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Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is an important public 
health concern. Early diagnosis of NAFLD and potential progression to 
nonalcoholic steatohepatitis (NASH), could reduce the further advance of the 
disease, and improve patient outcomes. Aiming to support patient diagnostic and 
predict specific outcomes, the interest in artificial intelligence (AI) methods in 
hepatology has dramatically increased, especially with the application of less-
invasive biomarkers. In this review, our objective was twofold: Firstly, we 
presented the most frequent blood biomarkers in NAFLD and NASH and 
secondly, we reviewed recent literature regarding the use of machine learning 
(ML) methods to predict NAFLD and NASH in large cohorts. Strikingly, these 
studies provide insights into ML application in NAFLD patients' prognostics and 
ranked blood biomarkers are able to provide a recognizable signature allowing 
cost-effective NAFLD prediction and also differentiating NASH patients. Future 
studies should consider the limitations in the current literature and expand the 
application of these algorithms in different populations, fortifying an already 
promising tool in medical science.
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Core Tip: The ability of machine learning approaches to process multiple variables, map linear and 
nonlinear interactions, ranking the most important features, in addition to the capability of building 
accurate prediction models, sets a future direction to its application in complex diseases such as 
nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Future studies should consider the 
limitations in the current literature and expand the application of these algorithms in different populations, 
fortifying an already promising tool in medical science.
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INTRODUCTION
Nonalcoholic fatty liver disease (NAFLD) affects an expressive part of the population worldwide and is 
a major cause of liver-disease related morbidity[1]. The most common cause of death in NAFLD patients 
is related to cardiovascular diseases, which is partially explained by the presence of metabolic 
comorbidities, such as obesity, type 2 diabetes, dyslipidemia, and hypertension[2]. Recently, there was 
concordance that the term NAFLD cannot represent the multisystemic metabolic disruption associated 
with the disease, resulting in the novel term MAFLD - metabolic associated fatty liver disease. 
Moreover, MAFLD considers the hepatic manifestation of a multimodal disease that is heterogeneous in 
its causes, symptoms, progression, and outcomes[3]. Nevertheless, the progression of liver fibrosis could 
lead to Nonalcoholic steatohepatitis (NASH), a condition characterized by histological lobular inflam-
mation and hepatocyte ballooning[2]. Hence, detecting possible elements related to a worse prognosis in 
these conditions in the early stages of the disease could improve the treatment and its efficiency. 
Considering the significance of advanced fibrosis in NAFLD patients, differentiating NASH from 
steatosis is vital, reinforcing the need for cost-effective methods for risk stratification in this population
[4]. Although liver biopsy is widely considered the gold standard in liver diseases investigation, it is 
also invasive, expensive, and prone to sampling error. In this context, the use of non-invasive bio-
markers gains considerable importance[5].

The interest in artificial intelligence (AI) methods in different medical specialties, including 
hepatology, has dramatically increased during the last decade[6]. Advances in technology and data 
acquisition have simplified the collection and storage of large data sets with long time series, leading to 
increasingly varied fields of application, including biomedical areas. In this context, large-volume data 
mining evaluations had been showing promising results in recent clinical studies using machine 
learning methods[7-9]. More specifically, supervised machine learning (SML), can automatically detect 
patterns in existing training data and then use the detected patterns to predict future data[6]. Rather 
than considering differences between groups (as traditional statistical comparisons do), SML methods 
address individual differences, classifying individuals in ways that contribute to the clinical decision-
making process.

The commonly late diagnosis of liver disorders contributes to suboptimal treatment and poor results. 
More specifically, as the prevalence of NAFLD is an important public health concern, early diagnosis of 
NAFLD and potential progression to NASH, could reduce the further advance of the disease, and 
improve patient outcomes. Using SML methods allows for collecting patient data and identifying their 
profile regarding the risk of developing comorbidities associated with liver damage, such as the 
development of metabolic syndrome or even predicting the patient's prognosis. Several recent reviews 
highlighted the application of artificial intelligence in hepatology, while broadly discussing how 
different approaches present potential applications in several areas of hepatology[10-12]. However, 
specific discussion of machine learning approaches using cost-effective biomarkers could help to guide 
future studies towards the improvement of NAFLD diagnosis. Therefore, the objective of this mini-
review is to discuss the application of SML approaches using biomarkers for the diagnosis of NAFLD 
and the prediction of NASH presence.

https://www.wjgnet.com/2644-3236/full/v3/i3/80.htm
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BLOOD BIOMARKERS IN NAFLD
Biomarkers are a "defined characteristic that is measured as an indicator of normal biological processes, 
pathogenic processes or responses to an exposure or intervention”. This includes a plethora of possible 
assessments commonly investigated in NAFLD, such as blood profile, imaging (histo-
logical/radiographic) exams, specific anthropometric characteristics (body composition), and also phase 
angle derived from bioimpedance[13]. Noteworthy, blood biomarkers are a less invasive approach from 
a biological point of view and could complement imaging techniques to improve disease monitoring. In 
clinical settings, liver biopsy is the diagnostic gold standard for NAFLD, allowing the assessment of 
lipid content, inflammation, hepatocellular ballooning, and fibrotic alterations, which can also 
determine NASH diagnostics[14]. However, non-invasive techniques provide limited inflammation and 
hepatocellular ballooning determination, making objective biomarker panels for the assessment and 
monitoring of NAFLD or NASH a current challenge[14,15].

