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Abstract
In recent years, artificial intelligence has been extensively applied in the diagnosis 
of gastric cancer based on medical imaging. In particular, using deep learning as 
one of the mainstream approaches in image processing has made remarkable 
progress. In this paper, we also provide a comprehensive literature survey using 
four electronic databases, PubMed, EMBASE, Web of Science, and Cochrane. The 
literature search is performed until November 2020. This article provides a 
summary of the existing algorithm of image recognition, reviews the available 
datasets used in gastric cancer diagnosis and the current trends in applications of 
deep learning theory in image recognition of gastric cancer. covers the theory of 
deep learning on endoscopic image recognition. We further evaluate the 
advantages and disadvantages of the current algorithms and summarize the 
characteristics of the existing image datasets, then combined with the latest 
progress in deep learning theory, and propose suggestions on the applications of 
optimization algorithms. Based on the existing research and application, the label, 
quantity, size, resolutions, and other aspects of the image dataset are also 
discussed. The future developments of this field are analyzed from two 
perspectives including algorithm optimization and data support, aiming to 
improve the diagnosis accuracy and reduce the risk of misdiagnosis.

Key Words: Endoscope; Artificial intelligence; Algorithm optimization; Data support

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Gastric cancer is a life-threatening disease with a high mortality rate. With 
the development of deep learning in the image processing of gastrointestinal 
endoscope, the efficiency and accuracy of gastric cancer diagnosis through imaging 
technology have been greatly improved. At present, there is no comprehensive 
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summary on the graphic recognition method for gastric cancer based on deep learning. 
In this review, some gastric cancer image databases and mainstream gastric cancer 
recognition models were summarized to make a prospect for the application of deep 
learning in this field.
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INTRODUCTION
Gastric cancer is a life-threatening disease with a high mortality rate[1]. Globally, more 
than 900000 individuals develop gastric cancer each year out of which more than 
700000 Lose their lives. Gastric cancer is second only to lung cancer in terms of 
mortality[2]. Unlike the developing countries, the number of diagnosed cases and the 
mortality rate of this cancer are declining in the developed countries such as those in 
the EU and North America[3,4].

Around 50% of the world's gastric cancer cases are diagnosed in Southeast Asia[5]. 
In China, gastric cancer is also second to lung cancer in terms of the number of annual 
cases, for instance, 424000 new patients are annually diagnosed with gastric cancer, 
accounting for more than 40% of the global total, out of which 392000 Lose their lives 
ranking the fifth and the sixth worldwide in annual morbidity and mortality, 
respectively[6].

The diagnosis of gastric cancer mainly relies on clinical manifestation, pathological 
images and medical imaging[7]. Compared with other methods such as pathological 
diagnosis, medical imaging provides a simple non-invasive and reliable method for 
the diagnosis of gastric cancer which is more accessible and efficient, easier to operate 
and has almost no side effects for the patients[8].

Doctors make a judgment based on medical imaging which mainly depend on their 
experience from similar cases, hence, occasional misdiagnosis is inevitable[9,10]. With 
the rapid development of computer technology and artificial intelligence, deep 
learning techniques are extremely effective in various branches of image processing 
and have been used in medical imaging to improve cancer diagnosis[11-13]. Danaee 
et al[14] established a deep learning model for colorectal cancer image recognition, the 
results showed that the deep learning method can achieve more effective information 
and is far more efficient than the way of manual extraction. Burke et al[15] found that 
deep learning could classify and predict mutations of NSCLC based on histopatho-
logical images, and the recognition efficiency of deep learning was much higher than 
that of manual recognition. Muhammad Owais et al[16] proposed a deep learning 
model to classify a variety of gastrointestinal diseases by recognizing endoscopic 
videos. This model can simultaneously extract spatiotemporal features to achieve 
better classification performance. Experimental results of the proposed models showed 
superior performance to the latest technology and indicated its potential in clinical 
application[16].

Endoscopic images are mostly used in gastric cancer diagnosis[17]. Endoscopic 
images contain a lot of useful structural information which can be used for deep 
learning algorithm, the algorithm can carry out purposeful image recognition[18]. 
Most of the image recognition based on gastric cancer diagnosis methods adopt 
supervised deep learning algorithms, mainly because the monitored network in 
supervised learning makes full use of the labeled sample data in the training and can 
obtain more accurate segmentation results[19].

In fact, the purpose of medical image recognition is to identify the tumor and we 
call this process image segmentation[20-22]. Accurate segmentation of tumor images is 
an important step in diagnosis, surgical planning and postoperative evaluation[23,24]. 
Endoscopic images segmentation can provide more comprehensive information for the 
diagnosis and treatment of gastric cancer, alleviate the doctor's heavy work for reading 
film and improve the accuracy of diagnosis[25]. However, due to the variety and 
complexity of gastric tumor types, segmentation has become an important and 
difficult problem in computer-aided diagnosis. Compared with the traditional 
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segmentation methods, the deep learning segmentation method of gastric tumor 
image has achieved obvious improved performance and rapid development[26,27].

As mentioned above, the deep learning method based on supervised learning can 
fully mine the effective information of existing data. However, when the amount of 
existing data cannot meet the requirements of model training, it is necessary to find 
ways to increase the data scale[28]. The deep learning based on unsupervised learning 
can generate samples, which are similar to the existing samples in dimension and 
structure, but not identical. At present, relevant research results have been 
obtained[29]. Researchers use semi-supervised and unsupervised image recognition 
algorithms to generate samples like training samples, to improve the accuracy of 
gastric cancer tumor recognition and enhance the robustness of the model[30].

In this paper, deep learning-based diagnosis of gastric cancer based on endoscope 
images is summarized and analyzed. The adopted segmentation networks in the 
previous works can be divided into three categories: the supervised network, semi-
supervised network, and unsupervised network. The basic idea of the recognition 
method, the basic structure of the network, the experimental results, as well as their 
advantages and disadvantages are summarized. The performance of typical methods 
above-mentioned in recognition is compared. Finally, we hope to provide insights and 
concluding remarks on the development of deep-learning-based diagnosis of gastric 
cancer.

RELEVANT DATA SETS AND ALGORITHM EVALUATION INDEXES 
Relevant datasets
To promote the progress of image recognition and make an objective comparison of 
available image recognition methods for gastric cancer diagnosis, we investigate the 
commonly used datasets including the GR-AIDS provided by Medical Image 
Computing and Computer Assisted Intervention Society as well as those internal 
datasets.

The GR-AIDS dataset established by Sun Yat-Sen University Cancer Center consists 
of 1036496 endoscopic images from 84424 individuals. This dataset is used according 
to the 8:1:1 pattern, the data is randomly selected for training and internal validation 
datasets for GR-AIDS development as well as for evaluating GR-AIDS perfor-
mance[31].

Using clinical data collected from Gil Hospital, Jang Hyung Lee et al[32] also 
established a data set containing 200 normal cases, 367 cancer cases, and 220 ulcer 
cases. The data was divided into training sets of 180, 200, 337 images and test sets of 
20, 30, 20 images. To improve the local contrast of the image and enhance the edge 
definition in each area of the image, histogram equalization was adopted to further 
enhance the image, the images’ size was adjusted to 224 × 224 pixels [32].

Hirasawa et al[32] collected 13,584 endoscopic images of gastric cancer to build an 
image database. To evaluate the diagnostic accuracy, an independent test set of 2296 
gastric images was collected from 69 patients with continuous gastric cancer lesions 
constructed as convolutional neural network (CNN). The image has an in-plane 
resolution of 512 × 512[33].

Cho et al[34] collected 5017 images from 1269 patients, of which 812 images from 212 
patients were used as the test data set. An additional 200 images from 200 patients 
were collected and used for prospective validation. The resolution of the images is 512 
× 512. The information for all major databases is shown in Table 1[34].

Introduction of evaluation indexes
To evaluate the effectiveness of each model in diagnosing gastric cancer, the following 
evaluation indicators are commonly used in the related literature (Table 2): DICE 
Similarity Coefficient (DICE, 1945), Jaccard Coefficient (Jaccard, 1912), Volumetric 
Over-lap Error (VOE), and Relative Volume Difference (RVD).

Here we define the following variables: P and N are used for judgment of the model 
results, T and F evaluation model of the judgment is correct, FP is on behalf of the 
false-positive cases, FN represents false-negative cases, TP is on behalf of the real 
example, TN represents true negative cases[38]. A represents the theory of 
segmentation, results for comparison with the resulting image. B represents the 
segmentation results[39]. The relationship among them is shown in Figure 1.

DICE coefficient: DICE coefficient also known as the overlap index, is one of the most 
commonly used indexes for verification of image segmentation. The DICE coefficient 
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Table 1 Commonly used databases in image recognition of gastric cancer

Database Time collected Number of samples Resolution Training set Test set

GR-AIDS[31] 2019 1036496 512 × 512 829197 103650

Jang Hyung Lee[32] 2019 787 224 × 224 717 70

Toshiaki Hirasawa[33] 2018 13584 512 × 512 13584 2496

Bum-Joo Cho[34] 2019 5017 512 × 512 4205 812

Hiroya Ueyama[35] 2020 7874 512 × 512 5574 2300

Lan Li[36] 2020 2088 512 × 512 1747 341

Mads Sylvest Bergholt[37] 2011 1063 512 × 512 850 213

Table 2 Specific concepts of the main evaluation indicators

Index Description Usage Unit

DICE Repeat rate between the segmentation results and markers Commonly %

RMSD The root mean square of the symmetrical position surface distance between the segmentation results and the markers Commonly mm

VOE The degree of overlap between the segmentation results and the actual segmentation results represents the error rate Commonly %

RVD The difference in volume between the segmentation results and the markers Rarely %

DICE: DICE Similarity Coefficient; RMSD: Root-Mean-Square Deviation; VOE: Volumetric Over-lap Error; RVD: Relative Volume Difference.

