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Abstract
Esophageal cancer remains as one of the top ten causes of cancer-related death in 
the United States. The primary risk factor for esophageal adenocarcinoma is the 
presence of Barrett’s esophagus (BE). Currently, identification of early dysplasia 
in BE patients requires an experienced endoscopist performing a diagnostic 
endoscopy with random 4-quadrant biopsies taken every 1-2 cm using 
appropriate surveillance intervals. Currently, there is significant difficulty for 
endoscopists to distinguish different forms of dysplastic BE as well as early 
adenocarcinoma due to subtleties in mucosal texture and color. This obstacle 
makes taking multiple random biopsies necessary for appropriate surveillance 
and diagnosis. Recent advances in artificial intelligence (AI) can assist 
gastroenterologists in identifying areas of likely dysplasia within identified BE 
and perform targeted biopsies, thus decreasing procedure time, sedation time, 
and risk to the patient along with maximizing potential biopsy yield. Though 
using AI represents an exciting frontier in endoscopic medicine, recent studies are 
limited by selection bias, generalizability, and lack of robustness for universal use. 
Before AI can be reliably employed for BE in the future, these issues need to be 
fully addressed and tested in prospective, randomized trials. Only after that is 
achieved, will the benefit of AI in those with BE be fully realized.
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networks; Computer aided diagnosis; Endoscopy
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Core Tip: Screening and surveillance in patients with Barrett’s esophagus (BE) remain 
problematic in regards to accuracy and adherence. This occurs in spite of recom-
mendations and advances in endoscopic imaging. Artificial intelligence (AI) 
algorithms assist in endoscopic evaluation of BE by identifying potential targets for 
biopsy. This may occur by increasing endoscopic efficiency and diagnosing accuracy 
by decreasing procedure time. AI in BE has been developed by expert endoscopists and 
appear to perform similarly among them. At this point, the benefit of AI in BE may be 
for use by non-expert endoscopists and trainees to maximize BE endoscopic 
evaluation.

Citation: Chang K, Jackson CS, Vega KJ. Artificial intelligence in Barrett’s esophagus: A 
renaissance but not a reformation. Artif Intell Gastrointest Endosc 2020; 1(2): 28-32
URL: https://www.wjgnet.com/2689-7164/full/v1/i2/28.htm
DOI: https://dx.doi.org/10.37126/aige.v1.i2.28

INTRODUCTION
In 2020, the United States is estimated to record over 18000 new esophageal cancer 
cases and over 16000 deaths[1]. Furthermore, esophageal cancer remains in the top ten 
of cancers diagnosed and cause of cancer related death nationally. One common risk 
factor for esophageal adenocarcinoma (EAC) is the presence of Barrett’s esophagus 
(BE). Currently, identification of early dysplasia requires an experienced endoscopist 
performing a diagnostic endoscopy consisting of random 4-quadrant biopsies to be 
taken every 1-2 cm within appropriate surveillance intervals based on absence or 
presence of dysplasia seen in the random biopsies[2-5]. Unfortunately, adherence to this 
recommendation remains inconsistent, particularly with low-grade dysplasia. Its 
subtle appearance and discontinuous nature can make it difficult to accurately biopsy 
areas for tissue pathology to confirm or rule out the diagnosis. In addition, there is 
significant difficulty for endoscopists to distinguish BE with low-grade dysplasiafrom 
high-grade dysplasia (HGD) or early adenocarcinoma. To combat this, high-definition 
white light, narrow band imaging (NBI), probe-based confocal endomicroscopy 
(pCLE), volumetric laser endomicroscopy (VLE) and optical computed tomography 
among others have all been tested and employed an in attempt to increase biopsy yield 
for accurate diagnosis[6-9]. However, early EAC is often flat and difficult to distinguish 
from the surrounding non-dysplastic Barrett’s mucosa, even with these endoscopic 
advances. The rate-limiting step among of these technologies is that they are operator 
dependent, requiring hand-eye coordination to distinguish and biopsy suspicious 
areas, often-taking years to acquire the necessary skill set. Theoretically, artificial 
intelligence (AI) can assist in this by using methods of deep learning to identify and 
process - in real-time - endoscopic data that may not consciously appreciated by 
humans such as subtle changes in color and texture to aid in taking targeted biopsies 
rather than random biopsies.

