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Abstract
With the appearance and prevalence of deep learning, artificial intelligence (AI) 
has been broadly studied and made great progress in various fields of medicine, 
including gastroenterology. Helicobacter pylori (H. pylori), closely associated with 
various digestive and extradigestive diseases, has a high infection rate worldwide. 
Endoscopic surveillance can evaluate H. pylori infection situations and predict the 
risk of gastric cancer, but there is no objective diagnostic criteria to eliminate the 
differences between operators. The computer-aided diagnosis system based on AI 
technology has demonstrated excellent performance for the diagnosis of H. pylori 
infection, which is superior to novice endoscopists and similar to skilled. 
Compared with the visual diagnosis of H. pylori infection by endoscopists, AI 
possesses voluminous advantages: High accuracy, high efficiency, high quality 
control, high objectivity, and high-effect teaching. This review summarizes the 
previous and recent studies on AI-assisted diagnosis of H. pylori infection, points 
out the limitations, and puts forward prospect for future research.

Key Words: Artificial intelligence; Helicobacter pylori; Endoscopy; Diagnosis; Deep 
learning; Machine learning
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Core Tip: In recent years, artificial intelligence (AI) has been rapidly developed and 
applied in various fields of medicine, including gastroenterology. We witnessed the 
promising application of AI in endoscopic diagnosis of Helicobacter pylori infection. 
In this review, we summarize the advantages of AI, point out the limitations of current 
studies, and put forward the direction of future research.
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INTRODUCTION
Helicobacter pylori (H. pylori) is a Gram-negative bacterium that infects the human 
stomach and is closely associated with a variety of diseases, including chronic gastritis, 
peptic ulcer, gastric adenocarcinoma, mucosa-associated lymphoid tissue lymphoma, 
and other digestive diseases, as well as extradigestive diseases of the blood system, 
nervous system, cardiovascular system, skin, and ophthalmology[1,2]. The Interna-
tional Agency for Research on Cancer has categorized H. pylori as a group 1 
carcinogen. A recent systematic review and meta-analysis pooling 410879 participants 
showed that the overall prevalence of H. pylori infection worldwide was 44.3% [95% 
confidence interval (CI): 40.9-47.7][3]. Therefore, accurate diagnosis of H. pylori 
infection is extremely important for the prevention and treatment of related diseases. 
Currently, various diagnostic methods are available for detecting H. pylori infections 
(non-invasive and invasive methods)[4], but endoscopic evaluation to determine the 
H. pylori infection status is an irreplaceable method, which can assist in the screening 
of early gastric cancer.

Artificial intelligence (AI) is a technology science that studies and develops the 
theory, method, technology, and application system that is used to simulate, extend, 
and expand human intelligence. With the emergence and development of deep 
learning (DL), the application of AI in medicine has also been enthusiastically explored 
and extensively studied[5-8]. Numerous research studies, using AI technology to 
identify or distinguish images in different medical fields including gastroenterology, 
radiology, neurology, orthopedics, pathology, and ophthalmology, have been 
published[9].

In this review, we focus on the application of AI in the field of endoscopic diagnosis 
of H. pylori infection and discuss future prospect.

SIGNIFICANCE OF ENDOSCOPIC DIAGNOSIS OF H. PYLORI INFECTION
Most patients with gastric cancer have or have had H. pylori infection[10,11]. A large 
number of studies have indicated that the eradication of H. pylori can effectively 
reduce the risk of gastric cancer[12-14]. However, the study conducted by Mabe et al
[15] showed that people after H. pylori eradication still have a higher risk of developing 
gastric cancer than people who have not been infected with H. pylori. Therefore, even 
after H. pylori eradication, regular endoscopic and histological surveillance is strongly 
recommended[16,17]. In consequence, endoscopic assessment of H. pylori infection 
status (non-infection, past infection, and current infection) has become increasingly 
important.

The Kyoto classification of gastritis was proposed, which is used to assess the status 
of H. pylori infection and more accurately evaluate the risk of gastric cancer[18]. 
According to the characteristics of the gastric mucosa under endoscopy, the gastric 
mucosa can be divided into the following three situations: H. pylori-uninfected gastric 
mucosa, H. pylori-infected gastric mucosa, and H. pylori-past infected gastric mucosa
[18,19]. It should be noted that the Kyoto classification score is the sum of scores for 
five endoscopic features (atrophy, intestinal metaplasia, enlarged folds, nodularity, 
and diffuse redness with or without regular arrangement of collecting venules) and 
ranges from 0 to 8. The scoring system demonstrated excellent ability to evaluate H. 
pylori infection and predict the risk of gastric cancer[20]. However, above endoscopic 
features do not have objective indicators, and there is the potential for interobserver or 
intraobserver variability in the optical diagnosis of H. pylori-infected mucosa[21]. In 
other words, for endoscopic diagnosis of H. pylori infection, the diagnostic consistency 
among endoscopists is not ideal. Moreover, professional endoscopists can determine 
H. pylori infection with punctilious visual inspection of the mucosa during endoscopic 
examination, but novices need a large amount of time to perform this task effectively.

The significance of endoscopic surveillance is not limited to determining whether H. 
pylori is infected, not, or past, but can make an overall evaluation of the stomach. First 
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of all, the classical Kimura-Takemoto classification is still widely used today to help 
endoscopists classify the atrophic pattern of the stomach by observing the endoscopic 
atrophic border[22]. Second, most gastric cancers develop from H. pylori associated 
gastritis. This can occur via a multistep pathway of precancerous lesions — in 
particular, atrophic gastritis, intestinal metaplasia, and dysplasia/intraepithelial 
neoplasia[16]. We can use histological staging systems such as OLGA and OLGIM to 
make an assessment of gastric cancer risk by the severity and extent of atrophy and 
intestinal metaplasia[23-25]. Finally, when one detection method shows H. pylori 
negativity, but there are typical signs of H. pylori infection under endoscopy, another 
different method should be selected for confirmation in this case to avoid missed 
diagnosis.

WHAT IS AI?
Physicians and endoscopists may be confused about the precise concept of AI, 
machine learning (ML), and DL. AI is a macro concept with many branches (e.g., 
Planning and Scheduling, Expert Systems, Multi-Agent Systems, and Evolutionary 
Computation). In general, there are three approaches to AI: Symbolism (rule based, 
such as IBM Watson), connectionism (network and connection based, such as DL), and 
Bayesian (based on the Bayesian theorem)[26]. In AI, computers can imitate humans 
and display intelligence similar to that of humans.

ML is a subset of AI, which is a method to realize AI. ML is defined as a set of 
methods that automatically detect patterns in data, and then utilize the uncovered 
patterns to predict future data or enable decision making under uncertain conditions
[27]. ML is approximately divided into supervised and unsupervised methods. 
Unsupervised learning occurs when the purpose is to identify groups within data 
according to commonalities, with no a priori knowledge of the number of groups or 
their significance. Supervised learning occurs when training data contain individuals 
represented as input–output pairs. Input comprises individual descriptors while 
output comprises outcomes of interest to be predicted — either a class for classification 
tasks or a numerical value for regression tasks. Then, the supervised ML algorithm 
learns predictive models that whereafter allow to map new inputs to outputs[28]. The 
most basic practice of ML [e.g., support vector machine (SVM), random forest, and 
Gaussian mixture models] is to use algorithms to parse data so as to learn from them, 
and then make decisions and predictions about events in the real world. Today's ML 
has made great achievements in computer vision and other fields; however, it has its 
limitations, requiring a certain amount of manual instruction in the process. The image 
recognition rate of ML is enough to realize commercialization, but it is still very low in 
certain fields, which is why image recognition skills are still not as good as human 
capabilities[29].

DL [e.g., artificial neural network, deep neural network (DNN), convolutional 
neural network (CNN), and recurrent neural network] is a process in which the 
computer collects, analyzes, and processes the required data quickly while performing 
certain tasks, without having to accept the formal data, which is a technique to achieve 
ML. DL has the characteristics of autonomous learning; once the training data set is 
provided, the program can extract the key features and quantities by using back-
propagation algorithm and changing the internal parameters of each neural network 
layer, without human instructions[30]. Compared with the conventional hand-crafted 
algorithm, the recently developed DL algorithm can automatically extract and learn 
the discriminative features of images, and then classify these images[31]. DL has the 
potential to automatically detect lesions, classify lesions, prompt differential diagnosis, 
and write preliminary medical reports, which will be realized in the near future.

CNN is a DNN based on the principle that the visual cortex of the human brain 
processes and recognizes images, which is now the most popular network architecture 
for DL for images[29]. CNN uses the multiple network layers (consecutive convolu-
tional layers followed by pooling layers) to extract the key features from an image and 
provide a final classification through the fully connected layers as the output[30]. 
Compared to other DL structures, CNN is a prevalent method for image recognition 
because of its excellent performance in both video and audio applications. For 
example, CNN performs best in image classification in large image repositories such as 
ImageNet[32]. Additionally, CNN is easier to train than other DL techniques and has 
the advantage of using fewer parameters.

In recent years, AI has flourished in the field of gastroenterology, with applications 
throughout the digestive tract, especially in image recognition and classification. van 
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der Sommen et al[33] reported an automated computer algorithm for the detection of 
early neoplasia in Barrett's esophagus based on 100 images from 44 patients with 
Barrett's esophagus. At per-image level, the sensitivity and specificity of the algorithm 
were both 0.83, and at the patient level, 0.86 and 0.87, respectively. Everson et al[34] 
trained a CNN to classify intrapapillary capillary loops for the real time prediction of 
early squamous cell cancer of the esophagus, demonstrating strong diagnostic 
performance with a sensitivity of 93.7% and accuracy of 91.7%, which is comparable to 
an expert panel of endoscopists. Xu et al[35] established a deep CNN system to detect 
gastric precancerous conditions (including gastric atrophy and intestinal metaplasia) 
by image-enhanced endoscopy (IEE). In the internal test set, the multicenter external 
test set, and the prospective video test set, the diagnostic accuracy for gastric atrophy 
was 0.901, 0.864, and 0.878, and that of intestinal metaplasia was 0.908, 0.859, and 
0.898, respectively. To assist endoscopists in distinguishing early gastric cancer, 
Kanesaka et al[36] studied a computer-aided diagnosis (CAD) system utilizing SVM 
technology to facilitate the use of magnifying narrow band imaging (NBI), which 
revealed an accuracy of 96.3%, sensitivity of 96.7%, and specificity of 95%. Since 
capsule endoscopic image viewing and diagnosis is an extremely time-consuming 
process, Park et al[37] developed an AI-assisted reading model based on the Inception-
Resnet-V2 model to identify different types of lesions and evaluate the clinical 
significance of this model. The results showed that the model not only helped the 
operator to improve the lesion detection rates, but also reduced the reading time. 
Urban et al[38] constructed a deep CNN model, including 8641 images from 2000 
patients, to locate and identify colorectal polyps, which revealed an area under the 
receiver operating characteristic curve of 0.991 and accuracy of 96.4%. Also, several 
studies have proved the feasibility and prospect of AI-assisted endoscopy in the 
diagnosis of H. pylori infection.

AI-ASSISTED ENDOSCOPIC DIAGNOSIS OF H. PYLORI INFECTION
As early as 2004, Huang et al[39] independently developed a CAD model based on a 
refined feature selection with neural network (RFSNN) technique which is planned for 
predicting H. pylori-related gastric histological features. A total of 104 dyspeptic 
patients were enrolled in this study and all subjects were prospectively evaluated by 
endoscopy and gastric biopsy. The authors used endoscopic images and histological 
features of 30 patients (15 with and 15 without H. pylori infection) to train the RFSNN 
model, and then used image parameters of the remaining 74 patients to construct a 
predictive model of H. pylori infection. At the same time, six endoscopic physicians 
(three novices and three skilled seniors) were invited to predict the histological 
features of the gastric antrum from endoscopic images. The results showed that the 
sensitivity and specificity for detecting H. pylori infection were 85.4% and 90.9%, 
respectively, when the RFSNN model included images of the same patient's antrum, 
body, and cardia for analysis. Together, the accuracy of the six endoscopists in 
predicting H. pylori infection was 67.5%, 64.8%, 72.9%, 74.3%, 79.7%, and 81.1%, 
respectively (the first three were novices and the second three were skilled elderly). 
Obviously, the accuracy of RFSNN model in predicting H. pylori infection by the 
antrum images was 85.1% higher than that of endoscopists. Notably, the prediction 
system has a high sensitivity and specificity in the diagnosis of atrophy and intestinal 
metaplasia, which was also superior to that of endoscopists. This RFSNN system 
provides real-time and comprehensive information about the stomach during 
endoscopy and has the potential to overcome the shortcomings of the localized biopsy. 
For various reasons, white-light endoscopy was used throughout the study, instead of 
IEE, which is more conducive to the diagnosis of H. pylori infection. As an early study 
of AI in diagnosing H. pylori infection, this paper provides reference data and 
innovative ideas for subsequent studies.