Nevertheless, abnormal liver function is often initially identified by nonspecific hepatocellular 
damage through elevations in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in 
addition to alkaline phosphatase and gamma-glutamyl transferase (GGT)[16]. However, ALT and AST 
can present normal levels while GGT can present a 1.5 - fold elevation, and this response does not reflect 
hepatic inflammation, fibrosis, or patient metabolic risks[17,18]. Recently, cytokeratin (CK)-18 gained 
attention as a more specific approach for hepatocyte apoptosis since CK-18 is a major intermediate 
filament protein cleaved by caspases creating fragments during the apoptotic processes[19]. Assays of 
CK-18 fragments provide moderate accuracy due to high variability between cut-offs and respective 
diagnostic accuracy among studies[19]. More specifically, M30 measures caspase-cleaved CK18 
produced during apoptosis, and M65 measures the total levels of (both cleaved and intact) CK18[20]. 
The CK-18 fragments could independently predict NAFLD severity and detect the presence of NASH 
with a specificity close to 90%[21,22]. In a large and heterogeneous cohort, the blood concentration of 
CK-18 fragments of patients with NAFLD was higher when compared with healthy volunteers and 
correlated to several biomarkers of liver damage and steatosis[22]. Moreover, several "biomarker 
panels" to grade NAFLD patients’ steatosis and fibrosis through specific scores comprise different 
biomarker combinations, summarized in Table 1. Notably, the FibroTest, Fibrometer, Hepascore, and 
Enhanced Liver Fibrosis scores are patented and commercially available panels. Nevertheless, most of the 
biomarker panels for the diagnosis of NAFLD and NASH, lack validation in specific cohorts, such as 
bariatric patients and patients with varying ethnicities[23,24]. Further, recent evidence reinforces that a 
combination of different commonly assessed blood-based biomarkers in addition to direct fibrogenesis 
markers can provide higher diagnostic accuracy in detecting advanced fibrosis when compared to 
current protocols. The study of Vilar-Gomez et al[25], reviewed the diagnostic accuracy of several blood-
based biomarkers, suggesting an algorithm to diagnose NAFLD patients at risk of fibrosis development. 
Additionally, the European guidelines recommend the combination of different tests to assess NAFLD, 
stating that the Fibrometer is a non-invasive alternative to liver biopsy, albeit the guidelines are not clear 
regarding which specific version of the FibroMeter is preferred[26]. Also, the commercially available 
biomarker panels and other complementary methods are not accessible for most health services, 
justifying the search for alternative approaches[25].

The validation study by Wu et al[27] compared different panels of biomarkers in 417 NAFLD patients 
(156 with advanced fibrosis), showing that when predicting liver fibrosis scores Fibrosis-4 (FIB-4), 
NAFLD Fibrosis Score (NFS), AST to Platelet Ratio Index (APRI) and BARD score (BARD), it is possible 
to obtain a prediction of moderate fibrosis based on the receptor operator area under the curve 
(AUROC; 0.724, 0.671 and 0.609, respectively). The authors argued that FIB-4 and NFS performed better 
compared to both APRI and BARD scores, which resulted in high false-positive rates. Importantly, this 
study evaluated NAFLD patients based on the new definition of MAFLD, highlighting that the invest-
igated biomarker panels provided poor performance in this setting[27]. In conclusion, the fact that the 
aforementioned biomarkers come from different types of procedures makes it hard for human experts 
to jointly analyze all this information, which motivates the use of machine learning techniques. These 
models can work with different types of data and discovering the relationship between them to obtain a 
better prediction.

ARTIFICIAL INTELLIGENCE APPLICATION IN NAFLD
Briefly, AI is an umbrella term, referring to a structured utilization of software and algorithms that 
analyze a wide range of data, ultimately simulating human cognition and intelligence[6]. Machine 
learning (ML) is one of the subdisciplines of AI, focusing on learning from data and associating specific 
patterns with different outcomes. An important advantage of ML techniques is that they allow the 
modeling of complex problems that depend on multiple input variables, justifying the application of ML 
methods to potentially fill several gaps in the study of complex diseases, such as NAFLD[6]. This is 
especially important in the case of NAFLD, which is closely related to metabolic disturbances associated 
with obesity and metabolic syndrome[28]. Given its complexity, NAFLD presents in different forms, 
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Table 1 Blood biomarker panels for nonalcoholic fatty liver disease and nonalcoholic steatohepatitis

Blood biomarker panels for steatosis

Panel Patient Anthropometry Blood biomarkers

FLI - BMI, Waist circumference GGT and TG 

HSI Presence of DM BMI AST:ASL

Steatotest Sex BMI ALT, GGT, TG, A2M, ApoA1, haptoglobin, 
bilirubin,cholesterol, and glucose

