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Abstract
Gastrointestinal (GI) complications frequently necessitate intensive care unit 
(ICU) admission. Additionally, critically ill patients also develop GI complications 
requiring further diagnostic and therapeutic interventions. However, these 
patients form a vulnerable group, who are at risk for developing side effects and 
complications. Every effort must be made to reduce invasiveness and ensure 
safety of interventions in ICU patients. Artificial intelligence (AI) is a rapidly 
evolving technology with several potential applications in healthcare settings. 
ICUs produce a large amount of data, which may be employed for creation of AI 
algorithms, and provide a lucrative opportunity for application of AI. However, 
the current role of AI in these patients remains limited due to lack of large-scale 
trials comparing the efficacy of AI with the accepted standards of care.

Key Words: Artificial intelligence; Critical care; Gastroenterology; Hepatology; Intensive 
care unit; Machine learning
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Core Tip: The scope and applications of artificial intelligence (AI) are rapidly increasing. 
It is being increasingly applied in various fields, even in healthcare settings. The data 
generated by critically ill patients admitted in intensive care units (ICUs) is huge, which 
may be helpful in developing AI algorithms aimed to aid in their management. Patients 
with primary gastrointestinal diseases may frequently require ICU admission for 
management of advanced disease or related complications. Use of AI may aid the 
critical care physicians in managing such patients by helping in early diagnosis, 
prediction of complications, assessing response to therapy and overall prognostication.
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INTRODUCTION
Artificial intelligence (AI), in simple terms, may be defined as the simulation of human intelligence in machines which are 
programmed to react like humans, mimicking their actions by means of multi-disciplinary approach[1]. Unlike human 
mind, which can assimilate only a finite amount of data, machines can accumulate and process unlimited amount of data 
which can be used in different applications. AI is increasingly influencing every aspect of our life, including healthcare[2].

AI is a complex and rapidly evolving technology. More subsets of AI are being introduced regularly, and each of them 
have their own unique properties, advantages and limitations. Certain subsets of AI are more commonly employed in 
healthcare settings than others. The broad subsets of AI include machine learning (ML), deep learning, and cognitive 
computing. ML involves learning from the prior data to predict the future data. Artificial neural network (ANN) is a 
subset of ML inspired by the neuronal connections of the human brain. Its further subsets include deep neural network 
and convolutional neural network (CNN). Other AI algorithms commonly employed in healthcare settings include 
decision trees, random forest, support vector machines (SVMs), and Naïve Bayes.

Modern intensive care units (ICUs) produce a vast amount of data which is conducive for formation of AI algorithms
[2]. A significant proportion of ICU patients are admitted with gastrointestinal (GI) disease or develop GI complications 
during their ICU course, necessitating further diagnostic and therapeutic interventions. As these patients form a 
vulnerable group, prone to develop side effects and complications, all measures must be undertaken to reduce 
invasiveness and ensure safety of ICU procedures. AI can potentially aid the critical care physicians by helping in early 
diagnosis, predicting complications and response to therapy and providing clinical prognostication in several GI 
disorders in critically ill patients (Table 1).

PANCREATIC DISORDERS
Almost 25% patients with acute pancreatitis (AP) develop complications or organ failure necessitating ICU admission[3]. 
Severe acute pancreatitis (SAP) is associated with high morbidity and mortality, requiring intensive monitoring and 
organ support. Early recognition of risk factors associated with progression to severe disease and development of 
complications, may help in initiating therapeutic measures and improve outcomes.

Diagnosis
Diagnosis of AP is based on the clinical presentation, laboratory parameters (serum amylase and lipase levels) and 
imaging (ultrasonography/computed tomography scans). As per the revised Atlanta classification, two out of three 
diagnostic criteria should be positive to make the diagnosis[4]. However, diagnosis may sometimes be missed due to non-
specific clinical presentation, difficulty in imaging and low sensitivity of the revised Atlanta criteria, which may delay the 
treatment[5].

Integration of AI technology may aid in early diagnosis of acute pancreatitis[6]. ANNs can accurately diagnose AP 
using clinical and radiological data[7]. In 10%–20% of AP cases, acute necrotizing pancreatitis (ANP) develops, thus 
further increasing the risk of morbidity and mortality[8,9]. AI based models may also be useful in diagnosing acute 
necrotizing pancreatitis, which may affect treatment and prognosis[10].

Severity prediction and assessment
Several clinical scores, based on clinical, laboratory, and radiological risk factors, have been devised to assess severity and 
predict outcomes in patients with SAP. However, no single score has been proven to be superior to others and the search 
for an ideal scoring system continues[11]. Even though these tools are commonly used in clinical practice, they have low 
accuracy (60%-80%)[12]. Further, these models are complex, difficult to compute and have low specificity and positive 
predictive value. Moreover, some of these scoring systems, like Glasgow and Ranson scores, take 48 h to complete and 
are not devised for serial measurements[13].

AI tools like ANN have been utilised to develop algorithms based on routine blood and serum biochemical parameters 
to reliably predict severity of AP[14]. When compared to different clinical scores, ANN based models have performed 
better than Ranson’s, APACHE II, and modified Glasgow score in predicting severity in patients with AP[15-17]. 
Additionally, ANN based tools require lesser parameters and may be computed within 6 h of presentation, as opposed to 
some scores which may require up to 48 h.

Prediction of complications and organ failure
Majority of deaths due to AP, especially those occurring in the first week, are secondary to progressive organ failure[18,
19]. Moreover, progressive organ failure is the primary determinant of SAP, irrespective of any local pancreatic 
complication. Hence, it is imperative to determine patients at risk of developing organ failure and ensure an early 

https://www.wjgnet.com/2689-7164/full/v5/i1/89138.htm
https://dx.doi.org/10.37126/aige.v5.i1.89138


Juneja D. AI in critical care gastroenterology

AIGE https://www.wjgnet.com 3 March 8, 2024 Volume 5 Issue 1

Table 1 Potential clinical applications of artificial intelligence in critical care gastroenterology

Organ involved Clinical condition Clinical applications

Pancreas Acute pancreatitis Prediction of severity; Prediction of local and systemic complications; Prediction of organ failure; 
Prediction of mortality

Chronic liver disease Diagnosis; Staging of fibrosis; Prediction of complications; Predicting disease progression; Prognosis; 
Predicting need for liver transplantation

Liver lesions/tumours Diagnosis and classification; Differentiating between benign and malignant lesions

Liver

Hepatocellular carcinoma Diagnosis; Staging; Response to therapy

Gastroesophageal reflux 
disease

Diagnosis

Helicobacter pylori infection Diagnosis

Intestinal lesions Diagnosis; Differentiating between benign and malignant lesions

Intestine

Intestinal bleeding Predicting risk of bleeding and re-bleeding; Diagnosis; Identifying source of bleeding

Gall stones Diagnosis; Removal of stones; Predicting need and difficulty of ERCPGall bladder and 
bile duct

Bile duct obstruction Diagnosis 

Appendicitis Diagnosis

Liver transplantation Predict post-operative course; Predict graft failure; Predict recurrence of HCC; Predict in-hospital 
mortality

Gastro-surgery

Abdominal aortic 
aneurysm

Diagnosis; Prediction of post-operative complications; Prediction of post-operative mortality

ERCP: Endoscopic retrograde cholangiopancreatography; HCC: Hepatocellular carcinoma.

diagnosis of any organ dysfunction. ANN based model utilising commonly employed patient and laboratory parameters 
have been shown to accurately predict development of organ failure in AP patients[20].

