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Abstract
The application of artificial intelligence (AI), especially machine learning or deep 
learning (DL), is advancing at a rapid pace. The need for increased accuracy at 
endoscopic visualisation of the gastrointestinal (GI) tract is also growing. 
Convolutional neural networks (CNNs) are one such model of DL, which have 
been used for endoscopic image analysis, whereby computer-aided detection and 
diagnosis of GI pathology can be carried out with increased scrupulousness. In 
this article, we briefly focus on the framework of the utilisation of CNNs in GI 
endoscopy along with a short review of a few published AI-based articles in the 
last 4 years.

Key words: Convolutional neural network; Gastrointestinal endoscopy; Artificial 
intelligence; Deep learning; Machine learning
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Core tip: The convolutional neural network (CNN), a deep learning model, has gained 
immense success in endoscopy image analysis, with its application to diagnose and detect 
gastrointestinal (GI) pathology at endoscopy. This article shares a basic framework of the 
utilisation of CNNs in GI endoscopy, along with a concise review of a few published AI-
based endoscopy articles in the last 4 years.

https://www.f6publishing.com
https://dx.doi.org/10.37126/aige.v1.i1.1
http://orcid.org/0000-0003-3880-1172
http://orcid.org/0000-0003-3880-1172
http://orcid.org/0000-0003-2920-9345
http://orcid.org/0000-0003-2920-9345
http://orcid.org/0000-0002-4560-708X
http://orcid.org/0000-0002-4560-708X
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
mailto:keyhole1234@gmail.com


Viswanath YK et al. Convolution neural network in identifying GI pathology at endoscopy

AIGE https://www.wjgnet.com 2 July 28, 2020 Volume 1 Issue 1

manuscript

Received: June 1, 2020 
Peer-review started: June 1, 2020 
First decision: June 18, 2020 
Revised: July 14, 2020 
Accepted: July 17, 2020 
Article in press: July 17, 2020 
Published online: July 28, 2020

P-Reviewer: Hammoud CM, 
Inamdar S, Pang S, Kim GH 
S-Editor: Wang JL 
L-Editor: A 
E-Editor: Li JH

Citation: Viswanath YK, Vaze S, Bird R. Application of convolutional neural networks for 
computer-aided detection and diagnosis in gastrointestinal pathology: A simplified exposition 
for an endoscopist. Artif Intell Gastrointest Endosc 2020; 1(1): 1-5
URL: https://www.wjgnet.com/2689-7164/full/v1/i1/1.htm
DOI: https://dx.doi.org/10.37126/aige.v1.i1.1

INTRODUCTION
The role of artificial intelligence (AI), specifically machine learning (ML) or deep 
learning (DL), in medicine is evolving and studies have surfaced beholding its 
advantages in performing gastrointestinal (GI) endoscopy[1,2]. The pace of AI utilisation 
in medicine will further increase, especially in the coming years as a “new normal” is 
established post-coronavirus disease 2019 (COVID-19). Already, there is evidence of 
the advantages of AI utilisation in the diagnosis of various pathologies such as colonic 
polyps, esophagitis and GI cancer. It is also a fact that the translation of gained 
experience and skills over many years to a novice trainee is not easy and bound with 
initial problems, and raises errors whether in diagnosis or decision making. We believe 
that ML could play a resolute role in passing on this knowledge and facilitate better 
patient management.

Though computer programmes mimicking human cognitive functions have existed 
since the 1950s, it is only in the 1980s onwards that ML, followed by DL, applications 
have been studied in medical fields[3]. The future is looking likely to be increasingly 
automated and therefore driving AI research safely and fairly, with increased accuracy 
and interpretability, would reduce the dependency on skilled professionals, while 
concurrently aiding patient management at an early stage. There is increasing 
evidence that these results in a reduction in time-to-treatment and facilitate early 
patient management. However, AI in gastroenterology comes with some assurance as 
well as drawbacks.

Recent advances in AI as applied to medicine have largely come through ML, in 
which mathematical computer algorithms learn to interpret complex patterns in data. 
Specifically, DL, a subclass of ML originally inspired by the brain, uses layers of 
artificial neurons to form a “neural network” which maps inputs to an output. 
Typically, these networks are “trained” on large amounts of manually labelled data, in 
which example input-output pairs are provided to the model to enable it to “learn”. Of 
most interest to us in this article are the DL models which have achieved great success 
in image analysis tasks, namely convolutional neural networks (CNNs)[1-3]. We briefly 
focus on a high-level outline of the utilisation of CNNs in a simplified form to enable 
an endoscopist to cognize, along with a concise review of a few published GI 
endoscopy articles on AI in the last 4 years.

CONVOLUTIONAL NEURAL NETWORKS
CNN's are a type of DL model, commonly used to analyse endoscopy images.

Figure 1 illustrates the CNN training method where ultrasound scan images have 
been used, highlighting the salient steps of the DL framework. At a high level, the 
CNN is a parametric model which maps an input - in this case, an image - to an 
output. The output can take a variety of forms: from a classification (a label of the 
image containing or not containing a tumour); to a detection (a bounding box around 
the tumour); to a segmentation (specification of exactly which pixels in the image 
contain the tumour)[4]. The model is “trained” by giving the model multiple (usually, 
thousands) of examples of input-output pairs.

This training (Figure 2) involves, given an input image, computing the error 
between the model’s prediction and the manual label, with the parameters of the 
model then adjusted to reduce this error. This process is repeated numerous times 
until the performance of the model is acceptable, with its final accuracy computed on a 
held-out “test set“ of manually labelled images which it has not seen during training. 
Figure 1 illustrates the CNN framework, with the process rephrased in words in 
Figure 3. Figure 2 expands upon the training process specifically, in which the CNN 
parameters are iteratively updated so that its predictions are in closer alignment with 
the manual expert annotations. We highlight that the process involves partitioning the 
dataset into “training“ and “testing“ data, with the final model evaluation done on the 
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Figure 1  Illustrated convolutional neural network framework. CNN: Convolutional neural network.

Figure 2  Convolutional neural network training; further defined. CNN: Convolutional neural network.

Figure 3  The convolutional neural network framework simplified. CNN: Convolutional neural network.

“held-out“ test set - on images which the CNN has not seen during training. In this 
way, the model’s performance on this test set can be used to approximate how well the 
model generalises to images, not in the dataset.

The training has been well described in the recent article[2], where authors have 
highlighted splitting the computer learning model into training followed by validation 
set and then the test set. The initial game was to train the model to predict labelled 
image pathology followed by validation. This will allow the model to detect unseen 
pathology and lastly evaluate the outcomes of the trained model with optimal 
hyperparameters.

It can be seen, here, that by ensuring that the manual labels are generated by expert 
physicians, the model could encode this knowledge and be used to transfer it to 
trainees. The validation of this idea is an interesting avenue of research, in which two 
sets of labels could be collected for the “test-set“, from both experts and non-experts, 
to see if the CNN predictions can better align with the experts’ annotation than those 
of the less experienced physicians.

Data augmentation is one technique that can be used to supplement and amplify a 
small or limited dataset[2,4]. This can be beneficial in increasing data variability, thus 
exposing CNN to more examples to learn from and improve final model accuracy. 
Traditional augmentation methods on image data include image scaling and rotation, 
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as well as manipulation of an images’ brightness, contrast or saturation. Synthesised 
images generated from a class of DL algorithms known as generative adversarial 
networks have also augmented data used to train CNNs, Frid-Adar et al[5].

We also highlight the potential risks of the naive implementation of this technology. 
The model will encode and operate well on patterns seen in the training data but will 
fail (often catastrophically and uninterpretably) when exposed to unseen patterns. As 
such, researchers and clinicians must carefully ascertain whether biases are encoded 
into the curated datasets. These biases may be clinical (e.g., omitted pathologies in the 
data) but also socio-technical (e.g. underrepresentation of sub-groups according to age, 
ethnicity, gender etc.). We direct the reader to further work on this topic[6].

CNN’S IN GI ENDOSCOPY
The CNN training process has been well described in a recent article[2] where the 
authors have highlighted splitting the dataset into training, validation and test sets. 
The initial game was to train the model to predict labelled image pathology followed 
by validation.

The use of CNN’s in the early detection of oesophageal carcinoma has been 
published by Medel et al[7]. Here, the authors concluded improvement in sensitivity to 
0.94 and specificity to 0.88. They defined C0 as a non-cancerous area and C1 as a 
cancerous area, highlighting the two regions and ultimately classified images as 
cancerous or non-cancerous using a patch-based approach. They concluded that future 
studies should include a greater number of images in the training set. Though 
adenoma detection rates at colonoscopy is variable with human interpretation, polyps’ 
localisation and detection rate using a CNN has been shown to improve accuracy to 
96.4%. This, in turn, can affect a reduction in colorectal interval cancers and associated 
cancer mortality[8].

The CNN can be used as an image feature extractor along with a support vector 
machine (SVM) as an aid for polyp classification. Shape, size and surface 
characteristics guide the attending gastrointestinal physician to identify and 
differentiate benign and malignant polyps. The accuracy of detection and diagnosis is 
variable depending on the experience of the endoscopist and the equipment. It has 
been shown that AI-based systems increase the accuracy of diagnosis and detection 
rate of polyps.

A Japanese team published an article on polyp classification in 2017, where they 
used a CNN to extract features from the endoscopic image and an SVM to classify 
colonic polyps. The SVM algorithms are used primarily for classification and 
regression analysis. In this study, the authors noted increased accuracy by using 
multiple CNN-SVM classifiers[9]. A further improvement in the detection and 
classification can be achieved through improved extraction methods such as wavelet 
colour texture feature extraction. This is nicely illustrated in an article by Billlah 
et al[10]. In another study, authors showed an accuracy of 78.4% to differentiate 
adenomatous vs non-adenomatous colonic polyps[11]. The system used linked colour 
imaging and showed a sensitivity of 83% and specificity of 70.1%[9]. Likewise, AI has 
been used to classify inflammatory bowel disease with 90% accuracy[12]. In another 
study authors collected and tagged 6 colorectal segments from 100 patients - they 
inferred the computer-aided detection system has potential for automatic 
identification of persistent histological inflammation in patients with ulcerative 
colitis[13].

CONCLUSION
AI use in medicine is likely to rise fast along with its endoscopy applications, followed 
by a noticeable surge in investment by big industry players. Gastrointestinal 
physicians will witness many breakthroughs in the coming years; however, a lack of 
proper legislation and clinical governance structure needs to be addressed soon. This 
requires evidence-based consensus and acceptable international standards without 
compromising a patient’s safety in the coming years. Likewise, several technical issues 
within AI must be addressed, such as algorithm interpretability, fairness in results, 
and diverse representation in the dataset. However, reduction of errors due to 
endoscopist fatigue, inter-observer variability and learner endoscopist misconception 
are few rewards of AI; all these can no-doubt be leveraged to improve patient 
management. One cannot answer, whether, in the coming years, AI will replace 
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humans in performing the endoscopies themselves! Indisputably, AI is here to stay 
and will play a vital role in the post-COVID-19 “new normal“ era.
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Abstract
Artificial intelligence (AI) allows machines to provide disruptive value in several 
industries and applications. Applications of AI techniques, specifically machine 
learning and more recently deep learning, are arising in gastroenterology. 
Computer-aided diagnosis for upper gastrointestinal endoscopy has growing 
attention for automated and accurate identification of dysplasia in Barrett’s 
esophagus, as well as for the detection of early gastric cancers (GCs), therefore 
preventing esophageal and gastric malignancies. Besides, convoluted neural 
network technology can accurately assess Helicobacter pylori (H. pylori) infection 
during standard endoscopy without the need for biopsies, thus, reducing gastric 
cancer risk. AI can potentially be applied during colonoscopy to automatically 
discover colorectal polyps and differentiate between neoplastic and non-
neoplastic ones, with the possible ability to improve adenoma detection rate, 
which changes broadly among endoscopists performing screening colonoscopies. 
In addition, AI permits to establish the feasibility of curative endoscopic resection 
of large colonic lesions based on the pit pattern characteristics. The aim of this 
review is to analyze current evidence from the literature, supporting recent 
technologies of AI both in upper and lower gastrointestinal diseases, including 
Barrett's esophagus, GC, H. pylori infection, colonic polyps and colon cancer.
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Core tip: Artificial intelligence (AI) allows machines to provide disruptive value in a 
multitude of industries and knowledge domains. Applications of artificial intelligence 
techniques, specifically machine learning and more recently deep learning, are arising in 
gastrointestinal endoscopy. Computer-aided diagnosis has been performed during upper 
gastrointestinal endoscopy for the automated identification of dysplastic lesions in 
Barrett’s esophagus for preventing esophageal cancer, as well as in lower gastrointestinal 
endoscopy for detecting colorectal polyps to prevent colorectal cancer. The aim of this 
review is to investigate current data from the literature, supporting recent technologies of 
AI both in upper and lower gastrointestinal diseases, including Barrett's esophagus, gastric 
cancer, Helicobacter pylori infection, colonic polyps and colon cancer.

Citation: Morreale GC, Sinagra E, Vitello A, Shahini E, Shahini E, Maida M. Emerging 
artificial intelligence applications in gastroenterology: A review of the literature. Artif Intell 
Gastrointest Endosc 2020; 1(1): 6-18
URL: https://www.wjgnet.com/2689-7164/full/v1/i1/6.htm
DOI: https://dx.doi.org/10.37126/aige.v1.i1.6

INTRODUCTION
Artificial intelligence (AI) is based on intelligent agents performing functions 
associated with human mind, such as learning and problem solving[1,2].

In endoscopy, AI has begun to assist the improvement of colonic polyp detection 
and adenoma detection rate (ADR), to discriminate between benign and precancerous 
lesions based on the interpretation of their superficial patterns.

Machine learning (ML) and deep learning (DL) can be considered subfields of AI. 
ML is a form of AI that can support decision process allowing the improvement, 
without any Programmation, of the algorithms applied, including data testing and the 
implementation of descriptive and predictive models (Figure 1).

ML is distinguished into supervised and unsupervised methods. An instance of 
supervised ML, artificial neural networks (ANN), mirror the scheme function of the 
brain. Each neuron is a computing unit and all neurons are connected to produce a 
network. ML and convoluted neural network (CNN) algorithms have been created to 
train software to discriminate normal from abnormal regions in the lumen of the gut. 
For polyp detection, ML uses a fixed number of characteristics, such as polyp size, 
shape, and mucosal patterns.

A variety of deep learning neural network architectures are included in DL-based 
methods that automatically extract relevant imaging features without the human 
perceptual biases[3].

AI, BARRETT’S ESOPHAGUS AND ESOPHAGEAL CANCER
Barrett's esophagus (BE) is characterized by an unusual (metaplastic) transformation of 
the mucosal cells, lining the lower part of the esophagus, from normal stratified 
squamous epithelium to columnar one and associated with interspersed goblet cells[4]. 
This condition represents a risk factor for esophageal adenocarcinoma (EAC) whose 
most serious prognosis is related to the late diagnosis[4]. Moreover, 93% of patients can 
achieve a complete disease remission after a regular surveillance during 10 years and 
treatment[5-7]. Promising techniques for the management of BE with the potential of 
reducing the cancer risk by an accurate diagnosis of dysplasia, are being developed.

However, despite some limitations in interventional therapies, such as endoscopic 
resection (ER) and ablation techniques (radiofrequency ablation or cryoablation) they 
can help preventing the evolution into malignancy[8-11].

The recognition of neoplastic changes in BE patients is crucial and innovations in 
endoscopic imaging have worked for early detection of minimal epithelial neoplastic 
lesions based on distinct mucosal features.

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://www.wjgnet.com/2689-7164/full/v1/i1/6.htm
https://dx.doi.org/10.37126/aige.v1.i1.6
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Figure 1  Schematic model of the deep learning algorithm in endoscopy.

In a first study, Mendel et al[12], introduced a useful method for generating an 
automatic classification based on endoscopic white light images through the learning 
of specific features helped by a pretrained deep residual network, instead of 
handcrafted texture features. The study used a data set of 100 high-resolution 
endoscopic images from 39 patients supplied by the Endoscopic Vision Challenge 
Medical Image Computing and Computer-Assisted Intervention (MICCAI). While 22 
BE patients had cancerous lesions, 17 had non-cancerous BE.

The endoscopic images were independently evaluated by five experts and then 
compared with probability maps provided by AI, showing a strong correspondence. 
Since the significant of manual segmentations vary significantly, their intersection was 
considered as a cancerous region (C1-region) within each C1-image.

Ebigbo et al[13], employed two data sets to train and validate a computer-aided 
diagnosis (CAD) system relying on a deep CNN with a residual net (ResNet) 
architecture. Images consisted of 148 high-definition white light endoscopy (WLE) and 
narrowband imaging (NBI) images regarding 33 EAC and 41 areas of non-neoplastic 
BE in the Augsburg data set, while the MICCAI data set comprised 100 high-definition 
WLE images, 17 early EAC and 22 areas of non-neoplastic BE. CAD-DL system 
diagnosed EAC with a sensitivity of 97% and a specificity of 88% for WLE images, 
whereas a sensitivity and specificity of 94% and 80% for NBI images, respectively. 
CAD-DL reached a sensitivity and specificity of 92% and 100%, respectively, for the 
MICCAI images.

In these beginning studies, the authors developed a CAD model and displayed 
promising performance scores in the classification/segmentation areas during BE 
assessment.

However, these results were achieved using high-quality endoscopic imaging that 
cannot always be obtained during daily clinical practice. This system was previously 
developed to further increase the speed of image analysis for classification and the 
resolution of the dense prediction, displaying the color-coded spatial distribution of 
cancer probabilities.

Still based on deep CNNs and a ResNet architecture with DeepLab V.3+, a state-of-
the-art encoder-decoder network was readjusted. To transfer the endoscopic 
Livestream to our AI system, a capture card (Avermedia, Taiwan) for image aquisition 
was incorporated into the endoscopic monitor[14] and the AI system was trained by 
using 129 endoscopic images. All AI-image outcomes were confirmed by pathological 
examination of resection specimens (EAC), as well as forceps biopsies (i.e., normal BE). 
The AI system showed high performance scores in the categorization task with a 
sensitivity and specificity of 83.7% and 100%, respectively.

CNN was also used by Horie et al[15], that retrospectively collected 8428 training 
images from esophageal cancer of 384 patients through CNNs. CNN took 27 seconds 
to analyze 1118 test images and correctly detected esophageal cancer cases with a 
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sensitivity of 98%. CNN detected every 7 small cancer lesions lower than 10 mm in 
size. This system facilitated early and rapid malignancy detection leading to a better 
prognosis of these patients.

AI can assist endoscopists to make targeted biopsies with high-accuracy, saving 
work/time-intensive random sampling, with a low sensitivity (64%) for the detection 
of dysplasia. An international, randomized, crossover trial[16], compared high-
definition white-light endoscopy (HD-WLE) and NBI for detecting IM and malignancy 
in 123 patients with BE (mean circumferential and maximal sizes, 1.8 and 3.6 cm, 
respectively).

Both HD-WLE and NBI detected 104/113 (92%) patients with IM, but NBI required 
fewer biopsies per-patient and exhibited a significantly higher dysplasia detection rate 
(30% vs 21%). During endoscopic examination with NBI, all areas of HGD and cancer 
presented an irregular mucosal or vascular pattern. Regular NBI surface patterns did 
not harbor HGD or cancer, suggesting that biopsies could be potentially avoided in the 
latter cases. Besides, in a multicenter, randomized crossover study[17], using endoscopic 
trimodal imaging (ETMI) for detection of early neoplasia in BE, ETMI showed no 
improvement in overall dysplasia detection than standard video endoscopy. The 
diagnosis of dysplasia was still made in a significant number of patients by random 
biopsies, and patients with a confirmed diagnosis of LGIN had a significant risk of 
HGIN/carcinoma.

Van der Sommen et al[18] used a computer algorithm to detect early neoplastic lesions 
in BE and employed specific texture, color filters, and ML-based on 100 images from 
44 patients with BE. This system identified early neoplastic lesions on a patient-level 
with a sensitivity and specificity of 86% and 87%, respectively. The author assumed 
that the automated computer algorithm implemented for this study was able to 
identify early neoplastic lesions with reasonable accuracy.