Figure 1 Schematic diagram of each evaluation index relationship. TP: True positive; FP: False-positive; TN: True negative; FN: False negative.

represents the repetition rate between the segmentation results and the markers. The 
value range of DICE is 0-1, where 0 indicates that the experimental segmentation result 
significantly deviates from the labeled result, and 1 indicates that the experimental 
segmentation result completely coincides with the labeled result[40]. DICE coefficient 
is defined as the following:

DICE = (2|A ∩ B|)/(|A| + |B|) = (2TP)/(2TP + FP + FN)

Jaccard coefficient: Jaccard coefficient represents the similarity and difference between 
the segmentation result and the standard. The larger the coefficient, the higher the 
sample similarity. Besides, the Jaccard coefficient and DICE coefficient are 
correlated[41]. Jaccard coefficient is defined as the following:

JAC = (|A ∩ B|)/(|A| U |B|) = TP/(TP + FP + FN) = DICE/(2 - DICE)

VOE: VOE stands for error rate, derived from Jaccard. VOE is represented as %, where 
0% indicates complete segmentation. If there is no overlap between the segmentation 
result and the markers, the VOE is 100%[42]. VOE is defined as the following:

VOE = 1 - (|A ∩ B|)/(|A| U |B|) = 1 - TP/(TP + FP + FN)

RVD: RVD represents the noise difference between the segmentation result and the 
markers. RVD is presented as %, where 0% denotes the same volume between the 
segmentation result and the markers[42]. The formula is:
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RVD = (|B| - |A|)/|A| = FP/(TP + FN)
The specific concepts of all indicators are shown in Table 2.

CLASSIFICATION OF THE ALGORITHM 
Supervised learning-based diagnosis of gastric cancer
Deep neural networks are often trained based on deep learning algorithms using large 
labeled datasets (i.e., images in this case)[43]. The network is therefore able to learn 
how features are related to the target[44]. Since the data is already labeled, this 
learning method is referred to as supervised learning. Most of the existing studies on 
diagnosing gastric cancer are based on supervised learning in image recognition 
tasks[45-47]. This is because the network makes full use of the labeled dataset in the 
training, hence can obtain more accurate segmentation results.

Recent research works showed that CNN achieves outstanding performance in 
various image recognition tasks[48,49]. Toshiaki Hirasawa built a CNN-based 
diagnostic system based on a single-shot Multi-Box detector, Adejub, with a total 
sensitivity of 92.2% and trained their CNN using 13584 endoscopic images of gastric 
cancer. The trained CNN correctly called 71 out of 77 cases of gastric cancer, i.e., a total 
sensitivity of 92.2%, also detected 161 non-cancerous samples as gastric cancer, i.e., a 
positive predictive value of 30.6%. The CNN also correctly detected 70 of 71 cases of 
gastric cancer (98.6%) with a diameter of 6 mm or larger, as well as all invasive 
cancers[33]. Ueyama et al[35] also constructed an AI-assisted CNN based computer-
aided diagnosis system with narrow band imaging-magnifying endoscopy images.

The above studies show that the CNN-based approach is far more accurate than 
human in recognition of cancer. This makes us believe that the method based on deep 
CNN can effectively solve the identification problem of gastric cancer.

However, the issue with the CNN is that only partial features could be 
extracted[50]. Due to the imbalanced information of gastric cancer image data, 
extracting the local features does not reflect all the information and might harm the 
efficiency of the image recognition. To address the problem, Shelhamer et al[51] 
proposed full convolutional neural network (FCN) for image segmentation. This 
network attempts to recover the category of each pixel from the abstract feature, in 
other words, instead of image-level classification, the network uses pixel-level 
classification[51]. This addresses the semantic level image segmentation problem and 
is the core component of many advanced semantic segmentation models[52,53].

The segmentation method of gastric cancer images based on the FCN network is 
mainly based on the idea of code-decoding design[54]. In practice, the image is 
classified at the pixel level and the network is pre-trained with supervision. In this 
method, the input image can have any arbitrary size and the output of the same size 
can be generated through effective reasoning and learning[55]. Typical FCN network-
based image segmentation architecture for gastric cancer is shown in Figure 2.

The FCN is improved based on the CNN by transforming the last three full 
connections into three convolutional layers. The success of FCN network is largely 
attributed to the excellent ability of CNN network to extract hierarchical repres-
entation. In the concrete implementation process, the network realizes the 
segmentation of gastric tumor by down-sampling and up-sampling through 
convolution-deconvolution operation. The down-sampling path consists of 
convolution layer and maximum or average pooling layer, which can extract high-
level semantic information, but its spatial resolution is often low. The up-sample path 
consists of convolution and a deconvolution layer (also known as transpose 
convolution) and uses the output of the down-sample path to predicting the fraction of 
each class at the pixel level[56,57]. However, the output image of deconvolution 
operations might be very rough and lost a lot of detail. The skip structure of the FCN 
network presented in the classified forecast comes from the deep layer (thick) semantic 
information and information from the appearance of the shallow layer (fine), thus, 
achieving a more accurate and robust segmentation result. As a deep neural network, 
FCN has shown good performance in many challenging medical image segmentation 
tasks, including liver tumor segmentation[58,59].

One of the most important features of the FCN is the use of skip structure. It is used 
to fuse the feature information of both the high and low layers. Through the cross-
layer connection structure, the texture information of the shallow layer and the 
semantic information of the deep layer of the network are then combined to achieve 
the precise segmentation task[60,61]. Jang Hyung Lee improved the original FCN 
framework by applying the pre-trained Inception, Res-Net, and VGG-Net models on 
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Figure 2 The basic architecture of image segmentation for gastric cancer based on full convolutional network.

ImageNet. The areas under the operating characteristic curves of each receiver are 
0.95, 0.97, and 0.85, respectively, hence, Res-Net shows the highest level of 
performance. Under normal conditions, the classification between normal and ulcer or 
cancer, is more than 90 percent accurate[32].

The deep network structure leads to the problem of decreased training 
accuracy[62]. In Sun et al[63] the basic form of convolution is replaced with the 
deformable convolution and Atrous convolution in a specific layer to adapt to the non-
rigid characteristics and large receiving fields. The Atrous space pyramid pooling 
module and the semantic-level embedded network based on encoder/decoder are 
used for multi-scale segmentation. Besides, they proposed a lightweight decoder to 
fuse the context information and further used dense up-sampled convolution for the 
boundary optimization at the end of the decoder. The model achieves 91.60% pixel-
level accuracy and 82.65% average degree of the intersection[63].

Cho et al[34] established the Inception-ResNET-V2 model, which is an FCN model. 
In this model, they divided the images into five categories: advanced gastric cancer, 
early gastric cancer, high atypical hyperplasia, low atypical hyperplasia and non-
neoplastic. For the above five categories, the Inception- ResNet-v2 model has a 
weighted average accuracy of 84.6%. The mean area under the curve of the model for 
differentiating gastric cancer and neoplasm was 0.877 and 0.927, respectively[34].

The above works show that FCN addresses the issue with the CNN hence can 
extract the local features. This is why the FCN is considered as the mainstream in 
gastric cancer image classification methods.

In addition to the application of FCN to address the shortcomings of CNN, 
researchers also tried other approaches such as fusion of multiple CNN methods to 
obtain an Ensemble of CNN algorithm to get more accurate classification results. 
Nguyen et al[64] trained three different CNN model architectures, including VGG-
based, Inception-based Network and Dense-Net. In their study, the VGG-based 
network was used as a conventional deep CNN for classification problems, which 
consists of a linear stack of the convolutional layer. The network-based on Dense-net 
can be used as a very deep CNN with a short path, which is also helpful to train the 
network and extract more abstract and effective image features easily. The three 
models were trained separately, the AVERAGE combination rule is then used to 
combine the classification results of the three CNN-based Models. The final result was 
70.369% of overall classification accuracy, 68.452% of sensitivity and 72.571% of 
specificity. The overall classification accuracy is higher than that generated by the 
listed model based on a single CNN[64].

Both the use of a fully convolutional network and the fusion of several CNN 
algorithms are significantly effective in improving the accuracy of gastric cancer image 
recognition. They are also effective in addressing the issues with the quality of images 
in the database. Table 3 shows the performance comparison of gastric cancer image 
recognition by using CNN, FCN, and Ensemble CNN.

Image recognition based on semi-supervised and unsupervised learning in gastric 
cancer 
Most gastric cancer image recognition methods adopt supervised learning algorithms 
because the monitored network makes full use of the labeled sample data in the 
training and can obtain more accurate segmentation results. Nevertheless, there are 
very few accurately labeled image datasets, hence researchers have carried out studies 
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Table 3 Comparison of recognition performance of convolutional neural network, full convolutional neural network, and ensemble 
convolutional neural network models

Methods DICE/% VOE/% RMSD/mm

Toshiaki Hirasawa (CNN) 0.5738 0.5977 6.491

Hiroya Ueyama (CNN) 0.6327 0.5373 7.257

Jang Hyung Lee (FCN) 0.8102 0.319 2.468

Bum-Joo Cho (FCN) 0.9350 0.1221 -

Dat Tien Nguyen (ECNN) 0.8947 0.113 -

CNN: Convolutional neural network; FCN: Full convolutional neural network; ECNN: Evolutionary convolutional neural network; DICE: DICE Similarity 
Coefficient; VOE: Volumetric Over-lap Error; RMSD: Root-Mean-Square Deviation.

based on semi-supervised and unsupervised image recognition algorithms for gastric 
cancer. In such studies, they trained a small number of samples through generative 
models to generate similar samples to improve the accuracy and robustness of gastric 
cancer tumor recognition[65].

Generative adversarial network (GAN) is a generative model proposed by 
Goodfellow et al[66] It uses an unsupervised training method that is trained by 
adversarial learning. The objective is to estimate the potential distribution of data 
samples and generate new data samples. GAN is composed of a generation model 
(Goodfellow et al[66], 2014) and a discrimination model (Denton et al, 2015). The 
generation model learns the distribution of a given noise (generally refers to uniform 
distribution or normal distribution) and synthesizes it, whereas the discrimination 
model distinguishes the real data from generated data. In theory, the former is trying 
to produce data that is closed to the real data. The latter is also constantly 
strengthening the "counterfeit detection" ability[67]. The success of GAN lies in its 
ability to capture high-level semantic information using adversarial learning 
techniques. Luc et al[68] first applied GAN to image segmentation. However, GAN has 
several drawbacks: (1) Crash problem: when the generation model crashes, all 
different inputs are mapped to the same data[69]; and (2) Instability: It causes the same 
input to produce different outputs. The main reason is due to gradient vanishing 
problem during the optimization process[66,70].

Although batch normalization is often used to solve the instability of GAN, it is 
often not enough to achieve optimal stability of GAN performance. Therefore, many 
GAN derived models have emerged to solve these gaps, e.g., conditional GAN, deep 
convolutional GAN, information maxi-mizing GAN, Wassertein GAN, etc[71]. In the 
GAN-based image recognition for gastric cancer, the generator is used to perform the 
segmentation task. The discriminator is then used to train the refining generator. A 
typical gastric cancer image recognition architecture based on the generative 
adversarial network is illustrated in Figure 3.

