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Abstract
Fifth-generation wireless network, 5G, is expected to bring surgery to a next level. 
Remote surgery and telementoring could be enabled and be brought into routine 
medical care due to 5G characteristics, such as extreme high bandwidth, ultra-
short latency, multiconnectivity, high mobility, high availability, and high 
reliability. This work explores the benefits, applications and demands of 5G for 
surgery. Therefore, the development of previous surgical procedures from using 
older networks to 5G is outlined. The current state of 5G in surgical research 
studies is discussed, as well as future aspects and requirements of 5G in surgery 
are presented.

Key Words: 5G; Wireless networks; Remote surgery; Telesurgery; Telementoring; Robotic 
surgery
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Core Tip: Very few research studies have been conducted to prove efficacy and 
feasibility of 5G in surgery so far, with most of these studies being case studies. All of 
them reported a stable 5G network proving 5G to be feasible for surgery. However, 
detailed information about the data rate and latency are missing. More research efforts 
are demanded to explore questions like the combination with new technologies, e.g., 
Virtual Reality, political regulations, or cyber-security if 5G becomes the backbone of 
next-generation surgery.
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INTRODUCTION
The use of the Internet in the medical field emerged over time. With the current global 
situation dealing with coronavirus disease 2019, it has become clear that the healthcare 
system is dependent on the Internet more than ever. The Internet presents a base to 
solve existing problems in our health care system. First, medicine being impersonal 
instead of individual. Second, healthcare being provider-centered instead of invalid-
centered. Finally, medical treatment being unevenly available instead of accessible to 
any ethnicity, income, and geographic location[1].

Looking at the problems in the field of surgery, it has been reported that surgical 
procedures are not provided worldwide due to a lack of trained professionals[2,3], and 
besides the invention of laparoscopic surgery most surgeries are technically still 
performed as they were a hundred years ago[4]. In 1994, Simon[5] already forecasted 
that the future of surgery in the 21st century will be characterized by an increased 
distance between the patient and the surgeon.

One step in this trend was the introduction of robotic surgery. Though, it has not 
passed the threshold to standard use in clinic yet. To play a role in surgery where high 
precision and reliability are an unquestionable requirement, the evolution of the 
Internet to 5G - 5th generation mobile network - seems to be the promising and 
necessary surgical tool in the operating room that will ultimately avail the existing 
innovations of surgical technologies.

This review aims to clarify the potential benefits and applications of 5G in surgery. 
Therefore, a brief historical overview and the development of previous surgical 
procedures using the Internet are provided. Next, 5G and its characteristics are 
described, followed by a current state summarization of 5G in surgical research 
studies. Finally, future aspects and requirements of 5G in surgery are outlined.

LITERATURE REVIEW
A literature review was conducted by two researchers (Börner Valdez L, Fuchs HF) 
individually. The search terms of “5G”, “5G network” or “wireless network” paired 
with “surgery”, “remote surgery” or “telesurgery” applied to PubMed yielded a total 
of 6538 search results. An additional Internet search and reviewed references yielded 
an additional 20 records. After screening the abstracts for eligibility and removing 
duplicates, 137 articles were left. Research studies, case reports, reviews or book 
chapters in English were included for the purpose of this study. After full-text articles 
were read, 53 articles remained for this study.

INTERNET – BACKBONE FOR MODERN SURGERY
History of the Internet in surgery
Two studies are frequently cited in the related research and constitute noteworthy 
enablers for a next step in modern surgery. One is the “Lindbergh Operation” 
conducted by Marescaux et al[6] in 2001. Marescaux et al[6] performed a safe and 
uneventful cholecystectomy on a woman in Strasbourg, France, using the ZEUS 
robotic system. The extraordinary feature of this case was that the procedure was 
performed from New York City, United States, 6.000 km away from the patient’s 
bedside. To do so, a transatlantic fiberoptic connection (referred to as ATM) was 
established. This connection enabled the use of a guaranteed bandwidth of 10 Mbit/s 
for both the robot motion and video data. A latency of 155 ms was measured, thereby 
ranging under the previously stated safe latency threshold of 300 ms[7,8]. The costs for 
the medical and technical staff, the robot and the Internet connection exceeded 1 
million US dollars[6].

In 2003, Anvari[9] aimed to show that remote surgery is advantageous, especially for 
countries with a greater portion of rural areas. Therefore, 22 abdominal surgeries were 
performed remotely between two locations in Canada, 400 km away from each other, 
using the ZEUS robotic system without any intra- or postoperative complications. 
Compared to the Marescaux’s operation, a commercial Internet Protocol/Virtual 

https://dx.doi.org/10.37126/aige.v2.i1.1
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Private Network (i.e. IP/VPN) was used at a bandwidth of 15 Mbit/s. The latency was 
comparable, between 135 and 140 ms[10]. The costs reached 2.5 million US dollars, 
including the costs for exploring the Internet requirements and solutions for this 
operation[11].

Both studies were conducted successfully and uneventfully, proving that the 
technical requirements to separate the surgeon from the patient side already existed 20 
years ago. These studies also show that, in remote surgeries, the Internet plays a 
fundamental role in the operating room, even if some fine touch adjustments were 
needed in matters of bandwidth, latency, and costs at that time.

Advantages of the Internet in surgery
Taking the idea of using the Internet in surgery one step further, possibilities open up 
which are not new as an idea but have not been fully reached nor transferred into 
daily practice yet. As mentioned before, remote surgery could serve areas which are 
geographically difficult accessible, or by simply saving long-distance travel and costs. 
Hence, the expertise of specialized surgeons could still be experienced from far 
away[10,11].

Minimizing the transmission of infectious diseases or avoiding dangerous 
environments in general is more relevant than ever[12,13]. Both the patients and the 
medical staff could minimize these risks if remote surgery would become more 
applicable[14,15]. To provide surgical care in risky surroundings or battlefields has 
always been of interest to the military and naval sectors. Therefore, it is not surprising 
that a lot of research in telesurgery has been initiated by the military[16,17].

However, not only extreme situations have to be thought of in regards to how the 
Internet could improve surgical care. Specialized surgeons could either collaborate on 
a national or international level, or unexperienced surgeons could be trained and 
mentored through remote surgery[18,19]. Surgical education could therefore expand in 
both directions — in width and depth.

Problems and requirements of the Internet in surgery
Already in 1996, Smithwick[20] defined the network requirements for surgery, as 
follows: “reliability; an acceptable end-to-end delay; the ability to transfer data from 
sources with widely different data rates; low data error rate.” Furthermore, availability 
needs to be added to this listing, especially if remote surgery or telementoring shall be 
utilized at any time, from any place[14,16].

Previous studies exposed the flaws and examined the necessary requirements for 
networks in surgery, mainly bandwidth and latency. The bandwidth describes the 
possible data volume transmitted per time unit[21]. Rayman et al[22] explored the 
minimum bandwidth for safe remote surgery and found that a bandwidth above 5 
Mbit/s should be achieved, whereas Anvari[11] stated that 7 Mbit/s would be needed 
for remote surgery. Bandwidths used in previous studies for remote surgery - mainly 
for the video and the robotic signals – have ranged from 10[6] and 15[10] to 23[23,24] and 
40[25] Mbit/s.

Latency describes the time amount for data to be transmitted from the sending 
source to the receiver[21]. For remote surgery, latency must be kept as low as possible. 
The higher the latency, the more surgical performance deteriorates[8,25-27], even though 
adaption occurs[28,29]. Acceptable latency in remote surgery has been determined as 
below 300 ms, in various studies[6,9,30-32]. Both ideal bandwidth and latency are crucial 
determinants for the Internet to be sufficient in modern surgery.

5G - FIFTH-GENERATION WIRELESS NETWORKS
Properties of 5G
Networks used for surgery evolved over time from satellite[22,24,28,29], Integrated Services 
Digital Network[8,33-35], ATM[6,7] and IP/VPN[10,27] to the current wireless networks[36]. 5G 
could meet the previously outlined demands for surgery which were not reached by 
its predecessor, the 4G/Long-term evolution (LTE) mobile communication 
standard[1,37,38]. To have a better understanding of the improvements compared to LTE, 
the properties of 5G are described herein (Figure 1, Table 1).

5G is characterized by its extremely high data rate, up to 10 Gbit/s, thus being 100 
times faster than LTE[39-42]. The high data transmission is explained by high frequencies, 
up to 30 GHz[40,43]. However, the high frequencies of 5G explain two disadvantages 
compared to LTE. With higher frequencies, wavelengths become smaller and therefore 
have worse penetration of objects. Consequently, LTE is less susceptible to blockage by 
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Table 1 Comparison between long-term evolution and 5G[40]

Characteristic 4G/LTE 5G

Data rate 0.01-1 Gbit/s 0.1-20 Gbit/s

Latency 10 ms 1 ms

Mobility ~ 360 km/h ~ 500 km/h

Energy efficiency 0.1 mJ per 100 bits 0.1 µJ per 100 bits

LTE: Long-term evolution.

Figure 1 Data rate of distinct networks in Gbit/s[59]. ISDN: Integrated services digital network; LTE: Long-term evolution.

objects in a room than 5G[44,45]. Second, 60 times less distance can be overcome by the 
high bands of 5G[44].

The latency of 5G is about 1 -2 ms, which represents a 10-fold decrease in latency of 
LTE[38-42]. 5G is less energy-consuming than LTE (0.1 µJ per 100 bits vs 0.1 mJ per 100 
bits)[39,41]. With 5G, simultaneous mobile use and device connectivity (massive 
multiple-input multiple-output; i.e. MMIMO) increase by a 100-fold compared to 
4G/LTE. Further key features of 5G are high availability and stable reliability[41,42].

Benefits and applications of 5G in surgery
Knowledge of the 5G characteristics makes its use as a platform for new-generation 
surgery seem possible.

As outlined before, key requirements for remote surgery are a high bandwidth with 
a fast data transfer and without delays. 5G mobile networks meet these requirements. 
With a data rate in the gigabit range, previously stated necessary bandwidths of 7 
Mbit/s[11] are easily met. The same applies to the necessary latency for remote surgery, 
which has been defined as below 300 ms[6,9,30-32]. 5G offers a 1 ms latency and therefore 
represents a huge improvement for this crucial aspect in surgery.

With its high speed, low latency and wireless transfer, multi-connectivity between 
multiple devices or users is possible[41,42]. This opens the door for real-time 
telementoring with the option to participate and interfere from a distant location. This 
does not only mean a gain in surgical quality. It can mean a cost and time reduction in 
the microcosmos of a hospital under increasing economic pressure of the health 
system, e.g., a surgeon can operate from their office, with less staff in the operating 
theater and saving of materials. Globally, long-distance travel can be decreased, even 
though real-time exchange would still be possible.

Not only videos or pictures could be transferred in high definition (e.g., 4K and 
8K)[38]. The sensual experience in robotic surgery could be extended in matters of tactile 
sensation. Not only can the executive device adapt the movements of the surgeon but 
also the surgeon can experience haptic feedback when the patient is connected to a 
sensing device[46,47]. This equates to a great data load, which could be transmitted 
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through 5G. Especially in surgery, the sense for tissue is of great importance. The 
transfer of this information represents an innovative possibility.

Robotic surgery could furthermore be combined with virtual reality (referred to as 
VR) and augmented reality (referred to as AR) technology. With 5G, this technology 
can expand and be refined for surgery. It could be used for surgical education as well 
as for safer and more accurate surgery[38,41]. Collected data during robotic surgery could 
be processed for either machine learning (referred to as ML) or artificial intelligence 
(referred to as AI)[1]. Furthermore, it could be shared and transferred at another speed 
and size for research purposes[41].

With 5G, it is expected that the Internet of Things (referred to as IoT) technology 
will become possible. IoT means that any physical object and its use could be 
connected to each other virtually, creating a whole new data cloud[45]. At best, these 
data will facilitate processes in daily life. An already existing IoT-technology in the 
medical sector is the monitoring of blood sugar levels of patients with diabetes via an 
integrated sensing device and smartphones. This technology could be extended, 
meaning that other human measurable parameters could be directly transmitted from 
an integrated sensing device to a monitor wirelessly and remotely[1].

In surgery, these health devices could monitor patients before and after the 
operation to filter and prevent complications early or simply to come to an early 
diagnosis. Monitoring and extracting medical information through these devices could 
offer a new perspective about diseases on an individual basis and therefore bring 
about new aspects of treatment[1,47].

CURRENT STATUS OF RESEARCH: 5G IN SURGERY
Some of these possible features and applications still sound far away. However, the 
global implementation of 5G has already begun. Obviously, experiments with only 
machines or devices are easier to conduct and have less risks. Therefore, it is not 
surprising that medicine lags with the incorporation of new technologies. Very few 
clinical studies have been conducted so far to prove the benefit of 5G for surgery, most 
likely due to the lack of a standard 5G network and the expense to establish a technical 
setup.

It is of note that the first telesurgical procedures with 5G network were reported 
from China. One was a porcine liver resection and the other was a human brain 
surgery in 2019. Both procedures were supported by Huawei, the biggest network 
provider of 5G[48,49]. Although, it is hard to find any detailed information about these 
two procedures outside of the Huawei online page and Chinese media. No related 
scientific research papers have been published for these two cases, to the best of our 
knowledge. Therefore, only published research papers on 5G in surgery will be 
considered herein (Table 2).

Jell et al[37] evaluated whether 5G technology is suitable for surgery, in 2019. The 
study design contained a theoretical and a technical part. First, a structured 
questionnaire (Delphi study) was conducted to explore the benefits and demands for 
surgery by 12 professionals; nine of the participants were from the industry. Second, 
two case studies examined the technical feasibility and parameters of 5G in the 
operation room. Therefore, tracking and tracing of static (n = 4) and moving (n = 4) 
objects was investigated in the operating theater by 5G locators. The second case study 
simulated the remote robotic camera control (SoloAssist; AKTORmed GmbH) in a 
phantom, by both inexperienced and advanced medical staff (n = 15). Only camera 
positioning was performed without any surgical tasks. The Delphi study showed that 
the majority agreed in the general, useful capability of 5G for the health care sector but 
more research efforts, especially in daily clinical routine, and global standards are 
requested. More than a half of the respondents expected benefits for rural areas 
through telemedicine and advocated for state-funded support. The participants were 
neutral about industrial funding but recommended early participation of the industry 
for the realization of 5G in medicine. No statement about the additional effort and 
justified costs to establish 5G in hospitals was possible. The tracking and tracing of 
static and moving objects in the operating room was possible; though, the tracking of 
objects revealed some inaccuracies. The robotic test case showed data rates of the 
video and robotic signals together around 8 Mbit/s. The latency ranged between 2-60 
ms, with most data (75%) being transferred after 30 ms. No disruption of the network 
was noted.

Lacy et al[50] performed the first telementored surgery using 5G network to prove 
feasibility and benefits. Two procedures (laparoscopic high or low anterior resection) 
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Table 2 Research studies using 5G for surgery

Ref. Yr Study type Robot system Location - remote 
distance Data rate Latency

Jell et al[37] 2019 (1) Delphi study; and (2) 2 use cases: 
(a) Track and tracing; and (b) Remote 
robotic camera control on phantom

SoloAssist 
(AKTORmed)

Munich (Germany): 
Not indicated

~ 8 Mbit/s 2-60 ms

Lacy et al[50] 2019 Telementoring with telestration: (1) 
Laparoscopic ant. high resection; and 
(2) Laparoscopic ant. low resection

- (1) Barcelona (Spain): 4 
km; and (2) Shanghai 
(China): 6 km

(1) 95-102 
Mbit/s; and (2) 
99-106 Mbit/s

(1) 202 ms; and (2) 146 ms

Acemoglu 
et al[51]

2010 Brief research report: Remote 
microsurgical cordectomy on a 
cadaver

Panda robot (Franka 
Emika); 3D-microscop 
(Karl Storz)

Milan (Italy): 15 km - One-way video latency: 
102 ± 2 ms (max. ≤ 140 
ms); Round-trip latency: 
280 ms

Tian et al[52] 2020 Remote spinal surgery on human (n 
= 12)

TiRobot system (Tinavi) Beijing (China): 120 
km; 280 km; 750 km; 
1200 km; 3000 km

- 28 ms

Zheng 
et al[53]

2020 Remote laparoscopic surgery on 
porcine model (n = 4)

MicroHand (WEGO 
Group)

Quingdolo (China): 
3000 km

- Mean round trip latency: 
264 ms (258-278 ms)

were safely performed in Spain and China. The distance between the mentoring 
surgeon and the operation side was 4 and 6.2 km respectively. The remote surgeon 
carried out his mentoring function through verbal communication and telestration, so 
that the surgeon to drew on the laparoscopic image which was received by the 
operating team at the same time. Both surgeries were performed without signal 
interruption. Image and transmission quality were highly rated by both surgeons. A 
data rate of 98 and 101 Mbit/s and a latency of 202 and 146 ms were recorded 
respectively.

In 2020, Acemoglu et al[51] presented a case report where a remote microsurgical 
cordectomy was performed effectively on a human cadaver from a distance of 15 km 
using 5G network. The robot used for surgery was the Panda robot (Franka Emika) 
and visualization was established by 3D-microscopy (Vitom 3D; Karl Storz). Neither 
information about the data rate nor about the latency of the robotic effector movement 
solely was indicated by the authors. The maximum video-transmission latency was 
below 140 ms. The maximum round-trip latency was 280 ms.

Tian et al[52] performed 12 cases of remote spinal surgeries on humans with lumbar 
spinal disorders using a surgical robot (TiRobot system) and 5G network. The aim was 
also to test the reliability and therefore applicability of 5G for surgery. The remote 
surgeon, located in Beijing, conducted the pedicle screw planning and robot arm 
positioning for five different patient sides, with distances ranging from 120 to 3000 km. 
The surgeons on the patient side performed the screw placement. No detailed data 
about the number of surgeries or technical parameters of the network at each location 
was provided. Additionally, the remote surgeon guided the following two operations 
at different locations at one time, called “one-to-many-remote-surgery”: A one-to-two 
operation sides (Beijing to Shangdong and Zhejiang) and a one-to-three operation 
sides (Beijing to Xianjiang, Hebei and Tianjin). There was no network disruption in 
any case. The mean network latency was reported to be 28 ms but was not explained 
further. No data was provided about the data rate. The pedicle screw implantation 
was rated acceptable in all cases and there were no intraoperative complications.

Zheng et al[53] evaluated the efficacy, availability, reliability, and safety of 5G in four 
remote laparoscopic surgeries on a porcine model using the MicroHand robot system (
n = 4; nephrectomy, hepatectomy, cholecystectomy and cystectomy). The remote 
surgeon was located 3000 km away from the patient side in China, connected via 5G 
network with a bandwidth of 1 Gb/s. A wired Internet connection served as reference 
with a bandwidth of 100 Mbit/s. The procedures were conducted safely without any 
adverse effects. No network errors were noted. The mean total latency of 5G was 264 
ms (258-278 ms), whereas the mean latency of the wired Internet connection was 
shorter, with 206 ms (204-210 ms). The parts of the total latency consisted of the mean 
round-trip delay, the servo period of the surgical robot (< 1 ms), the mechanical 
response delay of the robot (40 ms), the endoscope imaging and image processing 
delay (50 ms), and the video codec delay (60 ms). Mentioned times were the same in 
both network setups but the mean round-trip delay was 114 ms (108-124 ms) for 5G 
and 56 ms (54-60 ms) for the wired network setup. The data rate was not mentioned in 
this study.



Börner Valdez L et al. 5G in surgery

AIGE https://www.wjgnet.com 7 March 12, 2021 Volume 2 Issue 1

DISCUSSION, FUTURE ASPECTS AND DEMANDS FOR 5G IN SURGERY
The described studies evaluating 5G for surgery comprise a technical report using a 
use case on a phantom[37], one remote telementoring study with two use cases on 
humans[50], one brief research report about remote microsurgery on a cadaver[51] and a 
remote laparoscopic surgery on four pigs[53] but only one interventional study with 12 
patients undergoing remote robotic neurosurgery[52]. This status quo demonstrates that 
surgery using 5G has not passed the threshold of a first-line approach. As a matter of 
fact, only very few randomized studies on telesurgery and telementoring using older 
networks have been published so far[54,55]. Though, randomized studies must follow.

However, case studies are a good start to develop an understanding about the 
technical details of the network and to detect first obstacles. Jell et al[37] and Lacy et al[50] 
provided the first data about the particular data rate and latency of the video and 
robotic camera movement signals. Both studies, though, did not use 5G technology to 
directly perform surgical tasks. Only the work of Tian et al[52] included robotic 
movement control for spinal surgery on humans but they did not provide any data 
about the particular data rate. However, it would be of great interest to know how a 
higher data size of robotic control would be transmitted through 5G.

Only Zhen et al[53] provided detailed information about their results regarding 
latency. The measured total latency using the 5G network (264 ms), though, was 
longer than the reference setup using a wired connection (206 ms). When looking 
closer at the parts causing the latency, it is noticeable that the 5G and wired connection 
setup only differ in the time of the mean round trip delay. A detailed explanation for 
the longer mean round trip delay of the 5G network was not provided by the authors. 
A lack of enough 5G antennas between the patient and surgeon side might be an 
explanation. The authors pleaded for 5G, due to such benefits as its multimodal data 
transmission, higher bandwidth and being wireless, which therefore provide great 
mobility, even in rural areas which are difficult to access.