AI based tools like regression tree algorithms and ANN have been used to predict complications such as acute lung 
injury, ARDS, portal vein thrombosis and porto-spleno-mesenteric vein thrombosis in patients with AP and AI has been 
proven to be more accurate than logistic regression based models in predicting these complications[21-25].

Prognostication
In spite of recent advances, mortality associated with SAP remains significant[26]. The overall mortality of ANP is 
approximately 15%–20%, of which there is a further twofold increase in a third of ANP cases where the necrotic tissue 
becomes infected[27,28]. Better understanding of risk factors associated with poorer clinical outcomes may help the 
physicians in instituting therapeutic measures and prognostication, as early intervention, within first 48 h, may help in 
improving outcomes[29].

Even though several clinical scores are commonly employed to aid in prognostication, these scores have several 
limitations. AI algorithms based on ANN have been shown to be better than these clinical scores in predicting clinical 
outcomes including length of hospital stay in patients with acute pancreatitis. Keogan et al[30] used ANN based on 
radiological and laboratory data from pancreatitis patients which performed better than both the Balthazar and Ranson 
scoring systems.

Data collected from acute pancreatitis patients from the Medical Information Mart for Intensive Care-III (MIMIC-III) 
database has shown that AI based algorithm can be effectively used to predict in-hospital mortality with an area under 
the curve (AUC) of 0.769. Further, AI based algorithms performed better than the commonly used scoring systems 
including SOFA score (AUC 0.401) and Ranson score (AUC 0.652) and logistic regression analysis (AUC 0.607) in 
predicting in-hospital mortality[14,31,32].

LIVER DISORDERS
Acute liver failure is a common indication for ICU admission. Patients with chronic liver disease (CLD) may also require 
ICU support in case of acute decompensation, development of acute on chronic liver disease or due to natural 
progression of CLD. Even ICU patients may develop liver dysfunction necessitating early diagnosis and intervention for 
improving prognosis. AI may have a potential role in early diagnosis of acute decompensation, identification of complic-
ations and prognostication in patients with liver disease.
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Diagnosis of CLD
In critically ill patients, bedside ultrasonography is primarily used for diagnosis of CLD. However, it is operator 
dependant, qualitative in nature and have limited accuracy. Further, it may be difficult to distinguish fatty changes from 
early cirrhosis because of overlapping features[33]. Machine learning algorithms based on ultrasound have been applied 
for analysis of steatosis and the staging of liver fibrosis. Using ultrasound images, CNN based AI model has been shown 
to effectively assess the amount of liver steatosis with an area under the receiver operating curve (AUROC) of 0.98[34]. 
Deep learning-based algorithms have shown to improve accuracy for diagnosis of CLD with an AUROC of 1.0 as 
compared to conventional AI algorithms developed using SVM[35]. Furthermore, ML algorithms based on simple patient 
(age) and laboratory parameters (aspartate aminotransferase, albumin, and platelet count) have also been shown to 
accurately predict advanced fibrosis[36].

Liver fibrosis strongly correlates with development of hepatocellular cancer (HCC) and poor outcomes in patients with 
CLD. Liver biopsy remains the gold standard for detection and quantification of fibrosis. As it is an invasive procedure, it 
is associated with several inherent complications, especially in more vulnerable critically ill patients. Hence, non-invasive 
tests like bedside transient elastography measuring liver stiffness are being evaluated for such clinical conditions helping 
in bedside diagnosis and staging of liver fibrosis. Even though it is a comparatively newer test, it may find better applic-
ability in ICU patients because of its high accuracy, easy repeatability, and non-invasive nature[37]. It has been shown 
that, AI based on transient elastography scans may further improve its accuracy and reduce subjectivity and inter-
observer variations[38,39].

As AI based tools including ANN have been shown to reliably predict significant fibrosis in patients with chronic 
hepatitis, AI may be helpful in accurately staging liver fibrosis and may help in reducing the need for invasive 
procedures like liver biopsy[40,41].

Prediction of complications
CLD patients are at risk of developing local and systemic complications which may sometimes be life-threatening. 
Among the local complications, variceal bleed remains a common cause for increased morbidity and mortality in CLD 
patients. Hence, prediction and prevention of variceal bleed may improve clinical outcomes. Certain clinical scores 
(Child-Pugh score) and clinical parameters (hepatic-venous pressure gradient) have been successfully used as prognostic 
factors to stratifying the risk of variceal rebleeding[42]. However, they have limited accuracy. Diagnosis of varices 
requires endoscopy, which may not be feasible in many critically ill patients due to its invasive nature. ANN and ML 
based tools have been used to accurately predict presence of esophageal varices, obliviating the need for invasive 
endoscopy[43,44]. AI based algorithms also have the potential to accurately predict the risk of rebleeding in patients with 
liver cirrhosis which may aid the clinicians in managing such patients[45].

Prognosis
Short term prognosis of CLD depends upon development of complications and other organ dysfunction. ICU patients 
with CLD have high mortality rates especially if they develop other organ dysfunction requiring renal replacement 
therapy or invasive mechanical ventilation support[46]. On the other hand, long term prognosis depends on disease 
progression. Studies have shown that AI may be instrumental in identifying the cirrhotic patients at risk for disease 
progression and development of liver related complications including HCC, death, hepatic decompensation and even 
need for liver transplantation[47,48]. In CLD patients, DL-based model has been shown to be a good predictor of 
transplant-free survival at 1 and 3 years after diagnosis[48]. ANN algorithms based on clinical and laboratory parameters 
have been shown to accurately predict 1 year mortality in patients with CLD. This may aid in patient selection for liver 
transplantation[49].

Development of HCC may also impact clinical outcomes in such patients. ML has been employed for predicting 
development of HCC, diagnosis of HCC and even prediction of response to therapy[50-52].

AI may also be helpful in diagnosing focal liver lesions. AI based tools have shown to be useful in diagnosing and 
classifying liver nodules (cysts, hemangiomas, HCC) using ultrasound images[53,54]. DL and CNN based algorithms 
using MRI images, have also been shown to be effective in differentiating benign and malignant liver tumors, and 
classifying HCC and other tumors[55,56].

Response to therapy
In patients with liver disease it may be useful to identify patients who may respond to therapeutic interventions. This 
may aid in patient prognostication and triaging of limited ICU resources. ANN based models have been used to 
accurately predict the response to therapy with pegylated interferon alpha and ribavirin in patients with chronic hepatitis 
C infection, with sensitivity and specificity approaching 90%[57]. AI may also aid in predicting outcomes and risk for 
complications in post-liver transplantation patients[58].