In 2008, Huang et al[40] conducted a further study in the field of AI-assisted 
endoscopy in the diagnosis of H. pylori infection. They designed a CAD system 
combining SVM and sequential forward floating selection (SFFS) to diagnose gastric 
histology of H. pylori using the features of white-light endoscopic images. This study 
aimed to use SFFS to select the most suitable feature to describe the relationship 
between histology and a large number of candidate image features, and then use SVM 
for classification. A total of 236 dyspepsia patients were enrolled in this study, 130 of 
whom were defined as H. pylori-infected patients using histological examination as the 
gold standard. The results showed that the accuracy of diagnosing H. pylori infection 
was 87.8%, 87.6%, and 86.7%, respectively, when the SVM with SFFS system was used 



Lu YF et al. AI in diagnosis of H. pylori infection

AIGE https://www.wjgnet.com 54 June 28, 2021 Volume 2 Issue 3

to analyze the images of the antrum, body, and cardia. Compared with SVM without 
SFFS, the SVM with SFFS system had a higher diagnostic accuracy in most cases. This 
indicates that it is of great significance to use SFFS for screening before the classi-
fication of image features, which not only improves the diagnostic accuracy by 
excluding features with low correlation, but also reduces the time of training and 
testing system. Furthermore, 1000 repeated tests were carried out on the classification 
results, which proved the experiment reliability. In addition, the authors compared the 
new diagnostic system with the previous system[39] that used a neural network with 
feature selection to detect H. pylori infection, and it was shown that the new system 
had a higher classification rate. It is a pity that both studies classified H. pylori infection 
status only as infected and uninfected, and the authors did not consider cases where 
the infection disappeared or was eradicated with drugs.

In 2017, Shichijo et al[41] developed two deep CNN systems, one based on 32208 
unclassified images either positive or negative for H. pylori (as a development data set) 
and the other based on images classified according to eight anatomical locations 
(cardia, upper body, middle body, lesser curvature, angle, lower body, antrum, and 
pylorus). Then, the test data set included a total of 11481 images from 397 patients (72 
H. pylori positive and 325 negative). Patients who tested positive on any of these assays 
(including blood or urine anti-H. pylori immunoglobulin (Ig) G levels, fecal antigen 
test, or urease breath test) were classified as H. pylori positive. To compare the 
diagnostic performance of the two CNNs, 23 endoscopists were invited to evaluate the 
test data sets, together. According to their experience, the endoscopists were divided 
into three groups: "Certified group," "relatively experienced group," and "beginner 
group". The test results showed that for the first CNN constructed with unclassified 
images, the area under the receiver operating curve (ROC) curve (AUC) was 0.89 at a 
cut off value of 0.43. The sensitivity, specificity, accuracy, and diagnostic time of the 
first CNN were 81.9%, 83.4%, 83.1% and 3.3 min, respectively. These values for the 
secondary CNN were 88.9%, 87.4%, 87.7%, and 3.2 min, respectively, and the AUC 
was 0.93 at a cutoff value of 0.34. Furthermore, these values for the overall 
endoscopists were 79.0%, 83.2%, 82.4%, and 230.1 min, respectively. After statistical 
analysis, there was no difference in sensitivity, specificity, or accuracy between the 
first CNN and the 23 endoscopists in the diagnosis of H. pylori infection. However, the 
secondary CNN which was constructed with categorized images according to the 
location of the stomach was found to have a significantly higher accuracy than the 
endoscopists (by 5.3%; 95%CI: 0.3-10.2). Besides, the board-certified group was found 
to have a significantly higher specificity (89.3% vs 76.3%, P < 0.001) and accuracy 
(88.6% vs 75.6%, P < 0.001) than the beginner group. Similarly, a significant difference 
was observed between the relatively experienced group and the beginner group. In 
brief, the diagnostic ability of the second CNN is almost as good as that of a skilled 
endoscopist. In terms of diagnosis time, CNN even completely surpassed the 
endoscopists. However, still images were adopted to construct CNN algorithm in this 
study, and whether real-time diagnosis could be realized based on dynamic images 
remains to be researched.

One weakness of this study was that it did not include the situation after the 
eradication of H. pylori. To address this issue, the authors soon conducted a new study 
to further elaborate on the role of AI in assessing H. pylori infection status. A deep 
CNN which was constructed by Shichijo et al[42] in 2019 was pre-trained and fine-
tuned on a dataset of 98564 endoscopic images from 5236 patients (742 H. pylori-
positive, 3649 H. pylori-negative, and 845 H. pylori-eradicated). As in the previous 
study, this AI-based diagnostic system was developed using classified images 
following eight regions of the stomach (cardia, upper body, middle body, lesser 
curvature, angle, lower body, antrum, and pylorus). An independent test data set 
including a total of 23699 images from 847 patients (70 H. pylori positive, 493 H. pylori-
negative, and 284 H. pylori-eradicated) was prepared to evaluate the diagnostic 
accuracy of the constructed CNN. According to the statistical analysis, the proportions 
of accurate diagnoses were 80% (465/582) for negative, 84% (147/174) for eradicated, 
and 48% (44/91) for positive. The performance of this diagnostic system is comparable 
to that of skilled endoscopists who, in one study, diagnosed these statuses in 88.9%, 
55.8%, and 62.1% of cases, respectively[43]. Subsequently, the authors assessed the 
diagnostic ability of CNN for distinguishing H. pylori positive from eradicated 
(excluding H. pylori negative patients). Among 70 positive patients, the CNN 
diagnosed correctly as positive in 46 (66%), while out of 284 eradicated patients, the 
CNN diagnosed correctly as eradicated in 243 (86%). Nevertheless, this study did not 
take into account the time after H. pylori eradication, but the histological features of 
atrophic gastritis may disappear a few years after eradication[44]. Then, endoscopic 
features also change possibly in the diagnosis.
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In 2019, Zheng et al[45] designed a novel computer-aided decision support system 
combined with a CNN model (ResNet-50, a state-of-the-art CNN consisting of 50 
Layers). This system was expected to be used to retrospectively evaluate H. pylori 
infection based on white-light images (WLI) of the stomach. Totally 1507 patients 
(11729 gastric images) including 847 with H. pylori infection as the derivation cohort 
were used to train the algorithm. The authors created three DL models: (1) Single 
gastric image for all gastric images; (2) Single gastric image by different gastric 
locations (fundus, corpus, angularis, and antrum); and (3) Mmultiple gastric images 
for the same patient. Afterwards, 452 patients (3755 images) including 310 with H. 
pylori infection as the validation cohort were used to evaluate the diagnostic accuracy 
CNN for the evaluation of H. pylori infection. The evaluation results showed that for a 
single gastric image, the AUC, sensitivity, specificity, and accuracy were 0.93, 81.4%, 
90.1%, and 84.5%, respectively. When evaluating a single gastric image by different 
anatomical locations, the AUCs from high to low were 0.94 (corpus), 0.91 (angularis), 
0.90 (antrum), and 0.82 (fundus). According to statistical analysis, the CNN model 
using a single corpus image had the highest AUC (P < 0.01) compared with the antrum 
or fundus. More importantly, when multiple stomach images per patient were applied 
to the CNN model, the AUC, sensitivity, specificity, and accuracy were as high as 0.97, 
91.6%, 98.6% and 93.8%, respectively. Consequently, the CNN model using multiple 
gastric images had a higher AUC compared with a single gastric image (P < 0.001) or 
body gastric image (P < 0.001). When selecting endoscopic images to be included in 
this study, images of poor quality (i.e., blurred images, excessive mucus, food residue, 
bleeding, and/or insufficient air insufflation) were excluded, which however could not 
be avoided in the actual operation of endoscopy. Therefore, the CNN's ability to 
recognize low-quality images needs to be further exploited.

In 2020, Yoshii et al[19] established a prediction model based on an ML procedure to 
prospectively evaluate H. pylori infection status (non-infection, past infection, and 
current infection) and compared it with general assessment by seven well-experienced 
endoscopists using the Kyoto classification of gastritis. The study recruited a total of 
498 subjects (315 non-infection, 104 past infection, and 79 current infection) and the 
gold standard for determining the H. pylori infection status was the history of 
eradication therapy and the presence of H. pylori IgG antibody. The results showed 
that the overall diagnostic accuracy rate of the seven endoscopists was 82.9%. The 
diagnostic accuracy of the prediction model without H. pylori eradication history was 
88.6% and with eradication history was 93.4%. Obviously, the results improved in the 
model with eradication history. There was no significant difference in diagnostic 
accuracy between the predictive model and skilled endoscopists. One of the 
limitations of this study was that only one test method was used to evaluate current 
status of H. pylori infection. In addition, urea breath test or fecal antigen test would 
evaluate current situation of H. pylori infection more surpassingly than that of H. pylori 
IgG antibody levels, especially in patients with an H. pylori antibody titer of 3-10 
U/mL.

All of the above studies used WLI to build the CAD systems based on AI tech-
nology. Besides, some reports have shown the potential of image-enhanced 
endoscopies (IEEs) in diagnoses of H. pylori infection, such as blue laser imaging (BLI), 
linked color imaging (LCI), and NBI[46-48]. In 2018, Nakashima et al[49] built an AI 
diagnostic system based on a deep CNN algorithm for prospective diagnosis of H. 
pylori infection. A total of 222 subjects (105 H. pylori-positive) were recruited and 
received esophagogastroduodenoscopy and a serum test for H. pylori IgG antibodies. 
A serum H. pylori IgG antibody titer ≥ 10 U/mL was considered positive for H. pylori 
infection, while a titer < 3.0 U/mL was considered negative. In addition, subjects with 
serum H. pylori IgG antibody titers between 3.0 and 9.9 U/mL were excluded. In this 
study, 162 subjects (1944 images) including 75 with H. pylori infection were enrolled as 
a training group for AI training. For the remaining 60 subjects (30 H. pylori-positive 
and 30 H. pylori-negative), one WLI, one BLI-bright, and one LCI image of the lesser 
curvature of the gastric body were collected as a test group to evaluate the diagnostic 
performance of AI. According to statistical analysis, the AUC, sensitivity, and 
specificity for WLI were 0.66, 66.7%, and 60.0%, respectively. These indicators were 
0.96, 96.7%, and 86.7% for BLI-bright, and 0.95, 96.7%, and 83.3% for LCI, respectively. 
The AUCs obtained for BLI-bright and LCI were markedly larger than that for WLI (P 
< 0.01). Obviously, this new AI diagnostic system was efficiently adapted to those laser 
IEEs rather than WLI; hence, it demonstrated an excellent ability to diagnose H. pylori 
infection using the IEEs. It is a pity that patients with a history of H. pylori eradication 
therapy were not included in this study, because this AI system is only an elementary 
tool and cannot fully evaluate the complex features of the stomach.
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In 2020, Yasuda et al[21] constructed an automatic diagnosis system based on the 
SVM algorithm for H. pylori infection using LCI images. The authors expected to use 
this system to retrospectively diagnose H. pylori infection and compared its accuracy 
with that of endoscopists. In this study, endoscopic images of 32 patients (128 images 
in total) were included as training data, and four images were collected from each 
patient from the lesser (angle-lower body and middle-upper body) and greater (angle-
lower body and middle-upper body) curvature. The diagnosis of H. pylori infection 
was based on more than two different tests: A histological examination, a serum 
antibody test, a stool antigen test, and/or a 13C-urea breath test. Regarding H. pylori 
infection of the subjects, 14 cases were H. pylori positive and 18 were negative. The 
authors used 525 LCI images from 105 patients (42 H. pylori infected, 46 post-
eradication, and 17 uninfected) collected from the lesser (angle-lower body and 
middle-upper body) and greater (angle-lower body and middle-upper body) 
curvature and the fornix to evaluate the diagnostic capabilities of the system. It was 
worth noting that for the H. pylori post-eradicated subjects, more than 1 year (average 
of 5.6 years) had passed since H. pylori was successfully eradicated after undergoing 
endoscopy. At the same time, three doctors with different experiences (A, an expert 
involved in the development of LCI; B, a gastroenterology specialist; and C, a senior 
resident) also evaluated the same LCI images. The results showed that the accuracy of 
the AI system, A, B, and C in the diagnosis of H. pylori infection was 87.6%, 90.5%, 
89.5%, and 86.7%, respectively. Accuracy of the AI system was higher than that of the 
inexperienced doctor (doctor C), but there was no significant difference between the 
diagnosis of the doctors and the AI system (P > 0.05). According to the sub-analysis of 
the patients divided with respect to state of H. pylori infection, the accuracy of the AI 
system, doctors A, B ,and C in the diagnosis of H. pylori post-eradication were 82.6%, 
87.0%, 89.1%, and 76.1%, respectively. According to the sub-analysis of AI diagnosis 
for each image of stomach area, accuracy of the lesser curvature of the middle-upper 
body (88.6%) was significantly higher than that of the fornix (69.5%) and the greater 
curvature of the middle-upper body (73.3%). However, due to the small number of 
samples included in this study, there may be a risk of large sampling error.