There have been recent advances in the development and testing of AI and various 
machine learning (ML) algorithms to improve the ability to identify dysplastic and 
malignant mucosa. Previously, computer algorithms were trained to classify a 
patient’s likelihood for EAC based on symptoms or compare patient biopsy cDNA 
microarrays to known EAC samples. These methods drew us closer to accurately 
diagnosing dysplasia and malignant mucosa, but their sensitivities/specificities could 
not match the parameters outlined in American Society for Gastrointestinal 
Endoscopy’s Preservation and Incorporation of Valuable Endoscopic Innovations 
(PIVI) criteria for new technologies. PIVI criteria recommends that the sensitivity 
should be at least 0.90, specificity should be at least 0.80 and a negative predictive 
value of at least 0.98 for detecting HGD or BE[10]. AI makes use of several methods of 
ML. One commonly used method is the cognitive neural network (CNN). In CNN, 
each node (or “neuron”) is connected to other nodes in a way that mimics real human 
neural networking. Several layers of neurons can exist to make a single decision to call 
a grouping of pixels on an image either normal tissue or dysplasia. Multiple recent 
studies have already experimented with the capabilities of such computer-aided 
diagnosis (CAD) (Table 1). The advantages that AI appears to confer per-endoscopy is 
a removal of the inter-observer or intra-observer variability in identification of non-
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Table 1 Computer-aided diagnosis of Barrett’s esophagus

Ref. Year Study 
design Lesions Imaging 

modality
Image 
qualification

Teaching 
dataset 

Validation 
method Outcomes

Compared to 
expert/current 
standard

van der 
Sommen 
et al[11]

2016 Retrospective HGD, early 
EAC

WLI High quality, clear 
visible/absence of 
lesions 

100 images LOO Per-image 
SPEC/SENS: 
83%/83%; Per-
patient 
SPEC/SENS: 
86%/87%

Inferior

de Groof 
et al[12]

2019 Retrospective Non-
dysplastic 
and 
dysplastic 
BE

WLI 1280 × 1024 pixels 
– HD

60 images LOO Accuracy: 0.92; 
SENS: 0.95; SPEC: 
0.85

NA

Swager 
et al[13]

2017 Retrospective HGD, early 
EAC

VLE High quality image 
database

60 images LOO AUC: 0.95, 0.89, 
0.91

Superior

Ebigbo 
et al[15]

2020 Prospective Early EAC WLI 1350 × 1080 pixels 
and 1600 × 1200 
pixels – HD

129 images LOO Accuracy: 0.899; 
SENS: 0.837; SPEC: 
1.00

NA

AUC: Area under the curve; BE: Barrett’s esophagus; EAC: Esophageal adenocarcinoma; HD: High definition; HGD: High-grade dysplasia; LOO: LEAVE-
one-out; NA: Not available; SENS: Sensitivity; SPEC: Specificity; VLE: Volumetric laser endomicroscopy; WLI: White light imaging.

normal lesions, combined with rapid, objective analysis of all visual inputs in such a 
way that is consistent and not subject to fatigue. CAD can allow endoscopists to take 
targeted, high-yield biopsies in real-time. Compared to taking random biopsies per the 
Seattle protocol or using enhanced imaging, CAD may increase efficiency and 
accuracy for making a diagnosis by limiting the chance of missing neoplastic mucosa. 
Moreover, CAD may decrease risk by decreasing sedation time secondary to decreased 
procedure length.

Recent studies would indicate that CAD can be successful in the detection of 
neoplastic lesions in BE. Von Der Sommen et al[11] developed a ML algorithm that used 
CAD to analyze texture and color in static images to detect early neoplastic lesions in 
BE. The sensitivity and specificity were between 0.90 to 1.00 and 0.65 to 0.91 
respectively. In a study by Groof et al[12], six experts identified likely neoplastic tissue in 
the same image and used these expert-delineated images to train the computer 
algorithm to identify neoplastic BE and non-dysplastic BE in test cases. The resulting 
sensitivity and specificity of the computer algorithm was 0.95 and 0.85 respectively. 
Swager et al[13] used CAD on ex vivo VLE images to retrospectively detect non-
dysplastic BE and HGD or early adenocarcinoma. They were able to achieve a 
sensitivity of 0.90 and specificity of 0.93 while using VLE as the reference images 
rather than high-definition white light endoscopy.

Though the data is promising, nearly all research has focused on training an 
algorithm on a set of retrospectively gathered images. Because of this, these studies are 
unfortunately subject to selection bias since the images are often curated for high 
definition and typically from a single endoscopy center. Therefore, the algorithms are 
usually overtrained on a relatively small sample set and not generalizable to other 
images of poorer quality or a population with different incidence and/or prevalence of 
BE. A sparing number of prospective or real-time studies currently exist and these are 
performed on a rather small number of samples. Furthermore, standardization of AI 
systems is proving difficult, given that the details of the algorithm are in a “black box” 
and inaccessible to critique and direct modifications. The struggles that have been 
encountered in using AI for identification of Barrett’s mucosa have been encountered 
in identifying early esophageal cancers. Though promising, the thresholds to detect 
early esophageal cancer are below PIVI criteria which may be secondary to limited 
images and lack of ability to identify images in real time. Hashimoto et al[14] may have 
found a way to overcome previous difficulties by being able to create a faster 
algorithm which allowed for a real time video overlay using a large database of 
images. Using this technique, Hashimoto et al[14] were able to identify early esophageal 
neoplasms with high accuracy.

