31] used
a more complex, combined ML approach with CNN and Long Short-Term Memory allowing inclusion
of temporal data with contrast-enhanced imaging.

Tonozuka ef al[32] also evaluated their own ML algorithm for its performance in classifying
pancreatic masses. The 139 total patients included 76 with PDAC, 34 with chronic pancreatitis and 29
normal controls. PDAC was diagnosed using histology from EUS-fine needle biopsy or surgery, and
chronic pancreatitis was diagnosed using the Rosemont criteria. All patients were followed for over 6
mo. Ten still images of lesions were chosen from each EUS examination, and the input dataset was
increased to over 80000 after data augmentation. From 1390 still images, 920 were used for training and
cross-validation, while the remaining 470 images were used for testing. A CNN algorithm with seven
layers was used. In addition to the CNN model, a pseudo-colored feature mapping was used to
highlight the areas in the image with greater impact on the final model, which makes the decision-
making process more comprehensible to the endosonographer. In the test dataset, the model yielded
84.1% specificity, 92.4% sensitivity and 0.94 AUC.

Autoimmune pancreatitis

AIP is an increasingly recognized entity that may be challenging to diagnose. Accurate diagnosis is
particularly important as the differential often includes PDAC with its different prognostic and
management implications. Many diagnostic algorithms have been developed that include clinical,
serologic, imaging, and histopathologic criteria, but their performance remains limited. While EUS with
biopsy is the most effective diagnostic tool, its diagnostic yield also is suboptimal[33]. Image processing
may enhance our ability to diagnose AIP by extracting data and learning from the cues in sonographic
images. Two studies have studied the utility of ML in differentiating AIP from other diagnoses,
including chronic pancreatitis and PDAC. The studies by Zhu et al[34] and Marya et al[35] used different
ML approaches, but both achieved over 80% sensitivity and specificity for diagnosing AIP only from
EUS images[34,35].

The earlier 2015 retrospective study by Zhu et al[34] studied a ML algorithm to differentiate AIP from
chronic pancreatitis using an EUS image dataset of 81 AIP and 100 chronic pancreatitis cases. AIP
diagnoses were based on HISORt criteria. Chronic pancreatitis was diagnosed by standard EUS criteria.
Experienced endosonographers selected regions of interest in EUS images, and 115 digital parameters
were extracted from each image. Then, a supervised Support Vector Machine algorithm was used to
select the best combination of these digital parameters for discriminating AIP from chronic pancreatitis.
The final combination of digital parameters yielded 90.6% accuracy, 84.1% sensitivity and 94.0%
specificity.

A recent study examined the additive performance of ML with EUS to distinguish AIP from PDAC as
well as chronic pancreatitis and normal pancreas. The study included 583 patients (146 AIP, 292 PDAC,
72 chronic pancreatitis, and 74 normal) with all available videos and still images of the pancreatic and
peripancreatic regions included in the analysis regardless of whether they included regions of interest
[36]. A total of 1174461 still images were extracted from the images and videos. Since all portions of EUS
videos were included, there was a risk of oversimplification of diagnosis from certain aspects of the
examination, such as presence of metastasis, which were removed from the dataset. The classification
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was performed with two datasets: the first one included still images obtained from both EUS videos and
captured images, while the second dataset only included EUS videos. The CNN algorithm was trained
for both datasets. Pseudo-colored feature mapping was also used to visualize decision making. For
comparison, seven independent EUS experts evaluated each case using videos. In the final analysis, ML
showed 87% specificity, 90% sensitivity and 0.9 AUC for distinguishing AIP from PDAC in the image-
only dataset. In the video-only dataset, the metrics were 90%, 93% and 0.96 for specificity, sensitivity,
and AUC, respectively. The ML model was superior to expert endosonographers, who had 82.4%
specificity and 53.8% sensitivity in differentiating AIP from PDAC. ML also had high sensitivity (99%)
and specificity (98%) for distinguishing AIP from normal pancreas. It had inferior performance in
separating AIP from chronic pancreatitis (94% sensitivity, 71% specificity, 0.89 AUC). The heatmap
analysis yielded interesting results, which may help guide endosonographers, showing that visualizing
a hyperechoic plane between the parenchyma and duct or vessel was highly predictive of AIP while
post acoustic enhancement deep to a dilated pancreatic duct or vessel was consistent with PDAC.
Regarding Al technology, these two studies differ with respect to their approach of utilizing ML with
EUS data. Zhu et al[34] used an older ML algorithm, support vector machine, which is a supervised
algorithm that classifies two numeric data points. As such, EUS images are converted into numerical
data by extracting digital parametric features, and then the ML model is trained with these features. On
the other hand, Marya et al[35] used a CNN algorithm, ResNet, with 50 layers that can work directly on
the EUS images itself.

Procedural assistance and training

EUS is the leading modality for assessing and obtaining tissue from the pancreas with approximately
90% specificity and sensitivity for solid masses[36]. However, interobserver reliability remains an issue
in EUS as accuracy relies on the endosonographers’ skills and experience and carries the risk of false-
negative results. Pancreatic EUS also has a steep learning curve. ML approaches have been developed to
potentially augment the diagnostic performance of EUS and biopsy as well as aid in training.