LIMITATIONS AND FUTURE DIRECTION
The above studies show to a great extent that the application of AI in endoscopic 
diagnosis of H. pylori infection is practical, feasible, and promising. The detailed 
information of these studies is shown in Table 1. Compared with the manual identi-
fication and diagnosis by endoscopists, the CAD system based on AI technology has 
many irreplaceable advantages: (1) High accuracy: According to the current studies, 
AI is better than novice endoscopists in the diagnosis of H. pylori infection in terms of 
sensitivity, specificity, and accuracy, and is almost comparable to skilled endoscopists; 
(2) High efficiency: Thanks to today's highly developed computers, AI can classify 
thousands of endoscopic images in minutes, which can take a great deal of time and 
energy on the part of endoscopists. At the same time, the efficient image recognition 
lays a foundation for the real-time diagnosis of H. pylori infection under endoscopy; (3) 
High quality control: Some studies have found that adenoma detection rate decreases 
gradually with the extension of the working hours of endoscopists. This also suggests 
that endoscopist fatigue may lead to a decrease in the effectiveness of screening 
colonoscopy[50,51]. However, the CAD system based on AI technology is not 
disturbed by external factors and provides excellent quality control; (4) High 
objectivity: As we all know, it is completely subjective for endoscopists to judge H. 
pylori infection by observing the features of the gastric mucosa under endoscopy. 
Although the decision-making power is still in the hands of endoscopists, AI assisted 
endoscopy can help to provide an objective second opinion as a reference[52]; and (5) 
High-effect teaching: AI is capable of undertaking the teaching work of skilled 
endoscopists, and provides novices with more accessible, convenient, and objective 
guidance.

However, the application of AI in endoscopic diagnosis of H. pylori infection is still 
in the preliminary research stage at present, which has many limitations to be 
overcome. It is promising to put this technology into real clinical practice, but much 
research and further refinement are needed before that can happen. First of all, all of 
the above studies are single-center studies and most of them only used images from a 
single endoscopic device. Different images at different endoscopy centers may not 
guarantee compatibility and extensibility of the CAD system developed by the 
researchers and limit the generalization of the results. Next, so far, most of the studies 
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Table 1 Characteristics of current studies about AI-assisted endoscopic diagnosis of Helicobacter pylori infection

Ref. Type of AI Type of 
endoscopy Training set Validation set AUC Sensitivity (%) Specificity (%) Accuracy (%)

Huang et al[39], 
2004

RFSNN WLI 30 patients 74 patients NA 85.4 90.9 NA

SVM with SFFS WLI 236 patients 236 patients NA 82.6 (antrum); 89.1 (body); 100 
(cardia)

94.0 (antrum); 85.8 (body); 72.0 
(cardia)

87.8 (antrum); 87.6 (body); 86.7 
(cardia)

Huang et al[40], 
2008

SVM without SFFS WLI 236 patients 236 patients NA 98.5 (antrum); 98.7 (body); 99.1 
(cardia)

70.8 (antrum); 71.5 (body); 70.3 
(cardia)

86.3 (antrum); 86.4 (body); 86.0 
(cardia)

CNN (first) WLI 1750 patients, 
32208 images

397 patients, 
11481 images

0.89 81.9 83.4 83.1Shichijo et al
[41], 2017

CNN (second, constructed 
according to anatomical 
locations)

WLI 1750 patients, 
32208 images

397 patients, 
11481 images

0.93 88.9 87.4 87.7

Shichijo et al
[42], 2019

CNN WLI 5236 patients, 
98564 images

847 patients, 
23699 images

NA NA NA 48 (H. pylori-positive); 84 (H. 
pylori-eradicated); 80 (H. pylori-
negative)

CNN (first, single image for 
all image)

WLI 1507 patients, 
76146 images

452 patients, 
3755 images

0.93 81.4 90.1 84.5Zheng et al[45], 
2019

CNN (second, single image 
by different locations)

WLI 1507 patients, 
76146 images

452 patients, 
3755 images

0.90 (antrum); 0.91 
(angularis); 0.94 (corpus); 
0.82 (fundus)

76.1 (antrum); 78.8 (angularis); 
81.6 (corpus); 72.4 (fundus)

88.5 (antrum); 90.5 (angularis); 
92.1 (corpus); 80.5 (fundus)

80.3 (antrum); 82.8 (angularis); 
85.6 (corpus); 75.3 (fundus)

CNN (third, multiple images 
per patient)

WLI 1507 patients, 
76146 images

452 patients, 
3755 images

0.97 91.6 98.6 93.8

Yoshii et al[19], 
2020

ML (model without H. pylori 
eradication history)

WLI NA 498 patients NA 91.6 (non-infection); 75.0 (past 
infection); 59.5 (current 
infection)

88.6 (non-infection); 89.9 (past 
infection); 94.7 (current 
infection)

88.6

ML (model with H. pylori 
eradication history)

WLI NA 498 patients NA 94.0 (non-infection); 94.0 (past 
infection); 88.1 (current 
infection)

93.4 (non-infection); 100.0 (past 
infection); 94.7 (current 
infection)

93.4

Nakashima et al
[49], 2018

CNN WLI 162 patients, 
1944 images

60 patients, 60 
images

0.66 66.7 60.0 NA

CNN BLI-bright 162 patients, 
1944 images

60 patients, 60 
images

0.96 96.7 86.7 NA

CNN LCI 162 patients, 
1944 images

60 patients, 60 
images

0.95 96.7 83.3 NA

Yasuda et al
[21], 2020

SVM LCI 32 patients, 128 
images

105 patients, 525 
images

NA 90.4 85.7 87.6%
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AI: Artificial intelligence; AUC: Area under curve; BLI: Blue laser imaging; CNN: Convolutional neural network; H. pylori: Helicobacter pylori; LCI: Linked color imaging; ML: Machine learning; NA: Not applicable; RFSNN: Refined feature 
selection with neural network; SFFS: Sequential forward floating selection; SVM: Support vector machine; WLI: White-light imaging.

have adopted a retrospective method which could be subject to considerable selection 
bias. As it is, images of high quality or with distinct features of H. pylori infection may 
be preferred for inclusion in studies, which probably lead to exaggerated diagnostic 
performance of AI and overestimation of the accuracy.

In addition, researchers and endoscopists need to be aware of potential pitfalls and 
biases in AI research, such as overfitting, spectrum bias, data snooping bias, straw 
man bias, and P-hacking bias, which can be reduced or eliminated through rigorous 
research design and appropriate methods[53]. Overfitting occurs when the AI 
algorithm modulates itself too much on the training dataset and the developed 
prediction system does not generalize well to new datasets. The translation, rotation, 
scaling, and clipping of the original endoscopic images to enlarge datasets may be one 
of the causes of overfitting. Spectrum bias occurs when the training dataset does not 
adequately represent the range of patients who will be applied in clinical practice 
(target population)[54]. External validation using independent datasets for model 
development, collected in a way that minimizes the spectrum bias, is necessary to 
prove the real performance of an AI algorithm and is important in the verification of 
any diagnostic or predictive model[55,56]. It is a pity that there is no study that 
utilized external validation for the performance of an established AI system in this 
review. It is worth noting that AI has one unavoidable disadvantage that needs to be 
addressed: “Black box” nature (lack of interpretability), which means that AI 
technology cannot explain the decision-making processes. But precise interpretability, 
which can provide diagnostic evidence, assist reduce bias, and build social acceptance, 
is extremely important in clinical practice. Some methods, such as class activation 
map, can supplement the “black box” features, hoping to be applied to future research
[57].

Besides, some studies only divided H. pylori infection status into infected and 
uninfected, without considering H. pylori post-eradication, which is not in line with the 
clinical reality. Some studies only used single diagnostic method as the gold standard 
to judge H. pylori infection, which will lead to a great loss of diagnostic accuracy. Some 
studies included a small quantity of subjects and images, which may cause large errors 
and affect the credibility of the conclusions. IEE has great potential to improve the 
diagnosis rate of H. pylori infection, but there are few studies on the construction of 
CAD system based on AI using IEE images. What's more, all of the studies in this 
review were conducted in Asia, and racial difference cannot be avoided.

Finally, before any new technology is introduced into medical practice, ethical 
problems cannot be avoided and need to be properly solved, including AI technology. 
AI is not perfect, making no perfect predictions. If a CAD system based on AI 
technology misdiagnoses or misses diagnoses, who will be held accountable — the 
endoscopist, medical institution, or manufacturer? What is the attitude of endoscopists 
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towards the results of AI diagnosis? Question and reject the AI, learn from it, or accept 
the diagnosis indiscriminately? In the era of AI, how to build a harmonious doctor-
patient relationship?

Anyway, in the future, we should expect a “perfect study”, a multicenter, large 
sample, generalized, and prospective study, which has strict inclusion/exclusion 
criteria, a suitable gold standard for diagnosis and external validation of third-party 
independent datasets, using high quality datasets to establish a high diagnostic 
accuracy, and the stability of the CAD system based on AI technology to judge the H. 
pylori infection status. More importantly, ethical principles and laws and regulations 
related to AI technology need to be improved to protect everyone's legitimate 
interests. However, it should be pointed out that AI will not completely replace 
physicians, but will increase diagnostic accuracy, improve diagnostic efficiency, and 
reduce the burden on physicians. Health care workers need to consider patients’ 
preferences, environment, and ethics before making decisions, which AI cannot 
replace[58].

CONCLUSION
The era of AI is coming, with both opportunities and challenges. AI is undoubtedly a 
greatly excellent assistant, which can help endoscopists to evaluate H. pylori infection 
status more quickly, accurately and easily under the endoscope. At the same time, 
there are some issues as well as ethical considerations that need to be addressed before 
AI is applied in clinical practice.
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INTRODUCTION
Artificial intelligence (AI) is a new technological science that studies and develops 
theories, methods, technologies and application systems for simulating and expanding 
human intelligence. It relates to many fields, for instance, computer science, 
cybernetics, information theory, and neuroscience. The first AI seminar at Dartmouth 
College in 1956 marked the birth of the AI, but the development of AI has experienced 
several ups and downs. AI has achieved results both theoretically and practically in 
these cycles. It has made solid progress in the world, especially when scientists made 
breakthrough progress in deep learning.

In its more than 60 years of development, AI has been used in computer vision, 
natural language processing, data mining, automatic speech recognition. The applic-
ations of intelligent robot, automatic programming, and expert systems are becoming 
increasingly mature, making AI one of the three cutting-edge technologies in the 21st 
century.

AI is hailed as the stethoscope of the 21st century[1]. With the strengthening of 
people's health awareness, preventive and precise treatments have been paid more 
attention at the same time. The improvement of medical standards and the 
improvement of medical equipment have made the process of patients' visits produce 
increasingly medical data. Image recognition, speech/semantic recognition, and expert 
system have received more and more attention in the medical field, smart medical 
products have gradually emerged[2-4]. A large amount of image data and diagnostic 
data are used to simulate the mind and diagnostic process of medical experts 
especially in the field of medical image recognition, AI is expected to partially replace 
traditional empirical diagnosis so as to provide a more reliable diagnosis and 
treatment plan.

AI HELPS BREAK THROUGH THE BOTTLENECK OF COLONOSCOPY
In recent years, the incidence of colorectal adenoma, colorectal cancer, and inflam-
matory bowel disease has increased significantly[5-7], causing great harm to human's 
health. Colonoscopy is the first choice for the diagnosis and treatment of colorectal 
diseases. It can not only intuitively judge the nature of the lesion, but also obtain 
biopsy specimens for pathological diagnosis. Colonoscopy is of great significance, 
especially in preventing and treating colorectal cancer, as it can be used to screen and 
follow up high-risk groups in patients who are asymptomatic. We can greatly reduce 
the incidence of colorectal cancer by adopting corresponding treatments according to 
the condition, and achieve the purpose of primary prevention. Even if colorectal 
lesions develop to the early stage of cancer, the 5-year survival rate of endoscopic 
treatment can still exceed 90%[6].