Lacy et al[50] argued that recorded latencies could have been faster in their setup if 5G 
would have been the connecting network of any device in the whole study setup, and 
not only two 5G antennas between the patient and mentor side. Furthermore, 
adequate image processing software for coding and decoding video signals would 
lead to shortened latencies. Jell et al[37] explained measured inaccuracies in their 
tracking setup due to other, intermediate objects interrupting the signals to the 5G 
receiver. Both examples show that further software innovations for the use of 5G is 
demanded. Overall, published data using 5G in surgery lacks technical details and 
needs to provide more information about the composition of data rate and latency for 
further improvements.

None of the cited studies used the Da Vinci robot system (Intuitive Surgical Inc.). 
However, the Da Vinci surgical system is the most used surgical robot worldwide[56]. 
To evaluate whether 5G works for remote robotic surgery in a broad spectrum of 
surgical fields, research efforts need assess the technical feasibility with the Da Vinci 
system. Furthermore, new technologies such as AI, ML, VR or AR that are being 
claimed to contribute to surgery have not been studied with 5G and surgery 
scientifically, to our knowledge.

All authors of the studies using 5G for surgery agreed in the benefit of telesurgery 
for remote areas. This is in accordance with previous literature as outlined before. 
However, none of the described studies mentioned the costs to establish 5G-based 
surgery. Van Wynsberghe et al[15] justifiably raised the objection that aforementioned, 
remote areas - usually rural and low-income areas – will not have the means to afford 
highly advanced technology.

It is estimated that the network expansion of 5G in a country of size and economic 
status similar to Germany’s would cost tens of billions of Euros[57]. Therefore, a 
depiction of the costs establishing such a technical system like robotic surgery with 5G 
is important. It could elucidate to what extent financial support or funding by the 
government or a Union of States is needed. This has also been demanded in the Delphi 
study of Jell et al[37].

Three of the five described studies used a 5G network provided by Huawei[37,52,53]. 
Huawei – a Chinese company - is the biggest 5G technology provider worldwide, far 
beyond other providers. In times of the predominance of virtual technologies, Huawei 
has been in the spotlight of geopolitical interests between China and the United 
States[58]. The matters of security and reliability are crucial in surgery. Not only does 
the network itself have to be stable enough to perform safe surgery, which has been 
proven by the outlined studies[37,50-53], but also cybersecurity now needs to be an issue 
of interest if the 5G wireless network will be the basis of modern surgery. Patient data 
and data transmission must be protected against cyber-attack.
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Although the 5G technology already exists, the biggest technical issue is simply its 
pending implementation in daily life. In Germany, the expansion of the 5G network 
was subjected to a politically regulated and costly tender. Now, four providers have 
started to offer 5G in Germany, but it is far from being universally available[57]. Due to 
its high frequencies, more antennas are needed to create a stable 5G network. 
Therefore, more radio masts need to be constructed in urban as well as in natural 
areas. However, this might interfere with citizen movement and nature conservation 
organization interests.

From an ethical point of view, the topic of dehumanizing can become a greater issue 
when remote surgery becomes reality with 5G. The surgeon will not physically 
interact with his patient and therefore may be more likely to comprehend his patient 
just as a data set[15]. The sense of responsibility can be lost, and the criticized 
mechanization of medicine could be enhanced instead of resolved by 5G.

Consequently, 5G in surgery is not just a topic of medicine. It is a global, political 
issue which needs to be discussed from a political point of view as well. 
Recommendations and laws regarding how to handle this new technology in a 
practical but safe manner in medicine need to be addressed. These laws cannot just 
follow the geographical boundaries of states. One of the major advancements of the 
Internet is global networking. Practicing the advancement that surgery could be 
possible with 5G regardless of boundaries, legal and ethical agreements must be 
established on an international level.

CONCLUSION
Introduction of the fifth-generation wireless network, 5G, is forecasted to finally 
enable long-awaited establishment of telesurgery and telementoring in routine 
medical care. The first trials to prove the feasibility of remote surgery using the 
Internet were conducted decades ago and identified important network parameters for 
safe surgery, such as bandwidth, data rate and latency. 5G is supposed to meet these 
requirements with its enormous bandwidth, very short latency, multi-connectivity, 
high mobility, high availability, and high reliability.

Very few research studies are present in the literature to prove efficacy and 
feasibility of 5G in surgery so far and most of these studies are case studies. 
Nevertheless, all of them have reported safe surgery without connection disruption of 
the 5G network. However, these studies lack detailed information about the data rate 
and latency. More in-depth studies as well as finally randomized studies need to 
follow.

Combination of surgery with new technologies such as AI, ML, VR and AR using 
5G as the providing network remains an issue of interest. Furthermore, questions like 
costs, political regulations on a national as well as international level, and data security 
need to be taken in consideration if 5G becomes an integral part in next-generation 
surgery.
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Abstract
In recent years, artificial intelligence has been extensively applied in the diagnosis 
of gastric cancer based on medical imaging. In particular, using deep learning as 
one of the mainstream approaches in image processing has made remarkable 
progress. In this paper, we also provide a comprehensive literature survey using 
four electronic databases, PubMed, EMBASE, Web of Science, and Cochrane. The 
literature search is performed until November 2020. This article provides a 
summary of the existing algorithm of image recognition, reviews the available 
datasets used in gastric cancer diagnosis and the current trends in applications of 
deep learning theory in image recognition of gastric cancer. covers the theory of 
deep learning on endoscopic image recognition. We further evaluate the 
advantages and disadvantages of the current algorithms and summarize the 
characteristics of the existing image datasets, then combined with the latest 
progress in deep learning theory, and propose suggestions on the applications of 
optimization algorithms. Based on the existing research and application, the label, 
quantity, size, resolutions, and other aspects of the image dataset are also 
discussed. The future developments of this field are analyzed from two 
perspectives including algorithm optimization and data support, aiming to 
improve the diagnosis accuracy and reduce the risk of misdiagnosis.

Key Words: Endoscope; Artificial intelligence; Algorithm optimization; Data support

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Gastric cancer is a life-threatening disease with a high mortality rate. With 
the development of deep learning in the image processing of gastrointestinal 
endoscope, the efficiency and accuracy of gastric cancer diagnosis through imaging 
technology have been greatly improved. At present, there is no comprehensive 
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summary on the graphic recognition method for gastric cancer based on deep learning. 
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INTRODUCTION
Gastric cancer is a life-threatening disease with a high mortality rate[1]. Globally, more 
than 900000 individuals develop gastric cancer each year out of which more than 
700000 Lose their lives. Gastric cancer is second only to lung cancer in terms of 
mortality[2]. Unlike the developing countries, the number of diagnosed cases and the 
mortality rate of this cancer are declining in the developed countries such as those in 
the EU and North America[3,4].

Around 50% of the world's gastric cancer cases are diagnosed in Southeast Asia[5]. 
In China, gastric cancer is also second to lung cancer in terms of the number of annual 
cases, for instance, 424000 new patients are annually diagnosed with gastric cancer, 
accounting for more than 40% of the global total, out of which 392000 Lose their lives 
ranking the fifth and the sixth worldwide in annual morbidity and mortality, 
respectively[6].

The diagnosis of gastric cancer mainly relies on clinical manifestation, pathological 
images and medical imaging[7]. Compared with other methods such as pathological 
diagnosis, medical imaging provides a simple non-invasive and reliable method for 
the diagnosis of gastric cancer which is more accessible and efficient, easier to operate 
and has almost no side effects for the patients[8].

Doctors make a judgment based on medical imaging which mainly depend on their 
experience from similar cases, hence, occasional misdiagnosis is inevitable[9,10]. With 
the rapid development of computer technology and artificial intelligence, deep 
learning techniques are extremely effective in various branches of image processing 
and have been used in medical imaging to improve cancer diagnosis[11-13]. Danaee 
et al[14] established a deep learning model for colorectal cancer image recognition, the 
results showed that the deep learning method can achieve more effective information 
and is far more efficient than the way of manual extraction. Burke et al[15] found that 
deep learning could classify and predict mutations of NSCLC based on histopatho-
logical images, and the recognition efficiency of deep learning was much higher than 
that of manual recognition. Muhammad Owais et al[16] proposed a deep learning 
model to classify a variety of gastrointestinal diseases by recognizing endoscopic 
videos. This model can simultaneously extract spatiotemporal features to achieve 
better classification performance. Experimental results of the proposed models showed 
superior performance to the latest technology and indicated its potential in clinical 
application[16].

Endoscopic images are mostly used in gastric cancer diagnosis[17]. Endoscopic 
images contain a lot of useful structural information which can be used for deep 
learning algorithm, the algorithm can carry out purposeful image recognition[18]. 
Most of the image recognition based on gastric cancer diagnosis methods adopt 
supervised deep learning algorithms, mainly because the monitored network in 
supervised learning makes full use of the labeled sample data in the training and can 
obtain more accurate segmentation results[19].

In fact, the purpose of medical image recognition is to identify the tumor and we 
call this process image segmentation[20-22]. Accurate segmentation of tumor images is 
an important step in diagnosis, surgical planning and postoperative evaluation[23,24]. 
Endoscopic images segmentation can provide more comprehensive information for the 
diagnosis and treatment of gastric cancer, alleviate the doctor's heavy work for reading 
film and improve the accuracy of diagnosis[25]. However, due to the variety and 
complexity of gastric tumor types, segmentation has become an important and 
difficult problem in computer-aided diagnosis. Compared with the traditional 
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segmentation methods, the deep learning segmentation method of gastric tumor 
image has achieved obvious improved performance and rapid development[26,27].

As mentioned above, the deep learning method based on supervised learning can 
fully mine the effective information of existing data. However, when the amount of 
existing data cannot meet the requirements of model training, it is necessary to find 
ways to increase the data scale[28]. The deep learning based on unsupervised learning 
can generate samples, which are similar to the existing samples in dimension and 
structure, but not identical. At present, relevant research results have been 
obtained[29]. Researchers use semi-supervised and unsupervised image recognition 
algorithms to generate samples like training samples, to improve the accuracy of 
gastric cancer tumor recognition and enhance the robustness of the model[30].

In this paper, deep learning-based diagnosis of gastric cancer based on endoscope 
images is summarized and analyzed. The adopted segmentation networks in the 
previous works can be divided into three categories: the supervised network, semi-
supervised network, and unsupervised network. The basic idea of the recognition 
method, the basic structure of the network, the experimental results, as well as their 
advantages and disadvantages are summarized. The performance of typical methods 
above-mentioned in recognition is compared. Finally, we hope to provide insights and 
concluding remarks on the development of deep-learning-based diagnosis of gastric 
cancer.

RELEVANT DATA SETS AND ALGORITHM EVALUATION INDEXES 
Relevant datasets
To promote the progress of image recognition and make an objective comparison of 
available image recognition methods for gastric cancer diagnosis, we investigate the 
commonly used datasets including the GR-AIDS provided by Medical Image 
Computing and Computer Assisted Intervention Society as well as those internal 
datasets.

The GR-AIDS dataset established by Sun Yat-Sen University Cancer Center consists 
of 1036496 endoscopic images from 84424 individuals. This dataset is used according 
to the 8:1:1 pattern, the data is randomly selected for training and internal validation 
datasets for GR-AIDS development as well as for evaluating GR-AIDS perfor-
mance[31].

Using clinical data collected from Gil Hospital, Jang Hyung Lee et al[32] also 
established a data set containing 200 normal cases, 367 cancer cases, and 220 ulcer 
cases. The data was divided into training sets of 180, 200, 337 images and test sets of 
20, 30, 20 images. To improve the local contrast of the image and enhance the edge 
definition in each area of the image, histogram equalization was adopted to further 
enhance the image, the images’ size was adjusted to 224 × 224 pixels [32].

Hirasawa et al[32] collected 13,584 endoscopic images of gastric cancer to build an 
image database. To evaluate the diagnostic accuracy, an independent test set of 2296 
gastric images was collected from 69 patients with continuous gastric cancer lesions 
constructed as convolutional neural network (CNN). The image has an in-plane 
resolution of 512 × 512[33].

Cho et al[34] collected 5017 images from 1269 patients, of which 812 images from 212 
patients were used as the test data set. An additional 200 images from 200 patients 
were collected and used for prospective validation. The resolution of the images is 512 
× 512. The information for all major databases is shown in Table 1[34].

Introduction of evaluation indexes
To evaluate the effectiveness of each model in diagnosing gastric cancer, the following 
evaluation indicators are commonly used in the related literature (Table 2): DICE 
Similarity Coefficient (DICE, 1945), Jaccard Coefficient (Jaccard, 1912), Volumetric 
Over-lap Error (VOE), and Relative Volume Difference (RVD).

Here we define the following variables: P and N are used for judgment of the model 
results, T and F evaluation model of the judgment is correct, FP is on behalf of the 
false-positive cases, FN represents false-negative cases, TP is on behalf of the real 
example, TN represents true negative cases[38]. A represents the theory of 
segmentation, results for comparison with the resulting image. B represents the 
segmentation results[39]. The relationship among them is shown in Figure 1.

DICE coefficient: DICE coefficient also known as the overlap index, is one of the most 
commonly used indexes for verification of image segmentation. The DICE coefficient 
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Table 1 Commonly used databases in image recognition of gastric cancer

Database Time collected Number of samples Resolution Training set Test set

GR-AIDS[31] 2019 1036496 512 × 512 829197 103650

Jang Hyung Lee[32] 2019 787 224 × 224 717 70

Toshiaki Hirasawa[33] 2018 13584 512 × 512 13584 2496

Bum-Joo Cho[34] 2019 5017 512 × 512 4205 812

Hiroya Ueyama[35] 2020 7874 512 × 512 5574 2300

Lan Li[36] 2020 2088 512 × 512 1747 341

Mads Sylvest Bergholt[37] 2011 1063 512 × 512 850 213

Table 2 Specific concepts of the main evaluation indicators

Index Description Usage Unit

DICE Repeat rate between the segmentation results and markers Commonly %

RMSD The root mean square of the symmetrical position surface distance between the segmentation results and the markers Commonly mm

VOE The degree of overlap between the segmentation results and the actual segmentation results represents the error rate Commonly %

RVD The difference in volume between the segmentation results and the markers Rarely %

DICE: DICE Similarity Coefficient; RMSD: Root-Mean-Square Deviation; VOE: Volumetric Over-lap Error; RVD: Relative Volume Difference.

Figure 1 Schematic diagram of each evaluation index relationship. TP: True positive; FP: False-positive; TN: True negative; FN: False negative.

represents the repetition rate between the segmentation results and the markers. The 
value range of DICE is 0-1, where 0 indicates that the experimental segmentation result 
significantly deviates from the labeled result, and 1 indicates that the experimental 
segmentation result completely coincides with the labeled result[40]. DICE coefficient 
is defined as the following:

DICE = (2|A ∩ B|)/(|A| + |B|) = (2TP)/(2TP + FP + FN)

Jaccard coefficient: Jaccard coefficient represents the similarity and difference between 
the segmentation result and the standard. The larger the coefficient, the higher the 
sample similarity. Besides, the Jaccard coefficient and DICE coefficient are 
correlated[41]. Jaccard coefficient is defined as the following:

JAC = (|A ∩ B|)/(|A| U |B|) = TP/(TP + FP + FN) = DICE/(2 - DICE)

VOE: VOE stands for error rate, derived from Jaccard. VOE is represented as %, where 
0% indicates complete segmentation. If there is no overlap between the segmentation 
result and the markers, the VOE is 100%[42]. VOE is defined as the following:

VOE = 1 - (|A ∩ B|)/(|A| U |B|) = 1 - TP/(TP + FP + FN)

RVD: RVD represents the noise difference between the segmentation result and the 
markers. RVD is presented as %, where 0% denotes the same volume between the 
segmentation result and the markers[42]. The formula is:
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RVD = (|B| - |A|)/|A| = FP/(TP + FN)
The specific concepts of all indicators are shown in Table 2.

CLASSIFICATION OF THE ALGORITHM 
Supervised learning-based diagnosis of gastric cancer
Deep neural networks are often trained based on deep learning algorithms using large 
labeled datasets (i.e., images in this case)[43]. The network is therefore able to learn 
how features are related to the target[44]. Since the data is already labeled, this 
learning method is referred to as supervised learning. Most of the existing studies on 
diagnosing gastric cancer are based on supervised learning in image recognition 
tasks[45-47]. This is because the network makes full use of the labeled dataset in the 
training, hence can obtain more accurate segmentation results.

Recent research works showed that CNN achieves outstanding performance in 
various image recognition tasks[48,49]. Toshiaki Hirasawa built a CNN-based 
diagnostic system based on a single-shot Multi-Box detector, Adejub, with a total 
sensitivity of 92.2% and trained their CNN using 13584 endoscopic images of gastric 
cancer. The trained CNN correctly called 71 out of 77 cases of gastric cancer, i.e., a total 
sensitivity of 92.2%, also detected 161 non-cancerous samples as gastric cancer, i.e., a 
positive predictive value of 30.6%. The CNN also correctly detected 70 of 71 cases of 
gastric cancer (98.6%) with a diameter of 6 mm or larger, as well as all invasive 
cancers[33]. Ueyama et al[35] also constructed an AI-assisted CNN based computer-
aided diagnosis system with narrow band imaging-magnifying endoscopy images.

The above studies show that the CNN-based approach is far more accurate than 
human in recognition of cancer. This makes us believe that the method based on deep 
CNN can effectively solve the identification problem of gastric cancer.

However, the issue with the CNN is that only partial features could be 
extracted[50]. Due to the imbalanced information of gastric cancer image data, 
extracting the local features does not reflect all the information and might harm the 
efficiency of the image recognition. To address the problem, Shelhamer et al[51] 
proposed full convolutional neural network (FCN) for image segmentation. This 
network attempts to recover the category of each pixel from the abstract feature, in 
other words, instead of image-level classification, the network uses pixel-level 
classification[51]. This addresses the semantic level image segmentation problem and 
is the core component of many advanced semantic segmentation models[52,53].

The segmentation method of gastric cancer images based on the FCN network is 
mainly based on the idea of code-decoding design[54]. In practice, the image is 
classified at the pixel level and the network is pre-trained with supervision. In this 
method, the input image can have any arbitrary size and the output of the same size 
can be generated through effective reasoning and learning[55]. Typical FCN network-
based image segmentation architecture for gastric cancer is shown in Figure 2.

The FCN is improved based on the CNN by transforming the last three full 
connections into three convolutional layers. The success of FCN network is largely 
attributed to the excellent ability of CNN network to extract hierarchical repres-
entation. In the concrete implementation process, the network realizes the 
segmentation of gastric tumor by down-sampling and up-sampling through 
convolution-deconvolution operation. The down-sampling path consists of 
convolution layer and maximum or average pooling layer, which can extract high-
level semantic information, but its spatial resolution is often low. The up-sample path 
consists of convolution and a deconvolution layer (also known as transpose 
convolution) and uses the output of the down-sample path to predicting the fraction of 
each class at the pixel level[56,57]. However, the output image of deconvolution 
operations might be very rough and lost a lot of detail. The skip structure of the FCN 
network presented in the classified forecast comes from the deep layer (thick) semantic 
information and information from the appearance of the shallow layer (fine), thus, 
achieving a more accurate and robust segmentation result. As a deep neural network, 
FCN has shown good performance in many challenging medical image segmentation 
tasks, including liver tumor segmentation[58,59].

One of the most important features of the FCN is the use of skip structure. It is used 
to fuse the feature information of both the high and low layers. Through the cross-
layer connection structure, the texture information of the shallow layer and the 
semantic information of the deep layer of the network are then combined to achieve 
the precise segmentation task[60,61]. Jang Hyung Lee improved the original FCN 
framework by applying the pre-trained Inception, Res-Net, and VGG-Net models on 
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Figure 2 The basic architecture of image segmentation for gastric cancer based on full convolutional network.

ImageNet. The areas under the operating characteristic curves of each receiver are 
0.95, 0.97, and 0.85, respectively, hence, Res-Net shows the highest level of 
performance. Under normal conditions, the classification between normal and ulcer or 
cancer, is more than 90 percent accurate[32].

The deep network structure leads to the problem of decreased training 
accuracy[62]. In Sun et al[63] the basic form of convolution is replaced with the 
deformable convolution and Atrous convolution in a specific layer to adapt to the non-
rigid characteristics and large receiving fields. The Atrous space pyramid pooling 
module and the semantic-level embedded network based on encoder/decoder are 
used for multi-scale segmentation. Besides, they proposed a lightweight decoder to 
fuse the context information and further used dense up-sampled convolution for the 
boundary optimization at the end of the decoder. The model achieves 91.60% pixel-
level accuracy and 82.65% average degree of the intersection[63].

Cho et al[34] established the Inception-ResNET-V2 model, which is an FCN model. 
In this model, they divided the images into five categories: advanced gastric cancer, 
early gastric cancer, high atypical hyperplasia, low atypical hyperplasia and non-
neoplastic. For the above five categories, the Inception- ResNet-v2 model has a 
weighted average accuracy of 84.6%. The mean area under the curve of the model for 
differentiating gastric cancer and neoplasm was 0.877 and 0.927, respectively[34].

The above works show that FCN addresses the issue with the CNN hence can 
extract the local features. This is why the FCN is considered as the mainstream in 
gastric cancer image classification methods.

In addition to the application of FCN to address the shortcomings of CNN, 
researchers also tried other approaches such as fusion of multiple CNN methods to 
obtain an Ensemble of CNN algorithm to get more accurate classification results. 
Nguyen et al[64] trained three different CNN model architectures, including VGG-
based, Inception-based Network and Dense-Net. In their study, the VGG-based 
network was used as a conventional deep CNN for classification problems, which 
consists of a linear stack of the convolutional layer. The network-based on Dense-net 
can be used as a very deep CNN with a short path, which is also helpful to train the 
network and extract more abstract and effective image features easily. The three 
models were trained separately, the AVERAGE combination rule is then used to 
combine the classification results of the three CNN-based Models. The final result was 
70.369% of overall classification accuracy, 68.452% of sensitivity and 72.571% of 
specificity. The overall classification accuracy is higher than that generated by the 
listed model based on a single CNN[64].