Iwasa et al[38] tested ML to augment contrast enhanced EUS by dividing the sonographic image into
regions with similar appearance and then differentiating regions of interest, also called automatic
segmentation. For this study, videos from 100 contrast enhanced EUS examinations of solid pancreatic
masses with histologic diagnosis were used. Each video was transformed into 900 still images as input
for a U-Net CNN algorithm. The borders of the lesions were manually annotated by two endosono-
graphers and served as the ground truth. IoU was used as the performance output of the algorithm with
median IoU for all cases being 0.77, which is greater than the acceptable 0.5 threshold value[37]. The
EUS videos were also classified into different categories to understand the effect of respiratory
movements and visibility of boundaries of the lesions by the endosonographers. IoU significantly
improved to 0.91 in cases with the most visible boundaries and decreased to 0.13 for cases with the least
visible boundaries[39]. On the other hand, respiratory movements did not change the performance of
the algorithm. This proof-of-concept study suggests that ML can provide real-time assistance in the
detection of pancreatic lesions. The classification of exams with respect to the ease of detecting the
border of lesions is an important aspect of this study because it demonstrated that ML can also be
affected by the quality of the EUS examination and the sonographic characteristics of the lesion,
reflected in this case by how well the border was visible.

A case report suggested that a ML model may help target areas to biopsy within pancreatic masses
that have the highest diagnostic yield by avoiding areas of necrosis. A CNN algorithm was used to label
and highlight the more cellular region in a 6.5 cm solid pancreatic mass, which was predicted to have
the highest probability of yielding a diagnosis by discriminating it from neighboring necrotic or inflam-
matory regions. EUS-fine needle aspiration was performed and yielded a positive diagnosis for PDAC.
The technical details, training dataset and methods, validation and model characteristics were not
presented in the report[39]. This is a novel idea that may provide valuable intra-procedural assistance,
however, needs further evaluation.

ML may aid EUS training by guiding the steps of routine diagnostic EUS evaluation of the pancreas.
A novel Al system aimed to assist recognition of fundamental stations and identification of pancreatic
and vascular anatomical landmarks. This was performed in four steps: Identifying images, filtering
suitable images, recognizing pancreas stations, and segmenting anatomical landmarks and monitoring
for loss of visualization of the pancreas. Two expert endosonographers decided on the criteria for
suitable images and annotated video clips that served as ground truth. A ResNet model was used as the
CNN algorithm. A separate set of prospective EUS examinations were used as a test set. Three different
endosonographers classified each image for comparison with the Al model. The final model was tested
using an external test set and demonstrated an accuracy of 82.4% to identify six anatomical stations
(abdominal aorta, pancreatic body, pancreatic tail, confluence, pancreatic head from stomach, or
pancreatic head from descending duodenum), and a Dice of 0.715 to label pancreas and vessels.
Comparison of the AI model with the three expert endosonographers yielded strong interobserver
agreement with kappa values of 0.846, 0.853 and 0.826[40]. The results of this study demonstrated that a
ML model may aid in recognizing stations and anatomic landmarks in sonographic images. This has the
potential to assist procedural navigation during EUS examination and improve cognitive aspects of EUS
skills. However, the impact of such real-time procedural assistance on the endosonographer’s
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performance was not assessed in this study and warrants further evaluation.

CONCLUSION

In this review, we summarize the current literature regarding the use of ML in EUS for diagnosing
pancreatic diseases. Our review defined two main areas for Al in the field: visual recognition-classi-
fication and procedural assistance and training. Al has been more utilized in transabdominal ultrasono-
graphy for detecting liver fibrosis and in CT scans for lesion classification, which have been extensively
reviewed elsewhere[41-45]. ML appears to have great potential in assisting EUS examination of the
pancreas as sonographic imaging contains vital visual information that the human eye cannot
distinguish. The diagnostic accuracy of EUS imaging is highly operator dependent and requires both
technical and cognitive skills. Acquisition of these skills currently requires dedicated training with
proctorship and procedural experience, which remains limited, apart from dedicated advanced
endoscopy fellowship programs. These issues in training limit the widespread adoption of EUS, which
is the leading tool for diagnosing pancreatic disorders, including PDAC. Al may assist in the
development of cognitive skills and augmentation of procedural efficiency in relatively less experienced
endosonographers.

Further opportunities should be explored with Al and pancreatic EUS. However, several limitations
exist in the field. First, the number of EUS procedures and the prevalence of pancreatic diseases are
lower, which makes it more difficult to train data-hungry machine learning algorithms. Second,
annotation of EUS data is more challenging compared to other imaging modalities as the number of
experts endosonographers is relatively limited. Third, EUS examinations with histopathologic or
cytologic diagnosis is harder to obtain for certain pancreatic diseases and have issues with sensitivity,
which further limits the number of studies for Al training. However, these limitations may be overcome
with multi-center collaborations and prospective data collection, which will hopefully lead to improved
image recognition, procedural assistance, and training for pancreatic EUS.
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Abstract