Since its proposal generative adversarial network has been widely considered and 
rapidly developed in different application areas. In medical image processing, it is 
very challenging to construct a large enough dataset due to the difficulty of data 
acquisition and annotation[72]. To overcome this problem, traditional image 
enhancement technology such as geometric transformation is often used to generate 
new data. This technique cannot learn biological changes in medical data and can 
produce images that are not credible[73]. Although GAN is unable to know in advance 
hypothesis distribution due to the limitation of segmentation performance 
improvement. it can automatically infer real data sets, further expand the scale and 
diversity of data, and provide a new method for data expansion, thus improving the 
efficiency of model training[74,75].

Almalioglu et al[76] showed that the poor resolution of the capsule endoscope is a 
limiting factor in the accuracy of diagnosis. They designed an image synthesis 
technology based on GAN to enrich the training data. First, the standard data 
expansion method was used to enlarge the dataset. Then the dataset was used to train 
GAN and the proposed Endol2h method was used to synthesize gastric cancer images 
with higher resolution[76]. Wang proposed an unsupervised image classification 
method for tumors based on prototype migration generated against the network 
(Prototype Transfer Generative Adversarial Network). Using different data acquisition 
devices and parameter settings caused differences in the stye of tumor image and data 
distribution. These differences can be reduced by designing the target domain to 
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Figure 3 Basic architecture of gastric cancer image recognition methods based on generative adversarial network.

generate network, training process through the domain discriminant and performing 
generator reconstruction between source domain and target domain. The method 
achieved an average accuracy of 87.6% for unsupervised breast tumor image 
dichotomy under different magnifications and shows good scalability[77].

In conclusion, the GAN-based image segmentation method for gastric cancer can 
generate realistic gastric cancer images through the GAN network in the training 
stage, thus avoid the imbalance of the training samples. Moreover, due to the 
amplification of limited labeled sample data, the deep network is well-trained and 
achieves a high segmentation efficiency. However, there are still many problems in 
GAN, such as the instability of training and the breakdown of the training network. 
Therefore, researchers have optimized the original GAN network to reduce data noise 
or deal with class imbalance and other problems. In order to solve the problem that 
medical images are often polluted by different amounts and types of praise, T.Y Zhang 
et al. propose a novel Noise Adaptation Generative Adversarial Network (NAGAN), 
which contains a generator and two discriminators. The generator aims to map the 
data from source domain to target domain. Among the two discriminators, one 
discriminator enforces the generated images to have the same noise patterns as those 
from the target domain, and the second discriminator enforces the content to be 
preserved in the generated images. They apply the proposed NAGAN on both optical 
coherence tomography images and ultrasound images. Results show that the method 
is able to translate the noise style[74]. In the traditional GAN network training, the 
small number of samples of the minority classes in the training data makes the 
learning of optimal classification challenging, while the more frequently occurring 
samples of the majority class hamper the generalization of the classification boundary 
between infrequently occurring target objects and classes. Mina Rezaei et al. developed 
a novel generative multi-adversarial network, called Ensemble-GAN, for mitigating 
this class imbalance problem in the semantic segmentation of abdominal images. The 
Ensemble-GAN framework is composed of a single-generator and a multi-discrim-
inator variant for handling the class imbalance problem to provide a better general-
ization than existing approaches[73]. In addition, there are other studies on the 
optimization of GAN network in medical image segmentation. Klages et al[78] 
proposed the patch-based generative adversarial neural network models, this model 
can significantly reduce errors in data generation. Nuo Tong et al[79] proposed the 
self-paced Dense-Net with boundary constraint for automated multi-organ 
segmentation on abdominal CT images. Specifically, a learning-based attention 
mechanism and dense connection block are seamlessly integrated into the proposed 
self-paced Dense-Net to improve the learning capability and efficiency of the backbone 
network. In a word, in the process of optimizing GAN network, whether it is 
optimizing generator or discriminant, the purpose of optimization is to generate new 
data which is as equal to the real data as possible. Therefore, more studies will be 
devoted to the optimization of GAN network to provide strong support for improving 
the image recognition of gastric cancer.

Table 4 shows comparison results of the three current mainstream methods for 
image recognition of gastric cancer.



Li Y et al. Review of deep learning for GC

AIGE https://www.wjgnet.com 20 April 28, 2021 Volume 2 Issue 2

Table 4 Comparison of convolutional neural network, full convolutional neural network, and generative adversarial network models

Model 
features Contributions Advantages Disadvantages Scope of application

CNN The topology can be extracted from 
a two-dimensional image, and the 
backpropagation algorithm is used 
to optimize the network structure 
and solve the unknown parameters 
in the network

Shared convolution 
kernel, processing high-
dimensional data without 
pressure; Feature 
extraction can be done 
automatically

When the network layer is too deep, the 
parameters near the input layer will be changed 
slowly by using BP propagation to modify 
parameters. A gradient descent algorithm is 
used to make the training results converge to 
the local minimum rather than the global 
minimum. The pooling layer will lose a lot of 
valuable information

Suitable for data scenarios 
with similar network 
structures

FCN The end-to-end convolutional 
network is extended to semantic 
segmentation. The deconvolution 
layer is used for up-sampling; A 
skip connection is proposed to 
improve the roughness of the 
upper sampling

Can accept any size; Input 
image; Jump junction; The 
structure combines fine 
layers and coarse; Rough 
layers, generating precise 
segmentation

The receptive field is too small to obtain the 
global information;Small storage overhead

Applicable to large 
sample data

GAN With adversarial learning criteria, 
there are two No's: The same 
network, not a single network

Can produce a clearer, 
more realistic sample; any 
generated network can be 
trained

Training is unstable and difficult to train; GAN 
is not suitable for processing data in discrete 
form

Suitable for data 
generation (e.g., there are 
not many data sets with 
labels), image style 
transfer; Image denoising 
and restoration; Used to 
counter attacks

CNN: Convolutional neural network; FCN: Full convolutional neural network; GAN: Generative adversarial network.

CONCLUSION
At the present, the development direction of deep learning in image recognition of 
gastric cancer mainly focuses on the following aspects: (1) Training of deep learning 
algorithms relies on the availability of large datasets, because medical images are often 
difficult to obtain, medical professionals need to spend a lot of time on data collection 
and annotation which is time-consuming and costly. Besides, medical workers need 
not only to provide a large amount of data support but also to make use of all the 
effective information in the data as much as possible. Deep neural networks enable full 
mining of the information content of the data. Using deep networks seems to be the 
dominant future research direction in this field; (2) Multimodal gastric image 
segmentation combined with several different deep neural networks are used to 
extract the deeper information of the image and improve the accuracy of tumor 
segmentation and recognition. This is a promising major research direction in this 
field; and (3) Currently, most of the medical image segmentation techniques use 
supervised deep learning algorithms. However, for some of the rare diseases lacking a 
large number of data samples, supervised deep learning algorithms cannot reach their 
full efficiency. To overcome the issue with the lack of large datasets, some researchers 
utilize semi-supervised or unsupervised techniques such as GAN and combine the 
generated adversarial network with other higher performance networks. This might be 
another emerging research trend in this area.
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Abstract
Artificial intelligence (AI) has been widely involved in every aspect of healthcare 
in the preclinical stage. In the digestive system, AI has been trained to assist 
auxiliary examinations including histopathology, endoscopy, ultrasonography, 
computerized tomography, and magnetic resonance imaging in detection, 
diagnosis, classification, differentiation, prognosis, and quality control. In the field 
of endoscopy, the application of AI, such as automatic detection, diagnosis, classi-
fication, and invasion depth, in early gastrointestinal (GI) cancers has received 
wide attention. There is a paucity of studies of AI application on common GI 
benign diseases based on endoscopy. In the review, we provide an overview of AI 
applications to endoscopy on common GI benign diseases including in the 
esophagus, stomach, intestine, and colon. It indicates that AI will gradually 
become an indispensable part of normal endoscopic detection and diagnosis of 
common GI benign diseases as clinical data, algorithms, and other related work 
are constantly repeated and improved.

Key Words: Artificial intelligence; Endoscopy; Common gastrointestinal benign diseases
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Core Tip: In endoscopy, the application of artificial intelligence in early gastrointestinal 
cancer has been widely concerned. We provide a general conclusion of artificial 
intelligence endoscopy applications in common gastrointestinal benign diseases, such 
as Barrett’s esophagus, atrophic gastritis, and colonic polyp. Studies indicate high 
accuracies and efficiencies. Further related work is needed to boost the real application 
of artificial intelligence in common gastrointestinal benign diseases in the future.
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INTRODUCTION
Artificial intelligence (AI) is essentially a process of learning human thinking and 
transferring human experience based on mathematics and statistics. Iteration of 
algorithm, rising data, and improving computing power are cores of AI. Machine 
learning (ML) is a subset of AI[1], and deep learning is a subset of ML to realize 
ML[2], where multiple algorithms are structured together in complex layers. Artificial 
neural networks are one of the most common algorithms of AI[3]. Convolutional 
neural networks (CNNs) are a kind of supervised deep learning algorithm[4]. Its 
modified format is defined as deep convolutional neural networks[5]. Recognizing 
images based on artificial neural networks/CNNs promotes AI penetrating in 
medicine. Computer-aided diagnosis (CAD) systems are designed to interpret medical 
images using advances of AI from ML to deep learning[6].

In the field of gastroenterology, diseases of the liver, pancreases, and full digestive 
tract have been involved. Examples include a deep learning model based on computed 
tomography images to stage liver fibrosis, a deep learning model constructed to differ-
entiate between precancerous lesions and pancreatic cancers, and a deep learning 
model used in endoscopy to detect early gastrointestinal (GI) cancers. A study covered 
five kinds of gastric diseases and showed the diagnostic specificity of the CNNs was 
higher than that of the endoscopists for early gastric cancer and high-grade intrae-
pithelial neoplasia images (91.2% vs 86.7%). The diagnostic accuracy of the CNNs was 
close to those of the endoscopists for lesion-free, early gastric cancer and high-grade 
intraepithelial neoplasia, peptic ulcer (PU), advanced gastric cancer (GC), and gastric 
submucosal tumor images. The CNNs had an image recognition time of 42 s for all the 
test set images[7]. In this review, the application and research of AI on common GI 
benign lesions based on endoscopy were concluded.

LITERATURE SEARCH
This review aimed to make a qualitative only review of the application of AI on 
common GI benign diseases. We searched the PubMed database for articles that were 
published in the last 5 years using the term combinations of artificial intelligence and 
common GI benign lesions [Barrett’s esophagus (BE), esophageal varices (EV), atrophic 
gastritis (AG), PU, gastric polyp, small bowel capsule endoscopy, colonic 
polyp/adenoma, and inflammatory bowel diseases (IBDs)]. Articles based on 
radiological images or other samples, review articles, research articles of early or 
advanced GI cancers or other cancers, and articles only related to either GI benign 
diseases or AI were excluded. Two authors independently extracted data. Any 
disagreement was resolved by discussion until consensus was reached or by 
consulting a third author. Endoscopic-related results were qualitatively concluded in 
Table 1. The flowchart was presented in Figure 1.