The process of standardization of ML algorithms poses a difficult challenge. The 
algorithm may be different for white light endoscopy compared to NBI, VLE or pCLE. 
It is possible that subtle differences such as the brand of endoscope, wavelength of 
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light or white balance could impact specificity or sensitivity of a tested algorithm. 
There is no guarantee that a single algorithm would work both in populations of high 
prevalence of BE and populations of low prevalence. Ideally, several algorithms 
should be tested prospectively and compared to the current gold standard of random 
biopsy in large, multicenter randomized clinical trials. Some of these studies are 
currently ongoing. User databases such as ImageNet or GastroNet contain samples of 
labeled images for use for training and testing of algorithms, but there is need for 
databases of patients with varying prevalence of risk factors for BE to determine if a 
single algorithm is robust enough to accurately diagnose BE nationwide.

To date, the ML platforms used have been developed by expert endoscopists. A 
recent study published by Ebigbo et al[15] used real-time AI to identify cancer in BE and 
found that the AI system performed in a similar fashion to the expert endoscopist. 
Such programs can also help train non-experts and gastroenterology fellows alike by 
giving real-time feedback, thus propagating more expert endoscopists in a shortened 
timeframe. Of course, endoscopists who are not BE experts can also benefit as well.

CONCLUSION
AI represents a renaissance in endoscopy, but not a reformation. The benefit may lie in 
the improvement in recognition of dysplastic and malignant tissue among non-expert 
endoscopists or gastroenterology fellows, since expert endoscopists have similar 
performance to AI. Generalizability, robustness of a single or few algorithms that can 
apply to either different imaging modalities or diverse populations, and the ability to 
easily modify an algorithm are current obstacles that need to be addressed before we 
can reliably use AI in endoscopic management of BE.
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Abstract
Wireless capsule endoscopy (WCE) enables physicians to examine the 
gastrointestinal tract by transmitting images wirelessly from a disposable capsule 
to a data recorder. Although WCE is the least invasive endoscopy technique for 
diagnosing gastrointestinal disorders, interpreting a WCE study requires 
significant time effort and training. Analysis of images by artificial intelligence, 
through advances such as machine or deep learning, has been increasingly 
applied to medical imaging. There has been substantial interest in using deep 
learning to detect various gastrointestinal disorders based on WCE images. This 
article discusses basic knowledge of deep learning, applications of deep learning 
in WCE, and the implementation of deep learning model in a clinical setting. We 
anticipate continued research investigating the use of deep learning in 
interpreting WCE studies to generate predictive algorithms and aid in the 
diagnosis of gastrointestinal disorders.

Key Words: Capsule endoscopy; Deep learning; Machine learning; Wireless capsule 
endoscopy; Small bowel capsule; Video capsule endoscopy
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Core Tip: Wireless capsule endoscopy is the least invasive endoscopy technique for 
investigating the gastrointestinal tract. However, it takes a significant amount of time 
for interpreting the results. Deep learning has been increasingly applied to interpret 
capsule endoscopy images. We have summarized deep learning’s framework, various 
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INTRODUCTION
Since 1868, endoscopy has been constantly evolving and improving to assess the 
lumen and mucosa of the gastrointestinal tract, including the esophagus, stomach, 
colon, and parts of the small bowel[1]. Despite its utility, endoscopic examination of the 
small intestine is limited by its length and distance from accessible orifices[2-4]. This 
limitation is a factor that contributed to the development of wireless capsule 
endoscopy (WCE).

Developed in the mid-1990s, WCE utilizes an ingestible miniature camera that can 
directly view the esophagus, stomach, entire small intestine, and colon without pain, 
sedation, or air insufflation[2,5-7]. An important clinical application of WCE is the 
evaluation of gastrointestinal bleeding after a high quality bidirectional conventional 
endoscopy and colonoscopy does not identify a source of bleeding[5]. A typical WCE 
study lasts 8 to 12 h and generates 50000-100000 images. Reviewing that quantity of 
images requires significant time effort and training. Additionally, abnormalities in the 
gastrointestinal tract may be present in only one or two frames of the video which may 
be missed due to oversight[2]. An automatic computer-aided diagnosis system may aid 
and support physicians in their analysis of images captured by WCE.

Artificial intelligence (AI), an aspect of computer-aided design, has been rapidly 
expanding and permeating in academia and industry[8]. AI involves computer 
programs that perform functions associated with human intelligence[9,10]. Specific 
features of AI include computer learning and problem solving. AI was first described 
as the development of computer systems to perform tasks that require human 
intelligence, which can include decision making and speech recognition[11]. Many 
techniques of AI have been proposed to facilitate the recognition and prediction of 
patterns[12].