Recent years have witnessed increasing numbers of artificial intelligence (AI)
based applications and devices being tested and approved for medical care.
Diabetes is arguably the most common chronic disorder worldwide and Al is now
being used for making an early diagnosis, to predict and diagnose early complic-
ations, increase adherence to therapy, and even motivate patients to manage
diabetes and maintain glycemic control. However, these Al applications have
largely been tested in non-critically ill patients and aid in managing chronic
problems. Intensive care units (ICUs) have a dynamic environment generating
huge data, which Al can extract and organize simultaneously, thus analysing
many variables for diagnostic and/or therapeutic purposes in order to predict
outcomes of interest. Even non-diabetic ICU patients are at risk of developing
hypo or hyperglycemia, complicating their ICU course and affecting outcomes. In
addition, to maintain glycemic control frequent blood sampling and insulin dose
adjustments are required, increasing nursing workload and chances of error. Al
has the potential to improve glycemic control while reducing the nursing
workload and errors. Continuous glucose monitoring (CGM) devices, which are
Food and Drug Administration (FDA) approved for use in non-critically ill
patients, are now being recommended for use in specific ICU populations with
increased accuracy. Al based devices including artificial pancreas and CGM
regulated insulin infusion system have shown promise as comprehensive
glycemic control solutions in critically ill patients. Even though many of these Al
applications have shown potential, these devices need to be tested in larger
number of ICU patients, have wider availability, show favorable cost-benefit ratio
and be amenable for easy integration into the existing healthcare systems, before
they become acceptable to ICU physicians for routine use.

Key Words: Artificial intelligence; Blood glucose; Critical care; Diabetes mellitus;
Intensive care unit; Machine learning
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Core Tip: Increasing number of applications and devices based on artificial intelligence are being tested
and approved for medical care. These devices have the potential to change the way we presently manage
chronic diseases like diabetes. Moreover, their application in data rich and dynamic intensive care unit
environment may have great implications in detecting hypo or hyperglycemia and reducing glycemic
variability, while improving safety and accuracy and reducing nursing workload. Devices like artificial
pancreas and continuous glucose monitoring regulated insulin infusion systems have shown promise as
comprehensive glucose control solutions and may change the future of care for critically ill diabetic
patients.
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INTRODUCTION

As per the International Diabetes Federation 2021 estimates, about 537 million people are living with
diabetes signifying a 10% prevalence rate worldwide with an estimated 6.7 million deaths in 2021. This
number will rise exponentially in the coming years which will place a heavy burden on the already
stressed healthcare system[1]. These patients are at increased risk of developing complications like
sepsis, diabetes keto-acidosis and other complications necessitating intensive care unit (ICU) admission.
In addition, critically ill diabetic patients are at an increased risk of developing nosocomial infections,
having a longer ICU stay and increased ICU mortality[2-4].

All components of diabetes care including prevention and management of hyperglycemia and
hypoglycemia, are essential to improve outcomes. In critically ill patients, these complications may be
multifactorial and may also occur in non-diabetic patients, complicating their disease course. In addition
to hyper- and hypoglycemia, glycemic variability (GV) and time in target range (TITR) are recently
recognized components of dysglycemia which may affect patient outcomes[5-7]. However, the exact
target for blood glucose (BG) control in ICU is not well established. Moreover, targeting tight glucose
control necessitates frequent blood sampling and adjustment of insulin dose, increasing the work-load
on ICU staff. In addition, targeting tight glucose control has not shown to have any mortality benefit but
is associated with five-fold increased risk of hypoglycemia[8].

It has been difficult to establish a safe blood sugar level but as per American Diabetes Association
(ADA) a BG level below 180 mg/dL is acceptable[9]. The surviving sepsis guidelines further recom-
mend a target BG levels between 140-180 mg/dL in patients with sepsis[10].

Artificial intelligence (Al) is a rapidly evolving science which is gradually changing the landscape of
many industries including healthcare. As ICUs have a dynamic environment which generates a huge
amount of data, Al has a tremendous scope and now is increasingly being used in advanced mechanical
ventilation, weaning from ventilation, predicting development of sepsis, antibiotic dosing and
radiological assessment and monitoring[11-15]. In this review, we will be discussing the current applic-
ations and potential role Al may have in managing critically ill diabetic patients.

ARTIFICIAL INTELLIGENCE

There is no standard definition of Al but as per the Encyclopaedia Britannica, Al refers to “a system
endowed with the intellectual processes characteristic of humans, such as the ability to reason, discover
meaning, generalize, or learn from past experience”[16]. Basically, Al based systems should be able to
perform tasks comparable to human intelligence.

Al has great potential and has been used in the field of medicine for discovery of new drug
molecules, diagnostics, radiology and imaging, molecular biology, bioinformatics and therapeutics. Al
has the ability to analyze and scrutinize massive amounts of data and help understand disease patterns.
The human brain can store a limited amount of information at any one time and may be unable to
analyze and visualize patterns embedded in vast quantities of data[17]. In contrast computers have a
large storage capacity and can discern even small associations within the data. However, computer
programming has limitations as they are able to follow only certain specific patterns, as per the
programming instructions. Al in contrast differs from traditional computer programming as it learns
from exposure to various experiences and inputs, assimilates the data and can improve on its own
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intelligence and modify the output behavior.

Al consists of a wide spectrum of complex algorithms and is broadly divided into machine learning
(ML), deep learning, and cognitive computing. In ML, Al systems are trained with large repository of
data and algorithms to enable them to follow a format to examine relationships and learn from them.
Deep learning based systems develop insights by conducting complex interventions on the available
data while cognitive Al systems are the most complex and try and match the human intelligence by
understanding, reasoning, interacting, and learning from the data. Such systems are able to process and
interpret exponential amounts of data (both structured and unstructured) and thus help in proposing
any valid connections or hypothesis[18].

The Al functioning can be broken down in a systematic way and the processes involved can be
divided into 3 main functions which occur in succession, which are knowledge discovery followed by
learning and finally reasoning.