De Groof et al[19] developed a CAD system using endoscopic images of Barrett's 
neoplasm based on the endoscopic images of 40 Barrett's neoplastic lesions and 20 
non-dysplastic BE, reaching a sensitivity and specificity for the detection of such 
lesions of 95% and 85%, respectively.

AI technology was applied for volumetric laser endomicroscopy (VLE) in 2017. VLE 
with laser marking is a broad field of advanced imaging technology that was 
commercially available in the United States in 2013 to facilitate dysplasia detection.

VLE can enhance the detection of neoplastic lesions in BE by performing a 
circumferential scan of the esophageal wall layers. Sixteen patients with BE were 
included in the study and a total of 222 laser markers (LMs) were placed, 97% of them 
were visible on WLE. All LMs were evident on VLE directly after marking, and 86% 
were confirmed during the post hoc analysis. LM targeting held an accuracy of 85% of 
cautery marks. This original study applied to humans showed that VLE-guided LM 
can be a possible and secure procedure[20].

In another study[21] the same authors used a database of VLE images from BE 
endoscopic resection specimens with/without neoplasia, precisely correlated them 
with histology to develop a VLE prediction score. The receiving operating 
characteristic curve of this prediction score showed an area under the curve (AUC) of 
0.81. A value ≥ 8 correlated with an 83% sensitivity and 71% specificity.

Optical coherence tomography (OCT) is a technique that produces high-resolution 
esophageal images through endoscopy. OCT can recognize specialized IM from 
epithelial squamous cells, but image criteria for distinguishing intramucosal carcinoma 
(IMC) and HGD from LGD, indeterminate-grade dysplasia (IGD), and specialized IM 
without dysplasia have not been approved yet.

Evans et al[22], examined 177 OCT images from patients with a histological diagnosis 
of BE. The histopathology analysis was IMC/HGD in 49 cases, LGD in 15, IGD in 8, 
specialized IM in 100, whereas gastric mucosa in 5 patients. A meaningful correlation 
was found between the MC/HGD histopathologic result and scores for each image 
feature, surface maturation, and gland architecture. When a dysplasia index 
determination of ≥ 2 was used, an 83% sensitivity and 75% specificity were determined 
for diagnosing IMC/HGD.

In a tertiary-care center, 27 BE patients underwent 50 EMRs imaged by VLE and 
pCLE, and were classified into neoplastic/non-neoplastic on the basis of histology 
result. The sensitivity and specificity of pCLE for detecting BE dysplasia, was 76% and 
79%, respectively. The OCT-SI showed a sensitivity of 70% and a specificity of 60%. 
Moreover, the novel VLE-DA showed a sensitivity of 86%, specificity of 88% and a 
diagnostic accuracy of 87%[23].

Esophageal squamous cell carcinoma (SCC) is the sixth malignant cause of mortality 
worldwide and a greater percentage affect developing countries due to a delayed 
diagnosis[24]. Lugol's chromoendoscopy currently represents the gold standard 
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technique for identifying SCC during gastroscopy, despite a low specificity (about 
70%) but a higher sensitivity (over 90%).

Among non-invasive tests, NBI is another approach that has a low diagnostic 
specificity as displayed in a randomized controlled trial (RCT), related to the 
physician’s experience[25].

High-resolution microendoscopy (HRME) has shown the potential to enhance 
esophageal SCC detection during screening. An automated, real-time analysis 
algorithm has been developed and assessed using training tests, and validation images 
derived from a previous in-vivo study including 177 subjects involved for 
screening/surveillance programs. In a post hoc analysis, the algorithm recognized 
malignant tumors with a 95% sensitivity and 91% specificity, in the validation dataset, 
while 84% and 95% in the original study. Therefore, this technology could be applied 
in settings with less expertise operators in interpreting HRME images[26].

Kodashima et al[27] realized a computer system architecture to simplify the 
differentiation among neoplastic features and healthy tissues as a result of analyzing 
images in endocytoscopy of esophageal tissue from histopathological analysis, by 
analyzing the nuclear area of the collected images from 10 patients, to achieve an 
accurate and automatic diagnosis[27].

Shin et al[28] developed a quantitative image analysis algorithm that was able to 
recognize squamous dysplasia from non-neoplastic mucosa. They completed an image 
interpretation of 177 subjects undergoing upper endoscopy for SCC screening or 
surveillance, by using HRME. Quantitative data from the high-resolution images were 
used to create an algorithm to identify high-grade squamous dysplastic lesions or 
invasive SCC on histopathology.

The highest performance was gained using the mean nuclear area as the input for 
classification, resulting in a sensitivity and specificity of 93% and 92% in the training 
set, 87% and 97% in the test set, 84% and 95% in an independent validation set, 
respectively. ER is a technique employed for treating tumors with submucosal 
invasion depth 1 (SM1), whereas surgical removal with/without chemo-radiotherapy 
is usually used for SCC cases with a tumor infiltration deeper than SM2.

Accordingly, the preoperative endoscopic estimation of the ESCC invasion depth is 
critical. Recently, a rapid improvement in the application of AI with DL in medicine 
has been realized. A study by Tokai et al[29], evaluated the efficacy of AI in measuring 
ESCC invasion depth in a set of 1751 ESCC training images. AI recognized 95.5% 
(279/291) of the ESCC in the 10 test images when analyzing the 279 images it correctly 
predicted the invasion depth of the ESCC with an 84.1% sensitivity and an 80.9% 
accuracy in 6 seconds, much more precise for the estimation of ESCC invasion depth 
from endoscopists.

AI AND GASTRIC CANCER
Gastric cancer (GC) ranks third main cause of malignancy mortality worldwide, and 
esophagogastroduodenoscopy (EGD) is considered the best diagnostic tool for 
neoplasms at their early stages. The treatment of gastric tumors depends on the depth 
of the submucosal invasion; indeed, for differentiated intramucosal tumors (M) or 
those that invade the superficial submucosal layer (≤ 500 lm: SM1) ER is provided, 
while those with a deep submucosal invasion (> 500 lm: SM2) should be surgically 
treated for the potential risk of local invasiveness and metastases. Magnifying 
endoscopy combined with NBI or FICE (flexible color enhancement of spectral 
imaging) is clinically useful in discriminating gastric malignant from non-malignant 
areas[30-34]. However, this optical diagnosis strictly depends on the expertise and the 
experience of the operator, which prevents its general use in clinical practice.

Two RCTs examined the performance of endoscopy with/without the support of AI 
algorithms. The first research estimated the performance of a real-time DL system, 
WISENSE, to control the presence of blind spots during EGD. Overall, 324 patients 
randomly performed endoscopy with or without the use of WISENSE that monitored 
blind spots with a 90% average accuracy, and a separate accuracy for each site ranging 
70.2%-100% in the 107 live endoscopic videos.

The average sensitivity and specificity were 87.6% and 95%, ranging between 63.4%-
100% and 75%-100%, respectively. For timing endoscopic procedure, WISENSE 
accurately predicted the start and end times in 93.5% (100/107) and 97.2% (104/107) 
videos, respectively[35].

Miyaki et al[36], developed software allowing a quantitative evaluation of mucosal 
GCs on magnifying gastrointestinal endoscopy images obtained with FICE. They 
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adopted a set of features framework having densely sampled scale-invariant feature 
transform descriptors to magnifying FICE images of 46 intramucosal GCs then 
compared with histologic findings. The CAD system allowed an 86%detection 
accuracy, a sensitivity and specificity of 85% and 87% for a cancer diagnosis, 
respectively.

In the study by Kanesaka et al[37], a total of 127 patients with EGC contributed to 127 
cancerous M-NBI images, while 20 not-EGC patients provided to 60 not-cancerous M-
NBI images. The authors created software that allowed both the identification of GC 
and outlined the edge between malignant and non-malignant regions. This CAD 
algorithm was designed to investigate grey-level co-occurrence matrix characteristics 
of partitioned pixel slices of magnifying NBI images, and a support vector machine 
was used for the ML method. The models showed a 97% sensitivity and 95% 
specificity in distinguishing cancer, while the performance for area concordance 
displayed a sensitivity and specificity, of 81% and 66% respectively.

In 2018, Hirasawa et al[38], elaborated an AI-based diagnostic system to detect GC, 
using a CNN simulating the human brain.

A total of 714 among 2,296 test image sets (31.1%) confirmed GC presence, and 
84.1% had moderate/severe gastric atrophy. The CNN employed 47 seconds to 
analyze the 2,296 test images, diagnosing overall 232 GCs, 161 as non-malignant 
lesions, 71 of 77 as GC lesions with a sensitivity of 92.2%. The majority of gastric 
lesions (98.6%) with a diameter ≥ 6 mm were precisely identified by CNN, additionally 
to all invasive carcinomas (T1b or deeper). The undiagnosed lesions had a superficial 
depression and were more frequently intramucosal cancers with a differentiated-
histotype, whose discrimination from gastric inflammation was challenging also for 
experienced endoscopists. Another usual reason for misdiagnosis was the anatomical 
sites of the cardia, incisura angularis, and pylorus.

Zhu et al[39] examined the potential of AI to address the prediction of invasion depth 
of early GC. In particular, they developed and validated an AI model CNN-CAD that 
used a deep learning algorithm for determining EGC invasion depth (“M/SM1” vs 
“SM2 or deeper”).

A total of 790 endoscopic images of GCs were employed for ML, while an additional 
203 images, completely autonomous from the learning material, were handled as a test 
set. The AI model exhibited a sensitivity and specificity of 76% and 96%, respectively 
in distinguishing SM2 or deeper cancer invasion, with a higher diagnostic 
performance as compared to the one reached by endoscopists. This high specificity 
could lessen the overestimation of tumoral invasion, which would contribute 
indirectly to reduce avoidable surgeries for M/SM1 malignancies. Moreover, in this 
study, the CNN-CAD system also achieved significantly greater accuracy and 
specificity than both expert and junior trained endoscopists.

AI might assist physicians to predict prognoses of patients with GC. Some crucial 
clinical trials evaluating adjuvant strategies of advanced GC were produced over the 
past decade, but the most suitable therapy for GC is so far uncertain. Besides, two 
contemporary molecular landscape studies proved the presence of various molecular 
GC subtypes[40,41].

A DL-based model (survival recurrent network, SRN) was developed to predict 
survival events for a total of 1190 GC patients, based on clinical/pathology data as 
well as therapy regimens, predicting the outcome at each-time point during a 5-year 
surveillance time.

The SRN showed that the mesenchymal subtype of GC should stimulate a tailored 
postoperative therapeutical strategy as a consequence of its great risk of recurrence 
rate. Conversely, the SRN observed that GCs with microsatellite instability and the 
papillary type displayed significantly more favorable prognosis after chemotherapy 
including capecitabine and cisplatin. SRN reached a survival of 92%, 5 years after 
curative gastrectomy resection[42].

ANN model was used to evaluate 452 GC patients, determining survival times with 
approximately 90% accuracy, and focusing on producing an adequate ANN structure 
with the capacity to handle censored data[43]. In detail, 5 sets of single time-point feed-
forward ANN models were generated to predict the outcomes of GC patients at 
regular time intervals (every year) until the fifth year after gastrectomy. Hence, the 
ANN prediction models exhibited accuracy, sensitivity, and specificity ranging as 
follows 88.7%-90.2%, 70.2%-92.5%, and 66.7%-96.2%, respectively.
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AI IN THE IDENTIFICATION OF HELICOBACTER PYLORI INFECTION
Helicobacter pylori (H. pylori) infects the epithelial gastric cells and is associated with 
functional dyspepsia, peptic ulcers, mucosal atrophy, intestinal metaplasia, and GC[44]. 
H. pylori-associated chronic gastritis may also raise the risk of GC[45,46]. CNN technology 
can accurately assess H. pylori infection during conventional endoscopy without 
needing biopsies. In a pilot study by Zheng et al[47], the authors produced a Computer-
Aided Decision Support System that uses CNN to estimate H. pylori infection based on 
endoscopic images. From 1959 patients, 77% were assigned to the derivation cohort 
(1507 patients; 11729 gastric images) and 56% of them had H. pylori infection (847), 
while 23% were selected for the validation cohort (452) and 69% of patients were H. 
pylori infected (310; 3755 total images).

Huang et al[48] applied neural networks (refined feature selection with a neural 
network, RFSNN) to predict H. pylori-related gastric histological hallmarks based on 
standard endoscopic images. The authors trained the model using endoscopic images 
of 30 patients and used image parameters taken from a different cohort of 74 patients 
to generate a model to predict H. pylori infection, showing an 85% sensitivity and a 
91% specificity for identifying H. pylori infection. Moreover, RFSNN revealed an 
accuracy higher than 80% in predicting the presence of gastric atrophy, IM, and H. 
pylori-related gastritis severity.

Shichijo et al[49] produced a 22-layer deep CNN to predict H. pylori infection during 
real-time endoscopy. A dataset including 32208 images of 735 H. pylori-positive and 
1015 H. pylori-negative patients was handled. The sensitivity/specificity/accuracy, 
were 81.9/83.4/83.1%, respectively, for the first CNN, and 88.9/87.4/87.7%, 
respectively, for the secondary CNN, employing in both cases a similar time (198 
seconds and 194 seconds, respectively).

Another study group developed a CNN, preparing 179 endoscopic images obtained 
from 139 patients (65 were H. pylori-positive and 74 H. pylori-negative). One hundred 
and fifty-nine of all images were adopted as training for a standard neural network, 
and the remaining 30 (15 of H. pylori-negative and 15 of H. pylori-positive patients) as 
test images. CAD model showed an 87% sensitivity and specificity to detect H. pylori 
infection with an AUC of 0.96[50].

Nakashima et al[51] used blue laser images (BLI)-bright and linked color imaging 
(LCI) on 162 patients as learning material and those from 60 patients as a test data set. 
From each patient, three white-light images (WLI), three BLI, and three linked color 
images (LCI; Fujifilm Corp.) were obtained, respectively. For WLI, the AUC was 0.66.

AI FOR COLONIC POLYPS AND COLON CANCER
Colorectal cancer (CRC) is the third most frequent malignancy in males and second in 
females, and the fourth most frequent cause of cancer fatality[52]. The National Polyp 
Study registered that 70%-90% of CRCs can be prevented by routine endoscopic 
surveillance and removal of polyps[53], but 7%-9% of CRCs can occur despite these 
measures[54].

Around 85% of “interval cancers” are due to missed polyps or inadequately 
removed polyps[55]. Adenomas are the most common precancerous lesions throughout 
the colon. The ADR measures the endoscopist ability to identify adenomas. The ADR 
ranges between 7%–53% among endoscopists making depending on their training, 
endoscopic removal technique, withdrawal time, quality of bowel preparation, and 
other procedure-dependent determinants[56,57].

Several endoscopic innovations have been promoted to increase the ADR[58,59].
A review including 5 studies on the effect of high-resolution colonoscopes on the 

ADR showed conflicting results; a study concluded that the ADR is raised exclusively 
for endoscopists with an ADR lower than 20%[60].

CAD analysis has the potential to aid adenoma detection further.
Urban et al[61], used a different and representative set of 8641 hand-labeled images 

from screening colonoscopies handled among over 2000 patients. They tested the 
models on 20 colonoscopy videos with a whole duration of 5 hours. Expert 
colonoscopists were asked to identify all polyps in 9 de-identified colonoscopy videos, 
which were selected from archived video studies, with/without the benefit of the 
CNN overlay. Their findings were correlated with those of the CNN using CNN 
assisted expert review as the reference. The CNN identified polyps with an AUC of 
0.99 and an accuracy of 96.4%. Indeed, in the analysis of colonoscopy videos involving 
the removal of 28 polyps, 4 expert reviewers identified 8 further (missed) polyps 
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without CNN assistance and recognized an additional 17 polyps with CNN support. 
All polyps removed and recognized by the expert review were discovered by CNN, 
which showed a 7% false-positivity rate. This strategy could improve the ADR and 
lower interval cancers but it requires further studies to be adequately implemented.

AI can be used during endoscopic assessment to automatically recognize colorectal 
polyps and distinguish between malignant and non-malignant lesions. CAD is based 
on the latency time between the image acquisition to its processing for the ultimate 
visualization on the screen. This model was able to detect polyps with a 96.5% 
sensitivity[62,63].

A recent RCT estimated the impact of an automatic polyp detection system based on 
DL during real-time endoscopy. This study enrolling 1058 patients demonstrated that 
the AI system enhanced ADR of almost 10%[64].

A prospective study of 55 patients used a prototype of a novel automated polyp 
detection software (APDS) for automated image-based polyp detection and with 
overall real-time polyp detection of 75%[65]. Smaller polyp size and flat polyp 
morphology were associated with insufficient polyp detection by the APDS.

Aside from CADe machinery, CADx has been used for differentiating between 
adenomas and hyperplastic polyps.

Byrne et al[66] suggested the use of computerized image analysis to diminish the 
variability in endoscopic detection and histological prediction. This AI model was 
trained using endoscopic videos and was able to discriminate among diminutive 
adenomas and hyperplastic polyps with high accuracy. Additionally, it predicted 
histology with a 94% accuracy, 98% sensitivity, 83% specificity, a negative and positive 
predictive value of 97% and 90%, respectively.

Moreover, an AI-assisted image classifier, based on non-optical magnified 
endoscopic NBI, has been employed to predict the histology of isolated colonic 
lesions[67], following the evaluation of 3509 colonic lesions. The most prevalent 
histological types were tubular adenoma (47.6%), carcinoma with deep invasion 
(15.9%), carcinomas with superficial invasion (7.9%), hyperplastic polyps (14.3%), 
sessile serrated polyps (7.9%) and tubulovillous adenomas (6.6%). The sensitivity of 
hyperplastic and serrated polyps was 96.6%, although it was lower for tubular 
adenoma and cancer. When investigating only diminutive colonic polyps, the 
correlation of surveillance colonoscopy interval using AI image classifier and histology 
was 0.97. Moreover, this classifier also showed high accuracy (88.2%) in the prediction 
of carcinoma with deep invasion, which is not endoscopically curable, and the HNPV 
and accuracy for carcinoma with deep invasion also suggested that it can assist to 
select treatable lesions.

The same author assessed the use of AI-assisted image classifiers in determining the 
feasibility of ER of large colonic lesions based on non-magnified images. The 
independent testing set included 76 large colonic lesions that fulfilled the indications 
for endoscopic submucosal dissection. Overall, the trained AI image classifier showed 
a 88.2% sensitivity (95%CI: 84.7-91.1%) in differentiating endoscopically curable vs 
incurable lesions with a 77.9% specificity (95%CI: 70.3-84.4%) and 85.5% accuracy 
(95%CI: 82.4-88.3%). This study determined a high accuracy of the trained AI image 
classifier in predicting the feasibility of curative ER of large colonic lesions. While the 
progress of AI using CNN is great for the recognition of specific mucosal patterns and 
image classification, in the next future the prediction performance might outperform 
an expert endoscopist[68].

Hotta et al[69] aimed to validate the effectiveness of endocytoscopy (EC)-CAD in 
diagnosing malignant or non-malignant colorectal lesions, by comparing diagnostic 
ability between expert and non-expert endoscopists, by using web-based tests. A 
validation test was produced using endocytoscopic images of 100 small colorectal 
lesions (< 10 mm). Diagnostic accuracies and sensitivities of EB-01 and non-expert for 
stained endocytoscopic images were 98.0% vs 69.0%, showing a diagnostic accuracy 
and sensitivity significantly higher to non-expert endoscopists when diagnosing small 
colorectal lesions.

A single-group open-label prospective study assessed the performance of real-time 
EC-CAD on 791 consecutive patients undergoing colonoscopy and 23 endoscopists to 
differentiate neoplastic polyps (adenomas) requiring resection from non-neoplastic 
polyps not requiring treatment, potentially reducing cost[70]. The results revealed a 
96.4% negative predictive value of CAD with stained mode in the best-case whereas 
93.7% in the worst-case scenario. Wile by using NBI, 96.5%, and 95.2% in the best and 
worst-case scenario.

Another study developed an automatic quality control system (AQCS) and assessed 
a hypothetical improvement of polyp and adenoma detection in clinical practice based 
on deep CNN. The primary outcome of the study was to assess the ADR in the 308 
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AQCS and 315 control group patients. AQCS significantly increased the ADR than the 
control group. A significant improvement was similarly seen in the polyp detection 
rate and the mean number of polyps identified per-procedure[71].

