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Abstract
Hepatitis A virus (HAV) infection is still an important health issue worldwide. 
Although several effective HAV vaccines are available, it is difficult to perform 
universal vaccination in certain countries. Therefore, it may be better to develop 
antivirals against HAV for the prevention of severe hepatitis A. We found that 
several drugs potentially inhibit HAV internal ribosomal entry site-dependent 
translation and HAV replication. Artificial intelligence and machine learning 
could also support screening of anti-HAV drugs, using drug repositioning and 
drug rescue approaches.

Key Words: Artificial intelligence; Hepatitis A virus internal ribosomal entry sites; Cap-
independent translation; Antivirals; Severe hepatitis A; Glucose-regulated protein 78
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Core Tip: In certain areas, it is difficult to perform universal hepatitis A virus (HAV) 
vaccination. We found that several drugs potentially inhibit HAV internal ribosomal 
entry sites-dependent translation and HAV replication. After the application of 
machine and deep learning, artificial intelligence identified effective anti-HAV drugs 
more quickly, using drug repositioning and drug rescue.
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INTRODUCTION
Infection with hepatitis A virus (HAV) can lead to acute hepatitis, occasionally 
resulting in acute liver failure, which is associated with death or liver transplant-
ation[1,2]. In developing countries, HAV generally infects humans in childhood, and 
people have immunity against HAV without HAV vaccination[3]. In India, however, 
the prevalence of anti-HAV antibodies is lower now in adolescents and young adults 
(approximately 55% in 5-15 years in India) than before (approximately 90%)[3]. In some 
developed countries where there are no universal vaccination programs, such as 
Japan, people have less immunity against HAV than levels observed in the past[4,5].

HAV infects humans through the fecal-oral route when HAV-contaminated foods 
and water are ingested[6]. Recently, hepatitis A has also been recognized as a sex-
transmitted disease[7]. Several effective HAV vaccines are available, but they are 
relatively expensive, and in some countries, it is difficult to perform universal 
vaccination[4,5]. Therefore, to prevent severe hepatitis A, it may be better to develop 
antivirals against HAV[8].

Recently, information and communication technology, and artificial intelligence (AI) 
have played roles in daily clinical practice[9,10]. AI also plays an important role in drug 
discovery[11]. With the progress of machine learning methods and the accumulation of 
pharmacological data, AI has become a powerful data mining tool in the area of drug 
discovery, such as in silico screening, quantitative structure-activity relationship 
(QSAR) analysis, de novo drug design, and in silico evaluation of absorption, 
distribution, metabolism, excretion and toxicity[12].

Structure-based drug design is becoming an essential tool for faster, more cost-
efficient drug discovery, compared to traditional methods[13]. The combination of AI 
and deep learning, which is a family of machine learning models that use artificial 
neural networks, may be a more powerful tool for drug discovery. The associations of 
machine learning, deep learning and AI are shown in Figure 1. Moreover, network-
based in silico drug efficacy screening allows us to predict novel drug-disease 
associations, which may provide us with drug repositioning or drug rescue 
information[14]. In this minireview article, we discuss the recent involvement of AI in 
drug discovery and its application in the development of antivirals against HAV in the 
near future.

HAV INTERNAL RIBOSOMAL ENTRY SITE-DEPENDENT TRANSLATION 
AND HAV REPLICATION
Translation of HAV protein is performed in a cap-independent manner under the 
control of the internal ribosomal entry site (IRES), which is mainly located at 5' 
untranslated region (5'UTR)[15]. It was reported that the HAV 5'UTR was more than 25-
fold less active than the encephalomyocarditis virus IRES in producing translated 
proteins[16]. Thus, the relatively weaker activity of the HAV IRES may be due to a 
reduced affinity for several cellular translation factors[16]. Mutations within the HAV 
5'UTR could enhance cap-independent translation in African green monkey kidney 
BS-C-1 cells[17]. Further studies are needed to identify specific mutations related to the 
severity of hepatitis A[18-20], although among HAV strains from HAV outbreaks in 
Korea and Japan, we did not identify specific mutations associated with severe 
hepatitis A in the HAV 5'UTR[21,22]. We also demonstrated that the inhibition of HAV 
IRES activity by small interfering RNAs (siRNAs) targeting HAV IRES could lead to 
the suppression of HAV replication[23]. Therefore, HAV IRES is an attractive target of 
antivirals against HAV.

IMPORTANT FACTORS INTERACTING WITH HAV IRES
HAV is a nonenveloped and enveloped positive-sense single-stranded RNA virus 
approximately 7.6 kb in length[24,25]. The HAV genome includes a 5′UTR, one open 
reading frame encoding structural (VP4, VP2, VP3, VP1 and 2A) and nonstructural 
proteins (2B, 2C, 3A, 3B, 3C and 3D) and a 3′UTR[26].

Among HAV proteins, HAV proteinase 3C suppressed HAV IRES-dependent 
translation[27]. Furthermore, HAV 3C cleaves the polypyrimidine tract-binding protein 
(PTB), which interacts with the HAV IRES[27,28]. Among host proteins, autoantigen 
La[27], glyceraldehyde-3-phosphate dehydrogenase[29], PTB[28], poly(C) binding protein 

http://creativecommons.org/Licenses/by-nc/4.0/
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Figure 1 Association of artificial intelligence, machine learning and deep learning.

2[30], polyadenylate-binding protein-1[31], eukaryotic translation initiation factor 4E[32] 
and eukaryotic translation initiation factor 4E[33] are reported to interact with HAV 
IRES.

We demonstrated that siRNA against cellular cofactors for HAV IRES could inhibit 
HAV IRES-mediated translation[34]. The Janus kinase (JAK) inhibitors SD-1029 and 
AG490 could reduce La protein expression and inhibit HAV IRES-mediated 
translation as well as HAV replication[34]. The JAK2 inhibitor AZD1480 could reduce La 
expression and inhibit HAV IRES activity and HAV replication[35]. We also reported 
that the sirtuin inhibitor sirtinol[36] and broad-spectrum antivirals, such as 
amantadine[20,37,38], interferon-alpha[38] and interferon-lambda (interleukin-29)[39], could 
inhibit HAV IRES-mediated translation and HAV replication. Thus, in vitro drug 
screening with human hepatocytes revealed that several drugs inhibit HAV replication 
through the inhibition of HAV IRES activity.

BIOINFORMATICS AND CHEMINFORMATICS
Bioinformatics and cheminformatics are newer strategies to screen and design various 
drug candidates for HAV, as performed for severe acute respiratory syndrome 
coronavirus 2 in the coronavirus disease 2019-era[40]. Das et al[41] performed a genome-
wide CRISPR screen and identified 39 candidate essential hepatovirus host factors, 
which form 4 clusters as follows: HAV IRES-mediated translation, chaperone activity, 
mitochondrial integrity and ganglioside synthesis. This strategy seems to result in the 
generation of more accurate approaches and techniques for HAV management.

STRUCTURE-BASED DRUG DESIGN
Crystallization of HAV IRES and formation of its drug modification
HAV needs a HAV 3C protease to form its viral replication complex. X-ray structures 
were reported for HAV 3C protease with HAV 3C protease inhibitor N-
benzyloxycarbonyl-l-serine-β-lactone (1a), resulting in a lead compound that was 
further developed to produce a potent inhibitor of HAV 3C protease through the 
alkylation of the sulfur atom at the active site Cys172[42]. Furthermore, soaking N-
iodoacetyl-valine-phenylalanine-amide, which inhibited HAV 3C protease activity, 
into HAV 3C–1a crystals through the modification of His102 Nε2-alkylated protein 
could lead to the successful utilization of this new crystal form in the study of 
enzyme–inhibitor interactions in the proteolytic active site[42]. In general, antivirals are 
used after hepatitis virus infects the liver. It may be better to prevent infection rather 
than to treat HAV.

Koirala et al[43] also reported a 2.84-Å resolution crystal structure of HAV IRES 
domain V in complex with a synthetic antibody fragment - a crystallization chaperone. 
This is useful for drug repositioning to compare other picornaviral HAV structures 
with those of HAV.
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AI, MACHINE LEARNING AND DEEP LEARNING
AI and machine learning can contribute to drug development for viral infection by 
improving the speed and efficiency of repurposing and proposing new potent 
molecules to inhibit viral replication[40]. Both AI and machine learning can also be 
employed to make network-based predictions of drug-target interactions[44] or 
associations between gene expression and HAV infection[45]. This information is crucial 
to feed into AI and machine learning systems for the development of potent anti-HAV 
drugs. Although new drug discovery typically takes more than 10 years[46], this 
method may be useful for drug repositioning and drug rescue, which allows us to 
develop anti-HAV drugs more quickly. For example, the hepatitis C virus (HCV) NS5B 
polymerase inhibitor sofosbuvir and its derivatives could suppress HAV 
replication[47,48].

Many human proteins are involved in viral replication and pathogenesis[8,48]. The 
advantage of host-targeted antivirals is that the target is abundant. Another advantage 
is that they are less prone to resistance than those directly targeting the virus[8,49]. We 
and others also reported that host-targeted antivirals are useful for the suppression of 
HAV replication[8,34,35,50-53]. We would like to apply AI, machine learning and deep 
learning methods for drug repositioning and rescue to discover anti-HAV drug 
candidates (Figure 2). AI, machine learning and deep learning methods may also be 
useful for the avoidance of drug side effects.

MACHINE LEARNING AND DRUG DEVELOPMENT FOR HEPATITIS 
VIRUSES AND GLUCOSE-REGULATED PROTEIN 78
Hepatitis B virus
Qureshi et al[54] developed virus-specific as well as general QSAR models and 
computed approximately 18000 chemical descriptors (1D, 2D and 3D), including 
geometric, constitutional, electrostatic, topological, hydrophobic and binary 
fingerprints, using PaDEL, an open-source software to calculate molecular descriptors 
and fingerprints[54]. They also employed SVMlight software (Freely available at 
http://svmlight.joachims.org) for machine learning. After attribute selection, there 
were 15 relevant descriptors for HBV. Arora et al[55] performed a QSAR study based on 
a series of anti-hepatitis B virus (HBV) agents, namely, a series of novel bis(Lamino 
acid) ester prodrugs of 9-[2-(phosphonomethoxy)ethyl]adenine, a similar series of 
compounds comprising 2-amino-6-arylthio-9-[2-(phosphonoethoxy)ethyl] purine 
bis(2,2,2-trifluoroethyl) esters, and a series of 1-isopropylsulfonyl-2-amine 
benzimidazoles. These systems may also be useful for the development of anti-HAV 
drugs.

Deep learning has been applied for the diagnosis and treatment of chronic hepatitis 
B. Compared with two-dimensional shared wave elastography and fibrosis 
biomarkers, deep learning radiomics of elastography is valuable and practical as a 
noninvasive accurate diagnosis of liver fibrosis in HBV-infected patients[56]. Analysis of 
the quasispecies pattern of HBV genomes by the combination of deep sequencing and 
machine learning is also useful for the prediction of hepatocellular carcinoma (HCC) 
and direct therapeutic strategies[57,58]. A valid systematic approach based on big data 
mining and genome-wide RNA-seq data may be imperative to further investigate the 
pathogenic mechanism and identify biomarkers for drug design[59].

HCV
Weidlich et al[60] developed SAR with advanced machine learning methods and 
performed in vitro antiviral assays, resulting in the identification of the candesartan 
cilexetil, which is used to treat hypertension, as an HCV NS5B inhibitor. Using a 
support vector machine (SVM), three classification models were built in HCV NS3 
protease inhibitors[61] or HCV NS5B polymerase inhibitors[62]. Qin et al[63] reported that 
the combination of the best sub- and whole dataset SVM models can be used as 
reliable lead design tools for new NS3/4A protease inhibitors.

Wei et al[64] reported that the multiple QSAR method is useful in predicting 
chemical-protein interactions for the discovery of multitarget inhibitors for the 
treatment of HIV/HCV coinfection. This strategy may be useful for the treatment of 
the cooccurrence of HAV infection and chronic liver disease[65].

Combination information from yeast-based library screening, next-generation 
sequencing, and structure-based modeling in a supervised machine learning approach 

http://svmlight.joachims.org
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Figure 2 Drug screening and drug discovery for anti-hepatitis A virus using artificial intelligence-based drug repositioning and rescue. 
HAV: Hepatitis A virus; AI: Artificial intelligence; IRES: Internal ribosomal entry-site; La: Lupus La protein/SSB; JAK: Janus kinase; GRP: Glucose-regulated protein; 
IFN: Interferon; FDA: Food and Drug Administration.

is useful for the comprehensive sequence-energetics-function mapping of the 
specificity landscape of the HCV NS3/4A protease, whose function-site-specific 
cleavages of the viral polyprotein are a key determinant of viral fitness[66]. Deep 
learning recurrent neural network models could be used to identify patients with 
HCV-related cirrhosis with a high risk of developing HCC for risk-based HCC 
outreach and surveillance strategies[67]. Deep learning should also be helpful for the 
development of antivirals.

Glucose-regulated protein 78
We previously found that glucose-regulated protein 78 (GRP78) is an antiviral target 
for HAV (Table 1)[50-52]. Computational drug discovery using the structure of HAV and 
GRP78 may lead to the discovery of new anti-HAV drugs or drug repositioning and 
drug repurposing for anti-HAV drugs[68-71].

CONCLUSION
We found that several drugs potentially inhibit HAV IRES-dependent translation and 
HAV replication. Approaches that utilize AI, machine learning and deep learning 
methods could have the most promise in the discovery of new anti-HAV drugs. A 
systematic approach based on big data mining with AI is also useful for the 
development of anti-HAV drugs[71].
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Table 1 Target and mechanism of anti-hepatitis A virus candidates

Target or mechanism Drug Ref.

La antigen SD-1029, AG490 Jiang et al[34]

JAK2-STAT3 AZD1480 Jiang et al[35]

GRP78 Japanese rice-koji miso extracts Shubin et al[50]; Choi et al[51]

GRP78 Zinc sulfate Ogawa et al[52]

Inflammatory cytokines Zinc chloride Mo et al[53]

La: Lupus La protein/SSB; JAK: Janus kinase; STAT: Signal transducer and activator of transcription; GRP78: Glucose-regulated protein 78.
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Abstract
Accurate and rapid diagnosis is essential for correct treatment in rectal cancer. 
Determining the optimal treatment plan for a patient with rectal cancer is a 
complex process, and the oncological results and toxicity are not the same in 
every patient with the same treatment at the same stage. In recent years, the 
increasing interest in artificial intelligence in all fields of science has also led to the 
development of innovative tools in oncology. Artificial intelligence studies have 
increased in many steps from diagnosis to follow-up in rectal cancer. It is thought 
that artificial intelligence will provide convenience in many ways from 
personalized treatment to reducing the workload of the physician. Prediction 
algorithms can be standardized by sharing data between centers, diversifying 
data, and creating big data.
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improve diagnosis and treatment, follow-up in rectal cancer, develop personalized 
medicine, improve the quality of life of patients, and reduce unnecessary health 
expenses.
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INTRODUCTION
Artificial intelligence (AI) is the computer science that tries to imitate human-like 
intelligence in machines by using computer software and algorithms to perform 
certain tasks without direct human stimuli[1,2]. Machine learning (ML) is a subset of AI 
that uses data-driven algorithms that learn to imitate human behavior based on the 
previous example or experience[3]. Deep learning (DL) is an ML technique that uses 
deep neural networks to create a model. Increasing computing power and reducing 
financial barriers led to the emergence of the DL field[4].

AI has entered our lives as support in every field. In medicine, it helps clinical 
processes and management of medical data and information. AI applications assist 
physicians in diagnosis, research, treatment, and prognosis evaluation of the disease[5]. 
Cancer is the most common cause of death in developed countries, and it is estimated 
that the number of cases will increase even more in aging populations[6,7]. Therefore, 
cancer research will continue to be the top priority for saving lives in the next decade.

In oncology, there are typical clinical questions such as ‘Which patients have the 
highest risk of toxicity?’ and ‘What is the probability of local control and survival in 
this patient?’. Although clinical studies exist as the gold standard for answers to these 
questions, clinical studies are costly, slow, and limited to reachable patients. By using 
the available data, future clinical studies can be better planned, and new findings can 
be obtained. Evidence-based medicine is based on randomized controlled trials 
designed with a large patient population. However, the number of clinical and 
biological parameters that need to be investigated to obtain precise results is 
increasing day by day[8].

New and separate approaches are required for all patient subpopulations. Clinicians 
should use all diagnostic tools (radiological imaging, metabolic imaging, blood and 
genetic testing, etc.) to decide on the appropriate combination of therapy 
(radiotherapy, chemotherapy, targeted therapy, and immunotherapy). In oncology , 
AI, a new methodology that provides information using the large data available, has 
begun to be used to support clinical decisions[9]. It is important to combine a large and 
heterogeneous amount of data and create accurate models. Today, AI in oncology has 
entered our lives in early detection, diagnosis, treatment, and patient follow-up.

Although AI can take place in every step from patient consultation to patient 
follow-up in rectal cancer and can contribute to the clinician and the society, there are 
still many challenges and problems to be solved. Big data sets should be created for AI 
first, and these data sets should be improved. The development of prediction tools 
with a wide variety of variables and models limits the comparability of existing 
studies and the use of standards. Prediction algorithms can be standardized by sharing 
data between centers, diversifying data, and creating big data. In addition, the models 
can be made clinically applicable by updating the models by entering new data into 
the models. Today, the accuracy and quality of the data is also of great importance, as 
no AI algorithm can fix the problems in training data.

Colorectal cancer is the fourth most common type of cancer worldwide, with 
approximately 800000 new cases diagnosed each year and accounting for 
approximately 10% of all cancers[10]. Determining the optimal treatment plan for a 
patient with rectal cancer is a complex process. In addition to decisions regarding the 
purpose of rectal cancer surgery, the possible functional consequences of treatment, 
including the possibility of preserving normal bowel function and genitourinary 
function, should be considered. Achieving treatment goals and minimal impact on the 
quality of life can be challenging at the same time, especially for patients with distal 
rectal cancer. Careful patient selection in terms of specific treatment options and the 
use of sequential multimodality therapy combining chemoradiotherapy (CRT), 
chemotherapy (ChT), and surgical treatment are recommended for most patients[11].

In this review, the role of AI in the diagnosis, treatment, and follow-up of rectal 
cancer is discussed.

https://www.wjgnet.com/2644-3236/full/v2/i2/10.htm
https://dx.doi.org/10.35712/aig.v2.i2.10
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AI IN DIAGNOSIS OF RECTAL CANCER
AI in the detection of lymph node metastasis
Rectal cancers constitute the majority of gastrointestinal tumors. Among the metastatic 
spreading routes of rectal cancer, lymph node (LN) metastasis is the most important 
due to its high risk of local recurrence, which leads to poor prognosis[12]. LN metastasis 
is an important factor in treatment selection and in predicting prognosis. Preoperative 
evaluation of metastatic LNs is critical in determining the optimal treatment strategies 
of rectal cancer cases. Magnetic resonance (MR) imaging is widely used in clinical 
practice for the diagnosis of metastatic LNs in rectal cancer. MR is considered superior 
to computed tomography (CT) for better separation of soft tissue. Radiologists often 
evaluate their shape, boundaries, and signal intensities to identify metastatic LN[13]. 
However, correct evaluation in a short time is a great challenge, especially when 
considering clinics with a high number of cases. Also, when the same MR image is 
evaluated by different radiologists, very different results can be obtained, which 
weakens the sensitivity of LN staging[14-17]. As a result, it is often difficult to accurately 
determine the presence of LN metastasis. In recent years, the development of DL 
technology has greatly improved image recognition capability, making it possible to 
identify specific target areas within an image and allow images to be classified 
according to specified target features[18].

According to some studies, although the AI system is more successful than senior 
physicians in the diagnosis of solid tumors, such as lung, breast, prostate, and thyroid 
cancer, few studies have yet been reported on the determination of metastatic LN[19-25]. 
In the literature, there are studies in which LN metastases have been detected with AI 
in some cancers such as lung, oral cavity, breast, stomach, and thyroid cancer[26-30].

In the study conducted by Ding et al[18] enrolling 414 cases diagnosed with rectal 
cancer by collecting data from six centers, MR images of the cases were evaluated. 
Faster region-based convolutional neural network (Faster R-CNN), a new AI 
algorithm, was evaluated in the study. Patients who underwent surgery with a 
diagnosis of rectal cancer, whose patient data could be accessed, who did not receive 
preoperative RT or ChT, and who had MR images at the stage of diagnosis, were 
included in the study. Radiologist-based diagnosis and pathologist-based diagnosis 
were compared with the Faster R-CNN system. The number of metastatic LNs 
diagnosed between two of the three groups was evaluated using the pair-wise 
correlation analysis. A statistically significant correlation was found in the comparison 
of both groups [radiologist - Faster R-CNN (P < 0.001), pathologist - radiologist (P = 
0.011), and pathologist - Faster R-CNN (P < 0.001). In Faster R-CNN, radiologist, and 
pathologist LN staging, consistency control was performed between groups, and the 
highest consistency was found among the Faster R-CNN - radiologist diagnosis (P = 
0.018). Among the Faster R-CNN - pathologist diagnosis, the P value was 0.039. 
Among the radiologist - pathologist diagnosis, the P value was 0.043[18].

In another study by Ding et al[13], Faster R-CNN was evaluated for metastatic LN 
prediction, and it aimed to create mathematical nomograms for preoperative 
metastatic LN prediction. In the prediction of metastatic LN with Faster R-CNN, the 
MR images of 545 rectal cancer cases who did not receive preoperative RT or ChT were 
divided into training and validation groups at the rate of 2:1. While creating the 
nomogram, 183 cases were used as an outcome variable for the presence of LN 
metastasis, and 153 cases were used as validation for the level of LN metastasis (N1 or 
N2). Variables were age, gender, preoperatively differentiate grade, metastatic LN 
obtained by MR, metastatic LN obtained by postoperative pathology, carcinoembr-
yonic antigen (CEA), carbohydrate antigen 19-9. Important variables in predicting 
metastatic LN positivity with Faster R-CNN in univariate analysis were tumor 
differentiation grade and CEA level (P < 0.05) and age and tumor differentiation 
gradient in multivariate analysis (P < 0.001). Variables determined as important 
variables in multivariate analysis in MR-based and Faster R-CNN-based metastatic LN 
prediction were used in nomogram formation; in the MR-based nomogram and the 
Faster R-CNN-based nomogram, area under curve (AUC) and 95% confidence interval 
(CI) were found to be 0.856 (0.808-0.905) and 0.862 (0.816-0.909), respectively. 
According to this study, the Faster R-CNN nomogram appears to be suitable and 
reliable for predicting the presence of metastatic lymph nodes preoperatively[13].

Lu et al[31] evaluated 28080 MR images of 351 rectal cancer cases with Faster R-CNN 
in their study. Radiologist diagnosis and Faster R-CNN diagnosis were compared 
using receiver operating characteristic curves (ROC), and the Faster R-CNN ROC was 
found to be 0.912. It was accepted as a more effective and more objective method. 
According to the study, the diagnosis was made in 20 s per case with Faster R-CNN, 
while radiologists made the diagnosis in 600 s per case[31].
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The diagnosis of metastatic LN in rectal cancer is very important for treatment 
decisions and prognosis. The diagnosis of metastatic LN by MR is largely based on the 
subjective interpretation of the radiologist. Therefore, it lacks objectivity and 
reproducibility, although it has a variable diagnostic accuracy. Therefore, using AI 
systems in the diagnosis phase can contribute to the ability of radiologists to diagnose 
metastatic LN correctly and in a shorter time and to make a more accurate treatment 
decision with more accurate tumor, node, metastasis (TNM) staging.

AI in the detection of t stage and tumor differentiation
Choosing the most appropriate treatment is important in rectal cancer. A correct 
preoperative stage is important for the surgical and neoadjuvant CRT decision. 
Generally, pathological type, tumor differentiation, infiltration depth, and presence of 
lymph node metastasis determine the prognosis of the tumor. Therefore, 
understanding the pathological features of the tumor is very important for the clinical 
treatment decision[32]. Radiomic analysis is a tool developed to assess tumor 
heterogeneity. Radiomics is a noninvasive method that includes high-quality image 
acquisition, high-throughput quantitative feature extraction, high-dimensional feature 
extraction, and diagnostic, prognostic, or predictive model generation. Radiomic 
models using medical images and clinical data have potential in making clinical 
decision[33]. The MRI-based radiomic model has been used to differentiate cancer from 
benign tissue and reflect the histological features of rectal cancer[34].

In the study conducted by Ma et al[35] with 152 rectal cancer cases, it aimed to predict 
the pathological characteristics of the tumor from the MR-based radiomic model. 
Tumor delineation was performed using 3T MR and high resolution T2-weighted 
images, and 1029 radiomic features were extracted. Multilayer perceptron, logistic 
regression (LR), support vector machine (SVM), decision tree (DT), random forest, and 
K-nearest neighbor (KNN) have been trained and used five-fold cross-validation to 
create prediction models. The best performance of the radiomics model for the degree 
of differentiation, T stage, and N stage was obtained by SVM (AUC, 0.862; 95%CI: 
0.750–0.967; sensitivity, 83.3%; specificity, 85.0%), multilayer perceptron (AUC, 0.809; 
95%CI: 0.690–0.905; sensitivity, 76.2%; specificity, 74.1%), and random forest (AUC, 
0.746; 95%CI: 0.622-0.872; sensitivity, 79.3%; specificity, 72.2%). This study 
demonstrated that the high-resolution T2-weighted images–based radiomics model 
could serve as pretreatment biomarkers in predicting pathological features of rectal 
cancer[35].

AI in detection of distant metastasis
Although advances in treatment strategies and multidisciplinary treatment modalities 
have reduced local recurrences, distant metastasis continues to be the main cause of 
treatment failure in patients with rectal cancer[6]. The most common metastasis site is 
the liver, and liver metastasis develops in 26.5% of cases within 5 years from 
diagnosis[36]. At the stage of diagnosis, there is no liver metastasis in staging, but 
metachronous liver metastasis (MLM) that develops after initial staging and treatment 
is thought to be caused by occult metastases and micrometastases[37,38].

The main treatment strategy for early detected MLM is surgical resection, providing 
better prognosis and survival as well as a chance for cure compared to other 
treatments. However, a significant portion of patients with MLM may have lost their 
surgical chances by the time it is detected[39]. Although studies are reporting that some 
variables increase the risk of MLM, there is still no definite marker that can be used to 
predict the cases that will develop MLM[40]. Radiomics, which have come to the 
forefront recently, are obtained by using automated high-throughput extraction of 
many quantitative properties, offering the chance to capture intratumoral 
heterogeneity in a noninvasive manner[41].

Liang et al[42] predicted MLM by using MR radiomics with ML in a total of 108 rectal 
cancer cases with 54 MLM and 54 nonmetastatic patients. Radiomics were obtained 
from venous phase and T2-weighted MR images, and 2058 radiomic properties were 
evaluated by two separate ML techniques (SVM; LR). After determining the optimal 
radiomic properties, four groups of models were created: A model containing five 
radiomic features from T2 weighted MR images (ModelT2), a model containing eight 
radiomic features from venous phase images (ModelVP), a model containing the sum of 
these radiomics, i.e. 13 radiomics (Modelcombined), and a model containing 22 optimal 
radiomics (Modeloptimal). Modeloptimal was determined as the best prediction model with 
the LR algorithm, and its accuracy, sensitivity, specificity, and AUC were 0.80, 0.83, 
0.76, and 0.87, respectively[42].
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Peritoneal carcinomatosis (PC) has a poor prognosis and is considered a terminal 
stage. PC is present at diagnosis in 5%-10% of the cases diagnosed with colorectal 
cancer and in 25%-44% of recurrent disease. While a median survival of 33 mo can be 
achieved with cytoreductive surgery and hyperthermic intraperitoneal ChT, it is < 10 
mo if incomplete cytoreductive surgery and diffuse PC are present[43]. Survival rates 
can also be high with minimally invasive surgery if PC can be detected early. To 
predict synchronous PC cases, Yuan et al[44] evaluated 19814 tomography images 
obtained from 54 PC and 76 non-PC cases in training, and 7837 images obtained from 
40 cases as the test group. Using the ResNet-three dimensional (3D) algorithm + SVM 
algorithm, an accuracy rate of 94.1% was obtained, AUC: 0.92 (0.91-0.94), sensitivity 
93.7%, specificity 94.4%, positive predictive value 93.7%, and the negative predictive 
value was found to be 94.4%. The performance of the algorithm was determined to be 
better than routine contrast-enhanced CT (AUC: 0.791 vs AUC: 0.92)[44].

Distant metastasis detection can be made more accurately in the earlier period by 
supporting the physician with the prediction models having high accuracy and this 
can reduce the cost of treatment while increasing survival rates.

AI IN RECTAL CANCER TREATMENT AND RESPONSE TO TREATMENT
Contouring in radiotherapy
Contouring is an important step that is routinely performed in RT to determine the 
treatment target and organs at risk (OAR). In a typical clinical workflow, the radiation 
oncologist needs to contour this target volume and OAR on the simulation images. 
Contouring is generally performed on CT and less commonly on MR images in clinics 
where MR guided RT is applied. This contouring process can take hours per patient[45]. 
AI can be used both to minimize the differences between physicians and to shorten the 
duration of this step in RT planning.

Target volume contouring: MR plays an important role in the diagnosis and treatment 
of rectal cancer[46]. It guides the physician in identifying the primary tumor, especially 
in RT planning. Also, MR-based planning increases local control and complete 
response rates, with the potential to facilitate individualized treatment plans for dose 
escalation[47,48]. Also, defining and contouring gross tumor volume (GTV) is time-
consuming, and differences in target volume contouring among physicians may cause 
variability in treatment and different oncological results[49]. Although the application of 
Atlas-based automatic segmentation algorithms can reduce the identification time, 
these methods have low performance in rectal cancer[50]. The main advantage of DL 
methods is that they automatically create the most suitable model from the training 
data sets. In recent years, DL methods have also started to be used in RT steps. Tumor 
contouring with CNNs has been extensively studied in lung and head and neck 
cancers and a reduction in contouring time per patient of up to 10 min was observed 
compared to the contouring time of the physician[51-53].

In rectum cancer, contouring of GTV and clinical target volume (CTV) were 
performed using MR and CT images. Wang et al[54] created a DL-based autosegment-
ation algorithm for GTV delineation using MR (3 Tesla, T2-weighted) images of 93 
locally advanced rectal cancer cases. The model was trained in two phases that are 
tumor recognition and tumor segmentation. Data is divided into 90% training and 10% 
validation groups for 10-fold cross-validation. Hausdorff distance (HD), average 
surface distance (ASD), Dice index (DSC), and Jaccard index (JSC) were used to 
compare and evaluate automatic and manual contouring. For the validation data set, 
DSC, JSC, HD and ASD (mean ± SD) were 0.74 ± 0.14, 0.60 ± 0.16, 20.44 ± 13.35, and 
3.25 ± 1.69 mm, respectively. In the manual contouring of two radiation oncologists, 
DSC, JSC, HD and ASD (mean ± SD) were 0.71 ± 0.13, 0.57 ± 0.15, 14.91 ± 7.62, and 2.67 
± 1.46 mm, respectively. There was no statistically significant difference between the 
DL-based autosegmentation and manual contouring in terms of DSC (P = 0.42), JSC (P 
= 0.35), HD (P = 0.079), and ASD (P = 0.16) values. Before postprocess (erosion and 
dilation), that is, correction of contours and removing small isolated points, a 
statistically significant difference (P = 0.0027) was found only in HD. According to this 
study, results close to manual contouring can be obtained with DL-based algorithms 
using T2-weighted MR images[54].

In another study by Trebeschi et al[55], tumor contouring was performed using 
multiparametric MR images. The study included 140 locally advanced rectal cancer 
cases, and each case was contoured by two experienced radiologists. In this study, the 
CNN algorithm was used to function as a voxel classifier. CNN was trained using the 
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voxel values of the region with and without tumor in MR. In the independent 
validation data set, the DSC value was determined as 0.68 and 0.70 according to CNN 
and both radiologists. The AUC value for both radiologists was found to be 0.99. This 
study showed that DL can perform the correct localization and segmentation of rectal 
cancer in MRI in most patients[55].

Song et al[56] evaluated CTV contouring with CNN in 199 rectal cancer cases. For 
training, validation, and testing, 98 cases, 38 cases, and 63 cases were used, 
respectively. While volumetric DCS showed the volumetric overlap between 
automatic segmentation and manual contouring, surface DCS showed the overlap 
between automatic segmentation and manual contouring surfaces. Two CNN 
techniques were used in the present study that were DeepLabv3 + and ResUNet, and 
the volumetric DSC and surface DCS of CTV were 0.88 vs 0.87 (P = 0.0005) and 0.79 vs 
0.78 (P = 0.008), respectively. According to this study, high quality and shorter CTV 
contouring can be performed with CNNs[56]. Target volume contouring studies with AI 
in rectum cancer are summarized in Table 1.

Contouring of OAR: In radiotherapy, it is necessary to make the contouring of OAR 
correctly to protect them and to evaluate the toxicity correctly. To fully benefit from 
the advantages of technological developments in RT planning and devices, OAR must 
be defined correctly. This step can become a rate limiting step in clinics with a high 
number of patients. Also, there may be differences among the practitioners, and due to 
significant anatomical changes (edema, tumor response, weight loss, etc.) during the 
treatment, it may be necessary to make a new plan with new contouring during the 
treatment. AI, particularly CNN, is a potential tool to reduce the physician’s workload 
and set a standard in contouring. In recent years, DL methods have been widely used 
in medical applications, and CNN has been used in contouring OAR in head-neck, 
lung, and prostate cancer[57-59]. There are also studies on this subject in rectal cancer.

OAR contouring was also evaluated in the study performed by Song et al[56] for CTV 
contouring. As OAR, small intestine, bladder, and femoral heads were contoured. 
With ResUNet, both volumetric and surface DSC values in femoral head contouring 
and surface DSC values in bladder contouring were found to be statistically more 
significant, and contouring performance was better. Higher volumetric and surface 
DSC were obtained with DeepLabv3 + for the small intestine[56].

Men et al[60] conducted a segmentation study using deep dilated CNN based DL 
technique in both CTV and OAR (bladder, femoral heads, small intestine, and colon). 
CT images of 278 rectal cancer cases were included in the study. Images of 218 
randomly selected cases were used for training, and images of the remaining 60 cases 
were used for validation. In this study, DSC was also evaluated and for CTV, bladder, 
left femoral head, right femoral head, small intestine, and colon as 87.7%, 93.4%, 
92.1%, 92.3%, 65.3%, and 61.8%. CTV and OAR contouring time per case was found to 
be 45 s on average[60].

In another study conducted by Men et al[61], the effect of the patient’s position on 
segmentation accuracy was investigated with CNN. The study included 50 supine and 
50 prone cases with planning CT, and three different models were trained: Patients in 
the same position, patients in different positions, and patients in both positions. 
Performance evaluation regarding segmentation was performed using DSC and HD 
for CTV, bladder, and femurs. While the model trained in different positions 
compared to the model trained in the same position was statistically significantly 
better for CTV and bladder (P < 0.05), it was found to be P > 0.05 in femur 
segmentation. DSC values were 0.84 vs 0.74, 0.88 vs 0.85, and 0.91 vs 0.91 for CTV, 
bladder, and femurs, respectively. The accuracy rates for the model trained in both 
positions were similar (P > 0.05). The DSC was 0.84, 0.88, and 0.91 for CTV, bladder, 
and femur, respectively. According to this study, while the patient position is 
important for CTV and bladder in segmentation with the CNN model, it was not 
found to be an important factor for the femur[61]. Studies are summarized in Table 1.

In RT, while providing effective treatment for the tumor, protection of OAR is very 
important in terms of acute and late side effects. For this, it is an important step to 
define the tumor volume and OAR correctly and accurately. However, this step 
requires intensive labor and time and can be rate-limiting. Creating models with DL 
and using them in clinical practice will ensure standardization among physicians in 
contouring and accelerate this step.

Radiotherapy planning
Treatment planning is an important step in the RT workflow. Treatment planning has 
become more sophisticated over the past few decades with the help of computer 
science, allowing for the minimization of normal tissue damage while providing 
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Table 1 Target volume and organs at risk contouring with artificial intelligence

Ref.
Number 
of 
patients

Imaging method Contouring
Artificial 
intelligence 
method

Results

Wang 
et al[54], 
2018

93 MR (3 Tesla, T2 -
weighted)

GTV, CTV CNN Between deep learning-based autosegmentation and manual 
contouring DSC (P = 0.42), JSC (P = 0.35), HD (P = 0.079), and ASD (P 
= 0.16); Before postprocess process only in HD (P = 0.0027).

Trebeschi 
et al[55], 
2017

140 Multiparametric 
MRI (1.5 Tesla, T2- 
weighted)

GTV CNN According to CNN and both radiologists in independent validation 
data set DSC: 0.68 and 0.70; For both radiologists AUC: 0.99.

Song 
et al[56], 
2020

199 CT (3 mm section 
thickness)

CTV and 
OAR

CNNs 
(DeepLabv3+ 
and ResUNet)

CTV segmentation better with DeepLabv3+ than ResUNet (volumetric 
DSC, 0.88 vs 0.87, P = 0.0005; surface DSC, 0.79 vs 0.78, P = 0.008); 
DeepLabv3+ model segmentation was better in the small intestine, 
with the ResUNet model, bladder and femoral heads segmentation 
results were better. In both models, the OAR manual correction time 
was 4 min.

Men 
et al[60], 
2017

278 CT (5 mm section 
thickness)

CTV and 
OAR

CNN (DDCNN) DSC values; CTV: 87.7%, bladder: 93.4%, left femoral head: 92.1%, 
right femoral head: 92.3%, small intestine: 65.3%, colon 61.8%.

Men 
et al[61], 
2018

100 CT (3 mm section 
thickness)

CTV and 
OAR

CNN CTV and bladder contouring were better in the model trained in the 
same position than the model trained in a different position (P < 0.05). 
No statistically significant difference between femoral heads (P > 0.05). 
No statistical difference between accuracy rates in CTV, bladder, and 
femoral heads segmentation in the model trained in both positions (P > 
0.05).

AUC: Area under the curve; ASD: Average surface distance; CNN: Convolutional neural network; CT: Computed tomography; CTV: Clinical target 
volume; DDCNN: Deep dilated convolutional neural network; DSC: Dice similarity coefficient; GTV: Gross tumor volume; HD: Hausdorff distance; JSC: 
Jaccard index; MRI: Magnetic resonance imaging; OAR: Organs at risk.

adequate tumor dose. As a result, treatment planning has become more labor-intensive 
and takes hours and sometimes even days for planners. In RT planning, many 
algorithms have been developed to support planners, and these algorithms focus on 
automating the planning process and/or optimizing dosimetric changes. These 
algorithms have contributed to the improvement of treatment planning efficiency and 
quality[62]. Planning workflow starts with determining dosimetric requirements 
regarding target volume and OARs and makes decisions about basic planning 
parameters, including beam energy, number, and angles, etc., based on the needs of 
each case. While creating a minimally acceptable plan can be quick, improving a plan 
is much more difficult. Also, the plan may need to be improved according to the mid-
plan result evaluation of the physicians, which causes increased effort and time. 
Automatic treatment planning systems, from simple automation to AI, are gradually 
taking their place in planning systems.

The knowledge-based planning system helps to use the previous planning 
information in the database with ML methods in obtaining the best dose distribution 
for target volume and OAR. Knowledge-based treatment planning algorithms use 
geometric and dosimetric information to estimate doses for new patients using the 
information found in training data. The dose volume histogram prediction model was 
created by using a knowledge-based treatment planning system, using 80 plans in 
training, and evaluating 70 plans in the test with simultaneous integrated boost and 
VMAT techniques. Using this model, the multileaf collimator sequences of 70 clinically 
validated plans were re-optimized. While doing this, parameters such as field 
geometry and photon energy were not changed. Dosimetric results were evaluated by 
comparing dose volume histogram data as homogeneity index, conformal index, hot 
spots (volumes taking more than 107% of the prescribed dose), mean dose, femoral 
heads, and bladder mean (Dmeanmesane, Dmeanfemoralhead) and 50% of the dose 
(D50%bladder, D50%femoral head). Similar conformal index was obtained when comparing the 
original plan (1.00 ± 0.05 for planning target volume (PTV)boost and 1.03 ± 0.02 for PTV) 
and the knowledge-based plan (0.99 ± 0.04 for PTVboost and 1.03 ± 0.02 for PTV). Better 
homogeneity index values were obtained in the knowledge-based plan (0.05 ± 0.01 for 
PTVboost and 0.26 ± 0.01 for PTV) compared to the original plan (0.06 ± 0.01 for 
PTVboost and 0.26 ± 0.01 for PTV) (P < 0.05). It has been shown that V107% values in 
the original plan were higher than the knowledge-based plan. The knowledge-based 
plan achieved a statistically significant decrease in D50%femoral head, Dmeanfemoralhead, D50% 
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bladder, and Dmeanmesane values. According to this study, the knowledge-based planning 
system provided a statistically significant advantage in some dosimetric data 
compared to the original plans[63].

Zhou et al[64] aimed to develop a DL model for intensity-modulated RT, which 
provides an estimation of 3D voxel-wise dose distribution. Of the 122 post-op 
intensity-modulated RT treated cases, the plans of 100 cases were used for training-
validation, and the plans of 22 cases were used for testing. To estimate 3D dose 
distributions, a 3D-DL model named U-Res-Net_B was created[60]. No statistically 
significant difference was found between the original plans and the DL model named 
U-Res-Net_B in terms of dosimetric parameters (homogeneity index, conformal index, 
V50, and V45 for PTV and OARs). The DSC value of the model was higher than 0.9 for 
most isodose volumes, and the ratio of 3D gamma passing ranged from 0.81 to 0.90 for 
PTV and OAR. This study has developed a DL model by considering beam 
configuration input; this model has shown that it has potential in terms of automated 
planning for easier clinical evaluation of more comprehensive cases[64].

Evaluation of chemoradiotherapy response
In locally advanced rectal cancer, neoadjuvant CRT improves local control, disease-
free survival, and sphincter preservation rates[65]. However, tumor regression patterns 
after neoadjuvant CRT vary widely, from the pathological complete response (pCR) to 
disease progression. Although cases with pCR have the best survival and tumor 
control, neoadjuvant CRT can provide pCR in only 10%-30% of cases in locally 
advanced rectal cancer[66]. Some studies have shown that cases with pCR have low 
recurrence rates, and therefore less invasive alternative surgical treatments, such as 
sphincter-sparing local excision or a watch-and-wait approach, may be more 
appropriate[67-70]. Therefore, it is very important to determine the cases that are likely to 
have a complete clinical response before surgery.

MR, which enables the evaluation of the therapeutic response noninvasively, is 
promising in the early prediction of pCR. MR images taken at different times of the 
CRT, including before, during, and after treatment, can be analyzed separately or in 
combination to provide anatomical and functional information. With the advancement 
of MR imaging technology, several different sequences can be included in the MR 
protocol within a reasonable imaging time (< 30 min), and this multiparametric MR 
can provide comprehensive information to facilitate quantitative radiomic analysis for 
prediction of tumor response[71]. Radiomics extracts hundreds of quantitative image 
features and then uses advanced statistical analysis to classify different groups. Nie 
et al[72] predicted patients with pCR after CRT was completed with 80%-90% prediction 
accuracy of pretreatment multiparametric MRI-based radiomic analysis.

Shi et al[71] predicted the treatment response with DL from the radiomics they 
obtained from the MR images taken before treatment and in the middle of treatment 
(3-4 wk after the start of treatment) in CRT cases with a diagnosis of locally advanced 
rectal cancer. Of the 51 cases included in the study, 45 cases pre-treatment, 41 cases 
mid-treatment, and 35 cases both pre-treatment and mid-treatment MR images were 
available, and the MR protocol was specified as T2, diffusion-weighted imaging with 
b-values of 0 and 800 s/mm2 and dynamic contrast-enhanced. In the surgical specimen 
performed after CRT, the response of the case depending on the tumor regression 
grade was determined. Total tumor volume and mean apparent diffusion coefficient 
(ADC) were measured on MRI. Using Haralick’s Gray Level Co-occurrence Matrix 
was used to distinguish cases with and without pCR, cases with and without good 
response by applying radiomics using texture, and histogram parameters and CNN. 
Tumor volume decreased in mid-treatment MRI compared to before, and ADC 
increased. In predicting the cases with and without pCR with their radiomic features, 
AUC values were found to be 0.80, 0.82, and 0.86 when the pre-treatment MR, mid-
treatment MR, and both MR, respectively, were evaluated together. In cases that 
respond well and those that do not, these rates were 0.91, 0.92, and 0.93, respectively. 
When MRIs before and during treatment were evaluated together, AUC was found to 
be 0.83 in DL prediction of cases with and without pCR[71].