SEARCH RESULTS
Initially, a total of 555 articles were identified. After manually screening and reading, 
only research articles related to the application of AI to common GI benign lesions (BE, 
EV, AG, PU, gastric polyp, small bowel capsule endoscopy, colonic polyp/adenoma, 
and IBDs) based on different endoscopic images or tissue slides from endoscopic 
biopsies were included. Finally, 35 studies were tabulated in Table 1. Six studies 
demonstrated the application of AI on esophageal benign diseases (5 BE and 1 EV). 
Seven studies were about gastric benign diseases (3 AG, 3 PU, and 1 polyp). Seven 
studies were about intestinal diseases. Fifteen studies were about colonic benign 
diseases (11 polyp/adenoma and 4 IBDs).
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Table 1 Application of artificial intelligence on common gastrointestinal benign diseases

Ref. Aim and disease Prospective/retrospective AI method Endoscopy image Training 
dataset

Validation 
dataset Result sensitivity Result 

specificity
Result 
accuracy/AUC

Esophageal benign diseases

de Groof 
et al[12]

Detecting 
Barrett’sneoplasia

Retrospective CAD WLI images 40 images A leave one out 
cross validation

92% 95% 85%1

Jisu et al[39] Distinguishing BE Retrospective CNNs Endomicroscopic images 262 images Image distortion 
methods 

80.77%1

Ebigbo et al
[40]

Distinguishing BE Retrospective CNNs (ResNet) WLI images 129 images 62 images 83.7% 100.0% 89.9%1 

Sehgal et al[41] Detecting dysplasia in 
BE

Retrospective ML (decision 
trees)

Video recordings(AAC) 40 patients 
with NDBE 
and DBE

97% 88% 92%1

de Groof 
et al[14]

Detecting 
Barrett’sneoplasia

Retrospective CNN (CAD 
(ResNet-UNet))

WLI images 494364 images 1704 images (early 
stage neoplasia in 
BE and NDBE 
from 669 patients)

90% 88% 89%1

Dong et al[16] Screening high risk EV Retrospective ML (Random 
forest)

238 patients 109 patients Training set (0.84); 
Validation set (0.82)

Gastric benign diseases

Zhang et al[42] Diagnosing CAG Retrospective CNNs (DenseNet) WLI images 5470 images Five-fold cross 
validation

94.5% 94.0% 94.2%1

Guimarães et 
al[43]

DiagnosingCAG Retrospective CNNs (VGG16) WLI images 200 images 70 images(ten-fold 
cross validation)

93%1/0.98

Horiuchi et al
[44]

Differentiating CAG Retrospective CNNs 
(GoogLeNet)

ME-NBI images 1078 images 107 images 95.4% 71.0% 85.3%1/0.85

Zhang et al[7] Diagnosing PU Retrospective CNNs (ResNet34) WLI images 4200 images 228 images 78.9% 88.4% 86.4%1

Lee et al[45] Differentiating PU Retrospective CNNs (ResNet-
50/ Inception 
v3/VGG16 
model)

WLI images 200 images 20 images 92.6%1/85.24%1

/91.2%1

Namikawa 
et al[46]

Classifying 
gastriccancers and 
ulcers

Retrospective CNNs (SSD) WLI/NBI/chromoendoscopy 
images

373 images 720 images 93.3% 99.0% 93.3 %1

Zhang et al[26] Detecting GP Retrospective CNNs (SSD-
GPNet)

WLI images 404 images 50 images 93.92%1

Intestinal benign diseases
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Hwang et al
[29]

Classifying 
hemorrhagic and 
ulcerations

Retrospective CNNs (VGGNet) Capsule endoscopy 7556 images 5760 images Model 1 vs Model 2; 
97.61% vs 95.07%

Model 1 vs Model 
2; 96.04% vs 
98.18%

Model 1 vs Model 2; 
96.83%1 vs 96.62%1

Aoki et al[47] Detecting erosions and 
ulcerations

Retrospective CNNs (SSD) Capsule endoscopy 5360 images 10440 images 88.2% 90.9% 90.8%1/0.958

Aoki et al[48] Detecting erosions and 
ulcerations

Retrospective CNNs (SSD) Capsule endoscopy 20 videos

Ding et al[49] Detecting small bowel 
diseases

Retrospective CNNs (ResNet) Capsule endoscopy 158235 images 5000 patients 99.88% per 
patient99.90% per 
lesion

100% per 
patient100 % per 
lesion

Fan et al[50] Detecting erosions and 
ulcerations

Retrospective CNNs (AlexNet) Capsule endoscopy Ulcer 2000; 
Erosion 2720

Ulcer 500; Erosion 
690

Ulcer: 96.80%; 
Erosion: 93.67%

Ulcer: 94.79%; 
Erosion: 95.98%

Ulcer: 95.16%1; 
Erosion: 95.34%1/0.98

Leenhardt et al
[51]

Detecting small bowel 
angiectasia

Retrospective CNNs Capsule endoscopy 300 videos 
with 
angiectasia

300 videos with 
angiectasia

100% 96%

Tsuboi 
et al[52]

Detecting small bowel 
angiectasia

Retrospective CNNs (SSD) Capsule endoscopy 141 patients 28 patients 98.8% 98.4% 0.998

Colonic benign diseases

Lui et al[34] Detecting missed 
colonic lesions

Retrospective and prospective R-FCN 
(ResNet101)

Endoscopic videos (WLI) 52 videos Real-time AI detected at least 1 missed adenoma in 14 patients (26.9%) and increased the 
total number of adenomas detected by 23.6%.

Rodriguez-
Diaz et al[53]

Histologically 
classifying CP

Retrospective CAD NBI 745 images 
+65000 images

96% 84%

Komeda et al
[54]

Diagnosing CP Retrospective CNNs-CAD WLI/NBI/ chromoendoscopy 
images

1200 images 10-fold cross 
validation

75.1%1

Akbari 
et al[55]

Classifying CP Retrospective FCNs WLI images 200 images 300 images

Chen et al[56] Classifying diminutive 
CP

Retrospective DCNNs-CAD NBI images 96 images + 
188 images

96.3% 78.1%

Gong et al[57] Detecting CA Prospective DCNNs WLI images DCNNs system (n = 355) or 
unassisted (control) colonoscopy (n 
= 349)

58 (16%) of 35527 (8%) of 349

Byrne et al[58] Differentiating 
adenomatous and 
hyperplastic polyps

Retrospective DCNNs Videos and NBI images 223 polyp 
videos

40 videos 98% 83%

Mori et al[59] Identifying diminutive 
CP

Prospective CAD NBI/stained images 791 consecutive patients undergoing 
colonoscopy and 23 endoscopists

Pathologic prediction 
rate of 98.1%1

105 positive 
and 306 
negative 

Misawa 
et al[60]

DetectingCP Retrospective CAD WLI images 50 positive and 85 
negative videos

90.0% 63.3% 76.5%1
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videos

Taunk et al[61] Classifying polyp 
histology

Retrospective CAD pCLE images 125 images 189 images 95% 94% 94%1

Wang et al[62] Detecting CA Prospective CAD WLI images 484 patients in the CADe group and 
478 in the sham group

165 (34%) of 484; 132 (28%) of 478

Tong et al[63] Differentiating UC, 
CD, and ITB

Retrospective CNNs/RF WLI images 6399 consecutive patients (5128 UC, 
875 CD and 396 ITB)

RF (UC 97%, CD 
65%, and ITB 68%); 
CNN (UC 99%, CD 
87%, and ITB 52%)

RF (UC 97%, CD 
53%, and ITB 76%); 
CNN (UC 97%, CD 
83%, and ITB 81%)

RF (UC 0.97, CD 0.58, 
and ITB 0.72); CNN 
(UC 0.98, CD 0.85, and 
ITB 0.63)

Ozawa et al
[36]

Diagnosing UC Retrospective CAD WLI images 26304 images 3981 images 0.86 (Mayo 0); 0.98 
(Mayo 0–1)

Stidham 
et al[37]

Grading the severity of 
ulcerative colitis

Retrospective CNNs WLI images 2465 patients 308 patients 83.0% 96.0% 0.966

Maeda 
et al[38]

Identifying histologic 
inflammation 
associated with UC

Retrospective CAD Endocytoscopic images 87 patients 100 patients 74% 97% 91%1

1Results accuracy. AAC: Acetic acid chromoendoscopy; AI: Artificial intelligence; AUC: Area under the curve; BE: Barrett’s esophagus; CA: Colorectal adenomas; CAD: Computer-aided diagnosis; CAG: Chronic atrophic gastritis; CD: 
Crohn’s disease; CNN: Convolutional neural network; CP: Colorectal polyp; DBE: Dysplastic Barrett’s esophagus; DCNNs: Deep convolutional neural networks; EV: Esophageal Varices; FCNs: Fully convolutional networks; GP: Gastric 
polyp; ITB: Intestinal tuberculosis; ME-NBI: Magnifying narrow-band imaging; ML: Machine learning; NBI: Narrow-band imaging; NDBE: Non-dysplastic Barrett’s esophagus; pCLE: Probe-based confocal laser endomicroscopy; PU: Peptic 
ulcer; RF: Random forest; R-FCNs: Region-based fully connected convolutional neural networks; SSD: Single shot detector; UC: Ulcerative colitis; WLI: White-light imaging.

AI AND ESOPHAGEAL BENIGN DISEASES: BARRETT’S ESOPHAGUS 
AND ESOPHAGEAL VARICES 
BE is a precursor to esophageal adenocarcinoma. Intestinal metaplasia and gastric 
metaplasia are two pathological subclasses of BE. Intestinal metaplasia can progress to 
esophageal cancer. The ablation of dysplastic BE will reduce the risk of progression to 
cancer[8]. Endoscopic surveillance, including white-light imaging (WLI), narrow-band 
imaging, and chromoendoscopy, is performed to detect dysplasia in BE. Approx-
imately 5% of the esophageal mucosa is found at risk by random biopsies sample[9].