Knowledge discovery/ retrieval

The discovery of knowledge is the essence of Al It works by creating algorithms for acquiring relevant
and potential information from databases and is referred to as knowledge discovery in databases
(KDD). For KDD to be effective it should have an in-depth knowledge of the area of interest as it will
evaluate and interpret patterns and models to decide what data constitutes knowledge and what does
not. KDD, hence plays a pivotal role in identifying information which is useful and valid.

Learning

Once the KDD process is complete the next step is learning from the knowledge or information
acquired. Systems are allowed to automatically learn without human intervention or assistance. It
usually consists of an inductive component which could be a simple process or could consist of a
convolutional neural network (CNN). The various techniques used are artificial neural networks
(ANNS), support vector machines (SVMs), random forest (RF), evolutionary algorithms, deep learning,
Naive Bayes (NB), decision trees, and regression algorithms.

Certain types of Al algorithms are more commonly employed in healthcare settings than others.
SVMs are used to predict clearly defined outcomes and adherence to medications. ANNSs are algorithms
which have been inspired by neuronal organization of animal brains, and have been employed to
analyze data from computed tomography images, mammograms etc., to predict complications and
outcomes. Logistic regression, is a ML algorithm which has been used to predict and classify probability
of an event using predictor variables. Using data from electronic records or patient’s medical history, RF
algorithms have been used to predict risk of disease, and NB are the most advanced ML algorithms
which have been used recently to predict development of disease in specific patient populations[19].

Reasoning

Reasoning is the final step in the Al process and involves the use of logical techniques to come to a
conclusion from the available data. The primary objective of reasoning is to perform tasks at the level of
a human intelligence and in a specialized manner with the final objective to generate inferences in the
most precise manner.

Al algorithms

Al is a rapidly evolving technology with increasing number of subsets being introduced regularly, each
having their own advantages and limitations. For prediction and management of diabetes, commonly
used Al algorithms include linear regression (LR), classification/decision trees (DTs), RF, SVMs, ANNs,
and NB.

LR is a regression model which analyses the data and predicts a continuous output, finding solution
following a linear curve. DTs are predictive models which predict outcome from the given data, but can
find solution using both linear and non-linear curves. DTs also fare better than LR models for
categorical independent variables. RF is a variation of DT, supporting both linear and non-linear
solutions, but is better at handling of missing values and outliers. It is more favorable than DTs as it is
more robust, accurate and provides a more generalized solution.

SVMs are supervised learning algorithms which are recently gaining popularity for their applications
in healthcare settings. Even though they are mostly used for classification problems in ML, they can also
be applied for regression problems. They also support linear and non-linear solutions and are better
than LR in handling outliers and analyzing data with large number of features.

ANN is an advanced technology based on the brain and the nerves and programmed to mimic the
biological neural system. ANNs can also find non-linear solutions and are sub-classified as convolu-
tional (feedforward networks) and recurrent (feedback loop) neural networks. ANNs have better
accuracy but require larger training data as compared to LR.

As compared to LR, DT and RF, which are discriminative models, NB is a generative model which
works well even with small data sets. This supervised learning algorithm is based on Bayes theorem
and can provide solutions to classification problems. It is easy, fast and performs well in case of
categorial data. However, it is a bad estimator and its probability outputs are not reliable.
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ROLE OF Al IN MANAGEMENT OF DIABETES MELLITUS

Medical management forms only a small part of the entire spectrum of diabetes care, as diabetes
mellitus (DM) is mainly a life-style disorder. Apart from medications, education on self-management
(meal schedules, calorie counting, exercising, routine BG monitoring) and continuous medical care is
paramount not only to prevent acute complications but also to minimize the risk of long-term complic-
ations like nephropathy, retinopathy, diabetic foot, cardiovascular disease, or stroke. As a result,
diabetes care is complex and various medical and life-style related factors need to be taken into account
to optimize management.

The use of Al in DM is not new and a number of studies have shown the role of Al applications in the
care of diabetic patients[20-24]. A number of complex Al systems, and their clinical applications have
been described (Table 1). Deep-learning based Al algorithms may help in early diagnosis of diabetic
retinopathy using retinal photographs with a reported sensitivity and specificity of more than 90%[25].
IDx-DR is the first such Al-based device approved by US-FDA for screening of diabetic patients for
retinopathy[26]. As it does not require a clinician to interpret the results, this automated system can help
the non-eye specialists to recognize early signs of retinopathy and send the patients to eye-specialists
only if indicated, thereby simplifying the process and achieving higher patient satisfaction[27].

Dreamed Advisor pro assimilates data regarding the glucose levels, insulin dose and carbohydrate
intake and using Al-based MD-Logic algorithms it then makes recommendations for insulin dose
adjustments. These recommendations have been shown to be similar to those given by experienced
physicians in the real-world settings validating the use of such devices in day-to-day clinical practice[23,
28]. Several real-time Continuous Glucose Monitoring (CGM) devices like Medtronic Guardian Connect
and Dexcom G6 CGM systems, are commercially available which can act as self-monitoring tools for
diabetic patients (Table 1). These devices can provide real-time glucose values which can be displayed
on the patient’s mobile phones and can raise an alarm if the BG levels go beyond the predefined range.
These devices can further be connected to insulin pumps and hence aid in insulin dose adjustments.
However, these devices require repeated calibrations with the capillary blood glucose levels, to be
measured by finger pricks. Use of these glucose sensors for more than 70% of the time, has shown to
improve the HbAlc by 0.4 to 0.6% and reduce the incidence of hypoglycemic episodes[29]. Presently,
these devices and applications have not been validated in ICU patients but can be further modified and
tested to be applied in the management of critically ill patients.