LAP Sex Waist circumference TG

ION Sex Waist to hip ratio ALT, TG

NAFLD LFS Presence of DM and MS - AST:ALT, Insulin

Blood biomarker panels for fibrosis

Panel Patient Anthropometry Blood biomarkers

APRI - - Platelet count, AST

FIB-4 Age - Platelet count, AST, ALT

FibroTest Age, sex BMI GGT, A2M, ApoA1, haptoglobin, and total bilirubin

Fibrometer Age Body weight Platelet count, AST, ALT, glucose, ferritin 

ELF - - Hyaluronic acid, PIIINP and TIMP-1

Hepascore Age, sex - GGT, Hyaluronic acid, PIIINP and TIMP-1

BARD Presence of DM BMI AST:ALT

NFS Age, sex, Presence of DM - Platelet count, AST:ALT, Albumin

A2M: Alpha-2-macroglobulin; ALT: alanine aminotransferase; ApoA1: Apolipoprotein A1; AST: Aspartate aminotransferase; BMI: body mass index; DM: 
Diabetes mellitus; GGT: gamma-glutamyl transpeptidase; MS: Metabolic syndrome; NAFLD: Nonalcoholic fatty liver disease; PIIINP: Amino-terminal 
propeptide of type III procollagen; TG: Triglycerides; TIMP1: tissue inhibitor of matrix metalloproteinases-1.

from simple asymptomatic lipid accumulation to symptomatic non-alcoholic steatohepatitis (NASH) 
characterized by several factors, including steatosis, hepatocellular ballooning, lobular inflammation, 
and often fibrosis[28]. Machine learning methods are becoming increasingly popular, which has also 
motivated an increase in the complexity of these models. Particularly, deep learning (DL) models, like 
convolutional neural networks (CNN), showed promising results in hepatology, especially with high-
resolution data such as images and spectrograms[29]. Likewise, CNN models encompass several layers 
that involve operations like convolution, pooling, and nonlinear activations, making their decisions 
difficult to understand. Therefore, they represent black-box models, as opposed to interpretable (white-
box) techniques, such as regression/decision trees and Bayesian networks[30,31]. Hence, ML could 
identify patients at risk and guide clinical treatments, whilst considering that the clinical manifestations 
of NAFLD appear in advanced disease status and the availability and cost of screening methods for the 
clinicians. Also, ML can help to rank and categorize specific biomarkers and help to elaborate specific 
"disease signatures", contributing not only to clinical diagnostics, but also provide mechanistic insights 
for the study of the disease and the development of specific treatments.

MACHINE LEARNING APPROACHES USING BLOOD BIOMARKERS IN HEPATOLOGY
As stated above, the interest in using AI approaches to support clinical decision-making processes in 
hepatology has increased, albeit current literature is still scarce. Table 2 summarizes the specific studies 
addressing NAFLD and NASH classification. Initially, the study of Sowa et al[32] showed no differences 
in the investigated biomarkers (ALT, AST, and apoptotic signaling) between patients with a fibrosis 
score of 1 or 2. However, combining these parameters using random forests (RF) reached 79% accuracy 
in fibrosis prediction with a sensitivity of more than 60% and specificity of 77%. Moreover, RF identified 
the cell death markers M30 and M65 as more important for the decision than the classic liver 
parameters. Similarly, Yip et al[33] built a model to predict steatosis in a study including 922 individuals 
with assessment for NAFLD. The four models developed presented good diagnostic precision for 
steatosis (AUROC was 0.87-0.9), albeit the authors claimed that the “NAFLD ridge score” offered the 
best balance between efficacy and simplicity. This model included six parameters (serum triglycerides, 
alanine aminotransferase, high-density lipoprotein cholesterol, hemoglobin A1c, white cell count, and 
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Table 2 Machine learning studies in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis patients

Ref. Patients Investigated biomarker Model with best 
performance Results

Sowa et al
[32], 2013

126 patients Alanine aminotransferase; Aspartate aminotransferase; M30; M60; Hyaluronic 
acid

Randon forest 79% Accuracy in 
fibrosis prediction; 
60% sensitivity; 77% 
specificity

Yip et al
[33], 2017

922 patients Alanine aminotransferase; High-density lipoprotein cholesterol; Triglycerides; 
HbA1c; White blood cells; Hypertension

Ridge score 88% Accuracy in 
steatosis prediction; 
92% sensitivity; 90% 
specificity

Ma et al
[34], 2018

10.508 patients; 
2522 NAFLD 
patients

Age; Sex; Body mass index; Alanine aminotransferase; Aspartate aminotrans-
ferase; Alkaline phosphatase; Gamma-glutamyl transpeptidase; Triglycerides; 
Blood urea nitrogen; Bilirubin; Cholesterol; Creatinine; Fasting glucose; Uric 
acid

Bayesian network 
model

83% Accuracy in 
NAFLD prediction; 
68% sensitivity; 94% 
specificity

Canbay et 
al[35], 
2019

164 patients; 122 
(validation)

Age; HbA1c; Gamma-glutamyl transpeptidase; M30; Adiponectin Logistic 
regression

70% Accuracy in 
separate NAFLD and 
NASH

Liu et al
[36], 2021

15.315 
patients5878 with 
NAFLD 

Body mass index; Waist circumference; Waist-to-height ratio; Alanine 
aminotransferase; Fasting blood glucose; Gamma-glutamyl transpeptidase; 
Very-low-density lipoprotein cholesterol; Low-density lipoprotein cholesterol; 
High-density lipoprotein cholesterol; Systolic blood pressure; Alkaline 
phosphatase; Diastolic blood pressure

XGBoost model 79% Accuracy in 
NAFLD prediction; 
61% sensitivity; 90% 
specificity