Recently, AI has been applied in some studies of BE. For example, CAD based on 
deep learning and different algorithms trained by WLI and endomicroscopic images to 
detect, diagnose, and distinguish BE with achievable results (the accuracy from 80.77% 
to 92%, specificity from 88% to 100%, and sensitivity from 83.7% to 97%) (Table 1). On 
pathology, CAD with wide area transepithelial sampling could increase the detection 
of high-grade dysplasia/esophageal adenocarcinoma (absolute increase: 14.4%)[10]. 
Deep convolutional neural networks were used in the whole-slide tissue 
histopathology images-based diagnosis of dysplastic and non-dysplastic BE[11]. 
Moreover, distinguishing BE adenocarcinoma by AI methods has been studied based 
on different endoscopic images such as WLI and volumetric laser endomicroscopic 
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Figure 1 Flow chart of study selection and logic arrangement of review. AG: Atrophic gastritis; AI: Artificial intelligence; BE: Barrett’s esophagus; CA: 
Colonic adenoma; CP: Colonic polyp; EV: Esophageal varices; GI: Gastrointestinal; GP: Gastric polyp; IBDs: Inflammatory bowel diseases; PU: Peptic ulcer; SB-CE: 
Small bowel capsule endoscopy.

images with accuracy from 88% to 92%, specificity from 88% to 93%, and sensitivity 
from 90% to 95%[12-14].

As another common esophageal benign disease, EV are associated with cirrhosis 
and portal hypertension, and variceal hemorrhage is a substantial cause of 
mortality[15]. However, related AI research is limited. A score system based on ML 
was built on the data of 238 patients with cirrhosis to reliably identify patients with 
varices that needed treatments and achieved an area under the curve (AUC) from 0.75 
to 0.84 in different groups[16]. Another study of the index of spleen volume-to-platelet 
ratio based on deep learning-measured spleen volume on computed tomography to 
assess high-risk varices in B-viral compensated cirrhosis had a sensitivity of 69.4% and 
specificity of 78.5%[17]. There is little research of AI on esophagitis, although it is also 
a common esophageal disease associated with BE and esophageal cancer.

AI AND GASTRIC BENIGN LESIONS: ATROPHIC GASTRITIS, PEPTIC 
ULCER, AND POLYP
Gastritis, peptic ulcer, polyp and adenoma, and vascular lesion are common gastric 
benign diseases. The detection and diagnosis of these lesions account for a large part of 
daily endoscopic work. If AI can be applied in this field, then the rate of detection and 
accuracy will be improved. Moreover, the rapid identification of simple lesions can fill 
the lack of endoscopists and reduce the workload.

Early diagnosis of chronic AG, a precancerous lesion, is important to prevent the 
occurrence and development of GC. AI-assisted detection and diagnosis has been 
related to endoscopic images (Table 1), histological images[18,19], and X-ray 
images[20,21]. The accuracy was from 85.3% to 94.2%, the specificity was from 71% to 
94%, and the sensitivity was from 94.5% to 95.4%. Helicobacter pylori infection, as a 
dominant cause of chronic AG and GC, has also been detected via AI methods based 
on endoscopic images, such as CNNs (GoogLeNet) and CNNs (ResNet-50 model), 
which achieved an accuracy up to 93.8% in a considerably short time of less than 200 
s[22-24].
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A CNN method was constructed to diagnose PU and differentiate GC from PU 
mainly based on WLI, narrow-band imaging, and chromoendoscopic images with an 
accuracy from 85.2% to 93.3%, specificity from 88.4% to 99%, and sensitivity from 
78.9% to 93.3% (Table 1). In addition, a ML model was built on six parameters, such as 
age and the presence of PU, to predict recurrent ulcer bleeding within 1 year with an 
AUC of 0.775 and an accuracy of 84.3%[25].

There were only a few applications of AI on detecting gastric hyperplastic polyps 
and adenomas. A 93.92% accuracy was achieved when detecting polyps by CNNs 
(SSD-GPNet) based on WLI images[26]. A CNN method was trained to detect 
adenomas and showed an AUC of 0.99 based on histopathology whole-slide 
images[27]. Research and application of AI on gastric benign lesions are limited, 
although these diseases make up a considerable part of daily work. Some of them are 
usually prone to severe outcomes and risks despite the relative ease to diagnose. 
Indeed, the study of AI on this aspect will assist endoscopists to improve early 
detection rates and bring the opportunity of early treatment to benefit patients.

AI AND INTESTINAL DISEASES: CAPSULE ENDOSCOPY
The application of AI in small bowel diseases has been concentrated on capsule 
endoscopy. It includes image enhancement using ML algorithms to reduce artifact 
interference as well as three-dimensional luminal map reconstruction and 
localization[28]. AI-assisted capsule endoscopy in detecting ulcer, erosion, bleeding, 
polyps, parasite, diverticulum, and angiectasia with an accuracy more than 90.0%, 
specificity from 90.9% to 100%, and sensitivity from 88.2% to 100% in a short time 
(about 6 min) (Table 1). Furthermore, a gradient class activation map was used to 
visualize and detect lesions by CNNs-VGGNet to improve the classification and 
localization[29]. In addition, a CNN method based on conventional abdominal 
radiographs was trained to detect high-grade small bowel obstruction with an AUC of 
0.84, a sensitivity of 83.8%, and a specificity of 68.1%[30]. In another study, it achieved 
an AUC of 0.971, a sensitivity of 91.4%, and a specificity of 91.9% using region-based 
CNNs[31]. The limited research indicated CNNs could recognize specific images 
among a large variety with high efficiency and accuracy. The application of AI will 
relieve the clinical workload as capsule endoscopy reading is a time-consuming 
process.

AI AND COLONIC BENIGN LESIONS: POLYP, ADENOMA, AND IBDS
A 1.0% increase of adenoma detection rate has been associated with a 3.0% decrease in 
the risk of interval colorectal cancer[32]. To improve colorectal polyp and adenoma 
detection, AI has been widely applied in the detection, real-time histological classi-
fication, segmentation, localization, and distinguishing of diminutive polyps and 
adenomas based on different methods trained by videos and images in retrospective 
or prospective and in multicenter or single center clinical trials (Table 1). Deep 
learning was also used to automatically classify colorectal polyps on histopathologic 
slides[33]. For the internal evaluation, the accuracy of the deep CNN method was 
93.5%, which was comparable to the pathologists accuracy of 91.4%. On the external 
test, it achieved an accuracy of 87.0%, which was comparable to the pathologists 
accuracy of 86.6%. The application of AI in colorectal polyps has gained more concerns 
and practice, and it is deeper and closer to the clinical use to further increase the 
detection rate of polyps. For example, real-time AI detected at least one missed 
adenoma in 14 patients (26.9%) and increased the total number of adenomas detected 
by 23.6%[34].

AI methods have been trained in grading endoscopic disease severity of patients 
with ulcerative colitis and in predicting remission in patients with moderate to severe 
Crohn’s disease[35]. For example, a CNN-CAD system based on GoogLeNet was 
robustly promising to identify normal mucosa (Mayo 0) and mucosal healing state 
with an accuracy of 0.86 of Mayo 0 and of 0.98 of Mayo 0-1[36]. Another similar system 
could differentiate remission (Mayo 0 or 1) from moderate or severe disease (Mayo 2 
or 3) with an AUC of 0.966, a specificity of 96.0%, and a sensitivity of 83.0%[37]. A 
CAD was constructed to identify the presence of histologic inflammation associated 
with ulcerative colitis using endocytoscopy with an accuracy of 91%, a specificity of 
97%, and a sensitivity 74%[38] (Table 1).
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FUTURE PERSPECTIVES OF AI APPLICATION ON COMMON GI BENIGN 
LESIONS
We summarized the application and research of AI on common GI benign diseases. 
Limited studies are promising as most of the studies showed comparatively high 
accuracies and efficiencies. As studies of AI application on gastroenterology continue 
to increase, there are several areas of interest that will hold significant value in the 
future. First, the technical integration of AI systems will be important to optimize 
clinical workflow. New AI applications can easily “read in” data from a video input, 
allowing the systems to use the data for training and real time decision support. 
Second, AI systems will continue to expand the clinical applications. Some promising 
studies have demonstrated how AI can improve our performance on clinical tasks 
such as polyp identification, detection of small bowel bleeding, and endoscopic 
recognition of Helicobacter pylori infection, etc. More research, especially randomized 
controlled trials, on how to train and validate up-to-date algorithms will be continued 
on the present work to find more precise methods and identify new clinical tasks after 
practice. Third, further research will be needed to describe the most effective training 
methods for physician practices beginning to adopt AI technology because AI will be 
an indispensable helper of normal endoscopic detection and diagnosis of common GI 
benign lesions in the future.

CONCLUSION
Although AI is a relatively new technology, it has the potential to ease the daily 
workload of radiologists, pathologists, and sonographers. In endoscopy, AI related to 
early GI cancers and precancerous lesions has garnered more research than common 
GI benign diseases, despite the latter occupying a large proportion of daily work and 
being easier to detect and diagnose than early cancers. If models and diagnosing 
routes based on AI targeted at common GI benign diseases are well developed, then it 
will bring great benefits to patients and endoscopists, especially in primary hospitals 
where medical resources are lacking and core work is mainly focused on early 
diagnosis and treatment of common GI benign diseases. Furthermore, AI methods and 
technology targeted at common benign diseases will be easier for endoscopists to 
adopt professional education. More research is needed to overcome the challenges of 
integrating AI into the detection of common GI benign diseases by endoscopy, but the 
future is promising.
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Abstract
Research in artificial intelligence (AI) in gastroenterology has increased over the 
last decade. Colonoscopy represents the most widely published field with regards 
to its use in gastroenterology. Most studies to date center on polyp detection and 
characterization, as well as real-time evaluation of adequacy of mucosal exposure 
for inspection. This review article discusses how advances in AI has bridged 
certain gaps in colonoscopy. In addition, the gaps formed with the development 
of AI that currently prevent its routine use in colonoscopy will be explored.
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Core Tip: The use of artificial intelligence (AI) for colonoscopy has been studied most 
extensively for polyp detection and characterization. Despite advances made in this 
field, AI systems studied for these purposes represent only the machine learning 
domain of AI, and individual machine learning algorithms used in these studies are 
each focused on performing a very narrow task. While they may bridge existing gaps in 
polyp detection and real-time optical diagnosis of colorectal polyps, the introduction of 
AI into colonoscopy will also mean that there are new gaps that must be bridged for AI 
systems to be routinely used in clinical practice.
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INTRODUCTION
The use of artificial intelligence (AI) in gastroenterology has gained momentum in the 
past decade. This is reflected in the increasing number of publications in the field of AI 
in endoscopy, most of which have been centered on colonoscopy. This is 
understandable as the unique role of colonoscopy in the prevention and management 
of colorectal cancer (CRC), together with the unmet needs in this field, has created the 
perfect milieu for the introduction of AI into world of endoscopy.