A study conducted by Fu et al[73] aimed to obtain and compare handcrafted and DL-
based radiomic features from pre-treatment diffusion-weighted imaging-MR images. 
Forty-three cases that underwent CRT with the diagnosis of locally advanced rectal 
cancer were included in the study. MRI was taken before treatment in all patients, and 
total mesorectal excision was applied 6-12 wk after the CRT. GTV from MR images 
was contoured by an experienced radiation oncologist. Postsurgical cases were 
grouped as responsive (n = 22) and unresponsive (n = 21). Handcrafted and DL-based 
radiomic features were extracted from diffusion-weighted imaging ADC map using 
traditional computer-aided diagnostic methods and pretrained CNN, respectively. The 
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ROC curve (AUC) of the model created with handcrafted radiomic features was 0.64, 
while that of the DL-based model was 0.73. Its statistical significance was found to be 
better (P < 0.05). According to this study, radiomic features obtained from MR images 
and the algorithm created using DL were shown to be better in predicting CRT 
response[73].

In another study by Shayesteh et al[74], 98 cases diagnosed with rectal cancer were 
included in the study, and MRI was performed 1 wk before the CRT. Radiomics such 
as density, shape, and texture features were extracted from MR images. For training 
and validation, 53 and 45 cases, respectively, were used. SVM, Bayesian network, 
neural network, and KNN algorithms were used one by one and together for 
predicting response to CRT. Prediction performance was evaluated by AUC. When the 
algorithms were evaluated separately, the best result was obtained with the Bayesian 
network algorithm, and the AUC and accuracy rate were 0.75 and 80.9%, respectively. 
When the algorithms (SVM, neural network, Bayesian network, KNN) were evaluated 
together, the AUC and accuracy rate were 0.97 and 92.8%, respectively. According to 
this study, the prediction process can be improved when algorithms are used 
together[74].

In another study conducted with 89 cases diagnosed with locally advanced rectal 
cancer, 66 cases were included in the training group and 23 cases were included in the 
test group, and resistance prediction to CRT was evaluated. Radiomics obtained from 
pre-treatment MR, ADC images, and clinical features of the cases were evaluated with 
the Random Forest Classifier (RFC) algorithm. Of 133 radiomic features and nine 
clinical features (entropymean, inverse variance energymean, small area emphasis, ADCmin, 
ADCmean, sd Ga02, small gradient emphasis, age, and size) were determined as ten 
important variables. With the RFC algorithm, cases resistant to CRT were estimated 
with an accuracy rate of 91.3% (88.9% sensitivity and 92.8% specificity, AUC: 0.83)[75]. 
According to this study in predicting the response to CRT, when the radiomic and 
clinical parameters are evaluated together, predictions with high accuracy rates can be 
obtained. If these resistant cases can be predicted, treatment strategies can be changed, 
and oncological outcomes can be improved.

In another study conducted with 55 cases diagnosed with locally advanced rectal 
cancer, radiomics obtained from MRI images taken before, during, and after CRT were 
evaluated by the RFC algorithm for treatment response prediction. Images of 28 cases 
from 55 cases were used in the training, and images of 27 cases were used to evaluate 
the performance of the algorithm. pCR was obtained in 16 cases from all cases, and 
good results were obtained with the RFC algorithm in predicting pCR with AI (AUC: 
0.86, 95%CI: 0.70-0.94). In the prediction of unresponsive cases, AUC was 0.83 (95%CI: 
0.71-0.92) with the RFC algorithm[76].

In the study conducted by Bibault et al[77] with 95 cases diagnosed with T2-4N0-1 
rectal cancer, radiomics (1683 radiomic features per case) obtained from CT images 
before CRT were evaluated together with clinical and treatment data, and the response 
prediction was made with AI. While radiomics were used with deep neural network 
and SVM, prediction models were created using only TNM staging in linear 
regression. pCR was obtained in a total of 23 cases. In prediction with deep neural 
network, SVM, and LR algorithms, the accuracy rates were 80.0%, 71.5%, and 69.5%, 
respectively[77]. In another study, artificial neural network, Naïve Bayes Classifier, 
KNN, SVM, and multiple LR models were evaluated in the response prediction of 270 
locally advanced rectal cancer patients who underwent CRT. The most important 
factors affecting pCR were post CRT CEA level, the time between CRT and surgery, 
ChT regimen, clinical nodal status, and nodal stage. The accuracy rates for artificial 
neural network, KNN, SVM, Naïve Bayes Classifier, and multiple LR were 88%, 80%, 
71%, 80%, and 77%, respectively[78]. Studies evaluating the CRT response with AI in 
rectal cancer are summarized in Table 2.

Shen et al[79] predicted response to CRT in 169 rectal cancer cases using positron 
emission tomography (PET)-CT radiomics. A total of 68 features were excluded from 
the metabolic active tumor site. Estimation was made with the RF algorithm, and the 
ROC algorithm was used to evaluate the performance. After CRT, pCR was obtained 
in 22 (13%) cases, and 42 radiomics features were included in the algorithm. 
Accordingly, the sensitivity, specificity, positive predictive value, negative predictive 
value, and accuracy were 81.8%, 97.3%, 81.8%, 97.3%, and 95.3%, respectively[79].

While the correct classification of cases in which pCR is provided helps to identify 
less invasive therapeutic strategies such as mucosectomy or wait-and-watch, early 
prediction of cases that do not respond to CRT will also allow these cases to be 
directed to more effective treatments.
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Table 2 Studies of chemoradiotherapy response prediction with artificial intelligence

Ref. Number of 
patients

Parameters 
evaluated

Imaging 
method Technique used Results

Shi et al[71], 
2019

51 (90% cases for 
training and the 
remaining 10% 
for testing)

Tumor volume, 
mean ADC, 
radiomic

MRI (Pre-CRT 
and mid-CRT) 
(T2-DWI, DCE)

CNN (1) pCR response prediction: (a) Pre-CRT with MR AUC: 
0.80; (b) Mid-CRT with MR AUC: 0.82; and (c) Pre- and 
mid-CRT MR together AUC: 0.86; and (2) Good response 
to CRT: predicting yes/no: (a) Pre-CRT with MR AUC: 
0.91; (b) Mid-CRT with MR AUC: 0.92; and (c) Pre-- and 
mid-CRT MR together AUC: 0.93.

Fu et al[73], 
2020

43 Radiomic MRI (Pre-CRT, 
DWI)

Handcrafted 
traditional computer-
aided diagnostic 
method vs deep 
learning

Deep learning model with handcrafted model CRT 
response prediction AUC values: 0.64 vs 0.73 (P < 0.05)

Shayesteh 
et al[74], 
2019

98 (53 training 
and 45 validation 
set)

Radiomic MRI (1 wk before 
CRT) (3 Tesla, 
T2W-weighted)

Machine learning 
(SVM, BN, NN, 
KNN)

AUC for the BN algorithm: 74%, accuracy: 79%; When 
four algorithms were used together, AUC: 97.8% and 
accuracy rate 92.8%.

Yang 
et al[75], 
2019

89 (66 training 
and 23 testing)

Radiomic and 
clinical features

MRI (Pre-CRT) (3 
Tesla, T2W, 3 
mm section 
thickness)

RFC Predicting the accuracy of tumor resistance with RFC 
91.3%, AUC: 0.83.

Ferrari 
et al[76], 
2019

55 (28 training, 27 
validation)

Radiomic MR (Pre, Mid, 
Post RT) (3 Tesla, 
T2W, 2 mm 
section thickness)

RFC (1) Prediction of cases with pCR by RFC; AUC: 0.86; and 
(2) Prediction of unresponsive cases with RFC; AUC 0.83.

Bibault 
et al[77], 
2018

95 Radiomic, 
clinical 
variables

CT DNN, SVM, LR CRT response prediction accuracy rates; DNN: 80%; SVM: 
71.5% LR: 69.5%.

Huang 
et al[78], 
2020

270 (236 training, 
34 validation)

Clinical 
variables

- ANN, KNN, SVM, 
NBC, MLR

pCR prediction accuracy rates and AUC values; ANN: 
88%, 0.84 KNN: 80%, 0.74 SVM: 71%, 0.76 NBC: 80%, 0.63 
MLR: 83%, 0.77.

ADC: Apparent diffusion coefficient; ANN: Artificial neural network; AUC: Area under the curve; BN: Bayesian network; CNN: Convolutional neural 
network; CRT: Chemoradiotherapy; CT: Computed tomography; DCE: Dynamic contrast-enhanced; DNN: Deep neural network; DWI: Diffusion-weighted 
imaging; KNN: K-nearest neighbors; LR: Linear regression; MLR: Multiple logistic regression; MRI: Magnetic resonance imaging; NBC: Naïve bayes 
classifier; NN: Neural network; pCR: Pathological complete response; RFC: Random forest classifier; SVM: Support vector machine.

Prediction of KRAS mutation in rectal cancer
Kirsten rat sarcoma (KRAS) mutations, which occur in approximately 30%–40% of 
colorectal cancer, have been indicated as a highly specific negative biomarker for the 
antibody-targeted therapies to the epidermal growth factor receptor[80]. Metastatic 
colorectal cancers with KRAS mutations are resistant to anti-epidermal growth factor 
receptor targeted therapy. Therefore, the KRAS mutation test has been recommended 
by the National Comprehensive Cancer Network guidelines to guide targeted therapy 
for cases diagnosed with metastatic colorectal cancer[81].

Determination of the KRAS mutation is usually made by pathological examination 
of the tumor tissue. However, intratumor heterogeneity or heterogeneity of KRAS 
mutation that can occur between different tumor regions limits histological 
approaches[82]. Moreover, the inability to determine mutation status due to poor DNA 
quality of biopsy samples, difficult to access tissue samples from metastatic colorectal 
cancers, repeated tumor sampling, and relatively high costs also limit the feasibility of 
molecular tests to monitor targeted therapy[83]. Therefore, a relatively simple and 
noninvasive method for KRAS mutations can be helpful for personalized treatment 
strategies.

In a study by Cui et al[84], 304 cases with rectal cancer diagnosis from center I 
(training dataset, n = 231; internal validation dataset, n = 91) and 86 cases from center 
II were included as an external validation dataset. It aimed to predict KRAS mutation 
from T2-weighted image-based radiomics. Subsequently, three classification methods, 
i.e. LR, decision tree, and SVM algorithm, were applied to develop the radiomics 
signature for KRAS prediction in the training dataset. The predictive performance was 
evaluated by ROC analysis. A total of seven radiomics properties were accepted as 
important variables for KRAS prediction, and the best predictor was determined as the 
SVM. The AUC was found to be 0.722 (95%CI: 0.654-0.790)[84].
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AI IN FOLLOW-UP IN RECTAL CANCER
Treatment toxicity
Effective toxicity estimation and evaluation schemes are required to limit RT-related 
side effects. High-tech devices and planning systems provide submillimetric precision. 
However, while giving the desired dose to the target volume, the OARs in its 
immediate neighborhood may be affected, leading to RT-induced toxicity. Acute 
toxicity occurs during treatment or within 3 mo of completion of treatment and 
usually, full recovery takes weeks to months. Late side effects such as fibrosis or RT-
induced oncogenesis are generally irreversible and considered progressive over time. 
When planning RT, its potential benefits should be weighed against the possibility of 
damaging healthy organs and tissues to maximize the curative response while 
minimizing the possibility of normal tissue complications. On the other hand, the 
target volume should not be compromised to preserve OARs. In addition to complex 
dosimetric data, AI provides the clinician with the ability to predict complications by 
integrating higher-level information such as detailed clinical and comorbidity data 
into a more comprehensive and quantitative model[85].

Dosimetric parameters include dose volume histogram parameters and threshold 
doses such as maximum point doses. Nondosimetric factors include other variables 
such as age, gender, and histopathology. Normal tissue complication probability and 
tumor control probability prediction models focused on using dosimetric parameters 
alone[86,87]. Also, the necessity of using nondosimetric parameters has been emphasized 
in the Quantitative Analysis of Normal Tissue Effects in the Clinic[88]. Data-driven 
approaches, on the other hand, aim to determine the model that best fits the input data 
(called properties or independent variables) and output data (called the response or 
dependent variable). Toxicity predictors can be examined roughly in three parts as 
dosimetric, clinical, and image-based.

In rectum cancer RT, toxicity can be predicted in advance with AI-based models, 
and appropriate dose-area restrictions, additional treatment planning (simultaneous 
CT, etc.), and prophylactic medical support treatments can be reviewed. There are AI 
studies that predicted rectal toxicity in prostate and cervical cancer radiotherapy, but 
there are no studies predicting toxicity with AI in rectal cancer radiotherapy[89-91]. 
Oyaga-Iriarte et al[92] conducted a study to predict irinotecan toxicity in metastatic 
colorectal cancer with ML models, and leukopenia was estimated with 76% accuracy, 
neutropenia 75%, and diarrhea 91%.

The development of prediction tools with a wide variety of variables and models 
limits the comparability and standard use of existing toxicity studies. Toxicity 
estimation algorithms can be standardized by sharing data between centers and 
creating big data. The application of such models is valuable in many different ways 
for both patients and clinicians.

Survival
In oncological treatments, forecasting is very important in the treatment decision-
making process because accurate survival prediction is critical in making 
palliative/curative treatment decisions. Also, the prediction of remaining life 
expectancy can be an incentive for patients to live a fuller or more fulfilling life. 
Survival statistics assist oncologists in making treatment decisions, but these are data 
from large and heterogeneous groups and are not well suited to predict what will 
happen to a specific patient. AI algorithms for the prediction of RT and ChT response 
have received considerable attention recently. In cases diagnosed with cancer, 
predicting survival is important in improving treatment and providing information to 
patients and clinicians. Considering the data set of rectal cancer patients with specific 
demographic, tumor, and treatment information, it is an important issue whether the 
patient’s survival or recurrence can be predicted by any parameter. Today, many 
hospitals store data in digital media. By evaluating these large data sets with AI 
techniques, it may be possible to predict treatment outcomes of patients, plan 
personalized medicine, improve corporate performance, and regulate health 
insurance.

In a study conducted by Zhao et al[93], survival prediction was made with an ML 
method in cases with metastatic rectal cancer, and 4098 cases were used in training 
and 3107 cases were used as test data. A survival prediction nomogram was created. 
While creating the prediction model, lasso (least absolute shrinkage and selection 
operator), an ML technique that can lead to superior performance compared to 
traditional multivariate regression, was used. The model was designed to predict 3-
year overall survival. The ML model formed the basis of the nomogram. Important 
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variables used in the nomogram were age, Charlson-Deyo score, tumor grade, pre-op 
CEA, liver metastasis, bone metastasis, brain metastasis, lung metastasis, peritoneal 
metastasis, presence of primary surgery, surgery for the metastatic area, the number of 
metastatic lymph nodes, and the presence of ChT. The c-index was used to evaluate 
the performance of the ML technique. Internally validated c-index values were 0.816 
(95%CI: 0.813-0.818), 0.789 (95%CI: 0.786-0.790), and 0.778 (95%CI: 0.775-0.780) for 1-, 
2-, and 3-year survival, respectively. External validated c-index was 0.811, 0.779, and 
0.778 for 1-, 2-, and 3-year survival, respectively[93]. There was great variation in overall 
survival times in cases diagnosed with metastatic rectal cancer. Accurate models with 
ML methods can assist patients and clinicians in setting expectations and clinical 
decisions in this challenging patient group.

Pham et al[94] used AI to discover DNp73 expression in terms of 5-year overall 
survival and prognosis in their study with 143 cases diagnosed with rectal cancer. Ten 
different CNN algorithms were used, and each immunochemical image was resized. 
For the algorithm, 90% of these images were used in training and 10% as test data, and 
the accuracy rates of ten algorithms varied between 90%-96%[94].

Li et al[95] conducted a study with 84 patients diagnosed with locally advanced rectal 
cancer and predicted survival with radiomics obtained from PET, CT, and PET-CT 
images with CNN. They compared the CNN method evaluated in the study with the 
Cox proportional-hazards model and random survival forests method. C-index was 
used in the performance evaluation of the methods. C-indexes of models created with 
radiomics obtained from PET, CT, and PET-CT images for Cox proportional-hazards, 
random survival forests, and CNN were 0.53-0.58-0.60 vs 0.58-0.61-0.58 and 0.62-0.60-
0.64 respectively, and the best performance was obtained when CNN and PET-CT 
were used together[95].

In the study conducted by Oliveira et al[96] to predict the 1-, 2-, 3-, 4-, and 5-year 
survival of cases with rectal and colon cancer, they evaluated 2221 cases in the test for 
colon cancer, 20061 cases in training, 551 cases in the test for rectal cancer, and 4962 
cases in training. Important variables for colon cancer were determined as age, CEA, 
CS site-specific factor 2, TNM stage, localization of the primary tumor, and regional 
lymph nodes. For rectal cancer, important variables were age, tumor extension, tumor 
size, TNM staging, surgery of the primary tumor, and gender. ML performance was 
evaluated by the accuracy rate and AUC. Accuracy rates and AUC for predicting 
survival for colon cancer for 1-, 2-, 3-, 4-, and 5-years were 95.6% (AUC: 0.980), 96.2% 
(0.984), 96.4% (0.988), 96.6% (0.988), and 96.4% (0.985), respectively, and their mean 
was 96.2% (0.984). Accuracy rates and AUC for predicting 1-, 2-, 3-, 4-, and 5-year 
survival for rectal cancer were 94.4% (AUC: 0.957), 94.4% (0.960), 94.0% (0.961), 93.8% 
(0.963), and 94.5% (0.971), respectively, with a mean of 94.1% (0.960)[96].

Accurate survival prediction in cancer patients remains a problem due to the 
increasing heterogeneity and complexity of cancer, treatment options, and different 
patient characteristics (age, Karnofsky Performance Status Scale, comorbid diseases, 
etc.). If reliable predictions can be achieved with AI, it can help with personalized care 
and medicine. Studies on AI-based survival prediction are increasing day by day in 
the literature, and there is still no standard algorithm.

CONCLUSION
In recent years, the increasing interest in AI in all fields of science has led to the 
development of innovative tools in oncology. The development of prediction tools 
with a wide variety of variables and models limits the comparison of existing studies 
and the use of standards.

In order to improve long-term prognosis, it is important to predict the overall 
survival of patients with a diagnosis of rectal cancer and progression of the disease 
receiving multimodal treatment. With the evaluation of clinical, radiological, genetic, 
dosimetric, and epidemiological factors using AI, it is possible to perform accurate 
predictions to achieve personalized treatment. Given high treatment costs, potential 
serious toxicity, harms of early progression, and low survival in cases of ineffective 
treatment, predictive systems with AI are promising. Multicenter studies with large 
data sets can provide algorithms with higher accuracy rates.

AI technology develops day by day in the realization of human behaviors in 
oncology and offers more efficient, faster, and lower cost solutions. Both AI and 
robotic potential are enormous in the follow-up and treatment of rectal cancer. AI and 
robotics are on the way to becoming a part of our health ecosystem.
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Abstract
Artificial intelligence (AI), particularly the deep learning technology, have been 
proven influential to radiology in the recent decade. Its ability in image 
classification, segmentation, detection and reconstruction tasks have substantially 
assisted diagnostic radiology, and has even been viewed as having the potential 
to perform better than radiologists in some tasks. Gastrointestinal radiology, an 
important subspecialty dealing with complex anatomy and various modalities 
including endoscopy, have especially attracted the attention of AI researchers and 
engineers worldwide. Consequently, recently many tools have been developed for 
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lesion detection and image construction in gastrointestinal radiology, particularly 
in the fields for which public databases are available, such as diagnostic 
abdominal magnetic resonance imaging (MRI) and computed tomography (CT). 
This review will provide a framework for understanding recent advancements of 
AI in gastrointestinal radiology, with a special focus on hepatic and pancreatobi-
liary diagnostic radiology with MRI and CT. For fields where AI is less developed, 
this review will also explain the difficulty in AI model training and possible 
strategies to overcome the technical issues. The authors’ insights of possible future 
development will be addressed in the last section.

Key Words: Artificial intelligence; Deep learning; Image diagnosis; Radiology; Magnetic 
resonance imaging; Computed tomography
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Core Tip: Gastrointestinal radiology is a subspecialty that is important and complex, 
and is thus a popular subject in artificial intelligence (AI). Recently many deep-
learning based diagnosis assistance tool have been developed in gastrointestinal 
radiology, particularly in diagnostic abdominal magnetic resonance imaging (MRI) and 
computed tomography (CT). Herein we will review recent advance of AI in 
gastrointestinal radiology, with a special focus on abdominal MRI and CT. Current 
difficulty in less-developed fields will be explained as well.

Citation: Chang KP, Lin SH, Chu YW. Artificial intelligence in gastrointestinal radiology: A 
review with special focus on recent development of magnetic resonance and computed 
tomography. Artif Intell Gastroenterol 2021; 2(2): 27-41
URL: https://www.wjgnet.com/2644-3236/full/v2/i2/27.htm
DOI: https://dx.doi.org/10.35712/aig.v2.i2.27

INTRODUCTION
The field of gastrointestinal radiology includes diagnostic radiology and interventional 
radiology. In the practice of diagnostic gastrointestinal radiology, various imaging 
tools are applied for the diagnosis of lesions in the abdominal cavity. These tools 
include X-ray used in abdominal plain film[1], angiography and abdominal computed 
tomography (CT)[2], magnetic resonance used in abdominal magnetic resonance 
imaging (MRI)[3,4], and ultrasound used in abdominal sonography[5]. For some 
diagnostic tasks, intravenous contrasts are used to enhance lesions for study. Contrast-
enhanced, three-phase CT is the standard for examination of liver tumors and many 
other lesion types[6]. Contrast-enhanced ultrasound and MRI, though less frequently 
used, have some clinical use in examination of pancreatic lesions and inflammatory 
bowel disease[7-9]. Please refer to Ripollés et al[7] for example of contrast-enhanced 
ultrasound for diagnosis for Crohn’s disease.

Artificial intelligence (AI) have been influential in radiology recently, because it has 
potential to reduce workloads of radiologists, and diagnostic radiology tools stated 
above have provided feasible ground for machine learning model development. 
Potential of machine learning models to reduce radiologist workload come from its 
better stability, higher work efficiency, and better accuracy in some selected tasks[10] 
than human workers. Deep learning has proven its suitability for different imaging 
methods, and radiology and has been widely used in image classification, 
segmentation, detection, and reconstruction tasks[11]. There are some optimistic 
radiologists who are willing to let AI assist them in their work so that they can 
enhance their role in other places[12,13]. Of course, there are also pessimistic radiologists 
who worry that the development of AI systems will replace radiologists[14].

The most significant shortcoming of machine learning algorithms require a lot of 
data[15]. At the same time, the lack of unified standard training data will lead to a 
decrease in the efficiency of AI learning, but it is difficult for doctors to label a large 
amount of accurate data in complex diseases. In addition, the algorithm may learn 
false correlations, which may also lead to overfitting. At the same time, it is difficult 
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for AI to explain the causality in the observation dataset. Semi-supervised learning is 
between supervised learning and unsupervised learning. In the training process, a 
small amount of labeled data and a large amount of unlabeled data are used at the 
same time. The development of semi-supervised learning algorithms is mainly because 
data labeling is very expensive or impossible in some fields[16-18]. The development of 
semi-supervised learning can also simultaneously solve the problems of a large 
number of labeling and overfitting.

INTERVENTIONAL RADIOLOGY
Interventional radiology uses imaging techniques in diagnostic radiology to treat 
diseases or take specimens. The practice of interventional procedures in 
gastrointestinal radiology can be best exemplified by the treatment solid organ tumors. 
Among the most-frequently used non-surgical treatment procedures of hepatocellular 
carcinoma (HCC) are transcatheter arterial chemoembolization (TACE) and 
radiofrequency ablation (RFA). In TACE[19], liver tumors are first highlighted by 
angiography, and then embolized by particles coated with chemotherapeutic drugs. In 
RFA[20], the lesion is located by ultrasound rather than angiography and ablated by 
radiofrequency heating. In addition to liver cancer, any solid organ tumors with rich 
vasculature can be treated with this procedure. For example, pancreatic neuroendoc-
rine tumors are frequently hypervascular, therefore are sometimes treated by 
embolization since last century[21,22], especially in patients with multiple endocrine 
neoplasia type 1 syndrome, where multiple tumors may make resection unfeasible[23]. 
are also widely applied in some of pancreatic tumors, such as neuroendocrine tumors. 
Application of RFA, which does not require rich vasculature, is even more versatile 
than TACE. There are reports of successful radiofrequency ablation on unresectable 
pancreatic cancer[24,25], and even intra-abdominal sarcomas such as gastrointestinal 
stromal tumor[26].

Interventional radiology also has broad application on non-tumor diseases, 
especially in vascular diseases. The best well-known example is emergent 
management of gastrointestinal bleeding, where the bleeding artery can be visualized 
by angiography, and embolized[27,28]. A similar approach can be also applied to 
thrombotic diseases such as Budd-Chiari syndrome or celiac artery occlusion[29,30]. In 
management of these disorders, the vessels are visualized and dilated with stents or 
dissolved with thrombolytic agents. Applications of interventional radiology are 
numerous and still developing, so a thorough review is out of scope of this article.

Both diagnostic and interventional gastrointestinal radiology can be done 
endoscopically. For example, in endoscopic ultrasound (EUS), the ultrasound probe is 
inserted through an endoscope to visualize lesions that are not easily accessible by 
abdominal sonography[31,32]. Biopsy and other interventional procedures can then be 
done to the visualized lesion via the endoscope, as exemplified in publications by 
Williams et al[33]. and Kahaleh et al[34]. Endoscopic radiological images are more difficult 
to be collected in large amount, because like in EUS, most image from endoscopic 
procedures are manually captured with custom angle of the endoscopist, rather than 
in an automatic and standard manner. Therefore, unlike in development of AI in 
regular diagnostic radiology, in which large scale public dataset, such as pancreas CT 
dataset from The Cancer Imaging Archive[35-37], and Beyond the Cranial Vault 
Abdomen data set[38,39], are readily available, most AI studies in endoscopic radiology 
still requires collection and processing of multihospital data. Moreover, lack of 
standardization and technical difficulty can make researchers reluctant or afraid to 
make image public. For example, in the study of computer-aided diagnosis of 
gastrointestinal stromal tumors by Li et al[40], the authors made the research possible 
only after collecting data from 19 hospitals, and did not publish the dataset. To our 
knowledge, there is only one well-known, public database of endoscopic ultrasound, 
published in 2020[41], and we hope that more database will be available in the following 
decade. In the present situation, due to less available resource, endoscopic radiology is 
less developed, so in this review article, we will focus on non-endoscopic radiological 
examination, particularly on CT and MRI.
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DEEP LEARNING IN RADIOLOGY: ACHIEVING STATE OF THE ART IN 
LESION DETECTION
In the last five years, there have been marked progress in deep learning-assisted lesion 
detection for radiology, particularly in computed tomography. The progress can be 
exemplified by the DeepLesion tool developed by National Institutes of Health[42], 
which claims to detect all types of lesion in computed tomography regardless of the 
organ, with a sensitivity of 81.1% and five false-positives per case. DeepLesion was 
published along with an immense dataset with 32120 CT slices. With this annotated 
database in hand as a powerful tool, researchers refined lesion detection algorithm at 
an accelerated pace. For example, with the DeepLesion dataset, researchers from 
Chinese Academy of Sciences were able to develop the MVP-Net tool[43] by feature 
pyramid network, which claims to be 5.65% more sensitive than DeepLesion. With 
more developed advancements in deep learning algorithms and more databases 
available, we can expect that universal lesion detection in computed tomography will 
reach clinical use in reasonable time. An example of lesion detection in DeepLesion 
can be found in Yan et al[42].

For MRI, recent advancements are much less pronounced. Due to complex and 
variable sequencing techniques used in MRI, such as perfusion weighted imaging and 
T2* used in in stroke protocol[44] and diffusion weighted imaging[45] used in various 
organs, development of an universal, organ-neutral lesion detection algorithm is very 
difficult, if not impossible. Nonetheless, for individual organs, there is still marked 
progression. For example, using a deep learning algorithm, Amit et al[46] developed a 
tool for lesion detection in breast MRI. Later, in 2019, with the application of deep 
learning on T1-weighted, fat-suppressed MR images, Kijowski et al[47] further extended 
the technology to predict breast lesion type. Though not as effective as in breast lesion 
detection, the application of deep learning on musculoskeletal system MRI has 
achieved marked success for the detection of variable lesions, such as fracture, 
deformity, and metastatic disease. There are numerous studies about lesion detection 
on MRI in other organs, but it is beyond the scope of this review article.

Given the fact that there are on an average five false-positive lesions detected by 
DeepLesion, deep learning algorithms trained by radiographs are prone to over-
detecting lesions. Researchers are aware of this problem and have tried to overcome it 
by various technologies. The most-used and earliest method applied is multi-view 
convolutional networks (CNN), wherein native 3D shapes are recognized from their 
rendered 2D views[48]. By using multi-view CNN, Setio et al[49], Kang et al[50] and El-
Regaily et al[51] reported significant reduction of false-positive lesions in the lung with 
computed tomography, thus making this algorithm the most effective detection 
training tool for lung image. Recent results of the use of multi-view CNN in lung 
lesion detection are shown in Table 1.

In addition to lung computer tomography, multi-view CNN has been used with 
other imaging subjects as well. It is also used to increase specificity in mammographic 
image classification[52] and longitudinal multiple sclerosis lesion segmentation[53]. 
Besides multi-view CNN, masking techniques during neural network training are also 
used to reduce false positive lesions. For example, Zlocha et al[54] used dense masks to 
improve the performance of RetinaNet[55], and the researchers developing ULDor 
tool[56] used pseudo mask to reduce false positivity in universal lesion detector.

Taken together, in recent years, deep learning for lesion detection in technology has 
shown great progress. In the next section, we will focus on how these technical 
advancements have benefited the diagnosis of gastrointestinal lesions.

DISEASE DIAGNOSIS AND PREDICTION IN GASTROENTEROLOGY
Cholangiographic diagnosis
One of the most advanced achievement in gastrointestinal radiology is the non-
invasive evaluation of for the bile ducts. Before the era of image reconstruction and 
advanced endoscopy, visualization and diagnosis of lesions causing biliary disease 
usually required quite invasive procedures such as transhepatic cholangiography[57]. In 
late 20th century, with the advancements in endoscopy, it was replaced by endoscopic 
methods l ike retrograde cholangiopancreatography (ERCP)[58] and EUS 
cholangiography[59,60]. For achieving both treatment and diagnosis, endoscopic 
procedure maybe necessary and appropriate, but for the sole purpose of diagnosis, 
such as visualization of lesions in primary sclerosing cholangitis (PSC)[61] and 
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Table 1 Recent results in usage of multi-view convolutional networks in lung lesion detection

Dataset Toolset AUC Ref.

LIDC ConvNets (2D) 0.996 Setio et al[49], 2016

LIDC Inception-Resnet (3D) 0.99 Kang et al[50], 2017

LIDC MatConvNet (2D) 0.94 El-Regaily et al[51], 2020

LIDC: Lexington Infectious Disease Consultants; AUC: Area under the curve.

choledochal cyst[62], endoscopic procedure maybe too invasive and inconvenient for 
patients.

Therefore, in the last three decades, with the increasing demand of non-invasive 
procedures and the progress of digital image reconstruction technologies, some 
radiology visualization tools, such as magnetic resonance cholangiopancreatography 
(MRCP)[63] and CT cholangiography[64], have been developed and achieved clinical 
importance. For diagnostic problems, the precision of non-invasive examination has 
become comparable to that of endoscopic procedure. MRCP achieved diagnostic 
accuracy of up to 97% in the diagnosis of choledocholithiasis as early as 2000[65]. In 
2011, MRCP even rivaled the performance of pathologic examination, with an 
accuracy of 82.9% in predicting carcinomatous biliary obstruction[66]. In the meantime, 
CT cholangiography also reached the status of standard care in some situations, such 
as preoperative biliary anatomy assessment when MRCP is inconclusive[67].

These noninvasive diagnostic examinations are, of course, far from perfect. Despite 
early success, in some studies between 2010 and 2020, the sensitivity of MRCP for 
choledocholithiasis was reportedly inferior to that of EUS[68]. This outcome may be 
attributed to subjectivity and inter-observer variability of interpretation, because, even 
though it is less demanding than ERCP, the radiological assessment of the bile duct 
and pancreas still requires high level of expertise to interpret[69]. For more demanding 
tasks, such as detection and classification of pancreatic lesions[70,71], the performance of 
noninvasive tests can be even more disappointing.

To cope with the problem of interpretation difficulty in noninvasive cholangiopan-
creatography, researchers began to use variable deep learning methods in an attempt 
to achieve more subjective and sensitive lesion detection in the bile ducts and 
pancreas. For example, Ringe et al[72] developed a transfer learning-based system for 
automated detection of PSC, achieving a sensitivity of 95%. If this system is used 
clinically, radiologists can avoid all-manual interpretation for difficult PSC detection, 
thus reducing possible the inter-observer disagreement. Some of researchers also used 
deep learning to improve image reconstruction and segmentation in the 
pancreatobiliary region, to reduce pitfall in traditional MRCP and CT cholangiog-
raphy. For example, Tang et al[73] used deep learning to improve highlighting of 
periampullary regions in MRI, which can be difficult with traditional MRCP method. 
Al-Oudat et al[74] used Denoising Convolutional Neural Networks for better 
construction of intrahepatic biliary segmentation in MRI image.

Besides its utility in noninvasive examination, deep learning can also benefit 
imaging difficulty in endoscopic procedure. By a segmentation algorithm trained by 
D-LinkNet34 and U-Net, Huang et al[75] developed a system to evaluate stone removal 
difficulty of ERCP. By training on a deep learning model using ultrasound images and 
videos, Zhang et al[76] developed a system to recognize pancreas segments and stations 
in EUS. With globally increasing computing power and maturing deep learning 
technology, we can expect radiological pancreaticobiliary system assessment to 
continuously improve in the future.

Detection and classification of solid organ tumor
Imaging studies, such as abdominal contrasted CT scan and contrast enhanced 
ultrasound, are crucial for the evaluation of solid organ tumor diagnosis, such as liver 
cancer, pancreatic cancer, and other solid organ tumors. The best example is screening 
for HCC in patients with cirrhosis[77]. Image diagnosis of liver tumor is crucial and 
effective to the point that HCC can be diagnosed by three-phase contrasted CT[78] 
alone, without the need of a biopsy[79]. Despite being less accurate, image diagnosis is 
helpful in more difficult-to-diagnose tumor types, such as focal nodular hyperplasia 
and hepatocellular adenoma[80-82]. CT diagnosis is also crucial and sensitive for 
pancreas cancer diagnosis[83] and prediction of malignant change in cystic lesion[84].
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The first problem in image diagnosis is that, even with state-of-the-art, highly 
sensitive technique, it can have less than ideal specificity. For example, image 
appearance of intrahepatic cholangiocarcinoma (ICC) can mimic HCC both in contrast-
enhanced CT[85] and contrast-enhanced ultrasound[86]. Since the long-term outcome and 
treatment strategy are significantly different between HCC and ICC[87,88], this can be a 
severe misdiagnosis that impacts prognosis. Some vascular tumors like epithelioid 
hemangioendothelioma[89,90] and sclerosed hemangioma[91] may also mimic epithelial 
malignancy, making the image diagnosis even less specific. Moreover, because of a 
large volume of abdominal CT and MRI done for liver cancer screening, the workload 
is quite a lot for radiologists[92,93]. Pancreatic cancer is more problematic, since 
inflammatory process such as autoimmune pancreatitis can mimic adenocarcinoma, 
causing diagnostic difficulty in CT and MRI[94,95]. Less prevalent tumor types, such as 
acinar cell carcinoma of pancreas, can be even more challenging[96]. Therefore, there is 
strong demand for automatic tumor classification algorithm for abdominal imaging, to 
improve the accuracy of tumor classification and reduce radiologists’ workload.

Of the two purposes stated above, the most recent development was on assisted 
lesion detection to relieve radiologists’ workload. Using watershed transform and 
Gaussian mixture, Das et al[97] developed a tool that they claimed can detect 
hemangioma, HCC and metastatic carcinoma with a classification accuracy of 99.38%; 
however, they did not consider ICC in their differential diagnosis, therefore, this tool 
can be used only for screening, and not for final tumor diagnosis. Vorontsov et al[98] 
used fully convolutional network for the detection of liver metastatic colorectal cancer, 
with a sensitivity of up to 85%. There are several other developed for liver tumor 
detection and segmentation with variable success[99,100]. For automatic pancreatic cancer 
detection, there are also variable success. Li et al[101] developed a computer aided 
diagnosis model by Dual threshold principal component analysis for pancreas cancer 
on PET/CT image, with an accuracy of up to 87.72%. By using faster region-based 
CNN on CT image, Liu et al[102] built a diagnosis system which detected pancreatic 
cancer with an area under the curve (AUC) of 0.9632. These studies are only some 
examples of AI detection of digestive system cancer in medical images. For a more 
detailed discussion, readers can refer to the other review article focused on this 
subject[103].

Few researchers have published results about detailed tumor classification based on 
abdominal imaging. By training convolution CNN with both MRI image and clinical 
data, Zhen et al[104]’s model achieved AUC of up to 0.985 in the classification of 
malignant tumors as hepatocellular carcinoma, metastatic carcinoma or other primary 
malignancies. Yasaka et al[105] attempted automatic classification of liver tumor into five 
classes (HCC, other malignancy, indeterminate masses, and two classes of benign 
lesions) using CNN, and achieved an accuracy of 0.84. Scope of these classification 
tools are summarized in Table 2. Due to limited literature available, it is too early to 
predict whether automatic radiological tumor classification will be comparable to 
pathologic diagnosis, but the recent results seem promising, and would be a good 
subject for further research.

Intelligent assistance on endoscopic radiology
Endoscopic radiological procedures, such as EUS and ERCP, can be very difficult to 
perform and interpret, and require a lot of training to achieve competence[106], 
particularly if combined with interventional procedures like ampullectomy or 
biopsy[107,108]. Artificial intelligence assistance to reduce difficulty and allow for a 
reasonable learning curve is therefore desired for these procedures.

Due to the limited availability of public image database of EUS and ERCP, the 
development of AI models for these modalities is, as stated in a previous review 
article, still in its infancy[109]. There are, however, already some promising results in 
assistance of endoscopic radiological procedure. The most pronounced progress is 
with depth assessment in EUS. EUS imaging for evaluation of tumor depth is crucial in 
predicting the safety of endoscopic submucosal dissection[110]; however, the image 
diagnosis can be subjective, and requires much expertise. Cho et al[111] developed a tool 
using deep learning that predicts tumor depth in EUS with a claimed AOC of 0.887. 
For less sophisticated tasks such as detection of pancreatic cancer in EUS, the result is 
even better, with a claimed AOC of 0.940[112]. Therefore, it is evident that deep learning-
assisted diagnosis can be a reliable tool.

In summary, AI has proven helpful in radiological diagnosis. Although few of the 
tools described above have reached clinical use, with current development, we can 
expect AI-assisted diagnosis to advance further in few years, and it may eventually 
become relevant to everyday clinical practice.
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Table 2 Classification scope for recent deep learning-based tumor classification tools

Ref. HCC ICC Metastatic carcinoma Other malignancy Benign tumors

Das et al[97], 2019 O X O X O

Vorontsov et al[98], 2019 X X O X X

Zhen et al[104], 2020 O O O O X

Yasaka et al[105], 2018 O O O O O

HCC: Hepatocellular carcinoma; ICC: Intrahepatic cholangiocarcinoma. X: Yes; O: No.

MAIN CHALLENGES AND PITFALLS OF THE APPLICATION OF AI IN 
RADIOLOGY
Although AI has made a lot of contributions in radiology, there are still some 
challenges and pitfalls, and AI experts should be cautious when working with 
radiologists. One of the biggest challenges is the availability of data. Ordinary deep 
learning algorithms will be learned through millions of training datasets, but it is 
difficult for the medical field to have such a large amount of data, and even if there are 
a large number of training datasets, there is currently no unified classification 
standard[113,114]. If the training dataset is too small, multiple neuron training through 
deep learning will easily lead to overfitting[115,116] and will show poor accuracy in 
independent tests. How to choose the right amount of model depth to adapt to a 
smaller training dataset will be the biggest challenge for AI engineers. In addition, 
generative adversarial networks[117] is also very suitable for small training datasets. At 
the same time, the establishment of a large number of training databases can also 
effectively help improve the efficiency of AI. Physicians and engineers work together 
to establish an open database and set uniform standards, which can also enhance AI 
applicability in radiology and pathology.

In addition, some diseases (usually rare diseases) have a problem of extreme 
disparity in the classification ratio, which is called imbalanced data. Imbalanced data 
training is more difficult, which usually leads to high accuracy but poor results, 
because the machine only needs to guess more. The classification, you can get a good-
looking accuracy. Although there are good solutions already available[118], these are 
still important challenges for using AI with rare diseases.

Finally, when an AI model that can be used clinically is to be developed, proper 
verification settings must be ensured in the experimental verification of the model. 
Lack of sufficient verification can lead to untrustworthy models[119]. It is common that 
the training dataset and the test dataset are not extensive at the time of collection, thus 
resulting in poor results in practical applications.

FUTURE OF AI IN GASTROINTESTINAL RADIOLOGY
With advanced deep learning algorithm, computers can assist clinicians to make an 
accurate diagnostic decision by providing the right information. For difficulties in 
endoscopic and interventional procedure, however, information alone is of little help. 
Complete automation of a manual procedure must be assisted by both deep learning 
and robotics. For example, there have been marked advancements in robot-assisted 
endoscopy devices[120]. If these robots can be combined with an intelligent system that 
detect lesions via ultrasound[112], then it would have a potential to automatically take 
procure a biopsy sample from the lesion, or perform a surgical procedure, thus 
eliminating the difficulties of endoscopic and surgical technique.

The other factor that would augment the power of intelligent system is the 
development of radiological technology itself. The best example would be combination 
of radiology and endoscopic robotic capsule[121,122]. Recently, with the assistance of 
neural network, trajectory control and image visualization of endoscopic robotic 
capsules have been more automatic than they were previously[123]. In the future, if the 
size of ultrasound probe or other radiological device can be reduced to nanoscale, with 
an intelligent robotic capsule and intelligent ultrasound probe, fully automated 
detection and management of any lesion accessible by endoscopic capsules would be 
possible. Possible path to fully automatic diagnosis and intervention in 
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gastroenterology by combining artificial intelligence with various technologies is 
shown in Figure 1.

The problems inherent to AI itself, that is, data acquisition and annotation, will also 
be solved by recent technical developments in deep learning models. The best sample 
would be using unsupervised learning or semi-supervised learning[16,18] to decrease or 
eliminate the need for radiologist annotation, making development of models faster. 
For research topics with large public database and well-developed models, such as 
abdominal CT, transfer learning with pre-trained model and included clinical data can 
also make training easier, more precise, and faster[124]. In addition to improvement of 
deep learning model itself, the advancement of advanced deep learning algorithm will 
enable in-vivo live visualization of lesion detection in endoscope[125], which will be a 
powerful, clinically applicable function. LeNet-5 architecture can be found in 
publication by Lecun et al[126].

However, areas with less data availability, such as EUS, cannot be advanced with AI 
technology alone. For developments of these areas, international collaboration for 
collection of multi-center image database and clinical data must be done to overcome 
data scarcity and facilitate precise training and evaluation of models. These multi-
center database of image and clinical data will not only benefit model training, but also 
validation of previous models. Because multi-center data can be more unbiased than 
data from single source, validation or re-training by multi-center data may improve 
precision of models by eliminating sampling bias.

With future advancement in data science, deep learning algorithm and medical 
robotics, AI can play important role in gastrointestinal radiology in the future and may 
lead a medial revolution.