INTESTINAL DISORDERS
Endoscopy is frequently employed to evaluate the gastro-intestinal tract. As it is an invasive procedure, it may be difficult 
to perform and associated with significant complication rates especially in critically ill ICU patients[59].
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Diagnosis
Diagnosis of common GI disorders can be aided with AI based technology. ANN based model has been shown to reliably 
diagnose gastroesophageal reflux disease non-invasively by employing only clinical parameters[60]. CNN model based 
on endoscopic images has been shown to accurately diagnose Helicobacter pylori infection. Further, it was shown that the 
time required by AI to analyze the endoscopy images and make a diagnosis was significantly less as compared to 
experienced endoscopists (3 min and 14 s vs 230.1 min)[61]. Even a recently published meta-analysis reported that CNN 
may be as accurate as experienced physicians in making the diagnosis of Helicobacter pylori infection[62].

AI based algorithms have been developed to diagnose and differentiate between malignant and non-malignant 
esophageal diseases like Barret’s esophagus and squamous cell carcinoma[63]. Moreover, AI may even be helpful in 
identifying early neoplastic changes to ensure timely diagnosis which may enable early intervention and aid in 
improving outcomes[64].

Gastrointestinal bleed
GI bleed remains a common indication for ICU admission. Additionally, increased stress, use of steroids and presence of 
sepsis can predispose general ICU patients to develop GI bleed during their ICU course. Some bleeds, especially those 
involving the small bowel, may be difficult to identify and manage. Even though the causes for upper and lower GI bleed 
may be relatively easier to identify using endoscopic techniques, repeated endoscopies may be required in a significant 
proportion of patients at risk for recurrent bleed. This may be especially difficult in critically ill ICU patients, who may 
benefit most from such procedures. ML based algorithms using endoscopic images have been developed which may be 
useful in identifying the patients at risk of rebleed and increased mortality with up to 90% accuracy[65-68]. ML models 
based only on clinical parameters like age, presence of gastric ulcers or gastrointestinal disease, presence of underlying 
malignancy or infections and serum hemoglobin levels have also been developed which have shown to predict risk of 
rebleed up to 1 year with an accuracy of 84.3% which may obliviate the need for repeated bronchoscopies[69].

AI, using various algorithms, have been shown to be helpful in more accurately identifying the source of bleed in 
patients with small bowel bleed using images from capsule endoscopy, which may avoid further invasive tests[70-73].

Hence, AI have the potential to reduce the need for endoscopies, allow for quicker procedures (by shortening the time 
required for observation and analysis), and also decrease the necessity for performing endoscopic biopsies, which may be 
particularly beneficial for critically ill patients.

BILIARY DISORDERS
Endoscopic retrograde cholangiopancreatography (ERCP) is commonly employed to diagnose disorders of the gall 
bladder, bile duct and the pancreas. However, it may be difficult to perform and may be associated with significant 
complications. Hence, careful patient selection is of paramount importance. An ANN model has been shown to have 
better discriminant ability and accuracy than a multivariate logistic regression model in selecting patients for therapeutic 
ERCP[74]. Using data collected from endoscopic images, AI has also been used to predict difficult ERCP which may help 
in reducing the failure rates and performing safer procedures[75,76]. AI model based only on clinical markers has been 
shown be an important adjunct to more invasive procedures in evaluation of bile duct obstruction[77].

AI may also support the physicians performing the ERCP by helping to differentiate between benign and malignant 
lesions and aid in their classification[78,79]. AI based algorithms may also be useful in therapeutic ERCPs by increasing 
the probability of successful removal of biliary stones[75]. Further, data suggests that AI based interventions have the 
potential to reduce post-ERCP complications including acute pancreatitis[80].

Endoscopic ultrasound (EUS) has been introduced recently to aid in the diagnosis of pancreatobiliary diseases. 
However, the diagnostic accuracy of EUS also remains limited with most studies reporting the range to be 80%-95%[81]. 
AI may be instrumental in increasing the efficacy and accuracy of EUS in the diagnosis and prognostication of GI diseases
[82].

GASTROINTESTINAL SURGERY
Patients frequently require ICU care in the peri-operative period of major GI surgeries for clinical stabilisation and 
optimisation of therapy. These patients require close monitoring for development of any post-operative complications 
which may affect their hospital course and increase morbidity or mortality. AI based tools may be instrumental in 
recognising patients at risk of developing post-operative complications who may benefit from intensive care and early 
intervention.

Acute appendicitis remains a common and dreaded abdominal emergency. However, its diagnosis is often missed, 
which may increase morbidity and mortality. ANN has shown promising results in diagnosis of acute appendicitis and 
has performed better than clinical scores like Alvarado clinical scoring system. This may aid in screening of patients 
presenting with acute abdomen and making an early diagnosis[83].

In patients undergoing liver transplantation, AI has been used to predict post-operative course, graft failure, recurrence 
of HCC and even survival after surgery[84-87]. ANN has also been used to predict in-hospital mortality in patients after 
primary liver cancer surgery[88].
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Certain acute abdominal emergencies like abdominal aortic aneurysm (AAA) rupture may be associated with high 
mortality rates. Prompt recognition and early intervention may improve outcomes in such cases. CNN based model has 
been shown to have high accuracy of 99.1% with an AUROC of 0.99 for detecting AAA. Also, CNN based models may be 
effective in accurately detecting presence of any leak post AAA repair and predict in-hospital mortality in the post-
operative period[89-91]. Further, AI using easily definable pre-operative parameters, has been shown to provide a simple 
and highly discriminant adjunct in accurately recognising patients at higher risk of death after AAA repair surgery[91].

Similarly, AI based algorithms have been used to predict clinical outcomes including post-operative complications and 
mortality in other major or emergency abdominal surgeries including bariatric and metabolic surgeries, duodenal switch 
surgeries, and even after inguinal hernia repair[92-95].

NON-CLINICAL APPLICATIONS
Apart from these clinical applications, AI may be helpful in several non-clinical applications in GI critical care. AI can 
help in assimilating and analysing huge databases, help in reducing human errors in data entry, and assist in conducting 
large scale multi-center trials[96]. These intelligent database systems can also improve adherence to current clinical 
guidelines and protocols and aid in performing clinical audits and improve performance. Further, AI may also be instru-
mental in providing a more individualised patient care, and hence pave the way for precision medicine in the field of 
gastroenterology[97].

LIMITATIONS TO AI APPLICATIONS
The literature regarding use of AI in healthcare settings is increasing. However, most of the present studies have small 
sample sizes and are retrospective in nature. The literature on ICU patients is even more limited, restricting the use of AI 
in these patients. Moreover, comparison between different studies is difficult, as they have used different types of AI 
tools, with new tools being added frequently. Use of patient data for developing AI algorithms may lead to privacy and 
medico-legal issues which need to be adequately addressed by designing and implementing appropriate regulations and 
guidelines. Further, issues related to liability, reliability and safety of AI applications need to be addressed before 
widespread implementation and acceptance of AI in the current healthcare system becomes possible.

FUTURE DIRECTIONS
AI may form an important component of healthcare management and a lucrative adjunct to intensive care physicians in 
the future. However, large scale trials need to be conducted, especially in ICU patients, to evaluate and validate the 
efficacy and safety of AI. Further, standardisation of AI tools and algorithms must be done to ensure their comparability. 
For AI to be integrated in the routine clinical practice, healthcare workers need to be trained regarding safe and effective 
use of AI to ensure its proper utilisation and interpretation. Appropriate rules and regulations must be implemented to 
prevent any violation of patient privacy and maintain confidentiality of patient data.