Pei et al
[37], 2021

3.419 patients; 
845 with fat liver 
diseases

Age; Height; Hemoglobin; Aspartate aminotransferase; Glucose; Uric acid; 
Low-density lipoprotein; Alpha-fetoprotein; Triglycerides; High-density 
lipoprotein; Carcinoembryonic antigen

XGBoost model 94% accuracy of 
prediction; 90% 
sensitivity; 95% 
specificity

NAFLD: Nonalcoholic fatty liver disease; XGBoost: Extreme gradient boosting.

the presence of hypertension) that are routinely available for individuals undergoing medical checkups, 
and it does not require anthropometric measures, which are not always available. Although there is 
evident feasibility of the NAFLD ridge score to screen individuals, it still needs additional validation in 
other ethnicities. The study of Ma et al[34], investigated the predictive power for NAFLD of eleven 
machine learning techniques, demonstrating that the Bayesian network model had the best 
performance, revealing that the five most discriminating features (based on information gain scores) to 
be weight, TG, ALT, GGT, and serum uric acid levels. Thus, in practice, users could focus on these 
features. Furthermore, Canbay et al[35] compared different scores for the non-invasive detection of 
NASH. Briefly, using an ensemble feature selection approach for biomarker selection, the authors built a 
logistic regression model and validated in an independent study cohort of 122 patients. The logistic 
regression model generated from age, GGT, hemoglobin A1c, M30, and adiponectin had a strong 
correlation with the non-alcoholic steatohepatitis activity score and demonstrated reasonable 
performance to discriminate between NAFL and NASH. Likewise, Liu et al[36] performed a retro-
spective cross-sectional study on 15315 Chinese subjects, where 5878 patients presented NAFLD. The 
biomarker ranking indicated the body mass index as the most valuable indicator to predict NAFLD, 
followed by waist circumference, triglycerides, waist-to-height ratio, and alanine aminotransferase. 
Notably, among seven machine learning models, the extreme gradient boosting (XGBoost) model 
demonstrated the best prediction ability. Similarly, the XGBoost also presented the highest AUC (0.93), 
accuracy (0.94), and sensitivity value (0.90) in the study of Pei et al[37], comparing different models for 
predicting fatty liver Disease risk in 3419 participants, of which 845 had diagnostic confirmation. 
Importantly, regarding the biomarkers, uric acid, body mass index, and triglycerides were the most 
decisive risk factors for the ML models, whilst high-density lipoprotein and hemoglobin also counted as 
important risk factors for prediction. Strikingly, these studies provide insights into ML application in a 
complex context such as NAFLD patients' prognostics. Notably, while there are investigations using AI 
techniques and common biomarkers to predict NAFLD and NASH, approaches using AI and novel 
proposed biomarkers are scarce. For instance, a recent meta-analysis showed that CK-18 is the only 
marker for NASH presenting external validation, with an AUROC of 0.82[38]. Conversely, a large study 
conducted by the multicenter NASH Clinical Research Network demonstrated that the addition of 
routinely available clinical-laboratory parameters to CK-18 measurement did not significantly improve 
its diagnostic performance[22]. However, it remains unknown whether the use of AI techniques 
combining different biomarkers in a large and diverse cohort could provide different results. Taken 
together, the data suggests that ranked blood biomarkers can provide a recognizable signature allowing 
cost-effective NAFLD prediction and also differentiating NASH patients.



Carteri RB et al. ML and blood biomarkers

AIG https://www.wjgnet.com 85 June 28, 2022 Volume 3 Issue 3

CURRENT CHALLENGES IN SML APPROACHES IN HEPATOLOGY
The term "AI-Chasm" describes the gap between developing and testing an algorithm and the definitive 
application of the algorithm in clinical practice[39]. Unequivocally, the AI application in medical 
sciences is auspicious, and current literature is shading light on a plethora of potential applications; 
however, many challenges for SML approaches using biomarkers in hepatology still await scrutiny.

Firstly, the collection, curation, and preprocessing of patient data is a major concern, since SML 
methods are data-driven[10]. Notably, the cited studies in this mini-review provide relatively small data 
from specific populations which could lead to sampling bias whilst limiting the generalization of the 
obtained results. Further, data collection should be standardized and precise, but should also be 
monitored for privacy and data security breaches. Secondly, as recently discussed by Quinn et al[40], 
one of the main aspects of concern in future studies is the understanding that transdisciplinary 
approaches require cooperation to build a conceptually appropriate framework while also focusing on 
evaluating the performance of SML algorithms in terms of clinical endpoints and not just predictive 
accuracy. In addition to these technical challenges, there is also an increasing demand for transparency 
concerning the predictions of these models, especially in areas that have no computing background. For 
instance, healthcare professionals and other stakeholders that can benefit from these solutions are still 
reluctant to the idea of employing these methods, evidencing the necessity of educational programs 
aimed to explicit information about the involved decision processes. Nevertheless, the field of 
explainable AI has emerged to address these issues, with the purpose of creating ML techniques that 
produce explainable models while maintaining a high level of learning performance, enabling humans 
to understand and trust the predictions to support their decisions[41].