Both the use of a fully convolutional network and the fusion of several CNN 
algorithms are significantly effective in improving the accuracy of gastric cancer image 
recognition. They are also effective in addressing the issues with the quality of images 
in the database. Table 3 shows the performance comparison of gastric cancer image 
recognition by using CNN, FCN, and Ensemble CNN.

Image recognition based on semi-supervised and unsupervised learning in gastric 
cancer 
Most gastric cancer image recognition methods adopt supervised learning algorithms 
because the monitored network makes full use of the labeled sample data in the 
training and can obtain more accurate segmentation results. Nevertheless, there are 
very few accurately labeled image datasets, hence researchers have carried out studies 
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Table 3 Comparison of recognition performance of convolutional neural network, full convolutional neural network, and ensemble 
convolutional neural network models

Methods DICE/% VOE/% RMSD/mm

Toshiaki Hirasawa (CNN) 0.5738 0.5977 6.491

Hiroya Ueyama (CNN) 0.6327 0.5373 7.257

Jang Hyung Lee (FCN) 0.8102 0.319 2.468

Bum-Joo Cho (FCN) 0.9350 0.1221 -

Dat Tien Nguyen (ECNN) 0.8947 0.113 -

CNN: Convolutional neural network; FCN: Full convolutional neural network; ECNN: Evolutionary convolutional neural network; DICE: DICE Similarity 
Coefficient; VOE: Volumetric Over-lap Error; RMSD: Root-Mean-Square Deviation.

based on semi-supervised and unsupervised image recognition algorithms for gastric 
cancer. In such studies, they trained a small number of samples through generative 
models to generate similar samples to improve the accuracy and robustness of gastric 
cancer tumor recognition[65].

Generative adversarial network (GAN) is a generative model proposed by 
Goodfellow et al[66] It uses an unsupervised training method that is trained by 
adversarial learning. The objective is to estimate the potential distribution of data 
samples and generate new data samples. GAN is composed of a generation model 
(Goodfellow et al[66], 2014) and a discrimination model (Denton et al, 2015). The 
generation model learns the distribution of a given noise (generally refers to uniform 
distribution or normal distribution) and synthesizes it, whereas the discrimination 
model distinguishes the real data from generated data. In theory, the former is trying 
to produce data that is closed to the real data. The latter is also constantly 
strengthening the "counterfeit detection" ability[67]. The success of GAN lies in its 
ability to capture high-level semantic information using adversarial learning 
techniques. Luc et al[68] first applied GAN to image segmentation. However, GAN has 
several drawbacks: (1) Crash problem: when the generation model crashes, all 
different inputs are mapped to the same data[69]; and (2) Instability: It causes the same 
input to produce different outputs. The main reason is due to gradient vanishing 
problem during the optimization process[66,70].

Although batch normalization is often used to solve the instability of GAN, it is 
often not enough to achieve optimal stability of GAN performance. Therefore, many 
GAN derived models have emerged to solve these gaps, e.g., conditional GAN, deep 
convolutional GAN, information maxi-mizing GAN, Wassertein GAN, etc[71]. In the 
GAN-based image recognition for gastric cancer, the generator is used to perform the 
segmentation task. The discriminator is then used to train the refining generator. A 
typical gastric cancer image recognition architecture based on the generative 
adversarial network is illustrated in Figure 3.

Since its proposal generative adversarial network has been widely considered and 
rapidly developed in different application areas. In medical image processing, it is 
very challenging to construct a large enough dataset due to the difficulty of data 
acquisition and annotation[72]. To overcome this problem, traditional image 
enhancement technology such as geometric transformation is often used to generate 
new data. This technique cannot learn biological changes in medical data and can 
produce images that are not credible[73]. Although GAN is unable to know in advance 
hypothesis distribution due to the limitation of segmentation performance 
improvement. it can automatically infer real data sets, further expand the scale and 
diversity of data, and provide a new method for data expansion, thus improving the 
efficiency of model training[74,75].

Almalioglu et al[76] showed that the poor resolution of the capsule endoscope is a 
limiting factor in the accuracy of diagnosis. They designed an image synthesis 
technology based on GAN to enrich the training data. First, the standard data 
expansion method was used to enlarge the dataset. Then the dataset was used to train 
GAN and the proposed Endol2h method was used to synthesize gastric cancer images 
with higher resolution[76]. Wang proposed an unsupervised image classification 
method for tumors based on prototype migration generated against the network 
(Prototype Transfer Generative Adversarial Network). Using different data acquisition 
devices and parameter settings caused differences in the stye of tumor image and data 
distribution. These differences can be reduced by designing the target domain to 
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Figure 3 Basic architecture of gastric cancer image recognition methods based on generative adversarial network.

generate network, training process through the domain discriminant and performing 
generator reconstruction between source domain and target domain. The method 
achieved an average accuracy of 87.6% for unsupervised breast tumor image 
dichotomy under different magnifications and shows good scalability[77].

In conclusion, the GAN-based image segmentation method for gastric cancer can 
generate realistic gastric cancer images through the GAN network in the training 
stage, thus avoid the imbalance of the training samples. Moreover, due to the 
amplification of limited labeled sample data, the deep network is well-trained and 
achieves a high segmentation efficiency. However, there are still many problems in 
GAN, such as the instability of training and the breakdown of the training network. 
Therefore, researchers have optimized the original GAN network to reduce data noise 
or deal with class imbalance and other problems. In order to solve the problem that 
medical images are often polluted by different amounts and types of praise, T.Y Zhang 
et al. propose a novel Noise Adaptation Generative Adversarial Network (NAGAN), 
which contains a generator and two discriminators. The generator aims to map the 
data from source domain to target domain. Among the two discriminators, one 
discriminator enforces the generated images to have the same noise patterns as those 
from the target domain, and the second discriminator enforces the content to be 
preserved in the generated images. They apply the proposed NAGAN on both optical 
coherence tomography images and ultrasound images. Results show that the method 
is able to translate the noise style[74]. In the traditional GAN network training, the 
small number of samples of the minority classes in the training data makes the 
learning of optimal classification challenging, while the more frequently occurring 
samples of the majority class hamper the generalization of the classification boundary 
between infrequently occurring target objects and classes. Mina Rezaei et al. developed 
a novel generative multi-adversarial network, called Ensemble-GAN, for mitigating 
this class imbalance problem in the semantic segmentation of abdominal images. The 
Ensemble-GAN framework is composed of a single-generator and a multi-discrim-
inator variant for handling the class imbalance problem to provide a better general-
ization than existing approaches[73]. In addition, there are other studies on the 
optimization of GAN network in medical image segmentation. Klages et al[78] 
proposed the patch-based generative adversarial neural network models, this model 
can significantly reduce errors in data generation. Nuo Tong et al[79] proposed the 
self-paced Dense-Net with boundary constraint for automated multi-organ 
segmentation on abdominal CT images. Specifically, a learning-based attention 
mechanism and dense connection block are seamlessly integrated into the proposed 
self-paced Dense-Net to improve the learning capability and efficiency of the backbone 
network. In a word, in the process of optimizing GAN network, whether it is 
optimizing generator or discriminant, the purpose of optimization is to generate new 
data which is as equal to the real data as possible. Therefore, more studies will be 
devoted to the optimization of GAN network to provide strong support for improving 
the image recognition of gastric cancer.

Table 4 shows comparison results of the three current mainstream methods for 
image recognition of gastric cancer.
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Table 4 Comparison of convolutional neural network, full convolutional neural network, and generative adversarial network models

Model 
features Contributions Advantages Disadvantages Scope of application

CNN The topology can be extracted from 
a two-dimensional image, and the 
backpropagation algorithm is used 
to optimize the network structure 
and solve the unknown parameters 
in the network

Shared convolution 
kernel, processing high-
dimensional data without 
pressure; Feature 
extraction can be done 
automatically

When the network layer is too deep, the 
parameters near the input layer will be changed 
slowly by using BP propagation to modify 
parameters. A gradient descent algorithm is 
used to make the training results converge to 
the local minimum rather than the global 
minimum. The pooling layer will lose a lot of 
valuable information

Suitable for data scenarios 
with similar network 
structures

FCN The end-to-end convolutional 
network is extended to semantic 
segmentation. The deconvolution 
layer is used for up-sampling; A 
skip connection is proposed to 
improve the roughness of the 
upper sampling

Can accept any size; Input 
image; Jump junction; The 
structure combines fine 
layers and coarse; Rough 
layers, generating precise 
segmentation

The receptive field is too small to obtain the 
global information;Small storage overhead

Applicable to large 
sample data

GAN With adversarial learning criteria, 
there are two No's: The same 
network, not a single network

Can produce a clearer, 
more realistic sample; any 
generated network can be 
trained

Training is unstable and difficult to train; GAN 
is not suitable for processing data in discrete 
form

Suitable for data 
generation (e.g., there are 
not many data sets with 
labels), image style 
transfer; Image denoising 
and restoration; Used to 
counter attacks

CNN: Convolutional neural network; FCN: Full convolutional neural network; GAN: Generative adversarial network.

CONCLUSION
At the present, the development direction of deep learning in image recognition of 
gastric cancer mainly focuses on the following aspects: (1) Training of deep learning 
algorithms relies on the availability of large datasets, because medical images are often 
difficult to obtain, medical professionals need to spend a lot of time on data collection 
and annotation which is time-consuming and costly. Besides, medical workers need 
not only to provide a large amount of data support but also to make use of all the 
effective information in the data as much as possible. Deep neural networks enable full 
mining of the information content of the data. Using deep networks seems to be the 
dominant future research direction in this field; (2) Multimodal gastric image 
segmentation combined with several different deep neural networks are used to 
extract the deeper information of the image and improve the accuracy of tumor 
segmentation and recognition. This is a promising major research direction in this 
field; and (3) Currently, most of the medical image segmentation techniques use 
supervised deep learning algorithms. However, for some of the rare diseases lacking a 
large number of data samples, supervised deep learning algorithms cannot reach their 
full efficiency. To overcome the issue with the lack of large datasets, some researchers 
utilize semi-supervised or unsupervised techniques such as GAN and combine the 
generated adversarial network with other higher performance networks. This might be 
another emerging research trend in this area.

REFERENCES
Higgins AJ, Lees P. Arachidonic acid metabolites in carrageenin-induced equine inflammatory 
exudate. J Vet Pharmacol Ther 1984; 7: 65-72 [PMID: 6423835 DOI: 
10.1111/j.1365-2885.1984.tb00881.x]

1     

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA 
Cancer J Clin 2015; 65: 87-108 [PMID: 25651787 DOI: 10.3322/caac.21262]

2     

Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, Gavin A, Visser O, Bray F. 
Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 
2018. Eur J Cancer 2018; 103: 356-387 [PMID: 30100160 DOI: 10.1016/j.ejca.2018.07.005]

3     

Howlader N NA, Krapcho M, Miller D, Brest A, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, 
Chen HS, Feuer EJ, Cronin KA.   SEER Cancer Statistics Review, 1975-2017. Bethesda: National 
Cancer Institute, 2019. Available from: https://seer.cancer.gov/csr/1975_2017/

4     

Rahman R, Asombang AW, Ibdah JA. Characteristics of gastric cancer in Asia. World J 
Gastroenterol 2014; 20: 4483-4490 [PMID: 24782601 DOI: 10.3748/wjg.v20.i16.4483]

5     

http://www.ncbi.nlm.nih.gov/pubmed/6423835
https://dx.doi.org/10.1111/j.1365-2885.1984.tb00881.x
http://www.ncbi.nlm.nih.gov/pubmed/25651787
https://dx.doi.org/10.3322/caac.21262
http://www.ncbi.nlm.nih.gov/pubmed/30100160
https://dx.doi.org/10.1016/j.ejca.2018.07.005
https://seer.cancer.gov/csr/1975_2017/
http://www.ncbi.nlm.nih.gov/pubmed/24782601
https://dx.doi.org/10.3748/wjg.v20.i16.4483


Li Y et al. Review of deep learning for GC

AIGE https://www.wjgnet.com 21 April 28, 2021 Volume 2 Issue 2

Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J. Cancer statistics in 
China, 2015. CA Cancer J Clin 2016; 66: 115-132 [PMID: 26808342 DOI: 10.3322/caac.21338]

6     

Homeida AM, Cooke RG. Pharmacological aspects of metaldehyde poisoning in mice. J Vet 
Pharmacol Ther 1982; 5: 77-81 [PMID: 6178838 DOI: 10.1111/j.1365-2885.1982.tb00500.x]

7     

Luo X, Mori K, Peters TM. Advanced Endoscopic Navigation: Surgical Big Data, Methodology, and 
Applications. Annu Rev Biomed Eng 2018; 20: 221-251 [PMID: 29505729 DOI: 
10.1146/annurev-bioeng-062117-120917]

8     

de Groof J, van der Sommen F, van der Putten J, Struyvenberg MR, Zinger S, Curvers WL, Pech O, 
Meining A, Neuhaus H, Bisschops R, Schoon EJ, de With PH, Bergman JJ. The Argos project: The 
development of a computer-aided detection system to improve detection of Barrett's neoplasia on 
white light endoscopy. United European Gastroenterol J 2019; 7: 538-547 [PMID: 31065371 DOI: 
10.1177/2050640619837443]

9     

Qu JY, Li Z, Su JR, Ma MJ, Xu CQ, Zhang AJ, Liu CX, Yuan HP, Chu YL, Lang CC, Huang LY, Lu 
L, Li YQ, Zuo XL. Development and Validation of an Automatic Image-Recognition Endoscopic 
Report Generation System: A Multicenter Study. Clin Transl Gastroenterol 2020; 12: e00282 [PMID: 
33395075 DOI: 10.14309/ctg.0000000000000282]

10     

Gan T, Liu S, Yang J, Zeng B, Yang L. A pilot trial of Convolution Neural Network for automatic 
retention-monitoring of capsule endoscopes in the stomach and duodenal bulb. Sci Rep 2020; 10: 
4103 [PMID: 32139758 DOI: 10.1038/s41598-020-60969-5]

11     

Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM. Deep 
Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset 
Characteristics and Transfer Learning. IEEE Trans Med Imaging 2016; 35: 1285-1298 [PMID: 
26886976 DOI: 10.1109/TMI.2016.2528162]

12     

Bernal J, Kushibar K, Asfaw DS, Valverde S, Oliver A, Martí R, Lladó X. Deep convolutional neural 
networks for brain image analysis on magnetic resonance imaging: a review. Artif Intell Med 2019; 
95: 64-81 [PMID: 30195984 DOI: 10.1016/j.artmed.2018.08.008]

13     

Danaee P, Ghaeini R, Hendrix DA. A Deep Learning Approach for Cancer Detection and Relevant 
Gene Identification. Pac Symp Biocomput 2017; 22: 219-229 [PMID: 27896977 DOI: 
10.1142/9789813207813_0022]

14     

Burke HB, Goodman PH, Rosen DB, Henson DE, Weinstein JN, Harrell FE Jr, Marks JR, 
Winchester DP, Bostwick DG. Artificial neural networks improve the accuracy of cancer survival 
prediction. Cancer 1997; 79: 857-862 [PMID: 9024725 DOI: 
10.1002/(sici)1097-0142(19970215)79:4<857::aid-cncr24>3.0.co;2-y]

15     

Owais M, Arsalan M, Choi J, Mahmood T, Park KR. Artificial Intelligence-Based Classification of 
Multiple Gastrointestinal Diseases Using Endoscopy Videos for Clinical Diagnosis. J Clin Med 2019; 
8 [PMID: 31284687 DOI: 10.3390/jcm8070986]

16     

Lu S, Cottone CM, Yoon R, Jefferson FA, Sung JM, Okhunov Z, Tapiero S, Patel RM, Landman J, 
Clayman RV. Endockscope: A Disruptive Endoscopic Technology. J Endourol 2019; 33: 960-965 
[PMID: 31195831 DOI: 10.1089/end.2019.0252]

17     

Wang KW, Dong M. Potential applications of artificial intelligence in colorectal polyps and cancer: 
Recent advances and prospects. World J Gastroenterol 2020; 26: 5090-5100 [PMID: 32982111 DOI: 
10.3748/wjg.v26.i34.5090]

18     

Yasuda Y, Tokunaga K, Koga T, Sakamoto C, Goldberg IG, Saitoh N, Nakao M. Computational 
analysis of morphological and molecular features in gastric cancer tissues. Cancer Med 2020; 9: 
2223-2234 [PMID: 32012497 DOI: 10.1002/cam4.2885]

19     

Yao Y, Gou S, Tian R, Zhang X, He S. Automated Classification and Segmentation in Colorectal 
Images Based on Self-Paced Transfer Network. Biomed Res Int 2021; 2021: 6683931 [PMID: 
33542924 DOI: 10.1155/2021/6683931]

20     

Baig R, Bibi M, Hamid A, Kausar S, Khalid S. Deep Learning Approaches Towards Skin Lesion 
Segmentation and Classification from Dermoscopic Images - A Review. Curr Med Imaging 2020; 16: 
513-533 [PMID: 32484086 DOI: 10.2174/1573405615666190129120449]

21     

Zhang K, Liu X, Liu F, He L, Zhang L, Yang Y, Li W, Wang S, Liu L, Liu Z, Wu X, Lin H. An 
Interpretable and Expandable Deep Learning Diagnostic System for Multiple Ocular Diseases: 
Qualitative Study. J Med Internet Res 2018; 20: e11144 [PMID: 30429111 DOI: 10.2196/11144]

22     

Weng S, Xu X, Li J, Wong STC. Combining deep learning and coherent anti-Stokes Raman 
scattering imaging for automated differential diagnosis of lung cancer. J Biomed Opt 2017; 22: 1-10 
[PMID: 29086544 DOI: 10.1117/1.JBO.22.10.106017]

23     

Xu Y, Jia Z, Wang LB, Ai Y, Zhang F, Lai M, Chang EI. Large scale tissue histopathology image 
classification, segmentation, and visualization via deep convolutional activation features. BMC 
Bioinformatics 2017; 18: 281 [PMID: 28549410 DOI: 10.1186/s12859-017-1685-x]

24     

Yonekura A, Kawanaka H, Prasath VBS, Aronow BJ, Takase H. Automatic disease stage 
classification of glioblastoma multiforme histopathological images using deep convolutional neural 
network. Biomed Eng Lett 2018; 8: 321-327 [PMID: 30603216 DOI: 10.1007/s13534-018-0077-0]

25     

Horiuchi Y, Aoyama K, Tokai Y, Hirasawa T, Yoshimizu S, Ishiyama A, Yoshio T, Tsuchida T, 
Fujisaki J, Tada T. Convolutional Neural Network for Differentiating Gastric Cancer from Gastritis 
Using Magnified Endoscopy with Narrow Band Imaging. Dig Dis Sci 2020; 65: 1355-1363 [PMID: 
31584138 DOI: 10.1007/s10620-019-05862-6]

26     

Guimarães P, Keller A, Fehlmann T, Lammert F, Casper M. Deep-learning based detection of gastric 
precancerous conditions. Gut 2020; 69: 4-6 [PMID: 31375599 DOI: 10.1136/gutjnl-2019-319347]

27     

http://www.ncbi.nlm.nih.gov/pubmed/26808342
https://dx.doi.org/10.3322/caac.21338
http://www.ncbi.nlm.nih.gov/pubmed/6178838
https://dx.doi.org/10.1111/j.1365-2885.1982.tb00500.x
http://www.ncbi.nlm.nih.gov/pubmed/29505729
https://dx.doi.org/10.1146/annurev-bioeng-062117-120917
http://www.ncbi.nlm.nih.gov/pubmed/31065371
https://dx.doi.org/10.1177/2050640619837443
http://www.ncbi.nlm.nih.gov/pubmed/33395075
https://dx.doi.org/10.14309/ctg.0000000000000282
http://www.ncbi.nlm.nih.gov/pubmed/32139758
https://dx.doi.org/10.1038/s41598-020-60969-5
http://www.ncbi.nlm.nih.gov/pubmed/26886976
https://dx.doi.org/10.1109/TMI.2016.2528162
http://www.ncbi.nlm.nih.gov/pubmed/30195984
https://dx.doi.org/10.1016/j.artmed.2018.08.008
http://www.ncbi.nlm.nih.gov/pubmed/27896977
https://dx.doi.org/10.1142/9789813207813_0022
http://www.ncbi.nlm.nih.gov/pubmed/9024725
https://dx.doi.org/10.1002/(sici)1097-0142(19970215)79:4<857::aid-cncr24>3.0.co;2-y
http://www.ncbi.nlm.nih.gov/pubmed/31284687
https://dx.doi.org/10.3390/jcm8070986
http://www.ncbi.nlm.nih.gov/pubmed/31195831
https://dx.doi.org/10.1089/end.2019.0252
http://www.ncbi.nlm.nih.gov/pubmed/32982111
https://dx.doi.org/10.3748/wjg.v26.i34.5090
http://www.ncbi.nlm.nih.gov/pubmed/32012497
https://dx.doi.org/10.1002/cam4.2885
http://www.ncbi.nlm.nih.gov/pubmed/33542924
https://dx.doi.org/10.1155/2021/6683931
http://www.ncbi.nlm.nih.gov/pubmed/32484086
https://dx.doi.org/10.2174/1573405615666190129120449
http://www.ncbi.nlm.nih.gov/pubmed/30429111
https://dx.doi.org/10.2196/11144
http://www.ncbi.nlm.nih.gov/pubmed/29086544
https://dx.doi.org/10.1117/1.JBO.22.10.106017
http://www.ncbi.nlm.nih.gov/pubmed/28549410
https://dx.doi.org/10.1186/s12859-017-1685-x
http://www.ncbi.nlm.nih.gov/pubmed/30603216
https://dx.doi.org/10.1007/s13534-018-0077-0
http://www.ncbi.nlm.nih.gov/pubmed/31584138
https://dx.doi.org/10.1007/s10620-019-05862-6
http://www.ncbi.nlm.nih.gov/pubmed/31375599
https://dx.doi.org/10.1136/gutjnl-2019-319347