Machine learning (ML) is an application of AI that provides systems with the ability 
to automatically learn and improve from experience without explicit programming[13]. 
ML can recognize patterns from datasets to create algorithms and make 
predictions[10,12]. A tremendous breakthrough in ML has been the development of deep 
neural networks (also known as deep learning)[13]. Deep learning consists of massive 
multilayer networks of artificial neurons that can automatically discover useful 
features. To put it simply, deep learning can extract more patterns from high 
dimensional data[5,12]. Several deep learning models have been reported in the 
literature and are differentiated by their application[12]. Convolutional neural network 
(CNN), a type of deep learning, is highly effective at performing image analysis[8,13,14]. 
Given CNN’s utility in image analysis, applications for CNN have extended into the 
medical field, including gastroenterology[8,14]. The main drawback of deep learning is a 
long training time. Advances in graphic processing units, however, have drastically 
reduced the training time of deep learning from days or weeks to hours or days[15].

ML and CNN have been increasingly explored and applied to diagnostic images 
found in radiology, pathology, and dermatology[15-18]. Likewise, ML and CNN have 
utility in endoscopy and WCE through image-based interpretation without alteration 
of the existing procedures[8,11]. Current applications of ML and CNN in 
gastroenterology include polyp detection, esophageal cancer diagnosis, and ulcer 
detection through image-based interpretation from WCE. WCE is among the top 
interests of AI researchers in gastroenterology.

https://www.wjgnet.com/2689-7164/full/v1/i2/33.htm
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Atsawarungruangkit A et al. Deep learning in capsule endoscopy

AIGE https://www.wjgnet.com 35 October 28, 2020 Volume 1 Issue 2

LITERATURE REVIEW
We conducted a literature review on December 15, 2019 and updated it on March 31, 
2020 on PubMed/MEDLINE database and IEEE Xplore digital library. The search 
phrase used for query data in PubMed/MEDLINE database was ("Capsule 
Endoscopy") AND ("Deep Learning" OR "Neural Network" OR "Neural Networks"). 
Similarly, the search phrase used for query data in IEEE Xplore digital library was 
("All Metadata":"Capsule Endoscopy") AND (("All Metadata":"Deep Learning") OR 
("All Metadata":"Neural Network") OR ("All Metadata":"Neural Networks")). As 
presented in Figure 1, we found 50 records in PubMed/MEDLINE database and 71 
records in IEEE Xplore digital library. After removing 14 duplicate records, the total 
number of distinct records were 107.

Only articles written in English language or available in English translation were 
considered. Conference abstracts, review articles, magazine articles, and unpublished 
studies were excluded to ensure quality. At this stage, two authors (AA and YE) 
independently reviewed whether the studies met the above inclusion criteria based on 
the title and abstract. Then, the articles that passed the initial screening were 
independently reviewed again based on the full-text articles to locate all included 
studies within a predefined scope of this article.

USE OF DEEP LEARNING FOR CLASSIFYING GASTROINTESTINAL 
DISORDERS
The most common indication for using WCE is the evaluation of small intestinal 
bleeding. WCE has also be used to diagnose other small intestinal disorders, such as 
celiac disease, Crohn’s disease, polyps, and tumors, for the evaluation of esophageal 
pathology in non-cardiac chest pain, and for colon cancer screening. As shown in 
Table 1, previous studies have focused on the use of deep learning for classifying 
gastrointestinal diseases and lesions identified on WCE images. Unsurprisingly, a 
frequently investigated outcome in published literature is bleeding. Deep learning 
models have enhanced WCE’s ability to detect bleeding lesions (including suspected 
blood content and angioectasia) with relatively high sensitivity and specificity[19-27]. In 
addition to bleeding, researchers have also used deep learning models in WCE to 
classify other gastrointestinal lesions such as ulcers[19-21,28-32], Crohn’s disease[33], 
polyps[7,19-21,34], celiac disease[6], and hookworm[35].

Deep network architectures
The deep network architecture is the full arrangement of neural networks in deep 
learning models covering input layer, hidden layers, and output layer. Although there 
were some variations with the deep network architecture, 16 out of 17 studies in 
Table 1 used CNN-based architectures in their deep learning models. The choice of 
deep network architectures depends on the classification objectives and individual 
research group. Nevertheless, many research groups prefer to use the well-known 
CNN-based architectures when classifying WCE images or benchmarking the 
performance of their custom deep learning architectures. These prebuilt CNN-based 
architects include LeNet[25], AlexNet[25,27,31,32], GoogLeNet[6,25,31], VGG-Net[25], ResNet[20,22,30], 
RetinaNet[29], Single Shot MultiBox Detector[23,28,34], and Xception[33].