CONCLUSION
With a huge increase in digitalisation of data and increased availability of big data, AI holds immense promise to change 
the landscape of healthcare in the not-so-distant future. It has the potential to improve diagnostics, predict progression 
and complications, and predict outcomes of critically ill gastroenterology patients thereby, reducing medical errors, 
increasing efficiency and improving clinical outcomes. AI can potentially reduce the number of invasive procedures and 
hence, reduce complication rates and provide a safer environment. However, there still remains issues regarding its 
safety, liability, legality, and patient privacy, which need to be addressed before it is incorporated in mainstream clinical 
care. Even though it may not be able to replace the physician’s clinical acumen, it can be a good supplement and may aid 
in improving patient care and safety.
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Abstract
BACKGROUND 
Artificial intelligence (AI) has potential in the optical diagnosis of colorectal 
polyps.

AIM 
To evaluate the feasibility of the real-time use of the computer-aided diagnosis 
system (CADx) AI for ColoRectal Polyps (AI4CRP) for the optical diagnosis of 
diminutive colorectal polyps and to compare the performance with CAD EYETM 
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(Fujifilm, Tokyo, Japan). CADx influence on the optical diagnosis of an expert endoscopist was also investigated.

METHODS 
AI4CRP was developed in-house and CAD EYE was proprietary software provided by Fujifilm. Both CADx-
systems exploit convolutional neural networks. Colorectal polyps were characterized as benign or premalignant 
and histopathology was used as gold standard. AI4CRP provided an objective assessment of its characterization by 
presenting a calibrated confidence characterization value (range 0.0-1.0). A predefined cut-off value of 0.6 was set 
with values < 0.6 indicating benign and values ≥ 0.6 indicating premalignant colorectal polyps. Low confidence 
characterizations were defined as values 40% around the cut-off value of 0.6 (< 0.36 and > 0.76). Self-critical 
AI4CRP’s diagnostic performances excluded low confidence characterizations.

RESULTS 
AI4CRP use was feasible and performed on 30 patients with 51 colorectal polyps. Self-critical AI4CRP, excluding 14 
low confidence characterizations [27.5% (14/51)], had a diagnostic accuracy of 89.2%, sensitivity of 89.7%, and 
specificity of 87.5%, which was higher compared to AI4CRP. CAD EYE had a 83.7% diagnostic accuracy, 74.2% 
sensitivity, and 100.0% specificity. Diagnostic performances of the endoscopist alone (before AI) increased non-
significantly after reviewing the CADx characterizations of both AI4CRP and CAD EYE (AI-assisted endoscopist). 
Diagnostic performances of the AI-assisted endoscopist were higher compared to both CADx-systems, except for 
specificity for which CAD EYE performed best.

CONCLUSION 
Real-time use of AI4CRP was feasible. Objective confidence values provided by a CADx is novel and self-critical 
AI4CRP showed higher diagnostic performances compared to AI4CRP.

Key Words: Artificial intelligence; Colorectal polyp characterization; Computer aided diagnosis; Diminutive colorectal polyps; 
Optical diagnosis; Self-critical artificial intelligence

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: In this study, two computer-aided diagnosis systems (CADx) [Artificial intelligence for ColoRectal polyps 
(AI4CRP) and CAD EYE] were compared head-to-head and showed that real-time use was feasible in clinical practice, but 
does not yet meet quality standards for optical diagnosis. AI4CRP provided characterizations accompanied by confidence 
values, enabling self-critical AI4CRP in which low confidence characterizations were excluded. Self-critical AI4CRP 
resulted in considerably higher diagnostic performances compared to AI4CRP. The AI-assisted endoscopists, optically 
diagnosing colorectal polyps after reviewing both CADx characterizations, had non-significantly higher diagnostic 
performances compared to the endoscopist alone (before CADx).

Citation: van der Zander QEW, Schreuder RM, Thijssen A, Kusters CHJ, Dehghani N, Scheeve T, Winkens B, van der Ende - van 
Loon MCM, de With PHN, van der Sommen F, Masclee AAM, Schoon EJ. Artificial intelligence for characterization of diminutive 
colorectal polyps: A feasibility study comparing two computer-aided diagnosis systems. Artif Intell Gastrointest Endosc 2024; 5(1): 
90574
URL: https://www.wjgnet.com/2689-7164/full/v5/i1/90574.htm
DOI: https://dx.doi.org/10.37126/aige.v5.i1.90574

INTRODUCTION
Endoscopists’ task in performing colonoscopies increasingly involves optical diagnosis, the endoscopic characterization 
of colorectal polyps. Recently, diagnostic performance of optical diagnosis increased due to optimization of technologies 
such as high definition imaging, magnification, and image enhancement techniques like blue light imaging (BLI)[1,2]. 
Despite these optimizations, endoscopists do not consistently meet quality standards set by the American society for 
gastrointestinal endoscopy (ASGE) and the European society of gastrointestinal endoscopy (ESGE) for implementation of 
the resect-and-discard and diagnose-and-leave strategies based on optical diagnosis[3,4]. The first strategy entails 
diminutive (≤ 5 mm) colorectal polyps to be resected and discarded without histopathological assessment under the 
condition of a ≥ 90% agreement in the post-polypectomy surveillance interval between the optical and histopathological 
diagnosis. The second strategy states that diminutive hyperplastic polyps in the rectosigmoid can be left in situ if a 
negative predictive value (NPV) of ≥ 90% is reached for the optical diagnosis of adenomatous polyps. Large, multicenter 
studies demonstrated disappointing results on optical diagnosis, even for additionally trained (bowel cancer screening) 
endoscopists, hampering implementation in clinical practice[5,6]. Diagnostic performances are operator dependent, 
showing high interobserver variability, and rely on training and expertise[3,7,8].
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Optical diagnosis with artificial intelligence (AI) has the potential to overcome this high interobserver variability by 
minimizing the operator dependence and providing objective optical diagnoses[9]. Accurate characterization of colorectal 
polyps with computer-aided diagnosis systems (CADx) may facilitate the implementation of the resect-and-discard and 
diagnose-and-leave strategies by meeting the set quality standards. Implementation of these strategies may lead to a 
reduction in unnecessary polypectomies, thereby decreasing the risk of post-polypectomy complications, reducing 
histopathology costs, and improving the cost-effectiveness of colonoscopy[10,11].

The primary aim of this study was to evaluate the feasibility of the real-time use of the CADx AI for ColoRectal polyps 
(AI4CRP) for the optical diagnosis of diminutive (≤ 5 mm) colorectal polyps. Secondary aims were a head-to-head 
comparison of AI4CRP with CAD EYETM (Fujifilm, Tokyo, Japan), evaluating the diagnostic performances of self-critical 
AI4CRP (providing only high confidence diagnoses), the diagnostic performances of an expert endoscopist (endoscopist 
alone), and the influence of CADx on the optical diagnosis of an expert endoscopist (AI-assisted endoscopist).