Li Y et al. Review of deep learning for GC

AIGE https://www.wjgnet.com 22 April 28, 2021 Volume 2 Issue 2

Wu T, Tegmark M. Toward an artificial intelligence physicist for unsupervised learning. Phys Rev E 
2019; 100: 033311 [PMID: 31639888 DOI: 10.1103/PhysRevE.100.033311]

28     

Zhang R, Zhang Y, Li X. Unsupervised Feature Selection via Adaptive Graph Learning and 
Constraint. IEEE Trans Neural Netw Learn Syst 2020; PP [PMID: 33361001 DOI: 
10.1109/TNNLS.2020.3042330]

29     

Wang Z, Li M, Xu Z, Jiang Y, Gu H, Yu Y, Zhu H, Zhang H, Lu P, Xin J, Xu H, Liu C. 
Improvements to the gastric cancer tumor-node-metastasis staging system based on computer-aided 
unsupervised clustering. BMC Cancer 2018; 18: 706 [PMID: 29970022 DOI: 
10.1186/s12885-018-4623-z]

30     

Luo H, Xu G, Li C, He L, Luo L, Wang Z, Jing B, Deng Y, Jin Y, Li Y, Li B, Tan W, He C, 
Seeruttun SR, Wu Q, Huang J, Huang DW, Chen B, Lin SB, Chen QM, Yuan CM, Chen HX, Pu HY, 
Zhou F, He Y, Xu RH. Real-time artificial intelligence for detection of upper gastrointestinal cancer 
by endoscopy: a multicentre, case-control, diagnostic study. Lancet Oncol 2019; 20: 1645-1654 
[PMID: 31591062 DOI: 10.1016/S1470-2045(19)30637-0]

31     

Lee JH, Kim YJ, Kim YW, Park S, Choi YI, Park DK, Kim KG, Chung JW. Spotting malignancies 
from gastric endoscopic images using deep learning. Surg Endosc 2019; 33: 3790-3797 [PMID: 
30719560 DOI: 10.1007/s00464-019-06677-2]

32     

Hirasawa T, Aoyama K, Tanimoto T, Ishihara S, Shichijo S, Ozawa T, Ohnishi T, Fujishiro M, 
Matsuo K, Fujisaki J, Tada T. Application of artificial intelligence using a convolutional neural 
network for detecting gastric cancer in endoscopic images. Gastric Cancer 2018; 21: 653-660 [PMID: 
29335825 DOI: 10.1007/s10120-018-0793-2]

33     

Cho BJ, Bang CS, Park SW, Yang YJ, Seo SI, Lim H, Shin WG, Hong JT, Yoo YT, Hong SH, Choi 
JH, Lee JJ, Baik GH. Automated classification of gastric neoplasms in endoscopic images using a 
convolutional neural network. Endoscopy 2019; 51: 1121-1129 [PMID: 31443108 DOI: 
10.1055/a-0981-6133]

34     

Ueyama H, Kato Y, Akazawa Y, Yatagai N, Komori H, Takeda T, Matsumoto K, Ueda K, Hojo M, 
Yao T, Nagahara A, Tada T. Application of artificial intelligence using a convolutional neural 
network for diagnosis of early gastric cancer based on magnifying endoscopy with narrow-band 
imaging. J Gastroenterol Hepatol 2021; 36: 482-489 [PMID: 32681536 DOI: 10.1111/jgh.15190]

35     

Li L, Chen Y, Shen Z, Zhang X, Sang J, Ding Y, Yang X, Li J, Chen M, Jin C, Chen C, Yu C. 
Convolutional neural network for the diagnosis of early gastric cancer based on magnifying narrow 
band imaging. Gastric Cancer 2020; 23: 126-132 [PMID: 31332619 DOI: 
10.1007/s10120-019-00992-2]

36     

Bergholt MS, Zheng W, Lin K, Ho KY, Teh M, Yeoh KG, Yan So JB, Huang Z. In vivo diagnosis of 
gastric cancer using Raman endoscopy and ant colony optimization techniques. Int J Cancer 2011; 
128: 2673-2680 [PMID: 20726002 DOI: 10.1002/ijc.25618]

37     

Liang Q, Nan Y, Coppola G, Zou K, Sun W, Zhang D, Wang Y, Yu G. Weakly Supervised 
Biomedical Image Segmentation by Reiterative Learning. IEEE J Biomed Health Inform 2019; 23: 
1205-1214 [PMID: 29994489 DOI: 10.1109/JBHI.2018.2850040]

38     

El-Khatib H, Popescu D, Ichim L. Deep Learning-Based Methods for Automatic Diagnosis of Skin 
Lesions. Sensors (Basel) 2020; 20 [PMID: 32245258 DOI: 10.3390/s20061753]

39     

Pereira S, Pinto A, Alves V, Silva CA. Brain Tumor Segmentation Using Convolutional Neural 
Networks in MRI Images. IEEE Trans Med Imaging 2016; 35: 1240-1251 [PMID: 26960222 DOI: 
10.1109/TMI.2016.2538465]

40     

Polanski WH, Zolal A, Sitoci-Ficici KH, Hiepe P, Schackert G, Sobottka SB. Comparison of 
Automatic Segmentation Algorithms for the Subthalamic Nucleus. Stereotact Funct Neurosurg 2020; 
98: 256-262 [PMID: 32369819 DOI: 10.1159/000507028]

41     

Liu T, Liu J, Ma Y, He J, Han J, Ding X, Chen CT. Spatial feature fusion convolutional network for 
liver and liver tumor segmentation from CT images. Med Phys 2021; 48: 264-272 [PMID: 33159809 
DOI: 10.1002/mp.14585]

42     

Cuocolo R, Caruso M, Perillo T, Ugga L, Petretta M. Machine Learning in oncology: A clinical 
appraisal. Cancer Lett 2020; 481: 55-62 [PMID: 32251707 DOI: 10.1016/j.canlet.2020.03.032]

43     

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436-444 [PMID: 26017442 DOI: 
10.1038/nature14539]

44     

Zhou T, Han G, Li BN, Lin Z, Ciaccio EJ, Green PH, Qin J. Quantitative analysis of patients with 
celiac disease by video capsule endoscopy: A deep learning method. Comput Biol Med 2017; 85: 1-6 
[PMID: 28412572 DOI: 10.1016/j.compbiomed.2017.03.031]

45     

Tan JW, Wang L, Chen Y, Xi W, Ji J, Xu X, Zou LK, Feng JX, Zhang J, Zhang H. Predicting 
Chemotherapeutic Response for Far-advanced Gastric Cancer by Radiomics with Deep Learning 
Semi-automatic Segmentation. J Cancer 2020; 11: 7224-7236 [PMID: 33193886 DOI: 
10.7150/jca.46704]

46     

Cho BJ, Bang CS, Lee JJ, Seo CW, Kim JH. Prediction of Submucosal Invasion for Gastric 
Neoplasms in Endoscopic Images Using Deep-Learning. J Clin Med 2020; 9 [PMID: 32549190 DOI: 
10.3390/jcm9061858]

47     

Krizhevsky A, Sutskever I, Hinton G.   ImageNet Classification with Deep Convolutional Neural 
Networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ, editors. Advances in Neural 
Information Processing Systems 25 (NIPS 2012). Red Hook: Curran Associates, 2012

48     

Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Fei-Fei L.   Large-Scale Video 
Classification with Convolutional Neural Networks. In: 2014 IEEE Conference on Computer Vision 

49     

http://www.ncbi.nlm.nih.gov/pubmed/31639888
https://dx.doi.org/10.1103/PhysRevE.100.033311
http://www.ncbi.nlm.nih.gov/pubmed/33361001
https://dx.doi.org/10.1109/TNNLS.2020.3042330
http://www.ncbi.nlm.nih.gov/pubmed/29970022
https://dx.doi.org/10.1186/s12885-018-4623-z
http://www.ncbi.nlm.nih.gov/pubmed/31591062
https://dx.doi.org/10.1016/S1470-2045(19)30637-0
http://www.ncbi.nlm.nih.gov/pubmed/30719560
https://dx.doi.org/10.1007/s00464-019-06677-2
http://www.ncbi.nlm.nih.gov/pubmed/29335825
https://dx.doi.org/10.1007/s10120-018-0793-2
http://www.ncbi.nlm.nih.gov/pubmed/31443108
https://dx.doi.org/10.1055/a-0981-6133
http://www.ncbi.nlm.nih.gov/pubmed/32681536
https://dx.doi.org/10.1111/jgh.15190
http://www.ncbi.nlm.nih.gov/pubmed/31332619
https://dx.doi.org/10.1007/s10120-019-00992-2
http://www.ncbi.nlm.nih.gov/pubmed/20726002
https://dx.doi.org/10.1002/ijc.25618
http://www.ncbi.nlm.nih.gov/pubmed/29994489
https://dx.doi.org/10.1109/JBHI.2018.2850040
http://www.ncbi.nlm.nih.gov/pubmed/32245258
https://dx.doi.org/10.3390/s20061753
http://www.ncbi.nlm.nih.gov/pubmed/26960222
https://dx.doi.org/10.1109/TMI.2016.2538465
http://www.ncbi.nlm.nih.gov/pubmed/32369819
https://dx.doi.org/10.1159/000507028
http://www.ncbi.nlm.nih.gov/pubmed/33159809
https://dx.doi.org/10.1002/mp.14585
http://www.ncbi.nlm.nih.gov/pubmed/32251707
https://dx.doi.org/10.1016/j.canlet.2020.03.032
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/28412572
https://dx.doi.org/10.1016/j.compbiomed.2017.03.031
http://www.ncbi.nlm.nih.gov/pubmed/33193886
https://dx.doi.org/10.7150/jca.46704
http://www.ncbi.nlm.nih.gov/pubmed/32549190
https://dx.doi.org/10.3390/jcm9061858


Li Y et al. Review of deep learning for GC

AIGE https://www.wjgnet.com 23 April 28, 2021 Volume 2 Issue 2

and Pattern Recognition; 2014 June 23-28; Columbus, USA. IEEE, 2014 [DOI: 
10.1109/CVPR.2014.223]
Xiang Y, Lin Z, Meng J. Automatic QRS complex detection using two-level convolutional neural 
network. Biomed Eng Online 2018; 17: 13 [PMID: 29378580 DOI: 10.1186/s12938-018-0441-4]

50     

Shelhamer E, Long J, Darrell T. Fully Convolutional Networks for Semantic Segmentation. IEEE 
Trans Pattern Anal Mach Intell 2016; 39: 1 [DOI: 10.1109/tpami.2016.2572683]

51     

Kim HK, Yoo KY, Park JH, Jung HY. Asymmetric Encoder-Decoder Structured FCN Based LiDAR 
to Color Image Generation. Sensors (Basel) 2019; 19 [PMID: 31694330 DOI: 10.3390/s19214818]

52     

Zhu H, Adeli E, Shi F, Shen D;  Alzheimer’s Disease Neuroimaging Initiative. FCN Based Label 
Correction for Multi-Atlas Guided Organ Segmentation. Neuroinformatics 2020; 18: 319-331 [PMID: 
31898145 DOI: 10.1007/s12021-019-09448-5]

53     

Guo X, Nie R, Cao J, Zhou D, Qian W. Fully Convolutional Network-Based Multifocus Image 
Fusion. Neural Comput 2018; 30: 1775-1800 [PMID: 29894654 DOI: 10.1162/neco_a_01098]

54     

Zhou X, Takayama R, Wang S, Hara T, Fujita H. Deep learning of the sectional appearances of 3D 
CT images for anatomical structure segmentation based on an FCN voting method. Med Phys 2017; 
44: 5221-5233 [PMID: 28730602 DOI: 10.1002/mp.12480]

55     

Wang R, Cao S, Ma K, Zheng Y, Meng D. Pairwise learning for medical image segmentation. Med 
Image Anal 2021; 67: 101876 [PMID: 33197863 DOI: 10.1016/j.media.2020.101876]

56     

Xue J, He K, Nie D, Adeli E, Shi Z, Lee SW, Zheng Y, Liu X, Li D, Shen D. Cascaded MultiTask 3-
D Fully Convolutional Networks for Pancreas Segmentation. IEEE Trans Cybern 2021; 51: 2153-
2165 [PMID: 31869812 DOI: 10.1109/TCYB.2019.2955178]

57     

Wu W, Wu S, Zhou Z, Zhang R, Zhang Y. 3D Liver Tumor Segmentation in CT Images Using 
Improved Fuzzy C-Means and Graph Cuts. Biomed Res Int 2017; 2017: 5207685 [PMID: 29090220 
DOI: 10.1155/2017/5207685]

58     

Baazaoui A, Barhoumi W, Zagrouba E. Semi-Automated Segmentation of Single and Multiple 
Tumors in Liver CT Images Using Entropy-Based Fuzzy Region Growing. IRBM  2017; 38: 98-108 
[DOI: 10.1016/j.irbm.2017.02.003]

59     

Öztürk Ş, Özkaya U. Skin Lesion Segmentation with Improved Convolutional Neural Network. J 
Digit Imaging 2020; 33: 958-970 [PMID: 32378058 DOI: 10.1007/s10278-020-00343-z]

60     

Oda M, Tanaka K, Takabatake H, Mori M, Natori H, Mori K. Realistic endoscopic image generation 
method using virtual-to-real image-domain translation. Healthc Technol Lett 2019; 6: 214-219 
[PMID: 32038860 DOI: 10.1049/htl.2019.0071]

61     

de Groof AJ, Struyvenberg MR, van der Putten J, van der Sommen F, Fockens KN, Curvers WL, 
Zinger S, Pouw RE, Coron E, Baldaque-Silva F, Pech O, Weusten B, Meining A, Neuhaus H, 
Bisschops R, Dent J, Schoon EJ, de With PH, Bergman JJ. Deep-Learning System Detects Neoplasia 
in Patients With Barrett's Esophagus With Higher Accuracy Than Endoscopists in a Multistep 
Training and Validation Study With Benchmarking. Gastroenterology 2020; 158: 915-929. e4 
[PMID: 31759929 DOI: 10.1053/j.gastro.2019.11.030]

62     

Sun M, Zhang G, Dang H, Qi X, Zhou X, Chang Q. Accurate Gastric Cancer Segmentation in Digital 
Pathology Images Using Deformable Convolution and Multi-Scale Embedding Networks. IEEE 
Access 2019; 7: 75530-75541 [DOI: 10.1109/ACCESS.2019.2918800]

63     

Nguyen DT, Lee MB, Pham TD, Batchuluun G, Arsalan M, Park KR. Enhanced Image-Based 
Endoscopic Pathological Site Classification Using an Ensemble of Deep Learning Models. Sensors 
(Basel) 2020; 20 [PMID: 33105736 DOI: 10.3390/s20215982]

64     

Teramoto A, Tsukamoto T, Yamada A, Kiriyama Y, Imaizumi K, Saito K, Fujita H. Deep learning 
approach to classification of lung cytological images: Two-step training using actual and synthesized 
images by progressive growing of generative adversarial networks. PLoS One 2020; 15: e0229951 
[PMID: 32134949 DOI: 10.1371/journal.pone.0229951]

65     

Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. 
Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural 
Information Processing Systems - Volume 2. Montreal: MIT Press, 2014: 2672-2680

66     

Enokiya Y, Iwamoto Y, Chen YW, Han XH. Automatic Liver Segmentation Using U-Net with 
Wasserstein GANs. Int J Image Graph 2019; 7: 94-101 [DOI: 10.18178]

67     

Luc P, Couprie C, Chintala S, Verbeek J.   Semantic segmentation using adversarial networks. 2016 
Preprint. Available from: arXiv:1611.08408

68     

Borji A. Pros and cons of GAN evaluation measures. CVIU 2019; 179: 41-65 [DOI: 
10.1016/j.cviu.2018.10.009]

69     

Metz L, Poole B, Pfau D, Sohl-Dickstein J.   Unrolled generative adversarial networks. 2016 Preprint. 
Available from: arXiv:1611.02163

70     

Poorneshwaran JM, Santhosh Kumar S, Ram K, Joseph J, Sivaprakasam M. Polyp Segmentation 
using Generative Adversarial Network. Annu Int Conf IEEE Eng Med Biol Soc 2019; 2019: 7201-
7204 [PMID: 31947496 DOI: 10.1109/EMBC.2019.8857958]

71     

Tang C, Zhang W, Wang L, Cai A, Liang N, Li L, Yan B. Generative adversarial network-based 
sinogram super-resolution for computed tomography imaging. Phys Med Biol 2020; 65: 235006 
[PMID: 33053522 DOI: 10.1088/1361-6560/abc12f]

72     

Rezaei M, Näppi JJ, Lippert C, Meinel C, Yoshida H. Generative multi-adversarial network for 
striking the right balance in abdominal image segmentation. Int J Comput Assist Radiol Surg 2020; 
15: 1847-1858 [PMID: 32897490 DOI: 10.1007/s11548-020-02254-4]

73     

https://dx.doi.org/10.1109/CVPR.2014.223
http://www.ncbi.nlm.nih.gov/pubmed/29378580
https://dx.doi.org/10.1186/s12938-018-0441-4
https://dx.doi.org/10.1109/tpami.2016.2572683
http://www.ncbi.nlm.nih.gov/pubmed/31694330
https://dx.doi.org/10.3390/s19214818
http://www.ncbi.nlm.nih.gov/pubmed/31898145
https://dx.doi.org/10.1007/s12021-019-09448-5
http://www.ncbi.nlm.nih.gov/pubmed/29894654
https://dx.doi.org/10.1162/neco_a_01098
http://www.ncbi.nlm.nih.gov/pubmed/28730602
https://dx.doi.org/10.1002/mp.12480
http://www.ncbi.nlm.nih.gov/pubmed/33197863
https://dx.doi.org/10.1016/j.media.2020.101876
http://www.ncbi.nlm.nih.gov/pubmed/31869812
https://dx.doi.org/10.1109/TCYB.2019.2955178
http://www.ncbi.nlm.nih.gov/pubmed/29090220
https://dx.doi.org/10.1155/2017/5207685
https://dx.doi.org/10.1016/j.irbm.2017.02.003
http://www.ncbi.nlm.nih.gov/pubmed/32378058
https://dx.doi.org/10.1007/s10278-020-00343-z
http://www.ncbi.nlm.nih.gov/pubmed/32038860
https://dx.doi.org/10.1049/htl.2019.0071
http://www.ncbi.nlm.nih.gov/pubmed/31759929
https://dx.doi.org/10.1053/j.gastro.2019.11.030
https://dx.doi.org/10.1109/ACCESS.2019.2918800
http://www.ncbi.nlm.nih.gov/pubmed/33105736
https://dx.doi.org/10.3390/s20215982
http://www.ncbi.nlm.nih.gov/pubmed/32134949
https://dx.doi.org/10.1371/journal.pone.0229951
https://dx.doi.org/10.18178
https://dx.doi.org/10.1016/j.cviu.2018.10.009
http://www.ncbi.nlm.nih.gov/pubmed/31947496
https://dx.doi.org/10.1109/EMBC.2019.8857958
http://www.ncbi.nlm.nih.gov/pubmed/33053522
https://dx.doi.org/10.1088/1361-6560/abc12f
http://www.ncbi.nlm.nih.gov/pubmed/32897490
https://dx.doi.org/10.1007/s11548-020-02254-4


Li Y et al. Review of deep learning for GC

AIGE https://www.wjgnet.com 24 April 28, 2021 Volume 2 Issue 2

Zhang T, Cheng J, Fu H, Gu Z, Xiao Y, Zhou K, Gao S, Zheng R, Liu J. Noise Adaptation 
Generative Adversarial Network for Medical Image Analysis. IEEE Trans Med Imaging 2020; 39: 
1149-1159 [PMID: 31567075 DOI: 10.1109/TMI.2019.2944488]

74     

Han L, Huang Y, Dou H, Wang S, Ahamad S, Luo H, Liu Q, Fan J, Zhang J. Semi-supervised 
segmentation of lesion from breast ultrasound images with attentional generative adversarial network. 
Comput Methods Programs Biomed 2020; 189: 105275 [PMID: 31978805 DOI: 
10.1016/j.cmpb.2019.105275]

75     

Almalioglu Y, Bengisu Ozyoruk K, Gokce A, Incetan K, Irem Gokceler G, Ali Simsek M, Ararat K, 
Chen RJ, Durr NJ, Mahmood F, Turan M. EndoL2H: Deep Super-Resolution for Capsule Endoscopy. 
IEEE Trans Med Imaging 2020; 39: 4297-4309 [PMID: 32795966 DOI: 10.1109/TMI.2020.3016744]

76     

Wang D.   Research on Key Technologies of Medical Image Classification Based on Unsupervised 
and Semi-supervised Framework. M.D. Thesis, Jilin University. 2020 Available from: 
http://cdmd.cnki.com.cn/Article/CDMD-10183-1020754186.htm

77     

Klages P, Benslimane I, Riyahi S, Jiang J, Hunt M, Deasy JO, Veeraraghavan H, Tyagi N. Patch-
based generative adversarial neural network models for head and neck MR-only planning. Med Phys 
2020; 47: 626-642 [PMID: 31733164 DOI: 10.1002/mp.13927]

78     

Tong N, Gou S, Niu T, Yang S, Sheng K. Self-paced DenseNet with boundary constraint for 
automated multi-organ segmentation on abdominal CT images. Phys Med Biol 2020; 65: 135011 
[PMID: 32657281 DOI: 10.1088/1361-6560/ab9b57]

79     

http://www.ncbi.nlm.nih.gov/pubmed/31567075
https://dx.doi.org/10.1109/TMI.2019.2944488
http://www.ncbi.nlm.nih.gov/pubmed/31978805
https://dx.doi.org/10.1016/j.cmpb.2019.105275
http://www.ncbi.nlm.nih.gov/pubmed/32795966
https://dx.doi.org/10.1109/TMI.2020.3016744
http://cdmd.cnki.com.cn/Article/CDMD-10183-1020754186.htm
http://www.ncbi.nlm.nih.gov/pubmed/31733164
https://dx.doi.org/10.1002/mp.13927
http://www.ncbi.nlm.nih.gov/pubmed/32657281
https://dx.doi.org/10.1088/1361-6560/ab9b57


AIGE https://www.wjgnet.com 25 April 28, 2021 Volume 2 Issue 2

Artificial Intelligence in 

Gastrointestinal 
EndoscopyA I G E

Submit a Manuscript: https://www.f6publishing.com Artif Intell Gastrointest Endosc 2021 April 28; 2(2): 25-35

DOI: 10.37126/aige.v2.i2.25 ISSN 2689-7164 (online)

MINIREVIEWS

Application of artificial intelligence to endoscopy on common 
gastrointestinal benign diseases

Hang Yang, Bing Hu

ORCID number: Hang Yang 0000-
0002-7235-8162; Bing Hu 0000-0002-
9898-8656.