CONCLUSION
As demonstrated in the assistance of liver tumor diagnosis and cholangiography, AI 
has the potential to reduce radiology workload and improve diagnostic specificity, 
thus making radiologic diagnoses faster and more reliable. In some tasks like the 
detection of a malignant stricture, we can even hope for machine diagnosis to surpass 
human diagnosis, making fully automated diagnosis possible. Conversely, for fields 
where training data collection is more difficult, such as endoscopic ultrasound, 
training deep learning models would still be slow using today’s technology.

To overcome the problem of lack of technical advancement due to limited data in 
these areas, particularly in endoscopic procedure, two approaches maybe used. The 
first solution is to use algorithms that are designed to increase data availability in 
small medical dataset, such as generative adversarial network and transfer learning. 
The other suggestion is to build public, global endoscopic image library for model 
training. In conclusion, though a lot have to be done to make AI universally successful 
in gastrointestinal radiology, the researchers and developers actually already have the 
facility to deal with the difficult aspects of this task. Therefore, it is reasonable to 
expect more scientific advancements and clinical use of AI in the coming decade.
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Figure 1 Illustration of a possible path to automatic diagnostic and interventional system in gastroenterology.
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Abstract
Hepatocellular carcinoma (HCC) is the most commonly diagnosed type of liver 
cancer and the fourth leading cause of cancer-related mortality worldwide. The 
early identification of HCC and effective treatments for it have been challenging. 
Due to the sufficient compensatory ability of early patients and its nonspecific 
symptoms, HCC is more likely to escape diagnosis in the incipient stage, during 
which patients can achieve a more satisfying overall survival if they undergo 
resection or liver transplantation. Patients at advanced stages can profit from 
radical therapies in a limited way. In order to improve the unfavorable prognosis 
of HCC, diagnostic ability and treatment efficiency must be improved. The past 
decade has seen rapid advancements in artificial intelligence, underlying its 
unique usefulness in almost every field, including that of medicine. Herein, we 
sought and reviewed studies that put emphasis on artificial intelligence and HCC.

Key Words: Hepatocellular carcinoma; Artificial intelligence; Diagnosis; Prognosis; 
Therapy; Genomic
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Core Tip: We performed electronic searching in PubMed, Web of Science and 
EMBASE. Artificial intelligence (AI) or in-depth learning and hepatocellular 
carcinoma were used as mesh terms. We found that AI showed favorable results in 
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early diagnosis and treatment response prediction and prognosis estimation in patients 
with hepatocellular carcinoma. The past decade has seen rapid advancements in AI, 
underlying its unique usefulness in almost every field, including that of medicine. 
Herein, we sought and reviewed studies, and we expect that AI will be an important 
complement to traditional diagnosis, treatment and prognosis estimation of 
hepatocellular carcinoma.
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INTRODUCTION
According to GLOBOCAN 2018[1], liver cancer was the sixth most commonly 
diagnosed (4.7%) type of cancer and the fourth leading cause (8.2%) of cancer-related 
mortality. It has been estimated that there are approximately 841000 new liver cancer 
cases and 782000 liver cancer-related deaths annually. Hepatocellular carcinoma 
(HCC) accounts for the majority of primary liver carcinoma[1]. The widely accepted 
risks of HCC include chronic hepatitis B virus/hepatitis C virus infection, alcohol 
consumption, cirrhosis, aflatoxin intake as well as nonalcoholic fatty liver disease. Due 
to its atypical radiological appearance and the possibility of false-negative biopsy 
results, early-stage HCC is likely to be missed. Only a few HCC patients are suitable 
for radical resection, and even fewer can receive a liver transplant due to the limited 
availability. The high recurrence rate of HCC also undermines the benefits of surgery. 
Patients in intermediate and advanced stages can only benefit from noncurative 
treatments, including transarterial chemoembolization (TACE), radiofrequency 
ablation (RFA), targeted agents and systemic therapies, albeit in a limited way[2]. 
Managing HCC is a major challenge in the clinic.

In the past few years, rapid progress has been made in artificial intelligence (AI) due 
to improvements in computer science. AI techniques, including machine learning 
(ML), artificial neural networks (ANNs) and computer vision, were combined with 
surgery, radiology, bioinformatics and pharmaceuticals and played an innovative role 
in boosting the development of those techniques[3,4]. At present, AI is applied in drug 
design, patient monitoring, diagnostics and imaging, risk prediction and management, 
wearables and virtual assistants[5].

As AI is now frequently used in diagnosis, treatment and patient managing of many 
types of cancer, including lung, gastric, prostate and colon cancers[6-17], the assistance of 
AI in enhancing our diagnostic, therapeutic and prognostic ability to control HCC was 
not unexpected. In addition, the combination of AI and big data also performed much 
better than traditional methods[18].

Recent studies have exhibited promising applications of AI in HCC. In the present 
study, the latest developments in the use of AI in HCC were studied, and both 
methods and improvements were reviewed.

DIAGNOSTIC ASSISTANCE FROM AI
An HCC diagnosis is based mostly on imaging and laboratory tests. Radiological and 
nonradiological imaging holds a dominant position in the diagnosis, staging, 
therapeutic decisions and management of patients, while laboratory biomarkers [e.g., 
α-fetoprotein (AFP)] offer some support. For certain patients, histological examination 
is recommended[19]. By introducing AI into the evidence-based diagnostic procedure, 
more accurate classification was provided to assist clinical determination. Recent 
developments were summarized in Table 1.

In a study in 2010, a total of 250 HCC patients, including 200 patients who 
underwent hepatectomy and 50 who underwent liver transplantation, were randomly 
divided into a test group (n = 75; 30%) and a training group (n = 175; 70%)[20]. Factors 
including serum AFP, preoperative tumor number, maximum tumor size and tumor 
volume were found by univariate analysis to be strongly related to tumor grade 
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Table 1 Recent developments in artificial intelligence assisted diagnosis

AI category Data adopted Advantages Control Ref.

ANN Preoperative serum AFP, tumor 
number, size and volume

The ANN showed higher AUCs in 
identifying tumor grade (0.94) and MVI 
(0.92)

LR model (0.85 and 0.85) [20]

CNN Enhanced MRI The CNN showed comparable accuracy 
(90%)

Traditional multiphase MRI 
(89%)

[24,25]

Open-source framework 
“caffe” based CNN model

DWI CNN trained with three sets of b-values 
found better grading accuracy (80%)

CNN trained with different 
b-values (65%, 68%, 70%)

[26]

CNN Nonenhanced MRI The deeply supervised and pretrained CNN 
model performed better in characterizing 
HCC (accuracy 77.00 ± 1.00%)

CNN-based method 
pretrained by ImageNet 
(65.00 ± 1.58%)

[27]

DL-based segmentation 
model

Contrast-enhanced CT The model with a combination of 2D 
multiphase strategy showed higher ability 
of segmenting active part from the tumors

Traditional CT estimation [28-30]

RF based ML model HE-stained histopathological 
images

The classifying model showed an AUC of 
0.988 in the test set and 0.886 in the external 
validation set

- [31]

1D CNN Hyperspectral and HE-stained 
images

The models had a higher average AUC of 
0.950

RF (0.939) and SVM (0.930) 
models

[33]

Shiny and Caret packages-
based prediction model

Clinical and laboratorial 
information

The optimal model had an AUC of 0.943 Single factor-based 
predictors (0.766, 0.644 and 
0.683)

[34]

1D: One-dimensional; 2D: Two-dimensional; AFP: α-fetoprotein; AI: Artificial intelligence; ANN: Artificial neural network; AUC: Area under the curve; 
CNN: Convolutional neural network; CT: Computed tomography; DL: Deep learning; DWI: Diffusion-weighted imaging; HE: Hematoxylin and eosin; LR: 
Logistic regression; ML: Machine learning; MRI: Magnetic resonance imaging; MVI: Microvascular invasion; SVM: Support vector machine; RF: Random 
forest.

and/or microvascular invasion. Those four factors were used to build both a 
traditionally used logistic regression (LR) model and an ANN, which was set as a 3-
layer feedforward neural network with a learning rule of backpropagation of error, 
endowing the ANN with a capacity of reducing overall error. It was clear that ANN 
[area under the curve (AUC) = 0.94; 95% confidence interval (CI): 0.89-0.97] had a 
notably higher (P < 0.001) predictive ability for tumor grade than LR analysis (AUC = 
0.85; 95%CI: 0.78-0.89). At the same time, its ability to predict microvascular invasion 
was also significantly stronger (AUC = 0.92, 0.85; 95%CI: 0.86-0.96, 0.74-0.89; P < 
0.001). Compared with single factor prediction, which cannot effectively predict tumor 
grade and microvascular invasion[21-23], ANN provided a significantly improved ability 
to stratify tumors in a multidimensional way.

Magnetic resonance imaging (MRI) is highly valued in clinical diagnosis due to its 
outstanding ability to locate lesions. Recent research has shown the potential of deep-
learning systems to distinguish HCC from other hepatic diseases, in which all 494 
typical imaging features of six types of hepatic lesions were divided into a training set 
(n = 434) and a test set (n = 60)[24]. An AI model was used to classify hepatic lesions 
through multiphasic contrast-enhanced MRI scans. A custom convolutional neural 
network (CNN) with iteratively optimized architecture was trained by 43400 samples 
generated from 434 patients of the training set via augmentation techniques. The test 
set included 60 lesions (10 lesions from each category) randomly selected by Monte 
Carlo cross-validation. Eventually, the CNN consisted of three convolutional layers for 
generating filtered images, two maximum pooling layers for providing spatial 
invariance and two fully connected layers for outputting matched lesion types. As a 
result, a 90% sensitivity and an AUC of 0.992 for HCC classifying were observed in the 
test set, with an average 90% sensitivity and 98% specificity for a total of six classes of 
lesions. It had comparable efficiency to traditional multiphase MRI, which was 
reported to have an overall sensitivity of 89% and specificity of 96% for HCC[25].

Another recent study, in which imaging data was partitioned into a training and 
validation set (60 HCCs) and a fixed test set (40 HCCs), paid attention to the tumor 
grading potential of diffusion-weighted imaging[26]. An AI model was constructed 
based on an open-source deep-learning framework, “caffe”, to grade HCC by 
diffusion-weighted imaging. Edmondson grade I and II HCCs were defined as low-
grade (n = 47), while Edmondson grade III and IV HCCs were defined as high-grade (
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n = 53). Diffusion-weighted imaging was performed with three sets of b-values (0, 100, 
600 s/mm2), logarithmically transformed into log maps and then extracted by a 
specifically designed two-dimensional CNN to collect spatially deep features for 
grading tumors. The two-dimensional CNN was established with two convolutional 
layers, two pooling layers, two fully connected layers and a softmax layer. A deeply 
supervised loss functioned as the cross-entropy loss of the proposed CNN, which 
combined the three loss functions of CNN in the three b-value images and the loss 
function of the concatenated deep features. In terms of grading accuracy, the proposed 
CNN (80%; AUC, 0.83) performed better than other CNNs derived from original b 0 
(65%), b 100 (68%), b 600 (70%) images and an apparent diffusion coefficient map 
(72.5%).

Jian et al[27] reported a novel method of training a deep-learning HCC diagnosis 
model with nonenhanced MRI scans. A total of 112 HCC patients (115 HCC tissue 
samples) with histological HCC proofs and enhanced MRI scans (including 
precontrast phase, arterial phase, portal vein phase and delayed phase) were classified 
into four Edmondson grades and further defined as low-grade (Edmondson grades I 
and II) and high-grade (Edmondson grades III and IV) HCCs. A deep-learning 
framework was established in two steps. The first step was the pretraining process, in 
which the relationship between precontrast (nonenhanced) and enhanced MRI scans 
was identified in order to find out malignant characterizations of nonenhanced MRI 
scans. The identified characterizations were transferring-learnt using a supervised 
cross modal method in the second step. Results showed that the CNN-based method 
performed better in characterization than the traditional way, and the deeply 
supervised model pretrained by the cross modal from the three phases (precontrast, 
arterial and portal vein phase) performed the best compared with nonsupervised CNN 
and deeply supervised methods pretrained by the cross modal from two out of three 
phases (precontrast + arterial phase and precontrast + portal vein phase). This result 
revealed a new diagnostic approach for patients not receptive to enhanced imaging.

A deep-learning automatic segmentation model was built on multiphase computed 
tomography (CT) images to discriminate tumors from healthy liver tissue and further 
identify between active and necrotic tumor areas[28]. A total of 13 contrast-enhanced CT 
sequences from 7 HCC patients were manually segmented by four experts into 104 
labeled CT scan slices, containing images captured before contrast agent injection and 
images reflecting the arterial phase and the portal venous phase. The U-Net 
architecture was configured in a hierarchical method to specially segment by applying 
separate networks for each type of specific tissue. Two opposite strategies were 
investigated: Dimensional MultiPhase strategy, in which single-phase images were 
processed in a multi-dimensional feature map and the MultiPhase Fusion strategy, in 
which each phase was independently processed and then merged into the final 
segmentation. The softmax was introduced in the final layers of the different networks. 
The weighted cross-entropy functioned as the cost to optimize the weights and balance 
classes problem. Finally, a commonly used Dice similarity coefficient was used to 
estimate segmentation quality. Results indicated a better competency of multiphase 
methods in segmenting the liver and active part of tumors as compared with single 
phase ones. Between the two multiphase methods, Dimensional MultiPhase 
outperformed MultiPhase Fusion in the segmentation of the liver (P = 0.004) and active 
part of the tumors (P = 0.005). Furthermore, the combination of two Dimensional 
MultiPhase methods displayed the highest ability in spotting active areas from tumor 
tissues, making it reliable (mean error rate = 13.0%) in estimating the necrosis rate in 
which traditional CT estimation is not[29,30]. With a more accurate assessment method, 
more beneficial clinical decisions may be made.

Histological examination provides solid evidence for the diagnosis, grading and 
prognosis analysis of HCC. Hematoxylin and eosin staining is the most common 
method used for biopsy. A total of 491 whole-slide hematoxylin and eosin-stained 
histopathological images of HCC and adjacent normal tissues downloaded from the 
Genomic Data Commons data portal were used for supervised training of ML 
classifier based on Breiman’s random forest (RF)[31]. The 31 most valuable image 
features (IFs) identified from the training set by principal component-based analysis 
(PCA) were used during the establishment of the classification model. An external 
validation set of tissue microarray images from the West China Hospital was 
employed in addition to the randomly partitioned training (70%) and test (30%) sets. 
The IF classification model showed an AUC of 0.988 (95%CI: 0.975-1.000) in the test set, 
while that of the external validation set was 0.886 (95%CI: 0.844-0.929). This 
outstanding performance of the IF model indicates its possible applications in the 
future.
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Hyperspectral imaging (HSI) was regarded as a promising diagnostic technique[32]. 
A one-dimensional CNN was designed to discriminate HCC from normal tissues 
through HSI images[33]. HCC samples were cut into two adjacent slices, one of which 
was hematoxylin and eosin-stained and the other one underwent HSI. A total of 14 
sets of HSI images, each containing 107 images photographed under different 
wavelengths, were used in a leave-one-out cross-validation approach, resulting in 14 
different models. The framework consisted of a convolution layer, a max-pooling layer 
and a fully connected layer. The convolution layer could extract features from HSI 
images supervised by annotated tumor areas on the paired hematoxylin and eosin-
stained slice, with a rectified linear unit that was shown to avoid gradient vanishing 
and accelerate the training process. Extracted features were processed in the max-
pooling layer to reduce dimension and classified afterward in the fully connected 
layer. The average accuracy, sensitivity, specificity and AUC of those models was 
0.881, 0.871, 0.888 and 0.950, respectively. Further evaluation was carried out and 
exhibited a salient capacity of the one-dimensional CNN model as compared with the 
RF and support vector machine (SVM) models.

Information was extracted from 539 HCC patients and 1043 non-HCC patients to 
train and test a predictive ML framework developed using R version 3.4.3 and the 
Shiny and Caret packages[34]. Patients were randomly divided into the training (80%), 
development and test sets. Clinical information, including AFP, AFP-L3, des-g-
carboxy prothrombin (commonly referred to as DCP), aspartate aminotransferase, 
alanine transaminase, platelet count, alkaline phosphatase, gamma-glutamyl 
transferase, albumin, total bilirubin, age, sex, height, body weight, hepatitis B surface 
antigen and hepatitis C virus antibody, was obtained for ML. The framework had 
several classifiers and two components. In the first component, a grid search was 
performed to select the best classifier and its specific hyperparameter, which would be 
introduced in the second component to output probabilities of HCC. Among a total of 
seven classifiers, gradient boosting showed an AUC of 0.940 as the highest one, with 
that of the optimal, based on the framework, classifier at 0.943; single-factor prediction 
using thresholds of 200 ng/mL for AFP, 40 mAu/mL for DCP and 15% for AFP-L325 
performed AUCs of 0.766, 0.644 and 0.683, respectively.

THERAPY RESPONSE PREDICTION BY AI
Surgical resection remains the first-line treatment for early-stage patients, with 5-year 
survival in appropriately selected cases exceeding 70%. However, it has been reported 
that HCC diagnosis is usually delayed, especially in countries with limited screening 
resources[19]. Out of patients who miss the optimum surgical time window or are 
unsuitable for operative therapy, only a few benefit from loco-regional (e.g., RFA), 
intra-arterial (e.g., TACE), systemic and targeted therapies[2]. Thus, enhancing the 
accuracy of surgical indications and promoting treatment benefits of nonoperative 
therapies would effectively improve the clinical prognosis of patients. In the past 
years, some AI models with great potential were built, as referred in Table 2.

HCC has been estimated as the fourth highest cause of all cancer-related mortality 
worldwide[1], indicating a high malignancy and poor prognosis of HCC. Accurate 
prognostic prediction of tumor resection is needed to identify high-risk patients and 
enable more favorable clinical decisions. As Qiao et al[35] reported, the independent risk 
factors (including tumor size, number, AFP, microvascular invasion and tumor 
capsule) found by linear regression to be significantly related to survival were selected 
to assist in predicting the prognosis of early HCC after partial hepatectomy, both in a 
Cox model and using an ANN method. A feed-forward neural network was built as a 
perceptron with several layers, outputting a prognosis condition (survival or death) 
for certain time points. In addition to the training and cross-validation cohort in which 
patients from the Eastern Hepatobiliary Surgery Hospital were randomly selected, an 
external validation cohort was obtained from the First Affiliated Hospital of Fujian 
Medical University. AUCs demonstrated that the ANN (0.855) outperformed the Cox 
model (0.826), Tumor, Node, Metastasis 6th (0.639), Barcelona Clinic Liver Cancer 
(BCLC) (0.612) and HepatoPancreato-Biliary Association system (0.711), and consistent 
results were observed in the external validation cohort. It drew attention to the 
potential of the ANN model to provide clinical assistance and improve benefits of 
early-stage HCC patients.

AI models can also help identify predictive factors of surgery outcomes. In a 
multicenter retrospective study that included 976 BCLC 0-B HCC patients who 
underwent hepatectomy, Tsilimigras et al[36] generated homogeneous groups of 
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Table 2 Artificial intelligence models that can help in predicting therapy responses

AI Data adopted Advantages Control Ref.

ANN Cox-identified risk factors The ANN had the highest AUC (0.855) Cox model, TNM 6th, BCLC and 
HPBA system (0.826, 0.639, 0.612, 
0.711)

[35]

CART model Clinical and laboratorial 
parameters

The model successfully identified pre- 
and postoperative prognosis predictive 
factors

- [36]

Weka-based ANNs Cox-identified risk factors (15 
factors for DFS and 21 for 
OS)

The ANNs showed higher abilities of 
predicting DFS and OS

LR and decision tree model [37,38]

Radiomics-based DL 
CEUS model 

Contrast-enhanced 
ultrasound

The model showed an AUC of 0.93 in 
predicting therapy response to TACE

Radiomics-based time-intensity 
curve of CEUS model (0.80) and 
radiomics-based B-Mode images 
model (0.81)

[40]

Pretrained CNN 
"ResNet50"

Manually segmented CT 
images

The model showed AUCs for predicting 
CR, PR, SD and PD in training (0.97, 0.96, 
0.95, 0.96) and validation (0.98, 0.96, 0.95, 
0.94) cohorts

- [41]

Automatic predictive 
CNN model

Quantitative CT and BCLC 
stage

The model had a better prediction 
accuracy of 74.2%

ML model based on BCLC stage 
(62.9%)

[42]

ANN Clinical features The models showed higher AUCs in 
predicting 1- and 2-yr DFS (0.94, 0.88) 
after RFA

Model built with 8 features for 1-yr 
DFS (0.80), and model built with 6 
features for 2-yr DFS (0.76)

[45]

AI: Artificial intelligence; ANN: Artificial neural network; AUC: Area under the curve; BCLC: Barcelona Clinic Liver Cancer; CART: Classification and 
Regression Tree; CEUS: Contrast-enhanced ultrasound; CNN: Convolutional neural network; CR: Complete response; CT: Computed tomography; DFS: 
Disease-free survival; DL: Deep learning; HPBA: HepatoPancreato-Biliary Association; LR: Logistic regression; ML: Machine learning; OS: Overall survival; 
PD: Progressive disease; PR: Partial response; RFA: Radiofrequency ablation; SD: Stable disease; TACE: Transarterial chemoembolization; TNM: Tumor, 
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patients based on their 5-year overall survival (OS) and identified clinical factors, 
which can be used to predict OS after resection using the nonparametric Classification 
and Regression Tree (CART) model based on pre- (preoperative CART model) and 
postoperative (postoperative CART model) factors. CART is a risk prediction model 
with a performance to recursively partition the ‘covariate space’. As a result, the CART 
model successfully identified several prognosis predictive factors. Among BCLC-0/A 
patients, the CART model selected AFP and Charlson comorbidity score as the first 
and second most important preoperative factors and lymph vascular invasion as the 
best postoperative predictor of OS. Radiological tumor burden score and pathologic 
tumor burden score were selected as the best pre- and postoperative factors for 
predicting surgical outcomes for BCLC-B HCC patients.

Consecutive studies of Ho et al[37,38] have been reported in which AI models were 
predictively capable of classifying patients into different groups with distinctive 
disease-free survival (DFS) and OS after hepatic resection. Data from HCC patients 
who underwent liver resection were examined and merged for further construction of 
survival predictive models. The input variables were identified by the univariate Cox 
proportional hazard model to be closely related (log-rank test; P < 0.05) to DFS or OS. 
Eighty percent of the data were used for training, and the other 20% for validation, 
while no significantly different effect of input variables was observed between training 
and validation (P > 0.05). The proposed ANNs in both studies, which shared 
homologous structures based on the Waikato Environment for Knowledge Analysis 
software using a backpropagation algorithm, were framed with input, hidden and 
output layers. Each of the identified variables was inputted into one of the input 
neurons, and then a trial-and-error process was performed in the hidden layer to 
optimize its neuron numbers before generating DFS and OS status in the output layer, 
which contained only one neuron.

In the first reported study showing the capacity of the ANN to predict DFS based on 
15 statistically significantly associated variables, two comparative models were tested: 
An LR and a decision tree model. The receiver operating characteristics curves and 
AUCs for the 1-, 3- and 5-year DFS models constructed using ANN, LR and decision 
tree demonstrated an acceptable and exceeding performance of the ANN model as 
compared with the LR and decision tree models.
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In another study, attention was paid to OS after resection with 21 potential variables 
serving as inputs. An LR model was used for performance comparison. The accuracy, 
sensitivity, specificity and AUC of the ANN and LR models were calculated. As a 
result, the prediction performance of the ANN model was significantly stronger than 
that of the LR model. In both studies, the possible usage of the ANN as a clinical 
supplementary tool for decision-making was emphasized, suggesting it might be able 
to enhance the profit-risk ratio of HCC resection.

TACE has been widely accepted as the standard and effective treatment for HCC 
patients at the intermediate stage[39]. Recent studies have paid considerable attention to 
deep-learning and TACE, highlighting treatment response prediction and AI-assisted 
clinical decision-making.

Contrast-enhanced ultrasound (CEUS) and B-mode ultrasound images of 130 HCC 
patients who received first-time TACE treatment were obtained for retrospective 
analysis using AI, which was trained to predict patient response (objective-response 
and nonresponse) to TACE[40]. A total of three models were framed by applying CEUS 
images (deep-learning radiomics-based CEUS model), the time-intensity curve of 
CEUS (ML radiomics-based time-intensity curve of CEUS model) and B-mode images 
(ML radiomics-based B-Mode images model). AUCs were compared between the three 
models, and the hepatoma arterial-embolization prognostic score was used to predict 
the outcomes of patients with HCC undergoing TACE. In the training (n = 89; 68.5%) 
and validation (n = 41; 31.5%) cohorts, the three models markedly outperformed the 
hepatoma arterial-embolization prognostic score [AUC = 0.98 (0.92-0.99), 0.84 (0.74-
0.90), 0.82 (0.73-0.91) and 0.623 in the training and 0.93 (0.80-0.98), 0.80 (0.64-0.90), 0.81 
(0.67-0.95) and 0.617 in the validation cohorts for deep-learning radiomics-based CEUS 
model, ML radiomics-based time-intensity curve of CEUS model, ML radiomics-based 
B-Mode images model and hepatoma arterial-embolization prognostic score, 
respectively]. A high reproducibility of this predictive accuracy was displayed by 
robustness experiments performed in triplicate in both the training and validation 
cohorts. The predictive capability of human readers with a deep-learning feature map 
showed an advantage over that of ML radiomics-based time-intensity curve of CEUS 
model or ML radiomics-based B-Mode images model but not over that of deep-
learning radiomics-based CEUS model.

In two analogous studies, the ML network displayed a strong ability to predict 
TACE therapy outcomes using CT images. Peng et al[41] trained a pretrained deep 
CNN, ResNet50, with manually segmented CT images to predict treatment response to 
TACE. Tumor regions of interest segmented by experienced radiologists were divided 
into one training set (n = 562) and two validation sets (n = 89; 138). The weights of 
earlier layers (1-174) in this network were frozen to prevent overfitting and speed up 
the training process. The trained model showed AUCs of 0.97 (0.97-0.98), 0.96 (0.96-
0.97), 0.95 (0.94-0.96) and 0.96 (0.96-0.97) in the training cohort (n = 562), 0.98 (0.97-
0.99), 0.96 (0.95-0.98), 0.95 (0.93-0.98) and 0.94 (0.90-0.98) in the validation cohort 1 (n = 
89), and 0.97 (0.96-0.98) and 0.96 (0.94-0.98), 0.94 (0.92-0.97), 0.97 (0.95-0.98) in the 
validation cohort 2 (n = 138) for complete response, partial response, stable disease 
and progressive disease, respectively. Morshid et al[42] built a fully automated ML 
algorithm that can predict response to TACE using quantitative CT scan features and 
BCLC stage. A total of 105 HCC patients who had received TACE were defined by 
time to progression as TACE-susceptible (time to progression ≥ 14 wk) or TACE-
refractory (time to progression < 14 wk). A total of five imaging features that were 
different between background liver and tumor were extracted, including tumor 
volume, maximum two-dimensional axial diameter of the background liver, small area 
low gray-level emphasis within the background liver, maximal correlation coefficient 
within the background liver and long-run high gray-level emphasis within the tumor. 
Those features were added to the AI model to promote prediction accuracy. Compared 
with the model based on the BCLC stage alone (prediction accuracy = 62.9%, 95%CI: 
0.52-0.72), the model based on CT scan features and BCLC stage showed a better 
prediction accuracy of 74.2% (95%CI: 0.64-0.82).

Abajian et al[43] established an LR and an RF model to predict TACE treatment 
response using MRI scans. The quantitative European Association for the Study of the 
Liver response criteria were used to measure TACE response. A total of 36 patients 
were defined as treatment responders (8/36; 22.2%) and nonresponders (28/36; 77.8%) 
using a cut-off value of 65% changes in quantitative European Association for the 
Study of the Liver response criteria. During the training process of both models, five 
features, including cirrhosis, pre-TACE tumor signal intensity, pre-TACE number of 
tumors, performing method of TAC and existence of sorafenib treatment, were used in 
30 different combinations to identify the most accurate predictive model. A leave-one-
out cross-validation method was used for a predictive accuracy test. When trained on 
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all five features, the LR model displayed an accuracy of 72.0%, sensitivity of 50.0% and 
specificity of 78.6%, while an accuracy of 66.0%, sensitivity of 62.5% and specificity of 
67.9% were validated for the RF model. Notably, these two models shared a best 
performance (accuracy 78%, sensitivity 62.5% and specificity 82.1%) when trained 
using only two (pre-TACE tumor signal intensity > 27.0 and presence of cirrhosis) of 
those five features but still remained inferior to that of MR scan using a baseline 
apparent diffusion coefficients value threshold of 0.83 × 10-3 mm2/s, which 
demonstrated 91% sensitivity and 96% specificity to predict TACE response at 1 mo 
after treatment and an AUC of 0.965[44].

RFA is considered a viable option for HCC patients who are unsuitable for resection 
or on the waiting list for a liver transplant. A prognostic prediction ANN model was 
reported to be promising for clinical practice[45]. Patients were divided into a 1- (n = 
252) and a 2-year (179) DFS group. A total of eight and six variables from a total of 
fifteen potential variables (total bilirubin, aspartate aminotransferase, alanine 
transaminase, albumin, platelet, age, gender, tumor size, tumor number, AFP, HCC 
treatment history, TACE, recurrence events after TACE, BCLC stages and liver 
cirrhosis events) were found to be significantly associated with 1- and 2-year DFS and 
were used as inputs for building prediction models, which was based on a multiple-
layer perceptron structure and a backpropagation learning rule. This ANN model was 
designed with the ability of selecting structure depending on its predictive 
performance. Between two 1-year DFS models, the one built with 15 features (the 
accuracy, sensitivity, specificity, and AUC were 0.92, 0.87, 0.94 and 0.94, respectively) 
was better than the one with 8 significant features (the accuracy, sensitivity, specificity 
and AUC were 0.78, 0.37, 0.96 and 0.80, respectively). Consistently, a 2-year DFS model 
with 15 features (the accuracy, sensitivity, specificity and AUC were 0.86, 0.79, 0.91 
and 0.88, respectively) showed a considerable advantage over that with 6 significant 
features (the accuracy, sensitivity, specificity and AUC were 0.68, 0.47, 0.84 and 0.76, 
respectively) and traditional methods including acoustic radiation force impulse 
elastography (AUC = 0.821; 95%CI: 0.747-0.895) and transient elastography(AUC 0.793; 
95%CI: 0.712-0.874)[46,47]. Although some of the 15 features were evaluated by χ2 test to 
be nonsignificantly related with 1- or 2-year DFS, the better outcome of models with all 
15 features might have prompted their implicit roles in RFA response prediction.

PROGNOSIS ESTIMATION USING AI
In order to correctly identify the development characteristics and improve the 
outcomes of existing therapies, accurate prognostic information is indispensable. 
Individualized precise treatment based on risk and prognostic data would 
substantially enhance curing efficiency in HCC[48]. Table 3 displayed some of the 
effective models which can provide prognosis estimation.

Two deep-learning algorithms, CHOWDER and SCHMOWDER, which adopted 
whole-slide digitized histological slides of HCC patients that had undergone surgery 
were set up to predict OS after resection[49]. CHOWDER could automatically recognize 
survival-related patterns on the tiles derived from the slides and assess the risk score 
for each whole-slide digitized histological slide in three steps: Preprocessing, tile-
scoring and prediction. SCHMOWDER has an identical preprocessing step as 
CHOWDER and a two-branch tile-scoring and predicting pipeline. The upper branch, 
which generated a representation of highly-probably tumoral tiles with an attention 
mechanism used, was trained by annotations from pathologists; the lower branch, 
which generated a representation of only a few tiles, was weakly supervised. 
Representations from the two branches were merged to calculate a survival risk score. 
The discriminatory capacities of the two models assessed by cross-validation were 
demonstrated as better than baseline factors (including microvascular invasion, serum 
AFP, largest nodule diameter and satellite nodules) and composite score by combining 
survival-related clinical, biological and pathological features.

In a prospective study including 442 patients with Child A or B cirrhosis, an HCC 
development prediction model based on ML algorithms, known as RF, was compared 
using conventional regression analysis[50]. Previously determined clinically relevant 
parameters (age, body mass index and presence of diabetes) and those identified by 
univariate analysis (AFP level, bilirubin, male gender, aspartate aminotransferase, 
alanine transaminase, Child-Pugh score and viral etiology) were selected to build a 
predictive regression model and an ML classifier. Multiple decision trees were 
constructed and used as “votes” to create the final classification prediction model. 
Cross-validated accuracy estimation and external validation in the hepatitis C antiviral 
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Table 3 Prognosis prediction models built with artificial intelligence algorithms

AI category Data adopted Advantages Control Ref.

DL algorithms CHOWDER 
and SCHMOWDER

Whole-slide digitized histological 
slide

C-indexes for survival prediction of 
SCHMOWDER and CHOWDER reached 
0.78 and 0.75

Baseline factors and composite 
score

[49]

ML classifier Previously determined relevant 
parameters and those identified 
by univariate analysis

The ML algorithm performed a c-statistic 
of 0.64 for HCC development prediction

Regression model (0.61) and the 
model built on the HALT-C 
cohort (0.60)

[50]

DL survival prediction 
model

RNA, miRNA and methylation 
data from TCGA

The DL model showed better potential in 
classifying HCC patients into two 
subgroups with different survival

PCA and the model built with 
manually inputted features

[51]

OS prediction model based 
on SVM-RFE algorithm

134 methylation sites identified 
using Cox regression and SVM-
RFE algorithm

This algorithm showed a higher accuracy 
of classifying HCC patients

Traditionally set classifying 
methods based on DNA 
methylation

[54-56]

ANN Mortality-related variables The ANN showed higher AUCs (0.84 and 
0.89) in predicting in-hospital and long-
term mortality

LR model (0.76 and 0.77) [57,58]

AI: Artificial intelligence; ANN: Artificial neural network; AUC: Area under the curve; DL: Deep learning; HALT-C: Hepatitis C antiviral long-term 
treatment against cirrhosis; HCC: Hepatocellular carcinoma; LR: Logistic regression; ML: Machine learning; OS: Overall survival; PCA: Principal 
component-based analysis; RFE: Recursive feature elimination; SVM: Support vector machine; TCGA: The Cancer Genome Atlas.

long-term treatment against cirrhosis trial cohort, which included 1050 patients, was 
conducted. The ML algorithm performed the best classifying characteristics with a c-
statistic of 0.64 (95%CI: 0.60-0.69) compared with the regression model (0.61; 95%CI: 
0.56-0.67) and the model built on the hepatitis C antiviral long-term treatment against 
cirrhosis cohort (0.60; 95%CI: 0.50-0.70), raising the possibility of prospectively 
predictive HCC development by ML.

Two HCC subgroups were found to have a notably discrepant prognosis by 
survival analysis and were focused on to build a deep-learning survival prediction 
model[51]. RNA, miRNA and methylation data from 360 HCC patients were collected 
from The Cancer Genome Atlas (TCGA) and were split to train an SVM model. Five 
additional confirmation datasets were obtained to estimate the predictive accuracy. 
TCGA HCC omics data were regarded as the input of the proposed autoencoder, in 
which three hidden layers with different numbers of nodes were implemented using 
the Python Keras library. The autoencoder was trained for ten epochs with a 50% 
dropout in the gradient descent algorithm. A total of 37 features of the TCGA omics 
data significantly (log-rank test, P < 0.05) associated with survival were identified by 
the autoencoder. With those features, a classification model using the SVM algorithm 
was built and validated in the test group and five additional groups of HCC patients. 
C-index, Brier score and log-rank test were carried out to evaluate the performance of 
the AI model, and two alternative methods, including PCA and a model based on 37 
manually identified features from the omics data. The proposed model showed a 
clearly better potential than that of PCA and the model with manually-inputted 
features, and intended prediction robustness was validated in additional datasets.

Anomalous DNA methylation was found to be highly related to HCC[52,53] and able 
to predict survival in HCC patients that had undergone surgery[54]. DNA methylation 
data from 377 HCC samples and 50 adjacent normal tissue samples were obtained and 
analyzed using the ChAMP tool in R software. A total of 2785 sites from 40799 sites 
that had been methylated differently between HCC tissue and adjacent normal tissue 
were assessed via Cox regression and found to be significantly related to OS (P < 0.05). 
The SVM-recursive feature elimination algorithm behaved as a classifier to identify 
valuable sites that could be used to build a predictive model. Finally, 134 methylation 
sites were used to build the predictive model. A total of 163 patients were divided into 
a “high-risk” (died within 1 year after surgery, n = 58), “intermediate-risk” (survived 
1-5 years after surgery, n = 64) and “low-risk” (survived > 5 years after surgery, n = 41) 
groups and were separated into a training (n = 130) and a test (n = 33) set. A total of 26 
(78.8%) patients were successfully classified into the test set. Further validation of 19 
paired HCC and normal tissue samples from the GSE77269 dataset in the Gene 
Expression Omnibus database demonstrated no incorrect classification of normal 
tissues and a similar ratio of HCC samples classified as “high-risk.” Although this 
algorithm showed a higher accuracy of classifying HCC patients than some 
traditionally-set classifying methods based on DNA methylation[55,56], validation in a 
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larger sample size was needed.
Liao et al[31] built an IF-based prognosis prediction model (IF model) that can divide 

HCC patients who underwent resection into two groups, the high- and low-score 
groups, with a different OS according to the cut-off value of the training set. A total of 
46 informative IFs, identified by Cox proportional hazard regression and an RF 
minimal depth algorithm, were found to be significantly (P < 0.05) associated with OS 
and were used to train the IF model. As a result, the IF model successfully 
distinguished patients with higher scores from those with lower scores in all three sets 
(log-rank test; P < 0.0001 in the training set, P = 0.013 in both the test and external 
validation sets), exhibiting a well-performed prognosis prediction ability. 
Furthermore, time-dependent receiver operating characteristics curves were used to 
compare the prognosis performance between the IF model and the Tumor, Node, 
Metastasis staging system, with no significant difference observed (adjusted P = 0.848-
1.000) at each time point (1-9 years after treatment), indicating that the IF model may 
have a comparable predictive accuracy with that of the Tumor, Node, Metastasis 
staging system.

Two similarly framed ANN models, expected to respectively predict in-hospital and 
5-year mortality in HCC, were trained with data from a large population of 22926 
patients who had been diagnosed with HCC and had undergone resection[57,58]. The 
structure of ANNs consists of an input layer, a hidden layer and an output layer. To 
identify related variables, continuous and categorical variables were respectively 
tested by one-way analysis of variance and Fisher’s exact test, and significant 
predictors (P < 0.05) were verified by univariate analysis. The following steps were 
repeated 1000 times: (1) Data were randomly divided into a training set (n = 18341; 
80%) and a test set (n = 4585; 20%); (2) the LR and ANN models were established 
based on the training dataset; and (3) Paired t-tests were used to compare indices 
between the two models. Statistically in-hospital mortality-related variables, including 
age, gender, comorbidity (estimated by Charlson comorbidity index), hospital volume, 
surgeon volume and length of stay) were extracted by the ANN, and an outcome 
(death/survival) was generated. Compared to the LR model, the ANN showed a 
substantial advantage with a higher accuracy rate (97.28 vs 88.29, P < 0.001), a lower 
Hosmer-Lemeshow statistic (41.18 vs 54.53, P < 0.001) and a higher AUC (0.84 vs 76, P 
< 0.001). The other ANN model was built and tested similarly with six identical 
variables to predict 5-year mortality, and ANN was found to significantly outperform 
the LR model (accuracy rate 96.57% vs 87.96%; Hosmer-Lemeshow statistic 0.34 vs 0.45; 
AUC 88.51% vs 77.23%). Those two models combined with the deep-learning 
technique showed unique prognosis prediction performance, revealing their possible 
applicability in the prediction of in-hospital and long-term mortality.

OMICS RESEARCH PERFORMED WITH AI
Genomic data have exhibited efficient and unique advantages in both research and 
clinical experience. A recent study managed to correlate tumor samples and their 
original tissue types using an ML prediction model[59]. RNA-seq data of 14 tumors and 
at least 10 corresponding adjacent normal tissue samples for each tumor were 
downloaded from TCGA, Therapeutically Applicable Research to Generate Effective 
Treatments and the Genotype-Tissue Expression. An autoencoder neural network 
based on Pytorch with a rectifying activation function, dropout and normalization 
between layers was built. The mean squared error between the input and output was 
introduced as the loss function. After 10000 iterations for converging loss, the 
autoencoder demonstrated an outstanding ability to identify tissue sites for cancers 
with increasing accuracy in parallel with the mounting number of varying genes, 
noticeably surpassing the predominant PCA method, which identified only 8/14 
cancers. In the distinction of HCC samples, the autoencoder with all features utilized 
showed a highly specific capacity of capturing biological information. This study 
provided a solid reference for further research in HCC and might be able to promote 
sample usage in a precise way.

A novel approach of seeking HCC-related genes by ML was established[60]. Gene 
expression profiles of 43 tumor and 52 normal tissue samples were downloaded from 
NCBI Gene Expression Omnibus. A maximum relevance-minimum redundancy 
(mRMR) method, referred to as mRMRe, was used to rank the features. The mRMR is 
a proven ML approach for phenotype classification; it can classify transcriptional 
features based on both the redundancy between features and their relevance to the 
target. An incremental feature selection method was combined with the mRMRe 
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algorithm, generating a possible feature subset for further analysis. A subset consisting 
of 117 features with a satisfying accuracy of 0.895 was finally selected as the criteria to 
distinguish HCC from non-HCC samples, in which several previously identified HCC-
related genes (such as MT1X, BMI1 and CAP2) were found, justifying the rationality of 
this model. Furthermore, some genes, such as TACSTD2, that were not considered to 
be HCC-related before (one of which was identified by protein-protein interaction) 
might be crucial during the pathogenesis of HCC, namely ubiquitin C was identified 
by this model.

CONCLUSION
AI showed a substantial enhancement throughout the pre- and postclinical process of 
HCC in terms of both investigation and treatment. Due to the low diagnostic rate of 
early-stage patients, its high recurrence rate and unsatisfactory treatment effectiveness, 
HCC is one of the deadliest types of cancer worldwide. The emerging and fast-
developing techniques of AI offer the possibility of improving the survival of HCC 
patients. Brought by deep-learning methods, a higher accuracy of diagnosis and 
treatment response prediction combined with individual prognosis assessment could 
potentially improve the time and quality of survival for HCC patients to a 
considerable extent.

AI has also been used in a wider range of clinical practice. Hyer et al[61] released an 
ML approach to predict postsurgical prognosis. The novel method referred to as 
Complexity Score outperformed several currently used indices of prognosis 
estimation. Mueller-Breckenridge et al[62] identified two hepatitis B virus quasispecies 
by ultra-deep sequencing and developed a ML model to determine the viral variants 
and assist clinical decision-making with regards to anti-hepatitis B virus strategies. A 
newly-established ML model was reported as an alternative method in the prediction 
of liver fibrosis caused by chronic hepatitis C virus infection[63]. While none of those 
studies were directly related to HCC, their findings might significantly help preclinical 
prevention, early diagnosis and surgical planning.
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Abstract
Artificial intelligence (AI) has been increasingly utilized in medical applications, 
especially in the field of gastroenterology. AI can assist gastroenterologists in 
imaging-based testing and prediction of clinical diagnosis, for examples, detecting 
polyps during colonoscopy, identifying small bowel lesions using capsule 
endoscopy images, and predicting liver diseases based on clinical parameters. 
With its high mortality rate, pancreatic cancer can highly benefit from AI since the 
early detection of small lesion is difficult with conventional imaging techniques 
and current biomarkers. Endoscopic ultrasound (EUS) is a main diagnostic tool 
with high sensitivity for pancreatic adenocarcinoma and pancreatic cystic lesion. 
The standard tumor markers have not been effective for diagnosis. There have 
been recent research studies in AI application in EUS and novel biomarkers to 
early detect and differentiate malignant pancreatic lesions. The findings are 
impressive compared to the available traditional methods. Herein, we aim to 
explore the utility of AI in EUS and novel serum and cyst fluid biomarkers for 
pancreatic cancer detection.
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Core Tip: Artificial intelligence (AI) aided endoscopic ultrasound (EUS) and 
microRNA analyses are sensitive and effective for pancreatic cancer detection with 
sensitivity of more than 95%. The size of pancreatic lesion does not affect the 
diagnostic performance by artificial intelligence. This will help overcome the delayed 
diagnosis and high mortality of pancreatic cancer. Recent studies showed that the speed 
of AI system in EUS can be performed in real time fashion. This will be adjunctive to 
the conventional EUS examination for future utility.
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INTRODUCTION
Pancreatic cancer has been notorious for late detection and high mortality rate[1,2]. The 
main contributing factor is the difficulty of diagnosis from imaging studies[3]. 
Differentiation between benign disease like chronic pancreatitis and malignancy is 
challenging[4]. Malignant pancreatic diseases [i.e., pancreatic ductal carcinoma, 
intraductal papillary mucinous neoplasms (IPMN), and mucinous cystic neoplasm] 
can present differently in radiologic imaging[3]. Endoscopic ultrasound (EUS) has been 
recognized as an effective method for detecting pancreatic cancer with a reasonable 
sensitivity but low specificity[5]. Compared to computed tomography (CT) and 
magnetic resonance imaging (MRI), EUS had a superior performance in small 
pancreatic tumors[6,7].