Studies have found that gradual expansion of colorectal cancer screening in 
asymptomatic populations and the early diagnosis promotion have extremely 
important socio-economic significance[8-10]. The popularization of colonoscopy 
screening among high-risk populations is restricted by the hard operation, excessive 
physical exertion, and limitation of technical inheritance, which has caused 
bottlenecks. At this time, the development and maturity of AI technology provides 
new ideas and possibilities for breaking through these bottlenecks.

RESEARCH ON THE MECHANISM OF COLONOSCOPY INTO LOOPS AND 
UNLOOPS
According to the anatomical characteristics of the intestine, the ascending colon, 
descending colon and upper rectum, which are straighter and smaller in extension, are 
generally easier to pass with colonoscopy. However, the transverse colon and sigmoid 
colon are in a free state, with longer mesentery and larger mobility, which can easily 
cause loops. Common types of loops in the sigmoid colon include N loops, α loops, 
reverse α loops, and atypical loops, while the common types of loops in the transverse 
colon include deep loops/dangling loops, deep large γ loops, and inverted splenic 
loops[11]. Usually, the time for a skilled endoscopist to enter the cecum is about 4-6 
minutes, but someone who have difficulty in this process may not be able to reach it, 
even if the operation time is more than 1 h[12].
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In view of the factors of patients who develop a loop during colonoscopy, experts 
have conducted many studies which found that factors including long-term 
constipation, abdominal surgery history, female, body mass index is lower or higher 
than normal, the volume of visceral fat tissue is low and the proficiency of 
colonoscopy directly affect the formation of intestinal loops[13] (Figure 1).

The successful removal of the loop is key for a colonoscopy to reach the cecum, and 
it is necessary for the endoscopist to be able to observe and monitor the shape of 
colonoscopy in order to overcome this technical difficulty. With the continuous 
advancement of colonoscopy accessories, magnetic endoscopic imaging (MEI), a real-
time three-dimensional imaging colonoscopy-assisted positioning technology, has 
become an effective tool for observing the shape of the colonoscopy in human body
[14]. There is a meta-analysis that summarizes 8 randomized controlled trials and 
contains 2967 patients which compares cecal intubation rates and times, sedation dose, 
abdominal pain scores and the use of ancillary maneuvers between MEI and standard 
colonoscopy. The conclusion is that compared with traditional technique, MEI has an 
advantages in cecal intubation rate, but MEI did not have any distinct advantages for 
cecal intubation time and lower pain scores[15] (DW1). The variable stiffness of the 
colonoscopy body, flexible tubing, and Responsive Insertion Technology (RIT)[16,17] 
make the inspection equipment more maneuverable. Prieto-de-Frías et al[17] and 
Pasternak et al[18] studied the application of RIT technology in reducing discomfort 
and pain during colonoscopy insertion. The results showed that the RIT group 
shortened the cecal intubation time, decrease intestinal loop formation, lower manual 
pressure of abdomen and decrease discomfort or pain of patients. Although RIT 
technology has shown good application prospects, it still relies on the experience of 
unwinding of endoscopists, some examinations are time-consuming and patients 
cannot achieve a good medical result.

MEI and RIT technology are an improvement of traditional colonoscopy in response 
to the actual problems in the endoscopy process. AI can explore the images of MEI 
technology in guiding colonoscopy. Applying deep learning to analyze a large number 
of unloop images, it is possible in the future to form a complete set of loop prediction 
and unlooping strategies system. The RIT technology can automatically adjust the 
bending angle of the intestinal cavity by sensing the degree of curvature of the 
endoscopic body, and minimize the formation of acute angles. These measures help to 
reduce the traction of the colonoscopy on the mesentery and the damage to the 
intestinal mucosa, and achieve the purpose of reducing the pain and injury of the 
patient during the colonoscopy. In general, MEI and RIT technologies provide useful 
explorations for the gradual migration of colonoscopy from artificial to intelligent 
(DW2).

COMBINATION OF COLONOSCOPY AND AI
Traditional research methods have limitations, such as multi-factors, complex 
variables, interrelationships, descriptive difficulties and quantitative mechanisms. It is 
urgent to introduce new ideas and methods to solve these problems. It can be 
described with a simplified model by demonstrating whether the colonoscopy is 
looped, and providing the corresponding unlooping strategy, as we mentioned above. 
The operation of the colonoscopy handle and insertion part by the endoscopist can be 
regarded as an input function. Analyze the correspondence between the data of the 
input function under the loop condition and the corresponding results of loop and 
unloop in a large number of cases, also fitting the unloop strategy function to assist the 
doctor in decision-making through the intelligent system. MEI and other technologies 
can display the posture of the colonoscopy in the intestine in real time, and wearable 
pressure sensor device can generate a series of mechanical data. A specific neural 
network model can be constructed to synthesize a loop-free strategy function by 
analyzing large amounts of data. We look forward to the AI-assisted system will be 
able to realize a loopless and painless colonoscopy in the future (DW3).

COLONOSCOPY FOR SMART MEDICINE
Smart medicine is the application of AI to improve the ability of medical services, 
which is the trend of future medical advancement. Smart medical care is to create a 
regional medical information platform for health records and use advanced Internet of 
Things technology to realize the interaction among patient-medical staff, institutions 
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Figure 1 The idea of using magnetic endoscopic imaging to guide endoscopists in colonoscopy. MEI: Magnetic endoscopic imaging.

and equipment for achieving informatization gradually. Intelligent medicine cannot be 
separated from AI technology. On the basis of digital medicine, internet medicine and 
mobile medicine, smart medicine is gradually taking shape.

The emergence of smart medicine provides a new feasible path to solve the 
outstanding problems that restrict the medical development. Intelligent medical care 
plays an important role in science, it not only changes the traditional diagnosis and 
treatment methods but also improves the accuracy and efficiency, in addition, it relies 
on the advanced algorithms and powerful computing power of AI technology to 
significantly increase the success rate of medical innovation research and development 
and shorten time. In addition, smart medicine can also solve social problems, such as 
insufficient medical resources, unbalanced regional distribution, costs, personalized 
medical services, and respond to aging and chronic disease diagnosis and treatment 
needs. With the development of smart medical technology, AI can completely assist 
doctors in such arduous diagnoses in future, for example pathological diagnosis, 
laboratory test diagnosis, and imaging diagnosis.

COLONOSCOPY CONTINUUM ROBOT-ASSIST SYSTEM
Regarding the colonoscopy continuum robot-assisted system, some scholars have 
studied structural design, passability, compliance control based on force perception, 
and multi-motor control system design. Lee et al[19] proposed a caterpillar-like flexible 
self-propelled colonoscopy robot, which can effectively corner bends and conducted 
clinical trials, while Breedveld proposed a colonoscopy robot movement method based 
on a rollable doughnut[20]. Scholars research on the relevant working environment 
and clinical experiment results of the colonoscopy continuum robot assistance system, 
the flexible arbitrary bending of the colonoscopy assistance system, the exploration of 
the biomimetic and the continuum robot design, which are the most irreplaceable 
(DW4) part of the robot-assisted colonoscopy system, its structure and design provide 
an important reference.

FLEXIBLE ENDOSCOPY CONTROL ROBOT
In December 1998, the first Da Vinci Robot-Assisted Surgery System came out. In June 
2000, the Da Vinci Robot-Assisted Surgery System became the first automatic 
mechanical system approved by the Food and Drug Administration for laparoscopic 
surgery. At present, the system is widely used. In 2017, the flexible endoscopy 
manipulation robot developed by the General Hospital of the Chinese People's 
Liberation Army successfully carried out clinical applications. It surpassed the 
traditional endoscopy operation method in terms of coordinated operation of multiple 
degrees of freedom of the endoscopy and quantitative display of operating 
parameters, and laid the foundation for high-quality standardized operation and 
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internet medical treatment.
The research on small soft robots with multi-mode motion published by Hu has 

attracted widespread attention[21]. The article pointed out that the soft robot has 
bright prospects in the fields of bioengineering and minimally invasive treatment. 
They have greater potential to achieve high maneuverability through multi-channel 
motion because small soft robots have a higher degree of freedom than rigid robots. 
We can expect that these small flexible robots are equipped with camera devices to 
produce soft motion which is similar to worms that can move in the human digestive 
tract and has better control and operability than the magnetic-control capsule 
endoscopy.

At present, there are no reports on the use of flexible endoscopic robots for 
endoscopic treatment, and the author believes that the reason is that endoscopic 
treatment is different from examination. Endoscopic treatment have higher 
requirements for the operation technology, including horizontal and vertical joint 
movement of the endoscope handle to achieve rotation, control colonoscopy and 
handle strength during the treatment (DW5). The grasp of the patients’ breathing and 
coordination with its movement are relatively subtle that are difficult to achieve at this 
stage. However, with the accumulation of quantitatively analyzed endoscopic 
operation data and the construction of software endoscopic operation strategy 
functions, combined with powerful algorithms and machine learning, AI will continue 
to improve the existing colonoscopy equipment, accessories and instruments in the 
future. At the same time, it may partly replace manual labor, reduce medical costs and 
improve efficiency.

APPLICATION STATUS OF AI IN COLONOSCOPY IMAGE RECOGNITION
With the progress of colonoscopy operation technology and endoscopic imaging 
technology, especially magnifying endoscopy has achieved remarkable results in the 
detection of fine structure on the surface of colorectal tumors. It should be pointed out 
that the development of electronic staining endoscopy is extremely rapid, such as 
narrowband imaging technology (NBI), flexible spectral imaging color enhancement 
technology (FICE) and i-Scan digital contrast technology (iSCAN), etc. (DW6). These 
imaging technologies can highlight the mucosal surface structure or capillary 
morphology by switching between different wavelengths of light, clearly observe the 
boundary and scope of the lesion, and obtain a visual effect similar to chromoen-
doscopy.

Depth research for colonoscopy image recognition has already started, using 
specific data sets and special deep learning network structure models to establish a 
labeled colonic lesion image data set to provide technical support for intelligent image 
recognition of colonoscopy images. Computer-aided diagnosis analysis used for 
accurately classify neoplastic/hyperplastic, adenoma/non-adenomas colorectal polyps 
found that the system have a classification accuracy rate above 90%, and the diagnosis 
time required is decreased compared with endoscopy experts and non-experts[4,22-
24].

The dynamic recognition system decomposes the real-time video of the colonoscopy 
into a continuous picture. The deep learning neural network is used for the recognition 
of the marked images, and the fine recognition of each image is carried out to realize 
the purpose of automatically discovering and classifying the lesions. Mori et al[25] 
used deep learning models to analyze colonoscopy videos to classify adenomatous 
and hyperplastic polyps in real time, the results find that the accuracy of the AI model 
is 94%, the sensitivity and the specificity is 98% and 83% respectively (Figure 2).

We expect that AI combined with white light, chromoendoscopy and magnifying 
endoscopy will greatly reduce the time spent on diagnosis and treatment in the future, 
thereby providing great help for the clinical and scientific research of gastrointestinal 
diseases.

APPLICATION OF AI IN CAPSULE ENDOSCOPY
In recent years, the rapid development of capsule endoscopy technology, especially 
the appearance of magnetron capsule endoscopy, which has realized the control-
lability of the capsule endoscopy on some extent. The emergence of capsule endoscopy 
has made up for the insufficiency of gastroscopy and colonoscopy, the patients 
acceptance is high because of the whole examination process is painless. Nowadays, 
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Figure 2 Artificial intelligence diagnosis system for colonoscopy lesions based on deep learning.

the application of capsule endoscopy is mostly focused on discovery of small bowel 
disease, for example bleeding.

AI is widely used in capsule endoscopy technology. The pixels are grouped by 
super pixel segmentation, the red ratio in the RGB space is used to extract the features 
of each super pixel, and these things are input into Support Vector Machines (SVM) 
for classification for intelligent recognition of capsule endoscopic bleeding. The 
specificity of the experimental results is 83%-98%, and the sensitivity is 94%-99%[26,
27].