CRC represents one of the leading causes of cancer-related morbidity and mortality 
worldwide[1,2]. Colonoscopy decreases CRC-related mortality[3,4], with a 1% increase 
in adenoma detection rate (ADR) estimated to decrease interval CRC by 3%[5]. As 
such, a key barrier to overcome is the adenoma miss rate (AMR), which has been 
estimated in a meta-analysis to be a high as 22% overall, with a higher AMR when 
diminutive adenomas are considered[6]. Another unmet need in colonoscopy is the 
need for accuracy in the optical diagnosis of colonic polyps in relation to their actual 
histology. Up to 90% of lesions detected on colonoscopy consist of diminutive (≤ 5 
mm) and small (6-9 mm) polyps, with the progression rates to advanced adenomas or 
CRC postulated to be low based on evidence from available studies[7]. It is therefore 
no surprise that most of the literature to date has focused on computer-assisted 
detection (CADe)[8,9] and computer-assisted diagnosis (CADx)[10-12] applications in 
colonoscopy.

This review article evaluates the areas in colonoscopy where AI may be a bridge for 
certain gaps in clinical practice. It will also explore in detail the current limitations and 
pitfalls in the application of AI in colonoscopy, highlighting how despite the prolif-
eration of literature on this topic and what it promises to offer, AI may be a new gap in 
endoscopy which clinicians need to work to bridge.

LITERATURE SEARCH
We performed a comprehensive literature search in the PubMed, MEDLINE and 
EMBASE (up to March 17, 2021) electronic databases to identify relevant clinical trials 
that evaluated the roles of AI systems in colonoscopy. Electronic searches were also 
supplemented with manual searches of the references in the included studies and 
review articles.

AI TERMINOLOGY IN COLONOSCOPY
What does the term AI mean in colonoscopy?
The term “artificial intelligence” was first coined by John McCarthy in 1956 at the 
Dartmouth Summer Research Project. In essence, it is a branch in computer science 
where computer systems are designed to perform tasks which would ordinarily 
require human intelligence. This definition is extremely broad and often confuses 
clinicians to what exactly the capabilities, and by inference, the limitations of AI are in 
their respective fields[13]. There is therefore a need to define what AI means in 
colonoscopy as this is a prerequisite for meaningful discussion of its role in 
colonoscopy.

Published and ongoing studies incorporating AI in the context of colonoscopy 
involve the machine learning (ML) domain of AI. ML refers to the use of algorithms, 
which form predictive and descriptive models based on analysis of input data 
provided by investigators (the training set)[14]. These algorithms undergo multiple 
iterations of these models with the goal of performing a specific task, the aim of which 
is to come to a specified classification output (e.g., polyp or no polyp) when the 
algorithms are tested on an unseen set of data (the test set). In practical terms and in 
the context of colonoscopy, this is achieved using either handcrafted models or deep 
learning (DL).

A useful mental model in understanding the scope of and roles which AI plays in 
colonoscopy is to regard the progress made in this field as “waves”[15]. It is crucial to 
understand that the methods, technologies, and results from earlier AI studies are not 
obsolete the moment a “better” or “faster” computer system is available based on 
results we as clinicians are familiar with such as the ADR and adenoma per 
colonoscopy (APC), or technical matrices that we may gravitate towards such as the 
processing speed of an algorithm. Rather, these “waves” are continuously interacting 
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and building on top of each other, and as a result, have a strong influence on the 
development of later technologies. The earlier “waves” remain relevant and may 
sometimes harbor solutions to certain issues faced with CADe and CADx support 
tools, which will be discussed later in this article. Having this mental model also helps 
us better understand the intrinsic biases present in all forms of ML regardless of 
advancements made in AI, which is essential for critical appraisal of literature 
surrounding AI in clinical practice.

AI terminology relevant to colonoscopy
Commonly used terms in AI which are relevant to this review article will be discussed 
here. This list is not meant to be exhaustive and is meant instead to highlight terms 
which will help the reader understand the later critiques and solutions offered in this 
paper.

AI can be categorized very broadly into weak (or narrow) AI and strong AI. The 
former refers to systems built to solve a specific problem or performing a single task 
extremely well, without an emphasis on elucidating how human reasoning works. 
This type of AI operates within significant constraints and a limited context. The latter 
term, also referred to as artificial general intelligence, aims to build systems which 
think like humans.

Features in ML refer to the set of numbers which quantitatively summarize and 
represent in a compact fashion the input data. For example, differences in morphology 
of polyps as defined in the Paris classification[16] and pit patterns[17] can be 
converted into different arrays of numbers which an ML algorithm can use to generate 
a prediction such as “polyp” or “no polyp” in a CADe application. Conventional 
learning by the ML algorithm may be supervised, where training takes place on 
labeled data sets, or unsupervised, where commonalities are used to identify groups 
within data. Supervised learning occurs on pre-established input and output pairs, 
enabling the ML algorithm to learn predictive mathematical models which can then 
map the input from unseen data into an outcome of interest (e.g., neoplastic, or 
hyperplastic). In contrast, unsupervised learning predicts similarities between data 
points through looking at the underlying structure of the data provided, with no prior 
knowledge of its significance.

Handcrafted knowledge represents the first “wave” of AI. This consisted of 
knowledge-based methods where manual extraction and selection of characteristics of 
an object such as polyp shape and texture, are used to create mathematical models 
which can achieve a class or numerical output. This is labor-intensive and as a result, 
are usually implemented on small sets of data. These systems do not have the ability to 
learn and were of limited clinical use. DL is another form of ML where an artificial 
neural network (ANN) is used to perform the same task. ANNs are supervised ML 
models where interconnected artificial neurons form layered networks. Signals travel 
via weighted inputs from artificial neurons in the previous layer to the next layer, 
which then propagate the signal when a predefined threshold is reached, like how 
biological neurons work. Classification can be optimized, and the system enhanced by 
adjustment of the weights given to these inter-neuron connections.

Deep convolutional neural networks (DCNNs) have enabled more hidden layers to 
be added to the input and output layers of ANN, a development which has been 
facilitated by advancements made in other areas of computer science as this is 
computationally expansive. In addition, convolutional layers apply filters (a set of 
weights) in a systematic fashion to each overlapping part of the input data. In this 
manner, large numbers of filters can be applied to the training set of data in parallel 
under the constraints of the intended task, for example classification of an image as 
having a polyp or not in colonoscopy, allowing information to be extracted directly 
from images training data to form a feature map. DCNN usually require large 
amounts of labelled training data, which are derived wither from public databases or 
private collections in individual institutions.

Hyperparameters in ML refer to all parameters that have been arbitrarily set by the 
investigator and are used to configure the model for optimal performance at a specific 
task or on a specific dataset. As opposed to model parameters, which are learned 
automatically during training of the model, hyperparameters are manually set and 
affects the learning process and ultimately, the behavior of the model. This is useful in 
understanding the roles (and potential biases resulting from) the optimization and 
training process of AI models used in colonoscopy. The training set refers to the initial 
dataset used to determine optimal parameters after multiple rounds or iterations of 
adjustments. The validation set is mostly (but not always) a different dataset where 
these parameters are tested and adjusted. It is also used to optimize the hyperpara-
meters in the model. Lastly, the test set refers to a new set of unseen data which is used 
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to test the model and its generalizability.

AI: BRIDGING THE GAP IN COLONOSCOPY
AI in the field of colonoscopy has been studied primarily for polyp detection, polyp 
characterization in terms of predicted histology, and for quality assurance in the 
performance of colonoscopy.

Polyp detection
The rate of missed polyps was mentioned earlier in the introduction. The AMR in 
influenced by different factors, among which the endoscopist is considered one of the 
major determinants[18-21]. These human biases may be due to distraction during 
colonoscopy, fatigue, or the inability to maintain a sustained level of alertness during 
withdrawal. These lead to errors in perception where the endoscopist may miss polyps 
which are visible on the monitor. The role of “second readers” in colonoscopy in 
increasing ADR[22,23] lends support to the hypothesis that CADe may help increase 
APC and ADR, and decrease AMR, during colonoscopy.

At the time of writing, there are six randomized controlled trials (RCTs)[24-29] to 
date that have evaluated the role of CADe in colonoscopy. Hassan et al[9] recently 
performed a systematic review and meta-analysis of five of these studies[24,25,27-29], 
which consisted of 4354 participants. The pooled ADR was significantly higher in the 
CADe group compared with the control group (36.6% vs 25.2%; relative risk [RR] 1.44; 
95% confidence interval [CI]: 1.27-1.62; P < 0.1), with all of the included RCTs 
reporting a significant increase in ADR individually. APC, which is defined as the total 
number of adenomas found divided by the total number of colonoscopies and has 
good correlation with ADR[30,31], was also significantly higher in the CADe 
compared to the control group (0.58 vs 0.36; RR 1.70; 95%CI: 1.53-1.89; P < 0.01). The 
mean withdrawal time in the CADe and control groups was shown to be statistically 
different in this meta-analysis.

An interesting prospective study conducted by Wang et al[32] showed that the AMR 
was decreased with CADe. This study differed from the RCT mentioned above in that 
tandem colonoscopies were performed. Patients in this study were randomly assigned 
to colonoscopy with CADe or colonoscopy without CADe by an endoscopist, followed 
immediately by the other procedure. The study showed that the AMR and polyp miss 
rates were significantly lower in the CADe colonoscopy group compared to the 
routine colonoscopy group (13.89% vs 40.00%, P < 0.0001 and 12.98% vs 45.90%; P < 
0.0001, respectively). These results were also consistent regardless of colonic segments, 
i.e. the AMR was significantly lower in the CADe group in the ascending, transverse, 
and descending colon.

Polyp characterization (optical prediction of polyp histology)
In contrast to CADe for polyp detection, CADx deals with the interpretation of polyp 
appearance during colonoscopy to determine the predicted histology. Polyp classi-
fication systems such as the Kudo pit pattern[17], Sano et al[33], NBI International 
Colorectal Endoscopic (NICE)[34], and Japan NBI Expert Team (JNET)[35] classific-
ations were developed with the purpose of predicting polyp histology and severity of 
neoplasia to guide therapy. The use of these classification systems for optical 
prediction of colorectal polyp histology requires the proper equipment, structured 
training, and experience in clinical application. Studies have shown wide variation in 
the sensitivity and specificity of NICE and JNET classifications, with most studies 
reporting a moderate interobserver agreement at best[36-39].