CONCLUSION
Recent advances in the field of biosciences applying machine learning algorithms resulted in promising 
results for the diagnosis of disease and biomarker study. The main idea is that SML could overcome the 
limitations of common statistical techniques. For instance, SML identifies data patterns for classification, 
considering multiple features at once, allowing the ranking and selection of the available blood 
biomarkers related to disease pathogenesis for the prediction of NAFLD or NASH, minimizing potential 
errors between the predicted values and the real data. Although the cited studies provide promising 
results, there are specific limitations that future studies should reduce. For example, most of the studies 
involved the Chinese population, and these algorithms still need additional validation in heterogeneous 
populations. The strong association between NAFLD and metabolic syndrome, obesity, and alcohol 
consumption may be a confounding factor in previous studies, and the application of these methods in 
diabetic patients with and without NAFLD could shed light on the influence of specific treatments on 
the performance of these ML methods. Nevertheless, the ability of ML approaches to process multiple 
variables, map linear and nonlinear interactions, and rank the most important features, in addition to 
the capability of building accurate prediction models, sets a future direction to its application in 
complex diseases, including NAFLD and NASH. Future studies should consider the limitations in the 
current literature and expand the application of these algorithms in different populations, fortifying an 
already promising tool in medical science.
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Abstract
While cholangiocarcinoma represents only about 3% of all gastrointestinal 
tumors, it has a dismal survival rate, usually because it is diagnosed at a late 
stage. The utilization of Artificial Intelligence (AI) in medicine in general, and in 
gastroenterology has made gigantic steps. However, the application of AI for 
biliary disease, in particular for cholangiocarcinoma, has been sub-optimal. The 
use of AI in combination with clinical data, cross-sectional imaging (computed 
tomography, magnetic resonance imaging) and endoscopy (endoscopic 
ultrasound and cholangioscopy) has the potential to significantly improve early 
diagnosis and the choice of optimal therapeutic options, leading to a trans-
formation in the prognosis of this feared disease. In this review we summarize the 
current knowledge on the use of AI for the diagnosis and management of cholan-
giocarcinoma and point to future directions in the field.
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Core Tip: Artificial intelligence (AI) aided by multiple imaging modalities is accurate and effective for 
diagnosis and characterization of biliary masses. The advancement and incorporation of imaging into 
artificial intelligence will help to decrease delay in diagnosis of cholangiocarcinoma and potentially 
decrease mortality. This review examines studies showing that AI can assist in real-time diagnosis of 
cholangiocarcinoma and predict outcomes of treatment. Current data suggests that AI will soon become an 
indispensable part of the armamentarium for the management of cholangiocarcinoma and other biliary 
diseases.

Citation: Brenner AR, Laoveeravat P, Carey PJ, Joiner D, Mardini SH, Jovani M. Artificial intelligence using 
advanced imaging techniques and cholangiocarcinoma: Recent advances and future direction. Artif Intell 
Gastroenterol 2022; 3(3): 88-95
URL: https://www.wjgnet.com/2644-3236/full/v3/i3/88.htm
DOI: https://dx.doi.org/10.35712/aig.v3.i3.88

INTRODUCTION
The concept of AI is best explained as a computer program that possesses the ability to perform 
functions such as data analysis, learning, and problem solving. Medical artificial intelligence involves 
the development of AI programs to assist in diagnosis and prognosis, therapeutic decision making, drug 
development, as well as development and data mining from the electronic medical records (EMR)[1-3]. 
In fact, artificial intelligence is utilized in almost every field of medicine[4-8], including radiology[9], 
gastroenterology[10], ophthalmology[11], cardiology[12], and surgery[13].

There are many different types of AI. The foundation of the most used form, Artificial Neural 
Networks (ANN), takes inspiration from the human nervous system[1,3]. The neurons of ANNs are 
individual computer processors that interconnect and possess the capability of processing and 
analyzing large amounts of data[1]. ANNs are composed of links of multiple layers of these ‘neurons’, 
an input layer linked to multiple hidden layers, which are in turn linked to an output layer[3]. All the 
layers in an ANN communicate in a feed forward manner with the ability to ‘learn’ by repeatedly 
adjusting their links[2]. Thus, one of the attractive qualities of ANNs is in their analytical and pattern 
recognition ability. One of the first applications of ANNs in medicine was to aid in the diagnosis of 
myocardial infarction[14]. Since that time, ANNs have been widely used1. Support Vector Machines 
(SVM) is another type of machine learning which uses data analysis algorithms for classification and 
regression analysis[15]. SVMs are widely used in drug development and cancer detection[16,17].

Convolutional neural networks (CNN) are a type of deep learning network, a network that 
incorporates three or more layers, that is commonly employed in medicine, in particular because of its 
easy applicability to imaging[18]. Convolutional neural networks are multi-layer analyses which work 
by taking an image (e.g. from CT, MRI, US) and extracting layers or features at each step of the process. 
These features are then characterized further by complex mathematical equations to break them down 
and compare them to similar images, leading to pattern recognition[18]. CNNs also can place weight on 
the value of a specific feature, thus allowing for the presence or absence of a given variable to haven a 
greater influence on the overall outcome.