The use of computer aided diagnosis for cancer detection has been introduced since 
1960[8]. In the past 10 years, the use of artificial intelligence (AI) has been exponentially 
increased in every field, including medicine[9-11]. Machine learning and deep learning 
are two major techniques in AI used for analyzing a large dataset and creating a 
predictive model[12-14]. The advance of AI in gastroenterology field has played an 
important role in pancreatic cancer regarding detection and survival prediction[15-17].

Given the emerging role of AI in this field, we conducted the systematic review on 
AI and pancreatic cancer with keywords of “artificial intelligence” and “pancreatic 
cancer” from PubMed and Institute of Electrical and Electronics Engineers databases. 
We aim to elaborate the advancement of AI application in pancreatic cancer detection 
by imaging studies focusing on endoscopic ultrasound and novel serum and cyst fluid 
marker analysis.

AI CONCEPT AND TERMINOLOGY
AI is the use of mathematical models and computer algorithms to mimic human 
intelligence. It has been increasingly used to predict risk and diagnose pancreatic 
cancer with imaging and personal health features[15,18-20]. Most medical AI is considered 
narrow AI, which focuses on single or limited tasks[19]. There are different AI 
techniques for creating predictive models, including machine learning and deep 
learning.

Machine learning is a subfield of AI that uses mathematical techniques to create a 
predictive model by recognizing patterns in the dataset without being explicitly 
programmed[18,19]. There are many machine learning algorithms available such as 
regression, decision trees, k-nearest neighbors, and neural network[21]. Machine 
learning shows great promise in medical research as it can detect complex patterns in a 
large dataset that human doctors would likely miss[22,23].

Deep learning, a subfield of machine learning, is basically a neural network with 
multiple hidden layers (usually a large number) to automatically detect higher-level 
features of input data. A neural network is also known as artificial neural network. As 
shown in Figure 1, neural network is a system of interconnected neurons with three 
type of layers: (1) Input layer; (2) Hidden layer; and (3) Output layer. Each layer 
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Figure 1 Neural network with input layer, hidden layers, and output layer. Each circle represents a neuron within the network. Within each neuron, 
weights and bias are applied to the input values to produce an output value. w: Weight; b: Bias.

amplifies certain aspects of the input that are important for discrimination by applying 
a weight to each input[24,25]. Besides requiring a large and well-annotated dataset, the 
major drawback of deep learning is a long training time, which could take hours or 
days. One method that can significantly improve the training time of deep learning is 
the use specialized hardware such as graphic processing unit or tensor processing 
unit[26].

A convolutional neural network (CNN) is a class of deep learning that apply a filter 
to capture the characteristic of the data. In image analysis, CNN use different filters to 
capture various aspects of the image[27,28]. The most significant advantage of CNN in 
the medical field is its ability to detect image features automatically and objectively, 
for instance, the detection of pancreatic cancer based on EUS images[19,29].

Three major types of machine learning problems are supervised learning, 
unsupervised learning, and reinforcement learning. Most machine learning problems 
in medicine are supervised learning, in which the response variable must be already 
known or labeled. To create a predictive model for solving supervised learning 
problem, the first step is the collection and annotation (label) of input data. The data is 
then divided into training and testing sets. The training data is used for training 
machine learning models, including applying different learning algorithms or 
architectures, optimizing model parameters, and selecting a final predictive model. 
Once the final predictive model is selected, the model will be evaluated using the 
testing data to assess the model performance on the data that has not been used before. 
These are common steps used to create a predictive model for both machine learning 
and deep learning[21,30]. In fact, the choice of using machine learning or deep learning 
usually depends on the type of inputs. Typically, CNN-based deep learning is the 
preferred choice for image classification. Additionally, deep learning model had a 
higher diagnostic ability than the subjective measurement of tumor feature values 
(tumor width, shape, and color) by doctors because of its objectivity[31-33].

APPLICATION OF AI IN IMAGING STUDIES FOR PANCREATIC CANCER 
DETECTION
Modern imaging modalities, including CT scan, MRI, ultrasound, and endoscopy, 
contain far more visual information than humans can distinguish with the naked 
eye[18]. Since 2010, significant progress has been achieved in applying AI to the 
gastroenterology imaging[15]. The pancreas is one of the most challenging organs in CT 
segmentation. Each patient produces more than 300 images that a radiologist must 
discern, creating intense reading efforts that sometimes succumb to unavoidable 
misdiagnosis[34]. Many machine learning and deep learning models have been created 
to aid physicians in making diagnosis based on medical imaging, including the 
detection of pancreatic neoplasms. There are two major types of AI systems used in the 
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detection of cancer: Computer-assisted detection (CADe) and computer-assisted 
diagnosis (CADx) and they serve different purposes. CADe systems are used for 
locating lesions in medical images. CADx systems characterize lesions and can 
distinguish between benign and malignant[35].

COMPUTED TOMOGRAPHY
CADx AI systems have been created with the analysis of segmented CT images of the 
pancreas. These systems work by creating an experimental group of image data and a 
control group of image data which are imported into a program. The data is fed 
through two matrices and a filter, statistics, and other data are applied. Then the 
pancreatic cancer and the normal control images are distinguished by data processing 
and statistical analysis[36].

An extension of CADx systems is the use of radiomics in CT images. Radiomics is 
an AI process that not only answers simple clinical questions (e.g., benign or 
malignant), but can also be used to extract quantitative imaging features from 
radiology images to produce more detailed information about the areas of interest (
e.g., determining risk of malignancy in pre-malignant lesions)[18]. A study by Wei et al[37] 
used a machine learning based model to determine serous cystic neoplasms from non-
serous cystic neoplasms based on 409 quantitative radiomic features from preoperative 
CT images. The model outperformed clinicians with an area under the receiver 
operating characteristic curve (AUC) of 0.84.

Segmentation of the pancreas in CT imaging is a difficult but essential task for a 
successful diagnosis of pancreatic cancer. The main challenges lie in its close proximity 
to other organs, shape variance and low contrast blurring[27,38-40]. Notably, the ideal type 
of CT imaging in patients with suspected pancreatic cancer is a contrast-enhanced, 
multidetector CT, which has sensitivity of 70% to 100% whereas traditional CT has an 
accuracy of 83.3%, sensitivity of 81.4%, and specificity of 43% for pancreatic 
adenocarcinoma detection[41].

Liu et al[42] used a faster region-based CNN (faster R-CNN) model to form a CADx to 
solve the challenging pancreas segmentation problem in CT images. Their faster R-
CNN model assisted had an AUC of 0.96 and mean average precision of 0.7664, 
indicating a high discriminating ability and precision. Consequently, the time required 
to establish a diagnosis using their model was 3 s compared to 8 min by an imaging 
specialist. Another study used multi-scale segmentation-for-classification to detect 
pancreatic ductal adenocarcinoma (PDAC). This method functioned by performing 
tumor segmentation at the same time as tumor classification. This information was 
helpful for radiologists when determining tumor location. Their method reported a 
sensitivity of 94.1% and a specificity of 98.5%, implying that their model for tumor 
segmentation was strong in screening for PDAC[43]. Interestingly, Chu et al[44] used 
random forest algorithm to classify PDAC based on CT images. The overall accuracy, 
AUC, sensitivity, and specificity were 99.2%, 0.999, 100%, and 98.5%, respectively.

To classify pancreatic cancer, a custom method using a combination of support 
vector machine and random forest technology was applied to PET/CT images[45]. Their 
proposed model achieved accuracy of 96.47%, sensitivity of 95.23%, and specificity of 
97.51%. They demonstrated that their model outperformed other models based on an 
external dataset.

MAGNETIC RESONANCE IMAGING
It is challenging to obtain multi-modal MRI images and then effectively fuse the 
information from these images due to the heterogeneity of the pancreas and the ill-
defined tumor boundary[46-48]. PDAC diagnostic value by traditional MRI has an 
accuracy of 89.1%, sensitivity of 89.5.%, and specificity of 63.4%[41].

Barriers to machine learning algorithm development for MRI include limited 
availability of MRI data, reduced image quality, and unstandardized nature of MRI[49]. 
In addition, overfitting can be an issue due to small datasets in MRI and CNN 
studies[48]. However, CADx systems for the diagnosis of pancreatic cancer have been 
developed with MRI images. One study used a CNN was used for feature 
representation for IPMN diagnosis with MRI[47]. This approach led to a 30% 
improvement in specificity of IPMN diagnosis compared to single modality-based 
approaches (T1 or T2 imaging). The multi-modal fusion approach for IPMN detection 
had an accuracy of 82.80%, sensitivity of 83.55%, and specificity of 81.67%. It is only 
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needed to identify a single slice where pancreatic tissues could be obviously observed. 
Zhang et al[34] used support vector machine in combination with MRI detection to 
classify pediatric pancreatic cancer; their proposed model achieved a higher accuracy 
when compared to the normal detection algorithm. Corral et al[50] created a CNN which 
diagnosed intraductal papillary mucinous neoplasm (IPMN) on MRI images in 1.82 s 
with a sensitivity of 75% and specificity of 78%. Another study by Gao et al[51] created a 
deep learning model that graded pancreatic neuroendocrine tumors using MRI 
images, reaching an accuracy of 81.1% and AUC of 0.89. In a 2020 retrospective study, 
the research group assessed baseline CT images from 207 patients with proven PDAC 
and developed a machine learning model that used radiomics to predict molecular 
subtypes. The classification algorithm achieved a sensitivity, specificity and ROC-AUC 
of 0.84, 0.92, and 0.93, respectively[49]. Table 1 demonstrates the studies on CT and MRI 
of pancreatic cancer.

ULTRASONOGRAPHY
AI is used in transabdominal ultrasonography and endoscopic ultrasonography. In 
transabdominal ultrasonography, AI is used primarily for detecting liver fibrosis stage 
and chronic liver disease by using the histogram analysis and RGB-to-stiffness inverse 
mapping technique[19]. The role of transabdominal ultrasonography for pancreatic 
cancer detection is very minimal because the pancreas visualization is obscured by 
bowel gas. Due to this, there are no available studies in the evaluation of pancreatic 
cancer with transabdominal ultrasound.

ENDOSCOPIC ULTRASOUND
Among MRI, CT, and EUS, only EUS enables observation of the pancreas with high 
spatial resolution. EUS has higher tumor detection rates than contrast enhanced CT by 
allowing detection of the echo structure in lesions as small as 1 cm[52]. The sensitivity of 
EUS is superior to CT scan, 94% and 74%, respectively[5]. However, the accuracy of 
EUS is currently highly operator dependent.

There are previous studies on the application of AI in EUS for pancreatic cancer 
detection (Table 2). The overall accuracy of AI based approach were 80%-97% with 
sensitivity of 83%-100%. The findings are comparable to a sensitivity of 94% by 
endoscopist driven EUS according to the meta-analysis[5]. The first study of AI based 
EUS analyzed a single EUS image per patient obtained from the total of 21 patients[53]. 
Machine and human demonstrated a similar diagnostic performance. However, this 
study was done before the introduction of modern deep learning framework, which 
has demonstrated much better performance in general than earlier neural network 
architecture. Based on the observation that there is an age-related change of pancreas 
shape, Ozkan et al[54] used three different neural network models to classify pancreatic 
cancer in three age groups: Below 40, 40 to 60, and above 60. As a result, a higher 
performance was achieved by using a different model for each age group.

There were different techniques being used for image analyses and creating 
classification models in pancreatic cancer studies, including deep pocket inspection[55], 
support vector machine[56], region of interest, principal component analysis[57], neural 
network, and deep learning. We noticed that these requires were evolved with the 
major progress of AI development; machine learning techniques were used at the 
beginning and gradually evolved to CNN-based models (deep learning).

Interfering factors associated with misdetection of pancreatic cancer include chronic 
pancreatitis with more false negative results[4]. The compromised ability of pancreatic 
cancer detection in patients with chronic pancreatitis decreased to 54%-75%. Tonozuka 
et al[33] found that non-PDAC is the significant factor of misdetection which means the 
system tends to work towards preventing the overlooking of tumors than 
overdiagnosis of tumors. On the other hand, tumor size is not associated with 
misdetection. Thus, AI guided diagnosis can help with early detection of small tumor 
and prevent the progression of pancreatic cancer. Another consideration is that the 
control group with a few cases of mass forming pancreatitis makes the results not 
generalizable to the group of focal pancreatitis (pseudotumorous pancreatitis) as more 
included in Norton et al[53]. The main limitations of prior studies on AI-guided EUS 
diagnosis are small sample size. Data augmentation has been used to increase the 
number of images in later study[33]. Slow processing time and low-quality image are 
other constraints. They hinder the development of this approach to be real time 
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Table 1 Summary of studies assessing computed tomography and magnetic resonance using artificial intelligence-based approach for 
pancreatic cancer

Model performance on testing data
Ref. Overall 

dataset Testing data Model
Accuracy (%) AUC Sensitivity (%) Specificity (%) PPV (%) NPV (%)

CT

Zhu et al[43], 2019 
(United States)

439 cases 23 cases CNN NA NA 94.1 98.5 NA NA

Liu et al[42], 2019 
(China)

338 patients 100 patients CNN NA 0.9632 NA NA NA NA

Chu et al[44], 2019 
(China) 

380 patients 125 patients ML 99.2% 0.999 100 98.5 NA NA

Li et al[75], 2018 
(China) 

206 patients No separate 
testing data (10-
fold CV)

CNN 72.8%1 NA NA NA NA NA

Wei et al[37], 2018 
(China) 

260 patients 60 patients SVM NA 0.837 66.7 81.8 NA NA

MR

Kaissis et al[49], 
2020 (Germany) 

207 patients 26 patients ML NA 0.93 84 92 NA NA

Corral et al[50], 
2019 (United 
States) 

139 cases No separate 
testing data (10-
fold CV)

DL NA 0.781 921 52%1 NA NA

Gao et al[51], 2019 
(China) 

96 patients No separate 
testing data (5-
fold CV

DL 85.131 0.91171 NA NA NA NA

1The performance was based on n-fold cross-validation on training data.
AUC: Area under the curve; CNN: Convolutional neural network; CT: Computed tomography; CV: Cross-validation; DL: Deep learning; IPMN: 
Intraductal papillary mucinous neoplasm; MR: Magnetic resonance; NA: Not available; NN: Neural network; NPV: Negative predictive value; PCA: 
Principal component analysis; PPV: Positive predictive value; SVM: Support vector machine.

analysis. Interestingly, real time EUS video using CNN for pancreas segmentation and 
station recognition has been studied[58]. The real-time system works as a monitoring 
safety net and remind endoscopist to make up the unobserved part. It can also increase 
trainee performance in learning how to detect pancreatic cancer using EUS, which can 
lead to the reduction of training time and cost.

AI also plays important role in two new EUS techniques, including contrast 
enhancing EUS (CE-EUS) and EUS elastography. CE-EUS is a technique that uses gas-
containing contrast agents intravenously injected for better visualization and 
differential diagnosis of focal pancreatic lesions. A study found machine learning 
assisted CE- EUS provided higher sensitivity of 94% compared to 87.5% of qualitative 
CE-EUS without machine learning aid[59]. EUS elastography is a technique that 
measure the tissue stiffness, which help differentiate a mass from normal or 
inflammatory area. The real-time performance of neural network provided 
comparable efficacy to standard EUS elastography. The predictive performance of EUS 
elastography is similar to the b-mode EUS with AUCs of 0.94-0.965[60,61].

Regarding a real-time application, Marya et al[62] demonstrated the high accuracy of 
PDAC detection from other pancreatic diseases with AUC of 0.98. The author claimed 
that the speed of image processing is eligible for real-time system but it was not 
performed. Future application is warranted which can guide biopsy in patients with 
diffuse inflammation as chronic pancreatitis to avoid unnecessary biopsies.

AI has not only been studies in PDAC, but also in pancreatic cystic lesions. One 
study on the differentiation of malignant vs benign IPMN by EUS revealed the 
superior accuracy in identifying malignancy; 94% by AI vs 56% by the physician 
diagnosis performing EUS. However, the AI’s prediction on EUS images was not 
performed during the EUS procedure in a real time. The real-time integration will help 
aid clinicians to make a clinical judgement[63]. EUS guided needle confocal laser 
endomicroscopy is a novel technique for pancreatic cystic lesions. A study was 
conducted in 15027 videos from 35 subjects with IPMN. The CNN algorithm for high 
grade dysplasia or adenocarcinoma diagnosis had higher sensitivity (83.3% vs 55.6%) 
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Table 2 Summary of endoscopic ultrasound using artificial intelligence-based approach studies pancreatic cancer and malignant 
pancreatic cyst detection

Model performance on testing data
Ref. Overall 

dataset
Testing 
data Model Accuracy 

(%) AUC Sensitivity 
(%)

Specificity 
(%)

PPV 
(%)

NPV 
(%)

Marya et al[62], 
2020 (United 
States)

583 patients 
(1174461 
images)

123 patients CNN NA 0.976 95 91 87 97

Tonozuka et al[33], 
2020 (Japan)

139 patients 
(920 images)

47 patients 
(470 images)

CNN NA 0.94 92.4 84.1 86.8 90.7

Ozkan et al[54], 
2016 (Turkey)

332 images 72 images NN 87.5 NA 83.3 93.33 NA NA

Saftoiu et al[59], 
2015 (Multicenter 
in Europe)

167 cases 15% of cases NN NA NA 94.64 94.44 97.24 89.47

Zhu et al[56], 2013 
(China)

388 images 50% of all 
data (200 
trials)

SVM 93.86 NA 92.52 93.03 91.75 94.39

Zhang et al[55], 
2010 (China)

216 patients 50% of all 
data (50 
trials)

SVM 97.98 NA 94.32 99.45 98.65 97.77

Das et al[57], 2008 
(United States)

319 images 50% of all 
data

NN NA 0.93 93 92 87 96

Norton et al[53], 
2001 (United 
States)

21 patients 4 patients ML 80 NA 100 50 NA NA

Elastography

Saftoiu et al[61], 
2012 (Multicenter 
in Europe)

258 cases No separate 
testing data 
(10-fold CV)

NN 84.272 0.942 87.592 82.942 96.252 57.222

Saftoiu et al[60], 
2008 (Denmark 
and Romania)

68 cases No separate 
testing data 
(10-fold CV)

NN NA 0.9572 NA NA NA NA

IPMN

Machicado 
et al[64], 2021 
(United States)1

35 cases of 
EUS-nCLE 
(15027 
frames)

No separate 
testing data 
(5-fold CV)

(1) CNN 
(segmentation); and 
(2) CNN (holistic)

(1) 82.92; and 
(2) 85.72

NA (1) 83.32; and 
(2) 83.32

(1) 82.42; and 
(2) 88.22

(1) 83.32; 
and (2) 
88.22

(1) 82.42; 
and (2) 
83.32

Kuwahara et al[63], 
2019 (Japan)

50 cases No separate 
testing data 
(10-fold CV)

CNN 942 NA 95.72 92.62 91.72 96.22

1Presented two designs of CNN algorithms: segmentation based model and holistic based model.
2The performance was based on n-fold cross-validation on training data.
AUC: Area under the receiver operating characteristic curve; CE-EUS: Contrast enhanced endoscopic ultrasound; CNN: Convolutional neural network; 
CV: Cross-validation; EUS-nCLE: Endoscopic ultrasound-guided needle based confocal laser endomicroscopy; IPMN: Intraductal papillary mucinous 
neoplasm; NA: Not available; NN: Neural network; NPV: Negative predictive value; PCA: Principal component analysis; PPV: Positive predictive value; 
SVM: Support vector machine.

and accuracy (82.9%-85.7% vs 68.6%-74.3%) than the Fukuoka and American 
Gastroenterology Association diagnostic criteria[64].

APPLICATION OF AI IN BIOMARKER ANALYSIS FOR PANCREATIC 
CANCER DETECTION
Conventional markers
The most used biomarker in monitoring pancreatic cancer is currently carbohydrate 
antigen (CA) 19-9[65]. It is usually used in monitoring progression and treatment of 
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pancreatic cancer due to the low specificity and sensitivity. The combined sensitivity 
and specificity were 78.2% and 82.8% respectively. The relatively low specificity and 
sensitivity, and low positive predictive value in asymptomatic patients, would indicate 
that CA19-9, would be a poor biomarker if applied as a screening test, causing 
unnecessary and wasteful workups for patients[66]. Another biomarker that has been 
explored is carcinoembryonic antigen (CEA), which exhibits an even poorer sensitivity 
and specificity for classifying pancreatic cancer than the CA19-9[65].

Some methods using more targeted screening have been suggested such as using 
multiple biomarkers together or screening only high-risk populations, but those have 
yet to be universally defined. A screening model was suggested to separate high risk 
populations into those with inherited pancreatic cancer and those who are at high risk 
for non-inherited. Even between those two categories non-inherited high-risk could 
only narrowed to individuals with new onset diabetes[66]. Using this as an example 
would still provide for a very large screening population with low sensitivity and 
specificity if only using CA19-9[67]. Other biomarkers have been identified that are 
present in early pancreatic adenocarcinoma but none of them alone have produced 
high enough quality data to prove even non-inferiority vs no screening, let alone 
CA19-9[66,68].

A study utilized neural network for multiple tumor marker analysis (CA19-9, CEA, 
and CA125) for pancreatic cancer diagnosis in 913 serum specimens. AUCs of neural 
network derived model was superior to logistic regression model with AUCs of 0.905 
and 0.812, respectively. The diagnostic performance of single marker is lower than the 
AI model with AUCs of CA19-9, CA125, and CEA of 0.845, 0.795, and 0.800, 
respectively[69].

Kurita et al[70] used AI to differentiate between malignant and cystic lesions of the 
pancreas using a dataset consisting of biomarkers, sex, characteristics of cystic lesion, 
and cytology. It is worth noting that the authors clearly stated that the deep learning 
was used, but it is technically a neural network with two hidden layers; each layer 
contains nine nodes. In terms of discriminating performance of classifiers, their AI 
approach with an AUC of 0.966 well outperformed CEA (AUC = 0.719) and cytology 
(AUC = 0.739). Although this study is limited by its low sample size and retrospective 
nature, it showed that a predictive model based on a combination of biomarkers and 
other factors could achieve a higher performance in classifying the malignancy status 
of pancreatic cyst fluid in comparison to the use of single biomarker.

Novel biomarkers
In the past, conventional markers like CEA, CA72-4, CA125, and CA19-9, have been 
used to identify, differentiate, and monitor pancreatic cyst fluid. CA19-9 and CA125 
can be used to assess for if a cyst has mucinous characteristics, while CEA can help to 
differentiate a malignant cyst from benign cyst[65,70]. Advances in genomic sequencing 
and identification have introduced the ability to isolate microRNA (miRNA) sequences 
in pancreatic cyst fluid and serum as potential biomarkers for pancreatic 
adenocarcinoma.

It was first suggested in 2010, that miRNA could be used as a marker for pancreatic 
adenocarcinoma. miRNA-21 and miRNA-155 in pancreatic juice were present in 
statistically significantly higher levels in pancreatic adenocarcinoma as compared to 
benign pancreatic cysts[71]. miRNA are exosome sequences that, in the setting of 
pancreatic adenocarcinoma, encode for proteins that are oncogenic or have tumor 
suppressor function. Several specific miRNAs have been identified to have a higher 
expression in pancreatic ductal adenocarcinoma, including miRNA-21 and miRNA-
155[68]. These miRNAs are detected in the pancreatic juice. miRNAs are mostly 
expressed in pancreatic cyst fluid, but Yoshizawa et al[72] have gone on to examine 
miRNA in the urine. Looking the ratio of miR-3940-5p/miR-8069 in the urine of 
patients with pancreatic ductal adenocarcinoma, they found that an elevated ratio with 
an elevated CA19-9 better predicts pancreatic ductal adenocarcinoma than CA19-9 
alone. These studies all examine the viability of miRNA in various types of fluid to 
detect disease states of the pancreas, none though utilize AI to determine which 
miRNA may produce the highest yield results. A limitation is that they represent small 
sample sizes with limited application at a population level.

Several studies have identified several miRNAs that potentially represent 
significant value in determining malignancy of pancreatic cystic lesion or identifying 
pancreatic adenocarcinoma at an early stage by AI, but each study has decided which 
miRNAs to utilize based on identifying and isolating very few sequences. Alizadeh 
et al[73], combined several AI and data mining techniques to best determine the miRNA 
sequences that have the greatest diagnostic and prognostic capabilities. Particle Swarm 
Optimization (PSO) and neural network, two forms of AI deep learning, identified a 
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set of five miRNAs: miR-663, miR-1469, miR-92a-2-5p, miR-125b-1-3p, and miR-532-
5p. These were identified from 671 serum samples of patients with pancreatic ductal 
adenocarcinoma and healthy controls. This model had the greatest AUC score in 
differentiating pancreatic adenocarcinoma from controls with a sensitivity of 0.93, 
specificity of 0.92, and accuracy of 0.93.

Cao et al[74] employed machine learning to identify two panels of plasma miRNA to 
distinguish between chronic pancreatitis and pancreatic neoplasm from 361 plasma 
samples in China. Panel 1 consisted of miR-486-5p, miR-126-3p, and miR-106b-3p, and 
had an AUC of 0.891. Panel 2 consisted of miR-486-5p, miR-126-3p, miR-106b-3p, miR-
938, miR26b-3p, and miR-1285, and had an AUC of 0.889. Both panels had a higher 
AUC than CA 19-9, which was 0.775.

The most robust path to create a new screening test for pancreatic adenocarcinoma 
must contain a combination of biomarkers and patient data to maximize both the 
sensitivity and sensitivity of the test[68,70,71,74]. AI creates the potential to assess patient 
characteristics, miRNA, and classical biomarkers, which allows for a comprehensive 
screening analysis of a patient. With the use of neural network and PSO, AI thinks, 
acts, and analyzes data at much faster speed and in more depth pattern recognition 
that forms the perfect environment for the development of high yield screening tests 
that have previously evaded us in diagnosing and screening for pancreatic cancer. 
Pancreatic juice for multiple exosomes of miRNA that are known to be associated with 
increased risk for pancreatic cancer, like oncogenes and tumor suppressor mutations, 
provides the opportunity to examine multiple pancreatic adenocarcinoma biomarkers 
with one test.

FUTURE PROSPECT
Pancreatic cancer is notorious for late detection. The studies on this area have been 
conducted mainly to identify the best approach for early detection by imaging studies 
and biomarkers. The advancement of EUS and the application of AI technology 
showed a promising performance. The modes of EUS: B-mode and elastography do 
not provide different accuracy and predictive value for pancreatic cancer. However, no 
data is available for EUS with contrast enhancement. B-mode which is generally used 
among centers can be the first step of AI implication. Ultimately, the data of imaging 
studies, biomarkers, and clinical parameters will be combined to build the 
sophisticated algorithm and implemented in the electronic medical records where 
clinicians use it as the predictive tool. There are a few limitations of AI application for 
EUS. First, the collection of EUS images as the big data is difficult. The collaboration of 
gastroenterologists, radiologists, and hospital administration will help facilitate the 
retrieval of images into the system. Multicenter participation is required to create the 
large dataset of EUS images of which it will optimize the efficiency of AI. The platform 
of dataset in one institution can be the good example that other centers can adopt and 
join the group. Second, the root of clinical decision based on AI results is possibly 
affected by the black box issue (inability to identify the ground of decision). Although 
there are ways that enable AI to be more interpretable, it is still an active area of 
research in computer science. Third, the diagnosis is most often made by examination 
of static images after EUS procedure. Further research on real-time implication of 
pancreatic malignant lesion diagnosis by AI method is warranted to aid clinician at the 
examination time to avoid unnecessary biopsy. Regarding biomarkers, although still a 
mainstay of current practice, the use of singular biomarkers like CA19-9, CEA, and 
CA-125, may soon become a thing of the past for pancreatic cancer detection. Recent 
studies showed that moving toward AI aided multiple fluid and serum analysis for 
biomarkers, like miRNA, potentially provide more sensitive and specific detection. AI 
not only provides a pathway for the computational, multilayered analysis of multiple 
patient variables and biomarkers, but also can provide indications for which of those 
EUS and biomarkers will be highest yield. Combining the knowledge in the field of 
and the capability of AI introduces a new world of exploration into both screening and 
diagnosis of pancreatic cancer. AI capabilities allow research to be more finely tuned 
and the implementation of the most effective method for research into developing 
screening and diagnostics for pancreatic adenocarcinoma and malignant pancreatic 
cysts.
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CONCLUSION
AI applications for pancreatic cancer has are emerging. New studies come out and 
showed the promising results of AI in radiological imaging and biomarkers for 
pancreatic cancer detection. There are still some limitations which need to be 
addressed in the future studies before incorporating this technology in the clinical 
practice. The accuracy of AI aided EUS for pancreatic cancer diagnosis is high. 
However, it has been derived from the small training dataset. The generalizability 
needs to be considered before using it. Larger studies with population of various 
pancreatic diseases and third-party validation will demonstrate a greater confidence 
for adopting AI. For novel biomarkers, our review demonstrated that AI guided 
analysis of combination of candidate miRNAs have high predictive performance 
compared to standard tumor markers. The availability of miRNA testing is not 
widespread in every medical facility. To adopt this implication, further studies on the 
diagnostic performance are warranted to strongly support the evidence of utility.
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Abstract
Artificial intelligence (AI) applications are growing in medicine. It is important to 
understand the current state of the AI applications prior to utilizing in disease 
research and treatment. In this review, AI application in the diagnosis and 
treatment of gastrointestinal diseases are studied and summarized. In most cases, 
AI studies had large amounts of data, including images, to learn to distinguish 
disease characteristics according to a human’s perspectives. The detailed pros and 
cons of utilizing AI approaches should be investigated in advance to ensure the 
safe application of AI in medicine. Evidence suggests that the collaborative usage 
of AI in both diagnosis and treatment of diseases will increase the precision and 
effectiveness of medicine. Recent progress in genome technology such as genome 
editing provides a specific example where AI has revealed the diagnostic and 
therapeutic possibilities of RNA detection and targeting.

Key Words: Artificial intelligence; Gastrointestinal disease; RNA; Therapeutic application; 
Inflammatory diseases

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The application of artificial intelligence (AI) in the diagnosis and treatment of 
disease is a promising approach in medicine. The application of AI approaches in 
gastrointestinal diseases is summarized and reviewed. AI holds great promise in 
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medicine, but to safely and efficiently apply AI in medicine, the advantages and 
limitations should first be carefully considered.
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INTRODUCTION
Recent studies have developed RNA editing using the Clustered Regularly 
Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) 
system, which has made genome editing more accessible and has resulted in the 
development of many applications[1-3]. These new technologies have many advan-
tages and disadvantages in their utilization, which are already being applied in 
medicinal situations. RNA editing has been recognized as a potential prognostic 
biomarker for cancer and prediction models have been developed with machine 
learning[4]. The utilization of artificial intelligence (AI) is rapidly expanding and is 
increasingly useful in understanding gastrointestinal (GI) diseases[5-7]. To better 
understand the use of AI-oriented diagnosis and treatment of diseases, it is important 
to determine how to raise the potential of AI and manage the human-AI interaction in 
diagnosis and therapeutics in diseases. AI technology has been combined with a 
massive amount of data to understand human activities[8]. Increasingly image data 
such as magnetic resonance imaging, X-ray, computed tomography scanning or 
endoscope in clinic will be utilized for the diagnosis of the diseases[9-12]. Currently, 
machine learning algorithms improve performance of gastrointestinal endoscopy by 
diagnosing the gastrointestinal diseases[13]. The application of AI has increased 
identification of patients with intestinal malignancies or premalignant lesions, and 
inflammatory or other nonmalignant diseases or lesions[14]. Computer-aided 
diagnosis (CAD) for colonoscopy would improve the quality of image-oriented 
diagnosis of colorectal cancer[15]. Classification of systems in AI-oriented disease 
management is summarized in Table 1.

APPLICATION OF AI IN DIAGNOSIS OF GASTROINTESTINAL DISEASES
There are several areas in which AI can advance the diagnosis of GI diseases. Diseases 
of interest for AI-oriented disease management are summarized in Figure 1.

AI application in inflammatory diseases
The diagnosis of GI diseases such as inflammatory bowel disease (IBD) including 
Crohn’s disease, a chronic inflammatory condition in the GI tract, and ulcerative 
colitis, which occurs in the colon, includes several fundamental laboratory tests 
including measurement of hemoglobin, hematocrit, blood urea nitrogen, creatinine, 
liver enzymes and C-reactive protein[16].

AI application in tumor
Recent progress in AI has resulted in predictive tools for the diagnosis of GI cancer 
classification, where network-based machine learning in colorectal and bladder 
organoid models predicts drug responders and non-responders using network 
analysis of pharmacogenomics data and the patient’s transcriptome[17]. Bioinformatic 
analyses of gene expression data have revealed common gene signatures in 
hypopharyngeal and esophageal squamous cell carcinoma, which may serve as 
diagnostic and therapeutic targets[18]. Balloon catheter tracking and visualization in 
GI tracking could be made more precise with AI guidance using image recognition
[19]. Deep learning algorithms for image recognition can lead to more precise 
endoscopic diagnosis with improved sensitivity and specificity in upper GI tract 
diseases such as gastric cancer and Barrett’s esophagus[20]. Convolutional neural 
networks (CNNs) have generated liver imaging features and shown promise in 
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Table 1 Classification of systems in artificial intelligence-oriented disease management

Disease of interest Purpose of AI User Limitation of use Ref.

Acute appendicitis Diagnosis Specialist The study is designed in retrospective nature Reismann et al
[5]

Colon cancer Diagnosis Specialist The design of the analysis is post hoc and the number 
of patients is limited

Reichling et al
[6]

Ulcerative colitis Diagnosis Specialist Long-term clinical prognosis is not clear Maeda et al[7]

Spinal stenosis in degenerative 
lumbar kyphoscoliosis

Surgery navigation Specialist The number of patients is limited. Long-term follow-
up data is needed

Ho et al[9]

Coronavirus infectious disease 
(COVID-19)

Screening, diagnosis Specialist Privacy of the patient data should be considered Bhattacharya et 
al[10]

Diseases in general Diagnosis Specialist The burden on specialists may increase Karako et al[11]

Diseases in general Screening Specialist Careful and thorough investigation is necessary Shiyam Sundar 
et al[12]

Gastrointestinal disease Diagnosis Specialist There is a difference in the definition of anomaly 
detection between the area of computer science and 
medical domain

de Lange et al
[13]

Gastrointestinal disease, hepatic 
diseases

Diagnosis Specialist High-quality datasets are needed Le Berre et al
[14]

Colorectal cancer Diagnosis Specialist The quality of previous study designs is limited, and 
practical usefulness of computer-associated diagnosis 
systems is unknown

Kudo et al[15]

Colorectal cancer, bladder cancer Prediction of anti-cancer drug 
efficacy

Specialist Further molecular layer profiling in organoids may be 
needed

Kong et al[17]

Hypopharyngeal squamous cell 
carcinoma, esophageal squamous 
cell carcinoma

Identification of diagnostic 
and therapeutic targets

Specialist Further studies are needed to validate the findings of 
the study

Zhou et al[18]

Arterial stenosis, coronary arterial 
diseases, stricture of the 
gastrointestinal tract

Guiding of balloon catheter Specialist The systemic performance needs to be improved Kim et al[19]

Gastrointestinal disease Diagnosis Specialist Further studies are needed to improve the 
performance

Marlicz et al[20]

Colorectal cancer Prediction of liver metastasis Specialist The investigation of another dataset is needed Lee et al[21]

Colon cancer Diagnosis Specialist The change of protein expression level needs to be 
investigated

Xue et al[22]

Gastrointestinal disease Diagnosis Specialist Investigation and development of newly improved 
methods are encouraged

Borgli et al[23]

Gastrointestinal disease Diagnosis Specialist Further development is needed Adler and 
Bjarnason[24]

Upper gastrointestinal cancer Diagnosis Specialist Only high-quality endoscopic images for the training 
and validation analyses were used

Luo et al[25]

Gastric cancer Diagnosis Specialist The associations of the quality or the number of 
training images and the CNN accuracy needs to be 
examined

Hirasawa et al
[26]

Gastrointestinal disease Diagnosis Specialist The possibilities to improve the medical performance, 
to reduce the medical cost, and to improve the 
satisfaction of the patient and medical staff are 
unknown

Min et al[27]

Functional gastrointestinal disorder Diagnosis Specialist Evaluation of the feasibility of AI on studies on the 
gut-brain-microbiome axis is needed

Mukhtar et al
[28]

Colorectal cancer Diagnosis Specialist The uncertainty about the true efficacy of CAD in 
“real-world” practice remains

Ahmad et al[29]

Colorectal cancer Diagnosis Specialist Further accumulation of lesion images for training is 
needed

Yamada et al
[30]

Small-bowel disease Diagnosis Specialist Further multicenter, prospective studies and external 
validation are needed

Yang[31]
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Colorectal cancer Diagnosis Specialist Complaints of system malfunctions and reports of 
patient injuries could lead to lawsuits against 
stakeholders

Ciuti et al[32]

Cholangiocarcinoma, pancreatic 
adenocarcinoma

Diagnosis Specialist Case-control and single-center design, and the lack of 
an independent validation cohort should be 
considered

Urman et al[33]

Colorectal cancer Screening Specialist The applicability to other types of cancer needs 
optimization

Misawa et al[34]

Gastrointestinal disease Diagnosis Specialist Most studies were designed in retrospective manner. 
Ethical issues on misdiagnosis or misclassification 
need to be handled

Yang and Bang
[35]

Gastrointestinal cancer Prediction of microsatellite 
instability for 
immunotherapy

Specialist Larger training cohorts are needed Kather et al[36]

Colorectal cancer Diagnosis Specialist The CNN architecture needs to be improved for 
colonoscopy

Azer[37]

Barrett esophagus cancer Diagnosis Specialist The number of patients is limited. Further 
optimization is needed

Ebigbo et al[38]

Celiac disease Diagnosis Specialist The preliminary results need to be followed-up with a 
real clinical setting

Tenório et al[39]

Esophageal squamous cell 
carcinoma

Prediction of prognosis Specialist Further experimental studies to verify the results are 
needed

Zhang et al[40]

Advanced rectal adenocarcinoma Prediction of response to 
neoadjuvant 
chemoradiotherapy

Specialist The size of the cohort is limited. The confirmation of 
the findings with another data set is needed

Ferrando et al
[41]

Inflammatory bowel disease Prediction of prognosis Specialist Interventional study to confirm the efficacy of the 
stratifying therapy is needed

Biasci et al[42]

Inflammatory bowel disease Mapping Specialist The application of advanced natural language 
processing algorithms to the text-mining step may 
improve the current process

Sarntivijai et al
[43]

AI: Artificial intelligence; CAD: Computer-aided diagnosis; CNN: Convolutional neural network.

Figure 1 Disease of interest in references surveyed in artificial intelligence-oriented disease management. AI: Artificial intelligence; COVID-19: 
Coronavirus disease 2019.

predicting the metachronous liver metastasis in stage I-III colorectal cancer patients
[21]. Deep learning of immunohistochemistry images of human colon tissues are used 
to improve the performance in detection of protein subcellular localization[22]. AI is 
poised to have a greater impact on GI endoscopy with publication of large datasets 
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including multi-class images and video datasets that are useful for AI deep learning
[23]. It seems that the performance of capsule endoscopy for diagnosing small bowel 
disease is improved using AI approaches[24]. An AI deep learning algorithm that can 
diagnose upper GI cancers with clinical endoscopic imaging data has been developed 
and validated[25]. CNNs in AI deep learning using numerous endoscopic image data 
have been developed that can detect and diagnose gastric cancer[26].

AI application in other diseases and endoscopy
Min et al[27] pointed out that one drawback of AI approaches is the need for large 
datasets to train the system; therefore, the quality of CNN-based AI endoscopy is 
limited by the need for a large number of high-quality endoscopic images. Machine 
learning and AI are important to diagnose functional GI disorders and aid healthcare 
professionals and researchers[28]. Ahmad et al[29] suggested that the level of AI and 
CAD in colonoscopy has reached that of human expert performance. A real-time AI 
system with deep learning technology has been developed to diagnose colorectal 
cancer[30]. An AI-oriented automated CAD system can identify histologic inflam-
mation associated with ulcerative colitis[7]. Reismann et al[5] used AI to identify 
biomarker signatures to diagnose and classify the pediatric acute appendicitis.

APPLICATION OF AI IN THERAPEUTICS OF GI DISEASES
The application of AI in therapeutics of GI diseases has been expanding. The roles of 
AI in capsule endoscopy and other recent advanced diagnostic technologies have 
increased in therapeutics of GI diseases[31,32]. AI analysis was implemented to build 
neural network models enabling the classification of patients with biliary strictures 
and identify potential biomarkers in human bile[33]. Machine learning on medical 
examination records has stimulated the development of preventative measures for 
colorectal cancer[34]. Retrospective and prospective clinical studies have been 
conducted to diagnose and predict the prognosis of GI diseases including gastroeso-
phageal reflux disease, atrophic corpus gastritis, acute pancreatitis, acute lower GI 
bleeding, esophageal cancer, nonvariceal upper GI bleeding, ulcerative colitis after 
cytoapheresis therapy, IBD, lymph node metastasis in T1 colorectal cancer and 
postoperative distant metastasis in esophageal squamous cell carcinoma[35]. Kather et 
al[36] found that deep learning can be used to predict microsatellite instability from 
histology in GI cancer. Azer[37] developed CNN models that can detect and classify 
colorectal polyps, which may increase colonoscopy application in appropriate 
colorectal cancer therapeutics. AI-guided tissue analysis has been developed that 
predicts stage III colon cancer outcomes, which may improve patient care with 
pathologists’ assistance[6]. Ebigbo et al[38] found that AI utilization can be used to 
classify the Barret esophagus cancer. An AI-based clinical decision-support system has 
been developed to diagnose celiac disease[39]. Bioinformatics analyses have identified 
important genes associated with the pathogenesis and prognosis of esophageal 
squamous cell carcinoma, which may contribute to the molecular-targeted therapy
[40]. Long non-coding RNA signature has been identified in locally advanced rectal 
adenocarcinoma, which may predict the response to neoadjuvant chemoradiotherapy 
in the patients[41]. Machine learning has been utilized for identifying prognostic 
biomarkers in the whole blood of IBD patients to support the personalized therapy
[42]. Ontology tools such as Experimental Factor Ontology or the Ontology of 
Biomedical Association may be useful for mining the disease-phenotype associations 
for IBD[43]. Since the responsiveness toward drug alters in cancer cell phenotypes 
such as epithelial-mesenchymal transition in diffuse-type gastric cancer, the AI 
application in the identification of cancer subtype would lead to establish therapeutic 
strategy[44,45]. The machine learning algorithms may be applied to the therapy of the 
GI diseases in terms of gut-brain axis[28,46].

FUTURE PERSPECTIVES OF AI APPLICATION IN GI DISEASES
Despite the rapid advances of the application of AI in GI diseases, there still remains 
some concern in terms of the precision of AI-based diagnosis and the criteria for the 
therapeutics. Further evidence is needed to solely rely on CAD in colonoscopy to 
determine an appropriate endpoint[15]. Some regulatory coordination may be needed 
to use the combination of an AI-assisted device and CAD software[15]. The differences 
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in levels of AI performance would be considered and adjusted for application in 
clinical situations[14]. More high-quality datasets are needed to establish deep 
learning algorithms[14].