Al IN DIABETES MANAGEMENT IN ICU

Hyperglycemia is a common phenomenon in the ICU irrespective of the reason for admission and may
occur even in the absence of pre-existing DM. The pathophysiology of hyperglycemia in ICU is
multifactorial and can occur secondary to release of stress hormones (corticosteroids and
catecholamines), proinflammatory mediators, administration of exogenous drugs (corticosteroids,
vasopressors, ascorbic acid), parenteral solutions containing dextrose, stress hyperglycemia and use of
commercial dietary feeds or supplements[30]. Irrespective of cause, hyperglycemia is associated with an
increase in ICU stay, hospitalization costs, morbidity, and mortality[4,31].

Apart from hyperglycemia, hypoglycemia and GV have also been shown to be associated with
increase in mortality in critically ill patients[5,6]. Use of variable insulin protocols which are not
clinically validated and inaccurate blood sugar measurements are responsible for this GV seen in the
ICUs. In addition, insulin sensitivity in critically ill patients follows a very erratic course and is plagued
with frequent changes which could be secondary to the underlying illness, dietary changes or
medications.

TITR has been recognized as another domain of dysglycemia in critically ill patients[7]. It may be
defined as the total time spent in the target range and is expressed as the percentage of time. Data
suggests that critically ill patients having more than 70% TITR, have significantly higher survival rates
[32]. However, the exact cut-offs for TITR remain unclear with different studies suggesting TITR
ranging from 50-80% for improving outcomes[33,34].

In spite of several widely accepted applications for out-patient and long-term management of DM, Al
applications in management of critically ill patients are limited. The possible applications of Al in
critically ill diabetes patients are given in Table 2[35].

Blood glucose monitoring and prediction

Blood glucose management requires frequent sampling and insulin dose adjustments. Capillary BG
monitoring still remains the most commonly employed method, even in critically ill patients. However,
its accuracy may be affected in patients with subcutaneous oedema, shock, and hypoxemia, which
commonly affect ICU patients. Hence, using arterial blood is preferred but it requires repeated arterial
punctures or presence of an invasive arterial line. The characteristics of an ideal method to monitor BG
is given in the Table 3.
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Table 1 Clinical uses of artificial intelligence in management of diabetes

Al applications Examples of Al devices Clinical uses
Retinal screening IDx-DR device Screening and diagnosis of diabetic retinopathy
Clinical diagnosis Advisor Pro Detection and monitoring of diabetes and its associated complications. Fine-

tuning insulin dose

Patient self- Medtronic Guardian Connect System, Dexcom G6 Improve blood glucose control, activity and dietary tracking

management tools CGM systems; Mobile applications

Risk stratification Al using random forest and; gradient boosting Prediction of new-onset diabetes; Prediction of subpopulations at risk for
techniques complications, non-compliance to therapy and hospitalization

Al Artificial intelligence.

Table 2 Possible critical care applications of artificial intelligence in diabetes management

Blood glucose monitoring and prediction
Detection of adverse glycemic events

Blood glucose control strategies

Insulin bolus calculators and advisory systems

Risk and patient stratification

Table 3 Characteristics of an ideal tool to monitor blood glucose in intensive care unit

Ease to use

Minimal burden on staff

Automated data entry

High rate of adherence

Allow for minimal sampling

Comfortable to use for the patient

Use of a proven algorithm to calculate insulin dosage

Quickly correct hyperglycemia

Consistently maintain glucose within the predetermined optimal range
Ensure minimal glycemic variability

Prevent episodes of hypoglycemia

Provide easy interface with other patient measurements and data
Easy to integrate into existing hospital systems

Avoid the need for repeated data entry

Maintain results in a comprehensive, standardized database to facilitate multi-center comparison

Continuous glucose monitoring

Continuous Glucose Monitoring has been employed in the management of DM for more than a decade.
Several CGM devices have been developed and are presently commercially available and approved for
in-hospital use (Table 4). They can be broadly classified as transdermal (non-invasive), subcutaneous
(minimally invasive) and intra-vascular (invasive) devices. Subcutaneous and transdermal devices are
not considered ideal in critically ill patients because the presence of subcutaneous oedema, hypoxemia,
and shock may affect their accuracy. Hence, intravascular devices may be preferable in these patients.
However, the continuous subcutaneous flash glucose monitoring (FGM) system (FreeStyle Libre) has
been recently tried in critically ill patients and has shown to have high test-retest reliability and
acceptable accuracy[36-38].
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Table 4 Continuous glucose monitoring devices

Type of device ~ Name of device Comments

Intravenous GlucoClear by Edwards Lifesciences; (Irvine, CA) Approved in Europe

Intravenous Glysure System by Glysure (Abingdon, UK) Approved in Europe

Intravenous Eirus by Maquet Getinge Group (Rastatt, Germany) Approved in Europe

Intravenous OptiScanner 5000 by OptiScan; (Hayward, CA) Approved in EuropeFDA-approved for use in US hospitals
Intravenous GlucoScout (International Biomedical, Austin, TX) FDA-approved for use in US hospitals

Intravenous Dexcom G FDA-approved and CEA approved

Intravenous Guardian™ Connect system by Medtronic (San Diego, CA) FDA-approved for use in US hospitals

Subcutaneous Freestyle Libre by Abbott Diabetes Care US FDA approved

FDA: Food and Drug Administration; CEA: Carcinoembryonic antigen.
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A recently published meta-analysis reported that the use of CGM was associated with significantly
reduced HbAlc values and reduced risk of severe hypoglycaemia[39]. In addition, use of FGM was
associated with significant reduction in episodes of mild hypoglycemia and was associated with
increased treatment satisfaction in patients with type-I diabetes. Hence, it is suggested that real time
monitoring with CGM or FGM has the potential to achieve better control in short-time fluctuations in
BG levels, improve glycemic control and may also reduce healthcare costs[40]. Although several studies
have been conducted testing these devices in critically ill patients, their impact on reducing length of
stay in ICU or overall patient outcomes remains unknown[41].