Author contributions: All authors 
participated in the work; Yang H 
contributed to the design and draft 
of the manuscript; Hu B 
contributed to reviewing the 
manuscript; Yang H and Bing H 
contributed to revising the 
manuscript.

Supported by the 1·3·5 Project for 
Disciplines of Excellence Clinical 
Research Incubation Project, West 
China Hospital, Sichuan 
University, China, No. 
20HXFH016.

Conflict-of-interest statement: The 
authors declare that they have no 
competing interests.

Open-Access: This article is an 
open-access article that was 
selected by an in-house editor and 
fully peer-reviewed by external 
reviewers. It is distributed in 
accordance with the Creative 
Commons Attribution 
NonCommercial (CC BY-NC 4.0) 
license, which permits others to 
distribute, remix, adapt, build 
upon this work non-commercially, 
and license their derivative works 
on different terms, provided the 
original work is properly cited and 
the use is non-commercial. See: htt

Hang Yang, Bing Hu, Department of Gastroenterology, West China Hospital, Sichuan 
University, Chengdu 610041, Sichuan Province, China

Corresponding author: Bing Hu, MBBS, MD, Professor, Department of Gastroenterology, West 
China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Wu Hou District, Chengdu 
610041, Sichuan Province, China. hubingnj@163.com

Abstract
Artificial intelligence (AI) has been widely involved in every aspect of healthcare 
in the preclinical stage. In the digestive system, AI has been trained to assist 
auxiliary examinations including histopathology, endoscopy, ultrasonography, 
computerized tomography, and magnetic resonance imaging in detection, 
diagnosis, classification, differentiation, prognosis, and quality control. In the field 
of endoscopy, the application of AI, such as automatic detection, diagnosis, classi-
fication, and invasion depth, in early gastrointestinal (GI) cancers has received 
wide attention. There is a paucity of studies of AI application on common GI 
benign diseases based on endoscopy. In the review, we provide an overview of AI 
applications to endoscopy on common GI benign diseases including in the 
esophagus, stomach, intestine, and colon. It indicates that AI will gradually 
become an indispensable part of normal endoscopic detection and diagnosis of 
common GI benign diseases as clinical data, algorithms, and other related work 
are constantly repeated and improved.

Key Words: Artificial intelligence; Endoscopy; Common gastrointestinal benign diseases
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Core Tip: In endoscopy, the application of artificial intelligence in early gastrointestinal 
cancer has been widely concerned. We provide a general conclusion of artificial 
intelligence endoscopy applications in common gastrointestinal benign diseases, such 
as Barrett’s esophagus, atrophic gastritis, and colonic polyp. Studies indicate high 
accuracies and efficiencies. Further related work is needed to boost the real application 
of artificial intelligence in common gastrointestinal benign diseases in the future.
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INTRODUCTION
Artificial intelligence (AI) is essentially a process of learning human thinking and 
transferring human experience based on mathematics and statistics. Iteration of 
algorithm, rising data, and improving computing power are cores of AI. Machine 
learning (ML) is a subset of AI[1], and deep learning is a subset of ML to realize 
ML[2], where multiple algorithms are structured together in complex layers. Artificial 
neural networks are one of the most common algorithms of AI[3]. Convolutional 
neural networks (CNNs) are a kind of supervised deep learning algorithm[4]. Its 
modified format is defined as deep convolutional neural networks[5]. Recognizing 
images based on artificial neural networks/CNNs promotes AI penetrating in 
medicine. Computer-aided diagnosis (CAD) systems are designed to interpret medical 
images using advances of AI from ML to deep learning[6].

In the field of gastroenterology, diseases of the liver, pancreases, and full digestive 
tract have been involved. Examples include a deep learning model based on computed 
tomography images to stage liver fibrosis, a deep learning model constructed to differ-
entiate between precancerous lesions and pancreatic cancers, and a deep learning 
model used in endoscopy to detect early gastrointestinal (GI) cancers. A study covered 
five kinds of gastric diseases and showed the diagnostic specificity of the CNNs was 
higher than that of the endoscopists for early gastric cancer and high-grade intrae-
pithelial neoplasia images (91.2% vs 86.7%). The diagnostic accuracy of the CNNs was 
close to those of the endoscopists for lesion-free, early gastric cancer and high-grade 
intraepithelial neoplasia, peptic ulcer (PU), advanced gastric cancer (GC), and gastric 
submucosal tumor images. The CNNs had an image recognition time of 42 s for all the 
test set images[7]. In this review, the application and research of AI on common GI 
benign lesions based on endoscopy were concluded.

LITERATURE SEARCH
This review aimed to make a qualitative only review of the application of AI on 
common GI benign diseases. We searched the PubMed database for articles that were 
published in the last 5 years using the term combinations of artificial intelligence and 
common GI benign lesions [Barrett’s esophagus (BE), esophageal varices (EV), atrophic 
gastritis (AG), PU, gastric polyp, small bowel capsule endoscopy, colonic 
polyp/adenoma, and inflammatory bowel diseases (IBDs)]. Articles based on 
radiological images or other samples, review articles, research articles of early or 
advanced GI cancers or other cancers, and articles only related to either GI benign 
diseases or AI were excluded. Two authors independently extracted data. Any 
disagreement was resolved by discussion until consensus was reached or by 
consulting a third author. Endoscopic-related results were qualitatively concluded in 
Table 1. The flowchart was presented in Figure 1.

SEARCH RESULTS
Initially, a total of 555 articles were identified. After manually screening and reading, 
only research articles related to the application of AI to common GI benign lesions (BE, 
EV, AG, PU, gastric polyp, small bowel capsule endoscopy, colonic polyp/adenoma, 
and IBDs) based on different endoscopic images or tissue slides from endoscopic 
biopsies were included. Finally, 35 studies were tabulated in Table 1. Six studies 
demonstrated the application of AI on esophageal benign diseases (5 BE and 1 EV). 
Seven studies were about gastric benign diseases (3 AG, 3 PU, and 1 polyp). Seven 
studies were about intestinal diseases. Fifteen studies were about colonic benign 
diseases (11 polyp/adenoma and 4 IBDs).

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/2689-7164/full/v2/i2/25.htm
https://dx.doi.org/10.37126/aige.v2.i2.25
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Table 1 Application of artificial intelligence on common gastrointestinal benign diseases

Ref. Aim and disease Prospective/retrospective AI method Endoscopy image Training 
dataset

Validation 
dataset Result sensitivity Result 

specificity
Result 
accuracy/AUC

Esophageal benign diseases

de Groof 
et al[12]

Detecting 
Barrett’sneoplasia

Retrospective CAD WLI images 40 images A leave one out 
cross validation

92% 95% 85%1

Jisu et al[39] Distinguishing BE Retrospective CNNs Endomicroscopic images 262 images Image distortion 
methods 

80.77%1

Ebigbo et al
[40]

Distinguishing BE Retrospective CNNs (ResNet) WLI images 129 images 62 images 83.7% 100.0% 89.9%1 

Sehgal et al[41] Detecting dysplasia in 
BE

Retrospective ML (decision 
trees)

Video recordings(AAC) 40 patients 
with NDBE 
and DBE

97% 88% 92%1

de Groof 
et al[14]

Detecting 
Barrett’sneoplasia

Retrospective CNN (CAD 
(ResNet-UNet))

WLI images 494364 images 1704 images (early 
stage neoplasia in 
BE and NDBE 
from 669 patients)

90% 88% 89%1

Dong et al[16] Screening high risk EV Retrospective ML (Random 
forest)

238 patients 109 patients Training set (0.84); 
Validation set (0.82)

Gastric benign diseases

Zhang et al[42] Diagnosing CAG Retrospective CNNs (DenseNet) WLI images 5470 images Five-fold cross 
validation

94.5% 94.0% 94.2%1

Guimarães et 
al[43]

DiagnosingCAG Retrospective CNNs (VGG16) WLI images 200 images 70 images(ten-fold 
cross validation)

93%1/0.98

Horiuchi et al
[44]

Differentiating CAG Retrospective CNNs 
(GoogLeNet)

ME-NBI images 1078 images 107 images 95.4% 71.0% 85.3%1/0.85

Zhang et al[7] Diagnosing PU Retrospective CNNs (ResNet34) WLI images 4200 images 228 images 78.9% 88.4% 86.4%1

Lee et al[45] Differentiating PU Retrospective CNNs (ResNet-
50/ Inception 
v3/VGG16 
model)

WLI images 200 images 20 images 92.6%1/85.24%1

/91.2%1

Namikawa 
et al[46]

Classifying 
gastriccancers and 
ulcers

Retrospective CNNs (SSD) WLI/NBI/chromoendoscopy 
images

373 images 720 images 93.3% 99.0% 93.3 %1

Zhang et al[26] Detecting GP Retrospective CNNs (SSD-
GPNet)

WLI images 404 images 50 images 93.92%1

Intestinal benign diseases
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Hwang et al
[29]

Classifying 
hemorrhagic and 
ulcerations

Retrospective CNNs (VGGNet) Capsule endoscopy 7556 images 5760 images Model 1 vs Model 2; 
97.61% vs 95.07%

Model 1 vs Model 
2; 96.04% vs 
98.18%

Model 1 vs Model 2; 
96.83%1 vs 96.62%1

Aoki et al[47] Detecting erosions and 
ulcerations

Retrospective CNNs (SSD) Capsule endoscopy 5360 images 10440 images 88.2% 90.9% 90.8%1/0.958

Aoki et al[48] Detecting erosions and 
ulcerations

Retrospective CNNs (SSD) Capsule endoscopy 20 videos

Ding et al[49] Detecting small bowel 
diseases

Retrospective CNNs (ResNet) Capsule endoscopy 158235 images 5000 patients 99.88% per 
patient99.90% per 
lesion

100% per 
patient100 % per 
lesion

Fan et al[50] Detecting erosions and 
ulcerations

Retrospective CNNs (AlexNet) Capsule endoscopy Ulcer 2000; 
Erosion 2720

Ulcer 500; Erosion 
690

Ulcer: 96.80%; 
Erosion: 93.67%

Ulcer: 94.79%; 
Erosion: 95.98%

Ulcer: 95.16%1; 
Erosion: 95.34%1/0.98

Leenhardt et al
[51]

Detecting small bowel 
angiectasia

Retrospective CNNs Capsule endoscopy 300 videos 
with 
angiectasia

300 videos with 
angiectasia

100% 96%

Tsuboi 
et al[52]

Detecting small bowel 
angiectasia

Retrospective CNNs (SSD) Capsule endoscopy 141 patients 28 patients 98.8% 98.4% 0.998

Colonic benign diseases

Lui et al[34] Detecting missed 
colonic lesions

Retrospective and prospective R-FCN 
(ResNet101)

Endoscopic videos (WLI) 52 videos Real-time AI detected at least 1 missed adenoma in 14 patients (26.9%) and increased the 
total number of adenomas detected by 23.6%.

Rodriguez-
Diaz et al[53]

Histologically 
classifying CP

Retrospective CAD NBI 745 images 
+65000 images

96% 84%

Komeda et al
[54]

Diagnosing CP Retrospective CNNs-CAD WLI/NBI/ chromoendoscopy 
images

1200 images 10-fold cross 
validation

75.1%1

Akbari 
et al[55]

Classifying CP Retrospective FCNs WLI images 200 images 300 images

Chen et al[56] Classifying diminutive 
CP

Retrospective DCNNs-CAD NBI images 96 images + 
188 images

96.3% 78.1%

Gong et al[57] Detecting CA Prospective DCNNs WLI images DCNNs system (n = 355) or 
unassisted (control) colonoscopy (n 
= 349)

58 (16%) of 35527 (8%) of 349

Byrne et al[58] Differentiating 
adenomatous and 
hyperplastic polyps

Retrospective DCNNs Videos and NBI images 223 polyp 
videos

40 videos 98% 83%

Mori et al[59] Identifying diminutive 
CP

Prospective CAD NBI/stained images 791 consecutive patients undergoing 
colonoscopy and 23 endoscopists

Pathologic prediction 
rate of 98.1%1

105 positive 
and 306 
negative 

Misawa 
et al[60]

DetectingCP Retrospective CAD WLI images 50 positive and 85 
negative videos

90.0% 63.3% 76.5%1
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videos

Taunk et al[61] Classifying polyp 
histology

Retrospective CAD pCLE images 125 images 189 images 95% 94% 94%1

Wang et al[62] Detecting CA Prospective CAD WLI images 484 patients in the CADe group and 
478 in the sham group

165 (34%) of 484; 132 (28%) of 478

Tong et al[63] Differentiating UC, 
CD, and ITB

Retrospective CNNs/RF WLI images 6399 consecutive patients (5128 UC, 
875 CD and 396 ITB)

RF (UC 97%, CD 
65%, and ITB 68%); 
CNN (UC 99%, CD 
87%, and ITB 52%)

RF (UC 97%, CD 
53%, and ITB 76%); 
CNN (UC 97%, CD 
83%, and ITB 81%)

RF (UC 0.97, CD 0.58, 
and ITB 0.72); CNN 
(UC 0.98, CD 0.85, and 
ITB 0.63)

Ozawa et al
[36]

Diagnosing UC Retrospective CAD WLI images 26304 images 3981 images 0.86 (Mayo 0); 0.98 
(Mayo 0–1)

Stidham 
et al[37]

Grading the severity of 
ulcerative colitis

Retrospective CNNs WLI images 2465 patients 308 patients 83.0% 96.0% 0.966

Maeda 
et al[38]

Identifying histologic 
inflammation 
associated with UC

Retrospective CAD Endocytoscopic images 87 patients 100 patients 74% 97% 91%1

1Results accuracy. AAC: Acetic acid chromoendoscopy; AI: Artificial intelligence; AUC: Area under the curve; BE: Barrett’s esophagus; CA: Colorectal adenomas; CAD: Computer-aided diagnosis; CAG: Chronic atrophic gastritis; CD: 
Crohn’s disease; CNN: Convolutional neural network; CP: Colorectal polyp; DBE: Dysplastic Barrett’s esophagus; DCNNs: Deep convolutional neural networks; EV: Esophageal Varices; FCNs: Fully convolutional networks; GP: Gastric 
polyp; ITB: Intestinal tuberculosis; ME-NBI: Magnifying narrow-band imaging; ML: Machine learning; NBI: Narrow-band imaging; NDBE: Non-dysplastic Barrett’s esophagus; pCLE: Probe-based confocal laser endomicroscopy; PU: Peptic 
ulcer; RF: Random forest; R-FCNs: Region-based fully connected convolutional neural networks; SSD: Single shot detector; UC: Ulcerative colitis; WLI: White-light imaging.

AI AND ESOPHAGEAL BENIGN DISEASES: BARRETT’S ESOPHAGUS 
AND ESOPHAGEAL VARICES 
BE is a precursor to esophageal adenocarcinoma. Intestinal metaplasia and gastric 
metaplasia are two pathological subclasses of BE. Intestinal metaplasia can progress to 
esophageal cancer. The ablation of dysplastic BE will reduce the risk of progression to 
cancer[8]. Endoscopic surveillance, including white-light imaging (WLI), narrow-band 
imaging, and chromoendoscopy, is performed to detect dysplasia in BE. Approx-
imately 5% of the esophageal mucosa is found at risk by random biopsies sample[9].

Recently, AI has been applied in some studies of BE. For example, CAD based on 
deep learning and different algorithms trained by WLI and endomicroscopic images to 
detect, diagnose, and distinguish BE with achievable results (the accuracy from 80.77% 
to 92%, specificity from 88% to 100%, and sensitivity from 83.7% to 97%) (Table 1). On 
pathology, CAD with wide area transepithelial sampling could increase the detection 
of high-grade dysplasia/esophageal adenocarcinoma (absolute increase: 14.4%)[10]. 
Deep convolutional neural networks were used in the whole-slide tissue 
histopathology images-based diagnosis of dysplastic and non-dysplastic BE[11]. 
Moreover, distinguishing BE adenocarcinoma by AI methods has been studied based 
on different endoscopic images such as WLI and volumetric laser endomicroscopic 
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Figure 1 Flow chart of study selection and logic arrangement of review. AG: Atrophic gastritis; AI: Artificial intelligence; BE: Barrett’s esophagus; CA: 
Colonic adenoma; CP: Colonic polyp; EV: Esophageal varices; GI: Gastrointestinal; GP: Gastric polyp; IBDs: Inflammatory bowel diseases; PU: Peptic ulcer; SB-CE: 
Small bowel capsule endoscopy.

images with accuracy from 88% to 92%, specificity from 88% to 93%, and sensitivity 
from 90% to 95%[12-14].

As another common esophageal benign disease, EV are associated with cirrhosis 
and portal hypertension, and variceal hemorrhage is a substantial cause of 
mortality[15]. However, related AI research is limited. A score system based on ML 
was built on the data of 238 patients with cirrhosis to reliably identify patients with 
varices that needed treatments and achieved an area under the curve (AUC) from 0.75 
to 0.84 in different groups[16]. Another study of the index of spleen volume-to-platelet 
ratio based on deep learning-measured spleen volume on computed tomography to 
assess high-risk varices in B-viral compensated cirrhosis had a sensitivity of 69.4% and 
specificity of 78.5%[17]. There is little research of AI on esophagitis, although it is also 
a common esophageal disease associated with BE and esophageal cancer.

AI AND GASTRIC BENIGN LESIONS: ATROPHIC GASTRITIS, PEPTIC 
ULCER, AND POLYP
Gastritis, peptic ulcer, polyp and adenoma, and vascular lesion are common gastric 
benign diseases. The detection and diagnosis of these lesions account for a large part of 
daily endoscopic work. If AI can be applied in this field, then the rate of detection and 
accuracy will be improved. Moreover, the rapid identification of simple lesions can fill 
the lack of endoscopists and reduce the workload.

Early diagnosis of chronic AG, a precancerous lesion, is important to prevent the 
occurrence and development of GC. AI-assisted detection and diagnosis has been 
related to endoscopic images (Table 1), histological images[18,19], and X-ray 
images[20,21]. The accuracy was from 85.3% to 94.2%, the specificity was from 71% to 
94%, and the sensitivity was from 94.5% to 95.4%. Helicobacter pylori infection, as a 
dominant cause of chronic AG and GC, has also been detected via AI methods based 
on endoscopic images, such as CNNs (GoogLeNet) and CNNs (ResNet-50 model), 
which achieved an accuracy up to 93.8% in a considerably short time of less than 200 
s[22-24].
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A CNN method was constructed to diagnose PU and differentiate GC from PU 
mainly based on WLI, narrow-band imaging, and chromoendoscopic images with an 
accuracy from 85.2% to 93.3%, specificity from 88.4% to 99%, and sensitivity from 
78.9% to 93.3% (Table 1). In addition, a ML model was built on six parameters, such as 
age and the presence of PU, to predict recurrent ulcer bleeding within 1 year with an 
AUC of 0.775 and an accuracy of 84.3%[25].

There were only a few applications of AI on detecting gastric hyperplastic polyps 
and adenomas. A 93.92% accuracy was achieved when detecting polyps by CNNs 
(SSD-GPNet) based on WLI images[26]. A CNN method was trained to detect 
adenomas and showed an AUC of 0.99 based on histopathology whole-slide 
images[27]. Research and application of AI on gastric benign lesions are limited, 
although these diseases make up a considerable part of daily work. Some of them are 
usually prone to severe outcomes and risks despite the relative ease to diagnose. 
Indeed, the study of AI on this aspect will assist endoscopists to improve early 
detection rates and bring the opportunity of early treatment to benefit patients.