Finally, in a study including 117 patients with stage IIA CRC after radical surgery, 
an ANN-based scoring system, based on the tumor molecular features, recognized 
those with a high, moderate, and low probability of survival at 10-year surveillance 
interval[72]. The 10-year overall survival rates were 16.7%, 62.9%, and 100% (P < 0.001), 
whereas the 10-year disease-free survival rates were 16.7%, 61.8%, and 98.8%, 
respectively. This study revealed that the scoring system for stage IIA CRC high-risk 
individuals for a more aggressive therapeutic approach.

DL distinguishes patients with a complete response to neoadjuvant 
chemoradiotherapy for locally advanced rectal cancer with an 80% accuracy. This 
technology support might allow to choose patients particularly benefitting the 
conservative treatment than complete surgical resection[73]. This is the first study using 
DL to predict total pathological response after neoadjuvant chemoradiotherapy in 
locally advanced rectal cancer.

DISCUSSION
AI could represent an essential diagnostic method for endoscopists and 
gastroenterologists for the patient's treatments tailoring and prediction of their clinical 
outcomes.

AI seems particularly valuable in gastrointestinal endoscopy, to improve the 
detection of premalignant lesions and malignant, or inflammatory lesions, 
gastrointestinal bleeding, and pancreaticobiliary diseases[74].

However, current limitations of AI include the lack of high-quality datasets for ML 
development. Moreover, a substantial evidence used to elaborate ML algorithms 
comes only from preclinical studies[74]. Potential selection biases cannot be excluded in 
such cases. In this setting, a rigorous validation of AI performance before its 
employment in daily clinical practice is necessary.

A real measure of AI accuracy, should include as a side effect in the performances 
overfitting and spectrum bias[75].

Overfitting occurs when a learning model tailors itself too much on the training 
dataset and predictions are not well generalized to new datasets[75,76]. This effect is in 
open contradiction with the problem-solving principle of Occam’s razor, which states 
that simpler theories have a higher quality of prediction[77]. In worst cases of AI 
algorithm application, underfitting can occur, obtaining models that cannot evidence 
accurately the underlying structure of the dataset, thus obtaining also bad predictivity 
model features[78].

On the other hand, spectrum bias happens when the dataset used for model 
development is not representative of the target population[75,79]. To avoid an 
overestimation of the accuracy and generalization, an external validation dataset 
collected in a way that minimizes the spectrum bias, should be guaranteed. Besides, 
well-designed multicenter observational studies, are required for a stronger validation.

Certainly, it is also noteworthy to acknowledge ethical issues since AI is not aware 
of the patient’s choices or legal liabilities. The privacy issues could be addressed using 
federated datasets that don’t involve centralized servers.

Future randomized studies could directly increase the overall value (quality vs cost) 
of the CNN by examining its effects on surveillance colonoscopy, endoscopic time, 
polyps and ADR, and pathology charges.

Since AI science is in progress, the current limitations must be considered as a 
future challenge, so actually they are inherited also in the medicine applications, 
including difficult predictability of situations characterized by some uncertainty.

In general, AI is revolutionizing the technology and impacting also other ethical 
aspects like human work replacement by machines, but this has always been an open 
question since the industrial revolution.

What can be done is to promote the mutual collaboration through gastrointestinal 
endoscopy applications, to reciprocally benefit from the achievements in both science 
fields.
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Abstract
Gastrointestinal (GI) endoscopy is the central element in contemporary 
gastroenterology as it provides direct evidence to guide targeted therapy. To 
increase the accuracy of GI endoscopy and to reduce human-related errors, 
artificial intelligence (AI) has been applied in GI endoscopy, which has been 
proved to be effective in diagnosing and treating numerous diseases. Therefore, 
we review current research on the efficacy of AI-assisted GI endoscopy in order to 
assess its functions, advantages and how the design can be improved.
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Core tip: Artificial intelligence (AI) has been the center of medical information in the 21st 
century and we have witnessed the tremendous change it has triggered in the diagnosis and 
treatment of many diseases. Gastrointestinal endoscopy is the core element of clinical 
procedures in modern gastroenterology as it provides direct evidence and guides precise 
diagnosis and treatment. Therefore, in this article, we review the latest findings on AI-
assisted gastrointestinal endoscopy concerning its applications in the diagnosis and 
treatment of gastrointestinal diseases.
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INTRODUCTION
The 21st century has witnessed a tremendous revolution in life sciences. Targets within 
cells are increasingly being found so that targeted therapiesc, which will provide the 
maximum benefits while causing minimum or even no damage, are available to treat 
difficult miscellaneous diseases; hereditary information is continuously being 
deciphered in order that much more in-depth information on the mechanism of 
disease occurrence and progression can be established and interpreted. In addition, the 
first 20 years of the 21st century has also experienced the combination of computer 
science and clinical medicine, or what we call the application of artificial intelligence 
(AI) in the diagnosis and treatment of diseases. With the help of machine learning and 
deep learning algorithms, the sensitivity and specificity of diagnosis involving 
morphological judgement has rapidly increased, such as the diagnosis of diabetic 
retinopathy and breast cancer screening using mammography[1-3]. Moreover, 
incorporated with convoluted neural network (CNN) technology, automated 
classification of the condition of skin lesions is even possible by experts from a 
distance[4]. Thus, with the development of network technology to change from 4G 
network to 5G or an even more advanced network, the addition of AI in medicine will 
play a more important role in helping clinicians to more accurately combat diseases[5].

The diagnosis and treatment in gastrointestinal (GI) diseases has become more 
accurate and evidence-based since the popularization of GI endoscopy, which helps 
detect early-stage lesions and malignancies and thus guide the subsequent 
intervention[6]. In addition, GI endoscopy also contributes to the removal of early-stage 
lesions, which results in minuscule operative wounds and prevents further malignant 
change[7]. However, despite the fact that an increasing number of physicians are 
trained to operate a GI endoscope, a number of mis-diagnoses are reported annually 
due to physicians’ incompetence, carelessness and visual fatigue[8]. AI-assisted GI 
endoscopy has been proved to have considerable potential in reducing the number of 
errors in order to optimize clinical performance by establishing a more suitable 
treatment strategy and improving long-term prognosis. As many clinical studies have 
been carried out in recent years, some of the basic disciplines and information 
concerning the area are known; however, global research is still in a very early 
phase[9]. Gastroenterology is regarded as a field where AI could have a significant 
impact and shape the future diagnosis and treatment pattern as both rely greatly on 
image- or video-based investigations[10]. Some of the research carried out so far has 
demonstrated that AI-guided endoscopy provides more solid evidence of suspicious 
neoplasia during examinations and assists optical biopsy to determine the features of 
lesions and subsequently integrate genomic and epigenomic information to provide 
optimal therapeutic plans[11]. Therefore, this review aims to summarize high-quality 
studies completed so far in order to assess the efficiency of the latest AI technology 
incorporated into GI endoscopy and determine how this technology can be improved.

THE ROLE OF AI IN GI ENDOSCOPY
To date, AI has proved efficient in aiding endoscopic examination and the treatment of 
GI lesions with high sensitivity, specificity and a successful treatment rate. These 
lesions include polyps, acute bleeding, precursor lesions and early-stage malignant 
tumors, especially tumors invading the mucosal and submucosal layers[12]. Without AI, 
observer variation and errors due to limited experience and expertise occur every now 
and then. AI-assisted GI endoscopy, is believed to largely reduce these errors and 
prevent visual fatigue. Among its applications, AI-guided identification and 
characterization of polyps is the earliest established and the best understood[13]. A team 
of physicians reported that their AI-guided model could not only accurately recognize 
the presence of polyps, but could also distinguish hyperplastic and adenomatous 
polyps based on the assessment of video images under GI endoscopy with a high 
sensitivity of 98% and a relatively satisfactory specificity of 83%. Their study indicated 
that AI-guided GI endoscopy was unlikely to miss possible malignant lesions[14]. 
Misawa et al[15] reported that AI-guided endoscopic optical biopsy based on the 
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EndoBRAIN system could identify and characterize the pathological features of polyps 
with the aid of indigo carmine dye. If this technology was further improved, it could 
increase the detection rate of small polyps as well as judge their pathological features, 
which could lead to correct decision-making regarding resection of the polyps[15]. 
Similarly, another team used a different algorithm based on CNN to train an AI 
system using archived images from endoscopic videos. Their test results indicated that 
the accuracy was as high as 96.4% with an area under the curve (AUC) of the receiver 
operating characteristics (ROC) of 0.991. They even found that AI-guided GI 
endoscopy was capable of identifying small adenomas of 1-3 and 4-6 mm in size, and 
that the number of polyps identified by AI-guided GI endoscopy was much higher 
than that identified by human-operated GI endoscopy[16]. In 2019, a research group also 
demonstrated that AI-guided GI endoscopy showed higher efficiency in detecting 
small adenomas. This research group conducted an open and non-blinded trial with 
over 1000 patients, who were later randomly divided into 2 groups who underwent GI 
endoscopy with or without the aid of AI. It was found that AI-guided GI endoscopy 
increased the identification rate from 20.3% to 29.1% and increased the number of 
identified adenomas from 0.31 to 0.53 per patient. However, in this study, GI 
endoscopy with and without AI showed no difference when examining patients with 
diminutive polyps, as human eyes were also unlikely to miss such apparent lesions[17]. 
Interestingly, AI-guided GI endoscopy was found to be even more efficient when used 
by less competent endoscopists and it was reported to be able to increase the skills of 
these physicians, which might be of significant help in continuous education and 
promote the popularization of GI endoscopy[18]. Besides the detection of polyps, AI 
experts along with physicians are now able to detect pre-malignant or early-stage 
malignant lesions in the GI tract using the latest AI technology, which was a huge 
challenge as senior endoscopists would sometimes mistakenly ignore such tiny 
mucosal or submucosal changes[19]. According to a recent study, when used to detect 
gastric precursor and early-stage malignancy, AI-guided GI endoscopy had the 
capability of less diagnostic time but resulted in greater sensitivity (65.6% vs 31.9%) 
and a higher positive predictive value (PPV) (41.9% vs 36.7%) compared with the 
naked eye[20]. With the increased prevalence of gastroesophageal junctional diseases, 
such as gastroesophageal reflux disease and others, gastroesophageal junctional 
adenocarcinoma has been the focus of attention in many gastroenterologists. AI-
guided GI endoscopy was demonstrated to be effective in aiding physicians to detect 
underlying problems in the gastroesophageal junction and judge their pathological 
features. Moreover, some technologies have even made it possible for an AI-guided 
endoscopic resection for early-stage lesions in the gastroesophageal area[21]. In addition 
to the identification of neoplasms and their pathological features, some recent AI-
assisted programs have made it possible to evaluate the depth of cancer invasion, 
which is of great help to clinicians as the invasion depth is difficult to evaluate with 
the naked eye. A team in Japan demonstrated that by using white light imaging (WLI) 
and narrow-band imaging (NBI), an AI system could be trained to differentiate 
superficial and deep invasion of esophageal squamous cell carcinoma (ESCC) within 
several seconds and with an accuracy of more than 80%[22]. Besides the determination 
of invasion depth, another team found that AI could actually define the benign and 
malignant borderline and subsequently help guide endoscopic dissection[23]. Moreover, 
the ability to judge whether the dissection completely removed the suspected 
malignancy has contributed greatly to planning subsequent therapy. Therefore, if 
these technologies could be further validated and developed, AI-guided GI endoscopy 
could have greater application potential.

URGENT NEED FOR AI-GUIDED ESOPHAGOGASTRODUODENOSCOPY
With the popularization of esophagogastroduodenoscopy (EGD), it is now possible to 
detect stomach lesions at an early stage. However, as early-stage lesions are much 
more insidious in terms of size, morphology and biological activity, the efficiency 
varied with the competence of endoscopists as long-term specialized training is 
mandatory to gain the expertise and experience needed to detect insidious precursor 
lesions[24]. This was confirmed by a series of statistics reporting that the rate of mis-
diagnosis of upper GI lesions was around 15% over the last 3 years mainly due to 
human factors[25,26]. To resolve this problem, AI-guided GI endoscopy was invented to 
reduce the possibility of human-related errors. However, since GI endoscopy carried 
more uncertainty and anatomical variations, the application of AI in GI endoscopy has 
been difficult[27].
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AI-GUIDED EGD IN DEFINING GI MALIGNANCIES
One of the milestones of EGD is that it has made it possible to detect and resect 
precursor cancerous tissue and so prevent traditional surgical resection which would 
produce massive tissue damage. Thus, there was always an urgent need to increase the 
sensitivity, specificity and accuracy for the detection of precursor cancerous lesions 
under EGD. The first attempt to combine AI and EGD was by a Japanese scholar who 
trained his system with WLIs, NBIs and chromoendoscopy based on indigo carmine. 
Validation with 2296 images provided a sensitivity of 92.2% and a PPV of 30.6%[28,29]. 
Therefore, this indicated that despite a satisfactory detectable rate, it might also 
produce a large number of false positive results, thus aggravate the social medical 
burden. Another Japanese team evaluated a CNN-based model trained using an 
endoscopic video and reported a sensitivity of 94.1%[20,30]. A Japanese team attempted 
to diagnose Helicobacter pylori (H. pylori)-related gastritis based on WLIs, NBIs and 
chromoendoscopy images and videos, and demonstrated a sensitivity and specificity 
of 81.9% and 83.4%, respectively[31]. A study validated the performance of their AI-
guided model using 100 defined gastric cancer examination videos and 100 non-gastric 
cancer examination videos and found a sensitivity of 94.0%, a specificity of 91.0% and 
an accuracy of 92.5%[32]. A multicenter study validated the capability of their AI-
guided diagnosis system using 7 validation sets collected from over 10 different 
hospitals to detect upper and lower GI tract tumors. The reported accuracy was 
between 91.5% and 97.7% with regard to different validation subsets[33]. They also 
compared the performance of their AI-guided GI endoscopy to the results of senior 
experienced physicians and junior physicians working in minor hospitals, which 
indicated that the AI-guided system could achieve comparative sensitivity to that of 
the experts (94.2% vs 94.5%) and could exceed that of junior physicians (94.2% vs 
72.2%). Considering that most patients would consult outside of advanced or national 
hospitals, the help provided by AI-guided systems is necessary in minor hospitals to 
ensure diagnostic accuracy. Kanesaka et al[34] trained an AI system with the help of 
NBIs and successfully achieved an accuracy of 96%. Besides the aforementioned 
studies, other studies have also reported high accuracy and sensitivity for the 
detection of early-stage lesions using AI systems trained using magnified NBIs, which 
seem to be the future direction[35]. According to some other reports, AI-guided GI 
endoscopy was not only able to detect early-stage lesions, but was also capable of 
characterizing their features, such as invasion depth or biological activities. For 
example, an AI-guided system was used to estimate the invasion depth and the 
accuracy was 89.16%, which was much higher than that by humans[36,37]. Our team also 
attempted to build an AI-assisted automated system for the diagnosis of precancerous 
lesions and ESCC by training the system using 6473 NBIs images and 47 video 
datasets. Our findings demonstrated that the AI system involving deep learning could 
achieve a sensitivity of 98.04% and a specificity of 95.03% when distinguishing 
between ESCC and non-cancerous lesions[38].

AI-GUIDED EDG IN DEFINING OTHER GI DISORDERS
Besides defining early GI tumors, AI is also able to determine other benign gastric 
disorders, such as chronic non-atrophic gastritis, gastric and duodenal ulcers, etc. 
Among these, the most well-known is the ability to recognize H. pylori gastritis, which 
has been widely discussed. In 2020, Lui et al[39] carried out a meta-analysis involving 23 
studies including 969318 images. They pointed out that the AUC for AI detection of 
Barrett’s esophagus, neoplastic lesions in the stomach, squamous esophagus and H. 
pylori infection state were 0.96 (95%CI: 0.93-0.99), 0.96 (95%CI: 0.93-0.99), 0.88 (95%CI: 
0.82-0.96) and 0.92 (95%CI: 0.88-0.97), respectively[39,40]. They also pointed out that by 
using NBIs, the AI system was superior to white light with regard to the detection of 
neoplastic lesions of the esophagus (0.92 vs 0.83, P < 0.001). Moreover, they reported a 
superior performance of the AI system over the human eye in detecting neoplastic 
lesions in the stomach (AUC 0.98 vs 0.87, P < 0.001), Barrett’s esophagus (AUC 0.96 vs 
0.82, P < 0.001) and H. pylori state (AUC 0.90 vs 0.82, P < 0.001)[41,42]. Earlier this year, 
Xia et al[43] developed a new automatic lesion detection system using CNN and faster 
region-based CNN (Faster-RCNN) and a total of 1023955 MCE images were used to 
train the AI system and help validate it, including erosion, polyps, ulcers, submucosal 
tumors, xanthomas, normal mucosa, and invalid images. They found that their AI 
system could detect gastric lesions with a sensitivity of 96.2% (95%CI: 95.7%-96.5%), a 
specificity of 76.3% (95%CI: 75.97%-76.3%), a PPV of 16.0% (95%CI: 15.7%-16.3%), a 
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negative predictive value (NPV) of 99.7% (95%CI: 99.74%-99.79%). They also 
demonstrated the accuracy for each type of lesion, the accuracy for erosion was 77.1% 
(95%CI: 76.9%-77.3%), the accuracy for polyps was 96.5%, the accuracy for ulcers was 
89.3%, the accuracy for submucosal tumors was 87.2%, the accuracy for xanthomas 
was 90.6%, the accuracy for normal tissues was 67.8% and the accuracy for invalid 
images was 96.1%[43,44]. Their study also showed that the AI system was likely to 
indicate problems during an endoscopy examination rather than determine that it was 
normal. Another team also performed a validation test using an AI model based on 
WLIs and reported a sensitivity of 86.7%[45,46]. In addition, they pointed out that AI-
guided GI endoscopy met difficult problems when trying to define benign lesions 
compared with malignant lesions as the stomach is often inflamed and even eroded 
which could add to the difficulty in making a definite diagnosis. Another study also 
reported the diagnostic value of AI-guided GI endoscopy based on CNN technology 
with an accuracy of 92.9%detected[47]. Some scientists have started to optimize the AI 
system by introducing blue light imaging and linked color imaging techniques, and 
have compared their efficiencies with single WLI. The results showed that the AUCs of 
ROC analysis of blue light imaging, linked light imaging and WLI were 0.96, 0.95 and 
0.66, respectively, which indicated that the newly introduced technologies could 
enhance the examination findings[45]. In addition to defining H. pylori-related gastritis, 
deep learning technology has also helped physicians to detect and evaluate gastric and 
duodenal ulcers and predict their prognosis[40,48]. With regard to polyps, contemporary 
AI technology is able to precisely detect polyps, make an accurate classification based 
on histology, predict the possibility of disease progression and guide subsequent 
treatment. In the past, older models of computer-aided diagnosis could not analyze 
polyps in real-time, which resulted in the diagnosis of polyps being challenging. A 
scientific team designed an AI model with the capability of analyzing nearly 100 
images a second which greatly increased the speed of machine reading as the previous 
model was only able to process fewer than 10 images a second[49]. In addition, the 
technology they applied allowed their model to achieve an accuracy of up to 96.4% 
when detecting polyps among 8641 images of 2000 patients. Later, similar models 
were designed and used to compare the detection efficiency between experts only and 
experts with the help of AI systems. The results demonstrated that the AI system was 
able to detect all polyps, which were also identified by the experts with a 7% false 
positive rate. Moreover, the AI system extracted 9 other insidious polyps which were 
not detected by the naked eye[50]. In addition, scientists developed a more advanced 
model based on deep learning which could determine the histological features of 
polyps. This team found that with the help of NBIs, the AI diagnostic model could 
achieve an accuracy of 95% while restricting the NPV value within the limit set by the 
Preservation and Incorporation of Valuable Endoscopic Innovations for Adenoma 
Assessment of Diminutive Adenomas[51]. One of the major purposes of AI-guided GI 
endoscopy was to reduce human-related factors as much as possible, and to maintain a 
stable sensitivity, specificity and accuracy regardless of the expertise of the operator. 
One AI model presented by Mori et al[18] demonstrated that the application of AI 
systems for real-time histological classification based on NBI or staining and 
magnification with an integrated endoscopy lens provided NPV rates of > 92 for distal 
diminutive lesions, which was not related to the operators’ expertise. In addition, full 
evaluation of the polyps could be done within a minute. The detailed information of 
some studies concerning the diagnosis of polyps and neoplasms in the GI tract 
published after 2018 is shown in Table 1.