While these devices may not benefit all ICU patients, they may be particularly useful in specific
patient populations like those on intravenous insulin or corticosteroids, patients with end stage renal or
liver disease, neurosurgery or traumatic brain injury patients and post-transplant patients[42-44].
However, these devices need to be further tested in larger patient cohorts before they find mainstream
application.

Detection of adverse glycemic events

Detection of adverse events in the form of both hypoglycemia and hyperglycemia using Al technologies
have been studied by various research groups mainly in type 1 and type 2 diabetes patients[35]. The
studies used either CGM devices or self-monitoring of blood glucose monitors to detect the individual
events. The results were based on the sensitivity and specificity of the modalities used. For example the
DCBPN algorithm used by Zhang et al[45] provided an accuracy of 88.5% in predicting the BG levels. In
the study by Otto et al[46], identification of episodes of hypoglycemia, hyperglycemia, severe
hypoglycemia, and severe hyperglycemia were 120%, 46%, 123%, and 76% more likely after pattern
identification as compared to periods when no pattern was identified. Another study by Nguyen et al
[47] used electrocardiographic (ECG) parameters to detect episodes of hyperglycemia with a reported
sensitivity and specificity of 70.59% and 65.38%, respectively. The results suggested that ECG signal and
ANN patterns could be used to detect adverse hyperglycemic events in diabetic patients. Overall, Al has
a potential role to predict adverse events and thus help modify treatment protocols so as to rectify them.

Blood glucose control strategies

There are various Al methodologies, fuzzy logic (FL), ANN, RF, which have been used for sugar
control. Out of these FL is the most commonly used methodology as it mimics the management
strategies by actual diabetes caregivers. Various studies have been performed using the FL methodology
for BG control, mainly in type 1 diabetic patients[48,49]. The results have shown better control of
nocturnal glucose levels with a low risk of hypoglycaemia as compared to standard insulin pump
treatment.

Now, more complex methodologies are being proposed for BG control such as complimentary Al
algorithms to support traditional AI controllers. The latest technology is the development of neural
networks for regulation of BG[50,51].

From the above data it is evident that AI may potentially help to control BG but similar research in
critically ill patients is limited. The LOGIC-1 trial was a single centre randomized control trial (RCT)
which compared LOGIC-Insulin computerized algorithm to expert nurses in BG control for critically ill
patients[52]. LOGIC-Insulin improved the efficacy of tight glucose control without increasing the risk of
hypoglycemia. Encouraged by the results, a larger multi-center RCT, the LOGIC-2 trial, was conducted
comparing software guided glucose control to nurse directed orders. This trial also showed better
control of BG without an increase in hypoglycemia[53].
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Hence, research shows that algorithmic based approach may be beneficial to control BG levels. Even
the ability to anticipate excursions in sugar levels could provide early warnings regarding ineffective
treatments. Newer CGM could lead to prediction of future glucose levels but reliability may be affected
due various physiological and technical factors. Pappada et al[54] studied a neural network model for
predicting glucose levels in a surgical critical care setting and found CGM to be useful in this patient
population. However, further research and studies may be required in real time to test their validity in
other critically ill patients.

Artificial pancreas

For BG control one of the most extensively researched modality is the artificial pancreas (AP) which
consists of a glucose sensor, a closed-loop control algorithm, and an insulin infusion device. The glucose
sensor estimates the BG level which in turn is fed to the control unit with the closed loop algorithm. This
is turn directs the infusion device to inject the programmed amount of insulin. Thus, it has been
developed to mimic the Islet cells of the pancreas which secrete insulin based on the BG levels. The
majority of algorithms used by AP have been derived from control engineering theory and include
proportional-integral-derivative (PID), model-predictive control, adaptive control, and FL control[55,
56]. However, the major limiting factor is a reliable glucose sensor and hence, now Al is being used to
develop better models of AP.

At present, AP are of two types viz a viz single hormone (insulin only) and dual hormone (insulin
and glucagon) systems. Overall, AP has been shown to be safe and effective in controlling BG, reducing
episodes of hypoglycemia and hyperglycemia, and increase the proportion of TITR. Weisman et al[57]
conducted a meta-analysis which showed that AP improves the TITR by 12.59% (equivalent to 172
minutes per day) compared to conventional treatment. Furthermore, this analysis showed that dual-
hormone AP systems were associated with greater improvements, especially with respect to
hypoglycemic events as compared to single hormone systems. The average time spent in hypoglycemia
was reduced by 35 minutes/day. These benefits were more pronounced at night time.