AI AND INTESTINAL DISEASES: CAPSULE ENDOSCOPY
The application of AI in small bowel diseases has been concentrated on capsule 
endoscopy. It includes image enhancement using ML algorithms to reduce artifact 
interference as well as three-dimensional luminal map reconstruction and 
localization[28]. AI-assisted capsule endoscopy in detecting ulcer, erosion, bleeding, 
polyps, parasite, diverticulum, and angiectasia with an accuracy more than 90.0%, 
specificity from 90.9% to 100%, and sensitivity from 88.2% to 100% in a short time 
(about 6 min) (Table 1). Furthermore, a gradient class activation map was used to 
visualize and detect lesions by CNNs-VGGNet to improve the classification and 
localization[29]. In addition, a CNN method based on conventional abdominal 
radiographs was trained to detect high-grade small bowel obstruction with an AUC of 
0.84, a sensitivity of 83.8%, and a specificity of 68.1%[30]. In another study, it achieved 
an AUC of 0.971, a sensitivity of 91.4%, and a specificity of 91.9% using region-based 
CNNs[31]. The limited research indicated CNNs could recognize specific images 
among a large variety with high efficiency and accuracy. The application of AI will 
relieve the clinical workload as capsule endoscopy reading is a time-consuming 
process.

AI AND COLONIC BENIGN LESIONS: POLYP, ADENOMA, AND IBDS
A 1.0% increase of adenoma detection rate has been associated with a 3.0% decrease in 
the risk of interval colorectal cancer[32]. To improve colorectal polyp and adenoma 
detection, AI has been widely applied in the detection, real-time histological classi-
fication, segmentation, localization, and distinguishing of diminutive polyps and 
adenomas based on different methods trained by videos and images in retrospective 
or prospective and in multicenter or single center clinical trials (Table 1). Deep 
learning was also used to automatically classify colorectal polyps on histopathologic 
slides[33]. For the internal evaluation, the accuracy of the deep CNN method was 
93.5%, which was comparable to the pathologists accuracy of 91.4%. On the external 
test, it achieved an accuracy of 87.0%, which was comparable to the pathologists 
accuracy of 86.6%. The application of AI in colorectal polyps has gained more concerns 
and practice, and it is deeper and closer to the clinical use to further increase the 
detection rate of polyps. For example, real-time AI detected at least one missed 
adenoma in 14 patients (26.9%) and increased the total number of adenomas detected 
by 23.6%[34].

AI methods have been trained in grading endoscopic disease severity of patients 
with ulcerative colitis and in predicting remission in patients with moderate to severe 
Crohn’s disease[35]. For example, a CNN-CAD system based on GoogLeNet was 
robustly promising to identify normal mucosa (Mayo 0) and mucosal healing state 
with an accuracy of 0.86 of Mayo 0 and of 0.98 of Mayo 0-1[36]. Another similar system 
could differentiate remission (Mayo 0 or 1) from moderate or severe disease (Mayo 2 
or 3) with an AUC of 0.966, a specificity of 96.0%, and a sensitivity of 83.0%[37]. A 
CAD was constructed to identify the presence of histologic inflammation associated 
with ulcerative colitis using endocytoscopy with an accuracy of 91%, a specificity of 
97%, and a sensitivity 74%[38] (Table 1).
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FUTURE PERSPECTIVES OF AI APPLICATION ON COMMON GI BENIGN 
LESIONS
We summarized the application and research of AI on common GI benign diseases. 
Limited studies are promising as most of the studies showed comparatively high 
accuracies and efficiencies. As studies of AI application on gastroenterology continue 
to increase, there are several areas of interest that will hold significant value in the 
future. First, the technical integration of AI systems will be important to optimize 
clinical workflow. New AI applications can easily “read in” data from a video input, 
allowing the systems to use the data for training and real time decision support. 
Second, AI systems will continue to expand the clinical applications. Some promising 
studies have demonstrated how AI can improve our performance on clinical tasks 
such as polyp identification, detection of small bowel bleeding, and endoscopic 
recognition of Helicobacter pylori infection, etc. More research, especially randomized 
controlled trials, on how to train and validate up-to-date algorithms will be continued 
on the present work to find more precise methods and identify new clinical tasks after 
practice. Third, further research will be needed to describe the most effective training 
methods for physician practices beginning to adopt AI technology because AI will be 
an indispensable helper of normal endoscopic detection and diagnosis of common GI 
benign lesions in the future.

CONCLUSION
Although AI is a relatively new technology, it has the potential to ease the daily 
workload of radiologists, pathologists, and sonographers. In endoscopy, AI related to 
early GI cancers and precancerous lesions has garnered more research than common 
GI benign diseases, despite the latter occupying a large proportion of daily work and 
being easier to detect and diagnose than early cancers. If models and diagnosing 
routes based on AI targeted at common GI benign diseases are well developed, then it 
will bring great benefits to patients and endoscopists, especially in primary hospitals 
where medical resources are lacking and core work is mainly focused on early 
diagnosis and treatment of common GI benign diseases. Furthermore, AI methods and 
technology targeted at common benign diseases will be easier for endoscopists to 
adopt professional education. More research is needed to overcome the challenges of 
integrating AI into the detection of common GI benign diseases by endoscopy, but the 
future is promising.
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Abstract
Research in artificial intelligence (AI) in gastroenterology has increased over the 
last decade. Colonoscopy represents the most widely published field with regards 
to its use in gastroenterology. Most studies to date center on polyp detection and 
characterization, as well as real-time evaluation of adequacy of mucosal exposure 
for inspection. This review article discusses how advances in AI has bridged 
certain gaps in colonoscopy. In addition, the gaps formed with the development 
of AI that currently prevent its routine use in colonoscopy will be explored.
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Core Tip: The use of artificial intelligence (AI) for colonoscopy has been studied most 
extensively for polyp detection and characterization. Despite advances made in this 
field, AI systems studied for these purposes represent only the machine learning 
domain of AI, and individual machine learning algorithms used in these studies are 
each focused on performing a very narrow task. While they may bridge existing gaps in 
polyp detection and real-time optical diagnosis of colorectal polyps, the introduction of 
AI into colonoscopy will also mean that there are new gaps that must be bridged for AI 
systems to be routinely used in clinical practice.
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INTRODUCTION
The use of artificial intelligence (AI) in gastroenterology has gained momentum in the 
past decade. This is reflected in the increasing number of publications in the field of AI 
in endoscopy, most of which have been centered on colonoscopy. This is 
understandable as the unique role of colonoscopy in the prevention and management 
of colorectal cancer (CRC), together with the unmet needs in this field, has created the 
perfect milieu for the introduction of AI into world of endoscopy.

CRC represents one of the leading causes of cancer-related morbidity and mortality 
worldwide[1,2]. Colonoscopy decreases CRC-related mortality[3,4], with a 1% increase 
in adenoma detection rate (ADR) estimated to decrease interval CRC by 3%[5]. As 
such, a key barrier to overcome is the adenoma miss rate (AMR), which has been 
estimated in a meta-analysis to be a high as 22% overall, with a higher AMR when 
diminutive adenomas are considered[6]. Another unmet need in colonoscopy is the 
need for accuracy in the optical diagnosis of colonic polyps in relation to their actual 
histology. Up to 90% of lesions detected on colonoscopy consist of diminutive (≤ 5 
mm) and small (6-9 mm) polyps, with the progression rates to advanced adenomas or 
CRC postulated to be low based on evidence from available studies[7]. It is therefore 
no surprise that most of the literature to date has focused on computer-assisted 
detection (CADe)[8,9] and computer-assisted diagnosis (CADx)[10-12] applications in 
colonoscopy.

This review article evaluates the areas in colonoscopy where AI may be a bridge for 
certain gaps in clinical practice. It will also explore in detail the current limitations and 
pitfalls in the application of AI in colonoscopy, highlighting how despite the prolif-
eration of literature on this topic and what it promises to offer, AI may be a new gap in 
endoscopy which clinicians need to work to bridge.

LITERATURE SEARCH
We performed a comprehensive literature search in the PubMed, MEDLINE and 
EMBASE (up to March 17, 2021) electronic databases to identify relevant clinical trials 
that evaluated the roles of AI systems in colonoscopy. Electronic searches were also 
supplemented with manual searches of the references in the included studies and 
review articles.

AI TERMINOLOGY IN COLONOSCOPY
What does the term AI mean in colonoscopy?
The term “artificial intelligence” was first coined by John McCarthy in 1956 at the 
Dartmouth Summer Research Project. In essence, it is a branch in computer science 
where computer systems are designed to perform tasks which would ordinarily 
require human intelligence. This definition is extremely broad and often confuses 
clinicians to what exactly the capabilities, and by inference, the limitations of AI are in 
their respective fields[13]. There is therefore a need to define what AI means in 
colonoscopy as this is a prerequisite for meaningful discussion of its role in 
colonoscopy.

Published and ongoing studies incorporating AI in the context of colonoscopy 
involve the machine learning (ML) domain of AI. ML refers to the use of algorithms, 
which form predictive and descriptive models based on analysis of input data 
provided by investigators (the training set)[14]. These algorithms undergo multiple 
iterations of these models with the goal of performing a specific task, the aim of which 
is to come to a specified classification output (e.g., polyp or no polyp) when the 
algorithms are tested on an unseen set of data (the test set). In practical terms and in 
the context of colonoscopy, this is achieved using either handcrafted models or deep 
learning (DL).

A useful mental model in understanding the scope of and roles which AI plays in 
colonoscopy is to regard the progress made in this field as “waves”[15]. It is crucial to 
understand that the methods, technologies, and results from earlier AI studies are not 
obsolete the moment a “better” or “faster” computer system is available based on 
results we as clinicians are familiar with such as the ADR and adenoma per 
colonoscopy (APC), or technical matrices that we may gravitate towards such as the 
processing speed of an algorithm. Rather, these “waves” are continuously interacting 
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and building on top of each other, and as a result, have a strong influence on the 
development of later technologies. The earlier “waves” remain relevant and may 
sometimes harbor solutions to certain issues faced with CADe and CADx support 
tools, which will be discussed later in this article. Having this mental model also helps 
us better understand the intrinsic biases present in all forms of ML regardless of 
advancements made in AI, which is essential for critical appraisal of literature 
surrounding AI in clinical practice.

AI terminology relevant to colonoscopy
Commonly used terms in AI which are relevant to this review article will be discussed 
here. This list is not meant to be exhaustive and is meant instead to highlight terms 
which will help the reader understand the later critiques and solutions offered in this 
paper.

AI can be categorized very broadly into weak (or narrow) AI and strong AI. The 
former refers to systems built to solve a specific problem or performing a single task 
extremely well, without an emphasis on elucidating how human reasoning works. 
This type of AI operates within significant constraints and a limited context. The latter 
term, also referred to as artificial general intelligence, aims to build systems which 
think like humans.

Features in ML refer to the set of numbers which quantitatively summarize and 
represent in a compact fashion the input data. For example, differences in morphology 
of polyps as defined in the Paris classification[16] and pit patterns[17] can be 
converted into different arrays of numbers which an ML algorithm can use to generate 
a prediction such as “polyp” or “no polyp” in a CADe application. Conventional 
learning by the ML algorithm may be supervised, where training takes place on 
labeled data sets, or unsupervised, where commonalities are used to identify groups 
within data. Supervised learning occurs on pre-established input and output pairs, 
enabling the ML algorithm to learn predictive mathematical models which can then 
map the input from unseen data into an outcome of interest (e.g., neoplastic, or 
hyperplastic). In contrast, unsupervised learning predicts similarities between data 
points through looking at the underlying structure of the data provided, with no prior 
knowledge of its significance.

Handcrafted knowledge represents the first “wave” of AI. This consisted of 
knowledge-based methods where manual extraction and selection of characteristics of 
an object such as polyp shape and texture, are used to create mathematical models 
which can achieve a class or numerical output. This is labor-intensive and as a result, 
are usually implemented on small sets of data. These systems do not have the ability to 
learn and were of limited clinical use. DL is another form of ML where an artificial 
neural network (ANN) is used to perform the same task. ANNs are supervised ML 
models where interconnected artificial neurons form layered networks. Signals travel 
via weighted inputs from artificial neurons in the previous layer to the next layer, 
which then propagate the signal when a predefined threshold is reached, like how 
biological neurons work. Classification can be optimized, and the system enhanced by 
adjustment of the weights given to these inter-neuron connections.

Deep convolutional neural networks (DCNNs) have enabled more hidden layers to 
be added to the input and output layers of ANN, a development which has been 
facilitated by advancements made in other areas of computer science as this is 
computationally expansive. In addition, convolutional layers apply filters (a set of 
weights) in a systematic fashion to each overlapping part of the input data. In this 
manner, large numbers of filters can be applied to the training set of data in parallel 
under the constraints of the intended task, for example classification of an image as 
having a polyp or not in colonoscopy, allowing information to be extracted directly 
from images training data to form a feature map. DCNN usually require large 
amounts of labelled training data, which are derived wither from public databases or 
private collections in individual institutions.

Hyperparameters in ML refer to all parameters that have been arbitrarily set by the 
investigator and are used to configure the model for optimal performance at a specific 
task or on a specific dataset. As opposed to model parameters, which are learned 
automatically during training of the model, hyperparameters are manually set and 
affects the learning process and ultimately, the behavior of the model. This is useful in 
understanding the roles (and potential biases resulting from) the optimization and 
training process of AI models used in colonoscopy. The training set refers to the initial 
dataset used to determine optimal parameters after multiple rounds or iterations of 
adjustments. The validation set is mostly (but not always) a different dataset where 
these parameters are tested and adjusted. It is also used to optimize the hyperpara-
meters in the model. Lastly, the test set refers to a new set of unseen data which is used 
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to test the model and its generalizability.

AI: BRIDGING THE GAP IN COLONOSCOPY
AI in the field of colonoscopy has been studied primarily for polyp detection, polyp 
characterization in terms of predicted histology, and for quality assurance in the 
performance of colonoscopy.

Polyp detection
The rate of missed polyps was mentioned earlier in the introduction. The AMR in 
influenced by different factors, among which the endoscopist is considered one of the 
major determinants[18-21]. These human biases may be due to distraction during 
colonoscopy, fatigue, or the inability to maintain a sustained level of alertness during 
withdrawal. These lead to errors in perception where the endoscopist may miss polyps 
which are visible on the monitor. The role of “second readers” in colonoscopy in 
increasing ADR[22,23] lends support to the hypothesis that CADe may help increase 
APC and ADR, and decrease AMR, during colonoscopy.

At the time of writing, there are six randomized controlled trials (RCTs)[24-29] to 
date that have evaluated the role of CADe in colonoscopy. Hassan et al[9] recently 
performed a systematic review and meta-analysis of five of these studies[24,25,27-29], 
which consisted of 4354 participants. The pooled ADR was significantly higher in the 
CADe group compared with the control group (36.6% vs 25.2%; relative risk [RR] 1.44; 
95% confidence interval [CI]: 1.27-1.62; P < 0.1), with all of the included RCTs 
reporting a significant increase in ADR individually. APC, which is defined as the total 
number of adenomas found divided by the total number of colonoscopies and has 
good correlation with ADR[30,31], was also significantly higher in the CADe 
compared to the control group (0.58 vs 0.36; RR 1.70; 95%CI: 1.53-1.89; P < 0.01). The 
mean withdrawal time in the CADe and control groups was shown to be statistically 
different in this meta-analysis.

An interesting prospective study conducted by Wang et al[32] showed that the AMR 
was decreased with CADe. This study differed from the RCT mentioned above in that 
tandem colonoscopies were performed. Patients in this study were randomly assigned 
to colonoscopy with CADe or colonoscopy without CADe by an endoscopist, followed 
immediately by the other procedure. The study showed that the AMR and polyp miss 
rates were significantly lower in the CADe colonoscopy group compared to the 
routine colonoscopy group (13.89% vs 40.00%, P < 0.0001 and 12.98% vs 45.90%; P < 
0.0001, respectively). These results were also consistent regardless of colonic segments, 
i.e. the AMR was significantly lower in the CADe group in the ascending, transverse, 
and descending colon.

Polyp characterization (optical prediction of polyp histology)
In contrast to CADe for polyp detection, CADx deals with the interpretation of polyp 
appearance during colonoscopy to determine the predicted histology. Polyp classi-
fication systems such as the Kudo pit pattern[17], Sano et al[33], NBI International 
Colorectal Endoscopic (NICE)[34], and Japan NBI Expert Team (JNET)[35] classific-
ations were developed with the purpose of predicting polyp histology and severity of 
neoplasia to guide therapy. The use of these classification systems for optical 
prediction of colorectal polyp histology requires the proper equipment, structured 
training, and experience in clinical application. Studies have shown wide variation in 
the sensitivity and specificity of NICE and JNET classifications, with most studies 
reporting a moderate interobserver agreement at best[36-39].

With the clinical use of CADe, the detection of diminutive polyps is likely to 
increase exponentially, as demonstrated in the CADe RCT mentioned[24,25,27-29]. 
Most diminutive polyps tend to be hyperplastic in nature with low malignant 
potential. The “resect and discard” and “detect and leave” strategies for such polyps 
were previously studied to address these issues before the emergence of AI but have 
failed to gain traction due to the need for better quality training and quality assurance 
in the accurate optical diagnosis of colon polyps[40-42]. The threshold for optical 
biopsy technologies in high confidence predictions established by the American 
Society for Gastrointestinal Endoscopy (ASGE) Preservation and Incorporation of 
Valuable Endoscopic Innovations (PIVI)[43] are deemed appropriate targets for CADx 
support tools[44]. A systematic review and meta-analysis by ASGE[45] showed that 
these thresholds were met using NBI only among NBI experts, illustrating the 
difficulty and practical limitations of replying on the use of these forms of imaging by 
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endoscopists in general to achieve accurate optical diagnoses of colorectal polyps. 
Hence, this represents a significant clinical gap which AI has the potential to bridge in 
colonoscopy.

CADx is postulated to aid in this field of colorectal polyp management by using DL 
models to increase the accuracy of prediction of polyp histology during 
colonoscopy[46]. At the time of writing, there are currently no RCT evaluating CADx 
in colonoscopy. In a study by Jin et al[10], a DCNN was trained to differentiate 
between adenomatous and hyperplastic diminutive colorectal polyps with an overall 
accuracy of 86.7% using polyp histology as the gold standard. The system was tested 
on 22 endoscopists with varying expertise such as novice endoscopists, colonoscopy 
experts with differing levels of expertise in NBI, and NBI-trained experts. The use of 
CADx markedly improved the accuracy of novice endoscopists in differentiating 
adenomatous and hyperplastic polyps from 73.8% to 85.6% (P < 0.05), which was 
comparable to the baseline accuracy of NBI-trained experts (87.6%). However, in the 
colonoscopy expert and NBI-trained expert groups, this increase in accuracy was less 
impressive (83.8% to 89.0% and 87.6% to 90.0, respectively). The overall time to 
diagnosis per polyp was also decreased from 3.92 s to 3.37 s; P = 0.42).

A review of CADx predictions[47] for diminutive polyp histology which included 9 
studies[48-56] showed a pooled sensitivity of 93.5% (95%CI: 90.7%-95.6%) and 
specificity of 90.8% (95%CI: 86.3%-95.9%), with a pooled area under the curve of 0.98. 
This pooled analysis of diminutive polyps had a negative predictive value (NPV) of 
0.91 (95%CI: 0.89-0.94). This meets the 90% or greater threshold for NPV in 
adenomatous histology in rectosigmoid diminutive polyps recommended by the 
ASGE PIVI[43] and thus would in theory support a “diagnose and leave” strategy if 
these applications are validated in clinical use. However, most of these studies are 
retrospective in nature or, when conducted prospectively, involved the use of ex vivo 
video or still images.

Few prospective studies on CADx in real-time colonoscopy are currently available 
in the literature. In a single-center, open-label, prospective study of 791 consecutive 
patients undergoing colonoscopy in a university hospital, Mori et al[54] evaluated the 
performance of CADx in a clinical setting using endocytoscopy (CF-H290ECI; 
Olympus Corp, Tokyo, Japan). NBI was applied to visualize the microvascular pattern 
and methylene blue staining for cellular structure under these ultra-magnifying 
colonoscopes with 520X optical zoom capability. Of the 466 diminutive polyps found 
in this study, 250 polyps were in the rectosigmoid colon. The CADx system using 
endocytoscopy had an NPV for diminutive rectosigmoid adenomas ranging from 
93.7% to 96.4% with methylene blue staining and 95.2% to 96.5% with NBI. This is well 
above the “diagnose and leave” threshold of 90% recommended by the ASGE PIVI[43] 
described. This prospective study also provides evidence for utilization of CADx for 
prediction of polyp histology in a clinical setting which may have an impact on 
decisions on polyp management real-time.

In an earlier study with a similar design by Horiuchi et al[56], CADx was evaluated 
with the use of autofluorescence imaging (AFI) to differentiate diminutive 
rectosigmoid polyps in real-time colonoscopies. The CADx system used software-
based automatic color intensity analysis, which utilized AFI’s ability to differentiate 
polyps based on the ratio of green to red tone intensities and was tested on 258 
rectosigmoid polyps in 95 patients undergoing colonoscopy. The CAD-AFI system 
achieved an NPV for adenomatous polyps of 93.4% (95%CI: 89.0%-96.4%), which again 
exceeds the 90% “diagnose and leave” threshold[43]. In addition, the NPV using CAD-
AFI was comparable to that of diagnoses made by endoscopists using AFI in the study 
(94.9%; 95%CI: 90.8%-97.5%).