DISCUSSION
From the studies we have researched and analyzed in depth so far, we have found that 
by incorporating several AI technologies, GI endoscopy has achieved higher accuracy, 
faster diagnostic speed, and fewer human-related errors, etc. Firstly, AI technology has 
made it possible to eliminate the errors caused by doctors’ incompetence and lack of 
experience and has guided junior doctors and doctors working in less prestigious 
hospitals to gain the necessary expertise. Secondly, this technology improves the 
relevance rate and recall factor of less obvious and less typical lesions due to their size 
or atypical shape and helps to achieve “early discovery and early treatment”. Thirdly, 
the present AI technology is able to assist judgement in a number of lesion types 
including polyps, precursor changes in tumors, all types of mucosal and submucosal 
abnormalities, and inflammation, etc., which almost covers the disease spectrum of the 
GI tract. Thus, it can be concluded that as a diagnostic tool, AI greatly contributes to 
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Table 1 Detailed information on the studies concerning the diagnosis of polyps and neoplasms in the gastrointestinal tract published 
after 2018

Ref. Training Validation AUC Sensitivity Accuracy

Chen et al[51], 2018 1476 images of neoplasms; 681 images of H. 
pylori

188 images of neoplasms; 96 images of H. pylori NA 96.3% 90.1%

Urban et al[16], 2018 8641 images; 9 videos 1330 images; 9 videos 0.974 NA 96.4%

Misawa et al[15], 
2018

73 videos Cross validation NA 90% 76.5%

Yamada et al[56], 
2019

4087 images of polyps; videos 705 images with polyps; 4135 images without 
polyps

0.975 97.3% NA

Klare et al[57], 2019 NA 55 colonoscopy examination videos NA 75.3% NA

Wang et al[17], 2019 3634 images with polyps; 1911 images 
without polyps

5541 images with polyps and 21572 images 
without polyps

0.984 94.4% NA

Song et al[58], 2020 12480 images 545 images 0.93 82.1% 81.3%

Zachariah et al[59], 
2020

8246 images 634 images NA 96% 94%

H. pylori: Helicobacter pylori; AUC: Area under curve; NA: Not applicable.

the work of clinical physicians.
However, studies concerning the guidance of AI during treatment under GI 

endoscopy have rarely been published and trials on training AI systems to gain the 
ability to direct the resection of malformations have seldom been discussed. One of the 
major advantages of GI endoscopy is that it allows the resection of abnormalities to be 
performed in a minimally invasive way, which results in less damage than traditional 
surgery or laparoscopic surgery, AI guided-treatment under GI endoscopy should be 
further developed and discussed. Moreover, an AI-guided robot physician may even 
be possible when AI is trained to guide such a process.

CONCLUSION
The last decade has witnessed a number of studies concerning the application of AI in 
modern medical procedures. However, due to specific reasons, there is an obvious lack 
of high-quality prospective clinical trials. In fact, despite the large number of clinical 
studies published so far, only 6 were prospective randomized controlled trials (RCTs) 
that were focused on the efficiency and effects of AI-guided models[17]. Far fewer RCTs 
have emphasized the comparison between machines and the human eye. 
Gastroenterology has always led RCTs concerning AI, and of the abovementioned 6 
RCTs concerning AI in medical fields, 5 of them are related to gastroenterology. 
Therefore, more RCTs should be planned and carried out to gain more reliable data[52]. 
To perform effective RCTs, a series of protocols and rules should be strictly followed. 
For instance, the optimal study design approaches for clinical trials of AI have been 
put forward and these recommendations have significant implications for GI 
endoscopy. Clinically-related outcome measures should be prespecified according to 
the way the AI model is being investigated. Moreover, AI-assisted polyp detection 
studies should apply validated outcome parameters such as adenoma detection rate, 
adenomas per colonoscopy, or adenoma miss rate, etc[53-55].

The next couple of years will witness a tremendous change in the medical field with 
the ever-accelerating development of AI technologies, in which the field of 
gastroenterology will be the center of such unprecedented change. With the 
advancement of AI technology, more high-quality RCTs should be designed and 
carried out to assess the technologies being developed and to correct any errors. In 
addition, standardized methods that contribute to the storage, organization and 
labeling of clinical images should also be the focus of attention.



Jin HY et al. Application of AI in GI endoscopy

AIGE https://www.wjgnet.com 25 July 28, 2020 Volume 1 Issue 1

REFERENCES
Kaul V, Enslin S, Gross SA. The history of artificial intelligence in medicine. Gastrointest Endosc 2020 
[PMID: 32565184 DOI: 10.1016/j.gie.2020.06.040]

1     

McCoy LG, Nagaraj S, Morgado F, Harish V, Das S, Celi LA. What do medical students actually need to 
know about artificial intelligence? NPJ Digit Med 2020; 3: 86 [PMID: 32577533 DOI: 
10.1038/s41746-020-0294-7]

2     

Lal A, Pinevich Y, Gajic O, Herasevich V, Pickering B. Artificial intelligence and computer simulation 
models in critical illness. World J Crit Care Med 2020; 9: 13-19 [PMID: 32577412 DOI: 
10.5492/wjccm.v9.i2.13]

3     

Namikawa K, Hirasawa T, Nakano K, Ikenoyama Y, Ishioka M, Shiroma S, Tokai Y, Yoshimizu S, 
Horiuchi Y, Ishiyama A, Yoshio T, Tsuchida T, Fujisaki J, Tada T. Artificial intelligence-based diagnostic 
system classifying gastric cancer and ulcer: Comparison between the original and newly developed systems. 
Endoscopy 2020 [PMID: 32503056 DOI: 10.1055/a-1194-8771]

4     

Namikawa K, Hirasawa T, Yoshio T, Fujisaki J, Ozawa T, Ishihara S, Aoki T, Yamada A, Koike K, Suzuki 
H, Tada T. Utilizing artificial intelligence in endoscopy: a clinician's guide. Expert Rev Gastroenterol 
Hepatol 2020; 1-18 [PMID: 32500760 DOI: 10.1080/17474124.2020.1779058]

5     

Sung JJY, Poon NCH. Artificial intelligence in gastroenterology: where are we heading? Front Med 2020 
[PMID: 32458189 DOI: 10.1007/s11684-020-0742-4]

6     

Kahn A, Leggett CL. Artificial intelligence in the age of cognitive endoscopy. Gastrointest Endosc 2020; 
91: 1251-1252 [PMID: 32439096 DOI: 10.1016/j.gie.2020.03.009]

7     

Shung DL, Byrne MF. How Artificial Intelligence Will Impact Colonoscopy and Colorectal Screening. 
Gastrointest Endosc Clin N Am 2020; 30: 585-595 [PMID: 32439090 DOI: 10.1016/j.giec.2020.02.010]

8     

Parasa S, Wallace M, Bagci U, Antonino M, Berzin T, Byrne M, Celik H, Farahani K, Golding M, Gross S, 
Jamali V, Mendonca P, Mori Y, Ninh A, Repici A, Rex D, Skrinak K, Thakkar SJ, van Hooft JE, Vargo J, 
Yu H, Xu Z, Sharma P. Proceedings from the First Global Artificial Intelligence in Gastroenterology and 
Endoscopy Summit. Gastrointest Endosc 2020; Online ahead of print [PMID: 32343978 DOI: 
10.1016/j.gie.2020.04.044]

9     

Abadir AP, Ali MF, Karnes W, Samarasena JB. Artificial Intelligence in Gastrointestinal Endoscopy. Clin 
Endosc 2020; 53: 132-141 [PMID: 32252506 DOI: 10.5946/ce.2020.038]

10     

Choi J, Shin K, Jung J, Bae HJ, Kim DH, Byeon JS, Kim N. Convolutional Neural Network Technology in 
Endoscopic Imaging: Artificial Intelligence for Endoscopy. Clin Endosc 2020; 53: 117-126 [PMID: 
32252504 DOI: 10.5946/ce.2020.054]

11     

Byrne MF. Hype or Reality? Will Artificial Intelligence Actually Make Us Better at Performing Optical 
Biopsy of Colon Polyps? Gastroenterology 2020; 158: 2049-2051 [PMID: 32222397 DOI: 
10.1053/j.gastro.2020.03.038]

12     

Li J, Qian JM. Artificial intelligence in inflammatory bowel disease: current status and opportunities. Chin 
Med J (Engl) 2020; 133: 757-759 [PMID: 32132365 DOI: 10.1097/CM9.0000000000000714]

13     

Byrne MF, Chapados N, Soudan F, Oertel C, Linares Pérez M, Kelly R, Iqbal N, Chandelier F, Rex DK. 
Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of 
unaltered videos of standard colonoscopy using a deep learning model. Gut 2019; 68: 94-100 [PMID: 
29066576 DOI: 10.1136/gutjnl-2017-314547]

14     

Misawa M, Kudo SE, Mori Y, Cho T, Kataoka S, Yamauchi A, Ogawa Y, Maeda Y, Takeda K, Ichimasa K, 
Nakamura H, Yagawa Y, Toyoshima N, Ogata N, Kudo T, Hisayuki T, Hayashi T, Wakamura K, Baba T, 
Ishida F, Itoh H, Roth H, Oda M, Mori K. Artificial Intelligence-Assisted Polyp Detection for Colonoscopy: 
Initial Experience. Gastroenterology 2018; 154: 2027-2029.e3 [PMID: 29653147 DOI: 
10.1053/j.gastro.2018.04.003]

15     

Urban G, Tripathi P, Alkayali T, Mittal M, Jalali F, Karnes W, Baldi P. Deep Learning Localizes and 
Identifies Polyps in Real Time With 96% Accuracy in Screening Colonoscopy. Gastroenterology 2018; 155: 
1069-1078.e8 [PMID: 29928897 DOI: 10.1053/j.gastro.2018.06.037]

16     

Wang P, Berzin TM, Glissen Brown JR, Bharadwaj S, Becq A, Xiao X, Liu P, Li L, Song Y, Zhang D, Li Y, 
Xu G, Tu M, Liu X. Real-time automatic detection system increases colonoscopic polyp and adenoma 
detection rates: a prospective randomised controlled study. Gut 2019; 68: 1813-1819 [PMID: 30814121 DOI: 
10.1136/gutjnl-2018-317500]

17     

Mori Y, Kudo SE, Misawa M, Saito Y, Ikematsu H, Hotta K, Ohtsuka K, Urushibara F, Kataoka S, Ogawa 
Y, Maeda Y, Takeda K, Nakamura H, Ichimasa K, Kudo T, Hayashi T, Wakamura K, Ishida F, Inoue H, Itoh 
H, Oda M, Mori K. Real-Time Use of Artificial Intelligence in Identification of Diminutive Polyps During 
Colonoscopy: A Prospective Study. Ann Intern Med 2018; 169: 357-366 [PMID: 30105375 DOI: 
10.7326/M18-0249]

18     

Ikenoyama Y, Hirasawa T, Ishioka M, Namikawa K, Nakano K, Yoshimizu S, Horiuchi Y, Ishiyama A, 
Yoshio T, Tsuchida T, Fujisaki J, Tada T. Comparing artificial intelligence using deep learning throught 
convolutional neural networks and endoscopist’s diagnostic ability for detecting early gastric cancer. 
Gastrointest Endosc 2019; 89: AB75 [DOI: 10.1016/j.gie.2019.04.049]

19     

Ishioka M, Hirasawa T, Tada T. Detecting gastric cancer from video images using convolutional neural 
networks. Dig Endosc 2019; 31: e34-e35 [PMID: 30449050 DOI: 10.1111/den.13306]

20     

Iwagami H, Ishihara R, Fukuda H, Shimamoto Y, Kono M, Nakagawa K, Ohmori M, Matsuno K, Inoue S, 
Iwatsubo T, Nakahira H, Matsuura N, Shichijo S, Maekawa A, Kanesaka T, Takeuchi Y, Higashino K, 
Uetake H, Aoyama K, Tada T. Artificial intelligence for the diagnosis of Siewert type I and II 
esophagogastric junction adenocarcinomas. Gastrointest Endosc 2019; 89: AB630 [DOI: 
10.1016/j.gie.2019.03.1098]

21     

Tokai Y, Yoshio T, Aoyama K, Horie Y, Yoshimizu S, Horiuchi Y, Ishiyama A, Tsuchida T, Hirasawa T, 
Sakakibara Y, Yamada T, Yamaguchi S, Fujisaki J, Tada T. Application of artificial intelligence using 
convolutional neural networks in determining the invasion depth of esophageal squamous cell carcinoma. 
Esophagus 2020; 17: 250-256 [PMID: 31980977 DOI: 10.1007/s10388-020-00716-x]

22     

Ichimasa K, Kudo S, Mori Y, Misawa M, Kouyama Y, Matsudaira S, Takeda K, Nakamura H, Ishigaki T, 23     

http://www.ncbi.nlm.nih.gov/pubmed/32565184
https://dx.doi.org/10.1016/j.gie.2020.06.040
http://www.ncbi.nlm.nih.gov/pubmed/32577533
https://dx.doi.org/10.1038/s41746-020-0294-7
http://www.ncbi.nlm.nih.gov/pubmed/32577412
https://dx.doi.org/10.5492/wjccm.v9.i2.13
http://www.ncbi.nlm.nih.gov/pubmed/32503056
https://dx.doi.org/10.1055/a-1194-8771
http://www.ncbi.nlm.nih.gov/pubmed/32500760
https://dx.doi.org/10.1080/17474124.2020.1779058
http://www.ncbi.nlm.nih.gov/pubmed/32458189
https://dx.doi.org/10.1007/s11684-020-0742-4
http://www.ncbi.nlm.nih.gov/pubmed/32439096
https://dx.doi.org/10.1016/j.gie.2020.03.009
http://www.ncbi.nlm.nih.gov/pubmed/32439090
https://dx.doi.org/10.1016/j.giec.2020.02.010
http://www.ncbi.nlm.nih.gov/pubmed/32343978
https://dx.doi.org/10.1016/j.gie.2020.04.044
http://www.ncbi.nlm.nih.gov/pubmed/32252506
https://dx.doi.org/10.5946/ce.2020.038
http://www.ncbi.nlm.nih.gov/pubmed/32252504
https://dx.doi.org/10.5946/ce.2020.054
http://www.ncbi.nlm.nih.gov/pubmed/32222397
https://dx.doi.org/10.1053/j.gastro.2020.03.038
http://www.ncbi.nlm.nih.gov/pubmed/32132365
https://dx.doi.org/10.1097/CM9.0000000000000714
http://www.ncbi.nlm.nih.gov/pubmed/29066576
https://dx.doi.org/10.1136/gutjnl-2017-314547
http://www.ncbi.nlm.nih.gov/pubmed/29653147
https://dx.doi.org/10.1053/j.gastro.2018.04.003
http://www.ncbi.nlm.nih.gov/pubmed/29928897
https://dx.doi.org/10.1053/j.gastro.2018.06.037
http://www.ncbi.nlm.nih.gov/pubmed/30814121
https://dx.doi.org/10.1136/gutjnl-2018-317500
http://www.ncbi.nlm.nih.gov/pubmed/30105375
https://dx.doi.org/10.7326/M18-0249
https://dx.doi.org/10.1016/j.gie.2019.04.049
http://www.ncbi.nlm.nih.gov/pubmed/30449050
https://dx.doi.org/10.1111/den.13306
https://dx.doi.org/10.1016/j.gie.2019.03.1098
http://www.ncbi.nlm.nih.gov/pubmed/31980977
https://dx.doi.org/10.1007/s10388-020-00716-x


Jin HY et al. Application of AI in GI endoscopy

AIGE https://www.wjgnet.com 26 July 28, 2020 Volume 1 Issue 1

Toyoshima N, Ogata N, Kudo T, Hisayuki T, Hayashi T, Wakamura W, Sawada N, Baba T, Ishida F. 
Artificial intelligence with help in determining the need for additional surgery after endoscopic resection of 
T1 colorectal cancer-analysis based on a big data for machine learning. Gastrointest Endosc 2019; 89: AB85-
AB86 [DOI: 10.1016/j.gie.2019.04.068]
Loughenbury PR, Berry L, Brooke BT, Rao AS, Dunsmuir RA, Millner PA. Benefits of the use of blood 
conservation in scoliosis surgery. World J Orthop 2016; 7: 808-813 [PMID: 28032033 DOI: 
10.5312/wjo.v7.i12.808]

24     

Menon S, Trudgill N. How commonly is upper gastrointestinal cancer missed at endoscopy? A meta-
analysis. Endosc Int Open 2014; 2: E46-E50 [PMID: 26135259 DOI: 10.1055/s-0034-1365524]

25     

Yalamarthi S, Witherspoon P, McCole D, Auld CD. Missed diagnoses in patients with upper 
gastrointestinal cancers. Endoscopy 2004; 36: 874-879 [PMID: 15452783 DOI: 10.1055/s-2004-825853]

26     

Hosokawa O, Hattori M, Douden K, Hayashi H, Ohta K, Kaizaki Y. Difference in accuracy between 
gastroscopy and colonoscopy for detection of cancer. Hepatogastroenterology 2007; 54: 442-444 [PMID: 
17523293]

27     

Hirasawa T, Aoyama K, Tanimoto T, Ishihara S, Shichijo S, Ozawa T, Ohnishi T, Fujishiro M, Matsuo K, 
Fujisaki J, Tada T. Application of artificial intelligence using a convolutional neural network for detecting 
gastric cancer in endoscopic images. Gastric Cancer 2018; 21: 653-660 [PMID: 29335825 DOI: 
10.1007/s10120-018-0793-2]

28     

Thakkar SJ, Kochhar GS. Artificial intelligence for real-time detection of early esophageal cancer: another 
set of eyes to better visualize. Gastrointest Endosc 2020; 91: 52-54 [PMID: 31865996 DOI: 
10.1016/j.gie.2019.09.036]

29     

Ragunath K. Artificial intelligence in gastrointestinal endoscopy: how intelligent can it get? Lancet Oncol 
2019; 20: 1616-1617 [PMID: 31797775 DOI: 10.1016/S1470-2045(19)30677-1]

30     

Itoh T, Kawahira H, Nakashima H, Yata N. Deep learning analyzes Helicobacter pylori infection by upper 
gastrointestinal endoscopy images. Endosc Int Open 2018; 6: E139-E144 [PMID: 29399610 DOI: 
10.1055/s-0043-120830]

31     

Wu L, Zhou W, Wan X, Zhang J, Shen L, Hu S, Ding Q, Mu G, Yin A, Huang X, Liu J, Jiang X, Wang Z, 
Deng Y, Liu M, Lin R, Ling T, Li P, Wu Q, Jin P, Chen J, Yu H. A deep neural network improves 
endoscopic detection of early gastric cancer without blind spots. Endoscopy 2019; 51: 522-531 [PMID: 
30861533 DOI: 10.1055/a-0855-3532]

32     

Luo H, Xu G, Li C, He L, Luo L, Wang Z, Jing B, Deng Y, Jin Y, Li Y, Li B, Tan W, He C, Seeruttun SR, 
Wu Q, Huang J, Huang DW, Chen B, Lin SB, Chen QM, Yuan CM, Chen HX, Pu HY, Zhou F, He Y, Xu 
RH. Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a 
multicentre, case-control, diagnostic study. Lancet Oncol 2019; 20: 1645-1654 [PMID: 31591062 DOI: 
10.1016/S1470-2045(19)30637-0]

33     

Kanesaka T, Lee TC, Uedo N, Lin KP, Chen HZ, Lee JY, Wang HP, Chang HT. Computer-aided diagnosis 
for identifying and delineating early gastric cancers in magnifying narrow-band imaging. Gastrointest 
Endosc 2018; 87: 1339-1344 [PMID: 29225083 DOI: 10.1016/j.gie.2017.11.029]