With the clinical use of CADe, the detection of diminutive polyps is likely to 
increase exponentially, as demonstrated in the CADe RCT mentioned[24,25,27-29]. 
Most diminutive polyps tend to be hyperplastic in nature with low malignant 
potential. The “resect and discard” and “detect and leave” strategies for such polyps 
were previously studied to address these issues before the emergence of AI but have 
failed to gain traction due to the need for better quality training and quality assurance 
in the accurate optical diagnosis of colon polyps[40-42]. The threshold for optical 
biopsy technologies in high confidence predictions established by the American 
Society for Gastrointestinal Endoscopy (ASGE) Preservation and Incorporation of 
Valuable Endoscopic Innovations (PIVI)[43] are deemed appropriate targets for CADx 
support tools[44]. A systematic review and meta-analysis by ASGE[45] showed that 
these thresholds were met using NBI only among NBI experts, illustrating the 
difficulty and practical limitations of replying on the use of these forms of imaging by 
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endoscopists in general to achieve accurate optical diagnoses of colorectal polyps. 
Hence, this represents a significant clinical gap which AI has the potential to bridge in 
colonoscopy.

CADx is postulated to aid in this field of colorectal polyp management by using DL 
models to increase the accuracy of prediction of polyp histology during 
colonoscopy[46]. At the time of writing, there are currently no RCT evaluating CADx 
in colonoscopy. In a study by Jin et al[10], a DCNN was trained to differentiate 
between adenomatous and hyperplastic diminutive colorectal polyps with an overall 
accuracy of 86.7% using polyp histology as the gold standard. The system was tested 
on 22 endoscopists with varying expertise such as novice endoscopists, colonoscopy 
experts with differing levels of expertise in NBI, and NBI-trained experts. The use of 
CADx markedly improved the accuracy of novice endoscopists in differentiating 
adenomatous and hyperplastic polyps from 73.8% to 85.6% (P < 0.05), which was 
comparable to the baseline accuracy of NBI-trained experts (87.6%). However, in the 
colonoscopy expert and NBI-trained expert groups, this increase in accuracy was less 
impressive (83.8% to 89.0% and 87.6% to 90.0, respectively). The overall time to 
diagnosis per polyp was also decreased from 3.92 s to 3.37 s; P = 0.42).

A review of CADx predictions[47] for diminutive polyp histology which included 9 
studies[48-56] showed a pooled sensitivity of 93.5% (95%CI: 90.7%-95.6%) and 
specificity of 90.8% (95%CI: 86.3%-95.9%), with a pooled area under the curve of 0.98. 
This pooled analysis of diminutive polyps had a negative predictive value (NPV) of 
0.91 (95%CI: 0.89-0.94). This meets the 90% or greater threshold for NPV in 
adenomatous histology in rectosigmoid diminutive polyps recommended by the 
ASGE PIVI[43] and thus would in theory support a “diagnose and leave” strategy if 
these applications are validated in clinical use. However, most of these studies are 
retrospective in nature or, when conducted prospectively, involved the use of ex vivo 
video or still images.

Few prospective studies on CADx in real-time colonoscopy are currently available 
in the literature. In a single-center, open-label, prospective study of 791 consecutive 
patients undergoing colonoscopy in a university hospital, Mori et al[54] evaluated the 
performance of CADx in a clinical setting using endocytoscopy (CF-H290ECI; 
Olympus Corp, Tokyo, Japan). NBI was applied to visualize the microvascular pattern 
and methylene blue staining for cellular structure under these ultra-magnifying 
colonoscopes with 520X optical zoom capability. Of the 466 diminutive polyps found 
in this study, 250 polyps were in the rectosigmoid colon. The CADx system using 
endocytoscopy had an NPV for diminutive rectosigmoid adenomas ranging from 
93.7% to 96.4% with methylene blue staining and 95.2% to 96.5% with NBI. This is well 
above the “diagnose and leave” threshold of 90% recommended by the ASGE PIVI[43] 
described. This prospective study also provides evidence for utilization of CADx for 
prediction of polyp histology in a clinical setting which may have an impact on 
decisions on polyp management real-time.

In an earlier study with a similar design by Horiuchi et al[56], CADx was evaluated 
with the use of autofluorescence imaging (AFI) to differentiate diminutive 
rectosigmoid polyps in real-time colonoscopies. The CADx system used software-
based automatic color intensity analysis, which utilized AFI’s ability to differentiate 
polyps based on the ratio of green to red tone intensities and was tested on 258 
rectosigmoid polyps in 95 patients undergoing colonoscopy. The CAD-AFI system 
achieved an NPV for adenomatous polyps of 93.4% (95%CI: 89.0%-96.4%), which again 
exceeds the 90% “diagnose and leave” threshold[43]. In addition, the NPV using CAD-
AFI was comparable to that of diagnoses made by endoscopists using AFI in the study 
(94.9%; 95%CI: 90.8%-97.5%).

Quality assurance in colonoscopy
Quality indices such as a high cecal intubation rate and adequate withdrawal time 
have been studied extensively[57,58]. However, these quality indices in colonoscopy 
performance and reporting are not always adhered to for a variety of factors such as 
training, lack of real-time feedback and failure of enforcement[59-61]. In an RCT of 704 
patients by Gong et al[26], which used an AI system called ENDOANGEL, the 
withdrawal speed and time, as well as the adequacy of mucosal exposure, was 
monitored in real-time and in an automated fashion. The resulted in a significantly 
longer withdrawal time in the ENDOANGEL[62] vs the control group (mean 6.38 min 
vs 4.76 min, respectively; P < 0.0001). This translated into an increased ADR in the 
ENDOANGEL group and, more significantly, is the only RCT to date which 
demonstrates an AI system which can increase the rate of detection of adenomas 10 
mm or larger in size (10/355 vs 1/349, respectively; odds ratio [OR] 9.50, 95%CI: 1.19-
75.75; P = 0.034). Su et al[28] used both a CADe tool together with an automatic quality 
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control system (AQCS) to increase ADR and APC. The AQUS consisted of a timer on 
the monitor and audio prompts for the Endoscopist to slow down withdrawal speed 
when unstable and blurry frames were displayed or when the Boston Bowel 
Preparation Scale (BPPS) in a colonic segment was < 2. This study showed an 
improved withdrawal time (7.03 min vs 5.68 min; P < 0.001) and rate of adequate 
bowel preparation (87.34% vs 80.63%; P = 0.023) in the AQCS group in addition to the 
mentioned significant increase in ADR and APC.

AI: A GAP NEEDING TO BE BRIDGED IN COLONOSCOPY?
While AI has emerged in the world of endoscopy with much promise, there are several 
significant gaps which need to be bridged before it can be routinely applied in 
colonoscopy in a clinical setting.

Undefined and unspecified role in clinical environment
A major bridge which needs to be bridged before AI systems can be applied in routine 
environments is its generalizability. Three of the five CADe RCT[25,27,28] available 
involved senior endoscopists with extensive experience in colonoscopy. ADR is 
dependent on several factors, one of which includes experience. A more experienced 
endoscopist is not only skilled in recognition, but also in scope handling and 
consequent mucosal exposure during withdrawal. The role of a “second reader” in 
previous studies[22,23] in increasing small adenoma detection rates suggests that 
trainees and Nurses, who by inference have less “experience” than the senior 
endoscopist, have no issues recognizing a polyp visible on screen. In addition, as 
discussed in the ENDOANGEL study, one of the largest increments in ADR and the 
only increase in detection of adenomas larger then 10 mm was seen in the RCT by 
Gong et al[26], where real-time feedback on adequacy of mucosal exposure was 
studied. An obvious but less often mentioned fact is that any CADe algorithm is still 
completely dependent on the endoscopist to present optimal images with adequately 
exposed colonic mucosa in each real-time colonoscopy performed in a busy clinical 
setting. A polyp not visible on the screen will not be detected by a CADe tool, no 
matter how powerful the algorithm is[33]. This has implications on how generalizable 
available data is for clinical use, as more studies involving both “high detectors” and 
“low detectors” are required[25,63].

Most RCT in CADe to date were conducted in single centers. Moreover, except for 
the study by Wang et al[27] where a second monitor was used and visible only to an 
observer who reported the alerts, the rest of the RCT were non-blinded 
studies[24-26,28-29]. It is not known what the impact of the latter factor may be in 
actual clinical practice, as non-blinded endoscopists in these studies may put in more 
effort in exposing colonic mucosa for inspection when they are under observation. 
This Hawthorne Effect, together with the single-center experiences of most of these 
RCT, also limit their generalizability to routine clinical practice. While single monitors 
are encouraged[44] due to presumed gaze limitations of endoscopists and the need to 
reduce distractions, it is the opinion of the authors that a dual monitor setting in 
clinical trials plays a crucial role in achieving a double-blind and objective 
environment for assessment of the performance of the AI system and to bridge this 
gap. Furthermore, it resembles tandem colonoscopy in that the performance of the AI 
system can be compared directly against endoscopists of varying skill levels and 
experience. Useful information such as the AMR can be determined accurately without 
the patient having to go through an additional colonoscopy like in a traditional 
tandem study with this methodology.

Another limitation to the generalizability of the published results of AI systems for 
polyp detection and characterization is the differences in operational environments of 
different endoscopy suites and centers. These can vary greatly between institutions, 
even those located in the same country[64]. Unlike a new endoscopic method or classi-
fication system which can be taught or standardized in training or with major society 
guidelines, different AI algorithms have unique hardware and software requirements 
which must be fulfilled for technical integration into the operational environment. For 
instance, some may be fully integrated into the processing unit[65] while others may 
be web-based applications or require an additional laptop to be linked to the 
endoscopy stack to function. The latter may require cloud integration support, which 
in turn is likely to be vendor-specific and has implications in procurement and 
cybersecurity. This technical integration into the operational environment is key, as the 
development environment from which these AI systems are derived may be vastly 
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different[66]. Most clinical trials understandably focus on the clinical aspects like the 
ADR and APC and the outcomes will inevitably be based on these primary objectives. 
However, few studies have reported the technical specifications and limitations of the 
AI systems they are investigating. The rare studies that do report them, do so in 
varying details, most of which are insufficient for interpretation and contextualization 
into the operational environment. Moreover, most of the published trials have been 
conducted in academic or expert centers and in several instances, in the same 
institutions where the AI algorithm was developed, i.e. the development and 
operational environment are the same[3,47]. Individual institutions may have 
difficulty integrating these systems due to budgeting constraints, existence of legacy 
systems which are incompatible with the software and hardware requirements of the 
AI systems, logistical limitations such as space, and established workflows in 
endoscopy which does not cater to the introduction of an AI system.