CONCLUSION
The area for AI application is rapidly expanding in the diagnosis and therapeutics of 
GI diseases. AI utilization in image recognition is currently being used to diagnose 
diseases and assist with personalized therapy. Future studies on disease-phenotype 
association are needed to maximize the capacity and performance of AI to aide in 
practical situations.
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Abstract
Over the last ten years artificial intelligence (AI) methods have begun to pervade 
even the most common everyday tasks such as email filtering and mobile 
banking. While the necessary quality and safety standards may have 
understandably slowed the introduction of AI to healthcare when compared with 
other industries, we are now beginning to see AI methods becoming more 
available to the clinician in select settings. In this paper we discuss current AI 
methods as they pertain to gastrointestinal procedures including both gastroen-
terology and gastrointestinal surgery. The current state of the art for polyp 
detection in gastroenterology is explored with a particular focus on deep leaning, 
its strengths, as well as some of the factors that may limit its application to the 
field of surgery. The use of biophysics (utilizing physics to study and explain 
biological phenomena) in combination with more traditional machine learning is 
also discussed and proposed as an alternative approach that may solve some of 
the challenges associated with deep learning. Past and present uses of biophysics 
inspired AI methods, such as the use of fluorescence guided surgery to aid in the 
characterization of colorectal lesions, are used to illustrate the role biophysics-
inspired AI can play in the exciting future of the gastrointestinal proceduralist.
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INTRODUCTION
One of the most fulfilling yet challenging aspects of medical practice revolves around 
the art of correct decision-making. Current training models within medicine address 
this through experiential learning and graded autonomy over time along with sub 
specialization in order for an individual to reach competency and, ideally, mastery 
within their chosen field. Despite now widespread use of decision support systems in 
areas such a manufacturing and business, automated decision support for the modern 
clinician in clinical practice remains in its infancy. The last ten years have seen all 
medical specialties introduce artificial intelligence (AI) methods as a topic for research 
and increasingly it is beginning to impact clinical practice as supportive data accrues. 
Success rates have however varied with areas such as radiology (chest X-ray and 
mammogram interpretation) and ophthalmology (retinal disease progression) 
emerging as early beneficiaries[1-3]. Increasingly interest is developing regarding the 
application of these principles to gastrointestinal disease and its interventions.

GASTROINTESTINAL INTERVENTION
The practice of gastroenterological endoscopy has also seen promising developments 
regarding in situ determination of colonic lesions through AI methods culminating in 
the recent launch of commercially approved, AI software (GI-Genius, Medtronic, MN, 
United States) to aid in the detection of colorectal polyps at colonoscopy[4]. 
Commencing in 2003, initial endeavour in this domain involved early computer-aided 
detection software performing post hoc analysis on static images (“The Colorectal 
Lesion Detector System” by Maroulis et al[5] and Karkanis et al[6]). The state-of-the art 
thereafter quickly progressed to post-hoc video, and subsequently real-time video, 
analysis. Recently published trials have shown significantly improved polyp detection 
rates with these technologies along with indicators of a potential ability to characterise 
lesions (hyperplastic vs adenoma) in some cases[7,8]. The aforementioned studies all 
employ deep learning (DL), a subset of machine learning within AI that emerged in 
the mid-2010s, as their modus operandi[9]. DL capitalizes upon recent advances in 
computing capabilities to implement learning algorithms consisting of many 
networked layers of interconnected processing units known as neurons, arranged as 
neural networks. For colonoscopy, DL architectures best suited to image recognition 
such as convolutional neural networks are most applicable.

The GI Genius currently represents the “state of the art” accessible to the practicing 
clinician today. This “intelligent endoscopy module” acts as an adjunct to the gastro-
enterologist during a colonoscopy to highlight regions with visual characteristics 
consistent with different types of mucosal abnormalities and so stops short of being an 
autonomous polyp detection tool and provides no characterization. Powered by 
closed, selective datasets which may not be representative of general practice (e.g., in 
terms of bowel prep, withdrawal times, etc.) the module neither records nor reports its 
findings but instead presents areas of the screen for the endoscopist to interpret their 
significance including whether to biopsy, resect or disregard. Surface feature detection 
learned from these datasets has yet to prove its performance in real world practice in 
particular regarding accuracy (a typical colonoscopy comprises 50000 frames so even a 
tiny false positive frame rate could generate significant distraction), explainability 
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(“telling you the settings used in the machine”) and interpretability (“why should I 
believe it?”). While pertinent to Food and Drug Administration approval, these 
considerations are particularly import when expanding into the concept of lesion 
characterization and, even more so, true decision support. Like all DL, system 
performance depends on the assumption that all possible future polyps are 
represented by previously encountered polyps upon which the system learned. 
Nevertheless, this system is truly groundbreaking in its existence as a commercial 
product and opens up the possibilities for AI integration at scale, including articu-
lation of the value proposition of digital assistance as the norm.

Gastrointestinal surgery, an allied field, is also comprised of sequential steps each 
requiring numerous operator-led decisions but has unique decision-support 
challenges and unique barriers to AI implementation (although it too is increasingly 
delivered via image-driven minimally invasive approaches, whether by standard or 
robotic-assisted laparoscopy). DL as an AI method, while highly efficient at tasks such 
as image recognition, does not as readily lend itself surgical video where the landscape 
is more complex with less hallmarks available to exploit during structure differen-
tiation (for example ureter and vascular identification during dissection vs lesion 
detection on plain film X-ray). Current AI methods within surgical practice are limited 
to tasks such as instrument detection or segmentation of procedures into their 
procedural phases with little AI assistance currently available in the more intricate 
components of surgery such as tissue identification or classification progressively 
during dissection[10,11]. In general, surgical procedures are not as easily represented 
by individual static images like the other specialties mentioned thus far and while 
video provides a deeper situational understanding for the experienced operator, it 
makes artificially intelligent interpretation much more challenging. Combined with 
this increased complexity, the datasets required to train current DL systems for 
surgery (i.e., many thousands of recorded surgical cases) do not currently exist in 
volumes comparable to endoscopic polyp images, retinal photographs, or mammog-
rams.

BIOPHYSICS
Biophysics-inspired approaches to AI in surgery may present an alternative, or per-
haps even better, a complimentary/synergistic approach to the current DL strategies 
in both gastrointestinal endoscopy and surgery. The term “biophysics” was first 
proposed by Karl Pearson in 1892 as an all-encompassing term to describe the 
application of physics principals to describe biological phenomena[12]. It would not be 
until the 1950s however, following significant advancements in physical measurement 
techniques, that the potential contributions of biophysics within the field of medicine 
could be realized. Initial endeavours sought to understand and describe biological 
phenomena such as haemoglobin dissociation and cell-cell interactions and structure
[13,14]. The field then progressed to more complex tasks such as computerized 
simulation of blood flow and tissue perfusion using biological compartment models 
contingent on vascular parameters such as vascular density, perfusion rate and 
permeability[15]. More recent still, the combining of AI methods with biophysics 
principles has resulted in paradigm shifts in areas such as the study of protein folding 
and structure and promises to modify drug research processes[16,17]. It is now 
possible to study and predict protein-protein interactions by combining existing 
knowledge of protein structural biology and biophysics with machine learning in 
order to make predictions about the behaviour of previously undocumented proteins
[18]. This technology has many potential uses including advancing understanding of 
inflammatory signaling processes, the search for cancer driving mutations and in new 
drug discovery. Currently, mechanisms of drug development include processes such 
as “target deconvolution” whereby the potential new agent, once identified, must be 
screened against all the known proteins in the human body. This laborious and 
resource intensive task aims to identify potential drug benefits and importantly to 
identify any potential off-target effects that may be undesirable. Harnessing the power 
of AI in conjunction with biophysics, researchers are now able to use computational 
modelling to simulate the physical interactions between molecules and potential target 
proteins[17]. Furthermore, comprehensive databanks of human proteins (the 
proteome) now exist with which to evaluate any new drugs. This permits in silico 
creation of a full pharmacological profile of any given drug molecule.

While biophysics inspired approaches such as those mentioned have numerous 
benefits, it is worth noting however that such methodology can only be employed in 
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cases where an in-depth mechanistic understanding of all involved elements has been 
achieved. Therefore, utilization is limited to fields with a strong human understanding 
of relevant biological and physio-chemical components and furthermore efforts may 
be derailed where incorrect perceptions of what is true exist.

NEARINFRARED ENDOLAPAROSCOPY
In contemporary, gastrointestinal surgical practice, the advent of nearinfrared (NIR) 
endolaparoscopy (combining conventional endoscopic and/or minimally invasive 
laparoscopic techniques with NIR imaging) provides great scope for development of 
such AI algorithms. This technology utilizes an extended electromagnetic illumination 
wavelength (up to 800 nm) to detect exogenous agents capable of fluorescence (there is 
no background biological fluorescence at these wavelengths)[19]. Such agents can be 
profiled dynamically as well as absolutely (presence/absence) to garner information 
regarding the biological features of the tissue, including disease. This has already 
proven useful clinically in visual determination of intestinal perfusion during surgery 
where the NIR imagery is presented alongside the white light appearances, but 
interpretation remains qualitative by the surgeon. Via AI methods however, the added 
information provided by NIR tissue assessment over standard white light viewing can 
be combined with our existing understanding of tissue biology to enhance the proced-
uralist’s understanding of the field in front of them and to assist them in their task. To 
date indocyanine green (ICG) represents the most successful NIR agent upon which AI 
recommending systems have been based (and indeed it remains the only currently 
approved NIR fluorophore although others are in development) and it is likely that 
development of such decision support systems will in turn enable broader AI 
development across more standard surgical imagery[20]. However, for now, ICG in 
combination with NIR provides an excellent test-case to describe the application of 
biophysics-inspired AI for gastrointestinal interventions (both endoscopy and image-
guided surgery).

NIR-ICG TISSUE PERFUSION
ICG is a fluorescent dye used extensively within the now established field of 
fluorescent guided surgery[21]. When given intravenously it remains within the 
vasculature with a half-life of 2.5-3 min and can be seen using a near infra-red camera
[22]. It is currently used as a subjective decision-making adjunct in tasks such as 
anatomical delineation (biliary anatomy) and tissue physiology assessment (colorectal 
anastomosis formation and gastric conduit formation post oesophagectomy)[23-25]. It 
has also been used to assist in the identification of solid organ tumours however the 
non-selective nature of the dye leaves this staining method vulnerable to false 
negatives secondary to accumulation in other areas of pathology such as inflammation
[26,27].

Intra-operative ICG perfusion angiograms to assist operator decision making during 
colon transection and anastomosis represents the most successful utilization of ICG in 
gastrointestinal surgery to date. Trials assessing subjective surgeon interpretation of 
these angiograms have been equivocal in their conclusions with respect to reducing 
complication rates and overall patient benefit however[28-30]. Numerous groups have 
set about quantifying these perfusion angiograms using time-fluorescence curves with 
the aim of reducing subjectivity of interpretation and ideally automating it entirely 
through computer vision and AI[31-35]. Son et al[36], in their landmark paper demons-
trated the perfusion patterns seen during quantitative tracking of ICG colonic 
angiograms and subsequently analyzed these curves. They concluded that measurable 
parameters within these time-fluorescence curves such as the fluorescence slope, time 
from first fluorescence increase to half maximum value (T1/2 Max) and time ratio (T1/2max

/Tmax) could be used to detect areas of insufficient perfusion and reduce anastomotic 
complications[36]. Building on this work, Park et al[34], recently described an AI based 
real-time microcirculation analysis system (AIRAM) capable of generating more 
accurate and consistent perfusion assessment results when compared to the original 
parameter-based method described above. Using a corpus of 50 training videos the 
authors developed an unsupervised learning algorithm that identified 25 distinct 
colonic perfusion patterns during ICG inflow and outflow. Each perfusion pattern was 
then assigned a “risk level” or “assessment of adequacy of perfusion” (safe, 
intermediate, and dangerous) based on each pattern’s performance using a simulator 
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of colonic circulation. Subsequent testing on 15 unseen videos demonstrated 
comparable results between the original parameter-based methodology and the AI 
algorithm with a computer processing time of less than 50 s.

Capitalizing on the well described biophysical differences in perfusion character-
istics between malignant and benign tissues (abnormal angiogenesis such as capillary 
sprouting and increased interstitial pressures) and demonstrating these differences in 
colorectal lesions using ICG to create unique signatures, we have recently shown too 
that these signatures can be used to discriminate tissue accurately using traditional 
machine learning techniques without the need for large volumes of data and DL[37,
38]. Blood flow, as well as the active and passive uptake of substances, are altered in 
malignant tissues. While these differences in fluorescence appearance can at times be 
appreciable to the human eye on screen, they are subtle, occur at different rates across 
the full field of view and transpire over several minutes. This complexity, along with 
the known variability between individuals to interpret intra-operative fluorescence 
footage, certainly requires the need for computer vision to interpret these differences
[39].

To develop this biophysics inspired AI recommender, a commercially available 
Pinpoint Endoscopic Fluorescence Imaging System (Stryker Corp, Kalamazoo, MI, 
United States) was used to interrogate lesions within the distal colon transanally 
following intravenous administration of ICG. A bespoke fluorescence intensity tracker 
was then used to map intensity changes (representing blood inflow and outflow 
through tissue) on the multi-spectral intra-operative videos obtained. Tissues in these 
training videos with known pathology (healthy tissue, benign tissue, malignant tissue) 
were chosen as “regions of interest” and the fluorescent intensity changes tracked 
within these tissues to create “perfusion signatures” for each tissue type. The data 
created from these training videos were then taken and fitted to a parametric curve 
derived from a biophysical model of in vivo perfusion. A supervised machine learning 
based classification model was designed using these training perfusion signatures and 
then applied to tissue signatures of previously unseen videos in real time. Using this 
method the algorithm was able to successfully discriminate between healthy, 
cancerous and benign tissue in a pilot study of 20 patients with 95% accuracy[37,38]. 
Such systems employed clinically, providing objective feedback to the endoscopic 
operator, would permit either immediate local resection in the case of early disease or 
prompt appropriate, expedited referral for definitive surgical management in the case 
of more advanced disease. We are currently exploring the validity of this approach in 
non-colonic tumours with early results demonstrating generalizability of principle 
across tissue types and also in applying this working prototype to flexible endoscopic 
systems for more proximal colonic lesions.

CONCLUSION
Biophysics-inspired AI has numerous strengths over DL approaches when it comes to 
healthcare (Table 1). The transmutability of biophysics inspired AI is not seen in DL 
methods where for example, data sets collected to train colon cancer identification 
algorithms likely will not translate to other cancer types. In addition to solving the 
issue of training data volumes, biophysics inspired principles also provide answers to 
the “black box” concerns of DL use in medicine. Using DL methods, conclusions 
drawn by the system, while potentially accurate, are not “explainable” (the ability of 
the parameters used to justify the result) given the complexity of the algorithms used. 
This raises ethical dilemmas and accountability concerns where AI is used to direct 
patient treatment such as the decision to remove tissue or leave in-situ. Along with 
increased explainability, biophysics inspired modelling facilitates better system 
interpretability (the ability to associate a cause to an effect). The interrogation of tissue, 
through fluorescence guided surgery, allows artificially intelligent analysis of the 
fundamental properties of the tissue itself over pattern recognition within segmented 
images[40]. Furthermore, the detection and interpretation of these discrete tissue 
signals is likely less prone to the bias seen with other AI methods where deficiencies in 
the trainings data used, such as under-representation of particular conditions or 
people, negatively impacts the pattern detection capabilities of the AI method[41].

For these reasons, biophysics represents a core, although as yet underutilized, 
element of the next AI move in gastroenterology. This may be as a means to 
compensate for the apparent lack of video data that exists to train DL models or to 
augment DL methods by unlocking another realm of tissue specific information that is 
imparted by analysis of ICG behaviour within tissues. The extra information gleaned 
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Table 1 Artificial intelligence methods in healthcare: A comparison of biophysics inspired machine learning and deep learning methods

Criteria Biophysics inspired machine learning Deep learning

Principle Identification of discriminating features within data 
set prior to system training based on already proven 
biophysical properties

Discriminating features/patterns in data discovered through 
analysis of large databanks

Training corpus for system to 
accurately assess unseen cases

Small to moderate data cohorts Large training data corpuses required

Explainability Settings, e.g., parameter description and number, 
used in algorithms are easily described

Complex algorithms utilizing numerous parameters and 
hyperparameters to control the learning process mean such 
algorithms often poorly understood

Interpretability Conclusions reached are easily appreciated and can 
be explained logically by an appropriately trained 
individual

Human comprehension of sophisticated algorithm 
predictions/results may be difficult (including for experts in the 
field)

Generalizability Accurate extrapolation of results to unseen cases as 
well as adaptation of such systems to other similar 
uses

High degree of specialization within DL systems makes 
adaptation to other similar uses difficult

Bias Well described, transparent and biophysics-based 
features help reduce or identify bias within such 
systems

Bias within training datasets may be perpetuated by DL systems 
through subtle mechanisms that may even be imperceptible to 
humans

DL: Deep learning.

from the tissues’ biology, combined with AI methods, lay the blueprint for the creation 
of full field of view topographic maps that are biologically representative of each 
individual lesion and potentially even facilitate automation of procedures using 
fluorescent signal guidance.
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Abstract
Driven by the tremendous availability of data, artificial intelligence (AI) using 
deep learning has emerged as a breakthrough computer technology in the last few 
decades and has recently been acknowledged by the Task Force on AI as a golden 
opportunity for research. With its ability to understand, learn from and build on 
non-linear relationships, AI aims to individualize medical care in an attempt to 
save time, cost, effort and improve patient’s safety. AI has been applied in 
multiple medical fields with substantial progress made in gastroenterology 
mainly to facilitate accurate detection of pathology in different disease processes, 
among which inflammatory bowel disease (IBD) seems to drag significant 
attention, specifically by interpreting imaging studies, endoscopic images and 
videos and -to a lesser extent- disease genomics. Moreover, models have been 
built to predict IBD occurrence, flare ups, persistence of histological inflammation, 
disease-related structural abnormalities as well as disease remission. In this 
article, we will review the applications of AI in IBD in the present medical 
literature at multiple points of IBD timeline, starting from disease prediction via 
genomic assessment, diagnostic phase via interpretation of radiological studies 
and AI-assisted endoscopy, and the role of AI in the evaluation of therapy 
response and prognosis of IBD patients.
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Core Tip: There has been a substantial progress made in artificial intelligence in 
gastroenterology including inflammatory bowel disease. Machine learning would play 
a major role in predicting disease flare up, response to treatment and overall patient' 
prognosis.
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INTRODUCTION
Artificial intelligence (AI) refers to any technique by which the machine performs 
complex cognitive tasks similar to those of the human brain such as problem solving 
or learning. Machine learning (ML) is a subdivision of AI in which the machine 
automatically learns and improves without being explicitly programmed. Machine 
learning includes multiple techniques such as deep learning (DL), Bayesian inferences, 
support vector machines (SVM), artificial neural networks (ANNs), convolutional 
neural network (CNN) and others[1].

The intelligence of computing machinery was first described in the 1950[2], yet 
stayed dormant for few decades until the accumulation of large digital and clinical 
data and the evolution of computer systems which steered the wheel towards a more 
efficient utilization of available resources. At present, AI has been applied in multiple 
medical fields, including radiology, neurology, orthopedics, pathology, ophthal-
mology, in addition to the numerous applications in the field of gastroenterology 
including neoplastic and non-neoplastic disease processes such as infection, inflam-
mation, and hemorrhage[3-6]. Yet it is not enough for the computer to only learn from 
the big dataset, this has to translate into meaningful clinical implications that will have 
positive outcomes in the way patients are being handled. Despite the novelty of this 
field, multiple applications stand there pointing to this clinical utility of AI. Taking 
inflammatory bowel disease (IBD) patients as an example, some of the algorithms that 
will be discussed later in this review had shown the potential ability of the computer 
to predict the histology by direct visualization of the mucosa. In an ideal world, this 
would mean that the AI algorithm can diagnose the patient while on the endoscopy 
table without the need for the invasive biopsy, and that physicians can immediately 
and more confidently start with treatment and any needed application for insurance 
companies rather than waiting for the biopsy result for days. In this example, AI 
demonstrates how can these algorithms save the patient and the clinician time to reach 
the diagnosis, improve patient’s safety by omitting the need for biopsy, and improve 
the efficiency and workflow. To emphasize more on this point, the American Society 
for Gastrointestinal Endoscopy (ASGE) assembled the Task Force on AI that aims to 
direct research efforts toward AI implications that are expected to have more 
meaningful outcomes[7].

IBD, which is the main interest of this article, is a multifactorial disease of the 
gastrointestinal tract that results from complex interactions between various genetic, 
immune system, environment and microbiome-related factors. The non-linear 
relationships and interactions between the aforementioned factors-as with most living 
organism’s phenomena-made the prediction of the disease onset, accurate diagnostic 
means, and customization of IBD treatment challenging tasks to achieve, presenting 
the application of the AI with its non-linear algorithms as a perfectly matching 
solution[8]. Furthermore, AI, and particularly DL, allows for maximum patient’s strati-
fication and optimal individualization of both diagnostic and therapeutic choices in 
addition to a tailored prognostic view, which positively affect the cost, health and 
safety.

https://www.wjgnet.com/2644-3236/full/v2/i3/85.htm
https://dx.doi.org/10.35712/aig.v2.i3.85
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Among other non-neoplastic processes, the application of AI in IBD seems to have 
dragged a significant attention especially in the last decade. The aim of this article is to 
review the applications of AI in the timeline of IBD; starting from the prediction of the 
disease onset, to diagnostic, therapeutic and finally follow up options.

AI AND IMAGES ANALYSIS
The diagnosis of IBD is a multistep process that matches disease’s inherent complexity 
and multifactorial nature surrounded by a large number of confounding factors[8]. In 
clinical practice, IBD is diagnosed in an affected subject who is expressing compatible 
symptoms of either ulcerative colitis (UC) or Crohn’s Disease (CD) in addition to a 
radiological, endoscopic and/or histological evidence of the corresponding inflam-
matory pattern. Despite the use of multiple scoring systems in an attempt to 
standardize the diagnostic efforts, the interpretation of any of these tests–and hence 
the final score- is still susceptible to a significant inter- and intra-observer variability, 
which only adds fog to the diagnostic horizon[9]. AI offers a great resource for human-
independent interpretation and standardization, and has been increasingly recognized 
in the literature as a promising alternative for biopsy-guided diagnosis, severity 
determination, identification of remission and prediction of relapses. Multiple models 
have been developed and applied in different studies to explore this field mainly 
guided by the ability of the AI to interpret various radiological and laboratory data.

AI-guided interpretation of radiography 
The current gold reference standard for diagnosing IBD is colonoscopy, which carries 
the risk of bowel perforation and procedure-related discomfort. Thus, looking for a 
different less invasive methods for diagnosis is justifiable and so is the application of 
AI. Computed tomography (CT) and magnetic resonance imaging (MRI) play a vital 
role in indicating the presence and extent of the disease, however; this comes at a time 
cost and more importantly-great subjectivity in the radiological interpretation. Despite 
the scarce literature in this field, the implementation of AI has shown its ability to 
standardize the interpretation process to better assess the extent of bowel involvement 
in a timely fashion with good results when compared to the manual interpretation 
(Table 1).

The presence of a structural bowel damage in IBD patients is a common cause for 
medical therapy failure, and early identification of such an entity is of a great value
[10]. For this reason, Stidham et al[11] developed and validated a semi-automated 
model to identify strictures in CD patients. To validate the model, two expert 
radiologists retrospectively reviewed 138 CT-enterography scans for the presence of 
structural bowel abnormalities in previously known CD patients. The same scans then 
underwent semi-automated measurement analysis (maximum bowel thickness, 
maximum bowel dilatation minimum lumen diameter, and presence of stricture). The 
researchers found that the structural bowel damage measurements collected by the 
two expert radiologist were similarly comparable to those collected by the model, with 
no statistically significant difference between the average mean absolute measure-
ments scored by the model compared to that between the two radiologists. The 
accuracy of radiologist-defined intestinal strictures using automated acquired 
measurements had an accuracy of 87.6%.

While the ultrasound and the CT use are generally limited by the gas interference 
and the exposure to the ionizing radiations, respectively; MRI has the ability to 
overcome both of these issues and the utilizations of AI-aided interpretation makes 
perfect sense. However, in contrast to the CT images which yield reproducible values, 
MRI images are greatly influenced by many other factors (ex: Signal fluctuations, 
heterogeneities in tissue) which complicate the processing of the data and limit the 
application of the automated techniques, and not surprisingly, further add to the inter-
observer disagreement[12]. Training such AI models requires lots of human effort to 
make the labeled training data that should include all disease spectrum of severity 
available. Because of these technical and logistic issues, developing a semi-automated 
model (rather than fully-automated) is a reasonable alternative. Mahapatra et al[13,14] 
successfully developed their own semi-automated classification model to segment the 
affected bowel regions in CD patients using MRI data and achieved excellent results, 
required less training time, fewer labeled training samples and less expert effort when 
compared to their own fully-automated model.
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Table 1 Artificial intelligence implications in the interpretation of radiography in inflammatory bowel disease patients

Ref. Purpose AI/DL 
model Design Result

Stidham et al
[11], 2020

To identify structural bowel damage in 
IBD patients using AI-guided CT image 
analysis

semi-
automated

Retrospective Structural bowel damage measurements collected by semi-
automated approaches are comparable to those of experienced 
radiologists

Mahapatra et 
al[13], 2016

To evaluate and compare semi-
automated to fully automated models in 
identifying affected bowel segments in 
MRI of IBD patients

Semi-
automated

Retrospective Semi-automated model outperformed the fully automated 
model in the ability to segment the affected bowel regions in CD 
patients using MRI data with less required training time, 
training samples and expert effort

IBD: Inflammatory bowel disease; AI: Artificial intelligence; DL: Deep learning; CD: Crohn’s Disease; CT: Computed tomography; MRI: Magnetic 
resonance imaging.

AI-guided interpretation of endoscopic images and capsule systems
The interpretation of endoscopic image analysis is of a great interest to the research 
community and is a main focus and a top priority for the AI ASGE Task Force[7], and 
is probably the fastest growing. Within the last 10 years, AI-guided endoscopic image 
analysis (images or videos) has been assessed in different scenarios (Table 2). For 
example, in 2015, Peng et al[15] developed an ANN to study the seasonal variation 
effect on the onset, relapse and severity of IBD patients. Assigning IBD (UC and CD) 
patient from 2003 to 2010 as a training cohort, the researchers utilized several meteoro-
logical data as an input layer {maximum temperature, minimum temperature, 
maximum air pressure, minimum air pressure, and humidity} and validated their 
model on a cohort of IBD patients from the year 2011. This ANN was able to predict 
the frequency of relapse with a great accuracy (Mean square error = 0.009, Mean 
absolute percentage error = 17.1%). However, this model had limited ability to predict 
the onset and severity of IBD.

Later in 2019, Maeda et al[16] developed a SVM model to predict the persistence of 
histologic inflammation in UC patients using endoscopic images. In this retrospective 
study, the researchers collected data from 187 patients with UC who had endoscopic 
observation followed by biopsy. Data and images from 87 patients were used to train 
the model and the remaining 100 patients were assigned for validation. This model 
achieved an impressive sensitivity, specificity, and accuracy of 74% [95% confidence 
interval (CI): 65%-81%], 97% (95%CI: 95%-99%), and 91% (95%CI: 83%-95%), 
respectively, with a great reproducibility.

The importance of the gastrointestinal tract evaluation (ex: via endoscopy) largely 
stems from its ability to predict the clinical outcome and response[17]. However, CD is 
usually evaluated via colonic and terminal ileum visualization and biopsy without a 
pan-enteric evaluation in spite of the high prevalence of proximal small bowel 
involvement in more than 50% of patients and its weight on the prognosis[18]. In an 
attempt to address this defect, a panenteric capsule system (Pillcam Crohns Capsule, 
Medtronic, Dublin, Ireland) has been recently developed, approved and integrated 
into the clinical practice[19], however; as with endoscopic means this system was also 
subject to the inter-observer variability of the human being during image analysis.

In response to these challenges, Gottlieb et al[20] conducted an interesting prospec-
tive multinational clinical trial using a DL algorithm in 2020 to score the severity of UC 
from full-length endoscopy videos. In this trial, researchers prospectively collected 
panenteric videos from a phase 2 clinical trial evaluating mirikizumab use in UC 
patients from 14 countries. In the first stage, a CNN was used to grade single frames, 
and in the second stage a recurrent neural network was used to aggregate the grading 
throughout the entire film. 795 full-length endoscopy videos were obtained from 249 
patients, with 19.5 million image frames being assessed. Model’s scores were 
compared to one endoscopic Mayo score (eMS) and one UC Endoscopic Index of 
Severity (UCEIS) scored by expert human subjects. The inter-rater agreement between 
either side predictions was compared using quadratic weighted kappa (QWK) metric 
and showed outstanding results, with a QWK of 0.844 for eMS (95%CI: 0.787–0.901) 
and 0.855 for UCEIS (95%CI: 0.80–0.91). Interestingly, this study also showed a good 
performance at the area of large inter-observer variability. For example, for eMS scores 
of 1 and 2 where the inter-observer variability is substantial, the model showed a 
specificity of 92% and 76.92% respectively; and a sensitivity of 64.71% and 60%, 
respectively.



Almomani A et al. AI in IBD

AIG https://www.wjgnet.com 89 June 28, 2021 Volume 2 Issue 3

Table 2 Artificial intelligence implications in the interpretation of endoscopic and capsule images of inflammatory bowel disease 
patients

Ref. Purpose AI/DL 
model Design Result

Peng et al
[15], 2015

To predict the seasonal variation effect on 
the onset, relapse and severity of IBD 
patients

ANN Retrospective Great accuracy in predicting the frequency of relapse (Mean 
square error = 0.009, Mean absolute percentage error = 17.1%)

Maeda et al
[16], 2019

To predict the persistence of histologic 
inflammation in ulcerative colitis patients 
using endoscopy images

SVM Retrospective Sensitivity, specificity, and accuracy of 74%, 97%, and 91%, 
respectively

Gottlieb et al
[20], 2020

Determine the severity of UC from full-
length endoscopy videos

CNN Prospective Inter-rater agreement factor (QWK) of 0.844 for eMS and 0.855 
for UCEIS

Takenaka et 
al[21], 2020

To identify histological remission using 
colonoscopy images

Deep Neural 
Network

Prospective Histologic remission identified with 92.9% accuracy

Stidham et al
[22], 2019

To identify remission from disease group 
using colonoscopy images

CNN Retrospective Successfully identified the remission from the moderate-to-
severe disease group with an AUROC of 0.966, a sensitivity of 
83.0%, a specificity of 96.0%, PPV of 0.87, and a NPV of 0.94

AI: Artificial intelligence; DL: Deep learning; ANN: Artificial neural networks; SVM: Support vector machines; AUROC: Area under the receiver operating 
characteristic curves; NPV: Negative predictive value; PPV: Positive predictive value; CNN: Convolutional neural network.

One of Gottlieb et al[20]’s novelty was that their model was trained using videos 
rather than images and therefore allowed for a full model autonomy of prediction. 
However, image analysis itself has been previously implemented in other models. The 
two main models of endoscopic image analysis using AI algorithms were constructed 
by Takenaka et al[21] and Stidham et al[22] separately in the same year. In their model, 
Takenaka et al[21] trained their algorithm (the deep neural network for evaluation of 
UC, or DNUC) using retrospectively-obtained endoscopic images from UC patients 
who also underwent histological evaluation (biopsy) from 2014 to 2018. The DNUC 
algorithm was then prospectively validated using a real-time image analysis from a 
second cohort of UC who underwent endoscopic evaluation with biopsy from 2018 to 
2019. The DNUC was able to correctly identify histologic remission with 92.9% 
accuracy, denoting the potential future ability of AI to identify endoscopic and 
histological remission without the need for mucosal biopsy.

Similarly, Stidham et al[22] constructed a multi-layer CNN model to categorize the 
images into a remission group (defined by Mayo subscore 0-1) and a moderate-to-
severe disease group (defined by Mayo subscore 2-3). These images were also graded 
by two expert reviewers, and weighted κ agreement was used to measure model-
reviewer agreement. The model was trained using retrospectively-obtained images 
from 3082 UC patients. The researchers used 90% of the cohort to train the model and 
10% for validation. In the last step, the model underwent external validation using 30 
full-motion colonoscopy videos to simulate real-life scenario. This CNN showed a 
great ability to distinguish between the remission and the moderate-to-severe disease 
groups with an area under the receiver operating characteristic curves (AUROC) of 
0.966, a sensitivity of 83.0%, a specificity of 96.0%, a positive predictive value of 0.87, 
and a negative predictive value of 0.94. The agreement between the CNN-scored 
images and the human-scored images was also fairly good (κ = 0.84; 95%CI: 0.83-0.86) 
and very close to the agreement in between the two human experts (κ = 0.86; 95%CI: 
0.85-0.87).

AI-GUIDED INTERPRETATION OF GENOMICS
The use of AI in the interpretation of gene expression has also been infrequently 
described (Table 3). Several biomarkers like micro-RNAs, single nucleotide 
polymorphisms, or microbiota have been indicated to have discriminating potential 
for the differential diagnosis of IBD[23].

For example, Khorasani et al[24] has recently utilized the 240 IBD-risk loci identified 
by the Genome-wide association studies (GWAS)[25] to develop their own model in 
2020. In this model, the researchers used a recently developed feature selection 
algorithm combined with SVM classifier to differentiate UC patients from healthy 
subjects based on the values of expression for 32 genes obtained from colon samples. 
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Table 3 Artificial intelligence implications in the interpretation genomic of inflammatory bowel disease patients

Ref. Purpose AI/DL model Design Result

Khorasani et al
[24], 2020

To differentiate UC patients from 
healthy subjects using colon samples

SVM-DRPT Retrospective Predicted all active cases of UC with an average precision 
of 0.62 in the inactive cases

Wei et al[27], 
2013

To predict the risk of IBD using 
genomic data of risk loci

Advanced ML 
techniques

Retrospective Successfully predicted IBD with an unprecedented 
predictive power with AUCs of 0.86 for CD and 0.83 for 
UC

IBD: Inflammatory bowel disease; AI: Artificial intelligence; DL: Deep learning; CD: Crohn’s Disease; UC: Ulcerative colitis; ML: Machine learning; SVM-
DRPT: Support vector machines-developed feature selection algorithm.

This model was able to successfully predict all active cases of UC, with an average 
precision of 0.62 in the inactive cases. Despite the limitation of the training datasets 
(only two), this model outperformed BioDiscML[26] on the basis of average precision. 
Wei et al[27] had also previously utilized this large multinational GWAS data in 
synthesizing and validating their own IBD-risk predicting model by identifying the 
disease loci, and achieved an unprecedented predictive power with areas under the 
curve (AUCs) of 0.86 for CD and 0.83 for UC. Despite these interesting results, it is 
worth emphasizing that the use of genomic-based models is still in a very early stage 
of research and is not yet well-adapted in clinical practice.

AI AND IBD: TREATMENT AND FOLLOW UP 
The most useful clinical application of AI might be in its potential ability to assess 
treatment effectivity and response to medications, and numerous studies have been 
published in this field (Table 4). Waljee et al[28-32] published few studies where they 
assessed treatment response using AI. In one study[28], they developed their 
algorithm using phase-3 clinical trial data on Vedolizumab for CD from GEMINI I and 
II assessing corticosteroid-free remission at week 6 and week 52. Patients predicted to 
be in corticosteroid-free remission by the algorithm achieved the endpoint 35.8% of the 
time at week 52, but only 6.7% of the time at week 6. This algorithm was able to 
predict with reasonable accuracy as to which patients were unlikely to achieve 
remission at week 6. In a similar design, Waljee et al[29] developed a machine 
algorithm to predict durable response to Ustekinumab in patients with CD[29]. They 
analyzed data from three phase-3 randomized clinical trials (UNITI-1, UNITI-2, and 
IM-UNITI) and built 2 models, the first using only baseline data and the second using 
data till week 8. The week-8 model had an AUROC of 0.78 (95%CI: 0.69-0.87). In the 
testing data set, about 49% patients classified as likely to achieve clinical success did 
actually achieve it after week 42, while only about 11% achieved remission in those 
classified as likely to have treatment failure.

Another study by Waljee et al[30] aimed to assess an algorithm to predict thiopurine 
non-responders, nonadherence and shunters[30]. In this study, the researchers used 
laboratory and age data for algorithm training and compared it to thiopurine 
metabolite measurement in predicting the outcomes. The algorithm was able to differ-
entiate clinical responders from non-responders with AUROC curve of 0.856, while the 
thiopurine metabolite had AUROC curve of 0.594 (P < 0.001), and hence this ML 
model demonstrated a clean superiority in outcome prediction compared to the 
laboratory measurement. This algorithm was further externally validated on the 
SONIC clinical trial data set[31]. This method is clinically quite relevant, as the data 
used by the algorithm are readily available and very cost effective.

A similar study by Waljee et al[32] developed an algorithm using laboratory values 
and age to identify IBD patients in objective remission on thiopurines and to assess if 
the algorithm was able to predict fewer clinical events as compared to measurement of 
thiopurine metabolites[32]. The clinical events were defined as new steroid 
prescriptions per year, hospitalizations per year and surgeries per year. For objective 
remission, the algorithm was superior to thiopurine metabolite measurement and 
statistically significant, with AUROC of 0.79 (95%CI: 0.78–0.81) vs 0.49 (95%CI: 
0.44–0.54), respectively, and P value of < 2.2 × 10-16. In patients with sustained 
algorithm-predicted remission, statistically significant reduction in steroid 
prescriptions/year and hospitalizations per year were seen, proving the superiority of 
the machine-learning algorithm to thiopurine metabolite measurement.
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Table 4 Artificial intelligence implications in the treatment and prognosis of inflammatory bowel disease patients

Ref. Purpose AI/DL model Design Result

Waljee et al
[28], 2018

To predict corticosteroid-free biologic remission Random Forest 
modeling

Retrospective At week 52, patients predicted to fail succeeded 
6.7% of the time

Waljee et al
[29], 2019

To predict long-term response to ustekinumab Random Forest 
modeling

Retrospective Per week-8 model, only 11% predicted to fail 
achieved remission

Waljee et al
[30], 2010

To predict response to thiopurines Random Forest 
modeling

Retrospective The model was superior to metabolite 
measurement in predicting non-responders.

Waljee et al
[31], 2018

To externally validate previously developed 
thiopurine algorithm

Random Forest 
modeling

Retrospective The algorithm accurately predicted objective 
remission with AUROC 0.76

Waljee et al
[32], 2017

To identify patients in objective remission on 
thiopurines and analyze if these patients had fewer 
clinical events per year

Random Forest 
modeling

Retrospective AUROC for algorithm-predicted remission was 
0.79 vs 0.49 for thiopurine metabolite proving 
model superiority 

AUROC: Area under the receiver operating characteristic curves; AI: Artificial intelligence; DL: Deep learning.

AI AND IBD: PROGNOSIS AS DETERMINED BY THE MACHINE
Similar to studies on treatment response, AI has also been shown to have a significant 
potential in the prognostication of IBD patients (Table 3). Waljee et al[33] developed 
two machine learning models using clinical parameters to predict hospitalization and 
outpatient corticosteroid use for IBD within 6 mo[33]. The AUROC for the random 
forest longitudinal model using previous hospitalization or steroid use was 0.87 
(95%CI: 0.87–0.88). The accuracy of the model was significant, which would allow for a 
personalized management of high-risk patients. Genome wide association studies and 
microbiome data have also been used in some studies in addition to the referred 
earlier. For example, a study by Cushing et al[34] used RNA extraction and human 
transcriptome microarray from mucosal biopsies of uninflamed tissue from operative 
specimens after ileocolic resection in CD patients. Their study showed that anti-tumor 
necrosis factor -naïve and -exposed patients have unique expression profiles at the 
time of surgery, which may be utilized to assess the risk of non-recurrence.

Morilla et al[35] conducted a study on patients with acute severe UC to predict the 
response to steroids, infliximab and cyclosporine. They used microarray analysis of 
microRNA expression profiles from colon biopsy specimens. Their deep neural 
network-based classifier was able to identify 9 microRNAs plus 5 clinical factors 
associated with response to treatment. Their panel discriminated between steroid 
responders and non-responders with 93% accuracy (AUC = 0.91). Based on microRNA 
levels, they developed three algorithms that distinguished responders to infliximab 
from non-responders with 84% accuracy (AUC = 0.82), and responders to cyclosporine 
from non-responders with 80% accuracy (AUC = 0.79).

CONCLUSION
AI has been widely applied in multiple medical sciences[3-6]. Among its numerous 
applications in the field of gastroenterology, AI implications in IBD seems to be the 
fastest growing and the most promising (Tables 1-4). This has been largely driven by 
the tremendous availability of data which necessitates finding a path to efficiently 
utilize it in a safe and cost-effective manner. The ultimate goal of AI is to provide a 
human-independent interpretation of the data to allow for a standardized diagnostic 
process and minimize the inter- and intra-rater variability. The patient-tailored 
management is an extra-privilege that AI can also provide using its complex neural 
algorithm’s ability to understand the non-linear interactions between the factors 
contributing to IBD, build on it and predict the result. Given the tremendous 
availability of the data, AI is expected to save time, effort and money. However, 
training a model and validating it would –at least initially- require all three of these, 
which makes the AI industry very challenging. Most of the current models were 
validated retrospectively which limits the external validation. More prospectively-
validated models are needed for the medical community to familiarize with AI if it’s to 
be adopted by physicians and integrated into their clinical practice.
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Abstract
A precise knowledge of intra-parenchymal vascular and biliary architecture and 
the location of lesions in relation to the complex anatomy is indispensable to 
perform liver surgery. Therefore, virtual three-dimensional (3D)-reconstruction 
models from computed tomography/magnetic resonance imaging scans of the 
liver might be helpful for visualization. Augmented reality, mixed reality and 3D-
navigation could transfer such 3D-image data directly into the operation theater 
to support the surgeon. This review examines the literature about the clinical and 
intraoperative use of these image guidance techniques in liver surgery and 
provides the reader with the opportunity to learn about these techniques. 
Augmented reality and mixed reality have been shown to be feasible for the use in 
open and minimally invasive liver surgery. 3D-navigation facilitated targeting of 
intraparenchymal lesions. The existing data is limited to small cohorts and 
description about technical details e.g., accordance between the virtual 3D-model 
and the real liver anatomy. Randomized controlled trials regarding clinical data or 
oncological outcome are not available. Up to now there is no intraoperative 
application of artificial intelligence in liver surgery. The usability of all these 
sophisticated image guidance tools has still not reached the grade of immersion 
which would be necessary for a widespread use in the daily surgical routine. 
Although there are many challenges, augmented reality, mixed reality, 3D-
navigation and artificial intelligence are emerging fields in hepato-biliary surgery.

Key Words: Augmented reality; Mixed reality; 3D; Navigation; Artificial intelligence; 
Liver surgery; Liver resection; Image guided surgery
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Core Tip: Virtual three-dimensional (3D)-reconstruction models from computed 
tomography/magnetic resonance imaging scans of the liver might be helpful for visual-
ization during liver surgery. Augmented reality, mixed reality and 3D-navigation could 
transfer such 3D-image data directly into the operation theater. Augmented reality and 
mixed reality have been shown to be feasible for the use in open and in minimally 
invasive liver surgery. 3D-navigation facilitated targeting of intraparenchymal lesions. 
Randomized controlled trials regarding clinical data or oncological outcome are not 
available. Up to now there is no intraoperative application of artificial intelligence in 
liver surgery. The usability of all these sophisticated image guidance tools has still not 
reached the grade of immersion which would be necessary for a widespread use in the 
daily surgical routine.