Quality assurance in colonoscopy
Quality indices such as a high cecal intubation rate and adequate withdrawal time 
have been studied extensively[57,58]. However, these quality indices in colonoscopy 
performance and reporting are not always adhered to for a variety of factors such as 
training, lack of real-time feedback and failure of enforcement[59-61]. In an RCT of 704 
patients by Gong et al[26], which used an AI system called ENDOANGEL, the 
withdrawal speed and time, as well as the adequacy of mucosal exposure, was 
monitored in real-time and in an automated fashion. The resulted in a significantly 
longer withdrawal time in the ENDOANGEL[62] vs the control group (mean 6.38 min 
vs 4.76 min, respectively; P < 0.0001). This translated into an increased ADR in the 
ENDOANGEL group and, more significantly, is the only RCT to date which 
demonstrates an AI system which can increase the rate of detection of adenomas 10 
mm or larger in size (10/355 vs 1/349, respectively; odds ratio [OR] 9.50, 95%CI: 1.19-
75.75; P = 0.034). Su et al[28] used both a CADe tool together with an automatic quality 
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control system (AQCS) to increase ADR and APC. The AQUS consisted of a timer on 
the monitor and audio prompts for the Endoscopist to slow down withdrawal speed 
when unstable and blurry frames were displayed or when the Boston Bowel 
Preparation Scale (BPPS) in a colonic segment was < 2. This study showed an 
improved withdrawal time (7.03 min vs 5.68 min; P < 0.001) and rate of adequate 
bowel preparation (87.34% vs 80.63%; P = 0.023) in the AQCS group in addition to the 
mentioned significant increase in ADR and APC.

AI: A GAP NEEDING TO BE BRIDGED IN COLONOSCOPY?
While AI has emerged in the world of endoscopy with much promise, there are several 
significant gaps which need to be bridged before it can be routinely applied in 
colonoscopy in a clinical setting.

Undefined and unspecified role in clinical environment
A major bridge which needs to be bridged before AI systems can be applied in routine 
environments is its generalizability. Three of the five CADe RCT[25,27,28] available 
involved senior endoscopists with extensive experience in colonoscopy. ADR is 
dependent on several factors, one of which includes experience. A more experienced 
endoscopist is not only skilled in recognition, but also in scope handling and 
consequent mucosal exposure during withdrawal. The role of a “second reader” in 
previous studies[22,23] in increasing small adenoma detection rates suggests that 
trainees and Nurses, who by inference have less “experience” than the senior 
endoscopist, have no issues recognizing a polyp visible on screen. In addition, as 
discussed in the ENDOANGEL study, one of the largest increments in ADR and the 
only increase in detection of adenomas larger then 10 mm was seen in the RCT by 
Gong et al[26], where real-time feedback on adequacy of mucosal exposure was 
studied. An obvious but less often mentioned fact is that any CADe algorithm is still 
completely dependent on the endoscopist to present optimal images with adequately 
exposed colonic mucosa in each real-time colonoscopy performed in a busy clinical 
setting. A polyp not visible on the screen will not be detected by a CADe tool, no 
matter how powerful the algorithm is[33]. This has implications on how generalizable 
available data is for clinical use, as more studies involving both “high detectors” and 
“low detectors” are required[25,63].

Most RCT in CADe to date were conducted in single centers. Moreover, except for 
the study by Wang et al[27] where a second monitor was used and visible only to an 
observer who reported the alerts, the rest of the RCT were non-blinded 
studies[24-26,28-29]. It is not known what the impact of the latter factor may be in 
actual clinical practice, as non-blinded endoscopists in these studies may put in more 
effort in exposing colonic mucosa for inspection when they are under observation. 
This Hawthorne Effect, together with the single-center experiences of most of these 
RCT, also limit their generalizability to routine clinical practice. While single monitors 
are encouraged[44] due to presumed gaze limitations of endoscopists and the need to 
reduce distractions, it is the opinion of the authors that a dual monitor setting in 
clinical trials plays a crucial role in achieving a double-blind and objective 
environment for assessment of the performance of the AI system and to bridge this 
gap. Furthermore, it resembles tandem colonoscopy in that the performance of the AI 
system can be compared directly against endoscopists of varying skill levels and 
experience. Useful information such as the AMR can be determined accurately without 
the patient having to go through an additional colonoscopy like in a traditional 
tandem study with this methodology.

Another limitation to the generalizability of the published results of AI systems for 
polyp detection and characterization is the differences in operational environments of 
different endoscopy suites and centers. These can vary greatly between institutions, 
even those located in the same country[64]. Unlike a new endoscopic method or classi-
fication system which can be taught or standardized in training or with major society 
guidelines, different AI algorithms have unique hardware and software requirements 
which must be fulfilled for technical integration into the operational environment. For 
instance, some may be fully integrated into the processing unit[65] while others may 
be web-based applications or require an additional laptop to be linked to the 
endoscopy stack to function. The latter may require cloud integration support, which 
in turn is likely to be vendor-specific and has implications in procurement and 
cybersecurity. This technical integration into the operational environment is key, as the 
development environment from which these AI systems are derived may be vastly 



Li JW et al. Colonoscopy and AI

AIGE https://www.wjgnet.com 42 April 28, 2021 Volume 2 Issue 2

different[66]. Most clinical trials understandably focus on the clinical aspects like the 
ADR and APC and the outcomes will inevitably be based on these primary objectives. 
However, few studies have reported the technical specifications and limitations of the 
AI systems they are investigating. The rare studies that do report them, do so in 
varying details, most of which are insufficient for interpretation and contextualization 
into the operational environment. Moreover, most of the published trials have been 
conducted in academic or expert centers and in several instances, in the same 
institutions where the AI algorithm was developed, i.e. the development and 
operational environment are the same[3,47]. Individual institutions may have 
difficulty integrating these systems due to budgeting constraints, existence of legacy 
systems which are incompatible with the software and hardware requirements of the 
AI systems, logistical limitations such as space, and established workflows in 
endoscopy which does not cater to the introduction of an AI system.

The current scope of AI applications in colonoscopy in the literature is also largely 
skewed towards to polyp detection, characterization, and assessment of adequacy of 
mucosal exposure, which is ultimately linked to ADR. When translated to clinical 
practice, this effectively confines the indications for which AI should be used in 
colonoscopy to CRC screening or indications where one might expect to find colorectal 
polyps in the process of performing a colonoscopy. All systems developed in the field 
of AI in colonoscopy, from handcrafted models to the most complex DCNN, are 
fundamentally “weak AI.” This is a term used to describe AI systems designed to 
solve a single problem or narrow task[15]. In a clinical setting, indications for 
colonoscopy are widely variable and the pre-test probability of finding of a polyp may 
be low. An endoscopist will be able to process the demographic data, clinical course, 
medical history, clinical condition, laboratory investigations and concerns of the 
patient and use this information during the colonoscopy. For example, an 85-year-old 
patient who is troubled by per rectal bleeding has a hugely different indication and 
clinical index of suspicion than a 50-year-old male with a family history of early CRC. 
In the former case, the endoscopist’s focus may be on looking for angiodysplasia, 
diverticular disease or hemorrhoids as the etiology. A “strong AI” system would be 
able to think and adapt like a human and calibrate the weights in its layers to perform 
the task at hand, determine the appropriate classification output and achieve the 
correct alarm settings. However, current AI systems will continue looking for polyps 
and may present a distraction to the Endoscopist if used in this clinical example, 
prolonging the time taken for colonoscopy in an elderly patient, who may have 
multiple co-morbidities and for whom resection of small or diminutive adenomas may 
not have clinical relevance, much less answer the clinical question at hand. A trainee 
endoscopist or an experienced nurse, on the other hand, would be able to immediately 
recognize an unusual finding, such as multiple angiodysplasia or extensive 
diverticular disease, even if they were not formally trained to recognize these 
abnormalities.

It should be noted that AI has also been studied in colonoscopy outside the context 
of polyp detection, characterization, and quality assurance. Endocytoscopy has been 
used with AI to accurately detect persistent histologic inflammation in patients with 
ulcerative colitis (UC) which was reproducible based on static images[67]. A separate 
group used a deep neural network to predict endoscopic and histologic remission in 
UC patients based on evaluation of static images obtained from colonoscopy with high 
accuracy[68]. However, studies looking at indications other than polyp detection and 
characterization are few and far between.

Technical biases and lack of technical knowledge among clinicians 
There is significant variability and a lack of standardization in reporting of the 
technical aspects of AI algorithms in clinical trials[69]. In addition, clinicians may not 
have the technical knowledge to critically appraise AI literature given that this has not 
been a formal part of training or an emphasis in clinical practice until relatively 
recently. A “minimum reporting standard” and practical knowledge of terms and 
potential biases on the part of investigators and clinicians, respectively, is required to 
bridge these gaps[70-72].

A practical knowledge of commonly used terms and how AI systems are derived is 
necessary for the clinician to appreciate the technical biases inherent to these 
algorithms. While the inclusion criteria of patients in clinical trials is clearly defined, 
the criteria for inclusion of the input data for the AI system during training and 
validation may not always be included in the methodology. This is crucial as most AI 
systems for CADe were tested in the same centers where they were developed[73]. 
This is often due to the ease with which large amounts of data are readily available for 
training and validation. Although the training, validation, and test datasets may be 
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different, they could be derived from the same database in a single, often expert, 
center, which is then split to form these datasets. The nature of the images used could 
be highly similar in terms of quality (e.g., no confounding fecal material and bubbles 
and polyps always centered in the image) and labelling (e.g., experts from different 
centers may mark out the most obvious abnormal area or delineate even the most 
minute detail which does not look like normal colonic mucosa for sessile serrated 
polyps depending on their level of skill and the training received, while experts from 
the same center are more likely to label lesions similarly). Prevalence and variability in 
presentations of disease may also differ depending on the populations studied, but the 
sample of images used in training and validating the AI algorithm may not necessarily 
reflect this natural variability of disease if data from a single center is used in the 
development of the AI system. This is a form of selection bias, as input data is not 
selected at random and hence is not fully representative of the study population in 
which the AI system is meant to function. This could impact the hyperparameters 
chosen during validation, and lead to overfitting, which occurs when the mathematical 
model derived is optimized to work on the training data and fits this data too tightly. 
This would limit its generalizability when new data is presented to the same AI 
algorithm.

Moreover, the proportion of “positive” to “normal” images used for training is not 
often mentioned in the published literature. For example, in a CADe application, 
polyps of various shapes, sizes and colors may be included in the training dataset to 
expose the AI algorithm to all possible eventualities when presented with an image 
with even the subtlest polyp. However, the “normal” images used may be dispropor-
tionately lower when compared to the natural prevalence of adenomas in the 
population. In addition, there may not be the same rigor in the selection of “normal” 
images for training. Variations in degrees of bowel preparation, bubbles, and artefacts 
due to the light source reflecting off normal colonic mucosa may thus not be reflected 
in images supplied to the AI algorithm for training. Positive and negative predictive 
values are determined by the prevalence of disease, and this may result in a higher 
proportion of false positives per true positive detected in clinical practice, depending 
on how the ratio of “positive” to “normal” images used in training compares with the 
true prevalence of the lesion of interest (e.g., polyps) in the study population. This is a 
factor which needs to be adjusted for in the AI algorithm[74].

A certain form of publication bias may also exist as clinicians who wish to publish 
on the topic of AI will search for references almost exclusively from medical journals. 
For example, meta-analysis and systematic reviews on the use of AI in colonoscopy 
may take a very clinical slant, while publications in computer science and engineering 
journals which may add technical dept to the chosen topic on AI being discussed will 
not be included. Even if a search were performed for these articles, the inclusion 
criteria for the literature search will inevitably involve clinical-based endpoints like 
ADR and APC, and almost always exclude publications from computer science and 
engineering journals as a result. The barrier to entry in medical journals for these 
studies is high, as editors and reviewers, who themselves are clinicians, may not have 
enough technical knowledge to feel comfortable about accepting these articles for 
publication, and may also be compounded by fear of a lack of interest or 
understanding in the readership. On the other hand, AI and ML experts will not be 
familiar with the clinical aspects or relevance of their research and would not be able 
to pitch it at a level that would be acceptable to a Medical journal and its readership. 
This may result in a “reinforcement bias” of sorts, where only certain types of public-
ations from a few expert centers and which revolve around common themes are 
published repeatedly and in different forms in Medical journals, whereas significant 
developments in AI and ML which may have the potential for changing clinical 
practice are missed out. The same technical terms specific to these publications will 
also be mentioned repeatedly, while novel approaches and new technical terms 
unfamiliar to clinicians may never see publication in a medical journal. The endoscopy 
readership may already have been “overfitted” towards polyp detection and charac-
terization in the endoscopy literature[75], while neglecting the fact that, as mentioned, 
the use of AI in colonoscopy to date has utilized only an extremely limited aspect of AI 
and in a very narrow clinical context. Including computer science experts in the 
editorship and as reviewers for Medical journals may help to bridge the gap in these 
technical and publication biases.

Physician sentiment towards AI
Physician sentiment is a significant determinant on how quickly technologies and 
recommendations are deployed in a clinical setting. A recently conducted online 
survey among Gastroenterologists in the United States showed high overall interest in 
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CADe and perception that it would increase ADR (85.5% and 75.8%, respectively)[76]. 
However, the same survey also showed that majority of the respondents felt that 
CADe will prolong the time taken per colonoscopy, despite evidence to the 
contrary[9,24,25,27-29].

Concerns about operator dependence, or “deskilling”, of the Endoscopist due to 
reliance on CADe and CADx for detection and characterization of polyps, respectively, 
are also mentioned in this survey[76] and other reviews[44,73]. Another major concern 
shown in the survey by Wadhwa et al[76] was the perceived increase in cost per 
procedure (75.2%). While concerns such as withdrawal time have been addressed 
independently in several RCT, others such as operator dependance and cost-effect-
iveness have not studied. Hence, physician sentiment may be another significant gap 
in AI which needs to be bridged in the field of colonoscopy.

Medicolegal challenges and future directions
AI algorithms which utilize DL are considered “black box” models, meaning that it is 
almost impossible to trace the decision-making process which led to the output 
determined by the algorithm when faced with a specific task (e.g., polyp or no polyp in 
the image, hyperplastic or adenomatous). One of the major gaps in clinical use of AI 
systems in colonoscopy is medicolegal liability when a misdiagnosis or missed 
diagnosis occurs. While a clinician’s account of events and the accompanying 
documentation can be helped up to scrutiny, the black box nature of DL algorithms 
means that the root cause and mitigating factors surrounding such a case may never 
be elucidated or even discovered. This has ethical implications in the event of harm to 
a patient[77], particularly if no clear protocol exists to define how an AI system should 
interface with its user and what its limits are, as the error may be due to deviation 
from safe use of the system or from an error of the AI system itself[78].

As AI systems, like other healthcare interventions, may have unpredictable errors, 
this inability to explain the errors or to detect them as they occur due to their black box 
nature may result in a perpetuation of systemic errors with unknown clinical implic-
ations if they are scaled up rapidly for routine clinical use in all colonoscopies. It is also 
unknown if the liability rests with the manufacturer, the regulatory body approving its 
use, or the clinician interfacing with the AI system. Having a reliable and accountable 
post-deployment surveillance plan is perhaps one of the strategies to minimize this 
risk.

Lastly, while AI systems have been shown to improve various quality indices 
associated with colonoscopy, one should remember that they are still limited most of 
all by our current expertise in this field. A useful example to illustrate this is the fact 
that there is currently no AI system capable of detecting dysplasia in UC. The 
availability of DCNN with high computing power and hardware to support the 
required processing speeds would have made this a rather simple task from an ML 
point of view. However, the optimal method of surveillance for dysplasia in UC and 
its optical features do not have the same clinical certainty as colorectal polyps in CRC 
screening, with resultant discrepancies in surveillance and biopsy practices[79,80]. 
Moreover, there is wide interobserver variability in the histological diagnosis of 
dysplasia in UC[81] and an inadequate understanding of its pathogenesis[82]. It is 
therefore understandable that there would be a paucity of expertly labelled data for 
“dysplasia” and “non-dysplasia” controls in UC patients for the training of an ML 
algorithm. Similarly, other potential AI applications in colonoscopy could include 
localization of diverticular bleeding and an automated scoring system for adequacy of 
bowel preparation which includes the BPPS[83] and the newly validated Colon 
Endoscopic Bubble Scale[84]. The clinical expertise and research in these fields must 
progress sufficiently for an accompanying increase in standardized and labelled data 
to be available for such future AI systems to be trained on and to materialize.

CONCLUSION
Despite the advances made in the field of AI, most notably for polyp detection and 
characterization in colonoscopy, there remain significant gaps which need to be 
bridged before its routine clinical use in colonoscopy.
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Abstract
With the appearance and prevalence of deep learning, artificial intelligence (AI) 
has been broadly studied and made great progress in various fields of medicine, 
including gastroenterology. Helicobacter pylori (H. pylori), closely associated with 
various digestive and extradigestive diseases, has a high infection rate worldwide. 
Endoscopic surveillance can evaluate H. pylori infection situations and predict the 
risk of gastric cancer, but there is no objective diagnostic criteria to eliminate the 
differences between operators. The computer-aided diagnosis system based on AI 
technology has demonstrated excellent performance for the diagnosis of H. pylori 
infection, which is superior to novice endoscopists and similar to skilled. 
Compared with the visual diagnosis of H. pylori infection by endoscopists, AI 
possesses voluminous advantages: High accuracy, high efficiency, high quality 
control, high objectivity, and high-effect teaching. This review summarizes the 
previous and recent studies on AI-assisted diagnosis of H. pylori infection, points 
out the limitations, and puts forward prospect for future research.

Key Words: Artificial intelligence; Helicobacter pylori; Endoscopy; Diagnosis; Deep 
learning; Machine learning
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Core Tip: In recent years, artificial intelligence (AI) has been rapidly developed and 
applied in various fields of medicine, including gastroenterology. We witnessed the 
promising application of AI in endoscopic diagnosis of Helicobacter pylori infection. 
In this review, we summarize the advantages of AI, point out the limitations of current 
studies, and put forward the direction of future research.
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INTRODUCTION
Helicobacter pylori (H. pylori) is a Gram-negative bacterium that infects the human 
stomach and is closely associated with a variety of diseases, including chronic gastritis, 
peptic ulcer, gastric adenocarcinoma, mucosa-associated lymphoid tissue lymphoma, 
and other digestive diseases, as well as extradigestive diseases of the blood system, 
nervous system, cardiovascular system, skin, and ophthalmology[1,2]. The Interna-
tional Agency for Research on Cancer has categorized H. pylori as a group 1 
carcinogen. A recent systematic review and meta-analysis pooling 410879 participants 
showed that the overall prevalence of H. pylori infection worldwide was 44.3% [95% 
confidence interval (CI): 40.9-47.7][3]. Therefore, accurate diagnosis of H. pylori 
infection is extremely important for the prevention and treatment of related diseases. 
Currently, various diagnostic methods are available for detecting H. pylori infections 
(non-invasive and invasive methods)[4], but endoscopic evaluation to determine the 
H. pylori infection status is an irreplaceable method, which can assist in the screening 
of early gastric cancer.

Artificial intelligence (AI) is a technology science that studies and develops the 
theory, method, technology, and application system that is used to simulate, extend, 
and expand human intelligence. With the emergence and development of deep 
learning (DL), the application of AI in medicine has also been enthusiastically explored 
and extensively studied[5-8]. Numerous research studies, using AI technology to 
identify or distinguish images in different medical fields including gastroenterology, 
radiology, neurology, orthopedics, pathology, and ophthalmology, have been 
published[9].

In this review, we focus on the application of AI in the field of endoscopic diagnosis 
of H. pylori infection and discuss future prospect.

SIGNIFICANCE OF ENDOSCOPIC DIAGNOSIS OF H. PYLORI INFECTION
Most patients with gastric cancer have or have had H. pylori infection[10,11]. A large 
number of studies have indicated that the eradication of H. pylori can effectively 
reduce the risk of gastric cancer[12-14]. However, the study conducted by Mabe et al
[15] showed that people after H. pylori eradication still have a higher risk of developing 
gastric cancer than people who have not been infected with H. pylori. Therefore, even 
after H. pylori eradication, regular endoscopic and histological surveillance is strongly 
recommended[16,17]. In consequence, endoscopic assessment of H. pylori infection 
status (non-infection, past infection, and current infection) has become increasingly 
important.

The Kyoto classification of gastritis was proposed, which is used to assess the status 
of H. pylori infection and more accurately evaluate the risk of gastric cancer[18]. 
According to the characteristics of the gastric mucosa under endoscopy, the gastric 
mucosa can be divided into the following three situations: H. pylori-uninfected gastric 
mucosa, H. pylori-infected gastric mucosa, and H. pylori-past infected gastric mucosa
[18,19]. It should be noted that the Kyoto classification score is the sum of scores for 
five endoscopic features (atrophy, intestinal metaplasia, enlarged folds, nodularity, 
and diffuse redness with or without regular arrangement of collecting venules) and 
ranges from 0 to 8. The scoring system demonstrated excellent ability to evaluate H. 
pylori infection and predict the risk of gastric cancer[20]. However, above endoscopic 
features do not have objective indicators, and there is the potential for interobserver or 
intraobserver variability in the optical diagnosis of H. pylori-infected mucosa[21]. In 
other words, for endoscopic diagnosis of H. pylori infection, the diagnostic consistency 
among endoscopists is not ideal. Moreover, professional endoscopists can determine 
H. pylori infection with punctilious visual inspection of the mucosa during endoscopic 
examination, but novices need a large amount of time to perform this task effectively.