MATERIALS AND METHODS
This prospective study was conducted at the Catharina Hospital Eindhoven, the Netherlands. The study was performed 
in accordance with the declaration of Helsinki and the General Data Protection Regulation. The Medical Research Ethics 
Committees United (W20.239, July 2021) approved the study (ClinicalTrials.gov NCT05349110).

AI4CRP
AI4CRP, developed in-house by our research group (Video Coding & Architectures, Eindhoven University of 
Technology, the Netherlands), is an image-based CADx exploiting convolutional neural networks. AI4CRP was 
previously validated and a technical explanation has been published[12,13]. AI4CRP was trained multicenter and tested 
using prospectively collected datasets from multiple endoscopy vendors (Fujifilm and Pentax) (Supplementary Table 1). 
Characterizations were made in three image modalities: high-definition white light (HDWL), BLI, and linked color 
imaging (LCI). AI4CRP characterized colorectal polyps as benign (hyperplastic polyp) or premalignant [adenoma and 
sessile serrated lesion (SSL)]. The characterization was provided by a green assist bar for benign and a red assist bar for 
premalignant polyps. A heatmap pointed out the area of interest (Figure 1). Distinctive from other CADx-systems, 
AI4CRP provided calibrated confidence characterization values (range 0.0-1.0) representing the objective confidence level 
of AI4CRP in its characterization. A predefined cut-off value of 0.6 was set with values < 0.6 indicating benign and values 
≥ 0.6 indicating premalignant colorectal polyps. A value close(r) to 0.0 implies high confidence for a benign colorectal 
polyp and a value close(r) to 1.0 high confidence for a premalignant colorectal polyp. Providing these confidence values 
enabled a self-critical AI4CRP in which low confidence characterizations were excluded. Low confidence characteriz-
ations were defined as values 40% around the cut-off value of 0.6 (< 0.36 and > 0.76). To explore the added value of our 
self-critical CADx and allowing for an exploration of self-critical AI4CRP, the system was compared head-to-head with 
CAD EYE.

CAD EYE
CAD EYE is a commercial, video-based CAD-system developed to detect and characterize colorectal polyps. CAD EYE 
exploits convolutional neural networks[11]. For this study, only the characterization mode (BLI) was used. CAD EYE 
characterized colorectal polyps as hyperplastic (hyperplastic polyp and SSL) or neoplastic (adenoma) (note the difference 
in SSL characterization compared to AI4CRP). A status bar indicated the status of the characterization (complete or 
incomplete), a visual assist circle colored green for hyperplastic and yellow for neoplastic, a position map indicated the 
position of the colorectal polyp, and a characterization was displayed (Figure 1)[14].

Patients
Patients, aged ≥ 18 years, referred for screening colonoscopies, symptoms, or surveillance were eligible for participation. 
Consecutive patients were included if at least one diminutive colorectal polyp was encountered. Exclusion criteria were 
polyposis syndromes, inflammatory bowel diseases, inadequate bowel preparations (Boston bowel preparation scale < 6), 
and emergency colonoscopies. Patients were informed during a screening visit at the outpatient clinic before the 
colonoscopy. All patients provided written informed consent.

Endoscopic procedure
Colonoscopies were performed by one expert endoscopist (R.M.S.). The endoscopist was additionally trained in optical 
diagnosis (succeeding several training sessions in optical diagnosis organized by the ESGE), performed optical diagnoses 
on a regular basis according to the ESGE curriculum for optical diagnosis[1], and is a teacher in optical diagnosis training 
sessions. The endoscopist was familiarized with both CADx-systems. He was involved in the development of AI4CRP 
and used CAD EYE in clinical practice for 6 months before the start of this study. A maximum of three diminutive 
colorectal polyps per patient were included due to time restrictions. If more than three diminutive colorectal polyps were 
encountered, the first three were included to minimize selection bias. The endoscopist optically diagnosed colorectal 
polyps real-time (endoscopists alone) as benign (hyperplastic polyp) or premalignant (adenoma and SSLs) using BLI and 
according to Japan NBI Expert Team and BLI adenoma serrated international classification (BASIC)[15,16]. The 
endoscopist provided a confidence level [low or high (≥ 90%)] for each optical diagnosis. Subsequently, all colorectal 
polyps optically diagnosed by the endoscopist were characterized by both CADx-systems in sequence. AI4CRP charac-
terized images captured from the real-time video output in each image modality separately and calculated an overall 

https://f6publishing.blob.core.windows.net/7e549c34-cf2f-491a-9c31-f2567a6abed7/90574-supplementary-material.pdf
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Figure 1 Endoscopic images of a tubular adenoma in blue light imaging. A: Artificial intelligence for ColoRectal Polyps (AI4CRP’s) neoplastic prediction 
[indicated by the red assist bar and characterization value of > 0.6 (0.9966)]; B: The corresponding heatmap (pointing out the area of interest of the AI4CRP 
prediction); C: CAD EYE’s predicted characterization [indicated by a complete (grey) status bar, a yellow visual assist circle, yellow position map, and ‘neoplastic’ 
description].

characterization using all three image modalities (multimodal imaging). Images were manually captured by a research 
physician. Motion-blurred images and images out-of-focus were excluded. Afterwards, CAD EYE was activated by the 
endoscopist to provide a characterization. Both CADx characterizations were recorded and saved. Lastly, the endoscopist 
optically diagnosed the colorectal polyps after reviewing both CADx characterizations (AI-assisted endoscopist) and again 
provided a confidence level.

Despite proper endoscope positioning, CAD EYE provided inconclusive characterizations, defined as unstable charac-
terizations over time (switching diagnoses between hyperplastic and neoplastic) despite a complete status bar. The video-
recorded CAD EYE characterizations were assessed by two independent expert endoscopists blinded to histopathology. 
Upon agreement of inconclusiveness, these characterizations were excluded from the analyses.

Outcomes
The primary outcome was the feasibility of the real-time use of AI4CRP. Feasibility was defined as seamless video output 
reception from the endoscopy processor without noticeable clinically relevant latency (the time from capturing the 
endoscopic image to outputting the analyzed results)[17] and seamless operation of the software in obtaining characteriz-
ations. Latency was not measured by AI4CRP itself or by the investigators since it is known from previous studies that 
small differences in latency were not noticeable for endoscopists, and therefore only clinically noticeable latency was 
deemed relevant[12]. Secondary outcomes were real-time diagnostic performances of (self-critical) AI4CRP and a head-to-
head comparison of (self-critical) AI4CRP with CAD EYE and an expert endoscopist (endoscopist alone and AI-assisted 
endoscopist). Histopathology was used as gold standard and assessed according to the revised Vienna classification. 
Involved pathologists were specialized in gastrointestinal histopathology. Differences in characterization of SSLs by 
AI4CRP, CAD EYE, and the endoscopist were accounted for by histopathology in computing measures of diagnostic 
performance. Outcomes were reported according to the STARD (standard for reporting diagnostic accuracy studies) 
checklist.