In order to identify polyps in capsule endoscopy images, Yuan and Meng[28] 
proposed a new complex feature learning method, which is a stacked sparse 
autoencoder with image manifold constraint. This method introduces multiple image 
constraints force images in the same category to share similar learning features and 
keep them, so the learned features retain a large number of differences and small 
internal differences in the images. The results show that the average overall 
recognition accuracy of this method is 98%, and could be further utilized in the clinical 
trials to help physicians from the tedious image reading work.

THE PROBLEMS FACED BY AI IN THE APPLICATION OF COLONOSCOPY
The development of depth research has enabled AI to achieve fruitful results in many 
aspects. However, there is no major breakthrough in the theory that AI follows, and 
the methods from supervised learning to unsupervised learning are still being 
explored. Therefore, looking for in-depth theoretical explanations is an important issue 
that must be solved in the development of the studies. In addition, deep learning 
generally requires a large amount of data, but not all applications have the conditions 
for it. Therefore, how to realize traditional knowledge expression and data-driven 
knowledge learning is an important research direction in the future. Furthermore, the 
neural network model needs to be adapted to transfer the learned knowledge to new 
conditions and environments in order to acquire the ability to solve many practical 
problems from a small number of learning samples. Finally, the method of machine 
learning is determined according to the functional relationship between the data and 
the target, a "deep forest" learning method, with a comparable setting proposed by 
Zhou and Feng[29], achieved a considerable or even better than deep neural networks.

In the field of colonoscopy image recognition, experts and scholars have made very 
useful explorations on the intelligent recognition of colorectal lesions, but most of 
them are limited to judge colorectal polyps. To achieve the integration of doctors and 
patients with auxiliary examination equipment, it is necessary to further expand the 
colorectal lesion image data set and the types of diseases involved. It must be pointed 
out that the endoscopic manifestations of colorectal diseases are various, the same 
disease often manifests differences in different periods and different diseases have 
very little difference in a specific period, and pathological diagnosis is still the gold 
standard.
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CONCLUSION
In short, AI in colonoscopy has significant social benefits and bright application 
prospects, and it is foreseeable that smart medicine is an inevitable trend in medical 
development. Based on previous research, integrating colonoscopy’s loop factors, 
unlooping strategies, active lesion capture and recognition, and assistive robotics 
technology, we have reason to believe that the future smart colonoscopy system will 
bring a revolution, and promote the diagnosis and treatment of colorectal diseases, 
especially the widespread development of colorectal cancer screening for the benefit of 
mankind.
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Abstract
Gastric cancer (GC) is the fifth most common cancer in the world, and at present, 
esophagogastroduodenoscopy is recognized as an acceptable method for the 
screening and monitoring of GC. Convolutional neural networks (CNNs) are a 
type of deep learning model and have been widely used for image analysis. This 
paper reviews the application and prospects of CNNs in detecting and classifying 
GC, aiming to introduce a computer-aided diagnosis system and to provide 
evidence for subsequent studies.
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Core Tip: With the development of new algorithms and big data, great achievements in 
artificial intelligence (AI) based on deep learning have been made in diagnostic 
imaging, especially convolutional neural network (CNN). Esophagogastroduoden-
oscopy (EGD) is currently the most common method for screening and diagnosing 
gastric cancer (GC). When AI was combined with EGD, the diagnostic efficacy of GC 
could be improved. Therefore, we review the application and prospect of CNN in 
detecting and classifying GC, aiming to introduce a computer-aided diagnosis system 
and provide evidence for following studies.
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INTRODUCTION
Gastric cancer (GC) is a globally prevalent cancer, and its incidence and mortality rank 
fifth and fourth, respectively, among cancers worldwide[1]. It is estimated that in 2020 
there were over 1000000 new cases and 769000 deaths of GC globally. The lack of early 
detection and treatment contributes to the high mortality and poor outcomes of GC
[2]. Esophagogastroduodenoscopy (EGD) is currently the most common method for 
screening and diagnosing GC. However, the efficacy of EGD varies significantly[3]. It 
has been reported that the false negative rate of EGD in detecting GC ranges from 
4.6%-25.8%[4-6]. GC lesions are difficult to recognize due to the subtle changes in the 
gastric mucosa[7]. Additionally, the quality of EGD can be heavily influenced by the 
subjective determination of endoscopists[8]. Therefore, it is significant to develop an 
objective and reliable method to recognize possible early GC (EGC) lesions and blind 
spots.

With the development of new algorithms and big data, great achievements in 
artificial intelligence (AI) based on deep learning (DL) have been made for diagnostic 
imaging. Meanwhile, as one of the most representative network models in DL, 
convolutional neural network (CNN) contributes to enhancing the accuracy of image 
analysis. CCN is now being successfully applied in detecting the gastrointestinal tract
[9-11]. CNNs have achieved tremendous successes and wide application in image 
recognition and classification[12,13]. Therefore, we applied CNN in endoscopic 
diagnosis, aiming to improve the diagnostic efficacy of EGC. In this review, we 
scrupulously elucidate the application and evolution of CNN in the detection and 
classification of GC.

CONVOLUTIONAL NEURAL NETWORK
With the development of neuroscience, researchers have attempted to build artificial 
neural networks to simulate the structure of the human brain by mathematically 
activating neuronal activity. DL has been the mainstream machine learning method in 
many applications. It is a type of representation learning method in which a complex 
neural network architecture automatically learns representative data by transforming 
the input information into multiple levels of abstractions[10]. Computer-aided 
diagnosis requires the extraction of extensive original image data and the application 
of a series of complex algorithms. DL has a strong modeling and reasoning ability that 
is superb in realizing computer output diagnosis.

CNNs are neural networks sharing connections between hidden units that feature a 
shortened computational time and translational invariance properties[14]. A typical 
CNN framework includes three main components: A convolutional layer, an 
activation function, and a pooling layer. The convolutional layer is composed of 
several small matrices. These matrices are convolved throughout the whole input 
image working as filters, and then a nonlinear transformation is applied in an element-
wise fashion. Finally, the pooling layer aggregates contiguous values to one scalar. The 
common types of pooling in popular use are either average or max[15,16].

In the early 1990s, CNNs were used in many applications, such as object detection 
and face recognition. With the advances of technology, CNN was first applied to the 
analysis of medical images in 1993. Lo et al[17] reported the detection of lung nodules 
using a CNN in 1995. However, due to the limitation of computer language, CNNs 
have been underestimated in their value for a long time. In 2012, Krizhevsky et al[18] 
proposed a CNN with five convolutional layers and three fully connected layers 
(namely, AlexNet) and achieved breakthrough performances in the ImageNet Large 
Scale Visual Recognition Challenge. Since then, CNNs have been of great interest and 
widely applied. For example, CNNs have been applied to identify diabetic retinopathy 
from fundus photographs and distinguish benign proliferative breast lesions from 
malignant[19]. In 2020, Plaksin et al[20] estimated the possibility of diagnosing 
malignant pleural effusion from facies images of pleural exudates obtained by the 
method of wedge-shaped dehydration using CNNs.

Compared with the general neural network, CNN is superior in the adaptation of 
the image structure, extraction, and classification, and as a result it presents 
satisfactory work efficiency.

http://creativecommons.org/Licenses/by-nc/4.0/
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APPLICATION OF CNN IN GC
Automatic detection
At present, CNNs have been applied to detect GC, showing distinctive improvements. 
Hirasawa et al[10] created and trained a CNN-based diagnostic system containing 
13584 endoscopic images. In this study, the constructed CNN was able to detect 92.2% 
of GC cases, including small intramucosal GC, through a quick analysis of an 
independent test set involving 2296 stomach images, which is extremely difficult even 
by experienced endoscopists. To achieve the real-time detection of EGD, Ishioka et al
[21] tested their CNN system for identifying video images and achieved a high 
detection rate (94.1%). The detection rate in video images by CNN is similar to that of 
still images, demonstrating the great potential of CNN in the early detection of GC.

Magnifying endoscopy with narrow band imaging (M-NBI) has been used for the 
differential diagnosis of various focal, superficial gastric lesions. By observing the 
microvasculature and fine mucosal structure, M-NBI has a better accuracy in the 
diagnosis of early GC than ordinary white light endoscopy[22]. Li et al[23] developed a 
novel CNN-based system for analyzing gastric mucosal lesions observed by M-NBI. 
The test results showed that the sensitivity, specificity, and accuracy of the CNN 
system in diagnosing early GC were 91.18%, 90.64%, and 90.91%, respectively. 
Notably, the specificity and accuracy of CNN diagnostics are comparable to those of 
experts with more than 10 years of clinical experience.

Ikenoyama et al[24] compared the diagnostic ability of CNN and 67 endoscopists, 
and the results showed that CNN had a faster processing speed and 25% higher 
sensitivity than endoscopists [95% confidence interval (CI): 14.9-32.5]. The use of CNN 
can effectively urge endoscopists to re-examine and evaluate ambiguous lesions, 
which also helps reduce false negatives and false positives (Table 1).

Histological classification
An excellent endoscopist not only detects mucosal lesions but also distinguishes 
benign and malignant features. Cho et al[25] trained three CNN models, namely, 
Inception-v4, Resnet-152, and Inception-Resnet-v2, to classify gastric lesions into five 
categories: Advanced GC, EGC, high-grade dysplasia, low-grade dysplasia, and non-
neoplasm. Among these systems, the Inception-Resnet-v2 model showed the best 
performance; the weighted average accuracy reached 84.6%, and the mean area under 
the curve (AUC) of the model for differentiating GC and neoplasm was 0.877 and 
0.927, respectively.

To date, pathological diagnosis is still the gold standard to assess the presence or 
absence of cancerous lesions, cancer types, and degree of malignancy. Nevertheless, 
the accuracy of diagnosis and workload alleviation of pathologists are still challenging, 
and advanced computer-aided technologies are expected to play a key role in assisting 
pathological diagnosis. By optically scanning histologic tissue slides and converting 
them into ultrahigh-resolution digital images called whole slide images (WSIs), digital 
pathology is available for further investigations[26]. With the rapid development of 
EGD, the combination of DL models such as CNN and digital pathology is expected to 
greatly reduce the increasing workload of pathologists.

Sharma et al[27] explored two computerized applications of CNNs in GC, cancer 
classification and necrosis detection, based on immunohistochemistry of human 
epidermal growth factor receptor 2 and hematoxylin-eosin staining of histopatho-
logical WSIs. The overall classification accuracies that they obtained were 0.6990 and 
0.8144, respectively. However, their study is limited by a small sample size with only 
11 WSIs involved.

Iizuka et al[28] collected a large dataset of 4128 WSIs of stomach samples to train 
CNN and a recurrent neural network, and the evaluation results of CNN showed that 
the AUC for detecting gastric adenocarcinoma and adenoma was up to 0.97 and 0.99, 
respectively. They proposed that DL models can be used as a component in an 
integrated workflow alongside slide scanning, thus determining the top priority of the 
most valuable case, enhancing the accuracy of diagnosis, and speeding up the work 
efficacy.

Song et al[29] established a multicenter massive WSI dataset and tested slides 
collected from different hospitals that were detected with the histopathological 
diagnosis system for GC detection using DL. The results showed that the AUCs of the 
AI assistance system developed at the Chinese PLA General Hospital, Peking Union 
Medical College Hospital, and Cancer Hospital, Chinese Academy of Medical 
Sciences, were 0.986, 0.990, and 0.996, respectively, confirming its consistent stable 
performance. Their model-building approach may also be applied to identify multiple 
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Table 1 Detailed information on studies concerning automatic detection by convolutional neural network in gastric cancer

Ref. Endoscopic images Training 
dataset

Test 
dataset Resolution Sensitivity 

%
Specificity 
%

Accuracy/AUC 
%

PPV 
%

NPV 
%

Hirasawa et al
[10] (2018)

WLI/NBI/chromoendoscopy 
images

13584 2296 300 × 300 92.2 NA NA 30.6 NA

Ishioka et al
[21] (2019)

Video images NA 68 NA 94.1 NA NA NA NA

Li et al[23] 
(2020)

M-NBI images 20000 341 512 × 512 91.18 90.64 90.91 90.64 91.18

Ikenoyama et 
al[24](2021)

WLI/NBI/chromoendoscopy 
images

13584 2940 300 × 300 58.4 87.3 75.7 26.0 96.5

AUC: Area under the curve; PPV: Positive predictive value; NPV: Negative predictive value; WLI: White-light imaging; NBI: Narrow-band imaging; M-
NBI: Magnifying narrow-band imaging; NA: Not applicable.

cancers in different organ systems in the future (Table 2).