The application of AI has grown at a rapid pace in all fields of medicine, and gastroenterology is no 
exception[19]. AI has been utilized in gastroenterology to identify esophageal neoplasms[20,21], 
diagnosis of Helicobacter pylori[22], predict gastric bleeding in patients on anti-thrombotics[23], predict 
the length of hospitalization for acute pancreatitis[24], differentiate between chronic pancreatitis and 
pancreatic cancer[25], stratify the need for ERCP[26], and characterization of colonic polyps[27]. These 
and many other ongoing developments will significantly impact the future of both diagnostic and 
therapeutic gastroenterology. One area of that has been somewhat neglected in the application of AI in 
gastroenterology is that of biliary disease, in particular cholangiocarcinoma. In this paper, we will 
review the current knowledge of the application of artificial intelligence in cholangiocarcinoma and 
point to the future directions in the field.

CHOLANGIOCARCINOMA
Cholangiocarcinoma (CCA) is a malignant neoplasm that can arise from anywhere along the biliary tree, 
including within the liver parenchyma, and is classified as distal, perihilar or intrahepatic[28]. Risk 
factors for CCA usually include long-term inflammatory states, like those associated with primary 
sclerosing cholangitis (PSC) and helminthic infection, or the continued presence of choledocholithiasis, 
but the majority for cases are idiopathic[29]. Cholangiocarcinoma accounts for about 3% of all 
gastrointestinal tumors and 10%-15% of hepatobiliary tumors[30]. Although rare, CCA has a very poor 
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prognosis, with 5-year survival rates following surgery rarely exceeding 35%[21]. Additionally, CCA 
incidence and mortality rates are increasing worldwide[31,32]. CCA is usually detected late in the 
disease stage and found incidentally due to poor screening methods for early detection[32]. Early 
diagnosis is relatively rare, limiting the possibility of curative surgery to < 30% of patients[33]. 
Furthermore, even among these, about 20%-50% of patients deemed candidates for resection via 
preoperative evaluation are found to have unresectable disease burden during surgery[34,35].

Given the importance of assessing disease burden, staging and location in determining a patient’s 
treatment plan, it is imperative to have proper preoperative imaging in CCA[36]. While pathological 
examination remains the gold standard of diagnosis, grading and staging for CCA, advancements in 
imaging and detection of biomarkers have paved the way for further preoperative predictability of 
malignancy type and responsiveness to therapies. These advancements have allowed for the 
incorporation of AI into the sphere of cholangiocarcinoma for a more accurate and personalized 
management of the disease[37,38].

ARTICLE IDENTIFICATION PROCESS
The article search process was conducted in Medline and Embase[JM1]. Initial search was using 
different combinations of keywords such as “cholangiocarcinoma”, “biliary disease”, “cholangioscopy”, 
“artificial intelligence”, “artificial neural networks” and “convolutional neural networks”. Abstracts of 
major conferences, such as Digestive Disease Week and United European Gastroenterology Week were 
also reviewed. Finally, a comprehensive search on clinicaltrial.gov was also conducted using the same 
keywords to search for active clinical trials involving cholangiocarcinoma and artificial intelligence.

ARTIFICIAL INTELLIGENCE IN BILIARY DISEASES AND CHOLANGIOCARCINOMA
Artificial intelligence has been employed to advance the classification and detection of cholangiocar-
cinoma by aiding in creating a histopathologic database[39] and characterizing bile acid assays to better 
predict malignancy[40]. The use of AI to optimize the predictive value of multivariable models, and in 
improving the diagnostic yield of cross-sectional imaging and endoscopy has been rapidly expanding. 
Table 1 summarizes currently available studies.

Use of artificial intelligence in aiding the predictive abilities of multivariable models
Artificial Intelligence models have been successfully used to improve the predictive abilities of 
multivariable models both in the pre-interventional diagnostic phase, as well as in post-operative or 
post-procedural outcomes in CCA patients. Many of these studies has utilized the area under the curve 
(AUC), the ability of a test to diagnose a differentiate a disease state from non-disease state, to assess the 
added benefit of the incorporation of AI in improving the effectiveness of multivariable models.

In the preoperative phase, multiple studies have used AI/radiographic model to predict lymph node 
metastasis (LNM) in CCA. One study developed and validated a radiographic model for LNM detection 
in intrahepatic cholangiocarcinoma (ICC) based on computed tomography (CT) imaging features 
combined with CA19-9 values[41]. In this study, an acceptable calibration and discrimination was 
observed in the primary study cohort (AUC 0.8462) and in a validation cohort (AUC 0.8921)[41]. 
Another study developed support vector machine model utilizing magnetic resonance imaging (MRI) 
imaging to preoperatively evaluate for LNM in ICC. This study found that an SVM model combining 
CA19-9 levels and select MRI features resulted in better predictive capabilities compared to a model 
based on imaging features alone (AUC of 0.842 vs 0.788, P = 0.0219)[42].