Citation: Wahba R, Thomas MN, Bunck AC, Bruns CJ, Stippel DL. Clinical use of augmented 
reality, mixed reality, three-dimensional-navigation and artificial intelligence in liver surgery. 
Artif Intell Gastroenterol 2021; 2(4): 94-104
URL: https://www.wjgnet.com/2644-3236/full/v2/i4/94.htm
DOI: https://dx.doi.org/10.35712/aig.v2.i4.94

INTRODUCTION
The surgical liver anatomy is defined not only by external landmarks but more 
important by its three-dimensional (3D) intra-parenchymal vascular and biliary 
architecture. It shows a high-grade of variation in each individual, making liver 
anatomy even more complex. In addition, liver lesions are often located intraparen-
chymally, which makes them invisible for the surgeon. Therefore, a high grade of 
anatomical knowledge before and during hepato-biliary surgery is directly related to 
the post-operative success and outcome for the patients[1]. Especially spatial, 3D-
orientation is of utmost importance in the liver: (1) For pre-surgical localization of 
intrahepatic lesion; (2) For exact planning of the resection line; and (3) For intraop-
erative identification of the lesions and orientation during the parenchyma dissection. 
Hence hepato-biliary surgeons have been ambitious to use computer and image 
guidance techniques to facilitate preoperative planning and intraoperative procedures. 
Computer-assisted 3D-segmentation and -reconstruction techniques have helped to 
transfer 2-dimensional (2D) images, slices, of the liver from a computed tomography 
(CT)- or magnetic resonance imaging (MRI) -scan back to a 3D structure familiar to the 
surgeon’s perception of the real anatomy. First applications of segmentation and 
virtual 3D-reconstruction of the liver dated from the early 90s of the last century[2,3]. 
Summarized under the term “virtual hepatectomy” this 3D-preoperative liver 
segmentation technique has improved outcome after major liver resection and living 
liver donation. It has become a standard procedure at specialized liver centers[4,5]. 
The next step was to transfer the preoperative reconstructed 3D-images into the 
operative theater- followed by early applications of intraoperative navigation with 
stereotactic systems[6]. The additional 3D-image information was presented on a 
secondary screen and the surgeon has to mentally merge the real live situation and the 
virtual 3D reconstruction of the liver. In the 1990s years the challenges became even 
greater[7] with the introduction of laparoscopic liver surgery. “Virtuality” has 
emerged to liver surgery: Performing the laparoscopic operation only according to a 
displayed 2D image. Years later passive-polarizing 3D display techniques 
reintroduced spatial orientation into minimally invasive surgery and has shown to 
improve the surgical performance[8,9].

“Augmented reality” (AR) or “mixed reality” (MR) is created by superimposing the 
virtual 3D model of the liver on the laparoscopic screen or directly on the liver. At this 
point the fusion between image data and real-world anatomy took place - which was 
performed up to that point in the surgeon’s mind. AR/MR should facilitate this 
procedure and so the surgical process. A key factor to achieve this is calibration and 
registration, which means to match the 3D liver model and the real liver to create 
AR/MR. This is still a major source of error[10]. Artificial intelligence (AI) might be 
the next step in liver surgery. It has the potential to help the surgeon to identify 
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anatomical structures. One novel way to integrate AI in liver surgery could be 
achieved by automatic tissue recognition according to the laparoscopic image and 
image fusion with the virtual 3D model.

Aim of this review is to evaluate the clinical usage of AR and MR, 3D-navigation 
and AI in liver surgery.

For the comprehensive literature review utilizing MEDLINE (PubMed) was 
performed using the search terms “mixed reality liver”, ”augmented reality liver”, 
“navigation liver”, “artificial intelligence surgery“ and “artificial intelligence liver” 
(publication date from January 1991 until January 2021). Only articles in English 
language were considered. Review articles were excluded. The query retrieved in total 
450 publications. Duplicates were identified by Endnote leaving 433 citations for 
review. The headlines and abstracts of those citation were reviewed manually. Finally, 
44 citations were considered relevant to the topic.

TECHNIQUES TO CREATE AR AND MR IN OPEN LIVER SURGERY
While using AR/MR the first step is to perform the segmentation and reconstruction 
of a virtual 3D liver model out of the 2D-CT/MRI scan. After that this 3D model must 
be superimposed intraoperatively onto the liver. Therefore, a registration and 
calibration process must be performed: Anatomical landmarks of the liver must be 
identified and then matched to the corresponding points on the virtual 3D model. The 
accuracy between 3D model and the real-life anatomical structures is determined by 
the precision of this registration process. Anatomical landmarks on the surface of the 
liver and/or vascular structures defined by intraoperative ultrasound can be obtained
[10] for the registration process.

In open liver surgery AR and MR could be realized using different techniques: (1) 
The virtual 3D model is projected on the surface of the liver or the abdominal wall; (2) 
The liver is visualized through a scope and displayed on a secondary screen (“open 
laparoscopy”). On that screen the virtual 3D model is superimposed on the image of 
the real liver. Using this technique, the surgeon has to look away from the operative 
field to use the AR/MR model; (3) the 3D model is superimposed on a semi-
transparent display, which is placed between the surgeon and the operative space. The 
surgeon has to look through this semi-transparent display to see the real liver and to 
perform the surgery; (4) The liver is visualized through the camera of a tablet pc and 
the virtual 3D-model was then superimposed onto the liver image on the tablet’s 
screen; and (5) A so called “hologram” was created on head-mounted semitransparent 
display. In this setting the surgeon could see the real liver through the semitransparent 
display (which is worn like glasses) and the “hologram” was superimposed on the 
semitransparent display using it as a projection screen.

AR AND MR IN OPEN LIVER SURGERY
Visualizing the liver through a scope was a first step of AR/MR in open liver surgery. 
Onda et al[11] described two cases of liver resection (right hepatectomy and partial 
hepatectomy), where this technique has been successfully used. However the 
technique was time consuming: 10 hr for preoperative planning and 3D-model 
reconstruction, one hour for the intraoperative setup and 1-2 min for the registration 
process. Data on clinical outcome were not available[11]. Okamoto et al[12] used to 
create AR/MR with the open scope technique and via a so-called see-through display, 
which is mounted directly between the surgeon and the operative space[12]. Two 
hepato-biliary procedures were reported with this technique (bile duct resection, right 
hepatectomy). Operation time and blood loss were 245 min/242 mL and 530 min/1329 
mL respectively. The scope technique to create AR/MR was also used to identify 
disappeared colorectal liver metastasis after chemotherapy. In three patient this 
AR/MR technique was used to find and finally resect the tissue of the disappeared 
metastasis[13]. Using a tablet pc is an easy, state-of-the-art video-based variation of the 
scope see-through AR/MR technique in open liver surgery. One case is described 
using this AR technique to perform a left hepatectomy and hepatico-jejunostomy with 
complex biliary reconstruction for hilar cholangio-carcinoma[14]. Yasuda et al[15] used 
a comparable technique with a tablet pc as display “in” the operative field combined 
with the open-scope technique. In a series of eight patients they described an 
accuracy/registration error between the 3D virtual model and the real liver of 1 mm to 
11 mm. Data regarding clinical outcome parameters were not available. Still an 



Wahba R et al. Augmented reality in liver surgery

AIG https://www.wjgnet.com 97 August 28, 2021 Volume 2 Issue 4

unsolved problem using AR/MR and 3D-navigation is the high grade of deformation 
of the liver during open surgery. The superimposed images could not follow this 
deformation and the error between the 3D model and real anatomy increases during 
the process of parenchyma dissection. Golse et al[16] have recently described an AR 
technique during open liver surgery using a marker less non-rigid registration system. 
They showed in four patients that registration was possible and the 3D model could be 
superimposed on the liver following some deformation.

Lately head-mounted semitransparent displays (e.g., Hololens) have been 
introduced to open liver surgery. With this technique the surgeon can see a so called 
“hologram” superimposed on the real world and handle it via gesture recognition 
without the need of an input device (e.g., touchpad or touch screen). It is right now not 
possible with this technique to match the hologram directly on the real liver - in fact 
the hologram is projected somewhere in the visual field of the user. A first study 
evaluated the use of the hololens regarding anatomical identification of liver lesions. 
Pelani et al[17] could show in an out-of-the-operation-room study including 28 
surgeons, that the correct identification of a simulated liver lesion could be performed 
in 6 s with the Hololens compared to 24 s using the 2D-CT scan of the liver. Saito et al
[18] described the intraoperative use of the hologram technique. Here the hologram 
was superimposed above the operative field. In the first patient with more than 20 
colorectal liver metastasis the 3D hologram of the liver was used to identify the liver 
lesions and to visualize the parenchyma dissection line. In the second case the 
hologram was used to facilitate the identification of a complex hilar anatomy in order 
to perform the glisonnean pedicel approach in a patient with an HCC. In this case 
multiple contributors of the surgical procedures have worn the hololens at the same 
time (Table 1).

AR AND MR IN LAPAROSCOPIC LIVER SURGERY
In laparoscopic surgery the real-world 3D appearance is transferred into a virtual 2D 
image on a screen. This leads to a loss of spatial orientation, which is a major 
challenge. Therefore, anatomical orientation is aggravated. With the use of 3D laparo-
scopic systems spatial orientation was reintroduced to minimally invasive surgery. 
This accelerated complex laparoscopic procedures and facilitated them[8,9]. AR and 
MR could provide precious additional information about the liver anatomy and 
localization of intrahepatic lesions on the virtual image. Image projection on the 
abdominal surface for trocar positioning and anatomical orientation was the first level 
of AR in laparoscopic liver surgery[19]. Volonté et al[19] described in a study with four 
patients the use of the projection technique: The 3D-modell was projected on the 
abdominal wall. This early version of AR was used to visualize the anatomy and to 
place the trocar ports for laparoscopic approaches. In a clinical study on 24 patients 
this AR image projection technique on the abdominal wall resulted in less deviation 
between the planned trocar position and the real trocar positions[20]. The next step of 
AR in minimally invasive surgery was similar to the use in open liver surgery: To 
place additional image information on the display. The surgeon could see the laparo-
scopic image and the reconstructed virtual 3D model at the same time on the same 
screen - but without image fusion[21]. This was followed by image fusion of the virtual 
3D model and the laparoscopic image of the liver. The registration and matching 
process of both to create AR is crucial. As in open surgery this relied on a manual 
registration by the surgeon. In a feasibility study Schneider et al[22] could show that 
semi-automatic registration of a superimposed 3D model was feasible in 16 out of 18 
patients. This facilitated and speeded the process up, but with lower precision 
compared to the standard manual registration algorithm. Kang et al[23] described an 
AR system in an in-vivo porcine model, which could superimpose the intraoperative 
laparoscopic ultrasound image on the real liver. Therefore they used a stereotactic 
navigation system and 3D laparoscopic imaging system. In 2015 one case of a trans-
thoracic minimally invasive liver resection guided by AR was described. Here the 
registration process and fusion of the virtual 3D model and the liver anatomy was 
performed by a specialized computer scientist to ensure accuracy by using visible 
landmarks on the liver surface corresponding to the virtual 3D model[24].

Robotic platforms for surgery have the potential to integrate multiple additional 
information into the operation field in the view of the surgeon. Right now, the 
integration of ultrasound and indocyanine green (ICG) imaging are standard features 
of robotic surgical platforms. Pessaux et al[25] described in 2015 three cases of a liver 
segmentectomy supported by superimposed 3D models of the liver. The registration 
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Table 1 Augmented and mixed reality in open liver surgery

Ref. No of procedures Technique Key outcomes

Onda et al[11], 
2013

2 liver resections Open stereo-scope, AR created on a passive -
polarizing 3D display

Open scope technique feasible, 10 hr pre-op image 
preparation, 1 h intraoperative setup, 1-2 min for 
registration process

Okamoto et al
[12],  2013

2 HPB procedures Video see-through display Position of virtual 3D model and organ image closely 
corresponded, registration error 5 mm 

Ntourakis et al
[13], 2016

3 patients  with 4 
disappeared CRLM

Open stereo-scope, AR created on video screen, 
registration performed by an additional 
computer technician

AR helped to detect disappeared all metastases, R0, 
planned security margin 1 cm, registration time within 
6 min

Tang et al, 2017
[14] 

1 patient AR created on a tablet pc as see-trough display Feasible, improved vision compared to video based AR 
system

Yasuda et al
[15], 2018 

7 patients including minor 
and major liver resections

Open scope technique combined with AR created 
on a tablet pc with infrared sensor 

Tablet pc method feasible, registration error 1-11 mm

Saito et al[18], 
2020

2 HPB procedures 3D hologram on head mounted display Feasible, orientation improved, multiple surgeons used 
the technique at the same time, hologram reduced task 
load

CRLM: Colorectal liver metastasis; HPB: Hepato-biliary; AR: Augmented reality; 3D: Three-dimensional; R0: R0 Resection.

and image fusion were again manually performed by a computer scientist with the 
help of an additional video mixer[15,25]. Automatic compensation of the laparoscopic 
motion during AR is another new feature: The location of the 3D model was adapted 
to the changed perspective of the laparoscope during the resection. In a series of 10 
patients this led to an accuracy of 5 mm between the virtual 3D model and the real 
anatomic position of the liver[26] (Table 2).

AR AND MR FOR 3D NAVIGATION
Preoperative use of a virtual 3D models for planning followed by intraoperative use 
via AR for orientation leads to the next level of image-guided liver surgery: Intraop-
erative navigation. A navigation systems should not only visualize the anatomy but 
also guide the surgeon through the resection and show correlated to the used surgical 
instruments the location of important anatomical structures, at best before they were 
visible.

Early versions of navigation systems from the 2000s years often based on intraop-
erative ultrasound. They were able to guide a needle for thermal ablation into liver 
lesions[27]. The combination of the ultrasound technique with 3D virtual 
reconstruction of the liver and stereotactic navigation systems, already known from 
neurosurgery, followed after that[28]. Beller et al[29] described the clinical use of a 
navigation system for open liver surgery. The system was based on optical electro-
magnetic tracking: Marker shields must be placed on the instruments, which were 
scanned by a camera system placed above the operative space The system used 3D 
virtual image reconstruction of the liver, matched the 3D image with intraoperative 
ultrasound and could show the position of the used instruments during liver 
parenchyma transaction on the virtual 3D image and the ultrasound image[29]. In this 
early study 32 navigated liver resection were compared to 32 conventional liver 
resections. The authors could show that in the navigation group the planned dissection 
line could be maintained with an accuracy of 5 mm. Also, the rate of R1-resection was 
significantly reduced in the navigation group[29]. The navigation technique was 
optimized during the following years[30]. Peterhans et al[10] developed a stereotactic 
navigation system for open liver surgery. This system superimposes the position of the 
instruments and the ultrasound image on the virtual 3D liver model on a secondary 
screen. The first clinical evaluation of this system was performed on 9 patients 
undergoing oncologic liver resection. The optimized workflow of the system resulted 
in short landmark definition and acquisition times of just one minute, which has made 
the navigation system ready to use in the operation theatre[10]. The largest cohort of 
patients that underwent liver resection supported by a 3D navigation system was 
published by the group from Bern/Switzerland with 65 patients over a period of four 
years. They combined 3D-navigated liver resection and 3D-navigated thermal ablation 
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Table 2 Augmented and mixed reality in minimally invasive liver surgery

Ref. No of procedures Technique Key outcomes

Volonté et al
[19], 2011

4 procedures Projection of the virtual 3D model on the body 
surface

Anatomical orientation and trocar placement improved

López-Mir et al
[20], 2013

12 procedures Projection of the virtual 3D model on the body 
surface

lower deviation between planned and actual trocar 
positions using AR

Pessaux et al
[25], 2015

2 robotic liver 
resections

Virtual 3D model superimposed on console display, 
registration performed manually by a computer 
scientist 

AR and registration process feasible, time to create AR 8 
min 

Schneider et al
[22], 2020

18 laparoscopic 
liver resections

Passive polarizing 3D laparoscope, optical tracking 
of the laparoscope, semi-automatic registration

semiautomatic registration an image fusion achieved in 
16/18 manual registration vs semiautomatic accuracy 11 
mm vs 14 mm

AR: Augmented reality, 3D: Three-dimensional.

in order to perform parenchyma sparing treatment instead of formal major anatomical 
liver resections. The technical accuracy, matching the virtual 3D model and the real 
liver, could be optimized to 4.5 mm deviation. They also described a new technique of 
landmark acquisition and registration: The landmarks on the liver surface were 
combined with intrahepatic vascular structures acquired by ultrasound[31].

In the following years the electro-magnetic navigation technique was transferred to 
minimally invasive liver surgery[28,32] and later also combined with AR. On the 
laparoscopic image of the real liver the 3D virtual model was superimposed and the 
surgical instruments were tracked and could be navigated in this AR environment
[33]. Thenceforth AR, MR and navigation techniques tread a parallel development 
path[13].

Spatial orientation is especially important in laparoscopic thermal ablation of liver 
lesions. Tinguely et al[34] showed in a cohort of 54 patients, which were treated with 
pure laparoscopic 3D navigated microwave ablations a registration accuracy of 8.1mm. 
Yet, the early local recurrence rate in this cohort was high with 32%. Thomas et al[35] 
described an optimized system for laparoscopic ultrasound navigated microwave 
ablation lately. With this navigation tool novices could achieve an accuracy and a 
speed in targeting defined liver lesion comparable to expert surgeons. In a cohort of 27 
patients Aoki et al[36] described the use of a laparoscopic navigation system with 
instrument tracking. This system displays the position of the instrument on the 
reconstructed 2D-CT image. As a result of the use of the navigation system a low 
median tumor margin (R0-Resection) of 9 mm could be achieved. The latest 
development combining AR and stereotactic 3D navigation in laparoscopic liver 
surgery was described by Prevost et al[26]. Their navigation system could create an AR 
overlay of the intrahepatic structures directly around the stereotactic tracked 
dissection instrument. Ten patients could be successfully operated with the system, 
showing a calibration time of 9 min for the navigation system with a registration error 
of 9.2 mm (Figures 1 and 2)[26]. Organ deformation may reduce the precision of the 
registration and navigation process during the surgical procedure. Updating the 
navigation information by intraoperative real-time CT image acquisition, using 
injected fiducials could further minimize the registration error and increase precision 
in a pre-clinical setting[37] (Table 3).

FLUORESCENCE GUIDED NAVIGATION TECHNOLOGY AND ROBOTIC 
PLATFORMS
During the last 10 years the use of real time-fluorescence technique with ICG has been 
established in open and laparoscopic liver surgery. By easy-to-see intraoperative green 
fluorescence it could facilitate evaluating the liver anatomy[38], visualize tumor 
lesions[39] and optimize segmental and subsegmental anatomical resections as well 
parenchyma dissection in major liver surgery[40,41]. Compared to the above 
mentioned navigation systems, ICG is more an intraoperative staining technique. It 
visualizes liver parenchyma or lesions directly through an optical system and 
“navigates” the surgeon during the operation. Fusion of real time-fluorescence 
imaging with pre-operative CT-or MRI-data combined with the intraoperative view to 
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Table 3 Augmented and mixed reality for 3D Navigation

Ref. Number of 
procedures Technique Key outcomes

Beller et al
[29], 2007

33 open liver 
resections

Stereotactic optical navigation system, combined with a virtual 3D 
model and ultrasound, dissection device tracked and navigated on 
ultrasound image

Navigation successful in 32/33 cases, 
difference between projected and actual 
vascular dissection lever 6mm, R0 resection 
in 30 cases 

Peterhans et 
al[10], 2011

9 open liver resections Stereotactic navigation system, combined with a virtual 3D model 
and ultrasound, landmark acquisition on the liver surface, 
dissection device tracked and navigated on the virtual 3D model

Navigation successful in all cases, median 
accuracy 6.3 mm

Banz et al
[32], 2016

65 open liver 
resections

Stereotactic optical navigation system, combined with a virtual 3D 
model and ultrasound, dissection device tracked and navigated on 
the virtual 3D model, landmark acquisition with ultrasound 
possible

Combination of 3 d navigated resection and 
thermal ablation in 16 patients, accuracy 
optimized to 4.5 ± 3.6 mm 

Tinguely et al
[35], 2017

54 laparoscopic image 
guided microwave 
ablation

Laparoscopic stereotactic navigation system, combined with a 
virtual 3D model, landmark acquisition on the liver surface, ablation 
device tracked and navigated on the virtual 3D model, standard 2D 
laparoscopic display

Registration time 4:38 min, accuracy 8.1 ± 
2.8 mm, early local recurrence rate 32%

Aoki et al
[37], 2021

27 laparoscopic  liver 
lesions

virtual real-time CT-guided volume navigation, electromagnetic 
tracking of the surgical instruments displayedon the preoperatively 
acquired CT images

Registration time < 2 min, registration error 
12 mm, histologic resection margin 9 mm

Prevost et al
[26], 2020

10 laparoscopic liver 
resections

stereotactic augmented reality navigation, virtual 3D liver model 
superimposed on the real liver with a 3D laparoscopic system, 
instruments tracked

Registration time 8:50 min, registration 
error 9.2 mm, facilitates to find disappeared 
liver lesions

AR: Augmented reality; 3D: Three-dimensional.

Figure 1 shows the use of augmented reality during laparoscopic liver resection using a 3D passive polarizing display technique. The 
complete virtual three-dimensional model of the liver is visible on a second screen (right picture). On the main screen augmented reality is created (left picture). 
Citation: Prevost GA, Eigl B, Paolucci I, Rudolph T, Peterhans M, Weber S, Beldi G, Candinas D, Lachenmayer A, Efficiency, Accuracy and Clinical Applicability of a 
New Image-Guided Surgery System in 3D Laparoscopic Liver Surgery. J Gastrointest Surg 2020; 24(10): 2251-2258, Copyright © The Author(s) 2020, Published by 
Springer Nature[26].

create AR would be a further step in navigation technique. Here robotic surgical 
platforms may become a game-changer, because they create a 3D minimally invasive 
surgical environment with real-time fluorescence and ultrasound imaging in one 
display. Adding a virtual 3D model of the liver from preoperative image data, intraop-
erative navigation could lead to the next level of immersion.

AI
Deformation of the liver tissue is still a major issue for precise registration and the 
substantial use of navigation and image superimposition during surgery. Convolu-
tional neural networks are able to learn soft tissue behavior, which could be 
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Figure 2 Directly on the laparoscopic three-dimensional image of the liver there is only that part of the virtual three-dimensional model 
superimposed on an area, which is relevant for the parenchyma dissection during that phase of the operation. At the area, where the lesion is 
located and the parenchyma dissection will be performed, the virtual three-dimensional model is matched around the tracked/navigated dissection tool. Citation: 
Prevost GA, Eigl B, Paolucci I, Rudolph T, Peterhans M, Weber S, Beldi G, Candinas D, Lachenmayer A, Efficiency, Accuracy and Clinical Applicability of a New 
Image-Guided Surgery System in 3D Laparoscopic Liver Surgery. J Gastrointest Surg 2020, 24(10), 2251-2258, Copyright © The Author(s) 2020, Published by 
Springer Nature[26].

transferred to surgical navigation[42]. Elastic surface based-matching registration 
algorithms may reduce registration errors[43]. Unfortunately up to now there is no 
clinical intraoperative use of AI in liver surgery. Aspects of machine learning are 
integrated in the AR/MR and navigation systems. But automated registration and 
recognition of anatomical structures of the liver is not available for clinical use up to 
now.

DISCUSSION
Due to the invisibility of intrahepatic vascular anatomy during surgery and the high 
variability, preoperative analyzes of the anatomy and planning of the resection is 
essential in liver surgery. Therefore, there is a high need for image guidance in hepato-
biliary surgery. The use of preoperative 3D virtual reconstruction image techniques 
have evidence-based optimized the outcome after major liver surgery[1]. The next step 
of using image guidance was to transfer the 3D image of the liver into the operation 
theater. The feasibility of AR, MR and intraoperative 3D-navigation has been proven 
up to now, but the majority of the systems are still in an experimental status. The 
scenario for clinical use-cases in hepato-biliary surgery is not clearly defined up to 
now. It is still not clear under which circumstances the use of intraoperative AR and 
MR or navigation leads to a benefit - for the surgeon to facilitate the operative 
procedure or for the patient to optimize his outcome?

Minimized safety margins, increased R0-rates, increased number of potential 
treatable lesion, minimized blood loss, shorter operation time, “visualization” of 
disappeared liver metastasis, precise sub-segmental anatomical resections, flattened 
learning curve of complex procedures could be theoretically optimized by the usage of 
intraoperative AR, MR and 3D navigation in hepato-biliary surgery.

These factors should be evaluated systematically and addressed clearly with high-
quality studies, which have not been conducted up to now.

Another important issue is the usability of the virtual 3D technique. The intraop-
erative use of AR/MR and 3D-navigation changes the workflow during liver resection. 
It is important that the surgeon feels comfortable with the system and is not limited by 
the technique, so a high grade of usability is mandatory. This is still a major drawback 
of the available systems: Additional secondary screens are needed (displays, tablet pc 
or head-mounted display), secondary cameras above the operative field, marker 
shields have to be placed on the instruments, registration and calibration must be 
performed manually and the technique in general is often limited to certain anatomic 
areas of the liver. Systematic data about the usability is still missing in scientific 
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literature. The low grade of usability and the high cost of image guidance systems 
(200000 euro to 600000 euro for infrastructure plus additional running costs) limit the 
further development right now. Thinking about navigation the image of driving a car 
comes into our mind: A navigation system should tell us where to go, show us the 
shortest and easiest way to our goal - and where and when the driver should be 
careful. AR/MR and 3D-navigation in liver surgery have not reached this level of 
immersion right now. If this is really necessary during surgical procedures could be 
discussed. It could be enough to support the surgeon with some additional 
information during cardinal steps of a procedure. AI support is up to now not 
available in hepato-biliary surgery in the operating theater. Many procedures while 
using AR and 3D-navigation could be facilitated with AI in the future. Especially the 
problem of soft tissue deformation, which is omnipresent in liver surgery, could be 
approached by AI techniques.

CONCLUSION
Although there are still many challenges, AR, MR, 3D-navigation and AI are emerging 
fields in hepato-biliary surgery. The benefit of these sophisticated computerized image 
guidance techniques should be measured by its impact on clinically relevant outcome 
parameters in the future. As shown by the huge effort that was made by hepato-biliary 
surgeons in the past in this field, these techniques will be further developed over the 
next years.
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Abstract
The microbiome has been identified as a causing factor for many cancers. Helico-
bacter pylori contributes to the development of gastric cancer (GC) and impacts 
disease treatments. The rapid development of sequencing technology is 
increasingly producing large-scale and complex big data. However, there are 
many obstacles in the analysis of these data by humans, which limit clinicians 
from making rapid decisions. Recently, the emergence of artificial intelligence 
(AI), including machine learning and deep learning, has greatly assisted clinicians 
in processing and interpreting large microbiome data. This paper reviews the 
application of AI in the study of the microbiome and discusses its potential in the 
diagnosis and therapy of GC. We also exemplify strategies for implementing 
microbiome-based precision medicines for patients with GC.
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Core Tip: Artificial intelligence (AI) helps us understand the role of the microbiome in 
gastric cancer (GC) and further promote the development precision medicine. AI can 
be applied in the following three aspects: (1) AI improves the diagnostic accuracy for 
GC based on big data and gastric microbiome; (2) AI aids pathologists to diagnose 
gastric biopsies rapidly by sensitively detecting low abundance microbes; and (3) AI 
regulates individual’s dietary intake by giving new insight into host-microbiome 
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INTRODUCTION
Gastric cancer (GC, also known as stomach cancer) is the second leading cause of 
cancer-related mortality globally, with over 70000 new cases diagnosed every year[1]. 
The 5-year survival rate of GC is lower than 15%, even in the United States[2]. 
According to Lauren's criteria, GC can be classified into two main types: Diffuse and 
intestinal. The diffuse type usually appears in younger patients and tends to be more 
aggressive, whereas the intestinal type is usually found in older patients and is caused 
by chronic infection with Helicobacter pylori (H. pylori)[3]. The microbiota in the 
stomach is extremely rich and complex[4]. DNA sequencing and computational 
methods are making astounding advances in the identification of conserved ribosomal 
RNA (rRNA) genes for pathogenic microorganisms. More than 100 phylotypes have 
been uncovered in humans, and the majority of gastric microbiota falls within five 
phyla, including Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria, and Fusobacteria. 
H. pylori belongs to Proteobacteria. H. pylori infection triggers multistep progression 
from chronic gastritis, atrophic gastritis, and intestinal metaplasia to carcinoma finally. 
However, the issue of how the gastric microbiota interplays with H. pylori (namely, 
does the gastric microbiota lead to a more virulent H. pylori or, vice versa, does H. pylori 
facilitate the carcinogenesis of the microbiota?) is still not clear. This might have 
implications for clinical management.

Artificial intelligence (AI) is the simulation of human intelligence processes by 
computers and has been applied in various fields, such as image processing and 
natural language processing. AI is playing an increasingly important role in 
healthcare. It has been demonstrated that AI algorithms can support humans in 
simplifying the multidimensional, complex metagenomic data of gene profiling and 
elucidating the peculiar signatures of beneficial microbes in the gastrointestinal tract
[5]. As a core branch of AI, machine learning (ML) focuses on building mathematical 
models that help machines make predictions or decisions without being explicitly 
programmed. In the field of ML, deep learning (DL) has become the dominant 
approach for ongoing work with big data. DL, a subset of ML, is inspired by the 
information processing system discovered in the human brain. DL uses numerous 
layers of algorithms (artificial neural networks) to extract higher-level features from 
raw input. Briefly, ML is a core branch of AI, and DL is performed to implement ML. 
ML and DL have been successfully used to predict the risk of GC[6].

AI MAKES ACCURATE PREDICTIONS WITH BIG DATA AND THE 
GASTRIC MICROBIOME
Gastroenterology is a eld where AI can make a signicant difference. Traditional 
diagnostic methods have insufficient resolution ability to estimate the invasion depth 
of early GC in the clinic. Thus, over one-third of advanced GC cases with lesions 
around the cardia are not easily detected by image-based methods[7]. However, AI-
assisted image analysis using endoscopic detection can make more accurate 
assessments and provide more details than conventional analysis[8]. There are still 
two main limitations in AI-assisted image analysis. First, there are relatively few data 
serving as learning and testing materials for building DL models. Second, the 
diagnostic accuracy is greatly affected when low-resolution images, which 
endoscopists usually encounter in clinical practice, are input. The above two points 
may cause certain defects in medical decisions based on image analysis. Remarkably, 
the combination of AI and the microbiome shows great potential in precision medicine 
for GC.

https://www.wjgnet.com/2644-3236/full/v2/i4/105.htm
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High-throughput sequencing is becoming a common technology for typing 
microbial isolates, especially in clinical samples. Many gene mutations, transcriptional 
differences, translational differences, epigenetic variations, and metabolic changes 
have been identified as being associated with the heterogeneity and stage of GC. High-
throughput sequencing generates massive microbial data. A deep understanding of 
microbial data is helpful to explain the relationship between microbes and diseases[9]. 
Virulence among H. pylori strains and host genetic polymorphisms contribute to GC 
susceptibility. AI algorithms effectively improve our understanding of the gastric 
microbiota due to two major advantages. First, AI methods can be applied to extract 
microbial genomic DNA from sequencing samples. Second, AI methods can simultan-
eously examine all genes in all organisms contained in a sample. Combined with other 
parameters, such as food habits, duration of infection, and physical activity, AI 
algorithms can provide better health advice to GC patients. A recent study has started 
to explore the ability of DL to treat diseases related to gut dysbiosis based on the 
individual’s microbiome pattern[10]. In the future, researchers can develop AI 
algorithms to regulate the individual’s dietary intake and plan their meals when we 
fully understand the microbiome differences between people with and without disease 
(Figure 1).

AI IDENTIFIES LOW ABUNDANCE MICROBES USING SEQUENCING 
DATA
Studying the microbiome composition of primary samples provides a chance to 
understand the role of pathogenic microorganisms in disease development. In the late 
2000s, two large-scale international human microbiome projects (HMPs), Metage-
nomics of the Human Intestinal Tract[11] and the HMP[12], were initiated to study 
microorganisms in the human body and to develop computational methods that 
analyze sequenced metagenomes. However, it seems challenging due to the low 
number of microbial DNA relative to the host DNA. Accurate identification of the 
microbiome requires the removal of all possible sequencing reads that originate from 
human DNA. Bacterial identification was commonly completed by characterization of 
uniform genomic coverage[13]. For example, the sequence identity of 16S rRNA gene 
fragments greater than 97% can be classified into separate operational taxonomic units 
(OTUs), which means the phylogenetic boundaries of different bacterial species[14]. 
Bacterial identification can also be completed based on coverage along a narrow region 
of their genomes. For example, analysis of amplicon sequence variants improves the 
sensitivity and specificity and decreases the problem of inflated microbiota datasets 
due to falsely identified OTUs originating from misclustered sequences[15]. Recently, 
Lupolova et al[16] found that ML algorithms made a good attribution of the host 
sources of S. enterica serovar Typhimurium isolates[16]. The combination of 16S rRNA 
gene sequencing data and AI algorithms may reveal the essential role of low-
abundance bacteria in the alteration of the gut microbiota composition.

It is challenging to quantify and characterize microbiome profiling in samples 
where the bacterial content is relatively low. The microbial community in the stomach 
is typically restricted by the lower luminal pH, which selects for acid-resistant 
bacterial populations and usually limits the colonization densities to < 1000 colony-
forming units per gram (CFU/g)[17]. The current approach for detecting the bacteria 
of fecal or environmental samples cannot be directly used to analyze the microbiome 
from the upper gastrointestinal tract, such as the stomach. This is partly because the 
high amount of human DNA in the samples confounds microbial identification. Klein 
et al[18] designed a DL algorithm that can be used to detect H. pylori on regular whole 
slide images of gastric biopsies, achieving a sensitivity of 100%[18]. Detecting the low 
abundance bacteria without sample processing facilitates the establishment of a rapid 
diagnostic method. Recently, we designed magnetic nanoparticles with a broad range 
of capture potentials via electrostatic attractions[19]. This system can rapidly and 
efficiently capture bacteria at a low concentration of 10 CFU/mL within 1 h. The 
capture efficiency was more than 90%. It can be used to evaluate the microbiome 
profile of gastric biopsies in future studies.

AI UNCOVERS HOST-MICROBIOME INTERACTIONS
A comparative study of GC and chronic gastritis using an approach targeting the 16S 
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Figure 1 Introducing artificial intelligence and microbiome study to precision medicine for gastric cancer. The sequencing profiles of individual 
patient microbiomes are analyzed by artificial intelligence (AI), which helps patients to be classified into sub-groups. At the molecular level, AI reveals the molecular 
mechanisms of microbe-host interactions. At the individual level, AI allows gastric cancer patients to be treated with effective drugs, such as supplementing 
commensal bacteria, engineered bacteria, and microbiome-targeted drugs.

rRNA gene of mucosal biopsies showed that bacterial diversity was decreased in GC 
patients[20]. Patients with GC had a large number of non-Helicobacter Proteobacteria. 
Colonization with bacteria other than H. pylori breaks the balance between the resident 
gastric microbiota and the host, which may increase the risk for H. pylori-related 
cancer. Another study evaluated the microbiota composition in normal, peritumoral, 
and tumoral tissues by 16S rRNA gene profiling and found that microbial diversity 
was significantly reduced in peritumoral and tumoral microhabitats[21]. H. pylori, 
Prevotella copri, and Bacteroides uniformis were relatively less abundant in the tumoral 
microhabitat, whereas Prevotella melaninogenica, Streptococcus anginosus, and Propioni-
bacterium acnes were more abundant. The authors proposed the hypothesis that chronic 
atrophic gastritis with atrophy (the acidity of the microenvironment of the stomach is 
reduced) was attributed to H. pylori substitution by a cancer-prone microbiota[22]. 
Additionally, the same research team found a close relationship between the subtype 
of immune cells (regulatory T cells and plasmacytoid dendritic cells) and gastric 
microbiota dysbiosis within the tumor microenvironment. It is already known that H. 
pylori infection functions in the development of precancerous lesions, such as chronic 
gastritis. Nevertheless, the dramatic changes in the composition of the stomach 
microbiome play a more direct role in the later stages of cancer. Moreover, the 
microbiome affects the therapeutic response of GC patients, and the treatment also 
impacts microbial composition. Distal gastrectomy impacts postoperative gut 
microbiota composition, leading to higher abundances of Escherichia, Shigella, 
Veillonella, and Clostridium XVIII and a lower abundance of Bacteroides[23]. Immune 
checkpoint inhibitors targeting programmed cell death 1 (PD-1)/programmed cell 
death ligand 1 were recently added to the therapeutic arsenal for GC. The microbiome 
composition interferes with the response to these inhibitors. A recent study reported 
that nonresponders to PD-1 blockade immunotherapy can be distinguished from 
responders according to the ratio of putatively favorable to unfavorable bacteria[24]. 
Thus, the role of the microbiome in cancer-immune interactions is gaining much 
attention. When we learn more about host-microbiome interactions, nonresponders to 
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checkpoint inhibitors are easier to select and treat by personalized immunotherapy.
Due to the practical limitations of analysis methods, there are still large gaps on how 

the microbiome mechanically affects host function at the system and community 
levels. Notably, the past few decades has seen significant work on AI in filling these 
existing gaps. AI algorithms can co-analyze heterogeneous datasets and capture 
changes at the microbial and host levels. These methods can be classified into four 
types: Interfering protein-protein interactions, interfering RNA-mediated interactions, 
interfering microbe-host metabolic networks, and integrating multiple interspecies and 
intraspecies networks and omic datasets[25]. The powerful multiomics tools and 
rapidly developed AI algorithms can greatly enhance or perhaps revolutionize 
microbiome research. This collaboration provides hopeful expectations to improve our 
current understanding of GC mechanisms, as well as better detection and treatment.

CONCLUSION
We live in a world surrounded by data and microbes. The gastric microbiome occupies 
an important position in maintaining the individual’s health. A large quantity of 
complex sequencing data are generated by high-throughput technologies. However, 
inherent challenges still exist in data processing, including confounding variables from 
abundant organisms, the integration of different omics data, and the relationships 
between microbes and their hosts. Currently, big data are easier than ever to analyze 
due to the assistance of AI technologies. AI is evolving as an important tool for the 
proposal of new biological hypotheses and the discovery of biomarkers from the 
available data. In the future, the renewal of the stomach of dysbiosis patients may be 
achieved by synthetic biology and food engineering based on our understanding of the 
microbiome and the performance of AI.
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Abstract
It is estimated in Western industrialized countries that inflammatory bowel 
disease (IBD) has a prevalence of 1 for every 200 inhabitants. In the past, the fat 
mass disproportionate increase in relation to the fat-free mass was considered 
uncommon in patients with IBD, due to the observation of the disease being more 
common with weight loss and malnutrition. However, more in-depth investig-
ations demonstrate that the fat/lean mass disproportion stands out both in 
prevalence in patients with new diagnoses of ulcerative colitis or Crohn's disease 
as well as a factor of poor prognosis to the natural evolution of the disease or to 
the therapeutic response. Another important aspect associated with obesity in IBD 
is the increased risk of drug clearance [including anti-tumor necrosis factor (TNF) 
and anti-integrin agents], resulting in short half-life and low trough drug concen-
trations, since the levels of TNF secreted by adipocytes sequester anti-TNF agents, 
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which could result in suboptimal response to biologics. In view of these charac-
teristic aspects of the inflammatory process of IBD, the identification of cellular 
functioning is necessary, which can be associated with the staging of the 
underlying disease, biochemical parameters, and body composition, helping as an 
indicator for a more accurate clinical and nutritional conduct.

Key Words: Inflammatory bowel disease; Crohn's disease; Ulcerative colitis; Phase angle; 
Cellularity; Bioelectrical impedance
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Core Tip: Inflammatory bowel disease (IBD) patients have a severe inflammatory 
process that negatively reflects their absorption of vitamins and minerals, resulting in 
poor nutritional status. Even though it has already been described that these patients 
need a greater supply of calories and proteins, how will we know if the cells of this 
patient will be able to metabolize and absorb these nutrients to avoid worsening their 
nutritional status by overfeeding? Having a tool that serves as a guide for cellular 
functionality and integrity, such as the phase angle through electrical bioimpedance, is 
of great relevance in the clinical and nutritional management of patients with IBD.

Citation: Fernandes SA, Rossoni C, Koch VW, Imbrizi M, Evangelista-Poderoso R, Pinto LP, 
Magro DO. Phase angle through electrical bioimpedance as a predictor of cellularity in 
inflammatory bowel disease. Artif Intell Gastroenterol 2021; 2(4): 111-123
URL: https://www.wjgnet.com/2644-3236/full/v2/i4/111.htm
DOI: https://dx.doi.org/10.35712/aig.v2.i4.111

INTRODUCTION
Inflammatory bowel diseases (IBD) are systemic diseases that affect the gastro-
intestinal tract and can be subdivided into ulcerative colitis (UC) and Crohn’s disease 
(CD)[1,2]. UC is characterized by an inflammatory process of the mucosa, which 
originates in the rectum and can progress continuously to the other segments of the 
colon, and CD can directly affect the gastrointestinal tract in all its extension, 
continuous or discontinuous form (more prevalent), presenting a transmural inflam-
matory process and being characterized by abscesses or fistula formations between 
bowel loops or between intestines and other organs[1]. This persistent inflammatory 
process contributes significantly to the impairment of the patient nutritional status and 
consequently the clinical condition of malnutrition. What draws a lot of attention is 
that malnutrition in patients with IBD is in patients with IBD is more prevalent when 
compared with patients without IBD[3]. The volume loss and/or muscle functionality 
and/or physical performance is a key marker of malnutrition and/or sarcopenia, in 
addition the disproportionate relationship between fat mass and lean mass is 
considered a factor of poor prognosis of the disease or for the therapeutic response[4].

Important tools recommended for assessing nutritional status are software-based 
anthropometric analyzes, such as bioelectrical impedance analysis (BIA), computed 
tomography (CT), and dual X-ray absorptiometry (DEXA)[5]. However, the easiest 
method and access to clinical practice ends up being bioimpedance, but it is not 
indicated in cases of changes in body composition (BC), such as changes in body 
fluids. On the other hand, the BIA not only provides the composition distribution 
within the classic model of compartmentalization of the human body, that is, fat mass 
and lean mass, but also provides a parameter called phase angle (PA), which through 
a mathematical formula, using the values of resistance and reactance, being these 
parameters of evaluation of the vitality and the integrality of the cell. Values above 6 
indicate preserved cellular activity[6], in addition to being currently considered an 
important predictor of morbidity and mortality, taking into account inflammatory 
processes and nutritional status[4,7-9].
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RELATED ASPECTS OF IBD WITH PA
IBD
These diseases had their first phase of acceleration of incidence in the middle of the 
19th century, a period in line with a change in life habits brought about by the 
Industrial Revolution. Subsequently, a new period of increased incidence occurred in 
the new industrialized countries, in the mid-20th century. Since the 2000s, it has been 
estimated that in Western industrialized countries, IBDs have a prevalence of 1 for 
every 200 inhabitants[10,11].

CD can directly affect the gastrointestinal tract in all its extension, and it is 
traditionally subdivided into phenotypes considering: (1) Non-penetrating, non-
stenosing inflammatory involvement; (2) Stenosing involvement, resulting from 
fibrosis; and (3) Penetrating disease, characterized by abscesses or fistula formations 
between bowel loops or intestines and other organs. The disease occurs in cycles of 
inflammatory outbreaks and may cause the progression of its structural data[1].

UC occurs through the inflammatory affection of the mucosa, starting in the rectum, 
being able to progress continuously to the other segments of the colon. As in CD, the 
exact pathogenesis of the disease is not completely clarified, but four factors are 
related: Genetic susceptibility, intestinal microbial flora, uncontrolled immune 
response, and external environmental factors[2].

There are several environmental factors related both to the genesis of the disease 
and to the exacerbation of the inflammatory condition, among them smoking, low 
consumption of vitamin D, use of non-steroidal anti-inflammatory drugs, use of 
antibiotics, depression and psychosocial stress, low dietary fiber consumption, and 
high dietary consumption of fats and proteins[1,10].

Eating habits have been changing over time and may have been a crucial factor in 
the higher prevalence of IBD in Europe and North America. The dynamic changes in 
the diet of industrialized countries may be related to the increased incidence of IBD in 
these countries. It is worth remembering that when highlighting the diet in the 
pathogenesis of these diseases, the interaction between diet, microbiome, and mucosal 
barrier integrity must be emphasized, which are interconnected factors. The 
breakdown of hemostasis between such components can increase the chances of 
developing the disease or controlling the disease in those patients already diagnosed
[12].

In 1988, Sonnenberg[13] published his pioneering study associating increased 
consumption of sugar and margarine with the highest incidence of CD in Europe. 
Since then, several other studies have corroborated that the high-fat diet is a risk factor 
for the development of IBD as well as for the disease control. It is important to 
highlight the differences between the types of fat and their impact on disease: The pro-
inflammatory potential of ω-6 polyunsaturated essential fatty acids, the association 
between long-chain triglycerides, and the stimulation of the proliferation of intestinal 
lymphocytes as well as the pro-inflammatory mediators and the action of the high-fat 
diet capable of reducing intestinal permeability and increasing serum levels of 
endotoxins[14].