Statistical analyses
Due to the feasibility design of the study, no formal sample size calculation was performed. The sample size (n = 30 
patients) was based on a previous CADx feasibility study[18]. Baseline characteristics are presented as proportions (%) for 
categorical variables or as mean [standard deviation (SD)] for numerical variables. Feasibility was described qualitatively. 
Diagnostic performances were investigated in terms of diagnostic accuracy, sensitivity, specificity, and negative and 
positive predictive values (NPV, PPV), expressed with 95% confidence intervals. As sensitivity analysis, cluster 
bootstrapping was performed to account for multiple colorectal polyps per patient. Self-critical AI4CRP was analyzed 
post-hoc. Differences between (self-critical) AI4CRP, CAD EYE, and the endoscopist were analyzed using the McNemar 
test for paired proportions. Two-sided P values ≤ 0.05 were considered statistically significant. Statistical analyses were 
performed with IBM SPSS Statistics (IBM Corp., United States) and R (R Foundation, Austria). The statistical methods of 
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this study were reviewed by B. Winkens from the Department of Methodology and Statistics of Maastricht University.

RESULTS
Study population
Patients who underwent a colonoscopy at Catharina Hospital Eindhoven between August and November 2021 were 
screened for eligibility. In total, 30 patients with 51 colorectal polyps were included (Figure 2). Patient characteristics are 
provided in Table 1. Mean polyp size was 2.8 mm (SD 1.0). Histopathology showed 32 tubular adenomas (62.7%), 1 
tubulovillous adenoma (2.0%), 6 SSLs (11.8%), and 12 hyperplastic polyps (23.5%) (Table 2).

Feasibility
Real-time use of AI4CRP was deemed feasible in clinical practice. By means of plug-and-play AI4CRP was easily 
connected to the endoscopy processor. No noticeable clinically relevant latency was observed in receiving the video 
output from the processor and the software worked flawless without interruptions.

AI4CRP
AI4CRP was able to characterize all 51 colorectal polyps. Eight images were excluded because the images were out of 
focus and four because of motion blur. For these colorectal polyps, a second image was taken by the endoscopist. AI4CRP 
showed a sensitivity of 82.1% (95%CI 0.66-0.92) and a diagnostic accuracy of 80.4% (95%CI 0.66-0.90) in BLI, which was 
significantly higher compared to HDWL (sensitivity 59.0%, P = 0.022 and diagnostic accuracy 66.7%, P = 0.007) (Table 3, 
Supplementary Figure 1). NPV was also highest in BLI (56.3%, 95%CI 0.31-0.79), but not significantly different from other 
image modalities. Self-critical AI4CRP excluded 14 low confidence characterizations [27.5% (14/51), tubular adenomas n 
= 7, SSLs n = 3, hyperplastic polyps n = 4]. Self-critical AI4CRP showed higher diagnostic performances on all metrics 
compared to AI4CRP (sensitivity 89.7% and diagnostic accuracy 89.2%) (Table 4).

CAD EYE
CAD EYE was able to provide a characterization for all but two colorectal polyps (n = 49, 96.1%), which were diagnosed 
inconclusively. CAD EYE had a sensitivity of 74.2% (95%CI 0.55-0.87), a specificity of 100.0% (95%CI 0.78-1.00), a NPV of 
69.2% (95%CI 0.48-0.85), and a diagnostic accuracy of 83.7% (95%CI 0.70-0.92) (Table 4).

Expert endoscopist
The endoscopist (endoscopist alone) optically diagnosed 47 (92.2%, 47/51) colorectal polyps with high confidence. Before 
AI (endoscopist alone), sensitivity was 97.4% (95%CI 0.85-1.00), specificity 77.8% (95%CI 0.40-0.96), NPV 87.5% (95%CI 
0.47-0.99), and diagnostic accuracy 93.6% (95%CI 0.81-0.98) (Table 4). Although this study was not powered to detect a 
difference between the endoscopist alone and the AI-assisted endoscopist, after reviewing characterizations of both 
CADx-systems specificity, PPV, NPV, and diagnostic accuracy increased non-significantly for the AI-assisted endoscopist 
(Table 4, Supplementary Figure 2). The number of optical diagnoses made with high confidence also increased 
[endoscopist alone 92.2% (47/51) vs AI-assisted endoscopists 96.1% (49/51), P = 0.500] (Supplementary Table 2).

Diagnostic performances of the AI-assisted endoscopist were higher compared to both CADx-systems, except for 
specificity for which CAD EYE performed best. Comparing diagnostic performances of AI4CRP with the endoscopist 
alone showed a significantly higher sensitivity (P = 0.031) and a non-significantly higher specificity and diagnostic 
accuracy for the endoscopist (P = 1.000 and P = 0.180, respectively) (Supplementary Figure 2). The AI-assisted 
endoscopist also had a significantly higher sensitivity (P = 0.031) and a non-significantly higher specificity and diagnostic 
accuracy (P = 0.500 and P = 0.289, respectively) than AI4CRP. Self-critical AI4CRP did not show any significant difference 
with the endoscopist alone and the AI-assisted endoscopist. Compared with CAD EYE, the endoscopist alone had a 
significantly higher diagnostic accuracy (P = 0.004) and sensitivity (P = 0.016), while specificity was non-significantly 
lower (P = 0.500) (Supplementary Figure 2). The same accounted for the comparison between CAD EYE and the AI-
assisted endoscopist. Performing cluster bootstrapping to correct for multiple colorectal polyps per patient did not 
change the conclusions (Supplementary Table 3). Analysis according to colorectal polyp location are presented in 
Supplementary Table 4.

DISCUSSION
AI4CRP use for the optical diagnosis of diminutive colorectal polyps was feasible and showed promising results. The 
novelty of our AI4CRP lies in providing objective confidence values. Self-critical AI4CRP achieved considerably higher 
diagnostic performances compared to AI4CRP. Reviewing characterizations by AI4CRP and CAD EYE did non-
significantly increase the performance of the AI-assisted endoscopist.

Real-time use of AI4CRP was feasible and did not obstruct clinical workflow. No clinically relevant time delays in 
obtaining CADx characterizations were observed. This study compared two CADx-systems head-to-head, namely 
AI4CRP and CAD EYE. By comparing a commercially available CADx with an in-house developed CADx, comparison 
between the systems and a self-critical system was possible. Diagnostic performances of both CADx-systems were non-
significantly inferior compared to the performance of the expert endoscopist, with the exception of specificity, were CAD 

https://f6publishing.blob.core.windows.net/7e549c34-cf2f-491a-9c31-f2567a6abed7/90574-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/7e549c34-cf2f-491a-9c31-f2567a6abed7/90574-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/7e549c34-cf2f-491a-9c31-f2567a6abed7/90574-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/7e549c34-cf2f-491a-9c31-f2567a6abed7/90574-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/7e549c34-cf2f-491a-9c31-f2567a6abed7/90574-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/7e549c34-cf2f-491a-9c31-f2567a6abed7/90574-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/7e549c34-cf2f-491a-9c31-f2567a6abed7/90574-supplementary-material.pdf
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Table 1 Baseline characteristics of patients, n (%)

Patients, n = 30

Gender, female 13 (43.3)

Age in years, mean (SD) [range] 65.8 (8.4) [50-78]

Indication colonoscopy

Bowel cancer screening program 15 (50.0)

Surveillance 10 (33.3)

Symptoms 5 (16.7)

Family history positive for CRC 5 (16.7)

BBPS, mean (SD) 6.6 (1.4)

Number of colorectal polyps per patient1

1 colorectal polyp 15 (50.0)

2 colorectal polyps 9 (30.0)

3 colorectal polyps 6 (20.0)

1A maximum of three colorectal polyps were included per patient.
BBPS: Boston bowel preparation scale; CRC: colorectal cancer.