WCE devices
In addition to variations in the deep learning architect, researchers had some variation 
in WCE device. There were three brands of WCE devices mentioned in these deep 
learning studies: PillCam (Medtronics), NaviCam (Ankon Technologies), and 
MiroCam (IntroMedic). Deep learning models can be incorporated with each device. 
However, different devices have different sizes and qualities of raw images, 
brightness, and camera angles. Since these devices are not standardized, the 
application of a specific deep learning model may not perform at the same prediction 
accuracy when applied universally to the other WCE devices.

Image resolution
Although the size and quality of the original WCE images is dependent on the device, 
image resolution is dependent on training time, deep network architecture, and lesion 
types. Intuitively, physicians prefer a higher image resolution when making an image-
based diagnosis. However, higher image resolutions can lead to an increase in 
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Table 1 Deep learning applications in wireless capsule endoscopy for classifying gastrointestinal disorders

Ref. Class/outcome 
variable

Deep network 
architecture Device/image resolution Training and internal 

validation dataset
Testing/external validation 
dataset Accuracy (%)/AUC Sensitivity 

(%)/specificity (%)

Majid et al[19], 
2020, NA

Multiple lesions 
(bleeding, esophagitis, 
ulcer, polyp)

CNN with classical 
features fusion and 
selection

NA/224 × 224 pixels 70% of 12889 images from 
multiple databases

30% of 12889 images from multiple 
databases

96.5/NA 96.5/NA

Ding et al[20], 
2019, China

Multiple SB lesions1 CNN (ResNet 152) SB-CE by Ankon 
Technologies/480 × 480 
pixels

158235 images from 1970 
patients

113268334 images from 5000 patients NA/NA 99.88/100 (per patient); 
99.90/100 (per lesion)

Iakovidis 
et al[21], 2018, 
NA

Multiple SB lesions2 CNN and iterative 
cluster unification

(1) NA/489 × 409 pixels; 
and (2) MiroCam CE/320 × 
320 pixels

(1) 465 images from 1063 
volunteers; and (2) 852 images

(1) 233 images from 1063 volunteers; 
and (2) 344 images

(1) 89.9/0.963; and (2) 
77.5/0.814

(1) 90.7/88.2; and (2) 
36.2/91.3

Aoki et al[22], 
2020, Japan

Bleeding (blood content) CNN (ResNet50) Pillcam SB2 or SB3 CE / 224 
× 224 pixels

27847 images from 41 patients 10208 images from 25 patients 99.89/0.9998 96.63/99.96

Tsuboi et al[23], 
2019, Japan

Bleeding (SB 
angioectasia)

CNN (SSD) Pillcam SB2 or SB3 CE/300 
× 300 pixels

2237 images from 141 patients 10488 images from 28 patients NA/0.998 98.8/98.4

Leenhardt 
et al[24], 2019, 
France

Bleeding (SB 
angioectasia)

CNN-based semantic 
segmentation

Pillcam SB3 CE / NA 600 images 600 images NA/NA 96/100

Li et al[25], 2017, 
China

Bleeding (intestinal 
hemorrhage)

CNNs: (1) LeNet; (2) 
AlexNet; (3) GoogLeNet; 
and (4) VGG-Net

NA/NA 9672 images 2418 images NA/NA (1) 99.91/96.2; (2) 
99.96/98.72; (3) 100/98.73; 
and (4) 99.96/98.72

Jia et al[26], 2017, 
Hong Kong, 
China

Bleeding (both active and 
inactive)

CNN NA/240 × 240 pixels 1000 images 500 images NA/NA 91.0/NA

Jia et al[27], 2016, 
Hong Kong, 
China

Bleeding (both active and 
inactive)

CNN (Inspired by 
AlexNet)

NA/240 × 240 pixels 8200 images 1800 images NA/NA 99.2/NA

Aoki et al[28], 
2019, Japan

Ulcer (erosion or 
ulceration)

CNN (SSD) Pillcam SB2 or SB3 CE/300 
× 300 pixels

5360 images from 115 patients 10440 images from 65 patients 90.8/0.958 88.2/90.9

Wang et al[29], 
2019, China

Ulcer CNN (RetinaNet) Magnetic-guided CE by 
Ankon Technologies/480 × 
480 pixels

37278 images from 1204 
patient cases

9924 images from 300 patient cases 90.10/0.9469 89.71/90.48

Wang et al[30], 
2019, China

Ulcer CNN (based on ResNet 
34)

Magnetic-guided CE by 
Ankon Technologies/480 × 
480 pixels

80% of dataset from 1416 
patients

20% of dataset from 1416 patients 92.05/0.9726 91.64/92.42

Alaskar et al[31], 
2019, NA

Ulcer CNN: (1) GoogLeNet; 
and (2) AlexNet

NA /(1) 224 × 224 pixels; 
and (2) 227 × 227 pixels

336 images 105 images (1) 100/1; and (2) 100/1 (1) 100/100; and (2) 
100/100

Fan et al[32], (1) 5500 images; and (2) 7410 (1) 95.16/0.9891; and (2) (1) 96.80/94.79; and (2) (1) Ulcer; and (2) Erosion CNN (AlexNet) NA/511 × 511 pixels (1) 2750 images; and (2) 5500 images
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2018, China images 95.34/0.9863 93.67/95.98