The current scope of AI applications in colonoscopy in the literature is also largely 
skewed towards to polyp detection, characterization, and assessment of adequacy of 
mucosal exposure, which is ultimately linked to ADR. When translated to clinical 
practice, this effectively confines the indications for which AI should be used in 
colonoscopy to CRC screening or indications where one might expect to find colorectal 
polyps in the process of performing a colonoscopy. All systems developed in the field 
of AI in colonoscopy, from handcrafted models to the most complex DCNN, are 
fundamentally “weak AI.” This is a term used to describe AI systems designed to 
solve a single problem or narrow task[15]. In a clinical setting, indications for 
colonoscopy are widely variable and the pre-test probability of finding of a polyp may 
be low. An endoscopist will be able to process the demographic data, clinical course, 
medical history, clinical condition, laboratory investigations and concerns of the 
patient and use this information during the colonoscopy. For example, an 85-year-old 
patient who is troubled by per rectal bleeding has a hugely different indication and 
clinical index of suspicion than a 50-year-old male with a family history of early CRC. 
In the former case, the endoscopist’s focus may be on looking for angiodysplasia, 
diverticular disease or hemorrhoids as the etiology. A “strong AI” system would be 
able to think and adapt like a human and calibrate the weights in its layers to perform 
the task at hand, determine the appropriate classification output and achieve the 
correct alarm settings. However, current AI systems will continue looking for polyps 
and may present a distraction to the Endoscopist if used in this clinical example, 
prolonging the time taken for colonoscopy in an elderly patient, who may have 
multiple co-morbidities and for whom resection of small or diminutive adenomas may 
not have clinical relevance, much less answer the clinical question at hand. A trainee 
endoscopist or an experienced nurse, on the other hand, would be able to immediately 
recognize an unusual finding, such as multiple angiodysplasia or extensive 
diverticular disease, even if they were not formally trained to recognize these 
abnormalities.

It should be noted that AI has also been studied in colonoscopy outside the context 
of polyp detection, characterization, and quality assurance. Endocytoscopy has been 
used with AI to accurately detect persistent histologic inflammation in patients with 
ulcerative colitis (UC) which was reproducible based on static images[67]. A separate 
group used a deep neural network to predict endoscopic and histologic remission in 
UC patients based on evaluation of static images obtained from colonoscopy with high 
accuracy[68]. However, studies looking at indications other than polyp detection and 
characterization are few and far between.

Technical biases and lack of technical knowledge among clinicians 
There is significant variability and a lack of standardization in reporting of the 
technical aspects of AI algorithms in clinical trials[69]. In addition, clinicians may not 
have the technical knowledge to critically appraise AI literature given that this has not 
been a formal part of training or an emphasis in clinical practice until relatively 
recently. A “minimum reporting standard” and practical knowledge of terms and 
potential biases on the part of investigators and clinicians, respectively, is required to 
bridge these gaps[70-72].

A practical knowledge of commonly used terms and how AI systems are derived is 
necessary for the clinician to appreciate the technical biases inherent to these 
algorithms. While the inclusion criteria of patients in clinical trials is clearly defined, 
the criteria for inclusion of the input data for the AI system during training and 
validation may not always be included in the methodology. This is crucial as most AI 
systems for CADe were tested in the same centers where they were developed[73]. 
This is often due to the ease with which large amounts of data are readily available for 
training and validation. Although the training, validation, and test datasets may be 
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different, they could be derived from the same database in a single, often expert, 
center, which is then split to form these datasets. The nature of the images used could 
be highly similar in terms of quality (e.g., no confounding fecal material and bubbles 
and polyps always centered in the image) and labelling (e.g., experts from different 
centers may mark out the most obvious abnormal area or delineate even the most 
minute detail which does not look like normal colonic mucosa for sessile serrated 
polyps depending on their level of skill and the training received, while experts from 
the same center are more likely to label lesions similarly). Prevalence and variability in 
presentations of disease may also differ depending on the populations studied, but the 
sample of images used in training and validating the AI algorithm may not necessarily 
reflect this natural variability of disease if data from a single center is used in the 
development of the AI system. This is a form of selection bias, as input data is not 
selected at random and hence is not fully representative of the study population in 
which the AI system is meant to function. This could impact the hyperparameters 
chosen during validation, and lead to overfitting, which occurs when the mathematical 
model derived is optimized to work on the training data and fits this data too tightly. 
This would limit its generalizability when new data is presented to the same AI 
algorithm.

Moreover, the proportion of “positive” to “normal” images used for training is not 
often mentioned in the published literature. For example, in a CADe application, 
polyps of various shapes, sizes and colors may be included in the training dataset to 
expose the AI algorithm to all possible eventualities when presented with an image 
with even the subtlest polyp. However, the “normal” images used may be dispropor-
tionately lower when compared to the natural prevalence of adenomas in the 
population. In addition, there may not be the same rigor in the selection of “normal” 
images for training. Variations in degrees of bowel preparation, bubbles, and artefacts 
due to the light source reflecting off normal colonic mucosa may thus not be reflected 
in images supplied to the AI algorithm for training. Positive and negative predictive 
values are determined by the prevalence of disease, and this may result in a higher 
proportion of false positives per true positive detected in clinical practice, depending 
on how the ratio of “positive” to “normal” images used in training compares with the 
true prevalence of the lesion of interest (e.g., polyps) in the study population. This is a 
factor which needs to be adjusted for in the AI algorithm[74].

A certain form of publication bias may also exist as clinicians who wish to publish 
on the topic of AI will search for references almost exclusively from medical journals. 
For example, meta-analysis and systematic reviews on the use of AI in colonoscopy 
may take a very clinical slant, while publications in computer science and engineering 
journals which may add technical dept to the chosen topic on AI being discussed will 
not be included. Even if a search were performed for these articles, the inclusion 
criteria for the literature search will inevitably involve clinical-based endpoints like 
ADR and APC, and almost always exclude publications from computer science and 
engineering journals as a result. The barrier to entry in medical journals for these 
studies is high, as editors and reviewers, who themselves are clinicians, may not have 
enough technical knowledge to feel comfortable about accepting these articles for 
publication, and may also be compounded by fear of a lack of interest or 
understanding in the readership. On the other hand, AI and ML experts will not be 
familiar with the clinical aspects or relevance of their research and would not be able 
to pitch it at a level that would be acceptable to a Medical journal and its readership. 
This may result in a “reinforcement bias” of sorts, where only certain types of public-
ations from a few expert centers and which revolve around common themes are 
published repeatedly and in different forms in Medical journals, whereas significant 
developments in AI and ML which may have the potential for changing clinical 
practice are missed out. The same technical terms specific to these publications will 
also be mentioned repeatedly, while novel approaches and new technical terms 
unfamiliar to clinicians may never see publication in a medical journal. The endoscopy 
readership may already have been “overfitted” towards polyp detection and charac-
terization in the endoscopy literature[75], while neglecting the fact that, as mentioned, 
the use of AI in colonoscopy to date has utilized only an extremely limited aspect of AI 
and in a very narrow clinical context. Including computer science experts in the 
editorship and as reviewers for Medical journals may help to bridge the gap in these 
technical and publication biases.

Physician sentiment towards AI
Physician sentiment is a significant determinant on how quickly technologies and 
recommendations are deployed in a clinical setting. A recently conducted online 
survey among Gastroenterologists in the United States showed high overall interest in 
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CADe and perception that it would increase ADR (85.5% and 75.8%, respectively)[76]. 
However, the same survey also showed that majority of the respondents felt that 
CADe will prolong the time taken per colonoscopy, despite evidence to the 
contrary[9,24,25,27-29].

Concerns about operator dependence, or “deskilling”, of the Endoscopist due to 
reliance on CADe and CADx for detection and characterization of polyps, respectively, 
are also mentioned in this survey[76] and other reviews[44,73]. Another major concern 
shown in the survey by Wadhwa et al[76] was the perceived increase in cost per 
procedure (75.2%). While concerns such as withdrawal time have been addressed 
independently in several RCT, others such as operator dependance and cost-effect-
iveness have not studied. Hence, physician sentiment may be another significant gap 
in AI which needs to be bridged in the field of colonoscopy.

Medicolegal challenges and future directions
AI algorithms which utilize DL are considered “black box” models, meaning that it is 
almost impossible to trace the decision-making process which led to the output 
determined by the algorithm when faced with a specific task (e.g., polyp or no polyp in 
the image, hyperplastic or adenomatous). One of the major gaps in clinical use of AI 
systems in colonoscopy is medicolegal liability when a misdiagnosis or missed 
diagnosis occurs. While a clinician’s account of events and the accompanying 
documentation can be helped up to scrutiny, the black box nature of DL algorithms 
means that the root cause and mitigating factors surrounding such a case may never 
be elucidated or even discovered. This has ethical implications in the event of harm to 
a patient[77], particularly if no clear protocol exists to define how an AI system should 
interface with its user and what its limits are, as the error may be due to deviation 
from safe use of the system or from an error of the AI system itself[78].

As AI systems, like other healthcare interventions, may have unpredictable errors, 
this inability to explain the errors or to detect them as they occur due to their black box 
nature may result in a perpetuation of systemic errors with unknown clinical implic-
ations if they are scaled up rapidly for routine clinical use in all colonoscopies. It is also 
unknown if the liability rests with the manufacturer, the regulatory body approving its 
use, or the clinician interfacing with the AI system. Having a reliable and accountable 
post-deployment surveillance plan is perhaps one of the strategies to minimize this 
risk.

Lastly, while AI systems have been shown to improve various quality indices 
associated with colonoscopy, one should remember that they are still limited most of 
all by our current expertise in this field. A useful example to illustrate this is the fact 
that there is currently no AI system capable of detecting dysplasia in UC. The 
availability of DCNN with high computing power and hardware to support the 
required processing speeds would have made this a rather simple task from an ML 
point of view. However, the optimal method of surveillance for dysplasia in UC and 
its optical features do not have the same clinical certainty as colorectal polyps in CRC 
screening, with resultant discrepancies in surveillance and biopsy practices[79,80]. 
Moreover, there is wide interobserver variability in the histological diagnosis of 
dysplasia in UC[81] and an inadequate understanding of its pathogenesis[82]. It is 
therefore understandable that there would be a paucity of expertly labelled data for 
“dysplasia” and “non-dysplasia” controls in UC patients for the training of an ML 
algorithm. Similarly, other potential AI applications in colonoscopy could include 
localization of diverticular bleeding and an automated scoring system for adequacy of 
bowel preparation which includes the BPPS[83] and the newly validated Colon 
Endoscopic Bubble Scale[84]. The clinical expertise and research in these fields must 
progress sufficiently for an accompanying increase in standardized and labelled data 
to be available for such future AI systems to be trained on and to materialize.

CONCLUSION
Despite the advances made in the field of AI, most notably for polyp detection and 
characterization in colonoscopy, there remain significant gaps which need to be 
bridged before its routine clinical use in colonoscopy.
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