34     

Horiuchi Y, Aoyama K, Tokai Y, Hirasawa T, Yoshimizu S, Ishiyama A, Yoshio T, Tsuchida T, Fujisaki J, 
Tada T. Convolutional Neural Network for Differentiating Gastric Cancer from Gastritis Using Magnified 
Endoscopy with Narrow Band Imaging. Dig Dis Sci 2020; 65: 1355-1363 [PMID: 31584138 DOI: 
10.1007/s10620-019-05862-6]

35     

Zhu Y, Wang QC, Xu MD, Zhang Z, Cheng J, Zhong YS, Zhang YQ, Chen WF, Yao LQ, Zhou PH, Li QL. 
Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on 
conventional endoscopy. Gastrointest Endosc 2019; 89: 806-815.e1 [PMID: 30452913 DOI: 
10.1016/j.gie.2018.11.011]

36     

Patel V, Khan MN, Shrivastava A, Sadiq K, Ali SA, Moore SR, Brown DE, Syed S. Artificial Intelligence 
Applied to Gastrointestinal Diagnostics: A Review. J Pediatr Gastroenterol Nutr 2020; 70: 4-11 [PMID: 
31567886 DOI: 10.1097/MPG.0000000000002507]

37     

Guo L, Xiao X, Wu C, Zeng X, Zhang Y, Du J, Bai S, Xie J, Zhang Z, Li Y, Wang X, Cheung O, Sharma M, 
Liu J, Hu B. Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell 
carcinoma using a deep learning model (with videos). Gastrointest Endosc 2020; 91: 41-51 [PMID: 
31445040 DOI: 10.1016/j.gie.2019.08.018]

38     

Lui TK, Tsui VW, Leung WK. Accuracy of artificial intelligence-assisted detection of upper GI lesions: a 
systematic review and meta-analysis. Gastrointest Endosc 2020 [PMID: 32562608 DOI: 
10.1016/j.gie.2020.06.034]

39     

Sharma P, Pante A, Gross SA. Artificial intelligence in endoscopy. Gastrointest Endosc 2020; 91: 925-931 
[PMID: 31874161 DOI: 10.1016/j.gie.2019.12.018]

40     

Zhang Y, Li F, Yuan F, Zhang K, Huo L, Dong Z, Lang Y, Zhang Y, Wang M, Gao Z, Qin Z, Shen L. 
Diagnosing chronic atrophic gastritis by gastroscopy using artificial intelligence. Dig Liver Dis 2020; 52: 
566-572 [PMID: 32061504 DOI: 10.1016/j.dld.2019.12.146]

41     

Hashimoto R, Requa J, Dao T, Ninh A, Tran E, Mai D, Lugo M, El-Hage Chehade N, Chang KJ, Karnes 
WE, Samarasena JB. Artificial intelligence using convolutional neural networks for real-time detection of 
early esophageal neoplasia in Barrett's esophagus (with video). Gastrointest Endosc 2020; 91: 1264-1271.e1 
[PMID: 31930967 DOI: 10.1016/j.gie.2020.05.027]

42     

Xia J, Xia T, Pan J, Gao F, Wang S, Qian YY, Wang H, Zhao J, Jiang X, Zou WB, Wang YC, Zhou W, Li 
ZS, Liao Z. Use of artificial intelligence for detection of gastric lesions by magnetically controlled capsule 
endoscopy. Gastrointest Endosc 2020 [PMID: 32470426 DOI: 10.1016/j.gie.2019.12.049]

43     

McNeil MB, Gross SA. Siri here, cecum reached, but please wash that fold: Will artificial intelligence 
improve gastroenterology? Gastrointest Endosc 2020; 91: 425-427 [PMID: 32036947 DOI: 
10.1016/j.gie.2019.10.027]

44     

Nakashima H, Kawahira H, Kawachi H, Sakaki N. Artificial intelligence diagnosis of Helicobacter pylori 
infection using blue laser imaging-bright and linked color imaging: a single-center prospective study. Ann 
Gastroenterol 2018; 31: 462-468 [PMID: 29991891 DOI: 10.20524/aog.2018.0269]

45     

Picardo S, Ragunath K. Artificial intelligence in endoscopy: the guardian angel is around the corner. 46     

https://dx.doi.org/10.1016/j.gie.2019.04.068
http://www.ncbi.nlm.nih.gov/pubmed/28032033
https://dx.doi.org/10.5312/wjo.v7.i12.808
http://www.ncbi.nlm.nih.gov/pubmed/26135259
https://dx.doi.org/10.1055/s-0034-1365524
http://www.ncbi.nlm.nih.gov/pubmed/15452783
https://dx.doi.org/10.1055/s-2004-825853
http://www.ncbi.nlm.nih.gov/pubmed/17523293
http://www.ncbi.nlm.nih.gov/pubmed/29335825
https://dx.doi.org/10.1007/s10120-018-0793-2
http://www.ncbi.nlm.nih.gov/pubmed/31865996
https://dx.doi.org/10.1016/j.gie.2019.09.036
http://www.ncbi.nlm.nih.gov/pubmed/31797775
https://dx.doi.org/10.1016/S1470-2045(19)30677-1
http://www.ncbi.nlm.nih.gov/pubmed/29399610
https://dx.doi.org/10.1055/s-0043-120830
http://www.ncbi.nlm.nih.gov/pubmed/30861533
https://dx.doi.org/10.1055/a-0855-3532
http://www.ncbi.nlm.nih.gov/pubmed/31591062
https://dx.doi.org/10.1016/S1470-2045(19)30637-0
http://www.ncbi.nlm.nih.gov/pubmed/29225083
https://dx.doi.org/10.1016/j.gie.2017.11.029
http://www.ncbi.nlm.nih.gov/pubmed/31584138
https://dx.doi.org/10.1007/s10620-019-05862-6
http://www.ncbi.nlm.nih.gov/pubmed/30452913
https://dx.doi.org/10.1016/j.gie.2018.11.011
http://www.ncbi.nlm.nih.gov/pubmed/31567886
https://dx.doi.org/10.1097/MPG.0000000000002507
http://www.ncbi.nlm.nih.gov/pubmed/31445040
https://dx.doi.org/10.1016/j.gie.2019.08.018
http://www.ncbi.nlm.nih.gov/pubmed/32562608
https://dx.doi.org/10.1016/j.gie.2020.06.034
http://www.ncbi.nlm.nih.gov/pubmed/31874161
https://dx.doi.org/10.1016/j.gie.2019.12.018
http://www.ncbi.nlm.nih.gov/pubmed/32061504
https://dx.doi.org/10.1016/j.dld.2019.12.146
http://www.ncbi.nlm.nih.gov/pubmed/31930967
https://dx.doi.org/10.1016/j.gie.2020.05.027
http://www.ncbi.nlm.nih.gov/pubmed/32470426
https://dx.doi.org/10.1016/j.gie.2019.12.049
http://www.ncbi.nlm.nih.gov/pubmed/32036947
https://dx.doi.org/10.1016/j.gie.2019.10.027
http://www.ncbi.nlm.nih.gov/pubmed/29991891
https://dx.doi.org/10.20524/aog.2018.0269


Jin HY et al. Application of AI in GI endoscopy

AIGE https://www.wjgnet.com 27 July 28, 2020 Volume 1 Issue 1

Gastrointest Endosc 2020; 91: 340-341 [PMID: 32036941 DOI: 10.1016/j.gie.2019.10.026]
Guimarães P, Keller A, Fehlmann T, Lammert F, Casper M. Deep-learning based detection of gastric 
precancerous conditions. Gut 2020; 69: 4-6 [PMID: 31375599 DOI: 10.1136/gutjnl-2019-319347]

47     

Wong GL, Ma AJ, Deng H, Ching JY, Wong VW, Tse YK, Yip TC, Lau LH, Liu HH, Leung CM, Tsang 
SW, Chan CW, Lau JY, Yuen PC, Chan FK. Machine learning model to predict recurrent ulcer bleeding in 
patients with history of idiopathic gastroduodenal ulcer bleeding. Aliment Pharmacol Ther 2019; 49: 912-918 
[PMID: 30761584 DOI: 10.1111/apt.15145]

48     

Schmidt A, Beyna T, Schumacher B, Meining A, Richter-Schrag HJ, Messmann H, Neuhaus H, Albers D, 
Birk M, Thimme R, Probst A, Faehndrich M, Frieling T, Goetz M, Riecken B, Caca K. Colonoscopic full-
thickness resection using an over-the-scope device: a prospective multicentre study in various indications. 
Gut 2018; 67: 1280-1289 [PMID: 28798042 DOI: 10.1136/gutjnl-2016-313677]

49     

Ding L, Liu GW, Zhao BC, Zhou YP, Li S, Zhang ZD, Guo YT, Li AQ, Lu Y, Yao HW, Yuan WT, Wang 
GY, Zhang DL, Wang L. Artificial intelligence system of faster region-based convolutional neural network 
surpassing senior radiologists in evaluation of metastatic lymph nodes of rectal cancer. Chin Med J (Engl) 
2019; 132: 379-387 [PMID: 30707177 DOI: 10.1097/CM9.0000000000000095]

50     

Chen PJ, Lin MC, Lai MJ, Lin JC, Lu HH, Tseng VS. Accurate Classification of Diminutive Colorectal 
Polyps Using Computer-Aided Analysis. Gastroenterology 2018; 154: 568-575 [PMID: 29042219 DOI: 
10.1053/j.gastro.2017.10.010]

51     

Wu L, Zhang J, Zhou W, An P, Shen L, Liu J, Jiang X, Huang X, Mu G, Wan X, Lv X, Gao J, Cui N, Hu S, 
Chen Y, Hu X, Li J, Chen D, Gong D, He X, Ding Q, Zhu X, Li S, Wei X, Li X, Wang X, Zhou J, Zhang M, 
Yu HG. Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring 
blind spots during esophagogastroduodenoscopy. Gut 2019; 68: 2161-2169 [PMID: 30858305 DOI: 
10.1136/gutjnl-2018-317366]

52     

Bernal J, Histace A, Masana M, Angermann Q, Sánchez-Montes C, Rodríguez de Miguel C, Hammami M, 
García-Rodríguez A, Córdova H, Romain O, Fernández-Esparrach G, Dray X, Sánchez FJ. GTCreator: a 
flexible annotation tool for image-based datasets. Int J Comput Assist Radiol Surg 2019; 14: 191-201 [PMID: 
30255462 DOI: 10.1007/s11548-018-1864-x]

53     

Chen D, Wu L, Li Y, Zhang J, Liu J, Huang L, Jiang X, Huang X, Mu G, Hu S, Hu X, Gong D, He X, Yu H. 
Comparing blind spots of unsedated ultrafine, sedated, and unsedated conventional gastroscopy with and 
without artificial intelligence: a prospective, single-blind, 3-parallel-group, randomized, single-center trial. 
Gastrointest Endosc 2020; 91: 332-339.e3 [PMID: 31541626 DOI: 10.1016/j.gie.2019.09.016]

54     

Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med 2019; 
25: 44-56 [PMID: 30617339 DOI: 10.1038/s41591-018-0300-7]

55     

Yamada M, Saito Y, Imaoka H, Saiko M, Yamada S, Kondo H, Takamaru H, Sakamoto T, Sese J, Kuchiba 
A, Shibata T, Hamamoto R. Development of a real-time endoscopic image diagnosis support system using 
deep learning technology in colonoscopy. Sci Rep 2019; 9: 14465 [PMID: 31594962 DOI: 
10.1038/s41598-019-50567-5]

56     

Klare P, Sander C, Prinzen M, Haller B, Nowack S, Abdelhafez M, Poszler A, Brown H, Wilhelm D, 
Schmid RM, von Delius S, Wittenberg T. Automated polyp detection in the colorectum: a prospective study 
(with videos). Gastrointest Endosc 2019; 89: 576-582.e1 [PMID: 30342029 DOI: 10.1016/j.gie.2018.09.042]

57     

Song EM, Park B, Ha CA, Hwang SW, Park SH, Yang DH, Ye BD, Myung SJ, Yang SK, Kim N, Byeon JS. 
Endoscopic diagnosis and treatment planning for colorectal polyps using a deep-learning model. Sci Rep 
2020; 10: 30 [PMID: 31913337 DOI: 10.1038/s41598-019-56697-0]

58     

Zachariah R, Samarasena J, Luba D, Duh E, Dao T, Requa J, Ninh A, Karnes W. Prediction of Polyp 
Pathology Using Convolutional Neural Networks Achieves "Resect and Discard" Thresholds. Am J 
Gastroenterol 2020; 115: 138-144 [PMID: 31651444 DOI: 10.14309/ajg.0000000000000429]

59     

http://www.ncbi.nlm.nih.gov/pubmed/32036941
https://dx.doi.org/10.1016/j.gie.2019.10.026
http://www.ncbi.nlm.nih.gov/pubmed/31375599
https://dx.doi.org/10.1136/gutjnl-2019-319347
http://www.ncbi.nlm.nih.gov/pubmed/30761584
https://dx.doi.org/10.1111/apt.15145
http://www.ncbi.nlm.nih.gov/pubmed/28798042
https://dx.doi.org/10.1136/gutjnl-2016-313677
http://www.ncbi.nlm.nih.gov/pubmed/30707177
https://dx.doi.org/10.1097/CM9.0000000000000095
http://www.ncbi.nlm.nih.gov/pubmed/29042219
https://dx.doi.org/10.1053/j.gastro.2017.10.010
http://www.ncbi.nlm.nih.gov/pubmed/30858305
https://dx.doi.org/10.1136/gutjnl-2018-317366
http://www.ncbi.nlm.nih.gov/pubmed/30255462
https://dx.doi.org/10.1007/s11548-018-1864-x
http://www.ncbi.nlm.nih.gov/pubmed/31541626
https://dx.doi.org/10.1016/j.gie.2019.09.016
http://www.ncbi.nlm.nih.gov/pubmed/30617339
https://dx.doi.org/10.1038/s41591-018-0300-7
http://www.ncbi.nlm.nih.gov/pubmed/31594962
https://dx.doi.org/10.1038/s41598-019-50567-5
http://www.ncbi.nlm.nih.gov/pubmed/30342029
https://dx.doi.org/10.1016/j.gie.2018.09.042
http://www.ncbi.nlm.nih.gov/pubmed/31913337
https://dx.doi.org/10.1038/s41598-019-56697-0
http://www.ncbi.nlm.nih.gov/pubmed/31651444
https://dx.doi.org/10.14309/ajg.0000000000000429


Published by Baishideng Publishing Group Inc 

7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA 

Telephone: +1-925-3991568 

E-mail: bpgoffice@wjgnet.com 

Help Desk: https://www.f6publishing.com/helpdesk 

https://www.wjgnet.com

© 2020 Baishideng Publishing Group Inc. All rights reserved.

mailto:bpgoffice@wjgnet.com
https://www.f6publishing.com/helpdesk
https://www.wjgnet.com


Artificial Intelligence in
Gastrointestinal Endoscopy

ISSN 2689-7164 (online)

Artif Intell Gastrointest Endosc  2020 October 28; 1(2): 28-43

Published by Baishideng Publishing Group Inc



AIGE https://www.wjgnet.com I October 28, 2020 Volume 1 Issue 2

Artificial Intelligence in 

Gastrointestinal 
EndoscopyA I G E

Contents Bimonthly Volume 1 Number 2 October 28, 2020

EDITORIAL

Artificial intelligence in Barrett’s esophagus: A renaissance but not a reformation28

Chang K, Jackson CS, Vega KJ

MINIREVIEWS

Understanding deep learning in capsule endoscopy: Can artificial intelligence enhance clinical practice?33

Atsawarungruangkit A, Elfanagely Y, Asombang AW, Rupawala A, Rich HG



AIGE https://www.wjgnet.com II October 28, 2020 Volume 1 Issue 2

Artificial Intelligence in Gastrointestinal Endoscopy
Contents

Bimonthly Volume 1 Number 2 October 28, 2020

ABOUT COVER

Editorial board member of Artificial Intelligence in Gastrointestinal Endoscopy, Dr. Marcello Maida received his 
medical degree in 2009, summa cum laude, at the University of Palermo (Italy), where he went on to perform his 
clinical training in gastroenterology. He is currently a consultant gastroenterologist at S. Elia - Raimondi Hospital 
in Caltanissetta (Italy), a member of the governing council of the Young Italian Gastroenterologists Association, 
and a manager of Gastrolearning, the Multimedia Educational Platform of Italian Medical Schools of 
Gastroenterology. Dr. Maida’s research interests span several areas of gastroenterology, including endoscopy and 
liver diseases. He is author of several peer-reviewed publications indexed on PubMed, including some of the best 
referral journals in gastroenterology. (L-Editor: Filipodia)

AIMS AND SCOPE

The primary aim of Artificial Intelligence in Gastrointestinal Endoscopy (AIGE, Artif Intell Gastrointest Endosc) is to 
provide scholars and readers from various fields of artificial intelligence in gastrointestinal endoscopy with a 
platform to publish high-quality basic and clinical research articles and communicate their research findings 
online. 
    AIGE mainly publishes articles reporting research results obtained in the field of artificial intelligence in 
gastrointestinal endoscopy and covering a wide range of topics, including artificial intelligence in capsule 
endoscopy, colonoscopy, double-balloon enteroscopy, duodenoscopy, endoscopic retrograde 
cholangiopancreatography, endosonography, esophagoscopy, gastrointestinal endoscopy, gastroscopy, 
laparoscopy, natural orifice endoscopic surgery, proctoscopy, and sigmoidoscopy. 

INDEXING/ABSTRACTING

There is currently no indexing.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Li-Li Wang; Production Department Director: Yun-Xiaojian Wu; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL INSTRUCTIONS TO AUTHORS

Artificial Intelligence in Gastrointestinal Endoscopy https://www.wjgnet.com/bpg/gerinfo/204

ISSN GUIDELINES FOR ETHICS DOCUMENTS

ISSN 2689-7164 (online) https://www.wjgnet.com/bpg/GerInfo/287

LAUNCH DATE GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

June 28, 2020 https://www.wjgnet.com/bpg/gerinfo/240

FREQUENCY PUBLICATION ETHICS

Bimonthly https://www.wjgnet.com/bpg/GerInfo/288

EDITORS-IN-CHIEF PUBLICATION MISCONDUCT

Krish Ragunath, Sahin Coban, Fatih Altintoprak https://www.wjgnet.com/bpg/gerinfo/208

EDITORIAL BOARD MEMBERS ARTICLE PROCESSING CHARGE

https://www.wjgnet.com/2689-7164/editorialboard.htm https://www.wjgnet.com/bpg/gerinfo/242

PUBLICATION DATE STEPS FOR SUBMITTING MANUSCRIPTS

October 28, 2020 https://www.wjgnet.com/bpg/GerInfo/239

COPYRIGHT ONLINE SUBMISSION

© 2020 Baishideng Publishing Group Inc https://www.f6publishing.com

© 2020 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

E-mail: bpgoffice@wjgnet.com  https://www.wjgnet.com

https://www.wjgnet.com/bpg/gerinfo/204
https://www.wjgnet.com/bpg/GerInfo/287
https://www.wjgnet.com/bpg/gerinfo/240
https://www.wjgnet.com/bpg/GerInfo/288
https://www.wjgnet.com/bpg/gerinfo/208
https://www.wjgnet.com/2689-7164/editorialboard.htm
https://www.wjgnet.com/bpg/gerinfo/242
https://www.wjgnet.com/bpg/GerInfo/239
https://www.f6publishing.com
mailto:bpgoffice@wjgnet.com
https://www.wjgnet.com


AIGE https://www.wjgnet.com 28 October 28, 2020 Volume 1 Issue 2

Artificial Intelligence in 

Gastrointestinal 
EndoscopyA I G E

Submit a Manuscript: https://www.f6publishing.com Artif Intell Gastrointest Endosc 2020 October 28; 1(2): 28-32

DOI: 10.37126/aige.v1.i2.28 ISSN 2689-7164 (online)

EDITORIAL

Artificial intelligence in Barrett’s esophagus: A renaissance but not a 
reformation

Karen Chang, Christian S Jackson, Kenneth J Vega

ORCID number: Karen Chang 0000-
0002-1523-1587; Christian S Jackson 
0000-0003-4229-4206; Kenneth J 
Vega 0000-0002-2432-6123.

Author contributions: All authors 
planned the editorial and reviewed 
all data included; all authors wrote 
the editorial and revised it for 
intellectual content; and approved 
the final submitted version; Vega 
KJ is the editorial guarantor.