Zhou et al[6], 
2017, USA

Celiac disease CNN (GoogLeNet) Pillcam SB2 CE/512 × 512 
pixels

8800 images from 11 patients 8000 images from 10 patients NA/NA 100/100

Klang et al[33], 
2020, Israel

Crohn’s disease CNN (Xception) Pillcam SB2 CE/299 × 299 
pixels

Experiment 1: 80% of 17640 
images from 49 patients; 
Experiment 2: Images from 48 
patients

Experiment 1: 20% of 17,640 images 
from 49 patients; Experiment 2: 
Images from 1 individual patient

Experiment 1: 95.4-
96.7/0.989-0.994; Experiment 
2: 73.7–98.2/0.940-0.999

Experiment 1: 92.5-
97.1/96.0-98.1; Experiment 
2: 69.5-100/56.8-100

Saito et al[34], 
2020, Japan

Polyp (protruding lesion) CNN (SSD) Pillcam SB2 or SB3 CE/300 
× 300 pixels

30584 images from 292 
patients

17507 images from 93 patients 84.5/0.911 90.7/79.8

Yuan et al[7], 
2017, Hong 
Kong, China

Polyp Deep neural network Pillcam SB CE/64 × 64 
pixels

Unknown proportion of 4000 
images from 35 patients

Unknown proportion of 4000 images 
from 35 patients

98/NA 98/99

He et al[35], 2018, 
Israel

Hookworm CNN Pillcam SB CE/227 × 227 
pixels

10 out of 11 patients (436796 
images from 11 patients)

1 individual patient (11-fold cross-
validation)

88.5/NA 84.6/88.6

1Abnormal classes include (1) inflammation; (2) ulcer; (3) polyps; (4) lymphangiectasia; (5) bleeding; (6) vascular disease; (7) protruding lesion; (8) lymphatic follicular hyperplasia; (9) diverticulum; and (10) parasite.
2Various lesions include gastritis, cancer, bleeding, ulcer, vascular anomalies, polypoid anomalies, and inflammation anomalies. AUC: Area under the receiver operating characteristic curve; CE: Capsule endoscopy; CNN: Convolutional 
neural networks; NA: Not available; SB: Small bowel; SSD: SingleShot Multi Box Detector.

trainable parameters, floating-point operations, memory requirements, and training 
time. To counteract this, original images are often modified (either cropped or resized) 
to lower image resolution. As illustrated in Table 1, image resolution can range from 
64 × 64 pixels to 512 × 512 pixels. The typical range of resolution is 240 × 240 pixels to 
320 × 320 pixels. It is worth noting that all studies using the images captured by 
NaviCam (Ankon Technologies) selected the original image resolution of 480 × 480 
pixels[20,29,30].

Data partitioning
A collection of WCE images labeled by physicians is the main data source, which is 
commonly referred to as a dataset. As a part of data pre-processing, the dataset is 
typically divided into two groups. This creates two different datasets from the labeled 
WCE images. The first dataset is for training and internally validating the deep 
learning models. Once the final model is selected, the second dataset is used for testing 
the performance of the model with the data the model has not seen. Hence, data 
partitioning is one of the factors that could impact the predive performance of deep 
learning models[36].

There were two common approaches for dividing the initial dataset identified 
during the literature review. The first was to partition the data based on the 
aggregated images. The second was to partition the data per patient or video. The ratio 
of the two datasets varied dependent on the study, but common ratios included 50:50, 
70:30 and 80:20[19,24,30,33]. The second approach to partition was often used when 
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Figure 1  Study selection.

evaluating the predictive performance per patient[6,20,32,33]. Therefore, we can notice that 
the data partitioning approach in WCE images highly depends on the study design.

Performance metrics
In medical literature, the most popular performance metrics are accuracy, sensitivity, 
specificity, and area under the curve (AUC). In the case of WCE images, where few 
WCE images are true lesions, accuracy and specificity can be skewed by deep learning 
models correctly identifying normal mucosa. For this reason, in data science, the focus 
on performance evaluation is on true positive classification[37]. In other words, data 
scientists prefer their models correctly classify the small number of positive images (
e.g., angioectasia, tumor, or ulcer) rather than correctly classifying the normal mucosa 
images. Instead of accuracy and sensitivity, precision [true positive/(true positive + 
false positive)], recall [true positive/(true positive + false negative)], and F1 score (a 
harmonic mean of precision and recall) are the common performance metrics used by 
data scientists. It is worth noting that precision and recall are also known as positive 
predictive value and sensitivity respectively. Unfortunately, only a limited number of 
studies fully reported these set of performance metrics, especially F1 score[19,25-27]. In 
short, it is important to consider the performance metrics when determining or 
comparing the performance of deep learning models.