In the past, the disproportionate increase in fat mass in relation to the fat-free mass 
(FFM) was considered uncommon in patients with IBD, due to the observation of the 
disease being more common with weight loss and malnutrition. However, more in-
depth investigations demonstrate that the fat/lean mass disproportion stands out both 
in prevalence in patients with new diagnoses of UC or CD, as well as a factor of poor 
prognosis to the natural evolution of the disease or to the therapeutic response[15].

It is important to highlight the pathogenic mechanism of IBD, as its aggression 
process significantly compromises the proper cellular functioning and, consequently, 
the individual's homeostasis.

The pathogenesis of IBD-CD and UC-remains unclear. We know that intestinal 
inflammation results from a dysregulation of the immune system in response to 
changes in the commensal intestinal microbiota (non-pathogenic). Genetic studies 
have shown that interactions between microbiota and host have a prominent role in 
the pathogenesis of IBD and involve genomic regions that regulate defense against 
microorganisms and intestinal inflammation[16].

Among the genetic findings, some of the most cited are involving nucleotide 
oligomerization domain 2, autophagy genes, and components of the interleukin route 
23 - helper T cell 17 (IL23/Th17), which regulate intestinal immune mechanisms[17].

The gut microbiota, in its role of modulating the intestinal inflammatory response, 
when altered by environmental factors such as diet, obesity, exposure to helminths, 
and the use of antibiotics, can lead to an increased risk of developing IBD. In patients 
with IBD, changes in the diversity and density of bacteria (and even viruses and 
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fungi), and in the functions of the bacteria present (oxidative stress, nutritional 
regulation) have been described[18-20]. It is still unclear what exactly are the microor-
ganisms involved, but recent studies show the importance of the phyla Firmicutes and 
Proteobacteria in the pathogenesis of IBD[19].

Other environmental factors such as geography (higher incidence in industrialized 
countries), diet high in fat and sugar and poor in fruits and vegetables, smoking, 
psychological stress, appendectomy, and medications also alter the risk for IBD[21].

Immune dysregulation in IBDs is characterized by epithelial damage (abnormal 
mucus production and inadequate cell repair), inflammatory increase via microbiota, 
and cell infiltration in the lamina propria, including T cells, B cells, macrophages, 
dendritic cells, and neutrophils, causing a failure immune regulation in the face of the 
inflammatory process. The cells activated in the lamina propria produce high levels of 
pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1-β, 
interferon-gamma, and IL23/Th17[21].

The immune system is divided into innate immunity and adaptive immunity. 
Innate immunity includes the function of the epithelial barrier of the intestinal mucosa, 
antibacterial proteins, pH of the stomach limiting microbial growth, innate immunity 
cells such as neutrophils, macrophages, dendritic cells, and natural killer T cells, in 
addition to cytokines and innate molecules (IL-1, TNF, denfensins). Adaptive 
immunity is pathogen-specific and usually initiated in circumstances in which innate 
immunity is not effective in isolation from the pathogen's aggression. After exposure 
to the pathogen, it usually takes several days to activate finally the adaptive immune 
response, including T and B cells. The microbiome's immune response is regulated in 
response to the aggressor's action, and it is this regulation that determines the immune 
protection of the microbiota or exacerbated inflammatory response with significant 
cellular damage. This regulatory compromise of immune action causes IBD[21].

By understanding the inflammatory routes involved in IBD, we can analyze some of 
the most used drugs for its treatment. The first to be used were corticosteroids, which 
manage to induce remission in most cases but have important adverse effects in the 
long term[22], not being indicated for the period of maintenance and control of the 
disease. Drugs such as azathioprine and methotrexate are also indicated for their 
immunosuppressive effects, including in combination with anti-TNF drugs[23-26]. 
Anti-TNF (infliximab, adalimumab, certolizumab), anti-interleukin 12/23 (uste-
kinumab), and anti-integrin (vedolizumab) present more complex actions on immuno-
logical routes according to their degree of cell selectivity, which is directly related to 
the profile medication safety[26-29].

As previously stated, the inflammatory process of IBD and the effective immune 
response to this inflammation have a direct connection with the patient's food intake 
as well as his nutritional status[21].

Nutritional status in IBD
Patients with UC and CD may be affected by malnutrition (6% and 22%)[3,30,31], but 
the prevalence is greater in CD, given its capacity to affect one or more parts of the 
gastrointestinal tract, reducing the absorption of macro and micronutrients[4]. Lack of 
treatment response, fistulizing and stenotic phenotypes, and previous bowel resections 
in CD are typical aspects of patients with higher risk of malnutrition[30].

Malnutrition in IBD is five times higher when compared with non-IBD patients[3]. 
According to the European Crohn's and Colitis Organization, IBD subjects should be 
routinely screened for malnutrition. Body mass index (BMI) and involuntary weight 
change should be assessed[30].

There are significant differences in nutritional status in IBD. CD patients remain 
malnourished for longer periods, with higher protein-energy malnutrition[5] and 
impaired absorption of micronutrients. On the other hand, UC patients have more 
protein-energy malnutrition during disease activity or hospitalization[30,32-34].

Symptoms that cause weight loss with depletion of body fat deposit, muscle mass, 
and fluid loss are diarrhea, high-output fistulas, decreased appetite, and restrictive 
diets often imposed in structuring disease during a flare[3,4,30,34]. Patients with active 
disease commonly have nausea, vomiting, abdominal pain, anorexia due to inflam-
mation, and medication6. Inflammatory response mediated by pro-inflammatory 
cytokines such as TNF and IL-1 and 6, increasing energy expenditure, and anorex-
igenic hormones contribute to undernutrition[7]. Active inflammation leads to chronic 
anemia and protein loss within the intestinal lumen[34].

Chronic bowel inflammation or intestinal surgery may accelerate the intestinal 
transit resulting in increased stool volume and diarrhea, as well as the loss of epithelial 
integrity and small intestine bacterial overgrowth. Increased motility can cause 
malabsorption, altered BC, and micronutrient deficiencies[6,9]. CD patients with ileal 
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involvement frequently have reduced nutrient absorption, mainly vitamins C, B12, D, 
K, folate, and magnesium[30,33].

Micronutrient deficiency in IBD is often associated with disease complications2,4 as 
well as the use of certain medications. Glucocorticoids can reduce calcium, zinc, 
vitamin D, and phosphorus contributing to osteoporosis. Methotrexate and sulfas-
alazine therapies, used for long periods, might impair the absorption of folic acid 
causing anemia[32,34].

Malnutrition in patients with IBD should be treated adequately because it worsens 
prognosis, increases complication rates and mortality, and decreases quality of life[4]. 
Micronutrient deficiency should be corrected and is best achieved by a multidiscip-
linary team[2]. There is low staff awareness on the role of nutrition in patient care, and 
this can be the main barrier for nutrition recognition and optimization[30,35].

While in Europe and Asia CD patients usually gave have a lower BMI ≤ 18.5 kg/m2, 
in the United States, obesity (BMI ≥ 30.0 kg/m2) is more common in IBD patients, 
probably associated with local dietary habits[30]. The prevalence of obesity in IBD is 
15%-40%, and an additional 20%-40% are overweight[31,36]. An important feature in 
obese patients with CD is the loss of lean mass4 and sarcopenia (low muscle strength 
combined with low muscle mass or quality)[30,33,34].

Disproportional accumulation of visceral fat (VF) can be observed in CD patients[34,
37,38] regardless of nutritional status and may be associated with the maintenance of 
disease activity due to an overexpression of pro-inflammatory adipokines[31] and 
increased levels of lipopolysaccharides (LPS). Serum levels of LPS were correlated 
with the severity of the disease and were observed an increase 6-fold and 2-fold in 
activity CD and remission CD, respectively, when compared to controls[39].

The ratio of VF/BMI (expressed in grams of fat per BMI) was increased both in 
malnourished and obese CD patients when compared to controls, indicating the 
possible presence of an adiposopathy by a higher VF tissue volume[30]. The degree of 
VF may be caused by several factors, including corticosteroid use, prior abdominal 
surgery, structuring disease or penetrating complications, and CD activity[40].

Another important aspect associated with obesity in IBD is the increased risk of 
drug clearance (including anti-TNF and anti-integrin agents), resulting in short half-
life and low trough drug concentrations since the levels of TNF secreted by adipocytes 
sequester anti-TNF agents, which could result in suboptimal response to biologics[7,
36].

The risk of complications, hospitalizations, and infections might be increased in 
obese patients with IBD, and nutritional therapy for obesity could be a potential 
adjunct therapeutic target in patients with IBD[36,37].

The type and distribution of abdominal fat were associated with complicated 
disease in patients with IBD[41]. The use of corticosteroids increases body fat and 
decreases lean mass. Loss of muscle mass can occur during IBD and has been 
associated with increased morbidity and risk of infectious complications[42].

A systematic review demonstrated that approximately one-third of CD patients 
have altered BC, with reduced BMI, FFM, and fatty mass when compared with 
controls, despite only 5% being underweight by BMI criteria[7]. Taken alone, BMI is 
inaccurate for assessing BC[8]. CD patients have lower lean mass when compared to 
UC. Body fat decreases with increasing disease severity and FFM decreases with 
longer duration of the disease in both CD and UC[43].

Muscle loss is a key marker of malnutrition or sarcopenia, although the ability to 
monitor accurately lean tissue in clinical is limited7. Important recommended tools to 
evaluate the nutritional status are software-based analysis anthropometries such as 
BIA, CT, and DEXA[5].

ELECTRICAL BIA
The compartmentalization of the human body, not only in the classic model usually 
used in clinical practice, in which it is evaluated only the BC in fat mass and FFM, but 
also the cellular analysis as proposed by Ellis[44], has been applied studied.

BIA provides us with data on the evaluated substrate in relation to its physical 
dimensions or changes in its conductive properties, where these properties may 
change due to changes in electrochemical processes, temperature, pH, hydration 
status, and viscosity of the fluid or biological tissue analyzed. With this information, it 
is feasible to monitor possible physiological changes in different living beings[45].

In different disease situations, the evaluation of the composition of the cellular 
structure and whether it has functioned has shown very important indexes in the 
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patient's prognosis, becoming an independent factor of mortality[46,47]
Compared to other methods of assessing BC with independent measurement by the 

observer, the BIA method is characterized by making a quick, non-invasive, low-cost, 
and portable measurement without presenting any risk to the patient[48]. Its electrical 
current is imperceptible, as it has a low amplitude (800 µA) and a high frequency (50 
kHz), enough to generate resistance to non-energy-conducting tissues and at the same 
time evaluate cell viability. In this body evaluation, there are two parameters of great 
importance: Body resistance (R) and reactance (Xc). R is the opposition offered by the 
body to the passage of electrical current, being inversely related to water and 
electrolytes contained in body tissues. Xc is the capacitance (viability) of the cell 
membrane properties, which may vary due to its integrity, function, and composition
[49].

Tissues of increased fluid and electrolytic composition such as cerebrospinal fluid, 
blood, muscles, are high electrical conductors. Fatty tissues, bones, and the air that fills 
some spaces in the body, such as the lungs, are highly resistant to electric current[50]. 
The conductivity of biological tissues is practically ionic, that is, the electrical charges 
are transferred by the ionization of salts, bases, and acids dissolved in the body fluid
[51]. Therefore, biological conductivity is directly proportional to the amount of body 
fluid volume. For this reason, in the patient who is in a state of hyperhydration, the 
value of lean mass is overestimated, with changes in the result of the body evaluation 
being one of the limitations of this method[50]

Bearing in mind that BIA is based on the theory of body symmetry, where the level 
of hydration and the percentage of fat are constant, when we are faced with different 
realities, with age group, ethnic group, body shape, or different clinical conditions, we 
do not have "universal" equations used in all situations, requiring another parameter 
as a reference point[52].

In view of these diversities, the clinically established bioimpedance parameter is the 
PA. The PA is calculated from the mathematical formula PA = tangent arc (Xc/R) x 
180, which considers R and Xc. In addition, the relationship of these components of the 
current results in a geometric graph, where the relationship of R and Xc will result in 
an angle then defined as PA (Figure 1)[53,54].

PA has gained popularity in recent years as it is a fast method, applicable in the 
clinic and that reflects cell vitality and integrality, where the higher values indicate 
preserved cell activity[6,53,55,56]. In healthy individuals, PA can vary between 6° and 
7°[53].

Because it is considered an important predictor of health status including inflam-
mation, malnutrition, and disease, low PA values are associated with apoptosis or 
alteration in the selective permeability of membranes, compromising their integrity 
and metabolic functions[4,7-9]. High PA indicates intact cell membranes and high 
body cell mass, showing a good relationship also with the skeletal muscle structure 
preserved in its volume and/or functionality. Thus, PA can be one of the markers for 
monitoring nutritional status[9].

There are still few published studies regarding the use of PA and assessment of 
nutritional status in IBD[3,8].

Emerenziani et al[34] evaluated the nutritional status and PA in CD patients who 
received conventional therapy and anti-TNF therapy and concluded that mean values 
of PA and FFM were significantly lower in patients under conventional therapy when 
compared with controls and patients with infliximab therapy. Mean PA value 
increased from 4.6 ± 0.3 to 6.2 ± 0.4 (P < 0.05), after the induction therapy with 
infliximab (12 ± 2 wk)[7]. Conversely, another study that also assessed the impact of 
biological therapy on BC of patients with CD did not observed difference between the 
PA values after 6 mo of infliximab therapy (6.2 vs 6.8; P = 0.94)[42].

Back et al[57] compared BC in patients with CD and UC and found that patients 
with CD have more impaired nutritional status when compared to patients with UC 
(PA 6.46 ± 0.76 and 6.83 ± 0.080; P = 0.006)[3]. In another UC study, with 59 patients in 
clinical remission (94.9%), the PA had a negative correlation with inflammatory 
markers, C-reactive protein (CRP) (r = 0.59; P < 0.001), and erythrocyte sedimentation 
rate (r = 0.46; P < 0.001) and positive correlation with lean mass[58].

Mentella et al[38] investigated the association of disease activity, BMI, and PA with 
vitamin D deficiency in patients with IBD and reported a negative association between 
BMI and vitamin D serum levels in both CD and UC patients (P < 0.01), and PA was 
associated to hypovitaminosis D in both groups (CD: Odds ratio = 0.64, P < 0.05; UC: 
Odds ratio = 0.49, P < 0.01).

Recently, Cioffi et al[8] showed that BIA-derived PA is a valid indicator of 
nutritional status in CD patients, the values decrease with increasing disease activity, 
and PA was slightly better in patients receiving biologic therapy (infliximab).
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Figure 1 The relation of body resistance and reactance that results in a geometric graph indicating the angulation of the electric current 
according to the cellular structure. Adapted Kyle et al[50]. R: Body resistance; Xc: Reactance.

PA might be considered a valid tool to assess nutritional status in IBD patients, as 
supported by nutritional biomarker evaluation[8] or as a complement of the other 
nutrition assessment methods. Its measurement in isolation may not be sensitive 
enough to capture all factors that can influence nutritional status[9].

It is possible to associate laboratory parameters with PA so that their values show 
greater reliability to the actual clinical condition of the patient with IBD. When 
analyzing the association between PA and biochemical parameters, previous studies 
have shown that hemoglobin was lower in patients with CD with active disease, 
compared to those in remission. Albumin, CRP, and total protein did not differ 
between groups with active and remission CD and, interestingly, all serum protein 
parameters, such as albumin, pre-albumin, and total protein, were directly correlated 
to PA. However, fibrinogen and CRP were inversely associated[8].

The cellular nutrition for its preservation of functionality and structure is very 
important for a good response to treatment of IBD, including the surgical approach in 
the pre, peri, and post-operative period[4,8,42].

IBD, nutrition in surgery 
The clinical intractability of IBDs is one of the main factors for surgical indication 
(Figure 2)[59,30]. People with CD may need at least one surgery throughout their lives, 
that is about 80% to 90%, of which 50% will need the second surgery and 25% a third 
surgery. Patients with CD and UC will undergo one or more surgical procedures 
during their lifetime, 47% and 16%, respectively[61-64].

In CD, the location of the disease (ileal, colonic, ileocolic), the severity of symptoms 
(disease activity), the history of previous surgeries, the presence of very complex 
diseases, and the nutritional status are conditioning factors in the definition of the 
surgical procedure (colectomy total proctocolectomy, total recto colectomy). A weight 
loss of ≥ 15% in 3 mo and hypoalbuminemia (< 2.5 g/dL) are risk factors for surgical 
complications, which can be increased in patients who received biological therapy 
preoperatively[30,64-66].

Some data related to nutritional aspects are noteworthy when considering surgical 
intervention. At an outpatient level, the nutritional deficit of patients with CD is 
between 50% and 60% and in UC between 50% and 60%[64]. This malnutrition 
condition increases, when hospitalized, that is, about 80% to 90% and 60% to 70% of 
CD and UC, respectively. Considering this scenario, nutritional screening for the 
identification of patients at risk should be performed routinely, since it is an indication 
of the need for early nutritional intervention. The following tools are recommended: 
Perioperative nutrition screen score or nutritional risk screening 2002[30], associated 
with the analysis of the percentage of weight loss, biochemistry, food intake, and BC, 
since these changes are directly related to postoperative[30,67,68] complications, due 
to nutritional deficit and immunological[68].

With the advances of studies that seek to evaluate changes in BC and their impact 
on IBD, the presence of sarcopenia stands out. Ryan et al[69] demonstrated that 52% of 
patients with CD and 37% with UC had sarcopenia. The impact of changes in BC in 
IBD promotes undesirable consequences such as bone demineralization (osteopenia 
and osteoporosis), inadequate response to therapy, impaired surgical response, and 
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Figure 2 Factors of indication for surgery in inflammatory bowel diseases. Adapted from Rubin et al[59].

poor quality of life[69-71]. In addition to these, Erős et al[72], identified sarcopenia, 
through meta-analysis, as an independent predictor of surgical complications. These 
showed reduced fat and reduced body fat mass, according to the increase in the 
severity and duration of IBD, respectively.

Fiorindi et al[73] conducted an intervention study with 61 IBD patients (45 CD and 
16 UC) that sought to analyze the effect of long-term nutritional pre-rehabilitation on 
the postoperative result in elective surgery for IBD. In the initial assessment, muscle 
mass reduction was present in 28% of the cases and significantly associated with the 
presence of ileostomy and a previously performed IBD surgery. During the 
preoperative, intervention phase, there was an improvement in body weight, BMI, fat 
free mass, fat free mass index, and the PA[43].

Despite this, PA derived from electrical bioimpedance is a valid indicator of 
nutritional status in patients with CD, since its values decrease with the increase in 
disease activity, a clinical condition that is decisive in the decision of the surgical 
procedure in IBD. Thus, the assessment of BC should be recommended in clinical 
practice for the screening, monitoring, and determination of nutritional intervention, 
even in the preoperative period of patients with IBD[4,8,42,74].

This nutritional intervention when performed early, with the objective of nutritional 
rehabilitation in the preoperative of elective surgeries, ERAS Principles, demonstrates 
positive responses in the modulation of the BC of individuals with IBD. And so, it 
represents an important strategy to mitigate the response to surgical stress in lean 
tissue, even more evident in patients who are at high nutritional risk. Likewise, the use 
of early nutritional therapy in the postoperative period will provide a significantly 
reduced hospital stay and a faster recovery of intestinal function[8,30,63].

Still within the context of artificial intelligence and the improvement in the 
assessment of BC, proposals for the use of raw BIA measures can be an interesting 
alternative for populations where the use of regression formulas does not apply. In 
addition to using the isolated PA as a prognostic marker, R and Xc have been used 
graphically in a method called the electrical bioimpedance vector (BIVA)[75].

This method consists of the direct analysis of the R and Xc vectors, where their 
clinical applicability depends on a healthy reference population for comparison. The 
measurements must be adjusted by the height (H) of each individual and recorded in a 
Cartesian plane where the horizontal axis represents the standardized resistance for 
the height (R/H) and the vertical axis represents the reactance standardized by the 
height (Xc/H). Ellipses of tolerance of 50%, 75%, and 95% (or Z score), of the reference 
population, are drawn from a centralized mean vector[76,77].

The vector of the studied population will be compared with that of the reference 
population, determining within which Z score range it is for hydration information, 
cell body mass, and cell integrity[77].

From validation studies with different populations and diseases, the position of the 
vector on the graph brought clinical significance to the method. Not only as a classi-
fication of a single measure, the method also allows the monitoring and change of BC 
status[78].
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Figure 3 Graphic representation of electrical bioimpedance vector by quadrants and ellipses, according to body conditions[79]. Fernandes 
SA, Leonhardt LR, da Silva DM, Alves FD, Marroni CA. Bioelectrical impedance vector analysis evaluates cellularity and hydration in cirrhotic patients. World J 
Hepatol 2020; 12: 1276-1288. Copyright ©The Author(s) 2020. Published by Baishideng Publishing Group Inc.

The upward or downward displacement of vectors parallel to the largest axis of the 
ellipse indicates a progressive change in tissue hydration (dehydration towards the 
upper pole; hyperhydration with apparent edema towards the lower pole). Vectors 
migrating parallel to the smallest axis, above on the left, indicate more cell mass and, 
below on the right, indicate less body cell mass (Figure 3)[79].

When changes in nutritional status and hydration occur simultaneously, the vectors 
migrate in the two main directions. In the context of IBD, to date, there are no studies 
using the BIVA to study the degrees of hydration and cellularity of these pediatric or 
adult patients.

CONCLUSION
Assessing the individual's cellular condition has shown to be a watershed in the 
therapeutic planning of patients, whether in the clinical and/or nutritional approach. 
Given this knowledge, the PA is shown to be a very important parameter in this 
context of cellularity, because in addition to informing the integrality and cellular 
functionality, it is a method independent of the observer. In different populations, the 
PA is an independent marker of mortality and is indicated as a parameter for 
monitoring clinical and nutritional prognosis. We show in this bibliographic review 
that there are some studies on IBD and PA and their importance in the management of 
these patients, making the therapeutic approach more accurate and expanding a long-
term vision for the result of sustained remission of the disease. It should be noted that 
there are still few studies that address the PA and IBD and none using the BIVA 
method in this population, which indicates an area of research to be explored.
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Abstract
This minireview discusses the benefits and pitfalls of machine learning, and 
artificial intelligence in upper gastrointestinal endoscopy for the detection and 
characterization of neoplasms. We have reviewed the literature for relevant 
publications on the topic using PubMed, IEEE, Science Direct, and Google Scholar 
databases. We discussed the phases of machine learning and the importance of 
advanced imaging techniques in upper gastrointestinal endoscopy and its 
association with artificial intelligence.
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Core Tip: This minireview aims to explore an important topic; the role of artificial 
intelligence in upper gastrointestinal (GI) endoscopy detection of cancer. We tried to 
delineate the most common obstacles encountered when trying to implement artificial 
intelligence in upper GI endoscopy for cancer detection and characterization. 
Moreover, we tried to outline the future prospects of this technique, along with its 
benefits, and uncertainties. This topic summarizes the wide scope for integration of 
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INTRODUCTION
Upper gastrointestinal (GI) cancers affecting the esophagus and stomach are 
responsible for more than one and half million annual deaths worldwide. Both are 
considered aggressive cancers, discovered mostly at an advanced stage, when curative 
measures are no longer applicable[1].

The current standard method for diagnosis of upper GI cancers is upper GI 
endoscopy and biopsy, using a white light endoscopy. The most common upper GI 
cancers encountered are esophageal adenocarcinoma, Barrett's esophagus (BE) and 
gastric cancer[2]. Artificial intelligence (AI) could add more accuracy to early 
cancerous and precancerous lesion detection in the upper GI during endoscopic 
evaluation[3].

Regardless of the great progress of AI in colonoscopy examinations, the integration 
of AI in upper GI endoscopy is still a new area of research with only a few pilot 
studies available, mostly due to unavailability of large datasets annotating upper GI 
cancers[2].

A recent meta-analysis examined the effect of AI in detecting Helicobacter pylori (H. 
pylori) infection during upper GI endoscopy, and found eight studies with pooled 
sensitivity of 87%, and specificity of 86%[4]. Moreover, another study combined the 
effect of neoplasm detection and H. pylori infection status, and found twenty-three 
studies with high pooled diagnostic accuracy in upper GI neoplasms; 96 in gastric 
cancer, 96% in BE, 88% in squamous esophagus and 92% in H. pylori detection[5].

IMPORTANCE OF USING AI IN UPPER GI ENDOSCOPY
The miss rate of detecting upper GI cancers reaches 11.3% according to a meta-analysis 
by Menon and Trudgill[6], and even higher rates could be observed in superficial 
neoplasms, reaching 75% (i.e., gastric superficial neoplasia)[7]. According to a recent 
meta-analysis by Arribas et al[3], using AI integrated upper GI endoscopy yielded 
pooled sensitivity of 90%, and specificity of 89% for detection of neoplastic lesions, 
independent of the type of neoplasia (whether esophageal adenocarcinoma, BE, or 
gastric adenocarcinoma).

Expert sensitivity and specificity criteria in detecting the upper GI tumors differ 
from the detection and characterization of colorectal polyps for a few reasons. First, 
due to over-specialization of certain types of upper GI cancers according to the 
geographical prevalence of the cancer, for example, in the gastroenterologist’s practice, 
resulting in limited training for the detection of non-prevalent types of cancers. AI 
integrated systems don’t suffer the same geographical bias, thus offering better 
detection independent of the prevalence of GI cancer types[3]. Colon cancer preva-
lence is higher, enabling more data storage and more training.

The second reason, lesions that are minimal (in size or in depth) or hard to visualize 
by the inexperienced endoscopist, could be easily detected using the AI assistance[2]. 
Furthermore, gastric cancer lesions can be masked after eradication of H. pylori, this 
masking is due to regression of the mucosal elevation (decrease in its height) caused 
by the regression of chronic inflammatory process of H. pylori infection, or due to the 
coverage of the neoplastic area with atypical mucosa or even healthy columnar 
mucosa[8,9]. Advanced imaging techniques[10], when associated with AI, might help 
in detection of these masked neoplastic lesions.
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Third reason being that training is not adequate in postgraduate courses, either 
because of insufficient interest (due to different cancer prevalence), or insufficient 
resources (especially for the computer simulation programs)[11]. However, an AI 
cumulative sensitivity of 91% for early-stage neoplasia proves that AI integrated 
systems will increase the efficacy of diagnostic upper GI endoscopy immensely. Thus, 
there is an urgent need for AI implementation in the clinical setting, even more urgent 
than the lower GI colonoscopy. Diagnostic settings have the issue of less experienced 
endoscopists compared to intervention intended settings, so early cancerous lesions 
tend to be easily overlooked (undetected)[3]. This of course will not eliminate the need 
for experienced endoscopists; however, integration with AI will have the best yield
[12], considering that most of the upper GI lesions are non-polypoid which require 
higher level of skills for detection than colorectal cancer.

AI IN UPPER GI ENDOSCOPY
Machine learning (ML) must pass through multiple phases for validation in both 
training and testing (as shown in Figure 1). The AI used in endoscopy is ML, the most 
prevalent type of ML is deep learning (DL).

The first wave of AI was logic based handcrafted knowledge. In this logic-based 
handcrafted algorithms were developed separately for each task. This allowed the 
reasoning behind decisions of the first wave to be quite high, because every step of 
decision was handcrafted. However, the machine was unable to learn. The second 
wave of AI (the current wave) is the statistical ML in which the machines can learn 
from data, with an easily implemented learning algorithm, to generate a model used to 
carry out decisions. This eliminates the difficult part of designing and implementing a 
task-specific algorithm. While this raised the level of ML, it also caused a huge decline 
in the reasoning for the decisions. This means that the reasoning behind a wrong 
decision becomes hard to identify, rendering the algorithm a black box. The best way 
to avoid highly wrong decision rates is for provide a large amount of variable data to 
the machine to learn from[13].

ML passes through many phases. First phase is the training phase; where an 
annotated dataset is used to train the ML system, and then validated by determining 
the number of images it correctly identified. Second is the testing phase where a non-
annotated dataset is given to the ML system to examine its diagnostic capabilities in 
comparison to experts in the field, and then using this ML system in a clinical setting, 
either in real time or in prospective trials to evaluate its performance in a real-world 
clinical setting.

There are two types of gastric lesion examinations identified during upper GI 
endoscopy using AI: (as shown in Figure 2): (1) Lesion detection (to know whether it is 
present or absent) and localization (to know its exact location in the GI tract); and (2) 
Lesion characterization (to assess its histological prediction).

The first type uses images with low or moderate quality, but the second type uses 
advanced optical diagnostic tools including: Narrow band imaging (NBI), chromoen-
doscopy, endocytoscopy, optical magnification, among others[14,15]. All types use 
semi-automatic identification, where the endoscopist delineates the affected area and 
centers the polyp near the endoscope lens for better visualization[14]. Invasion depth 
has been successfully predicted (with 89% diagnostic accuracy) through coding 
systems that are not very complicated, a proposed implementation of automated DL 
models in gastric cancers. Furthermore, another proposed implementation of a 
modified version by the same author is faster by 13 min in the test stage on unknown 
data, but has a slightly lower accuracy of 82%, with similar performance to experts and 
higher than trainees[16].

CURRENT STATUS, WHAT IS ACHIEVED AND WHAT IS NOT
If feasibility and usefulness of non-real time can be proved, then technical feasibility of 
real time is achievable, with an increased degree of sophistication of implementation 
and cost. Improvement of this real time feasibility could be accomplished through 
software programming of graphic processing unit (GPU) and central processing unit 
(CPU), along with implementation of specialized hardware systems.

Most implementations in AI use DL algorithms such as convolutional neural 
network (CNN). Wu et al[17] did the only randomized controlled trial (RCT) available 
on the topic. The team examined the diagnostic accuracy of their AI system using a 
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Figure 1 Showing the phases of machine learning.

Figure 2 Showing the Step manner approach from detection to characterization.

deep convolution neural network. The system aimed to decrease the blind spots 
during upper GI endoscopy[17]. Unfortunately, they only examined images of benign 
and malignant lesions, not during a real time endoscopy performance.

Comparing white light alone vs linked color imaging showed that endoscopists had 
a lower miss rate with linked color imaging (30.7% vs 64.9%) in detecting early gastric 
cancers post-H. pylori eradication[18]. Linked color imaging is a technique that 
enhances the color range and brightness of images, developed by Fujifilm, Tokyo, 
Japan[19].

White light for detection of upper GI neoplasms is the most common and the 
standard technique. Other methods using advanced high-quality imaging are 
becoming increasingly available in most endoscopy centers. These advanced imaging 
techniques increase the sensitivity and specificity of diagnostic accuracy, especially in 
BE. There is a noticed "synergy" between AI integrated systems and advanced imaging 
techniques. On the other hand, the bias in having good quality images is apparent 
when identifying artifacts and lighting errors as cancerous lesions, or as called 
"spectrum bias" (this is a systematic error, where the data used do not represent the 
patients in question). This is equal in AI and humans[20,21].

While, dye-based imaging enhanced endoscopy (IEE) uses a dye to enhance 
detection of neoplastic lesions, this might not be helpful for examining a wide tract for 
lesions, nor for spraying the whole GI tract with dye. However, equipment enhanced 
IEE (eIEE) solves these problems. eIEE was originally classified into lightening-only 
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techniques along with blue laser imaging (BLI), BLI-bright and NBI (Olympus), 
autofluorescence imaging (Olympus), and post-processing-only techniques such as: 
Flexible spectral image color enhancement - (Fujifilm) and iSCAN - (Pentax), all from 
Tokyo, Japan[22,23].

LCI merges the two techniques by low frequency intensity light, red color 
extraction, and variation enhancement in a red-green-blue color space digital image 
post-processing. The post-processing system has three modes of color enhancement 
(A, B and C) with varying grades. This yields enhancement of hemoglobin-related 
information and neoplastic lesion in C2 and C3 modes or enhancement of neoplastic 
structures in B7 and B8[10].

The visualization using a NBI was mostly used to detect the histological features in 
the research studies. NBI is an advanced imaging technology that uses digital optical 
methods to visualize more enhanced images than the standard white light[24]. NBI 
helps to examine the vascularity and abnormal histological features on site during 
colposcopy, thus adding AI to narrow band could improve the detection of the exact 
histology of polyps and saves time and effort waiting for histopathological assessment 
that may delay the intervention[25]. In addition, the NBI technique is easier than other 
more sophisticated techniques as chromoendoscopy[26].

Shin et al[27] used high resolution microendoscopy to detect esophageal cancer 
using AI integration, showing sensitivity of 93% and specificity of 92% in the training 
set and similar results, albeit slightly lower, in the test and independent sets.

Moreover, in other techniques like, capsule endoscopy, images taken couldn't be 
adjusted in position lightening or quality as they are dependent mainly on gut 
motility, plus their role in upper GI tract evaluation is still limited[28,29].

Online processing causes limitation on the acceptable latency requiring it to be low, 
so real time application mostly uses parallelization of the machine process. Current 
high-end GPU offer higher parallelization than current high-end CPUs, due to larger 
number of cores. An example for this issue appears when Nvidia Tensor RT, a 
software development kit SDK for highly parallel machine learning, marketed to reach 
up to 40 × performance speed than CPU only applications. Tensor RT runs only on 
CUDA (compute unified device architecture), which runs only on Nvidia graphic card. 
Furthermore, other libraries, as "Caffe", can be used either by CPU or GPU, through 
switching a flag in the source code[30,31].

Localized data sets and implementations, limited to specific institutions, will cause 
bias in methodological validation. Thus, public records of images and datasets are 
preferable to decrease this bias. On the other hand, implementation doesn't suffer the 
same urgency for public recording[32].

While latency in offline detection could reach days, this is not acceptable in online 
real time detection, as the latency during endoscopy procedures will cause missing of 
the lesions in vivo, but improvement is more beneficial, as the ideal scenario is no 
latency.

While some studies showed promising results in vitro, there is still work to do 
offline in order to get a real time implementation which can detect neoplasia during 
the endoscopy conduction in vivo[33]. However, of 36 included studies in a recent 
meta-analysis exploring the AI integration in all types of upper GI cancers[3], only 
three studies were in a clinical setting and one was RCT, but even the RCT was on 
images not real time, and the rest of studies were on stored images offline. 
Furthermore, very few studies included videos or live in vivo validation.

The first real time study for detection of gastric cancer was performed using an 
online AI system with Raman spectroscopy integrated to GI endoscopy in vivo. Total 
computation time ranged from 100-130 milliseconds for analysis, with diagnostic 
accuracy of 80%[34].

Ohmori et al[35] introduced a new AI system that could process 36 images per 
second, making it adequate for RT integration in upper GI endoscopy. One concern of 
the authors is that limiting their processing to high quality images could impair the RT 
usage at the time being.

A recent meta-analysis by Arribas et al[3], concluded that we need to focus more on 
real time AI systems in upper GI endoscopy, because due to small number of studies 
(only two were retrieved in this metaanalysis[36,37], we are still uncertain of the 
feasibility of integration of AI with the endoscopists in RT situations.

In Ebigbo et al[37], they used a live-stream camera, examining the classification and 
segmentation of 14 BE patients, with diagnostic accuracy of 89.9%. AI prediction takes 
1.19 s with "ensembling" and 0.13 s without "ensembling".

Luo et al[36] performed the first aided AI RT implementation study in upper GI 
endoscopy. During a case-control study in six different hospitals in China, they 
developed a new AI system for RT examination named Gastrointestinal Artificial 
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Intelligence Diagnosis System (GRAIDS), with latency of only 40 ms, and high 
diagnostic accuracy irrespective of the level of training of the endoscopists.

Imaging techniques, such as volumetric laser endomicroscopy, are used in BE to 
characterize different layers of the mucosa[38]. Characterization ideally includes the 
location, type and stage of neoplasia in the GI tract. A future prospect is the prognosis 
of this type.

"AI system is watching" is a statement that shows how endoscopists are more keen 
on clear videos and imaging when they know that an AI system will use those datasets
[3,39].

The "blackbox" nature of CNN learning algorithms, means that we don’t know how 
the AI system reached its diagnosis, thus no human learning could be benefited from 
AI neoplasia recognition[40]. This is accompanied by the lack of training and lack of 
learning interest in postgraduates, mostly due to the cancer prevalence problems 
mentioned before. The story is different in colonoscopy, where in most studies, experts 
in the field usually beat the AI systems or show equal diagnostic efficacy, also where 
experts beat beginners or junior physicians[41-44].

Another solution presented by the AI implementation, is that only one system could 
be used in all types of upper GI endoscopy. In a multicenter study done by Luo et al
[36], they used a new system called GRAIDS. This system allowed for the examination 
of all types of upper GI neoplasms including both esophageal and gastric in a single 
system. In addition, the system showed similar diagnostic accuracy when compared to 
experts[36].

AI implementation in upper GI endoscopy proceeds first from detection (the lesion 
is present or not), to segmentation (the lesion is differentiated from the surrounding 
normal tissue), and then to characterization (the lesion is histologically predicted). A 
quality assessment tool for diagnostic accuracy studies called QUDAS score and its 
modified version are used for quality assessment of these diagnostic accuracy trials
[45].

FUTURE ASPIRATIONS
One of the most promising findings was the early detection of precancerous lesions 
with chronic inflammatory background (chronic atrophic gastritis) with high 
specificity of all grades (mild, moderate and severe)[46]. This research might offer a 
solution to the hypothetical problem of background inflammatory state confusion with 
cancer. However, future validation is needed to reach our goal.

Accumulation of datasets, with the help of experts in annotating the pictures and 
videos of lesions in the upper GI endoscopy and linking them to the histopathological 
findings is mandatory for the progress of the AI in upper GI endoscopy. And public 
datasets will allow researchers to conduct their algorithm freely, without limitation to 
geographical regions or expert specialization in certain types of cancers.

Using a single system for detection of pan GI neoplasms with acceptable diagnostic 
accuracy for all GI regions is the ultimate goal, in addition to resolving the real time 
delay for image processing, which is still only scarcely examined in upper GI 
endoscopy.

CONCLUSION
Using AI integration with upper GI endoscopy could benefit trainees and general 
practitioners. Building a dataset library that is accessible to the researchers, with upper 
GI lesions apparent irrespective of the geographical area could be of great benefit to 
even experts in the fields with limited knowledge of the non-prevalent cancers in their 
area of practice.
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Abstract
Infectious or noninfectious liver disease has inexorably risen as one of the leading 
causes of global death and disease burden. There were an estimated 2.14 million 
liver-related deaths in 2017, representing an 11.4% increase since 2012. Traditional 
diagnosis and treatment methods have various dilemmas in different causes of 
liver disease. As a hot research topic in recent years, the application of artificial 
intelligence (AI) in different fields has attracted extensive attention, and new 
technologies have brought more ideas for the diagnosis and treatment of some 
liver diseases. Machine learning (ML) is the core of AI and the basic way to make 
a computer intelligent. ML technology has many potential uses in hepatology, 
ranging from exploring new noninvasive means to predict or diagnose different 
liver diseases to automated image analysis. The application of ML in liver diseases 
can help clinical staff to diagnose and treat different liver diseases quickly, 
accurately and scientifically, which is of importance for reducing the incidence 
and mortality of liver diseases, reducing medical errors, and promoting the 
development of medicine. This paper reviews the application and prospects of AI 
in liver diseases, and aims to improve clinicians’ awareness of the importance of 
AI in the diagnosis and treatment of liver diseases.

Key Words: Artificial intelligence; Machine learning; Liver disease; Diagnosis; Treatment; 
Prognosis
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Core tip: Liver disease has inexorably risen as one of the leading causes of global death 
and disease burden. As a hot research topic in recent years, the application of artificial 
intelligence (AI) in medical fields has attracted extensive attention. The application of 
machine learning in the liver diseases can help clinical staff to diagnose and treat 
different liver diseases quickly, accurately and scientifically, which is of importance 
for reducing the incidence and mortality of liver diseases, reducing medical errors, and 
promoting the development of medicine. This paper reviews the application and 
prospects of AI in liver diseases.

Citation: Li Q, Li JF, Mao XR. Application of artificial intelligence in liver diseases: From 
diagnosis to treatment. Artif Intell Gastroenterol 2021; 2(5): 133-140
URL: https://www.wjgnet.com/2644-3236/full/v2/i5/133.htm
DOI: https://dx.doi.org/10.35712/aig.v2.i5.133

INTRODUCTION
Infectious or noninfectious liver diseases cause a significant disease burden. There 
were an estimated 2.14 million liver-related deaths in 2017, representing an 11.4% 
increase since 2012[1]. Traditional diagnosis and treatment methods have various 
dilemmas in different causes of liver disease. With the development of artificial 
intelligence (AI) technology, new technologies have brought more ideas for the 
diagnosis and treatment of some liver diseases.

AI is an algorithm-based application field that simulates human mental processes 
and intellectual activities, enabling machines to solve problems with knowledge. In the 
information age, AI is widely used in the medical field and can provide accurate 
diagnosis and treatment for complex diseases, reduce medical errors, and promote the 
development of medicine[2]. For example, using deep learning architecture visual 
pattern analysis to detect basal cell carcinoma and distinguish malignant and benign 
lesions, the diagnosis accuracy rate is > 90% compared with experts[3]. There are two 
common types of AI. The first type is expert systems and the second is machine 
learning (ML), which is the core of AI and the basic way to make a computer 
intelligent (Figure 1). ML requires many data to train, which systematically improves 
computer performance in the process. By doing so, computers are able to shed light on 
previously unascertainable relationships that traditional statistical methods could not 
detect. ML is also capable of analyzing data types that were previously unavailable for 
advanced computer analysis, such as image and text data.

The area offering the most exciting new applications in healthcare is ML. Many 
studies in recent years have suggested that ML technology has many potential uses in 
hepatology, ranging from exploring new noninvasive means to predict or diagnose 
different liver diseases to automated image analysis. From the identification of liver 
areas at risk of radiation toxicity to the use of drug structures to predict the risk of liver 
injury, the accuracy of diagnosis and the effectiveness of treatment can be improved, 
and the efficiency can also be improved through automation. Although promising data 
from preclinical studies are now available, the application of AI in liver disease is far 
from being applied in clinical practice, so the application of AI in liver disease and 
other diseases remains challenging and deserves further study.

NEW ROUTES OF LIVER DISEASE DIAGNOSIS
Liver disease is not an independent disease. Because the specific types of lesions are 
different, the diagnostic methods differ. Different examination methods can be 
selected according to the specific types of liver diseases to be examined. For example, 
at present, the common diagnostic method for nonalcoholic fatty liver disease 
(NAFLD) is liver ultrasound (US)[4,5]; the common diagnostic method for liver 
fibrosis is liver biopsy[4]; the diagnosis of liver cancer (LC) mainly uses imaging 
images and biomarkers, and the staging mainly uses the Barcelona staging system. 
However, due to subjective and invasive factors, the current examination methods 
have certain limitations in the diagnosis of some liver diseases. The sensitivity and 
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Figure 1 Timeline of the main concepts of artificial intelligence.

specificity of liver US decrease with increasing body mass index because US is 
subjective. As a solid tumor, hepatocellular carcinoma (HCC) has significant temporal 
and spatial heterogeneity, which can predict the treatment response and prognosis of 
HCC[6]. The Barcelona staging system does not include the histological and molecular 
characteristics of tumors. The application of AI has filled the gaps in these respects. By 
designing noninvasive examination means to intelligently analyze images and 
pictures, AI has improved the diagnostic efficiency and accuracy of clinicians.

Design noninvasive examination 
The prevalence of NAFLD is currently increasing, and there are currently no accurate 
diagnostic means or targeted medicines. The application of AI can realize the early 
diagnosis of NAFLD, which is expected to reduce the further deterioration of the 
disease. Current research has developed automatic liver segmentation based on deep 
learning tools used for quantitative abdominal computed tomography (CT) of liver fat. 
This fully automated CT tool provides rapid and objective assessment that can be used 
in a large retrospective cohort for future studies. If hepatic steatosis proves to be an 
independent risk factor for future adverse events, the automated tool can also be used 
for opportunistic NAFLD screening with any nonenhanced CT, including liver 
(abdomen or chest) scan, regardless of the clinical indications of imaging[7]. In 
addition, a technique that combines noninvasive markers with the ML approach is 
suitable for optimal identification of NAFLD risk assessment and can also be extended 
to predict other types of disease caused by metabolic syndrome[8]. The use of ML 
algorithms to establish a prediction model of NAFLD based on laboratory parameters 
is also a current research direction. A prediction model named the NAFLD ridge score, 
which can be easily calculated and obtain a high negative predictive value, is 
recommended as the simplest and most predictive ML model to exclude NAFLD[9].