Prediction of depth of tumor invasion
EGC is categorized as a lesion confined to the mucosa (T1A) or the submucosa (T1B). 
An accurate identification of the depth of tumor invasion is the basis for determining 
the therapeutic schedule[30]. Endoscopic mucosal changes, such as irregular surfaces 
and submucosal tumors (e.g., marginal elevation), have been suggested as predictors 
of the depth of tumor invasion[31].

Zhu et al[11] built a CNN computer-aided detection (CNN-CAD) system to 
determine the depth of tumor invasion, which is expected to avoid unnecessary 
gastrectomy. In this system, there was a development dataset of 790 images and a test 
dataset of 203 images. The final results showed that the AUC for the CNN-CAD 
system was 0.94 (95%CI: 0.90-0.97), and the overall accuracy was 89.16%, which was 
significantly higher than that determined by endoscopists (17.25%, 95%CI: 11.63-
22.59). Yoon et al[32] proposed a novel loss function for developing an optimized EGC 
depth prediction model, called the lesion-based visual geometry group-16. Using this 
novel function, the depth prediction model is able to accurately activate the EGC 
regions during training and simultaneously measure classification and localization 
errors. After experimenting with a total of 11539 endoscopic images, including 896 
images of T1A-EGC, 809 of T1B-EGC, and 9834 of non-EGC, the AUC of the EGC 
depth prediction model was 0.851. In this study, it was also demonstrated that 
histopathological differentiation significantly affects the diagnostic accuracy of AI for 
determining T staging.

Upper abdominal enhanced computed tomography (CT) is the main imaging 
examination for T staging of GC[33]. Zheng et al[34] retrospectively collected 3500 
venous phase-enhanced CT images of the upper abdomen from 225 patients with 
advanced GC, aiming to predict the depth of GC invasion and extract different regions 
of interest. The dataset was then enhanced by cropping and flipping, and the Faster R-
CNN detection model was trained using other data enhancement methods. They 
found that the AUC of the experimentally established CNN model was 0.93, and the 
recognition accuracies for T2, T3, and T4 GC were 90%, 93%, and 95%, respectively. 
The abovementioned findings may be helpful for radiologists to predict the 
progression and postoperative outcomes of advanced GC (Table 3).

CURRENT EXISTING PROBLEMS
Limitations of studies
Selection bias: In most studies, researchers tend to select clear, typical, high-quality 
endoscopic images for training and testing image sets[10,35]. Because low-quality 
images with air, postbiopsy bleeding, halation, blurs, defocusing, or mucus secretion 
have been excluded, the results of retrospective clinical tests are often superior to 
actual ones. Therefore, prospective studies that are less affected by biases should be 
thoroughly analyzed to improve the accuracy and specificity of clinical trials, thus 
ensuring the reliability of the results.
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Table 2 Detailed information on studies concerning histological classification by convolutional neural network in gastric cancer

Ref. Training dataset Test dataset Resolution Group AUC %

Five-category classification 84.6

Cancer vs non-cancer 87.7

Cho et al[25] (2019) 4205 812 1280 × 640

Neoplasm vs non-neoplasm 92.7

231000 for cancer 
classification

Cancer classification 69.9Sharma et al[27] 
(2017)

47130 for necrosis detection

NA 512 × 512

Necrosis detection 81.4

Adenocarcinoma 98Iizuka et al[28] (2020) 3628 500 512 × 512

Adenoma 93.6

3212 from PLAGH 98.6

595 from PUMCH 99.0

Song et al[29] (2020) 2123

987 from CHCAMS

320 × 320 Benign and malignant cases and tumour 
subtypes

99.6

PLAGH: Chinese PLA General Hospital; PUMCH: Peking Union Medical College Hospital; CHCAMS: Cancer Hospital, Chinese Academy of Medical 
Sciences; AUC: Area under the curve.

Table 3 Detailed information on studies concerning prediction of depth of tumor invasion by convolutional neural network in gastric 
cancer

Ref. Dataset Resolution Sensitivity 
%

Specificity 
% Accuracy/AUC % PPV 

%
NPV 
%

Zhu et al
[11] (2019)

Development datasets: 5056; Validation datasets: 1264; 
Test dataset: 203

299 × 299 76.47 95.56 89.16 89.66 88.97

Yoon et al
[32] (2019)

11539 images were randomly organized into five 
different folds, and at each fold, the training: validation: 
testing dataset ratio was 3:1:1

NA 79.2 77.8 85.1 79.3 77.7

Zheng et al
[34] (2020)

Totally 5855, training:verification dataset ratio was 4:1 512 × 557 NA NA T2 stage: 90; T3 stage: 
93; T4 stage: 95

NA NA

AUC: Area under the curve; PPV: Positive predictive value; NPV: Negative predictive value; NA: Not applicable.

Single-center studies: Most of the testing images are obtained from a single-center 
institution using the same type of endoscope and endoscopic video system, which may 
result in potential biases. In future studies, images obtained from multicenter 
institutions using different types of endoscopic devices should be collected for 
analysis.

Lack of endoscopic video images: Still images are used for the training and test 
dataset in most studies, which may limit the extensive clinical application[36]. Using 
video images may improve the performance of the CNN and represent real-life 
scenarios[21].

Limitations of CNN
False positive and false negative results: The specificity and sensitivity of automatic 
detection are very important to determine the choice of therapeutic schedule. False 
positive and false negative results directly lead to improper treatment. For example, 
gastritis with pathological manifestations of redness, atrophy, and intestinal 
metaplasia is easily confused with EGC, which increases the false positive rate[10]. In 
addition, early-stage cancer lesions are often too small to be found, which increases the 
false negative rate. The main reason for false positive and false negative results may be 
attributed to the limited quantity and quality of learning samples. Therefore, it is 
necessary to collect a large number of high-quality endoscopic images for training 
algorithms, thus enhancing the detection accuracy.
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Ethical and moral issues: AI will not completely replace doctors. Who should be 
responsible for the safety of patients if misdiagnosed? Patient consent should be 
obtained before using AI to determine who should be responsible for misdiagnosis or 
incorrect treatment that can possibly occur[37].

CONCLUSION
As a classical and widely used DL model, CNN has been widely used in the medical 
field, especially for EGD detection. In remote or crowded areas, CNNs can be used to 
assist early cancer screening to prevent misdiagnosis due to a lack of experience and 
professional knowledge of endoscopists. Additionally, CNN is a promising method to 
provide online professional training for improving the professional skills of young 
endoscopists. Most importantly, CNN helps endoscopists detect, classify, and even 
predict the invasion depth of EGC.

At present, most of studies are still in the early stages of system development. More 
powerful, efficient, and stable algorithms, and more prospective studies are urgently 
required in the future to make AI more sensitive, specific, and accurate in cancer 
detection and classification.
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Abstract
Colorectal cancer is one of the major causes of death worldwide. Colonoscopy is 
the most important tool that can identify neoplastic lesion in early stages and 
resect it in a timely manner which helps in reducing mortality related to colorectal 
cancer. However, the quality of colonoscopy findings depends on the expertise of 
the endoscopist and thus the rate of missed adenoma or polyp cannot be 
controlled. It is desirable to standardize the quality of colonoscopy by reducing 
the number of missed adenoma/polyps. Introduction of artificial intelligence (AI) 
in the field of medicine has become popular among physicians nowadays. The 
application of AI in colonoscopy can help in reducing miss rate and increasing 
colorectal cancer detection rate as per recent studies. Moreover, AI assistance 
during colonoscopy has also been utilized in patients with inflammatory bowel 
disease to improve diagnostic accuracy, assessing disease severity and predicting 
clinical outcomes. We conducted a literature review on the available evidence on 
use of AI in colonoscopy. In this review article, we discuss about the principles, 
application, limitations, and future aspects of AI in colonoscopy.

Key Words: Artificial intelligence; Colonoscopy; Colorectal cancer; Inflammatory bowel 
disease; Adenoma detection rate; Adenoma
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Core Tip: Artificial intelligence (AI) pertains to performance of intelligent tasks like 
human beings by computer-controlled machines. Machine learning, one of the most 
important and fundamental principles of AI, essentially means automatically using the 
available data to learn and make decisions without human intervention. AI based 
detection models have been developed for polyp detection and to differentiate 
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malignant from nonmalignant lesions. It has been also utilized to analyze endoscopic 
images for inflammatory bowel disease diagnosis, grading its severity and predicting 
treatment response.
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INTRODUCTION
What is artificial intelligence
The capability of human brain to perceive, analyze and react is defined as intelligence. 
Gottfredson[1] described it as ability of a human beings to reason, plan, solve 
problems, think abstractly, comprehend complex ideas, learn quickly and learn from 
experience. It has been a long desire of human beings to build machines which can 
think and act autonomously to ease human work. Several complex computer 
algorithms and models have been developed to provide automation to these machines. 
The famous Turing test invented by Alan Turing in 1950 demonstrated that it may be 
difficult for a blinded investigator to distinguish humans from intelligent machines[2]. 
However, intelligence of these machines is still way below human intelligence which is 
based on logic, reasoning, and adaptive learning. In 1997 International Business 
Machines’s artificial intelligence (AI) driven chess playing system defeated world 
chess champion Garry Kasparov. Although this victory of computer programs over 
human beings in chess was criticized by many, and it was argued that machines can 
only be as good as the programs developed for them by human beings, nevertheless it 
remains an important landmark in the history of AI.

There is no one formal definition of AI. It is vaguely defined as ability of computer-
controlled machines to perform intelligent tasks like human beings. There are two 
basic subtypes of AI- weak or soft and strong or hard AI[3]. Weak or soft AI is also 
called as narrow AI and as the name suggests it specializes in a very specific task like 
face recognition, voice recognition capabilities. On the other hand, strong or hard AI 
which is also known as general AI has more broad application due to its capability to 
understand, think and act like human beings. It is at the core of advanced robotic 
systems.

Machine learning (ML) is one of the most important and fundamental principles of 
AI. ML is at the heart of any AI system and essentially means automatically using the 
available data to learn and make decisions without human intervention. It is an 
adaptive technology which is continuously learning and hence gets better with each 
use. ML utilizes three fundamental methods which include supervised learning, 
unsupervised learning, and reinforcement learning. Artificial neural network (ANN) is 
a ML algorithm adapted from model of biological neurons in humans. ANN is an 
information processing technology, also considered as mathematical models utilized to 
analyze data.

AI IN THE FIELD OF GASTROENTEROLOGY
In the last two decades, substantial progress has been made in the use of AI driven 
algorithms in the field of medical science. Use of AI in the field of medical practice can 
be categorized in two broad categories-virtual and physical[4].  The virtual category of 
AI pertains to its use in electronic health record.  It is based on ML and deep learning 
via mathematical algorithms to identify individuals at risk of some specific disease and 
help in clinical decision making.  The physical category of AI includes use of medical 
devices and robotics for delivering medical care.

AI operated systems have been utilized to monitor patient's medical conditions 
remotely.  More specifically in gastroenterology, AI based detection models have been 
developed to differentiate malignant from nonmalignant lesions, detect gastroin-
testinal bleeding using wireless video capsule endoscopy, detecting pancreatic cancer, 
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and detecting liver fibrosis.  In the subsequent sections, we have detailed progress of 
AI and its application during colonoscopy.

AI AND COLON POLYPS
Colorectal cancer (CRC) is the third most common form of the cancer worldwide and 
is the 2nd most common cause of cancer related mortality globally[5]. Colonoscopy is 
the primary method for detection and removal of polyps and thus for prevention of 
CRC. It has been shown in the study that with every 1% increase in the adenoma 
detection rate (ADR), the risk of CRC decreases by 3%[6]. However, colonoscopy is not 
the perfect tool as polyps can be missed during colonoscopy mainly because of two 
factors: Blind spot and proceduralist error. The error due to blind spot can be 
overcome by using wide-angle camera, but the error due to proceduralist cannot be 
overcome easily. Small polyps (1-5 mm) are prone to be missed regardless of 
experience of proceduralist. Some studies have shown improvement in the rate of 
polyp detection with the help of second observer[7,8]. The factors responsible for 
proceduralist error could be fatigue, distraction, visual perception, impaired level of 
alertness, recognition error and poor bowel preparation. The application of AI in 
endoscopic field has shown improvement in ADR in recent studies and it helps in 
overcoming proceduralist error. Computer-aided detection and characterization of 
colorectal polyps is now getting popular among endoscopists.