Conflict-of-interest statement: All 
authors have no conflict of 
interests to declare.

Open-Access: This article is an 
open-access article that was 
selected by an in-house editor and 
fully peer-reviewed by external 
reviewers. It is distributed in 
accordance with the Creative 
Commons Attribution 
NonCommercial (CC BY-NC 4.0) 
license, which permits others to 
distribute, remix, adapt, build 
upon this work non-commercially, 
and license their derivative works 
on different terms, provided the 
original work is properly cited and 
the use is non-commercial. See: htt
p://creativecommons.org/License
s/by-nc/4.0/

Manuscript source: Invited 
manuscript

Received: October 10, 2020 
Peer-review started: October 10, 

Karen Chang, Department of Internal Medicine, University of California, Riverside School of 
Medicine, Riverside, CA 92521, United States

Christian S Jackson, Gastroenterology Section, VA Loma Linda Healthcare Syst, Loma Linda, 
CA 92357, United States

Kenneth J Vega, Division of Gastroenterology and Hepatology, Department of Medicine, 
Augusta University-Medical College of Georgia, Augusta, GA 30912, United States

Corresponding author: Kenneth J Vega, MD, Professor, Division of Gastroenterology and 
Hepatology, Department of Medicine, Augusta University-Medical College of Georgia, 1120 
15th Street, AD 2226, Augusta, GA 30912, United States. kvega@augusta.edu

Abstract
Esophageal cancer remains as one of the top ten causes of cancer-related death in 
the United States. The primary risk factor for esophageal adenocarcinoma is the 
presence of Barrett’s esophagus (BE). Currently, identification of early dysplasia 
in BE patients requires an experienced endoscopist performing a diagnostic 
endoscopy with random 4-quadrant biopsies taken every 1-2 cm using 
appropriate surveillance intervals. Currently, there is significant difficulty for 
endoscopists to distinguish different forms of dysplastic BE as well as early 
adenocarcinoma due to subtleties in mucosal texture and color. This obstacle 
makes taking multiple random biopsies necessary for appropriate surveillance 
and diagnosis. Recent advances in artificial intelligence (AI) can assist 
gastroenterologists in identifying areas of likely dysplasia within identified BE 
and perform targeted biopsies, thus decreasing procedure time, sedation time, 
and risk to the patient along with maximizing potential biopsy yield. Though 
using AI represents an exciting frontier in endoscopic medicine, recent studies are 
limited by selection bias, generalizability, and lack of robustness for universal use. 
Before AI can be reliably employed for BE in the future, these issues need to be 
fully addressed and tested in prospective, randomized trials. Only after that is 
achieved, will the benefit of AI in those with BE be fully realized.

Key Words: Barrett's esophagus; Artificial intelligence; Machine learning; Cognitive neural 
networks; Computer aided diagnosis; Endoscopy
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Core Tip: Screening and surveillance in patients with Barrett’s esophagus (BE) remain 
problematic in regards to accuracy and adherence. This occurs in spite of recom-
mendations and advances in endoscopic imaging. Artificial intelligence (AI) 
algorithms assist in endoscopic evaluation of BE by identifying potential targets for 
biopsy. This may occur by increasing endoscopic efficiency and diagnosing accuracy 
by decreasing procedure time. AI in BE has been developed by expert endoscopists and 
appear to perform similarly among them. At this point, the benefit of AI in BE may be 
for use by non-expert endoscopists and trainees to maximize BE endoscopic 
evaluation.

Citation: Chang K, Jackson CS, Vega KJ. Artificial intelligence in Barrett’s esophagus: A 
renaissance but not a reformation. Artif Intell Gastrointest Endosc 2020; 1(2): 28-32
URL: https://www.wjgnet.com/2689-7164/full/v1/i2/28.htm
DOI: https://dx.doi.org/10.37126/aige.v1.i2.28

INTRODUCTION
In 2020, the United States is estimated to record over 18000 new esophageal cancer 
cases and over 16000 deaths[1]. Furthermore, esophageal cancer remains in the top ten 
of cancers diagnosed and cause of cancer related death nationally. One common risk 
factor for esophageal adenocarcinoma (EAC) is the presence of Barrett’s esophagus 
(BE). Currently, identification of early dysplasia requires an experienced endoscopist 
performing a diagnostic endoscopy consisting of random 4-quadrant biopsies to be 
taken every 1-2 cm within appropriate surveillance intervals based on absence or 
presence of dysplasia seen in the random biopsies[2-5]. Unfortunately, adherence to this 
recommendation remains inconsistent, particularly with low-grade dysplasia. Its 
subtle appearance and discontinuous nature can make it difficult to accurately biopsy 
areas for tissue pathology to confirm or rule out the diagnosis. In addition, there is 
significant difficulty for endoscopists to distinguish BE with low-grade dysplasiafrom 
high-grade dysplasia (HGD) or early adenocarcinoma. To combat this, high-definition 
white light, narrow band imaging (NBI), probe-based confocal endomicroscopy 
(pCLE), volumetric laser endomicroscopy (VLE) and optical computed tomography 
among others have all been tested and employed an in attempt to increase biopsy yield 
for accurate diagnosis[6-9]. However, early EAC is often flat and difficult to distinguish 
from the surrounding non-dysplastic Barrett’s mucosa, even with these endoscopic 
advances. The rate-limiting step among of these technologies is that they are operator 
dependent, requiring hand-eye coordination to distinguish and biopsy suspicious 
areas, often-taking years to acquire the necessary skill set. Theoretically, artificial 
intelligence (AI) can assist in this by using methods of deep learning to identify and 
process - in real-time - endoscopic data that may not consciously appreciated by 
humans such as subtle changes in color and texture to aid in taking targeted biopsies 
rather than random biopsies.

There have been recent advances in the development and testing of AI and various 
machine learning (ML) algorithms to improve the ability to identify dysplastic and 
malignant mucosa. Previously, computer algorithms were trained to classify a 
patient’s likelihood for EAC based on symptoms or compare patient biopsy cDNA 
microarrays to known EAC samples. These methods drew us closer to accurately 
diagnosing dysplasia and malignant mucosa, but their sensitivities/specificities could 
not match the parameters outlined in American Society for Gastrointestinal 
Endoscopy’s Preservation and Incorporation of Valuable Endoscopic Innovations 
(PIVI) criteria for new technologies. PIVI criteria recommends that the sensitivity 
should be at least 0.90, specificity should be at least 0.80 and a negative predictive 
value of at least 0.98 for detecting HGD or BE[10]. AI makes use of several methods of 
ML. One commonly used method is the cognitive neural network (CNN). In CNN, 
each node (or “neuron”) is connected to other nodes in a way that mimics real human 
neural networking. Several layers of neurons can exist to make a single decision to call 
a grouping of pixels on an image either normal tissue or dysplasia. Multiple recent 
studies have already experimented with the capabilities of such computer-aided 
diagnosis (CAD) (Table 1). The advantages that AI appears to confer per-endoscopy is 
a removal of the inter-observer or intra-observer variability in identification of non-
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Table 1 Computer-aided diagnosis of Barrett’s esophagus

Ref. Year Study 
design Lesions Imaging 

modality
Image 
qualification

Teaching 
dataset 

Validation 
method Outcomes

Compared to 
expert/current 
standard

van der 
Sommen 
et al[11]

2016 Retrospective HGD, early 
EAC

WLI High quality, clear 
visible/absence of 
lesions 

100 images LOO Per-image 
SPEC/SENS: 
83%/83%; Per-
patient 
SPEC/SENS: 
86%/87%

Inferior

de Groof 
et al[12]

2019 Retrospective Non-
dysplastic 
and 
dysplastic 
BE

WLI 1280 × 1024 pixels 
– HD

60 images LOO Accuracy: 0.92; 
SENS: 0.95; SPEC: 
0.85

NA

Swager 
et al[13]

2017 Retrospective HGD, early 
EAC

VLE High quality image 
database

60 images LOO AUC: 0.95, 0.89, 
0.91

Superior

Ebigbo 
et al[15]

2020 Prospective Early EAC WLI 1350 × 1080 pixels 
and 1600 × 1200 
pixels – HD

129 images LOO Accuracy: 0.899; 
SENS: 0.837; SPEC: 
1.00

NA

AUC: Area under the curve; BE: Barrett’s esophagus; EAC: Esophageal adenocarcinoma; HD: High definition; HGD: High-grade dysplasia; LOO: LEAVE-
one-out; NA: Not available; SENS: Sensitivity; SPEC: Specificity; VLE: Volumetric laser endomicroscopy; WLI: White light imaging.

normal lesions, combined with rapid, objective analysis of all visual inputs in such a 
way that is consistent and not subject to fatigue. CAD can allow endoscopists to take 
targeted, high-yield biopsies in real-time. Compared to taking random biopsies per the 
Seattle protocol or using enhanced imaging, CAD may increase efficiency and 
accuracy for making a diagnosis by limiting the chance of missing neoplastic mucosa. 
Moreover, CAD may decrease risk by decreasing sedation time secondary to decreased 
procedure length.

Recent studies would indicate that CAD can be successful in the detection of 
neoplastic lesions in BE. Von Der Sommen et al[11] developed a ML algorithm that used 
CAD to analyze texture and color in static images to detect early neoplastic lesions in 
BE. The sensitivity and specificity were between 0.90 to 1.00 and 0.65 to 0.91 
respectively. In a study by Groof et al[12], six experts identified likely neoplastic tissue in 
the same image and used these expert-delineated images to train the computer 
algorithm to identify neoplastic BE and non-dysplastic BE in test cases. The resulting 
sensitivity and specificity of the computer algorithm was 0.95 and 0.85 respectively. 
Swager et al[13] used CAD on ex vivo VLE images to retrospectively detect non-
dysplastic BE and HGD or early adenocarcinoma. They were able to achieve a 
sensitivity of 0.90 and specificity of 0.93 while using VLE as the reference images 
rather than high-definition white light endoscopy.

Though the data is promising, nearly all research has focused on training an 
algorithm on a set of retrospectively gathered images. Because of this, these studies are 
unfortunately subject to selection bias since the images are often curated for high 
definition and typically from a single endoscopy center. Therefore, the algorithms are 
usually overtrained on a relatively small sample set and not generalizable to other 
images of poorer quality or a population with different incidence and/or prevalence of 
BE. A sparing number of prospective or real-time studies currently exist and these are 
performed on a rather small number of samples. Furthermore, standardization of AI 
systems is proving difficult, given that the details of the algorithm are in a “black box” 
and inaccessible to critique and direct modifications. The struggles that have been 
encountered in using AI for identification of Barrett’s mucosa have been encountered 
in identifying early esophageal cancers. Though promising, the thresholds to detect 
early esophageal cancer are below PIVI criteria which may be secondary to limited 
images and lack of ability to identify images in real time. Hashimoto et al[14] may have 
found a way to overcome previous difficulties by being able to create a faster 
algorithm which allowed for a real time video overlay using a large database of 
images. Using this technique, Hashimoto et al[14] were able to identify early esophageal 
neoplasms with high accuracy.

The process of standardization of ML algorithms poses a difficult challenge. The 
algorithm may be different for white light endoscopy compared to NBI, VLE or pCLE. 
It is possible that subtle differences such as the brand of endoscope, wavelength of 
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light or white balance could impact specificity or sensitivity of a tested algorithm. 
There is no guarantee that a single algorithm would work both in populations of high 
prevalence of BE and populations of low prevalence. Ideally, several algorithms 
should be tested prospectively and compared to the current gold standard of random 
biopsy in large, multicenter randomized clinical trials. Some of these studies are 
currently ongoing. User databases such as ImageNet or GastroNet contain samples of 
labeled images for use for training and testing of algorithms, but there is need for 
databases of patients with varying prevalence of risk factors for BE to determine if a 
single algorithm is robust enough to accurately diagnose BE nationwide.

To date, the ML platforms used have been developed by expert endoscopists. A 
recent study published by Ebigbo et al[15] used real-time AI to identify cancer in BE and 
found that the AI system performed in a similar fashion to the expert endoscopist. 
Such programs can also help train non-experts and gastroenterology fellows alike by 
giving real-time feedback, thus propagating more expert endoscopists in a shortened 
timeframe. Of course, endoscopists who are not BE experts can also benefit as well.

CONCLUSION
AI represents a renaissance in endoscopy, but not a reformation. The benefit may lie in 
the improvement in recognition of dysplastic and malignant tissue among non-expert 
endoscopists or gastroenterology fellows, since expert endoscopists have similar 
performance to AI. Generalizability, robustness of a single or few algorithms that can 
apply to either different imaging modalities or diverse populations, and the ability to 
easily modify an algorithm are current obstacles that need to be addressed before we 
can reliably use AI in endoscopic management of BE.
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Abstract
Wireless capsule endoscopy (WCE) enables physicians to examine the 
gastrointestinal tract by transmitting images wirelessly from a disposable capsule 
to a data recorder. Although WCE is the least invasive endoscopy technique for 
diagnosing gastrointestinal disorders, interpreting a WCE study requires 
significant time effort and training. Analysis of images by artificial intelligence, 
through advances such as machine or deep learning, has been increasingly 
applied to medical imaging. There has been substantial interest in using deep 
learning to detect various gastrointestinal disorders based on WCE images. This 
article discusses basic knowledge of deep learning, applications of deep learning 
in WCE, and the implementation of deep learning model in a clinical setting. We 
anticipate continued research investigating the use of deep learning in 
interpreting WCE studies to generate predictive algorithms and aid in the 
diagnosis of gastrointestinal disorders.

Key Words: Capsule endoscopy; Deep learning; Machine learning; Wireless capsule 
endoscopy; Small bowel capsule; Video capsule endoscopy
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Core Tip: Wireless capsule endoscopy is the least invasive endoscopy technique for 
investigating the gastrointestinal tract. However, it takes a significant amount of time 
for interpreting the results. Deep learning has been increasingly applied to interpret 
capsule endoscopy images. We have summarized deep learning’s framework, various 
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INTRODUCTION
Since 1868, endoscopy has been constantly evolving and improving to assess the 
lumen and mucosa of the gastrointestinal tract, including the esophagus, stomach, 
colon, and parts of the small bowel[1]. Despite its utility, endoscopic examination of the 
small intestine is limited by its length and distance from accessible orifices[2-4]. This 
limitation is a factor that contributed to the development of wireless capsule 
endoscopy (WCE).

Developed in the mid-1990s, WCE utilizes an ingestible miniature camera that can 
directly view the esophagus, stomach, entire small intestine, and colon without pain, 
sedation, or air insufflation[2,5-7]. An important clinical application of WCE is the 
evaluation of gastrointestinal bleeding after a high quality bidirectional conventional 
endoscopy and colonoscopy does not identify a source of bleeding[5]. A typical WCE 
study lasts 8 to 12 h and generates 50000-100000 images. Reviewing that quantity of 
images requires significant time effort and training. Additionally, abnormalities in the 
gastrointestinal tract may be present in only one or two frames of the video which may 
be missed due to oversight[2]. An automatic computer-aided diagnosis system may aid 
and support physicians in their analysis of images captured by WCE.

Artificial intelligence (AI), an aspect of computer-aided design, has been rapidly 
expanding and permeating in academia and industry[8]. AI involves computer 
programs that perform functions associated with human intelligence[9,10]. Specific 
features of AI include computer learning and problem solving. AI was first described 
as the development of computer systems to perform tasks that require human 
intelligence, which can include decision making and speech recognition[11]. Many 
techniques of AI have been proposed to facilitate the recognition and prediction of 
patterns[12].

Machine learning (ML) is an application of AI that provides systems with the ability 
to automatically learn and improve from experience without explicit programming[13]. 
ML can recognize patterns from datasets to create algorithms and make 
predictions[10,12]. A tremendous breakthrough in ML has been the development of deep 
neural networks (also known as deep learning)[13]. Deep learning consists of massive 
multilayer networks of artificial neurons that can automatically discover useful 
features. To put it simply, deep learning can extract more patterns from high 
dimensional data[5,12]. Several deep learning models have been reported in the 
literature and are differentiated by their application[12]. Convolutional neural network 
(CNN), a type of deep learning, is highly effective at performing image analysis[8,13,14]. 
Given CNN’s utility in image analysis, applications for CNN have extended into the 
medical field, including gastroenterology[8,14]. The main drawback of deep learning is a 
long training time. Advances in graphic processing units, however, have drastically 
reduced the training time of deep learning from days or weeks to hours or days[15].

ML and CNN have been increasingly explored and applied to diagnostic images 
found in radiology, pathology, and dermatology[15-18]. Likewise, ML and CNN have 
utility in endoscopy and WCE through image-based interpretation without alteration 
of the existing procedures[8,11]. Current applications of ML and CNN in 
gastroenterology include polyp detection, esophageal cancer diagnosis, and ulcer 
detection through image-based interpretation from WCE. WCE is among the top 
interests of AI researchers in gastroenterology.
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LITERATURE REVIEW
We conducted a literature review on December 15, 2019 and updated it on March 31, 
2020 on PubMed/MEDLINE database and IEEE Xplore digital library. The search 
phrase used for query data in PubMed/MEDLINE database was ("Capsule 
Endoscopy") AND ("Deep Learning" OR "Neural Network" OR "Neural Networks"). 
Similarly, the search phrase used for query data in IEEE Xplore digital library was 
("All Metadata":"Capsule Endoscopy") AND (("All Metadata":"Deep Learning") OR 
("All Metadata":"Neural Network") OR ("All Metadata":"Neural Networks")). As 
presented in Figure 1, we found 50 records in PubMed/MEDLINE database and 71 
records in IEEE Xplore digital library. After removing 14 duplicate records, the total 
number of distinct records were 107.

Only articles written in English language or available in English translation were 
considered. Conference abstracts, review articles, magazine articles, and unpublished 
studies were excluded to ensure quality. At this stage, two authors (AA and YE) 
independently reviewed whether the studies met the above inclusion criteria based on 
the title and abstract. Then, the articles that passed the initial screening were 
independently reviewed again based on the full-text articles to locate all included 
studies within a predefined scope of this article.

USE OF DEEP LEARNING FOR CLASSIFYING GASTROINTESTINAL 
DISORDERS
The most common indication for using WCE is the evaluation of small intestinal 
bleeding. WCE has also be used to diagnose other small intestinal disorders, such as 
celiac disease, Crohn’s disease, polyps, and tumors, for the evaluation of esophageal 
pathology in non-cardiac chest pain, and for colon cancer screening. As shown in 
Table 1, previous studies have focused on the use of deep learning for classifying 
gastrointestinal diseases and lesions identified on WCE images. Unsurprisingly, a 
frequently investigated outcome in published literature is bleeding. Deep learning 
models have enhanced WCE’s ability to detect bleeding lesions (including suspected 
blood content and angioectasia) with relatively high sensitivity and specificity[19-27]. In 
addition to bleeding, researchers have also used deep learning models in WCE to 
classify other gastrointestinal lesions such as ulcers[19-21,28-32], Crohn’s disease[33], 
polyps[7,19-21,34], celiac disease[6], and hookworm[35].

Deep network architectures
The deep network architecture is the full arrangement of neural networks in deep 
learning models covering input layer, hidden layers, and output layer. Although there 
were some variations with the deep network architecture, 16 out of 17 studies in 
Table 1 used CNN-based architectures in their deep learning models. The choice of 
deep network architectures depends on the classification objectives and individual 
research group. Nevertheless, many research groups prefer to use the well-known 
CNN-based architectures when classifying WCE images or benchmarking the 
performance of their custom deep learning architectures. These prebuilt CNN-based 
architects include LeNet[25], AlexNet[25,27,31,32], GoogLeNet[6,25,31], VGG-Net[25], ResNet[20,22,30], 
RetinaNet[29], Single Shot MultiBox Detector[23,28,34], and Xception[33].

WCE devices
In addition to variations in the deep learning architect, researchers had some variation 
in WCE device. There were three brands of WCE devices mentioned in these deep 
learning studies: PillCam (Medtronics), NaviCam (Ankon Technologies), and 
MiroCam (IntroMedic). Deep learning models can be incorporated with each device. 
However, different devices have different sizes and qualities of raw images, 
brightness, and camera angles. Since these devices are not standardized, the 
application of a specific deep learning model may not perform at the same prediction 
accuracy when applied universally to the other WCE devices.