Table 2 Baseline characteristics for colorectal polyps, n (%)

Colorectal polyps, n = 51
Location

Cecum 7 (13.7)

Ascending colon 8 (15.7)

Transverse colon 15 (29.4)

Descending colon 5 (9.8)

Sigmoid 10 (19.6)

Rectum 6 (11.8)

Size, mean (SD) [range] 2.8 (1.0) [2-5]

Morphology

Sessile (Paris Is) 45 (88.2)

Flat-elevated (Paris IIa) 6 (11.8)

Histopathology

Tubular adenoma, LGD 32 (62.7)

Tubulovillous adenoma, LGD 1 (2.0)

Sessile serrated lesion, no dysplasia 6 (11.8)

Hyperplastic polyp, no dysplasia 12 (23.5)

Resection technique – cold snare 51 (100.0)

LGD: Low grade dysplasia.

EYE demonstrated the best performance. This difference in specificity between (self-critical) AI4CRP and CAD EYE, can 
be explained by the differences in characterizing SSLs. Performances of both CADx-systems should be improved for 
utility in clinical practice.

Objective assessment of the confidence level as performed by self-critical AI4CRP is a novelty. Diagnostic performances 
were considerably higher for self-critical AI4CRP compared to AI4CRP. CAD EYE does not provide a confidence value 
while inconclusive diagnoses occurred (3.9%). However, these inconclusive diagnoses were marked by expert consensus 
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Table 3 Diagnostic performances of artificial intelligence for ColoRectal polyps in different image enhancement modes

AI4CRP (n = 51)

BLI, % (95%CI) HDWL, % (95%CI) LCI, % (95%CI) Multimodal imaging, % (95%CI)

Sensitivity 82.1 (0.66-0.92) 59.0 (0.42-0.74) 76.9 (0.60-0.88) 71.8 (0.55-0.84)

Specificity 75.0 (0.43-0.93) 91.7 (0.60-1.00) 83.3 (0.51-0.97) 91.7 (0.60-1.00)

PPV 91.4 (0.76-0.98) 95.8 (0.77-1.00) 93.8 (0.78-0.99) 96.6 (0.80-1.00)

NPV 56.3 (0.31-0.79) 40.7 (0.23-0.61) 52.6 (0.29-0.75) 50.0 (0.29-0.71)

Diagnostic accuracy 80.4 (0.66-0.90) 66.7 (0.52-0.79) 78.4 (0.64-0.88) 76.5 (0.62-0.87)

AI4CRP: Artificial intelligence for ColoRectal polyps; BLI: Blue light imaging; CI: Confidence interval; HDWL: High definition white light; LCI: Linked 
color imaging; NPV: Negative predictive value; PPV: Positive predictive value.

Table 4 Diagnostic performance of artificial intelligence for ColoRectal polyps, self-critical artificial intelligence for ColoRectal polyps, 
CAD EYE, and the endoscopist

AI4CRP1, % 
(95%CI), n = 51

Self-critical AI4CRP1, % 
(95%CI), n = 37

CAD EYE, % 
(95%CI), n = 49

Endoscopist alone2, % 
(95%CI), n = 47

AI-assisted endoscopist2,3, 
% (95%CI), n = 49

Sensitivity 82.1 (0.66-0.92) 89.7 (0.72-0.97) 74.2 (0.55-0.87) 97.4 (0.85-1.00) 97.4 (0.85-1.00)

Specificity 75.0 (0.43-0.93) 87.5 (0.47-0.99) 100.0 (0.78-1.00) 77.8 (0.40-0.96) 90.9 (0.57-1.00)

PPV 91.4 (0.76-0.98) 96.3 (0.79-1.00) 100.0 (0.82-1.00) 94.9 (0.81-0.99) 97.4 (0.85-1.00)

NPV 56.3 (0.31-0.79) 70.0 (0.35-0.92) 69.2 (0.48-0.85) 87.5 (0.47-0.99) 90.9 (0.57-1.00)

Diagnostic 
accuracy

80.4 (0.66-0.90) 89.2 (0.74-0.96) 83.7 (0.70-0.92) 93.6 (0.81-0.98) 95.9 (0.85-0.99)

1AI4CRP and self-critical AI4CRP both in BLI mode.
2Optical diagnosis by the endoscopist only taking into account diagnoses made with high confidence.
3Optical diagnosis by the endoscopist after reviewing predictions of both AI4CRP and CAD EYE.
AI4CRP: Artificial intelligence for ColoRectal polyps; AI: Artificial intelligence; BLI: Blue light imaging; CI: Confidence interval; NPV: Negative predictive 
value; PPV: Positive predictive value.

and are not objective as for self-critical AI4CRP. Rondonotti et al[19] reported higher numbers of CAD EYE characteriz-
ations being unstable over time (7.9%) or not possible (1.3%). Self-critical AI4CRP made low confidence characterizations 
in 27.5%. Providing an objective confidence level can be seen as a form of explainable AI which may increase 
endoscopists' trust in CADx and therefore has potential applicability in real-time endoscopy practice. At the same time, 
one can argue that CADx should be of added value particularly in colorectal polyps deemed difficult by endoscopists. 
Interestingly, the low confidence diagnoses made by the endoscopist were high confidence diagnoses by AI4CRP in 
75.0% of cases. Furthermore, self-critical AI4CRP was performed post-hoc. In real-time colonoscopy, endoscopists could 
do another attempt in gaining a high confidence characterization by repositioning the colonoscope and thereby optimize 
the endoscopic imaging possibly lowering the number of low confidence characterizations. Future studies should 
investigate if defining low confidence characterizations as diagnosis with a confidence value of 40% around the cut-off 
value is sufficient.

CADx utility in clinical practice will not be in a stand-alone fashion, but in aiding endoscopists. A strength of this study 
is the AI-assisted performances of the endoscopist, in contrast to previous studies in which endoscopist alone or AI-
assisted non-expert endoscopist vs CADx were investigated[11,20]. The non-significant increase between the diagnostic 
performances of the endoscopist alone and the AI-assisted endoscopist is comparable with results of Hassan et al[21]. 
Furthermore, Jin et al[22] only showed an increase for non-experts and not for experts. Here, the number of optical 
diagnoses made with high confidence did increase for AI-assisted optical diagnosis.