Liver fibrosis, regardless of the etiology, is believed to be key to the progression of 
any form of chronic liver disease (CLD), and persistent fibrosis is widely believed to be 
a major driver of the eventual development of cirrhosis and liver failure[10,11]. Liver 
biopsy is considered to be the gold standard for staging liver fibrosis; however, it is 
invasive and is limited by sample error, interobserver variability and various potential 
complications[12]. Radiological and serum markers of fibrosis are also used to assess 
liver fibrosis[13], and it is not reliable to accurately distinguish the stages of fibrosis in 
these patterns. There is a clear need for safe, effective and reliable noninvasive 
assessment modalities. A study that aimed to develop and validate a deep learning 
system (DLS) for staging liver fibrosis by using portal venous phase CT images 
demonstrated that a DLS trained by using a large amount of CT data allowed for 
highly accurate staging of liver fibrosis. In this study, DLS was superior to radiologists 
and serum fibrosis tests in diagnosing significant fibrosis, advanced fibrosis and 
cirrhosis[14]. In addition, an existing model called deep learning radiomics of 
elastography has shown the best overall performance in predicting liver fibrosis stage, 
which has certain value and practical value for the accurate noninvasive diagnosis of 
liver fibrosis stage in hepatitis-B-virus-infected patients[15].

Dig deeper into the medical images
HCC is the most common primary liver cancer and has significant temporal and 
spatial heterogeneity. AI-based imaging, i.e., imaging omics, can quantitatively 
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analyze tumor imaging to reveal the imaging manifestations of these heterogeneous 
characteristics. The concept of imaging omics was first proposed by Lambin et al[16] in 
2012. It mainly extracts a large number of influential features from high-throughput 
radiological images and then uses statistics and AI algorithms to select the most 
valuable imaging omics to construct tumor predictive models. In essence, the 
significance of imaging omics is to dig deeper into the information of traditional 
medical images to compensate for the deficiency of the human eye.

Similarly, there is a need for better clinical classification of indeterminate liver 
nodules; however, the use of a single biomarker to predict the presence of cancer is 
difficult due to its multifactorial nature[17]. An AI-based predictive model of HCC 
reduced the misclassification rate by approximately half compared with that of a 
single tumor marker[18]. In addition, radiomics ML can be trained to diagnose hepatic 
nodules using the European Association for the Study of the Liver (EASL) guidelines 
in patients with HCC disease classified as uncertain cirrhosis[19]. According to EASL, 
indeterminate nodules include all nodules that do not provide arterial enhancement 
and washout [two major Liver Imaging Reporting and Data System (LI-RADS) 
features] and require biopsy regardless of LI-RADS; however, biopsies of cirrhosis 
carry life-threatening risks, including bleeding and tumor spread[20]. A study 
demonstrated that ML-based radiometric features using arterial and portal phase 
quantitative CT feature changes can enable the noninvasive diagnosis of HCC in 
patients with indeterminate nodules of cirrhosis. This feature will help to identify 
patients at high risk of HCC who should be prioritized for treatment to achieve 
significant clinical benefits[19].

AN ALTERNATIVE TREATMENT OPTION FOR LIVER DISEASES
Worldwide, CLD is a leading cause of morbidity and mortality[21]. There are a few 
therapeutic approaches for liver dysfunction, such as direct antiviral drugs (DAAs) for 
hepatitis C virus (HCV) and transarterial chemoembolization (TACE) for HCC[22]. 
Because some patients are resistant to DAAs and do not respond well to antiviral 
therapy and individualized responses to primary TACE vary among patients, AI 
seems to be an alternative option. AI has attracted attention for treatment of liver 
diseases in recent years, especially hepatitis C and LC[23]. AI can go beyond human 
reasoning to build drug-resistance predictive models from many complex combin-
ations and overcome the limitations of traditional techniques, which may be effective 
in avoiding the emergence of a resistant virus, reducing medical costs and providing 
precise and personalized treatment advice for doctors and patients.

Build predictive models
With the popularization of DAAs and the application of new detection technologies 
and service models, global progress has been made in the detection and treatment of 
HCV. However, some patients with HCV are resistant to DAAs and do not respond 
well to antiviral therapy, and the current lack of means to screen these patients may 
delay disease treatment. AI algorithms can go beyond human reasoning to build 
predictive models from many complex combinations. A current study identified all 
variants of HCV whole-genome sequences that could be evaluated, and a support 
vector machine (SVM) based on a machine algorithm was the best prediction model. 
Similar models can be used to determine the best treatment for other viral infections 
and cancers[24].

Coinfection with human immunodeficiency virus 1 and HCV is common in some 
populations today; however, treating coinfections is a challenge. A previous study 
demonstrated that a multiple quantitative structure–activity relationship model 
showed high performance in predicting multitarget inhibitors with anti-HIV and -
HCV activity[25]. The application of ML methods enables us to identify variables 
associated with reduced HCV treatment intake. The most recent variable, people who 
inject drugs (PWIDs), was identified as a major limiting factor associated with 
therapeutic intake deficit, even when priority criteria were met. PWIDs refers to 
people who have been injected at some point but are not currently using oral contra-
ceptives or abusing drugs. In fact, intelligent network interruption analysis has been 
used as a targeted strategy to effectively interrupt HCV transmission between PWIDs
[26]. Its application in clinical decision-making of infectious diseases should be 
expanded to optimize treatment and prevention strategies.
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Provide personalized treatment advice
Due to the well-known limitations of TACE, AI seems to be an alternative treatment 
option for HCC. Some studies have reported the use of fusion imaging (FI) techniques 
to overcome the limitations of traditional techniques. FI is an AI-based technology that 
allows the fusion of two different imaging modes[27]. A prospective randomized 
study conducted by Huang et al[28] showed that the technical response rate of FI in 
ablation for hepatic nodules < 5 cm was close to 100% and reported the special 
usefulness of FI in tumors at less obvious and dangerous sites, not only to accurately 
delineate the target lesion and critical organs, the structures that may be close to the 
target area of ablation can also be accurately delineated.

The clinical decision support system (CDSS) is the software that is designed to be a 
direct aid to clinical decision-making, in which the characteristics of an individual 
patient are matched to a computerized clinical knowledge base and patient-specific 
assessments or recommendations are then presented to the clinician or the patient for a 
decision[29]. One study applied AI technology to clinical realworld data of patients 
with primary HCC, explored the precise treatment of disease and built up the AIbased 
CDSS, HCC CDSS. In the internal use verification process of HCC CDSS in West China 
Hospital, the matching accuracy rate between HCC CDSS and the multidisciplinary 
team treatment scheme reached 95.10%. This scheme is conducive to optimizing the 
clinical treatment decision of LC and can provide precise and personalized treatment 
advice for doctors and patients[30].

AI-DRIVEN PREDICTION FOR LIVER INJURY
Drug-induced liver injury (DILI) is a serious problem in clinical treatment and a 
common cause of drug development failure or withdrawal from the market[31]. 
Therefore, compound hepatotoxicity is important to determine.

Accurate estimation of the prognosis of patients with liver disease can help 
clinicians make appropriate treatment plans for different individuals; however, due to 
the complex process of CLD, the extensive impact on the systemic system and organs, 
and the lack of an adequate understanding of the nature of the development of liver 
disease, the understanding of the prognosis of different liver diseases is still limited. In 
recent years, HCV infection among LC patients and the mortality rate of HCV have 
been on the rise. Therefore, prediction of the prognosis of HCV patients has also 
attracted attention. Cirrhosis is a common, high-risk disease with slow clinical 
progression, and readmission and death in patients with cirrhosis are common and 
unpredictable. None of the clinically available predictive scores for cirrhosis can 
account for the broad range of clinical and psychosocial factors that may be associated 
with cirrhosis mortality. Individualized responses to primary TACE vary among 
patients with HCC. In addition, identifying a robust survival subgroup for HCC 
would also significantly improve patient care. The application of the prediction model 
of disease prognosis based on AI can improve the understanding of the prognosis of 
some liver diseases to a certain extent and provide an auxiliary reference for doctors’ 
decision-making.

Analyze drug structure
AI is a low-cost, fast method to collect information on potential toxicity, and great 
efforts have been made in hepatotoxicity prediction in recent years. A study proposed 
that the integration of the Top-5 model could significantly improve the performance of 
hepatotoxicity prediction. The integrated Top-5 model consists of five base classifiers: 
Random Forest (RF) using Substructure Count, SVM using Chemistry Development 
Kit Extended, SVM using Chemistry Development Kit, SVM using PubChem, and RF 
using Klekota–Roth Count[32]. The deep learning model is also a stable and highly 
accurate predictive model of DILI, which can provide very useful safety information 
for early drug discovery and rational clinical drug use[33].

Predict risk of deterioration and mortality
The prediction of the prognosis of HCV patients has attracted attention in recent years. 
One study showed that the recurrent neural network model was superior to the 
logistic regression (LR) model in predicting HCC risk in patients with HCV-associated 
cirrhosis, including patients with supraventricular tachycardia following antiviral 
therapy; thus, it can be used to identify patients at high risk for HCV-associated 
cirrhosis to develop HCC and to inform risk-based HCC expansion and surveillance 
strategies[34].
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None of the clinically available predictive scores for cirrhosis can account for the 
broad range of clinical and psychosocial factors that may be associated with cirrhosis 
mortality. ML techniques have been used to help fill these gaps in cirrhosis but are not 
yet widely available. In one study, three AI models were established, including LR, 
kernel SVM and RF classifier, and showed that these models had difficulty predicting 
readmissions and deaths in cirrhosis at 30 and 90 d. The accuracy of the AI model is 
comparable to that generated using the model for the end-stage liver disease-NA 
(MELD-NA) score alone, requiring additional biomarkers to improve the predictive 
power[35].

Another study developed and validated a cirrhosis mortality model (CIMM) using 
variables selected from ML algorithms. The results showed that ML can help select 
important variables for more transparent risk scoring while maintaining high 
accuracy. The synthetic hybrid CIMM performed better than the widely used model 
for MELD-NA score[36].

Speculate personalized response 
For patients with LC, individualized responses to primary TACE vary. An AI-based 
radiomics strategy quantitatively analyses contrast-enhanced US images to predict 
personalized responses to primary TACE in HCC. There is potential for better 
selection of Barcelona Clinical Liver Cancer stage B patients receiving hepatic TACE 
and for better optimization of treatment planning and follow-up monitoring in the 
HCC management process[37].

Identifying a robust survival subgroup for HCC would also significantly improve 
patient care. Currently, few studies have integrated multiomics data to definitively 
predict HCC survival in a multipatient cohort. The survival-sensitive subtype model-
deep learning model is of importance for the prognostic prediction and treatment 
intervention of HCC[38].

CONCLUSION
AI has become an important part of liver disease research, improving diagnostic 
accuracy, improving decision-making by enhancing predictive power, increasing 
efficiency through automation, and even predicting liver disease prognosis. Analysis 
of key biomarkers using ML can also provide deeper insights into the pathophysiology 
of liver disease. Despite the challenges, the application of AI in the field of liver 
disease is promising and worthy of further study. Researchers need to further develop 
new models of AI in liver disease diagnosis and precise treatment and conduct clinical 
verification to improve the accuracy of the results and promote the clinical application 
of AI. However, we must also be wary of over-reliance on such algorithms. AI will 
support rather than replace doctors, although computers and healthcare workers will 
have to work together. Ultimately, healthcare workers will have to make decisions for 
their patients based on their preferences, circumstances and ethics.
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Abstract
The integration of artificial intelligence (AI) has shown promising benefits in 
many fields of diagnostic histopathology, including for gastrointestinal cancers 
(GCs), such as tumor identification, classification, and prognosis prediction. In 
parallel, recent evidence suggests that AI may help reduce the workload in 
gastrointestinal pathology by automatically detecting tumor tissues and evalu-
ating prognostic parameters. In addition, AI seems to be an attractive tool for 
biomarker/genetic alteration prediction in GC, as it can contain a massive amount 
of information from visual data that is complex and partially understandable by 
pathologists. From this point of view, it is suggested that advances in AI could 
lead to revolutionary changes in many fields of pathology. Unfortunately, these 
findings do not exclude the possibility that there are still many hurdles to 
overcome before AI applications can be safely and effectively applied in actual 
pathology practice. These include a broad spectrum of challenges from needs 
identification to cost-effectiveness. Therefore, unlike other disciplines of medicine, 
no histopathology-based AI application, including in GC, has ever been approved 
either by a regulatory authority or approved for public reimbursement. The 
purpose of this review is to present data related to the applications of AI in 
pathology practice in GC and present the challenges that need to be overcome for 
their implementation.

Key Words: Digital image analysis; Digital pathology; Colorectal cancer; Gastric cancer; 
Machine learning; Deep learning
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Core Tip: Recently, based on improvements in efficient computational power and 
learning capacities, various artificial intelligence applications, such as image-based 
diagnosis and prognosis prediction, have emerged in many fields of pathology. This 
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review comprehensively summarizes the current status of artificial intelligence applic-
ations in gastrointestinal cancers. The present data are promising for the use of 
artificial intelligence to diagnose tumors, evaluate prognostic parameters, and detect 
biomarker/genetic alterations. However, many challenges hinder the implication of 
artificial intelligence models in real pathological practice. Therefore, these challenges 
and suggested solutions are also briefly presented to improve the accuracy and 
relevance of artificial intelligence in pathological practice, including in gastrointestinal 
cancers.

Citation: Alpsoy A, Yavuz A, Elpek GO. Artificial intelligence in pathological evaluation of 
gastrointestinal cancers. Artif Intell Gastroenterol 2021; 2(6): 141-156
URL: https://www.wjgnet.com/2644-3236/full/v2/i6/141.htm
DOI: https://dx.doi.org/10.35712/aig.v2.i6.141

INTRODUCTION
Pathology is a medical specialty that performs morphological evaluations of organs, 
tissues, and cells to provide a definitive diagnosis of diseases and contributes to 
treatment by determining the critical parameters in their course[1]. Although 
histopathological assessment under a light microscope is considered a cornerstone, 
especially in oncology, the search for more objective criteria to overwhelm the 
subjectivity related to interobserver and intraobserver variations and to diminish the 
increased workload and time consumption has led to the development of image 
analysis-based digital pathology (DP), which plays a crucial role in modern patholo-
gical practice[2,3].

Following the considerable advances of slide scanner technology that can quickly 
digitalize whole pathological slides at high resolution (whole-slide images, WSI), in 
2017, the approval of the Philips IntelliSite whole-slide scanner (Philips Electronics, 
Amsterdam, Netherlands) by the Food and Drug Administration (FDA) in the United 
States allowed a comprehensive evolution in DP[4]. This digitization not only faci-
litated the application of telepathology and created a valuable resource for education 
but also yielded the analysis of a large spectrum of morphological parameters and 
biomarkers/genetic alterations[5-7]. In addition, such digital images are constituted 
from matrices of numbers that contain much more information that is not accessible to 
the human eye[8,9]. Indeed, it may be possible to extract predictive and prognostic 
biomarkers from such digitized slides by computer-based image analysis. These 
methods are particularly of direct interest to ''computational pathology'', a relatively 
new pathology field driven by artificial intelligence (AI) that is expected to transform 
and improve the diagnosis and staging of cancers[3,10]. As a result, pathological AI 
models have evolved from expert systems to traditional machine learning (ML) and, 
finally, deep learning (DL)[11]. While the traditional supervised ML allows the 
production of data output from previously labeled training sets that can be corrected 
by the users, labeling big data can be time-consuming and challenging[12]. In addition, 
the accuracy depends heavily on the quality of feature extraction. In contrast, 
unsupervised ML is a time-saving model because it provides automatic detection of 
patterns[13]. However, input data that are not labeled by users pose challenges during 
interpretation, leading to varying results.

On the other hand, DL extracts features directly from the raw data and utilizes 
multiple layers of hidden data for the output[14-16]. Compared to expert systems and 
handcrafted ML models, DL models are simpler to conduct, have higher precision, and 
are more cost-effective[9,17] (Table 1). Furthermore, a considerable increase in 
computational processing capacity and the development of algorithms, such as 
convolutional neural networks (CNNs), fully CNNs, recurrent neural networks 
(RNNs), and generative adversarial networks, have resulted in numerous investig-
ations on the application of DL-based AI in pathological practice[7,18,19]. The 
strengths and weaknesses of typical ML methods are summarized in Table 1.

In addition, the use of AI in pathology has led to the emergence of many DL-based 
applications[20]. Proscia, DeepLens, PathAI, and Inspirata are DL-based applications 
for the detection, diagnosis, and prognosis of several cancer subtypes[21-25]. In 
addition, Inspirata and PAIGE.AI are spending substantial time and resources on 

https://creativecommons.org/Licenses/by-nc/4.0/
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Table 1 Strengths and weaknesses of machine learning methods in development of artificial intelligence models for gastrointestinal 
pathology

AI model Advantages Disadvantages

Allows users to produce a data output from the previously 
labeled training set

Labeling big data can be time-consuming and 
challenging

Traditional ML (supervised)

Users can reflect domain knowledge features Accuracy depends heavily on the quality of feature 
extraction

Users do not label any data or supervise the model Input data is unknown and not labeled by users

Can detect patterns automatically Users cannot get precise information regarding data 
sorting

Traditional ML (unsupervised)

Save time Challenges during interpreting

Detects the important information and features without 
labeling

A large training data is requiredCNN

High performance in image recognition Lack of interpretability (black boxes)

Provides computational speed Requires large amounts of labeled data for trainingFCN

Automatically eliminates the background noise High labeling cost

Can decide which information to remember from its past 
experience

Harder to train the modelRNN

A deep learning model for sequential data High computational cost

Does not require detailed annotation A large amount of training data is requiredMIL

Can be applied to large data sets High computational cost

GAN Generates new realistic data resembling the original data Harder to train the model

AI: Artificial intelligence; ML: Machine learning; CNN: Convolutional neural networks; FCN: Fully convolutional neural networks; RNN: Recurrent neural 
networks; MIL: Multi-instance learning; GAN: Generative adversarial networks.

creating large libraries of digital WSI for use in training AI algorithms[21,24]. 
Interestingly, the landscape of DP is, in parallel, also undergoing important innovation 
and rapid changes[10].

It is also notable that some institutions are digitizing their entire pathology 
workflow, suggesting the routine use of AI-based systems in many areas of pathology 
soon[26,27]. Indeed, many studies have suggested that the integration of AI provides 
benefits for diagnosing and subtyping tumors, detecting histopathological parameters 
related to prognosis, and even identifying biomarker/genetic alterations in many 
fields of pathology[28]. On the other hand, the existence of a broad spectrum of 
difficulties, from AI-based pathology laboratory infrastructures to the robustness of 
algorithms, indicates that there are still many obstacles to be resolved before 
introducing AI applications in real-life pathology practice[29]. Nonetheless, AI-based 
approaches have the potential to contribute to pathological practice by improving 
workflows, eliminating simple errors, and increasing diagnostic reproducibility.

Regarding the gastrointestinal system, the accumulated data indicate that AI-based 
models might provide diagnostic assistance, prognosis prediction, and biomarker 
development for gastrointestinal cancer (GC). There have been few studies in the 
recent past that have addressed the effectiveness of AI models in GC[8,30]. However, 
effective implementation of these methods in real-life pathology practice requires 
further reviews comparing the results of previous studies and highlighting the 
challenges to be overcome.

This review presents recent data about the AI-based pathological evaluation of GC 
and current challenges for its implementation in gastrointestinal pathology practice 
with future directions to consider.

AI-BASED APPLICATIONS IN DIAGNOSIS OF GC
Recent studies on the use of AI models in the histopathological classification of gastric 
cancer are summarized in Table 2. Although the models used differ among studies, the 
results support that AI-based classification can be used in histopathological 
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Table 2 Artificial intelligence-based applications in gastric cancer

Ref. Task No. of cases/data set Method Performance 

Duraipandian et al[89] Classification 700 slides GastricNet Accuracy (100%)

Cosatto et al[72] > 12000 WSIs MIL AUC (0.96)

Sharma et al[31] 454 cases CNN Accuracy (69%) 

Qu et al[90] 9720 images DL AUCs (up to 0.97)

Yoshida et al[32] 3062 gastric biopsies ML Overall concordance rate (55.6%)

León et al[91] 40 images CNN Accuracy (up to 89.7%)

Liang et al[92] 1900 images DL Accuracy (91.1%)

Sun et al[93] 500 images DL Accuracy (91.6%)

Tomita et al[94] 502 images1 Attention-based DL Accuracy (83%)

Wang et al[95] 608 images Recalibrated multi-
instance-DL

Accuracy (86.5%)

Iizuka et al[33] 1746 biopsy WSIs CNN, RNN Accuracy (95.6%), AUCs (up to 0.98)

Bollschweiler et al[41] Prognosis 135 cases ANN Accuracy (93%)

Hensler et al[42] 4302 cases QUEEN technique Accuracy (72.73%)

Jagric et al[43] 213 cases Learning vector 
quantization NN

Sensitivity (71%), specificity (96.1%)

Lu et al[36] 939 cases MMHG Accuracy (69.28%)

Jiang et al[37] 786 cases SVM classifier AUCs (up to 0.83)

Liu et al[40] 432 tissue samples SVM classifier Accuracy (up to 94.19%)

Korhani Kangi and 
Bahrampour[38]

339 cases ANN, BNN Sensitivity (88.2% for ANN, 90.3% for 
BNN)Specificity (95.4% for ANN, 
90.9% for BNN)

Zhang et al[39] 669 cases ML AUCs (up to 0.831)

García et al[44] Tumor infiltrating 
lymphocytes

3257 images CNN Accuracy (96.9%)

Kather et al[56] Genetic alterations 1147 cases2 Deep residual learning AUC (0.81 for gastric cancer)

Kather et al[47] > 1000 cases3 NN AUC (up to 0.8)

Fu et al[57] > 1000 cases4 NN Variable across tumors/gene 
alterations. Strongest relations in whole 
genome duplications

1Esophageal adenocarcinoma and Barrett’s esophagus.
2Gastric and colorectal cancers.
3Gastric, colorectal, esophageal, and liver cancers.
4Gastric, colorectal, and pancreatic cancers.
AI: Artificial intelligence; GastricNet: The deep learning framework; WSIs: Whole slide images; MIL: Multi-instance learning; AUC: Area under the curve; 
CNN: Convolutional neural networks; DL: Deep learning; ML: Machine learning; RNN: Recurrent neural networks; ANN: Artificial neural network; 
QUEEN technique: Quality assured efficient engineering of feedforward neural networks with supervised learning; NN: Neural network; MMHG: 
Multimodal hypergraph learning framework; SVM: Support vector machine.

evaluations based on the accuracy and area under the curve (AUC) values determined. 
Different models are considered together in a few studies. For example, in a study 
where two DL-based methods were used to diagnose gastric cancer, the mean 
accuracy of both models was shown to be up to 89.7%[31]. In another study that 
compared the classification results of experienced pathologists with those of the ML-
based program created by NEC Corporation, in gastric biopsy specimens, the 
agreement rate for biopsy specimens negative for neoplastic lesions was found to be as 
high as 90.6%[32]. More recently, Iizuka et al[33], who aimed to classify gastric biopsies 
as gastric adenocarcinoma, adenoma, or nonneoplastic mucosa by using AI algorithms 
based on CNNs and RNNs, revealed that the AUC for gastric adenocarcinoma classi-
fication was 0.9, supporting that AI-based models could be helpful in the diagnosis of 
gastric cancer. Although these results suggest that AI can be used to diagnose gastric 
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cancer, it is difficult to relate these data to performance comparisons alone. In research, 
parameters such as the size of the dataset, resolution of detection, multisite validation, 
the number of categories to be classified, and most importantly, the presence of lesions 
other than malignancies that require diagnosis are also critical variables. In particular, 
the latter could be a potential limitation of AI-based models in actual practice. Indeed, 
a gastric biopsy is evaluated not only for malignancy but also for lesions such as 
gastritis and metaplasia. Therefore, an AI model used only for malignancy screening 
in gastric pathology will not reduce the pathologist's workload, as other findings also 
need to be reviewed.

AI applications have also been developed to diagnose colorectal cancer (CRC), 
which may allow classification of lesions as normal, hyperplasia, adenoma, adenocar-
cinoma, and histological subtypes of polyps or adenocarcinomas (Table 3). In an 
elegant study, Korbar et al[34] observed that their AI models could classify five 
colorectal polyp types with a 93% accuracy. In another study, a created DL model was 
able to reclassify colorectal polyps in a manner comparable to those of the pathologist, 
even in datasets from other hospitals[35]. From this perspective, the results of most 
studies are encouraging for the use of AI models in the diagnosis of CRC. However, 
this does not exclude the fact that comparing the performance of those models reliably 
necessitates a common task using a standardized dataset with standardized 
annotations because each model is derived from different datasets with different 
explanations and is focused on different tasks in current studies.

AI-BASED APPLICATIONS FOR PROGNOSTICATION OF GC
Because gastric cancer has more complex and heterogeneous morphological features 
than CRC, most AI-based studies performed on these tumors focus on diagnosis rather 
than prognostication studies (Table 2). Nevertheless, there is some evidence showing 
that AI models can be helpful to evaluate histopathological parameters, such as differ-
entiation and lymphovascular involvement, which are essential in determining the 
survival time[36-38], recurrence risk[39,40], metastasis[41-43], and, accordingly, 
treatment of gastric cancer. In the survival analysis, a higher predictive accuracy for 
overall survival and disease-free survival than the tumor-node-metastasis staging 
system defined by the American Joint Committee on Cancer by SVM application has 
been demonstrated[37]. In addition, this method can also be used to predict adjuvant 
chemotherapeutic benefits, which can facilitate individualized therapy. Another study 
combining the demographics, pathological indicators, and physiological characteristics 
of the study group found that a method using a new multimodal hypergraph learning 
framework to improve the accuracy of survival prediction outperformed random 
forests and SVM in survival prediction[36]. Furthermore, when the artificial neural 
network and Bayesian neural network (BNN) values were compared in survival 
estimation, it was shown that BNN was superior to the artificial neural network 
method[38].

The application of neural networks significantly improves the prediction of lymph 
node metastasis[41]. In addition, in a study to determine the microenvironment that 
can predict tumor behavior, García et al[44]observed that a CNN model could be used 
to detect tumor-infiltrating lymphocytes (accuracy, 96.9%). However, the number of 
these studies should be increased to draw a better conclusion about the application of 
AI-based DP in the prognostication of gastric cancer.

In CRC, DL was found to be effective in predicting prognosis at all stages. For 
example, in a study where RNN analyzed tissue microarrays to predict 5-year disease-
specific survival, the hazard ratio and AUC were determined to be 2.3 and 0.69, 
respectively[45]. In another study, a 99% accuracy was observed in estimating the 
course of the disease using more than 1000 histological images collected from three 
institutions[46]. Finally, in comparing five separate DL networks using 934 cases, 
Kather et al[47] observed that the hazard ratio was 1.99 in determining overall 
survival. In studies investigating the microenvironment with AI-based models in these 
tumors, AUC values ranged from 0.91 to 0.99[47-49]. In another interesting study, 
Weis et al[50] pointed out that detecting tumor bud hot spots with CNN may influence 
determining tumor budding, which plays a role in determining tumor behavior. The 
characteristics of these studies are briefly presented in Table 3. Although this needs to 
be supported and standardized by further comparative studies, all these findings 
suggest that AI can be applied for determining the behavior of CRC.
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Table 3 Artificial intelligence-based applications in colorectal cancer

Ref. Task No. of cases/data set Method Performance 

Xu et al[96] 717 patches (N, ADC 
subtypes)

AlexNet Accuracy (97.5%)

Awan et al[97] 454 cases (N, ADC grades 
LG vs HG)

NN Accuracy (97%, for 2-class; 91%, for 
3-class)

Haj-Hassan et al[98] 30 multispectral image 
patches (N, AD, ADC)

CNN Accuracy (99.2%)

Kainz et al[99] 165 images (benign vs 
malignant)

CNN (LeNet-5) Accuracy (95%-98%)

Korbar et al[34] 697 cases (N, AD subtypes) ResNet Accuracy (93.0%)

Yoshida et al[100] 1328 colorectal biopsy 
WSIs

ML Accuracy (90.1% for adenoma)

Wei et al[35] 326 slides (training), 25 
slides (validation) 157 
slides (internal set)

ResNet 157 slides: Accuracy 93.5% vs 
91.4%(pathologists) 238 slides: 
Accuracy 87.0% vs 
86.6%(pathologists)

Ponzio et al[101] 27 WSIs (13500 patches) 
(N, AD, ADC)

VGG16 Accuracy (96%)

Kather et al[47] 94 WSIs1 ResNet18 AUC (> 0.99)

Yoon et al[102] 57 WSIs (10280 patches) VGG Accuracy (93.5%)

Iizuka et al[33] 4036 WSIs (N, AD, ADC) CNN/RNN AUCs (0.96, ADC; 0.99, AD)

Sena et al[103]

Classification

393 WSIs (12565 patches) 
(N, HP, AD, ADC)

CNN Accuracy (80%)

Bychkov et al[45] 420 cases RNN HR of 2.3, AUC (0.69)

Kather et al[46] 1296 WSIs VGG19 Accuracy (94%-99%)

Kather et al[46] 934 cases DL (comp. 5 networks) HR for overall survival of 1.63-1.99 

Geessink et al[104] 129 cases NN HR of 2.04 for disease free survival

Skrede et al [105]

Prognosis

2022 cases Neural networks with 
MIL

HR 3.04 

Kather et al[47] TCGA-DX (93408 patches)1

TCGA-KR (60894 patches)
ResNet18 AUC (0.77), TCGA-DXAUC (0.84), 

TCGA KR)

Echle et al[55]

Genetic alterations

8836 cases (MSI) ShuffleNet DL AUC (0.92-0.96 in two cohorts)

Kather et al[47] Tumor microenvironment 
analysis

86 WSIs (100000)1 VGG19 Accuracy (94%-99%)

Shapcott et al[48] 853 patches and 142 TCGA 
images

CNN with a grid-based 
attention network

Accuracy (65-84% in two sets)

Swiderska-Chadaj et al[49] 28 WSIs FCN/LSM/U-Net Sensitivity (74.0%)

Alom et al[106] 21135 patches DCRN/R2U-Net Accuracy (91.9%)

Sirinukunwattana et al
[107]

Molecular subtypes 1206 cases NN with domain-
adversarial learning

AUC (0.84-0.95 in the two validation 
sets)

Weis et al[50] Tumor budding 401 cases CNN Correlation R (0.86)

1Gastric, colorectal, esophageal, and liver cancers.
AI: Artificial intelligence; N: Normal; ADC: Adenocarcinoma; LG: Low grade; HG : High grade; NN: Neural networks; AD: Adenoma; CNN: 
Convolutional neural networks; WSIs: Whole slide images; ML: Machine learning; VGG: Visual geometry group; AUC: Area under the curve; RNN: 
Recurrent neural networks; HR: Hazard ratio; DL: Deep learning; MIL: Multi-instance learning; TCGA: The cancer genome Atlas; MSI: Microsatellite 
instability; FCN: Fully convolutional neural networks; LSM: Locally sensitive method; DCRN: Densely connected recurrent convolutional network; R2U-
Net: Recurrent residual U-Net.

AI-BASED APPLICATIONS FOR GENETIC AND MOLECULAR TESTING IN 
GC
In routine practice, evaluating surgical and biopsy specimens of GI cancers is essential 
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for identifying molecular biomarkers that predict the response to targeted therapies. 
This evaluation requires the use of immunohistochemistry or advanced molecular 
techniques.

The detection of genetic alterations called microsatellite instability (MSI), especially 
in CRC, is very important for treatment with immunomodulators[51-53]. In addition, it 
is possible to determine the MSI-related phenotype and identify conditions that 
require family information and close follow-up of the patient, such as Lynch syndrome
[54]. The revelation that some of the genetic events in these cancers are associated with 
certain morphological events has led to several attempts to use AI-based algorithms in 
WSIs. Furthermore, due to the large number of samples available, CRC was seen as a 
prototype for these studies. In this context, accumulated data indicate that AI-based 
models are influential in determining both MSI and other genotypic changes[47,55-
57]. In particular, the DL algorithm developed by Echle et al[55] to detect MSI in CRC 
using more than 8800 images recently showed an AUC of 0.96 in the multi-institution 
validation cohort (Table 3).

There have been other attempts to develop models that directly predict gene 
mutations from the WSI of gastric cancer. In addition, it has been observed that AI 
could also predict gene expression and RNA-seq data, and these models have 
remarkable potential for clinical translation[47,56,57] (Table 2).

However, further additional and prospective validation studies are necessary for GI 
cancers before applying AI in real life to reduce the molecular testing workload and 
allow testing in health care centers with limited resources.

CHALLENGES AND IMPLEMENTATION OF AI-BASED APPLICATIONS IN 
REAL-LIFE PRACTICE
In general, the need for a close review of the steps involved in ethics, design, financing, 
development, validation and regulation, implementation, and impact on the workforce 
in the application of AI in pathology has been highlighted[58].

From this perspective, although AI-based models are likely to play a critical role in 
gastrointestinal pathology, including GC, in the future, several problems similar to 
those in other fields of pathology need to be addressed to ensure implementation. Brief 
information about the difficulties encountered in applying AI models in pathology, 
including GC, and suggested solutions are presented in Table 4.

Ethical considerations
Although consent can be obtained from patients to use data for research purposes, a 
lack of approval for commercial use can cause problems in developing AI models[59]. 
Some researchers argue that this can be resolved by developing a framework for global 
data sharing by obtaining approvals that convey the possibility of commercial use for 
research and product development[30].

Design of AI models
The primary expectation of AI in pathology is to fill gaps and address unmet needs in 
the daily workflow. These needs mainly include workload-intensive and repetitive 
procedures, such as calculating tumor necrosis, mitotic count, and lymph node 
metastases, and diagnosing lesions prone to interobserver variabilities. The main goal 
to consider in developing AI applications in pathology is to solve a real clinical need. 
However, the development of models for AI application in this field of medicine 
involves a variety of stakeholders, including not just pathologists but computer 
scientists, IT, and pharmaceutical companies, which inevitably leads to different 
expectations and perspectives. For example, some may have academic publishing 
purposes, while others may be profitable commercial products. Therefore, an expected 
solution in pathology may not meet the expectations in finance, leading to the 
company not preferring to develop. To overcome these challenges and develop AI 
algorithms that are effectively used in DP, GC, pathologists, academic professionals 
who can develop technology, and companies that will promote the product must 
collaborate in harmony.

Development of AI models
Once AI models are designed and built, their development requires an accurate 
definition of the output, straightforward design of the algorithm, collection of a large 
follow-up sample or even pilot data, data disclosure and processing, and statistical 
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Table 4 Summary of challenges and suggested solutions in development process of artificial intelligence applications

Process Challenges Suggested solutions

Ethical considerations Lack of patient’s approval for commercial use Approval for both research and product development 

Design of AI models Underestimation of end-users’ needs Collaboration with skate holders

CNN: Large amounts of images Augmentation techniques, transfer learningOptimization of data-
sets

Rare tumors: Limited number of images Global data sharing 

Variations in preanalytical and analytical phases AI algorithms to standardize staining, color properties, and WSIs 
quality

Interobserver variations in diagnosis MIL algorithmsAnnotation of data-sets

Discrepancies among performances for trained 
algorithms

Validation Presence of ground truth without objectivity Multicenter evaluations that include many pathologists and data-set

Regulation Lack of current regulatory guidance specific for AI tools New guidelines and regulations for safer and effective AI tools

Implementation Changes in work-flow Selection of AI applications that will speed up the work-flow

IT infrastructure investment Augmented microscopy directed to the cloud network service

The relative inexperience of pathologists Training about AI, integration of AI in medical education

AI applications that lack interpretability ( Black-box) Constructions of interpretable models, generating attention heat map

Lack of external quality assurance Sheme for this purpose should be designed

Legal implications The performance of AI algorithms should be assured for reporting

CNN: Convolutional neural networks; MIL: Multi-instance learning.

analysis.
From this perspective, high-quality dataset optimization can be considered one of 

the biggest obstacles to the development of AI in DP. CNNs require a large number, 
even thousands, of pathological image datasets, to perform adequately[60]. Especially 
in rare tumors, the inability to obtain a very high number of images is quite limiting. 
To overcome this situation, the use of data augmentation techniques and learning 
methods is recommended. In contrast, Jones et al[61] indicated that small-scale datasets 
of < 100 digital slides might be sufficient in the case of transfer learning. Recently, it 
was proposed to develop publicly available datasets for global data sharing. However, 
it cannot be ruled out that very few such datasets are available in pathology, partially 
due to privacy, copyright, and financial issues[62]. Although The Cancer Genome 
Atlas provides many WSIs and associated molecular data, it does not contain enough 
cases for training AI applications for clinical practice[63,64]. Hartman et al[63] pointed 
out that another potential source of datasets could be public challenges provided for 
developing DL algorithms.

Again, developing high performance in AI applications in DP requires training on 
large datasets, which can be affected by the preanalytical (variations in fixation 
protocols and variations in the thickness of tissue sections) and analytical (variations 
in staining techniques and scanning protocols) phases applied to acquire digital 
images[65,66]. Indeed, converting a glass slide to WSI is not a simple task, and color 
modifications may influence the accuracy of AI. For this purpose, several AI 
algorithms have emerged to standardize data in recent years, including staining and 
color properties[67-69]. In addition, several automated algorithms have also been 
provided to standardize WSI quality, which automatically detects regions of optimum 
quality and removes out-of-focus or artifact-related regions, such as DeepFocus[70,71].

Annotation of the dataset
The curation of the dataset should be followed by annotation, which is another 
complex task. The limits of this annotation are broad, depending on AI, ranging from 
classification at the slide level to labeling at the pixel level[7,30]. For pathologists, the 
task of annotating many images is a time-consuming, sometimes challenging effort 
that can affect the accuracy of the models being trained, especially when the task is 
complex, especially if, as in gastrointestinal pathology, the disease selected for 
diagnosis differs significantly among observers (e.g., intramucosal carcinomas) and if 
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the accuracy of dataset descriptions cannot be warranted[72]. Moreover, the trained 
algorithm may not produce the same performance in the dataset when used in other 
medical centers. Recently, many efforts have been made to solve the annotation 
problems that hinder the application of AI in pathology practice[67,73]. The data 
support that multi-instance learning (MIL) algorithms can be applied without detailed 
annotation. In particular, there is evidence that MIL can be effective when there is a 
large dataset and detailed annotations are impossible to obtain[60].

Validation and regulation
The preparation of the annotated dataset is followed by the model development 
process (preparation of the datasets for training, testing, and validation) and the 
selection of the learning method with the ML technique. In this context, the validation 
of AI-based technologies requires an evidence-based approach, and it is emphasized 
that analytical validation should also be considered in a laboratory-centered medical 
discipline, such as pathology[58,73]. Therefore, it is essential to establish steps and criteria 
for validating new tests according to the standards. For example, to validate the image 
analysis used to determine the expression of a biomarker, the technique can often be 
compared to a detailed manual tumor assessment. However, the performance of the 
AI technique compared with that of pathologists is not straightforward, given the 
intraobserver and interobserver variability. Today, there are difficulties associated 
with determining "ground truth" to AI applications. This situation leads to the need for 
repeated validation of the robustness and reproducibility of AI applications in large 
and variable patient groups[30].

There may be a relative lack of validation cohorts in the development of AI-based 
applications in DP. This shortcoming is also contributed by the potential limitation in 
sharing histopathological sections. Although the interobserver variability and 
subjectivity in the evaluations of pathologists also indicate the uncertainty of "ground 
truth" in this aspect, the best measure to overcome this obstacle may be multicenter 
evaluations that include more than one pathologist and dataset. From the perspective 
of GC, the lack of external validation in a substantial number of studies for AI applic-
ations may limit the practical use of AI.

Regulation of AI
Although appropriate regulations are necessary for the safe and effective use of AI in 
pathology, as highlighted by Allen[74], regulatory approval should be structured to 
define the risk-benefit balance, reduce potential harm, produce appropriate verifi-
cation standards, and encourage innovation. On the other hand, the presence of 
various challenges should not be ignored in this regard.

Various regulatory authorities [such as the FDA, Centers for Medicare and 
Medicaid Services (CMS), and the European Union Conformité Européenne (EUCE)] 
are not yet fully prepared for the implementation of AI applications in clinical 
medicine. As a result, AI-based devices are being controlled by old and potentially 
outdated guidelines for testing medical devices.

Currently, in the United States, the FDA is working on new regulations to make AI-
based devices safer and more effective[75]. On the other hand, appropriate validation 
for all laboratory tests using human tissue prior to clinical application is required by 
CMS regardless of FDA approval, and this organization has no specific regulations to 
validate AI applications. Furthermore, the EUCE reported that in vitro diagnostic 
medical device directives will be replaced by in vitro diagnostic regulations in May 
2022[76]. In addition, it is necessary to take into account the regulatory trends of the 
country where AI is implemented.

Implementation
The implementation of AI models in daily pathology practice depends on meeting 
specific requirements by overcoming various challenges. First, a laboratory 
infrastructure equipped to enable AI applications in a time frame that does not 
interfere with patient care is essential. Currently, many pathology laboratories only 
use tissue sections for diagnostic evaluations. However, the implementation of AI 
models will require new DP-related equipment, software, a specific data management 
system, data storage facilities, and, more importantly, a substantial investment to 
cover their cost[77]. In addition, an institutional IT platform is required to enable 
practitioners to operate on-site and cloud-based computing systems. Thus, DP applic-
ations may require significant investment, hindering the implementation of these 
technologies. It has been demonstrated that augmented microscopy directly connected 
to the cloud network service can solve the whole slide scanner setup problem[78]. The 
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cloud-based AI application developed by GOOGLE can also aid in the search for 
morphologically similar features in a target image, regardless of the annotation status
[79].

The relative inexperience of pathologists with AI-based technologies should not be 
overlooked. Therefore, pathologists need to improve their knowledge of both the 
installation of DP systems and the application of AI. Another problem is that, given 
the reported performance of some algorithms, automated AI models are believed to 
outperform pathologists, causing pathologists to be hesitant about these applications
[79-81]. However, current results suggest that AI models are more likely to help 
improve the overall quality of pathological diagnosis and provide relevant additional 
information rather than replacing pathologists[82,83]. Indeed, there will always be a 
need for pathologists to audit technologies and control systems in AI implementation. 
Therefore, pathologists must be aware of the long-term risk-benefit balance of AI 
applications[84]. Since current DL-based AI applications lack interpretability, it may be 
helpful to develop AI solutions that end-users can interpret, thus providing them with 
detailed explanations of how their predictions are made. Although DL's "black box" 
problem has not been fully resolved, several solutions have been reported, such as 
constructing an interpretable model, generating an attention heatmap, and 
constructing an external interpretive model[85-88].

While AI assistance in pathological diagnosis may reduce the opportunities for 
learning diagnostic skills during pathology training, resident pathologists should be 
trained and encouraged to learn the utility, limitations, and pitfalls of AI application as 
an adjunct method to improve the quality and precision of clinical diagnoses. 
Therefore, some reforms may be required in pathology training, starting with medical 
education followed by a pathology education program to address a more accurate and 
safer implementation of AI in pathology practice[84].

Like other clinical tests, quality assurance is an important issue for the effective use 
of AI in DP, and consequently, a scheme of external quality assurance for applications 
should be urgently prepared for its implementation. Furthermore, laboratory staff 
should be aware of the quality management system.

Beyond all this, the legal implications of signing a report prepared by a pathologist 
using AI should not be ignored. Therefore, to include AI findings in a pathological 
report, the performance of the algorithm must be assured. This legal issue also 
supports the notion that AI cannot replace pathologists but that AI can be used to 
support pathologists in clinical trials.

CONCLUSION
AI-based approaches have the potential to contribute to the pathological diagnosis and 
staging of GC by improving workflows, eliminating simple errors, and increasing 
diagnostic reproducibility. It is also the case that it encourages biomarker discovery by 
revealing impossible predictions using traditional visual methods. However, there are 
many hurdles to overcome, including infrastructure and the generalization of 
algorithms. Overcoming these obstacles requires the efforts of computer scientists, 
pathologists, and clinicians, who will deal with each challenge separately and 
cooperate in harmony. In this way, AI applications that are user-friendly, explainable, 
manageable, and cost-effective can play a crucial role in the development of 
pathological assessments to be used in the diagnosis, prognosis, and treatment of GC.
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