Image resolution
Although the size and quality of the original WCE images is dependent on the device, 
image resolution is dependent on training time, deep network architecture, and lesion 
types. Intuitively, physicians prefer a higher image resolution when making an image-
based diagnosis. However, higher image resolutions can lead to an increase in 
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Table 1 Deep learning applications in wireless capsule endoscopy for classifying gastrointestinal disorders

Ref. Class/outcome 
variable

Deep network 
architecture Device/image resolution Training and internal 

validation dataset
Testing/external validation 
dataset Accuracy (%)/AUC Sensitivity 

(%)/specificity (%)

Majid et al[19], 
2020, NA

Multiple lesions 
(bleeding, esophagitis, 
ulcer, polyp)

CNN with classical 
features fusion and 
selection

NA/224 × 224 pixels 70% of 12889 images from 
multiple databases

30% of 12889 images from multiple 
databases

96.5/NA 96.5/NA

Ding et al[20], 
2019, China

Multiple SB lesions1 CNN (ResNet 152) SB-CE by Ankon 
Technologies/480 × 480 
pixels

158235 images from 1970 
patients

113268334 images from 5000 patients NA/NA 99.88/100 (per patient); 
99.90/100 (per lesion)

Iakovidis 
et al[21], 2018, 
NA

Multiple SB lesions2 CNN and iterative 
cluster unification

(1) NA/489 × 409 pixels; 
and (2) MiroCam CE/320 × 
320 pixels

(1) 465 images from 1063 
volunteers; and (2) 852 images

(1) 233 images from 1063 volunteers; 
and (2) 344 images

(1) 89.9/0.963; and (2) 
77.5/0.814

(1) 90.7/88.2; and (2) 
36.2/91.3

Aoki et al[22], 
2020, Japan

Bleeding (blood content) CNN (ResNet50) Pillcam SB2 or SB3 CE / 224 
× 224 pixels

27847 images from 41 patients 10208 images from 25 patients 99.89/0.9998 96.63/99.96

Tsuboi et al[23], 
2019, Japan

Bleeding (SB 
angioectasia)

CNN (SSD) Pillcam SB2 or SB3 CE/300 
× 300 pixels

2237 images from 141 patients 10488 images from 28 patients NA/0.998 98.8/98.4

Leenhardt 
et al[24], 2019, 
France

Bleeding (SB 
angioectasia)

CNN-based semantic 
segmentation

Pillcam SB3 CE / NA 600 images 600 images NA/NA 96/100

Li et al[25], 2017, 
China

Bleeding (intestinal 
hemorrhage)

CNNs: (1) LeNet; (2) 
AlexNet; (3) GoogLeNet; 
and (4) VGG-Net

NA/NA 9672 images 2418 images NA/NA (1) 99.91/96.2; (2) 
99.96/98.72; (3) 100/98.73; 
and (4) 99.96/98.72

Jia et al[26], 2017, 
Hong Kong, 
China

Bleeding (both active and 
inactive)

CNN NA/240 × 240 pixels 1000 images 500 images NA/NA 91.0/NA

Jia et al[27], 2016, 
Hong Kong, 
China

Bleeding (both active and 
inactive)

CNN (Inspired by 
AlexNet)

NA/240 × 240 pixels 8200 images 1800 images NA/NA 99.2/NA

Aoki et al[28], 
2019, Japan

Ulcer (erosion or 
ulceration)

CNN (SSD) Pillcam SB2 or SB3 CE/300 
× 300 pixels

5360 images from 115 patients 10440 images from 65 patients 90.8/0.958 88.2/90.9

Wang et al[29], 
2019, China

Ulcer CNN (RetinaNet) Magnetic-guided CE by 
Ankon Technologies/480 × 
480 pixels

37278 images from 1204 
patient cases

9924 images from 300 patient cases 90.10/0.9469 89.71/90.48

Wang et al[30], 
2019, China

Ulcer CNN (based on ResNet 
34)

Magnetic-guided CE by 
Ankon Technologies/480 × 
480 pixels

80% of dataset from 1416 
patients

20% of dataset from 1416 patients 92.05/0.9726 91.64/92.42

Alaskar et al[31], 
2019, NA

Ulcer CNN: (1) GoogLeNet; 
and (2) AlexNet

NA /(1) 224 × 224 pixels; 
and (2) 227 × 227 pixels

336 images 105 images (1) 100/1; and (2) 100/1 (1) 100/100; and (2) 
100/100

Fan et al[32], (1) 5500 images; and (2) 7410 (1) 95.16/0.9891; and (2) (1) 96.80/94.79; and (2) (1) Ulcer; and (2) Erosion CNN (AlexNet) NA/511 × 511 pixels (1) 2750 images; and (2) 5500 images
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2018, China images 95.34/0.9863 93.67/95.98

Zhou et al[6], 
2017, USA

Celiac disease CNN (GoogLeNet) Pillcam SB2 CE/512 × 512 
pixels

8800 images from 11 patients 8000 images from 10 patients NA/NA 100/100

Klang et al[33], 
2020, Israel

Crohn’s disease CNN (Xception) Pillcam SB2 CE/299 × 299 
pixels

Experiment 1: 80% of 17640 
images from 49 patients; 
Experiment 2: Images from 48 
patients

Experiment 1: 20% of 17,640 images 
from 49 patients; Experiment 2: 
Images from 1 individual patient

Experiment 1: 95.4-
96.7/0.989-0.994; Experiment 
2: 73.7–98.2/0.940-0.999

Experiment 1: 92.5-
97.1/96.0-98.1; Experiment 
2: 69.5-100/56.8-100

Saito et al[34], 
2020, Japan

Polyp (protruding lesion) CNN (SSD) Pillcam SB2 or SB3 CE/300 
× 300 pixels

30584 images from 292 
patients

17507 images from 93 patients 84.5/0.911 90.7/79.8

Yuan et al[7], 
2017, Hong 
Kong, China

Polyp Deep neural network Pillcam SB CE/64 × 64 
pixels

Unknown proportion of 4000 
images from 35 patients

Unknown proportion of 4000 images 
from 35 patients

98/NA 98/99

He et al[35], 2018, 
Israel

Hookworm CNN Pillcam SB CE/227 × 227 
pixels

10 out of 11 patients (436796 
images from 11 patients)

1 individual patient (11-fold cross-
validation)

88.5/NA 84.6/88.6

1Abnormal classes include (1) inflammation; (2) ulcer; (3) polyps; (4) lymphangiectasia; (5) bleeding; (6) vascular disease; (7) protruding lesion; (8) lymphatic follicular hyperplasia; (9) diverticulum; and (10) parasite.
2Various lesions include gastritis, cancer, bleeding, ulcer, vascular anomalies, polypoid anomalies, and inflammation anomalies. AUC: Area under the receiver operating characteristic curve; CE: Capsule endoscopy; CNN: Convolutional 
neural networks; NA: Not available; SB: Small bowel; SSD: SingleShot Multi Box Detector.

trainable parameters, floating-point operations, memory requirements, and training 
time. To counteract this, original images are often modified (either cropped or resized) 
to lower image resolution. As illustrated in Table 1, image resolution can range from 
64 × 64 pixels to 512 × 512 pixels. The typical range of resolution is 240 × 240 pixels to 
320 × 320 pixels. It is worth noting that all studies using the images captured by 
NaviCam (Ankon Technologies) selected the original image resolution of 480 × 480 
pixels[20,29,30].

Data partitioning
A collection of WCE images labeled by physicians is the main data source, which is 
commonly referred to as a dataset. As a part of data pre-processing, the dataset is 
typically divided into two groups. This creates two different datasets from the labeled 
WCE images. The first dataset is for training and internally validating the deep 
learning models. Once the final model is selected, the second dataset is used for testing 
the performance of the model with the data the model has not seen. Hence, data 
partitioning is one of the factors that could impact the predive performance of deep 
learning models[36].

There were two common approaches for dividing the initial dataset identified 
during the literature review. The first was to partition the data based on the 
aggregated images. The second was to partition the data per patient or video. The ratio 
of the two datasets varied dependent on the study, but common ratios included 50:50, 
70:30 and 80:20[19,24,30,33]. The second approach to partition was often used when 
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Figure 1  Study selection.

evaluating the predictive performance per patient[6,20,32,33]. Therefore, we can notice that 
the data partitioning approach in WCE images highly depends on the study design.

Performance metrics
In medical literature, the most popular performance metrics are accuracy, sensitivity, 
specificity, and area under the curve (AUC). In the case of WCE images, where few 
WCE images are true lesions, accuracy and specificity can be skewed by deep learning 
models correctly identifying normal mucosa. For this reason, in data science, the focus 
on performance evaluation is on true positive classification[37]. In other words, data 
scientists prefer their models correctly classify the small number of positive images (
e.g., angioectasia, tumor, or ulcer) rather than correctly classifying the normal mucosa 
images. Instead of accuracy and sensitivity, precision [true positive/(true positive + 
false positive)], recall [true positive/(true positive + false negative)], and F1 score (a 
harmonic mean of precision and recall) are the common performance metrics used by 
data scientists. It is worth noting that precision and recall are also known as positive 
predictive value and sensitivity respectively. Unfortunately, only a limited number of 
studies fully reported these set of performance metrics, especially F1 score[19,25-27]. In 
short, it is important to consider the performance metrics when determining or 
comparing the performance of deep learning models.

USE OF DEEP LEARNING FOR CLASSIFYING NON-DISEASE OBJECTS
The main goal when analyzing WCE images is to detect abnormalities in the 
gastrointestinal tract. However, it is also helpful to detect normal mucosa and 
anatomical landmarks. As shown in Table 2, only two studies were designed to 
classify non-disease objects. The first study used deep learning to classify the 
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Table 2 Deep learning applications in wireless capsule endoscopy for classifying non-disease objects

Ref. Class/outcome 
variable

Deep network 
architecture

Device/image 
resolution

Training and 
internal 
validation 
dataset

Testing/external 
validation dataset

Accuracy 
(%)/AUC

Sensitivity 
(%)/specificity 
(%)

Seguí 
et al[38], 
2016, 
Spain

Scenes (turbid, bubbles, 
clear blob, wrinkles, 
wall)

CNN Pillcam SB2 
CE/100 × 100 
pixels

100000 images 
from 50 videos

20000 images from 50 
videos

96/NA NA/NA

Zou 
et al[5], 
2015, NA

Organ locations 
(stomach, small 
intestine, and colon)

CNN (AlexNet) NA/480 × 480 
pixels

60000 images 15000 images 95.52/NA NA/NA

AUC: Area under the receiver operating characteristic curve; CE: Capsule endoscopy; CNN: Convolutional neural networks; NA: Not available; SB: Small 
bowel.

complexities within the endoluminal scene, including turbid, bubbles, clear blob, 
wrinkles, and wall[38]. Although these images may not contribute to a final diagnosis, 
they can be used to characterize small intestine motility and to help rule out negative 
images. The second study created a predictive model for identifying organ locations 
such as the stomach, intestine, and colon[5]. Organ classification can be used to 
calculate the passage time of WCE in each organ and to determine if there are any 
motility disorders in the gastrointestinal tract. An important aspect of physician 
review of a WCE study is the identification of anatomical landmarks such as first 
images of the stomach, duodenum, and cecum which ultimately helps calculate 
capsule transit time through the small bowel. This transit time is vital to determining 
the location of lesion in the small bowel that may help guide treatment with deep 
enteroscopy techniques.

USEFULNESS OF DEEP LEARNING MODELS IN CLINICAL PRACTICE
An ideal goal for WCE would be the creation of a fully automated system for 
interpreting WCE images and generating accurate reports at least equivalent to 
conventional reading by physicians. Two retrospective studies compared the 
performance of conventional reading to the deep learning assisted reading 
(Table 3)[20,39]. The average reading times of deep learning assisted reading in both 
studies was less than 6 min. The average conventional reading time varied from 12 to 
97 min depending on the expertise of the reader and the scope of WCE reading. In 
terms of overall lesion detection rate, there was a 3%-8% improvement of deep 
learning assisted reading over conventional reading. Interestingly, the accuracy of the 
deep learning model (as calculated during development) was higher than the actual 
detection rate. These findings may reflect the real-world challenges impacting human 
and deep learning model collaborations. An additional limitation was that there was 
no clear definition on how reading time was determined (e.g., from data preprocessing 
to final report generation).

CHALLENGES
The goal when creating a deep learning model is to best fit your target function. 
Overfitting is a classic problem that can occur after creating the initial deep learning 
model. Overfitting occurs when a model learns the detail and noise of the training data 
too well to the extent that it negatively impacts the performance of the model on new 
data. Despite the standard methods for dividing datasets during training and testing, 
the detection rate in deep learning assisted trials are not as good when compared to 
the rates during the initial training and testing process[20,39]. The decreased performance 
could indicate that the model fits the training dataset too closely and does not perform 
well with an unseen dataset. Another explanation could be imperfect human and 
machine collaboration. Since the human physician is the one who makes the final 
diagnosis based on the information provided by the deep learning model, the 
misdetection could be derived from how human physicians use or trust the judgment 
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Table 3 Deep learning applications in wireless capsule endoscopy for improving the reading efficiency of wireless capsule endoscopy

Ref. Experiment type Scope of WCE reading 
/device Conventional reading Deep learning assisted 

reading P value

mean reading time (min): 
Trainee: 20.7; Expert: 12.2

mean reading time (min): 
Trainee: 5.2; Expert: 3.1 

< 0.001Aoki et al[39], 
2019, Japan

Retrospective study using 
anonymized data

SB section only/Pillcam SB3

Overall lesion detection rate: 
Trainee: 47%; Expert: 84%

Overall lesion detection 
rate: Trainee: 55%; Expert: 
87%

NS

mean reading time ± standard 
deviation (min): 96.6 ± 22.53

mean reading time ± 
standard deviation (min): 
5.9 ± 2.23

< 0.001Ding et al[20], 
2019, China

Retrospective study by 
randomly selected videos

Small bowel abnormalities/SB-
CE by Ankon Technologies

Overall lesion detection rate: 
41.43%

Overall lesion detection 
rate: 47.00%

NA1

1In per-patient analysis, deep learning assisted physician significantly outperformed conventional reading in detecting lymphangiectasia, lymphatic 
follicular, hyperplasia, inflammation, protruding lesion, and polyps. CE: Capsule endoscopy; NA: Not available; NS: Not significant; SB: Small bowel.

from deep learning models.
Traditionally, the risk stratification scores developed by one research team can be 

validated by another research team. Unfortunately, we have not seen the same level of 
transferability in deep learning research for WCE yet. As a result, the trials are very 
limited to their own research group and can be very difficult to have third party 
validation.

Each deep learning model is designed for a specific task that is based on the 
availability of positive lesions in their own dataset. Given this, it is questionable if it is 
even possible or effective to integrate these models. Integration can be even more 
complicated by the fact that each research group may use different devices, image 
resolutions, network architectures, and labeling practices.

One common barrier in medical device-related research is the use of proprietary file 
format. For example, the video file from PillCam device is stored in *.gvi and *.gvf 
file[40]. Thus, it may be difficult to extract data that is stored in the proprietary file 
format without help from the manufacturer. Such constraints may impact model 
integration and deployment. For example, it may take a longer time to prepare the files 
from deep learning models to use in a clinical setting. Also, there is no guarantee that 
the image resolution would be equivalent to the one seen in the proprietary reading 
software after extraction. For this reason, researchers should explore the pros and cons 
of each device available in their market to compare features and select the one that best 
aligns with their research goals.

Data preprocessing is the most time-consuming task in AI research. It is necessary to 
transform raw data into a ready-to-use and efficient format. Having a high-quality 
dataset is one of the key factors for creating a predictive model. By spending a lot of 
time extracting the data and labeling it, the dataset is a valuable asset to the research 
group. Ideally, high-quality datasets should be publicly available for researchers to 
use. However, there are a limited number of such datasets.

CONCLUSION
Since 2006, CNN-based architecture has proven to be an effective method for 
analyzing image data in various fields. Researchers have increasingly adopted CNN-
based architecture for solving image classification problems. In our literature review, 
seventeen papers were identified that applied deep learning in WCE to classify 
gastrointestinal disorders. Our literature review demonstrated that the majority of 
CNN-based deep learning models were nearly perfect with regard to accuracy, 
sensitivity, specificity, and AUC[9].

There were only a few studies applying deep learning models to address non-
disease objects, such as organ location and scenes in normal mucosa images (e.g., 
turbid, bubbles, clear blob, wrinkles, and wall). These non-disease objects are 
important building blocks toward a fully automated system and can aid in the 
identification of “landmarks” such as the first images of each bowel segment.

Although there seems to be an increasing amount of deep learning research on 
classifying WCE images, we are still in the early stages of investigating the utility of 
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deep learning in enhancing clinical practice. The studies we identified often reflected 
the more standard view of WCE, as a means to view areas of the small bowel not 
accessible by upper and lower endoscopy. As the scope of WCE grows beyond the 
small bowel, we expect to see deep learning research on WCE expand accordingly. In 
addition, deep learning could enhance WCE capability to become highly effective in 
clinical practice and patient care by improving the speed and accuracy of WCE 
reading as well as predicting the location of abnormalities. Regardless of existing 
limitations and constraints, we expect the research and development in this area will 
continue to grow rapidly in the next decade.

The studies gathered in this literature review were indexed by PubMed. We also 
investigated publications concerning the utility of deep learning in computer science, 
medical image processing, mathematical modeling, and electrical engineering. 
Unfortunately, we cannot ensure that we identified every publication outside of 
PubMed.

In addition, it is difficult to compare one deep learning model to another based on 
their performance metrics alone. Most researchers have focused more on reporting 
traditional performance metrics without F1 score. The best practice for comparing 
these models would be to benchmark their performances on the same dataset that the 
models have never been trained on. To do so, researchers would need to make their 
trained models publicly available (e.g., uploading them to GitHub). This would allow 
clinical trials on deep learning models to expand outside their research group.

The idea of using computational algorithms for analyzing WCE images is not 
entirely new. The earliest study identified was published in 2006[41]. Universal to all 
these studies was a central hypothesis investigating the ability of computational 
algorithms to improve the efficiency of reading WCE studies, specifically in terms of 
time and accuracy. The prospect of a fully automated system for interpreting WCE 
images would benefit patient care because of fast and accurate diagnoses of 
gastrointestinal medical conditions such as bleeding, polyps, Crohn’s disease, and 
cancer.
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Abstract
Over the past few years, emerging new approaches in endoscopic imaging 
technologies facilitate a high-quality assessment of lesions found in the 
gastrointestinal (GI) tract. Endocytoscopy (EC), as a novel tool in endoscopy, aids 
the more accurate evaluation of superficial mucosal surface. This review article 
aims to represent the most relevant information related to the latest EC 
technology and its clinical application in the lower GI tract diagnostic. We discuss 
EC-computer-aided diagnosis capability to differentiate between non-neoplastic 
and neoplastic lesion that offers a closer look to in-vivo assessment and diagnosis 
of cancerous tissue. Nevertheless, artificial-assisted EC diagnostics could also be 
employed with benefits in patients with inflammatory bowel disease (IBD) by 
accurately highlighting the presence of mucosal injury. In our review we included 
those studies comprising data about colonoscopy with narrow banding imaging 
and computer-aided diagnosis, as well as EC. Last but not least, artificial-assisted 
EC facilitates in-vivo diagnosis of the lower GI tract and may, in the future, 
remodel the field of in-vivo endoscopic diagnosis of colorectal lesions, 
representing another step towards the so-called optical biopsy.

Key Words: Endoscopic imaging; Endocytoscopy; Artificial intelligence; Artificial 
intelligence-assisted endoscopy; Colorectal cancer; Optical histology
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Core Tip: The possibility of obtaining "real-time histology" by endocytoscopy (EC) 
provides a time-saving and low-cost high-quality diagnosing process. It provides 
detailed detection and characterizations of gastrointestinal neoplasms, where EC 
defines the degree of neoplastic cellular transformation by visualizing variation in cell 
size, disorders of polarity, and nuclei deformity. Moreover, the EC system can evaluate 
the depth of cancer invasion and predict the therapeutic outcome. In line with this, one 
of the significant benefits from artificial intelligence (AI)-supported EC is avoiding 
unnecessary polypectomies and other pathological examinations and reducing 
redundant surgical procedures. Another major benefit of AI-assisted EC is to ensure 
enhanced delineation between benign and neoplastic colonic lesions. Furthermore, 
emerging EC-computer-aided diagnosis provides a novel endoscopic tool that 
contributes to the dramatic improvement of inflammatory bowel disease diagnosing 
and management.