Most CADx-systems have been trained to operate in a single image enhancement modality, i.e. narrow band imaging 
(NBI) or BLI. Zachariah et al[23] and Biffi et al[24] trained their systems using both HDWL and NBI or BLI, respectively. 
They compared the diagnostic performances of their CADx in HDWL with the performances in the image enhancement 
modality and found no significant differences. This favors the use of HDWL since the interpretation of image 
enhancement modalities requires training[25], limits generalizability, and hampers the utility of AI-assisted CADx by 
undertrained endoscopists. A strength of our study is that AI4CRP was trained with multiple image enhancement 
modalities, namely HDWL, BLI, LCI, and i-scan 1, 2, and 3. In contrast to Zachariah et al[23] and Biffi et al[24], AI4CRP’s 
diagnostic performances were significantly higher in BLI compared to HDWL. Future research should, therefore, 
investigate the effect of different image enhancement modalities (especially BLI) on the output of CADx compared to 
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Figure 2 Study flow chart of patient enrolment and colorectal polyp inclusion. BBPS: Boston bowel preparation scale.

HDWL.
Self-critical AI4CRP and CAD EYE reached a NPV of ≥ 90% for rectosigmoid polyps according to the quality standard 

for the diagnose-and-leave strategy by the ASGE[3]. Both CADx-systems also met the quality standard of the ESGE for 
the diagnose-and-leave strategy and self-critical AI4CRP also the ESGE quality standard for the resect-and-discard 
strategy[4]. Previously, CAD EYE and GI-Genius (Medtronic, United States) also met the PIVI quality standards[26,27]. 
Although the risk of cancer in diminutive colorectal polyps is very low, misdiagnosis does pose risks when leaving 
adenomatous polyps in situ[28,29]. In an international survey, two-thirds of endoscopists considered implementation of 
resect-and-discard not feasible because of the fear of making incorrect optical diagnoses[30]. Studies should investigate if 
this fear of incorrect optical diagnosis may be leveraged with CADx.

No consensus exists on the characterization of SSLs between different CADx-systems. Where CAD EYE, a CADx by 
Sánchez-Montes et al[31], and Zachariah et al[24] characterizes SSLs as hyperplastic, other systems excluded SSLs[9,11,32-
34]. Rondonotti et al[19] marginalized the clinical relevance of SSLs because of their low prevalence among diminutive 
rectosigmoid polyps. Albeit this low prevalence, given that SSLs bear a malignant potential[35,36], differentiating them 
from hyperplastic polyps is advocated and promotes clinical utility of CADx. AI4CRP, characterizing SSLs as 
premalignant, pursued to do just that because of the high need of improving SSL diagnosis[31]. Expanding CADx charac-
terizations to multiple-class characterizations, allowing for the separate diagnosis of SSLs, more in line with clinical 
practice, would facilitate CADx implementation into clinical practice even further.

The main strength of this study is the head-to-head comparison of two CADx-systems characterizing the same 
colorectal polyps in sequence. Certain limitations of our study should also be acknowledged. Due to the feasibility design, 
no formal sample size calculation was performed and the number of included colorectal polyps was limited. Both CADx-
systems were compared with only one expert endoscopist and testing was performed single center, limiting generaliz-
ability. AI4CRP is an image-based CADx, whereas CAD EYE is video-based. Both systems characterized the same 
colorectal polyps in a sequential approach rather than a parallel approach. The sequential approach led to both CADx-
systems analyzing slightly different colorectal polyp frames potentially introducing bias. Bias could also have occurred 
since AI4CRP was trained with data from the same hospital in which it was tested in this study, possibly favoring 
AI4CRP performances, while this is not true for CAD EYE. An important limitation was the semi-automated use of 
AI4CRP. Images had to be manually captured by a research physician, limiting functional use of AI4CRP in clinical 
practice. A fully automated approach is currently under development. Furthermore, images out of focus or motion 
blurred imaged were excluded and a new image had to be taken. Although inconvenient, this only hampered the work 
flow minimally, but could have introduced bias. An image quality indicator alongside the CADx characterization, could 
be helpful in quantifying and reducing this bias.
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CONCLUSION
In conclusion, real-time use of AI4CRP was feasible and achieved promising results. Self-critical AI4CRP, excluding low 
confidence characterizations, showed increased diagnostic performances compared to AI4CRP. The objective assessment 
of the confidence level is a novelty with great potential applicability in real-time endoscopy practice. Diagnostic 
performances of the AI-assisted endoscopist, after reviewing both CADx characterizations, were higher compared to both 
CADx-systems. Diagnostic performances of the AI-assisted endoscopist were non-significantly superior to the 
endoscopists alone. In the future, larger sized studies should expand on our findings.

ARTICLE HIGHLIGHTS
Research background
The importance of optical diagnosis, the endoscopic characterization of colorectal polyps, increases. However, correct 
endoscopic characterization and differentiation between benign and premalignant polyps remains difficult even for 
experienced endoscopists.

Research motivation
The ability of modern-day computer-aided diagnosis systems (CADx) to automatically recognize informative patterns in 
datasets can potentially improve accurate characterization of colorectal polyps and facilitate the implementation of 
treatment strategies based on optical diagnosis by meeting set quality standards.

Research objectives
Aim of this study was to evaluate the feasibility of the real-time use of the in-house developed CADx-system artificial 
intelligence for ColoRectal polyps (AI4CRP) for the optical diagnosis of diminutive (≤ 5 mm) colorectal polyps. Secondary 
aims were a head-to-head comparison of AI4CRP with CAD EYETM (Fujifilm, Tokyo, Japan), evaluating the diagnostic 
performances of self-critical AI4CRP (providing only high confidence diagnoses), the diagnostic performances of an 
expert endoscopist (endoscopist alone), and the influence of CADx on the optical diagnosis of an expert endoscopist 
[artificial intelligence (AI)-assisted endoscopist].

Research methods
The two CADx-systems (AI4CRP and CAD EYE) were compared head-to-head. Colorectal polyps were characterized as 
benign or premalignant and histopathology was used as gold standard. AI4CRP provided characterizations accompanied 
by confidence values, enabling self-critical AI4CRP in which low confidence characterizations were excluded. The AI-
assisted endoscopists, optically diagnosed colorectal polyps after reviewing both CADx characterizations.

Research results
Real-time use of AI4CRP was deemed feasible in clinical practice. AI4CRP showed a sensitivity of 82.1%, a specificity of 
75.0%, a negative predictive value of 56.3%, and a diagnostic accuracy of 80.4%. Self-critical AI4CRP excluded 14 low 
confidence characterizations, resulted in considerably higher diagnostic performances compared to AI4CRP. CAD EYE 
had a sensitivity of 74.2%, a specificity of 100.0%, a negative predictive value of 69.2%, and a diagnostic accuracy of 
83.7%. Diagnostic performances of the endoscopist alone (before AI) increased non-significantly after reviewing the 
CADx characterizations of both AI4CRP and CAD EYE (AI-assisted endoscopist). Diagnostic performances of the AI-
assisted endoscopist were higher compared to both CADx-systems, except for specificity for which CAD EYE performed 
best.

Research conclusions
Real-time use of AI4CRP was feasible. Objective confidence values provided by a CADx is novel and self-critical AI4CRP 
showed higher diagnostic performances compared to AI4CRP. Reviewing characterizations by AI4CRP and CAD EYE 
did not increase the performance of the AI-assisted endoscopist.

Research perspectives
Future studies should expand on our findings and further investigate the added value of self-critical CADx-systems.
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