In critically ill patients, use of AP to control BG has shown to reduce the frequency for sampling,
reduce the nursing workload, achieve stable glycemic control with reduced episodes of hypo or
hyperglycemia, and cause less GV[58-62]. In addition, its use has been associated with significant
reduction in postoperative infectious complications in patients undergoing major surgeries[62].
However, use of AP was unable to achieve any significant improvement in mean glucose concentration,
improve clinical outcome or show a favorable cost-benefit ratio.

Insulin bolus calculators and advisory systems
Insulin dependent patients routinely require calculation of insulin dosages based on their consumption
of carbohydrates. The bolus doses are based on multiple factors like previous insulin dose, BG
measurements, approximate calorie count efc. This may be a challenging task and could lead to errors in
judgement and calculation, eventually leading to adverse glycemic events. Various applications are
being developed to simplify this daunting task. Various research groups have used the case-based
reasoning methodology for these calculations which has proved to be a safe decision tool. Some studies
have also shown that complimenting this system to an AP leads to an improvement in glycemic control
[62,63]. Since the cause of hyperglycemia in ICU is multifactorial, probably a combination of an AP with
case-based methodology may be of help as glucose excursions could be treated in a more standardized
way with better control.

MD-Logic controller, developed on the FL systems, have shown to provide superior glycemic control
with fewer nocturnal hypoglycemic episodes as compared to insulin pump treatment[49]. However, it
still needs to be validated in ICU patients.

Software based algorithms for insulin dosing

Software based algorithms have been developed to determine insulin dosage depending on the BG
levels. These programs, although more complicated than the paper-based protocols, can reduce errors
and improve adherence. The simplest of these are based on PID models. Devices based on this model
titrate insulin administration based on the previous BG values and predicting the changes in glucose
value for a given insulin dose using a dynamic multiplier response to insulin sensitivity. The
advantages of this model include the need for minimal patient related information for initiation and its
ability to provide real-time dose adjustments. However, this model necessitates multiple blood
sampling, which may be up to 18 times per day for BG measurements[64,65].

A more complex modification of software is Glucose Regulation for Intensive Care Patients which not
only takes into account the BG values and insulin infusion rates but also includes the change in these
values over time. This may increase its effectiveness and may potentially reduce overtreatment and
hence, hypoglycemic episodes[66,67].

The most recent algorithms are classified as model predictive controls, which not only include insulin
sensitivity and dextrose administration but also include several patient-specific parameters like their
age and diabetes status. Based on these factors, these algorithms try to predict the patient’s response to
hyperglycemia and insulin therapy and adjust the insulin dose accordingly. As the number of
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parameters required to be entered at the time of initiation are more, the devices based on these
algorithms are more complicated and time consuming but they have advantages of increased accuracy,
significantly reduced need for repeated blood sampling and may offer a more individualized insulin
therapy[68-70].

CGM regulated insulin infusion system

Newer technologies like CGM which have been validated in non-critically ill patients are now
increasingly been used with increased accuracy in ICU patients. Integration of these CGM devices with
automated insulin suspension with Al algorithms (Basal-IQ™ technology) have been approved by US-
FDA. Use of these predictive low-glucose suspend (PLGS) algorithms offer clinical advantage over the
more conventional threshold suspend systems which stop insulin only when the predefined threshold
of glucose is breached. Glucose values are obtained by the integrated CGM device (Dexcom G6™) and
the Basal-IQ™ has the ability to predict when the glucose value is going to drop below the predefined
level and it stops the insulin infusion[71]. Control-IQ is a more advanced hybrid closed-loop system
which also uses activity and sleep settings to adjust the insulin requirements. Basal-IQ™ and Control-
IQ™ algorithms can predict hypoglycemic events up to 30 minutes in advance and hence, can titrate the
insulin dose accordingly.

Integration of CGM with an automated insulin suspension has shown to reduce the frequency and
duration of hypoglycaemia with a reported relative risk reduction of 45%[72]. This effect has been
shown to exist across different age groups, and is persistent over multiple weeks with real-world use. A
large randomized crossover trial comparing the PLGS with sensor-augmented insulin pump showed
31% reduction in time spent in hypoglycemia (< 70 mg/dL) with no increase in incidence of rebound
hyperglycemia[73]. It may be suggested that, use of this technology may be feasible and effective for
patients with difficult to control DM and those at higher risk for developing hypoglycemia[72].

Risk and patient stratification

Diabetes is a chronic disease associated with many complications. Even though most of the complic-
ations develop over a period of time, diabetic patients are also prone to develop acute life-threatening
complications like nosocomial infections, acute kidney injury and even cardiovascular complications. Al
using deep-learning techniques have been able to produce algorithms which are able to predict long-
term micro-angiopathic complications like diabetic retinopathy, diabetic foot, diabetic neuropathy and
diabetic nephropathy, with reasonable accuracy[74-77]. Role of Al in predicting the development of
macro-angiopathic complications like acute myocardial infarction has also been assessed but there is a
dearth of data regarding its role in predicting other acute complications, especially in critically ill
patients[78].

Al has been used effectively to determine patients at risk for developing sepsis and life-threatening
nosocomial infections like catheter related blood stream infections and Clostridium difficile infections and
also to predict which ward patients may deteriorate and require ICU admission. However, such models
currently do not exist specifically for diabetes patients[13,79-81].