USE OF DEEP LEARNING FOR CLASSIFYING NON-DISEASE OBJECTS
The main goal when analyzing WCE images is to detect abnormalities in the 
gastrointestinal tract. However, it is also helpful to detect normal mucosa and 
anatomical landmarks. As shown in Table 2, only two studies were designed to 
classify non-disease objects. The first study used deep learning to classify the 
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Table 2 Deep learning applications in wireless capsule endoscopy for classifying non-disease objects

Ref. Class/outcome 
variable

Deep network 
architecture

Device/image 
resolution

Training and 
internal 
validation 
dataset

Testing/external 
validation dataset

Accuracy 
(%)/AUC

Sensitivity 
(%)/specificity 
(%)

Seguí 
et al[38], 
2016, 
Spain

Scenes (turbid, bubbles, 
clear blob, wrinkles, 
wall)

CNN Pillcam SB2 
CE/100 × 100 
pixels

100000 images 
from 50 videos

20000 images from 50 
videos

96/NA NA/NA

Zou 
et al[5], 
2015, NA

Organ locations 
(stomach, small 
intestine, and colon)

CNN (AlexNet) NA/480 × 480 
pixels

60000 images 15000 images 95.52/NA NA/NA

AUC: Area under the receiver operating characteristic curve; CE: Capsule endoscopy; CNN: Convolutional neural networks; NA: Not available; SB: Small 
bowel.

complexities within the endoluminal scene, including turbid, bubbles, clear blob, 
wrinkles, and wall[38]. Although these images may not contribute to a final diagnosis, 
they can be used to characterize small intestine motility and to help rule out negative 
images. The second study created a predictive model for identifying organ locations 
such as the stomach, intestine, and colon[5]. Organ classification can be used to 
calculate the passage time of WCE in each organ and to determine if there are any 
motility disorders in the gastrointestinal tract. An important aspect of physician 
review of a WCE study is the identification of anatomical landmarks such as first 
images of the stomach, duodenum, and cecum which ultimately helps calculate 
capsule transit time through the small bowel. This transit time is vital to determining 
the location of lesion in the small bowel that may help guide treatment with deep 
enteroscopy techniques.

USEFULNESS OF DEEP LEARNING MODELS IN CLINICAL PRACTICE
An ideal goal for WCE would be the creation of a fully automated system for 
interpreting WCE images and generating accurate reports at least equivalent to 
conventional reading by physicians. Two retrospective studies compared the 
performance of conventional reading to the deep learning assisted reading 
(Table 3)[20,39]. The average reading times of deep learning assisted reading in both 
studies was less than 6 min. The average conventional reading time varied from 12 to 
97 min depending on the expertise of the reader and the scope of WCE reading. In 
terms of overall lesion detection rate, there was a 3%-8% improvement of deep 
learning assisted reading over conventional reading. Interestingly, the accuracy of the 
deep learning model (as calculated during development) was higher than the actual 
detection rate. These findings may reflect the real-world challenges impacting human 
and deep learning model collaborations. An additional limitation was that there was 
no clear definition on how reading time was determined (e.g., from data preprocessing 
to final report generation).

CHALLENGES
The goal when creating a deep learning model is to best fit your target function. 
Overfitting is a classic problem that can occur after creating the initial deep learning 
model. Overfitting occurs when a model learns the detail and noise of the training data 
too well to the extent that it negatively impacts the performance of the model on new 
data. Despite the standard methods for dividing datasets during training and testing, 
the detection rate in deep learning assisted trials are not as good when compared to 
the rates during the initial training and testing process[20,39]. The decreased performance 
could indicate that the model fits the training dataset too closely and does not perform 
well with an unseen dataset. Another explanation could be imperfect human and 
machine collaboration. Since the human physician is the one who makes the final 
diagnosis based on the information provided by the deep learning model, the 
misdetection could be derived from how human physicians use or trust the judgment 



Atsawarungruangkit A et al. Deep learning in capsule endoscopy

AIGE https://www.wjgnet.com 40 October 28, 2020 Volume 1 Issue 2

Table 3 Deep learning applications in wireless capsule endoscopy for improving the reading efficiency of wireless capsule endoscopy