One retrospective study was able to use pre-operative MRI combined with post-operative immuno-
histochemical results to predict early recurrence of ICC after partial hepatectomy[43]. The model that 
combined AI with pathology and imaging features had a higher AUC (0.949 vs 0.889, P = 0.247) 
compared to the model that included only the pathology and imaging features, as well as better 
sensitivity (0.938 vs 0.875), and specificity (0.839 vs 0.774)[43]. In another study, inclusion of AI 
improved the ability of a multivariable model to predict early occlusion of bilateral plastic stents placed 
in patients with inoperable ICC[44]. In this study, the ANN built with the multivariable model was 
compared to a multivariable logistic regression model alone that included age, sex, stent diameter, 
cancer stage, and presence of liver metastasis[44]. Overall, 288 patients were analyzed, and the ANN 
model outperformed the logistic regression model (AUC 0.9647 vs 0.8763, P = 0.021)[44]. Artificial 
intelligence has also been used to identify which serum biomarkers can have higher diagnostic power 
for CCA[45]. An ANN model analyzed eight biochemical markers of CCA in 85 subjects with CCA and 
in 82 controls[45]. Alkaline phosphatase and CCA-associated carbohydrate antigen had a higher 
predictive value for the distinguishing CCA patients from controls[45]. Finally, in a recent study, Müller 
et al[46] developed an ANN utilizing known risk factors for ICC to predict survival in ICC patients. 
Using 293 patients, the ANN trained model achieved a higher AUC in predicting the 1 year survival 
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Table 1 Summary of studies assessing computed tomography, magnetic resonance, and endoscopic ultrasound using artificial 
intelligence-based approach for pancreatic cancer

Ref. Year Type of 
AI

Imaging 
modality

Training 
(#) Testing (#) AUC Sensitivity (%) Specificity (%)

Matake et al[47], 
2006

2006 ANN CT 120 - 
patients

120 - 
patients

0.934 81.9 94.4

Ji et al[48], 2019 2019 ANN CT 177 - 
patients

70 - patients 0.961 72 76.2

Logeswaran[49], 
2009 

2009 MLP MRI 120 - images 593 - 
images

N/A N/A

0.9 (LMN) 85.8 (LMN) 81.8 (LMN)Yang et al[37], 2020 2020 ANN MRI 80 - patients 20 - patients

0.8 (differen-
tiation)

73.2 (differen-
tiation)

68.8 (differen-
tiation)

Ghandour et al[51], 
2021

2021 CNN Cholangioscopy 254 - 
patients

95 - patients 0.86 0.81 0.91

Robles-Medrana et 
al[38], 2021 

2021 ML Cholangioscopy 1714 – 
images

198 - 
images

N/A 92 N/A

Pereira et al[50], 
2022 

2022 CNN Cholangioscopy 5180 - 
images

1295 - 
images

1 99.3 99.4

Pattanpairoj et al
[45], 2015 

2015 ANN Multivariate 85 - patients 22 - patients N/A 98.71 96.94

Shao et al[44], 2018 2018 ANN Multivariate 231 - 
patients

57 - patients 0.9544 N/A N/A

Ji et al[41], 2019 2019 N/A Multivariate 103 - 
patients

52 - patients 0.8462 86.8 76.3

Xu et al[42], 2019 2019 SVM Multivariate 106 - 
patients

42 - patients 0.842 89.36 57.63

Zhao et al[43], 2019 2019 N/A Multivariate 92 - patients 33 - patients 0.949 0.938 0.839

Müller et al[46], 
2021 

2021 ANN Multivariate 233 - 
patients

60 - patients 0.89 N/A N/A

ANN: Artificial neural network; MLP: Multi-layer perceptron; CNN: Convolutional neural network; ML: Machine learning; SVM: Support vector machine; 
CT: Computed tomography; MRI: Magnetic resonance imaging; N/A: Not applicable.

rates compared to one of the most commonly used scoring system, the Fudan score (0.89 vs 0.77, P = 
0.24). In all of these studies, the addition of AI to commonly used multivariable models significantly 
improved their predictive abilities, improving therefore the diagnostic and post-procedural manage-
ment of patient with suspected or diagnosed cholangiocarcinoma.

Use of AI in aiding cross-sectional imaging performance
Artificial Intelligence has been used to aid in the interpretation of cross-sectional imaging for nearly two 
decades. In a 2006 study, an artificial neural network applied to contrast-enhanced computed 
tomography (CE-CT) images helped differentiate four types of hepatic masses (intrahepatic peripheral 
cholangiocarcinoma, hepatocellular carcinoma, hemangioma, and metastatic lesions) from one-another
[47]. The study then employed radiologists to evaluate CT scans with and without the assistance of 
ANN. There was marked improvement in diagnosis the hepatic masses with assistance from ANN 
compared to traditional radiologic evaluation (AUC 0.934 vs 0.888, P = 0.02, respectively)[47]. Another 
CT-based study was designed to predict survival outcomes and LNM in biliary tract cancers, and CT 
images were taken from 177 subjects who had previously undergone surgery[48]. An ANN based on CT 
characteristics was then built to classify the subjects into high risk or low risk for lymph node metastasis
[48]. Patients who were classified as high risk based on the ANN model had a significantly lower 
survival rate compared to those classified as low risk [hazard ratio (HR) 3.37, 95%CI: 1.92, 5.91], 
underlying the importance of AI in improving prediction of disease course after treatment[48].

Artificial intelligence has also been used with MRI to improve its diagnostic/predictive power in 
several studies. One such study investigated the ability for an MRI based AI model to predict LNM in 
extrahepatic cholangiocarcinoma[37]. This was a proof-of-concept study to display the viability of a pre-
operative prediction of both LMN and degree of differentiation, which could influence treatment 
approach. Images from 100 subjects with CCA were analyzed for the degree of CCA differentiation and 
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lymph node metastasis. The AI model had an AUC of 0.9 (95%CI: 0.66, 1.0) for predicting LMN while 
the AUC for degree of differentiation was 0.80 (95%CI: 0.58, 0.97)[37]. In another study, an ANN model 
based on MRCP images was able to distinguish between patients with CCA from those without CCA
[49]. A total of 309 images were processed, 248 of which were normal and 61 were taken from patient 
with CCA. The ANN model achieved an accuracy of 94% for distinguishing between them. 
Furthermore, ANN achieved an accuracy of 88% in distinguishing between images of CCA and images 
of other common biliary diseases, such as cholecystitis, choledocholithiasis, PSC, and cholangitis[49].