Citation: Peshevska-Sekulovska M, Velikova TV, Peruhova M. Artificial intelligence assisted 
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INTRODUCTION
In the last decade, the improvement in endoscopic detection of lower gastrointestinal 
(GI) lesions has dramatically improved. Advancement in endoscopic imaging 
technologies leads to a high-quality assessment of lesions found in the GI tract. One of 
the novel tools in endoscopy is endocytoscopy (EC), based on the principle of ultra-
high magnification with intraprocedural stains[1]. This innovative endoscopic 
technique facilitates a more accurate evaluation of the superficial mucosal surface[2]. It 
allows real-time examination with the capability to distinguish normal from abnormal 
mucosa. EC allows evaluating the "in vivo" histological structure of colon epithelium 
by differentiation of colonic polyps and distinguishing invasive carcinoma from 
adenoma[3]. The aim of the “real-time” endoscopic diagnosis is time-saving and reduce 
medical patient costs. EC is a promising tool for the detection of GI abnormalities, 
which involves a contact light microscopy system with an ultra magnification 
capability (380-fold ultra-magnifying endoscopy), integrated into the distal tip of 
colonoscopy[4-7]. Using EC, we can perform "virtual histology" with high accuracy. It 
enables observation of cell stroma and nucleus, making it a perfect tool for diagnosing 
colorectal lesions[8].

In the last few years, with recent progress in artificial intelligence (AI), there is 
increasing interest in the application of computer-aided diagnosis (CAD) systems as a 
novel tool in improving the quality of EC[4]. The EC-CAD system’s diagnostic 
algorithm includes three major steps: Nuclear segmentation, mucosal feature 
extraction, and output of predicted pathological classification. The major benefits of 
using EC-CAD systems are “real-time” high diagnostic ability during colonoscopy by 
expert and trainee endoscopists[9]. Many recent studies showed a correspondence 
between EC-CAD and pathological findings of lower GI lesions, which allowed this 
diagnostic endoscopic method to serves as a form of on-site “optical biopsy”[5,8].

The main goal of this review article is to represent the most relevant information 
related to the latest EC technology and its clinical use in the diagnostic of the lower GI 
tract. We included those studies comprising data about colonoscopy with narrow 
banding imaging (NBI) and CAD, as well as EC.

There are many directions in which this new endoscopic tool finds implications. We 
discussed the current situation of EC-CAD in the diagnostic process. EC observation 
could show not only cellular atypia with lumen observation and nuclei of the mucosal 
surface layer. Thus, differentiation between non-neoplastic and neoplastic lesion offers 
a closer look at in-vivo assessment and cancerous tissue diagnosis. Another critical 
point discussed concerns EC-CAD diagnostics in patients with inflammatory bowel 
disease (IBD), by highlighting the importance of accurate evaluation of mucosal injury.

https://www.wjgnet.com/2689-7164/full/v1/i3/44.htm
https://dx.doi.org/10.37126/aige.v1.i3.44
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FROM THE PAST TO THE PRESENT
First-generation EC was introduced in the clinical practice in 2003 (XEC120U; 
Olympus Medical Systems Corp., Tokyo, Japan). Afterward, the improved version of 
EC with double integrated-type lens was launched in 2005 (GIF-Y0001; Olympus 
Medical Systems Corp., Tokyo, Japan). Four years later, in 2009, the third generation of 
EC appeared with a single integrated-type lens and smaller outer diameter (GIF-
Y0002; Olympus Medical Systems Corp., Tokyo, Japan). The latest version of EC 
arouses on the horizon in 2015 with the ability to provide high-quality colonoscopy 
(GIF-H290ECI; Olympus Medical Systems Corp., Tokyo, Japan). This latest model of 
EC comprises Magnified-NBI and EC observation with 520 × magnification[10]. Except 
for integrated EC, in the clinical practice exist a novel model of probe-based EC with 
higher magnification (1390×), providing simultaneously biopsy obtaining from the 
regions of interest[11].

In 2019, a new real-time interpretation of EC images, based on AI software, was 
introduced by Olympus. This new development is called "Endobrain" (EndoBRAIN; 
Cybernet Systems, Tokyo, Japan) and finds an application into ordinary colonoscopy 
as a helping tool for real-time diagnosis, allowing directly therapeutic decision[12].

PREPARATION AND STAINING OF THE COLONIC MUCOSA
EC requires good mucosal preparation to provide detailed images of colonic lesions. 
After intense washing of the mucosa with water, the second step of preparation is the 
application of simethicone and N-acetylcysteine[13]. The type of dye solution for 
mucosal staining is another crucial factor for informative imaging acquisition. Based 
on the literature data, three types of staining with different concentrations exist 
methylene blue (MB), toluidine blue, and crystal violet (CV). In 2006, Kodashima 
et al[14] published a protocol using 0.25% toluidine blue in the stomach and colon, with 
60-sec time-exposure. According to Ichimasa et al[15], a mixture of 1% MB and 0.05% CV 
for colonic EC is superior to other staining combinations.

ROLE OF AI-ASSISTED EC IN COLORECTAL POLYPS 
The possibility of obtaining "real-time histology" by EC provides time-saving and low-
cost high-quality endoscopy. EC defines the degree of neoplastic cellular 
transformation by visualizing variation in cell size, disorders of polarity, and nuclei 
deformity[2]. Another significant EC system contribution is evaluating cancer invasion 
depth and predicting the therapeutic outcomes[16]. An interesting prospective study 
published by Kudo et al[5] in 2011 has demonstrated data about the feasibility of new 
EC classification in colorectal lesions. This classification was especially indicated to 
differentiate neoplastic from non-neoplastic colorectal lesions[5].

EC classification has five categories, which showed the glandular lumen changes 
and cellular nuclei of the target lesions. This evaluation system includes: EC1a, which 
indicates normal mucosa, EC1b show non-neoplasia (hyperplastic polyps), EC2 – 
adenoma with low-grade dysplasia; EC3a indicates adenoma with high-grade 
dysplasia (HGD), EC3b stands for invasive cancer (Figure 1)[5]. Histological findings 
have verified the abovementioned classification according to the Vienna classification 
(Figure 2).

Utsumi et al[17] conducted a study to differentiate neoplastic from non-neoplastic 
diminutive polyps (DP). They compared the results from EC in EC1b and EC2 DP with 
those obtained by histopathological results. The data showed that EC could be a 
potential tool for real-time histology in distinguishing benign from malignant 
colorectal lesions[17].

Over the past several years, a new understanding of colorectal carcinogenesis has 
emerged. In the past, lesions diagnosed as hyperplastic polyps (HPs) were thought to 
have no malignant potential. Nowadays, these allegations have changed. In this 
context, HPs may predispose to cancer because of their ability to transform into 
serrated lesions. These lesions could be found anywhere in the colon, but they are 
mostly placed in the distal colon (70%-80%). It was established that HPs, with right-
side localization are more likely to have malignant potential.

Furthermore, although there are insufficient data on different microRNAs 
(miRNAs) expression profiles, they might play a role in serrated adenomas with 
different dysplasia grades. Compared to traditional colorectal carcinogenesis, 
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Figure 1 Endocytoscopy classification. This evaluation system includes endocytoscopy (EC) 1a, fusiform nuclei, and small round gland lumens - normal 
mucosa; EC1b, small granular nuclei and narrow, serrated gland lumens - non-neoplasia (hyperplastic polyps); EC2, slightly swollen fusiform nuclei or round nuclei 
and slit-like smooth gland lumens - adenoma with low-grade dysplasia; EC3a, plenty d swollen round nuclei and irregular gland lumens – adenoma with high-grade 
dysplasia, EC3b, plenty of highly distorted nuclei and unclear gland formation - invasive cancer. EC: endocytoscopy. This figure has been used with the permission of 
reference[5].

miRNAs’ pivotal role and their related signaling mechanisms in the serrated pathway 
of carcinogenesis await to be elucidated[18]. In line with this, AI-assisted endoscopy 
could be an excellent complementary tool to provide the right and timely diagnosis.

According to the 5th edition of WHO classification of colorectal serrated lesions and 
polyps, they are classified into three histopathological subtypes: HPs, sessile serrated 
lesions (SSLs), and traditional serrated adenomas (TSAs)[19]. TSAs are extremely rare < 
1% of all colorectal polyps, while HPs are the most common, comprising 
approximately 75% of all serrated polyps. SSLs (previously known as sessile serrated 
adenomas or sessile serrated polyps) cause nearly 25% of serrated polyps[20]. Thus, the 
management of serrated lesions depends on the accurate endoscopic diagnosis.

To provide a better understanding of serrated carcinogenesis and therapeutic 
strategies of these lesions, Kutsukawa et al[21] shed light on the accurate EC criteria for 
their proper diagnosis. In their study were included 785 SL, 712 were not observed 
with EC because of the smaller size (< 5 mm). The remaining 73 Lesions found out 12 
mixed serrated polys, 3 of them with the carcinoma component, which led to their 
exclusion from the study. The remaining 58 polyps were divided into 27 HPs, 12 SSLs, 
and 19 TSAs. There were no polyps with HGD among the obtained specimens. The EC 
characteristic subdivided serrated polyps as follows: HP has star-like lumens and 
round nuclei; SSLs have oval lumens and round nuclei, and TSA has serrated or 
villous lumens fusiform nuclei. Their results pointed out that EC could be a feasible 
diagnostic tool in managing SL’s therapeutic options. They concluded that SSLs and 
TSAs should be removed entirely. Indeed, many studies should be conducted 
regarding future therapeutic strategies related to SL[21].

Takeda’s recent study evaluated the EC’s diagnostic and therapeutic potential in 
juvenile polyps (JP). In the study, 154 JP were included, assessed by magnifying 
chromoendoscopy, 20 were analyzed by EC. The EC findings indicated that JP was 
characterized by dilatated ductal openings surrounded by normal glandular cells, 
greater distances between basal gland layers, and interstitial infiltration by 
inflammatory cells. This study showed that EC might be an additional diagnostic 
method for detecting JPs[22].

These findings indicate a tetralogy of magnifying chromoendoscopic findings 
characteristic of JPs: Reddish surfaces, surface erosion, open pits, and low pit density. 
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Figure 2 Endocytoscopy classification with endoscopic findings. EC: Endocytoscopy; LGD: Low-grade dysplasia; HGD: High-grade dysplasia.

There is also a triad of EC findings characteristic of JPs, namely dilated ductal 
openings surrounded by normal glandular cells, greater distances between basal gland 
layers, and interstitial infiltration by inflammatory cells. The aforementioned 
magnifying chromoendoscopic and EC characteristics of JPs could be very useful in 
diagnosing JPs.

One of the GE field’s critical issues is the ability of endoscopist to detect 
appropriately and characterize the different types of colon polyps. The combination of 
EC-CAD ameliorates the competence of endoscopists. Hence, the learning curve could 
be dramatically improved using EC-CAD as a diagnostic tool in lower GI endoscopy.

In line with this, an interesting study by Mori et al[23] revealed that EC-CAD could be 
a handy endoscopic device for the detection of DP as well as small polyps. The study 
was an international web-based trial, including 139 DPs and 205 small polyps (147 
neoplastic and 58 non-neoplastic). The results showed 89% accuracy for detecting DPs 
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by EC-CAD compared to results obtained by experts. Additionally, they reported 89% 
sensitivity and 88% specificity for small polyps detection and differentiation[23].

For the first time in 2019, Kudo et al[24] performed an Endobrain analysis of images 
based on EC-NBI. Five academic centers in Japan participated in this study, where ten 
experts and 20 trainees made the endoscopic diagnosis. The endoscopists estimated 
images from 100 cases using white light endoscopy, EC with methylene blue, and EC- 
NBI images. Only EC images were assessed by the Endobrain system. The results 
showed 96.9% sensitivity and 100% specificity of Endobrain in distinguishing benign 
from malignant colorectal lesions compared with endoscopists and pathologists’ 
findings[24].

On the other hand, Hassan et al[25], in 2020, published a comprehensive meta-
analysis that aimed to summarize all reported information related to CAD system 
performance in colorectal dysplasia. The authors intended to emphasize the 
paramount importance of the CAD system in colorectal neoplasia detection because of 
the high percentage of missed lesions at screening colonoscopy.

The meta-analysis included 4354 randomizes patients (2163 in the CAD-group and 
2191 in the control group). Five of them were performed in China and one in Italy 
from five studies. Their results give insight into how CAD could significantly increase 
the detection of colon polyps (DP, small and large adenomas), despite their location 
and their superficial morphology (flat and polypoid). Furthermore, they assumed that 
CAD significantly improved the detection rate of SSLs during colonoscopy. More 
interestingly, Hassan et al[25] reported nearly 2-fold enhanced diagnostics of advanced 
neoplasia. In detail, they concluded that CAD could lead to an increase in adenoma 
detection rate per colonoscopy, resp. 44% and 70%. The author emphasized that 
additional studies testing CAD in Western populations should be conducted to 
properly assess CAD’s role in the polyp detection rate[25].

An interesting and significant publication by Mori et al[26] investigated the cost-
effectiveness of AI in colonoscopy. The study investigated the performance of AI in the 
differentiation of colorectal polyps (neoplastic vs non-neoplastic). They included 207 
patients with 250 rectosigmoid DP. The authors analyzed the colonoscopy’s cost 
between two groups of patients with rectosigmoid polyps (≤ 5 mm). The first group 
included patients who underwent colonoscopy with a "diagnose and leave" strategy 
based on AI prediction. The second diagnostic and therapeutic strategy was "resect-all-
polyps”. Their results demonstrated that AI-assisted colonoscopy had 93.3% 
sensitivity, 95.2% specificity, and 95.2% negative predictive value in diagnostic 
colorectal neoplastic polyps. Moreover, they found out that the "diagnose and leave" 
strategy leads to a significant reduction in average colonoscopy costs. One of the 
study’s significant benefits was that colonoscopy supported by AI can save a large 
amount of money spent on excessive polypectomies and pathological examinations[26].

ROLE OF AI-ASSISTED EC IN COLORECTAL CANCER
A massive breakthrough in technological developments in the last decade allowed 
performing in vivo real-time histology of the GI tract by simply pushing a button. 
Emerging EC-CAD provides enhanced delineation between benign and neoplastic 
colonic lesions. Furthermore, this novel diagnostic tool contributes to the detailed 
detection and characterizations of GI neoplasms.

With the emerging AI in endoscopy, therapeutic options for treating large colonic 
lesions become more accessible and accurate. AI technology provides "real-time" 
histology, thus determines whether a sizeable colonic lesion (> 2 cm) should be treated 
by endoscopic resection or surgery. AI endoscopy significantly shortens the process 
for making the final endoscopic and histological diagnosis of colonic lesions and 
avoids unnecessary tissue biopsy.

Lui et al[27]’s group has advocated a study that aimed to evaluate the application of 
AI-assisted image classifier to define the feasibility of curative endoscopic resection for 
large colonic lesions based on non-magnified endoscopic images. They trained the AI 
image classifier by 8000 endoscopic images of large colonic lesions. In comparison, the 
validation set comprises 567 endoscopic images from 76 patients. Histology findings of 
resected specimens have been used as a gold standard for validation in the study. 
Curative endoscopic resection was performed only in patients with well-differentiated 
adenocarcinoma, ≤ 1 mm submucosal invasion as well as without any lymphovascular 
invasion. The results obtained by the AI image classifier were compared with those 
taken by endoscopists (seniors and juniors). In patients with the lesions mentioned 
earlier, which are indicated for endoscopic curative resection, AI has excellent 
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accuracy (85.5%). This study highlights the clinical implication of AI in predicting 
endoscopic curative resection of large colonic lesions (> 2 cm)[27].

To the best of our knowledge, Ichimasa et al were the first to publish an article about 
the role of AI in predicting lymph node metastasis (LNM) in patients with T1 
colorectal cancers (CRC). Their study aimed to point out that AI provides valuable 
information about the necessity for additional surgery after endoscopic resection for 
pT1 CRCs. One of the major key-points in deciding on additional surgery in patients 
who underwent endoscopic resection of T1 CRC is the presence of LNM. To minimize 
the necessity for additional surgery, the authors have used an AI model for predicting 
the possibility of LMN metastasis in patients with T1 CRC. The predicting LNM data 
were compared with those of the Japanese, European and American guidelines. The 
study results showed a 100% sensitivity of prediction LNM and a significant reduction 
of the unnecessary surgical procedure after endoscopic resection of T1 CRC without 
missing LNM positivity[28].

AI-ASSISTED EC IN INFLAMMATORY BOWEL DISEASES
With the implication of EC-CAD in clinical practice, the diagnostics of patients with 
inflammatory bowel disease (IBD) have dramatically improved. This novel endoscopic 
method allows for real-time histology diagnosis and predicts disease outcomes. Bessho 
et al[29] established an EC score system (ECSS) for assessment patients with IBD. ECSS 
assesses the shape, distance between crypts, and visibility of superficial microvessels. 
The system evaluated the severity of the disease according to the histological changes 
of the colonic mucosa. The authors also demonstrated a good correlation between this 
scoring system and Matt’s histological grading[29]. ECSS was up-graded by Ueda et al[30] 
in 2018 by adding additional indicators: The mucosa pits’ characteristics. Another 
benefit of this upgraded score system is the ability to predict disease relapse[30]. Using a 
probe-based EC with 1390× magnification, Neumann et al[31] shed light on EC’s role in 
identifying mucosa’s cellular structures in patients with IBD. This system allowed 
achieving a detailed analysis of ultrastructural patterns such as the nucleus - 
cytoplasm ratio and size and shape of the nucleus. The collected data provide the 
reliable distinction of different types of inflammatory cells in colonic mucosa[31]. In 
another study by Neumann et al[32], a concordance of 100% between standard 
histopathological grading and EC data was established. Another fascinating study by 
Nakazato et al[33], including 64 patients in clinical remission (Mayo 0 and Geboes score 
≤ 2), revealed that ECSS has high accuracy for histological remission. In conclusion, 
they accept that ECSS could be a reliable assessment tool for histological healing 
evaluation[33].

A study by Maeda et al[34] reports about developing the EC-CAD system (520-fold 
ultra-magnifying endoscope), predicting persistent histological inflammation of 
colonic mucosa in patients with ulcerative colitis. The study’s goal was to evaluate the 
colonic mucosa with the EC-CAD system to predict the onset of clinical exacerbation 
based on persistent inflammation of the mucosa. In their study, 187 patients with 
ulcerative colitis were included. They performed white light endoscopy to define the 
Mayo endoscopic score of colonic mucosa. After identifying the most severe inflamed 
area, they used EC with NBI mode. Their analyses showed that EC-CAD identified 
persistent histologic inflammation with 74% sensitivity and 97% specificity. Maeda 
et al[34] showed that EC-CAD has an incremental benefit for future therapeutic strategy. 
However, the authors considered more studies to be conducted because of the 
insufficient number of learning images[34].

CONCLUSION
Although the gold standard of histological observations of GI lesions based on a light 
microscopic analysis of hematoxylin and eosin-stained thin-slice specimens, a 
definition of optical biopsy has recently been introduced. Moreover, real-time EC 
evaluation can spare the histopathological diagnosis and allows the detection of cell-
level lesions and the assessment of cellular and structural atypia in vivo. Both methods 
showed a significant correlation. Emerging novel AI-assisted EC is radically shifting 
our approach to treating gastrointestinal lesions. Indeed, not every lesion detected 
through colonoscopy needs to be excreted or sent for histopathological assessment.

However, before AI-assisted EC becomes a universal method, significant hurdles 
such as acceptance by patients or performing by less qualified endoscopists and 
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regulatory issues need to be carefully handled. The development of CAD and AI 
algorithms can promote, form, and improve decision-making in managing colorectal 
lesions. Overall, EC has shown an excellent diagnostic accuracy, offering to aid in the 
in-vivo diagnosis of lesions in the lower GI tract.
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