Ref. Experiment type Scope of WCE reading 
/device Conventional reading Deep learning assisted 

reading P value

mean reading time (min): 
Trainee: 20.7; Expert: 12.2

mean reading time (min): 
Trainee: 5.2; Expert: 3.1 

< 0.001Aoki et al[39], 
2019, Japan

Retrospective study using 
anonymized data

SB section only/Pillcam SB3

Overall lesion detection rate: 
Trainee: 47%; Expert: 84%

Overall lesion detection 
rate: Trainee: 55%; Expert: 
87%

NS

mean reading time ± standard 
deviation (min): 96.6 ± 22.53

mean reading time ± 
standard deviation (min): 
5.9 ± 2.23

< 0.001Ding et al[20], 
2019, China

Retrospective study by 
randomly selected videos

Small bowel abnormalities/SB-
CE by Ankon Technologies

Overall lesion detection rate: 
41.43%

Overall lesion detection 
rate: 47.00%

NA1

1In per-patient analysis, deep learning assisted physician significantly outperformed conventional reading in detecting lymphangiectasia, lymphatic 
follicular, hyperplasia, inflammation, protruding lesion, and polyps. CE: Capsule endoscopy; NA: Not available; NS: Not significant; SB: Small bowel.

from deep learning models.
Traditionally, the risk stratification scores developed by one research team can be 

validated by another research team. Unfortunately, we have not seen the same level of 
transferability in deep learning research for WCE yet. As a result, the trials are very 
limited to their own research group and can be very difficult to have third party 
validation.

Each deep learning model is designed for a specific task that is based on the 
availability of positive lesions in their own dataset. Given this, it is questionable if it is 
even possible or effective to integrate these models. Integration can be even more 
complicated by the fact that each research group may use different devices, image 
resolutions, network architectures, and labeling practices.

One common barrier in medical device-related research is the use of proprietary file 
format. For example, the video file from PillCam device is stored in *.gvi and *.gvf 
file[40]. Thus, it may be difficult to extract data that is stored in the proprietary file 
format without help from the manufacturer. Such constraints may impact model 
integration and deployment. For example, it may take a longer time to prepare the files 
from deep learning models to use in a clinical setting. Also, there is no guarantee that 
the image resolution would be equivalent to the one seen in the proprietary reading 
software after extraction. For this reason, researchers should explore the pros and cons 
of each device available in their market to compare features and select the one that best 
aligns with their research goals.

Data preprocessing is the most time-consuming task in AI research. It is necessary to 
transform raw data into a ready-to-use and efficient format. Having a high-quality 
dataset is one of the key factors for creating a predictive model. By spending a lot of 
time extracting the data and labeling it, the dataset is a valuable asset to the research 
group. Ideally, high-quality datasets should be publicly available for researchers to 
use. However, there are a limited number of such datasets.

CONCLUSION
Since 2006, CNN-based architecture has proven to be an effective method for 
analyzing image data in various fields. Researchers have increasingly adopted CNN-
based architecture for solving image classification problems. In our literature review, 
seventeen papers were identified that applied deep learning in WCE to classify 
gastrointestinal disorders. Our literature review demonstrated that the majority of 
CNN-based deep learning models were nearly perfect with regard to accuracy, 
sensitivity, specificity, and AUC[9].

There were only a few studies applying deep learning models to address non-
disease objects, such as organ location and scenes in normal mucosa images (e.g., 
turbid, bubbles, clear blob, wrinkles, and wall). These non-disease objects are 
important building blocks toward a fully automated system and can aid in the 
identification of “landmarks” such as the first images of each bowel segment.

Although there seems to be an increasing amount of deep learning research on 
classifying WCE images, we are still in the early stages of investigating the utility of 
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deep learning in enhancing clinical practice. The studies we identified often reflected 
the more standard view of WCE, as a means to view areas of the small bowel not 
accessible by upper and lower endoscopy. As the scope of WCE grows beyond the 
small bowel, we expect to see deep learning research on WCE expand accordingly. In 
addition, deep learning could enhance WCE capability to become highly effective in 
clinical practice and patient care by improving the speed and accuracy of WCE 
reading as well as predicting the location of abnormalities. Regardless of existing 
limitations and constraints, we expect the research and development in this area will 
continue to grow rapidly in the next decade.

The studies gathered in this literature review were indexed by PubMed. We also 
investigated publications concerning the utility of deep learning in computer science, 
medical image processing, mathematical modeling, and electrical engineering. 
Unfortunately, we cannot ensure that we identified every publication outside of 
PubMed.

In addition, it is difficult to compare one deep learning model to another based on 
their performance metrics alone. Most researchers have focused more on reporting 
traditional performance metrics without F1 score. The best practice for comparing 
these models would be to benchmark their performances on the same dataset that the 
models have never been trained on. To do so, researchers would need to make their 
trained models publicly available (e.g., uploading them to GitHub). This would allow 
clinical trials on deep learning models to expand outside their research group.

The idea of using computational algorithms for analyzing WCE images is not 
entirely new. The earliest study identified was published in 2006[41]. Universal to all 
these studies was a central hypothesis investigating the ability of computational 
algorithms to improve the efficiency of reading WCE studies, specifically in terms of 
time and accuracy. The prospect of a fully automated system for interpreting WCE 
images would benefit patient care because of fast and accurate diagnoses of 
gastrointestinal medical conditions such as bleeding, polyps, Crohn’s disease, and 
cancer.
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