A few studies have also used Al in predicting mortality in critically ill diabetes patients. In their
study, Ye et al[82] using the MIMIC-III database, reported that Al using CNN was highly accurate in
predicting mortality in critically ill diabetes patients with an area under the curve (AUC) of 0.97. Using
the same MIMIC-III database, Anand et al[83] developed simple predictive tools with Al, to predict
mortality in critically ill diabetics. Their models could achieve AUCs of 0.787 and 0.785 to predict
mortality. However, these models need to be compared to more widely used and validated models for
mortality prediction in ICU patients like acute physiology and chronic health evaluation and sequential
organ failure and assessment scores.

Coronavirus disease critical care

The recent pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has put an
unprecedented strain on the healthcare with enhanced need for infection control and patient isolation.
Separate coronavirus disease 2019 (COVID-19) ICUs had to be developed with negative pressure
chambers with treating staff wearing personal protection equipment at all times. Diabetes is one of the
most common comorbidities among COVID-19 patients. Diabetic patients developing COVID-19 are at
higher risk for requiring ICU admission and have poorer outcomes. The need for personal protection
and risk of transmission of infection has put immense pressure on already limited clinical workforce. In
such a scenario, labour intensive work like frequent BG monitoring and insulin dose adjustments may
get seriously hampered. Al may be especially helpful by reducing the burden on the healthcare workers
(HCWs) and reducing their risk of exposure.

Computerized algorithms, automated closed loop systems and remote monitoring may all be used
effectively to manage critically ill COVID-19 patients. CGM devices are capable of continuous BG
tracking enabling real-time monitoring of BG levels while reducing the need for bedside monitoring,
thereby reducing the risk of exposure for the HCWs. The efficacy and safety of CGM in managing
critically ill COVID-19 patients has been tested and verified and it has been reported to reduce the need
for bedside BG testing by up to 71%. In addition, the efficacy of CGM devices was not significantly
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affected by presence of fever, hypoxemia, need for vasopressors, acidosis or with use of corticosteroid or
parenteral nutrition[84-86]. Based on this, US-FDA has allowed the use of CGM in COVID-19 ICUs to
reduce the exposure of HCWs[87].

Al based devices have the potential to improve patient care and outcomes by providing a better
glucose control without increasing the nursing workload and avoiding risk of transmission of infection.
Hence, it is recommended to prefer CGM to reduce the need for frequent nurse contact for patients with
active COVID-19 infection[88]. Moreover, Al has also been instrumental in achieving glycemic control in
COVID-19 patient on extracorporeal membrane oxygenation support by using AP[89].

STRENGTHS OF Al

Al-based devices have the potential to improve glycemic control, reduce GV, increase the TITR, and
reduce episodes of hyper and hypoglycemia, thus providing comprehensive diabetes care. Al may
allow us to achieve a better and more individualized glycemic control taking into account specific
patient requirements as per their calorie intake, exercise and underlying comorbidities. In addition, Al
may be better suited to care for patients at risk for adverse effects and those with changing needs, like
those in critical care areas. It may enable HCWs to monitor their patients remotely with reduced need
for close contact thereby, reducing their workload and exposure to infective patients. By reducing the
need for frequent blood sampling and providing close glucose monitoring and insulin dose titration, Al-
based algorithms may increase patient safety and satisfaction.

LIMITATIONS OF Al

Healthcare applications of Al are rapidly increasing. However, it still has several limitations affecting its
widespread applicability (Table 5). Even though many Al applications have found acceptability in out-
patients and ward patients with diabetes, data regarding its safety and accuracy in critically ill patients
remains limited. As Al application is largely data-driven, involving collection of sensitive personal data,
it may have privacy issues leading to medico-legal problems. Lack of regulations, recommendations and
guidelines pertaining to use of Al further limit its applicability. These safety, liability and reliability
issues prevent widespread use of Al in critical care practice. In addition, challenges of integrating Al
into existing healthcare infrastructure and user acceptance also persist.

FUTURE DIRECTIONS

The future of healthcare development is in Al Its large-scale applicability requires widespread
availability, low cost and ease of use. In addition, Al needs to be adapted gradually in the existing
healthcare system and HCWs need to be trained not only to better utilize Al but also to be aware of how
to avoid any medico-legal issues arising from its application. Changes in the laws and regulations are
also required to safeguard patient’s interest and avoid any violation of patient’s privacy. With techno-
logical improvements in Al, the dosing algorithms for insulin delivery may become individualized for
closed-loop control of glycemia. Larger studies, evaluating their efficacy and safety, especially in
critically ill patients, along with standardization of Al algorithms and techniques need to be done to
improve the acceptability of Al

CONCLUSION

Many currently available devices and techniques which have proven their role in management of non-
critically ill patients, may soon be available for ICU patients, with improved accuracy. CGM is already
being recommended for use in critically ill COVID-19 patients and soon may be available for use in all
critically ill patients. Its integration with automated insulin suspension holds greater promise. Use of AP
may also provide a comprehensive glycemic control option. Al has the potential of reducing the
workload of HCWs, provide better glycemic control and prevent related complications, however, larger
RCTs may be required before we implement these techniques in our day-to-day critical care. Even
though presently Al might not be in its prime for managing critically ill diabetic patients, it is the future
of healthcare.
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Table 5 Limitations of artificial intelligence

Factors

Human factors
Technical factors
Data limitation
Design limitation

Ethical

Inhibition, lack of experience

Cost, availability and implementation

Lack of data in ICU patients, lack of large scale randomized trials

Devices tried in certain patient populations may not be applicable in ICU patients

Lack of guidelines

ICU: Intensive care unit.
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