PRINCIPLES AND APPLICATION OF AI IN COLONOSCOPY FOR POLYP 
DETECTION
AI has been a part of medical field since early 1950s. The concept and use of basic 
technology of computer-aided diagnosis (CAD) for colonoscopy has been explored 
since past one decade[9]. Use of CAD system in detection of colon polyps was first 
demonstrated by Karkanis et al[10]. Although the sensitivity of detecting adenomatous 
polyps demonstrated by these authors was 90%, this system was not used in clinical 
practice as it relied on static images rather than live endoscopic videos. In 2011, Bernal 
et al[11] introduced how intelligent systems can help in colonoscopy. Bernal et al[12] 
later introduced window median depth of valley accumulation (WM- DOVA) energy 
maps as a tool for automatic polyp detection in colonoscopy images. Fernández-
Esparrach et al[13] for the first-time reported use of CAD system based on WM-DOVA 
maps and utilized colonoscopy videos in assisting colon polyp detection. With 
significant advancements in computer power and emergence of deep learning 
algorithms over past decade, it is being realized that CAD assistance during 
colonoscopy can be used in real time[14]. The inclusion of CAD for colonoscopy can 
help by automatic detection of polyps in real time which could be easily overlooked by 
endoscopists visually, thus resulting in higher ADR. Additionally, it helps in charac-
terization of polyps in real time that in turn would help in reducing unnecessary 
biopsies of non-neoplastic polyps significantly[15].

There have been multiple studies to prove the advantage of inclusion of AI in the 
field of colonoscopy (Table 1). Most of these studies are of retrospective design, 
however few of them done recently were conducted prospectively. Luo et al[16] 
conducted a prospective, randomized cohort study using 150 participants to explore 
whether a high-performance, real-time automatic polyp detection system could 
improve the polyp detection rate in the actual clinical environment. The results 
showed that a real-time automatic polyp detection system can increase the ADR, 
especially for small polyps which are usually easily missed by conventional 
colonoscopy technique. Furthermore, Misawa et al[17] developed a 3-D convolutional 
network model for automated polyp detection which worked nearly in real time. They 
demonstrated sensitivity of 90% and a specificity 63% using 50 polyp videos and 85 
non-polyp videos as test sets. Subsequently, Urban et al[18] developed a CAD model to 
improve polyp detection rate and they tested the model for its diagnostic capability on 
8641 hand-labeled colonoscopy images collected from more than 2000 patients and on 
20 colonoscopy videos. The results showed diagnostic accuracy of 96.4% and an area 
under the receiver operating characteristic curve of 0.991. However, the false positive 
rate was 7%. Additionally, Wang et al[19] developed the deep-learning algorithm 
which provided > 90% sensitivity and specificity for video-based analysis after testing 
their model on many polyp images and colonoscopy video recordings from patients. 
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Table 1 List of studies evaluating role of artificial intelligence in the detection of colon polyps during the colonoscopy

Ref. Country of 
origin

Study 
design Results

Fernandez-Esparrach et al
[13], 2016

Spain Retrospective Sensitivity 70%, Specificity 72 % 

Geetha et al[36], 2016 India Retrospective Sensitivity 95%, Specificity 97%

Misawa et al[37], 2017 Japan Retrospective Accuracy higher than trainees (87.8 vs 63.4%; P = 0.01), but similar to experts (87.8 vs 
84.2%; P = 0.76)

Zhang et al[38], 2017 China Retrospective Accuracy 86%

Yu et al[39], 2017 China Retrospective Sensitivity 71%, PPV 88%

Billah et al[40], 2017 Bangladesh Retrospective Sensitivity 99%, Specificity 98.5%, Accuracy 99%

Chen et al[23], 2018 Taiwan Retrospective Sensitivity 96.3%, Specificity 78.1%

Urban et al[18], 2018 United States Retrospective Accuracy 96.4%

Misawa et al[17], 2018 Japan Retrospective Sensitivity, Specificity, and Accuracy were 90%, 63%, and 76%, respectively

Wang et al[19], 2018 China Retrospective Sensitivity 94.38%, Specificity 95.92%

Su et al[41], 2019 China Prospective Polyp detection rate was 38.3% as compared to 25.4% in control group (P < 0.001)

Wang et al[42], 2019 China Prospective Polyp detection rate was 45% as compared to 29% in the control group (P < 0.001)

Klare et al[43], 2019 Germany Prospective Larger polyp detection, Odds ration 2.71, P =  0.042 

Figueiredo et al[44], 2019 Portugal Retrospective Sensitivity 99.7%, Specificity 84.9%, Accuracy 91.1%

Yamada et al[45], 2019 Japan Retrospective Sensitivity 97.3%, Specificity: 99%

Lee[46], 2020 South Korea Retrospective Accuracy 93.4%, Sensitivity 89.9%, Specificity 93.7%

Luo et al[16], 2020 China Prospective Polyp detection rate for diminutive polyps increased (38.7% vs 34%, P < 0.001). No 
difference was found for larger polyps

Gong[47], 2020 China Prospective Polyp detection rate was 47% as compared to 34% in control group (P =  0.0016)

Liu et al[48], 2020 China Prospective Polyp detection rate was 44% as compared to 28% in control group (P < 0.001)

Ozawa et al[49], 2020 Japan Retrospective Sensitivity 92%, PPV 86%, Accuracy 83%

Wang et al[50], 2020 China Prospective Polyp detection rate was 52% as compared to 37% in control group (P < 0.0001)

Hasssan et al[51], 2020 Italy Retrospective Sensitivity 99.7%

Repici et al[52], 2020 Italy Prospective Adenoma detection rate was 54.8% as compared to 40.4% in control group (P < 0.001)

PPV: Positive predictive value.

In a recent meta-analysis[20] from the researchers in Norway, who included five 
randomized control trials, AI aided colonoscopy had a ADR of 29.6% as compared to 
19.3% without AI. In another recent meta-analysis involving 5 randomized control 
trials including 4354 patients, ADR was 36.6% with AI aided colonoscopy as compared 
to 25.2% in the standard control group (P < 0.01)[21].

In addition to improvement in colorectal polyp detection, AI has also been shown 
accuracy in polyp characterization in several studies. Byrne et al[22] developed an AI 
model for real-time characterization of colorectal polyps. They assessed their model 
using 125 unaltered endoscopic videos containing diminutive polyps. The AI model 
did not generate sufficient confidence to predict the histology of 19 out of 125 
diminutive polyps which was about 15% of the polyps. For the remaining 106 
diminutive polyps, the accuracy of the model was 94%, the sensitivity for identi-
fication of adenomas was 98%, specificity was 83%, negative predictive value (NPV) 
was 97%, and positive predictive value (PPV) was 90%. On the other hand, Chen et al
[23] assessed their model using 284 diminutive polyps. The model identified 
neoplastic or hyperplastic polyps with 96.3% sensitivity, 78.1% specificity, NPV of 
91.5% and PPV of 89.6%. There have been several other studies from across the world 
analyzing capacity of AI to characterize colon polyps (Table 2).
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Table 2 List of studies evaluating role of artificial intelligence in characterization of colon polyps during the colonoscopy

Ref. Country of origin Study design Results

Misawa et al[53], 2016 Japan Retrospective Sensitivity 84.5%, Specificity 98%

Mori et al[54], 2016 Japan Retrospective Accuracy 89%

Kominami et al[55], 2016 Japan Prospective Sensitivity 93%, Specificity 93.3%

Komeda et al[56], 2017 Japan Retrospective Accuracy 75%

Takeda et al[57], 2017 Japan Retrospective Sensitivity 89.4%, Specificity 98.9%, Accuracy 94.1 %

Chen et al[23], 2018 Taiwan Retrospective PPV of 89.6%, and a NPV of 91.5%

Renner[58], 2018 Germany Retrospective Sensitivity 92.3% and NPV 88.2%

Mori et al[59], 2018 Japan Prospective Accuracy 98.1%

Blanes-Vidal et al[60], 2019 Denmark Retrospective Accuracy 96.4%

Min et al[61], 2019 China Prospective Sensitivity 83.3%, Specificity 70.1%

Byrne [22], 2019 Canada Retrospective Accuracy 94%

Sánchez-Monteset al[62], 2019 Spain Retrospective Sensitivity 92.3%, Specificity 89.2%

Horiuchi et al[63], 2019 Japan Prospective Sensitivity 80%, Specificity 95.3%

Lui et al[64], 2019 China Retrospective Sensitivity 88.2%, Specificity 77.9%

Ozawa et al[49], 2020 Japan Retrospective Sensitivity 97%, PPV 84%, NPV 88%

Jin et al[65], 2020 South Korea Prospective Sensitivity 83.3%, Specificity 91.7%

Rodriguez-Diazet al[66], 2020 United States Prospective Sensitivity 96%, Specificity 84%

Kudo et al[67], 2020 Japan Retrospective Sensitivity 96.9%, Specificity 100%

NPV: Negative predictive value; PPV: Positive predictive value.

AI AND INFLAMMATORY BOWEL DISEASE
Inflammatory bowel disease (IBD) comprises of mainly ulcerative colitis and crohn's 
disease. It results from complex interplay of environmental, immunological, microbial, 
and genomic factors[24]. The prevalence of IBD has exceeded 0.3% in the Western 
countries, and its incidence is rising in newly industrialized countries all over the 
world[25].

Over the last decade, role of AI has been explored in the field of inflammatory 
bowel disease (IBD). It has been utilized to analyze endoscopic images for disease 
diagnosis, grading of severity of disease and predicting treatment response. It has been 
also utilized to build risk prediction models based on integration of clinical, laboratory 
as well as gene expression data[26]. There are limited studies exploring the utility of 
AI aided colonoscopy in the field of IBD. Mosotto et al employed machine learning 
mathematical model of endoscopic and histologic data to distinguish different types of 
pediatric IBD and found 83.3% accuracy[27]. Similarly, a study from China found AI 
through machine learning model to be a promising approach specially for unexper-
ienced endoscopists for subtyping of IBD[28].

There are clinical scores available for grading the severity of IBD. AI assisted models 
have been applied to improve accuracy and precision in assessing the disease severity. 
In a prospective study from Japan, deep neural network was utilized for evaluating 
endoscopic images from patients with ulcerative colitis and it showed 90.1% accuracy 
for endoscopic remission and 92.9% accuracy for histologic remission[29]. In another 
study from Belgium, computer algorithm for pattern recognition from endoscopic 
images had significantly better accuracy in determining endoscopic and histologic 
inflammation in patients with ulcerative colitis[30]. In a retrospective study involving 
777 patients with ulcerative colitis, deep learning aided assessment of  Mayo 
endoscopic sub-score for the automated grading of disease yielded 72.4% sensitivity, 
85.7% specificity, 77.7% PPV, 87% NPV[31]. Ozawa et al[32] constructed a CAD system 
using convolutional neural network and the results showed better performance for 
identification of normal mucosa in patients with ulcerative colitis. In a prospective 
trial, Gottlieb et al showed that deep learning algorithm can be used effectively in 
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predicting ulcerative colitis disease severity[33].
Currently, these AI aided algorithms are mainly used in research setting. Further 

studies are needed to explore their utility in clinical practice and management of 
patients with IBD.

LIMITATIONS
One of the possible limitations for the use of CAD could be significantly large number 
of false positive results[34]. Sometimes CAD system may flag frames which usually 
endoscopists may never have considered as suspicious area. Thus, the endoscopists 
may have to spend some extra time to go through all those flagged frames to differ-
entiate between actual false positives and possible false negatives[35]. Additionally, 
false positive results may lead to unnecessary biopsy and thus related complications 
which could have been avoided. Hassen et al[34] conducted a post hoc analysis of 
randomized trial comparing colonoscopy with and without CAD to assess relative 
distribution of false positives in real life setting. During this analysis, two main reasons 
were found as causes of false positive results, such as artifacts from either mucosal 
wall or bowel content. Out of total false positives, 88% were due to artifacts from 
bowel wall, while 12% were due to artifacts from bowel content. However, most of the 
false positives were rejected by endoscopists right away and there was only 1% 
increase in the total withdrawal time due to false positives. Another limiting factor is 
cost effectiveness of the use of AI in colonoscopy, and it needs to be established.  Also, 
the impact of the use of AI in colonoscopy on long-term clinical outcomes, such as 
decrease in CRC rate or increase in surveillance interval for colonoscopy is not known
[35]. We require long-term prospective cohort studies to address these issues.