Use of AI in aiding endoscopic evaluation of biliary diseases/cholangiocarcinoma
Artificial intelligence has also more recently been used to aid in endoscopic diagnosis of cholangiocar-
cinoma or other biliary diseases, even though most studies are currently in abstract form only. A study 
by Pereira et al[50] developed a CNN that differentiates biliary strictures as benign or malignant based 
on images from digital single operator cholangioscopy. After an evaluation of 6475 images from 85 
patients with indeterminate biliary strictures, the authors found a sensitivity of 99.3%, specificity of 
99.4%, and AUC of 1.00 for a correct diagnosis. In another study, currently available only as an abstract, 
the authors developed a CNN to detect abnormal biliary features via cholangioscopy images[51]. They 
defined abnormal features as presence of papillary mass, tortuous vessels, or ulcerations. Over 1000000 
images were from 528 patients were evaluated for the study. The CNN showed an AUC of 0.86 (95%CI: 
0.80, 0.92), sensitivity of 0.81 (95%CI: 0.0.72, 0.91), and specificity of 0.91 (95%CI: 0.86, 0.97)[51].  In 
another recent study, the utility of AI to perform real-time diagnosis of biliary strictures during cholan-
gioscopy was assessed. This model was built using 23 cholangioscopy videos and was then tested on 
known cases (20 live cholangioscopy and 20 videos of cholangioscopy) of malignant biliary strictures. It 
accurately predicted malignancy in every case[38]. These initial results suggests that introduction of AI 
into standard clinical practice could potentially decrease time to diagnosis of indeterminate biliary 
strictures and allow for better diagnostic accuracy.

Endoscopic ultrasound (EUS) in combination with AI has been used in the assessment of pancreatic 
disease and may be beneficial in assisting in real-time differentiation between pancreatic masses and 
other solid masses during endoscopy[52]. However, there has been limited use of AI during EUS 
evaluations for cholangiocarcinoma. One recent study developed an AI system to recognize standard 
stations of EUS for biliary duct evaluation. In this study, AI had comparable accuracy to that of expert 
endosonographers, and significantly improved the learning curve of trainees[53].

CHOLEDOCHOLITHIASIS
Artificial intelligence has also been useful for the study of possible risk factors for CCA, such as 
choledocholithiasis. Several studies have demonstrated that AI can be used to risk-stratify patients with 
possible choledocolithiasis and therefore aid in the decision-making of the need for ERCP[54,55]. One 
study showed that a machine learning model using pre-ERCP imaging, including US and CT, in 
addition to select demographic features and laboratory findings can achieve a sensitivity of 97.7% and 
specificity of 100% in identifying choledocholithiasis[55]. Another study found that an AI model outper-
formed ASGE guidelines for proper indication for an ERCP (AUC 0.79 vs 0.59, respectively)[54]. In 
addition, the use of AI would avoid the need for ERCP in 36% of cases who would have undergone the 
procedure according to the ASGE guidelines[54]. Once more, the addition of AI can help providers 
achieve an individualized management program for patients in daily clinical practice.

CONCLUSION
The diagnosis and staging of cholangiocarcinoma is challenging, leading to potential major non-curative 
surgeries and/or dismal survival rate because of late diagnosis and inadequate prediction of metastases 
or recurrence using standard diagnostic methods. The introduction of AI technologies to traditional 
cross-sectional imaging and endoscopy, can create a major shift in the diagnosis and management of 
CCA. As mentioned above, many studies have already incorporated AI with significant improvement 
over traditional clinical data. While most of these studies are retrospective in nature, and therefore 
provide relatively poor quality data, they are very encouraging.

In addition, new studies are currently ongoing in which AI technologies are used to diagnose and 
risk-stratify patients with cholangiocarcinoma. The Synergy-AI clinical trial for example, is a non-
interventional prospective observational study currently enrolling participants with cholangiocar-
cinoma, along with other malignancies. This trial is employing an Application Programming Interface to 
help match participants with personalized treatment protocols based on CT imaging, biomarkers, and 
laboratory results. In this setting, AI is expected to identify both the most cost effective, appropriate, and 
personalized treatment approach to each individual’s malignancy[56]. Considering that most hospitals 
have incorporated electronic medical records (EMR) for their patients, it is easy to see how AI can be 
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used to select different patient variables (biochemical, histological or cross-sectional imaging) and use 
them to help develop personalized management strategies which optimize outcomes. Combining 
biomarkers, genetic sequencing, and imaging through AI models could lead to new approaches to the 
diagnosis and treatment of cholangiocarcinoma, including decreasing the need for unnecessary invasive 
endoscopic procedures for procurement of biopsies, as well as help develop a more targeted approach 
for therapy[57]. While more research and fine tuning of current AI systems is needed before reaching 
this stage, the future of AI in the management of cholangiocarcinoma seems clearly within reach.
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