FUTURE DIRECTIONS
Food and Drug Administration has recently approved the first real-time CAD system 
for colonoscopy in April 2021, known as gastrointestinal (GI) Genius. It can identify 
the regions of the colon within the endoscope’s field of view where a colorectal polyp 
might be located, allowing for a more extended examination in real time during 
colonoscopy. After getting the alert from the device, it is up to the clinician to decide 
whether the identified region contains a suspected lesion, and how the lesion should 
be managed and processed per standard clinical practice and guidelines. However, GI 
Genius is not intended to characterize or classify a lesion, nor to replace lab sampling 
as a means of diagnosis. The device does not provide any diagnostic assessments of 
colorectal polyp pathology, nor does it suggest to the clinician how to manage 
suspicious polyps.

Although many studies have shown good results but most of these studies were 
retrospective studies which could be subject to considerable selection bias. On the 
other hand, only few prospective studies are available till date which are more statist-
ically significant than retrospective studies. Thus, we need to design more prospective 
studies and should be directed towards polyp characterization during real-time 
colonoscopy. Additionally, future studies can explore AI assisted identification of 
polyps with submucosal invasion. The prospect of a fully automated independent 
colonoscopy system is still too premature at this stage. Furthermore, trials to build 
more cost-effective models should be conducted in near future before considering use 
of CAD assisted colonoscopy widespread in daily practice.

CONCLUSION
In conclusion, utility of AI methods and algorithms have significantly evolved over the 
last decade. AI technology provides us a very robust tool to improve the accuracy and 
precision during the colonoscopy. ML models of AI technology provide us a valuable 
tool to transform the healthcare. Further larger and prospective studies are needed to 
see if these positive outcomes can be replicated in a cost-effective manner in clinical 
practice.
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INTRODUCTION
Artificial intelligence (AI) has emerged as a mechanism to assist clinicians, particularly 
in the analysis and interpretation of clinical data such as radiologic images and 
pathology. In general, AI encompasses the use of computer algorithms and learning 
models designed to complete undertakings that typically require conscious human 
processing[1]. For pattern recognition in images, a deep neural network learns 
multiple representations of the input images at different levels of abstractions. Subsets 
of AI include machine learning (support vector machine algorithms, artificial neural 
networks) and direct learning (convolutional neural networks, recurrent neural 
networks[1-3]. Deep learning has shown great promise in healthcare applications 
ranging from early detection of cancers to predicting disease survivability. The 
overarching goal of AI in medicine has been to decrease inter-operator variability 
while improving diagnostic accuracy and real-time decision making[4]. The 
application of AI in Gastroenterology has largely been focused on endoscopy, ranging 
from the detection and classification of colon polyps, to the diagnosis of esophageal 
and gastric cancer[1,3]. However, more recently there has been further evaluation of 
the role of AI in biliopancreatic endoscopy, including improved endoscopic 
ultrasound (EUS) differentiation between pancreatic ductal adenocarcinoma (PDAC) 
and other pancreatic pathologies such as autoimmune pancreatitis (AIP), chronic 
pancreatitis (CP) and cystic pancreas lesions such as intraductal papillary mucinous 
neoplasm (IPMN). This “topic highlight” will focus on the potential use of AI in the 
EUS evaluation of pancreatic conditions.

HISTORY OF AI IN GASTROINTESTINAL ENDOSCOPY
Early studies on the application of AI in GI endoscopy dating back to the 1990s-2000s 
were focused on aiding the detection and classification of colorectal polyps to improve 
adenoma detection rates and decrease interval colon cancers[5-8]. Additional studies 
have used AI to help diagnose inflammatory bowel disease and predict histologic 
inflammation during colonoscopy evaluation[9,10], as well as grade bowel preparation
[11]. The use of AI in upper endoscopy has been assessed in the identification and 
labeling of basic anatomic structures with automatic image capture[12], diagnosis of 
Helicobacter pylori infection[13], identification of gastric and esophageal cancer[14], as 
well as diagnosis of dysplasia in Barrett’s esophagus[15]. With regards to capsule 
endoscopy, existing technology within current software platforms allows for removal 
of redundant or uninformative images and identifies potential images of bleeding 
through color detection, while more recent studies are looking into the use of AI to 
identify other small bowel pathologies[16]. PDAC and AIP are diseases with a highly 
analogous visual presentation that are difficult to distinguish by imaging. AI systems 
have been developed to aid EUS evaluation of pancreatic lesions with the particular 
goal of distinguishing pancreatic cancer from other pancreatic pathologies including 
CP and AIP[17-19].

AI IN PANCREATICOBILIARY ENDOSCOPY
The use of AI in pancreaticobiliary endoscopy is still in its infancy, therefore there is a 
paucity of literature related to EUS evaluation of pancreatic conditions using AI-based 
systems. However, the need for improved diagnostic evaluation of pancreatic 
conditions including AIP, PDAC, CP and pancreatic cystic lesions, provides an 
exciting niche for further research. AI has previously been applied in EUS differen-
tiation of pancreatic cystic lesions and pancreatic tumors, thereby offering the 
capability of earlier and more accurate diagnosis. Both conventional machine learning 
and deep learning architectures have been used. A convolutional neural network 
(CNN) is a deep learning algorithm developed based on the concepts of visual tasks 
and signaling. In building a CNN for EUS, initial image data is collected and labeled 
based on the findings, these images are then entered as input and filtered through a 
multi-layer deep learning program which allows the system to learn key features of 
the provided EUS images. Multiple rounds of this process allow for the formation of a 
neural network where the system can then apply the previously learned features in 
analyzing novel images (Figure 1).
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Figure 1 Example of neural network design.

LITERATURE SEARCH
To identify relevant literature on this topic, we searched the PubMed database through 
our institution’s library for articles combining the terms “autoimmune pancreatitis”, 
“pancreatic adenocarcinoma”, “chronic pancreatitis”, “intraductal papillary mucinous 
neoplasm”, “artificial intelligence”, and “endoscopic ultrasound”.

AI IN THE EVALUATION OF AUTOIMMUNE PANCREATITIS
Autoimmune pancreatitis is an inflammatory condition of the pancreas commonly 
associated with a constellation of findings referred to as immunoglobulin G4-related 
disease. AIP is characterized radiologically/endoscopically by diffuse or focal 
enlargement of the pancreas parenchyma and diffuse irregular narrowing of the main 
pancreatic duct, histologically by pancreatic fibrosis and lymphoplasmacytic infilt-
ration, and serologically by increased levels of serum gamma globulin, including 
immunoglobulin G4 (IgG4)[20,21]. The diagnosis of AIP can be challenging due to the 
overlap of clinical, laboratory and imaging findings with those of PDAC[22-24]. 
Studies have shown that 2%-5% of patients who undergo pancreatic resection of 
suspected cancer are found to have AIP on histopathologic evaluation, and instead of 
receiving highly effective immunosuppressive therapy such as corticosteroids, these 
patients are left to manage the morbidity associated with an invasive surgery[25,26]. 
While EUS remains the preeminent diagnostic tool in evaluating pancreatic diseases, 
the yield of needle aspiration/biopsy techniques can be inconclusive or non-specific, 
creating a diagnostic dilemma that may ultimately delay or compromise patient care
[25-28].

In late 2020, Marya et al[22] published novel research on the development of EUS-
based AI to improve the diagnosis of AIP. Using a CNN built from a large collection of 
EUS images and videos (583 patients: 146 AIP, 292 PDAC, 72 CP, 73 normal pancreas), 
their team sought to develop a reliable, real-time method of distinguishing AIP from 
PDAC on EUS evaluation. Going one step further, they also used occlusion 
heatmapping to identify key sonographic features of AIP compared to PDAC, further 
strengthening the utility of their model. On combined still image and continuous video 
image analysis, the developed CNN was able to distinguish AIP from PDAC with 90% 
sensitivity and 87% specificity; and distinguish AIP from all other studied diagnoses 
(PDAC, CP, normal pancreas) with 90% sensitivity and 78% specificity. On continuous 
video image analysis, the developed CNN was able to successfully differentiate AIP 
from PDAC with a sensitivity of 90% and specificity of 93%; and differentiate AIP from 
all other studied diagnoses with a sensitivity of 90% and specificity of 85%. 
Furthermore, occlusion heatmap evaluation showed that “enhanced hyperechoic 
interfaces between pancreas parenchyma and pancreas duct/vessels” were predictive 
of AIP, and “post-acoustic enhancement deep to a dilated pancreas duct” was more 
commonly associated with PDAC. In addition, the study evaluated the accuracy of 
diagnosis between the CNN and a group of expert endosonographers, showing that 
the CNN correctly diagnosed AIP with a sensitivity of 88.2% and specificity of 82.5%, 
while expert endosonographers correctly diagnosed AIP with a sensitivity of 53.8% 
and specificity of 86.7%. Overall, this study serves as a model for the application of AI 
in the EUS evaluation of pancreatic pathologies including AIP.
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AI IN THE EVALUATION OF CHRONIC PANCREATITIS
CP is an irreversible fibro-inflammatory condition caused by recurrent or persistent 
pancreatic parenchymal injury[29]. The diagnosis of CP is often made by analyzing a 
patient’s risk factors, radiographic imaging results and direct/indirect pancreatic 
function laboratory tests. EUS-guided tissue acquisition still serves as the gold 
standard for CP diagnosis when less invasive tools are inconclusive, however, studies 
have found similar sensitivities and specificities in the diagnosis of CP using EUS, MRI 
or CT[30]. This again identifies another diagnostic dilemma for which AI may serve a 
role to improve diagnostic accuracy, thereby improving patient care and outcomes.

Computer aided diagnosis based on digital image analysis (DIA) was initially 
utilized in a small study attempting to differentiate between focal, pseudotumorous 
pancreatitis and pancreatic malignancy with an overall diagnostic accuracy of 89%
[31]. In 2008, Săftoiu et al developed a neural network to differentiate between CP and 
pancreatic malignancy through imaging features of EUS-elastography, further 
expanding to include the evaluation of contrast-enhanced EUS images in 2015[19]. 
Their initial system was able to differentiate between malignant and benign pancreatic 
masses with a sensitivity of 91.4%, specificity of 87.9% and accuracy of 89.7%. Das et al
[32] used DIA of the spatial distribution of pixels on EUS images to create a neural 
network that could differentiate PDAC and CP with a 93% accuracy. In 2013, Zhu et al
[33] published data on the use of a support vector machine predictive model to differ-
entiate PDAC and CP based on EUS images which achieved a diagnostic accuracy of 
94%. Overall, these studies provide positive reinforcement to the notion that AI can 
improve EUS differentiation of pancreatic malignancy from other pathologies 
including CP.

AI IN THE EVALUATION OF INTRADUCTAL PAPILLARY MUCINOUS 
NEOPLASMS
With the increasing detection of pancreatic cystic lesions on cross-sectional imaging, 
IPMNs have become an important pancreatic pathology given their potential for 
malignant transformation[34]. Early resection of IPMNs, particularly those with high 
grade dysplasia limit the progression to PDAC. International consensus guidelines for 
IPMN management have identified high risk stigmata (i.e., obstructive jaundice) and 
worrisome features (size > 3 cm, enhancing mural nodule < 5 mm, thickened cyst wall, 
MPD > 5-9 mm, abrupt change in MPD diameter) of malignancy associated with 
IPMN[34]. However, the use of these features alone to differentiate benign vs 
malignant IPMN leaves room for improvement, particularly through the use of AI-
assisted EUS evaluation. In 2019, Kuwahara et al[35] performed a retrospective single-
center study that developed an EUS-based CNN to differentiate benign vs malignant 
IPMNs. Their model identified malignant IPMNs with a diagnostic accuracy of 94%, 
compared to the human pre-operative diagnosis control group based on consensus 
guidelines which had an accuracy of 56%. While further research in this area is 
needed, the overarching theme of improved diagnostic accuracy when AI is applied to 
EUS evaluation of pancreatic disease appears to be evident.

CONCLUSION
The diagnosis of pancreatic lesions can be difficult, often stemming from the overlap of 
features found in benign lesions with those found in PDAC. The development of 
improved diagnostic tools to differentiate PDAC from other pancreatic lesions 
presents an opportunity for significant impact on the overall care of patients with 
pancreatic disease. More robust studies are needed to validate the current available 
research, namely in the form of prospective, multicenter studies which may further 
determine the generalizability of current models and the overall, real-time clinical 
application of these AI systems. It should be noted that standardization of endoscopic 
image capture and reporting may better help facilitate future interdisciplinary work in 
this field[36,37]. While the use of AI to evaluate the pancreas appears to be in its early 
stages, the potential for AI-assisted EUS assessment provides an exciting and 
promising future for the diagnosis and management of pancreatic lesions.
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