The significance of endoscopic surveillance is not limited to determining whether H. 
pylori is infected, not, or past, but can make an overall evaluation of the stomach. First 
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of all, the classical Kimura-Takemoto classification is still widely used today to help 
endoscopists classify the atrophic pattern of the stomach by observing the endoscopic 
atrophic border[22]. Second, most gastric cancers develop from H. pylori associated 
gastritis. This can occur via a multistep pathway of precancerous lesions — in 
particular, atrophic gastritis, intestinal metaplasia, and dysplasia/intraepithelial 
neoplasia[16]. We can use histological staging systems such as OLGA and OLGIM to 
make an assessment of gastric cancer risk by the severity and extent of atrophy and 
intestinal metaplasia[23-25]. Finally, when one detection method shows H. pylori 
negativity, but there are typical signs of H. pylori infection under endoscopy, another 
different method should be selected for confirmation in this case to avoid missed 
diagnosis.

WHAT IS AI?
Physicians and endoscopists may be confused about the precise concept of AI, 
machine learning (ML), and DL. AI is a macro concept with many branches (e.g., 
Planning and Scheduling, Expert Systems, Multi-Agent Systems, and Evolutionary 
Computation). In general, there are three approaches to AI: Symbolism (rule based, 
such as IBM Watson), connectionism (network and connection based, such as DL), and 
Bayesian (based on the Bayesian theorem)[26]. In AI, computers can imitate humans 
and display intelligence similar to that of humans.

ML is a subset of AI, which is a method to realize AI. ML is defined as a set of 
methods that automatically detect patterns in data, and then utilize the uncovered 
patterns to predict future data or enable decision making under uncertain conditions
[27]. ML is approximately divided into supervised and unsupervised methods. 
Unsupervised learning occurs when the purpose is to identify groups within data 
according to commonalities, with no a priori knowledge of the number of groups or 
their significance. Supervised learning occurs when training data contain individuals 
represented as input–output pairs. Input comprises individual descriptors while 
output comprises outcomes of interest to be predicted — either a class for classification 
tasks or a numerical value for regression tasks. Then, the supervised ML algorithm 
learns predictive models that whereafter allow to map new inputs to outputs[28]. The 
most basic practice of ML [e.g., support vector machine (SVM), random forest, and 
Gaussian mixture models] is to use algorithms to parse data so as to learn from them, 
and then make decisions and predictions about events in the real world. Today's ML 
has made great achievements in computer vision and other fields; however, it has its 
limitations, requiring a certain amount of manual instruction in the process. The image 
recognition rate of ML is enough to realize commercialization, but it is still very low in 
certain fields, which is why image recognition skills are still not as good as human 
capabilities[29].

DL [e.g., artificial neural network, deep neural network (DNN), convolutional 
neural network (CNN), and recurrent neural network] is a process in which the 
computer collects, analyzes, and processes the required data quickly while performing 
certain tasks, without having to accept the formal data, which is a technique to achieve 
ML. DL has the characteristics of autonomous learning; once the training data set is 
provided, the program can extract the key features and quantities by using back-
propagation algorithm and changing the internal parameters of each neural network 
layer, without human instructions[30]. Compared with the conventional hand-crafted 
algorithm, the recently developed DL algorithm can automatically extract and learn 
the discriminative features of images, and then classify these images[31]. DL has the 
potential to automatically detect lesions, classify lesions, prompt differential diagnosis, 
and write preliminary medical reports, which will be realized in the near future.

CNN is a DNN based on the principle that the visual cortex of the human brain 
processes and recognizes images, which is now the most popular network architecture 
for DL for images[29]. CNN uses the multiple network layers (consecutive convolu-
tional layers followed by pooling layers) to extract the key features from an image and 
provide a final classification through the fully connected layers as the output[30]. 
Compared to other DL structures, CNN is a prevalent method for image recognition 
because of its excellent performance in both video and audio applications. For 
example, CNN performs best in image classification in large image repositories such as 
ImageNet[32]. Additionally, CNN is easier to train than other DL techniques and has 
the advantage of using fewer parameters.

In recent years, AI has flourished in the field of gastroenterology, with applications 
throughout the digestive tract, especially in image recognition and classification. van 
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der Sommen et al[33] reported an automated computer algorithm for the detection of 
early neoplasia in Barrett's esophagus based on 100 images from 44 patients with 
Barrett's esophagus. At per-image level, the sensitivity and specificity of the algorithm 
were both 0.83, and at the patient level, 0.86 and 0.87, respectively. Everson et al[34] 
trained a CNN to classify intrapapillary capillary loops for the real time prediction of 
early squamous cell cancer of the esophagus, demonstrating strong diagnostic 
performance with a sensitivity of 93.7% and accuracy of 91.7%, which is comparable to 
an expert panel of endoscopists. Xu et al[35] established a deep CNN system to detect 
gastric precancerous conditions (including gastric atrophy and intestinal metaplasia) 
by image-enhanced endoscopy (IEE). In the internal test set, the multicenter external 
test set, and the prospective video test set, the diagnostic accuracy for gastric atrophy 
was 0.901, 0.864, and 0.878, and that of intestinal metaplasia was 0.908, 0.859, and 
0.898, respectively. To assist endoscopists in distinguishing early gastric cancer, 
Kanesaka et al[36] studied a computer-aided diagnosis (CAD) system utilizing SVM 
technology to facilitate the use of magnifying narrow band imaging (NBI), which 
revealed an accuracy of 96.3%, sensitivity of 96.7%, and specificity of 95%. Since 
capsule endoscopic image viewing and diagnosis is an extremely time-consuming 
process, Park et al[37] developed an AI-assisted reading model based on the Inception-
Resnet-V2 model to identify different types of lesions and evaluate the clinical 
significance of this model. The results showed that the model not only helped the 
operator to improve the lesion detection rates, but also reduced the reading time. 
Urban et al[38] constructed a deep CNN model, including 8641 images from 2000 
patients, to locate and identify colorectal polyps, which revealed an area under the 
receiver operating characteristic curve of 0.991 and accuracy of 96.4%. Also, several 
studies have proved the feasibility and prospect of AI-assisted endoscopy in the 
diagnosis of H. pylori infection.

AI-ASSISTED ENDOSCOPIC DIAGNOSIS OF H. PYLORI INFECTION
As early as 2004, Huang et al[39] independently developed a CAD model based on a 
refined feature selection with neural network (RFSNN) technique which is planned for 
predicting H. pylori-related gastric histological features. A total of 104 dyspeptic 
patients were enrolled in this study and all subjects were prospectively evaluated by 
endoscopy and gastric biopsy. The authors used endoscopic images and histological 
features of 30 patients (15 with and 15 without H. pylori infection) to train the RFSNN 
model, and then used image parameters of the remaining 74 patients to construct a 
predictive model of H. pylori infection. At the same time, six endoscopic physicians 
(three novices and three skilled seniors) were invited to predict the histological 
features of the gastric antrum from endoscopic images. The results showed that the 
sensitivity and specificity for detecting H. pylori infection were 85.4% and 90.9%, 
respectively, when the RFSNN model included images of the same patient's antrum, 
body, and cardia for analysis. Together, the accuracy of the six endoscopists in 
predicting H. pylori infection was 67.5%, 64.8%, 72.9%, 74.3%, 79.7%, and 81.1%, 
respectively (the first three were novices and the second three were skilled elderly). 
Obviously, the accuracy of RFSNN model in predicting H. pylori infection by the 
antrum images was 85.1% higher than that of endoscopists. Notably, the prediction 
system has a high sensitivity and specificity in the diagnosis of atrophy and intestinal 
metaplasia, which was also superior to that of endoscopists. This RFSNN system 
provides real-time and comprehensive information about the stomach during 
endoscopy and has the potential to overcome the shortcomings of the localized biopsy. 
For various reasons, white-light endoscopy was used throughout the study, instead of 
IEE, which is more conducive to the diagnosis of H. pylori infection. As an early study 
of AI in diagnosing H. pylori infection, this paper provides reference data and 
innovative ideas for subsequent studies.

In 2008, Huang et al[40] conducted a further study in the field of AI-assisted 
endoscopy in the diagnosis of H. pylori infection. They designed a CAD system 
combining SVM and sequential forward floating selection (SFFS) to diagnose gastric 
histology of H. pylori using the features of white-light endoscopic images. This study 
aimed to use SFFS to select the most suitable feature to describe the relationship 
between histology and a large number of candidate image features, and then use SVM 
for classification. A total of 236 dyspepsia patients were enrolled in this study, 130 of 
whom were defined as H. pylori-infected patients using histological examination as the 
gold standard. The results showed that the accuracy of diagnosing H. pylori infection 
was 87.8%, 87.6%, and 86.7%, respectively, when the SVM with SFFS system was used 
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to analyze the images of the antrum, body, and cardia. Compared with SVM without 
SFFS, the SVM with SFFS system had a higher diagnostic accuracy in most cases. This 
indicates that it is of great significance to use SFFS for screening before the classi-
fication of image features, which not only improves the diagnostic accuracy by 
excluding features with low correlation, but also reduces the time of training and 
testing system. Furthermore, 1000 repeated tests were carried out on the classification 
results, which proved the experiment reliability. In addition, the authors compared the 
new diagnostic system with the previous system[39] that used a neural network with 
feature selection to detect H. pylori infection, and it was shown that the new system 
had a higher classification rate. It is a pity that both studies classified H. pylori infection 
status only as infected and uninfected, and the authors did not consider cases where 
the infection disappeared or was eradicated with drugs.

In 2017, Shichijo et al[41] developed two deep CNN systems, one based on 32208 
unclassified images either positive or negative for H. pylori (as a development data set) 
and the other based on images classified according to eight anatomical locations 
(cardia, upper body, middle body, lesser curvature, angle, lower body, antrum, and 
pylorus). Then, the test data set included a total of 11481 images from 397 patients (72 
H. pylori positive and 325 negative). Patients who tested positive on any of these assays 
(including blood or urine anti-H. pylori immunoglobulin (Ig) G levels, fecal antigen 
test, or urease breath test) were classified as H. pylori positive. To compare the 
diagnostic performance of the two CNNs, 23 endoscopists were invited to evaluate the 
test data sets, together. According to their experience, the endoscopists were divided 
into three groups: "Certified group," "relatively experienced group," and "beginner 
group". The test results showed that for the first CNN constructed with unclassified 
images, the area under the receiver operating curve (ROC) curve (AUC) was 0.89 at a 
cut off value of 0.43. The sensitivity, specificity, accuracy, and diagnostic time of the 
first CNN were 81.9%, 83.4%, 83.1% and 3.3 min, respectively. These values for the 
secondary CNN were 88.9%, 87.4%, 87.7%, and 3.2 min, respectively, and the AUC 
was 0.93 at a cutoff value of 0.34. Furthermore, these values for the overall 
endoscopists were 79.0%, 83.2%, 82.4%, and 230.1 min, respectively. After statistical 
analysis, there was no difference in sensitivity, specificity, or accuracy between the 
first CNN and the 23 endoscopists in the diagnosis of H. pylori infection. However, the 
secondary CNN which was constructed with categorized images according to the 
location of the stomach was found to have a significantly higher accuracy than the 
endoscopists (by 5.3%; 95%CI: 0.3-10.2). Besides, the board-certified group was found 
to have a significantly higher specificity (89.3% vs 76.3%, P < 0.001) and accuracy 
(88.6% vs 75.6%, P < 0.001) than the beginner group. Similarly, a significant difference 
was observed between the relatively experienced group and the beginner group. In 
brief, the diagnostic ability of the second CNN is almost as good as that of a skilled 
endoscopist. In terms of diagnosis time, CNN even completely surpassed the 
endoscopists. However, still images were adopted to construct CNN algorithm in this 
study, and whether real-time diagnosis could be realized based on dynamic images 
remains to be researched.

One weakness of this study was that it did not include the situation after the 
eradication of H. pylori. To address this issue, the authors soon conducted a new study 
to further elaborate on the role of AI in assessing H. pylori infection status. A deep 
CNN which was constructed by Shichijo et al[42] in 2019 was pre-trained and fine-
tuned on a dataset of 98564 endoscopic images from 5236 patients (742 H. pylori-
positive, 3649 H. pylori-negative, and 845 H. pylori-eradicated). As in the previous 
study, this AI-based diagnostic system was developed using classified images 
following eight regions of the stomach (cardia, upper body, middle body, lesser 
curvature, angle, lower body, antrum, and pylorus). An independent test data set 
including a total of 23699 images from 847 patients (70 H. pylori positive, 493 H. pylori-
negative, and 284 H. pylori-eradicated) was prepared to evaluate the diagnostic 
accuracy of the constructed CNN. According to the statistical analysis, the proportions 
of accurate diagnoses were 80% (465/582) for negative, 84% (147/174) for eradicated, 
and 48% (44/91) for positive. The performance of this diagnostic system is comparable 
to that of skilled endoscopists who, in one study, diagnosed these statuses in 88.9%, 
55.8%, and 62.1% of cases, respectively[43]. Subsequently, the authors assessed the 
diagnostic ability of CNN for distinguishing H. pylori positive from eradicated 
(excluding H. pylori negative patients). Among 70 positive patients, the CNN 
diagnosed correctly as positive in 46 (66%), while out of 284 eradicated patients, the 
CNN diagnosed correctly as eradicated in 243 (86%). Nevertheless, this study did not 
take into account the time after H. pylori eradication, but the histological features of 
atrophic gastritis may disappear a few years after eradication[44]. Then, endoscopic 
features also change possibly in the diagnosis.
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In 2019, Zheng et al[45] designed a novel computer-aided decision support system 
combined with a CNN model (ResNet-50, a state-of-the-art CNN consisting of 50 
Layers). This system was expected to be used to retrospectively evaluate H. pylori 
infection based on white-light images (WLI) of the stomach. Totally 1507 patients 
(11729 gastric images) including 847 with H. pylori infection as the derivation cohort 
were used to train the algorithm. The authors created three DL models: (1) Single 
gastric image for all gastric images; (2) Single gastric image by different gastric 
locations (fundus, corpus, angularis, and antrum); and (3) Mmultiple gastric images 
for the same patient. Afterwards, 452 patients (3755 images) including 310 with H. 
pylori infection as the validation cohort were used to evaluate the diagnostic accuracy 
CNN for the evaluation of H. pylori infection. The evaluation results showed that for a 
single gastric image, the AUC, sensitivity, specificity, and accuracy were 0.93, 81.4%, 
90.1%, and 84.5%, respectively. When evaluating a single gastric image by different 
anatomical locations, the AUCs from high to low were 0.94 (corpus), 0.91 (angularis), 
0.90 (antrum), and 0.82 (fundus). According to statistical analysis, the CNN model 
using a single corpus image had the highest AUC (P < 0.01) compared with the antrum 
or fundus. More importantly, when multiple stomach images per patient were applied 
to the CNN model, the AUC, sensitivity, specificity, and accuracy were as high as 0.97, 
91.6%, 98.6% and 93.8%, respectively. Consequently, the CNN model using multiple 
gastric images had a higher AUC compared with a single gastric image (P < 0.001) or 
body gastric image (P < 0.001). When selecting endoscopic images to be included in 
this study, images of poor quality (i.e., blurred images, excessive mucus, food residue, 
bleeding, and/or insufficient air insufflation) were excluded, which however could not 
be avoided in the actual operation of endoscopy. Therefore, the CNN's ability to 
recognize low-quality images needs to be further exploited.

In 2020, Yoshii et al[19] established a prediction model based on an ML procedure to 
prospectively evaluate H. pylori infection status (non-infection, past infection, and 
current infection) and compared it with general assessment by seven well-experienced 
endoscopists using the Kyoto classification of gastritis. The study recruited a total of 
498 subjects (315 non-infection, 104 past infection, and 79 current infection) and the 
gold standard for determining the H. pylori infection status was the history of 
eradication therapy and the presence of H. pylori IgG antibody. The results showed 
that the overall diagnostic accuracy rate of the seven endoscopists was 82.9%. The 
diagnostic accuracy of the prediction model without H. pylori eradication history was 
88.6% and with eradication history was 93.4%. Obviously, the results improved in the 
model with eradication history. There was no significant difference in diagnostic 
accuracy between the predictive model and skilled endoscopists. One of the 
limitations of this study was that only one test method was used to evaluate current 
status of H. pylori infection. In addition, urea breath test or fecal antigen test would 
evaluate current situation of H. pylori infection more surpassingly than that of H. pylori 
IgG antibody levels, especially in patients with an H. pylori antibody titer of 3-10 
U/mL.

All of the above studies used WLI to build the CAD systems based on AI tech-
nology. Besides, some reports have shown the potential of image-enhanced 
endoscopies (IEEs) in diagnoses of H. pylori infection, such as blue laser imaging (BLI), 
linked color imaging (LCI), and NBI[46-48]. In 2018, Nakashima et al[49] built an AI 
diagnostic system based on a deep CNN algorithm for prospective diagnosis of H. 
pylori infection. A total of 222 subjects (105 H. pylori-positive) were recruited and 
received esophagogastroduodenoscopy and a serum test for H. pylori IgG antibodies. 
A serum H. pylori IgG antibody titer ≥ 10 U/mL was considered positive for H. pylori 
infection, while a titer < 3.0 U/mL was considered negative. In addition, subjects with 
serum H. pylori IgG antibody titers between 3.0 and 9.9 U/mL were excluded. In this 
study, 162 subjects (1944 images) including 75 with H. pylori infection were enrolled as 
a training group for AI training. For the remaining 60 subjects (30 H. pylori-positive 
and 30 H. pylori-negative), one WLI, one BLI-bright, and one LCI image of the lesser 
curvature of the gastric body were collected as a test group to evaluate the diagnostic 
performance of AI. According to statistical analysis, the AUC, sensitivity, and 
specificity for WLI were 0.66, 66.7%, and 60.0%, respectively. These indicators were 
0.96, 96.7%, and 86.7% for BLI-bright, and 0.95, 96.7%, and 83.3% for LCI, respectively. 
The AUCs obtained for BLI-bright and LCI were markedly larger than that for WLI (P 
< 0.01). Obviously, this new AI diagnostic system was efficiently adapted to those laser 
IEEs rather than WLI; hence, it demonstrated an excellent ability to diagnose H. pylori 
infection using the IEEs. It is a pity that patients with a history of H. pylori eradication 
therapy were not included in this study, because this AI system is only an elementary 
tool and cannot fully evaluate the complex features of the stomach.
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In 2020, Yasuda et al[21] constructed an automatic diagnosis system based on the 
SVM algorithm for H. pylori infection using LCI images. The authors expected to use 
this system to retrospectively diagnose H. pylori infection and compared its accuracy 
with that of endoscopists. In this study, endoscopic images of 32 patients (128 images 
in total) were included as training data, and four images were collected from each 
patient from the lesser (angle-lower body and middle-upper body) and greater (angle-
lower body and middle-upper body) curvature. The diagnosis of H. pylori infection 
was based on more than two different tests: A histological examination, a serum 
antibody test, a stool antigen test, and/or a 13C-urea breath test. Regarding H. pylori 
infection of the subjects, 14 cases were H. pylori positive and 18 were negative. The 
authors used 525 LCI images from 105 patients (42 H. pylori infected, 46 post-
eradication, and 17 uninfected) collected from the lesser (angle-lower body and 
middle-upper body) and greater (angle-lower body and middle-upper body) 
curvature and the fornix to evaluate the diagnostic capabilities of the system. It was 
worth noting that for the H. pylori post-eradicated subjects, more than 1 year (average 
of 5.6 years) had passed since H. pylori was successfully eradicated after undergoing 
endoscopy. At the same time, three doctors with different experiences (A, an expert 
involved in the development of LCI; B, a gastroenterology specialist; and C, a senior 
resident) also evaluated the same LCI images. The results showed that the accuracy of 
the AI system, A, B, and C in the diagnosis of H. pylori infection was 87.6%, 90.5%, 
89.5%, and 86.7%, respectively. Accuracy of the AI system was higher than that of the 
inexperienced doctor (doctor C), but there was no significant difference between the 
diagnosis of the doctors and the AI system (P > 0.05). According to the sub-analysis of 
the patients divided with respect to state of H. pylori infection, the accuracy of the AI 
system, doctors A, B ,and C in the diagnosis of H. pylori post-eradication were 82.6%, 
87.0%, 89.1%, and 76.1%, respectively. According to the sub-analysis of AI diagnosis 
for each image of stomach area, accuracy of the lesser curvature of the middle-upper 
body (88.6%) was significantly higher than that of the fornix (69.5%) and the greater 
curvature of the middle-upper body (73.3%). However, due to the small number of 
samples included in this study, there may be a risk of large sampling error.

LIMITATIONS AND FUTURE DIRECTION
The above studies show to a great extent that the application of AI in endoscopic 
diagnosis of H. pylori infection is practical, feasible, and promising. The detailed 
information of these studies is shown in Table 1. Compared with the manual identi-
fication and diagnosis by endoscopists, the CAD system based on AI technology has 
many irreplaceable advantages: (1) High accuracy: According to the current studies, 
AI is better than novice endoscopists in the diagnosis of H. pylori infection in terms of 
sensitivity, specificity, and accuracy, and is almost comparable to skilled endoscopists; 
(2) High efficiency: Thanks to today's highly developed computers, AI can classify 
thousands of endoscopic images in minutes, which can take a great deal of time and 
energy on the part of endoscopists. At the same time, the efficient image recognition 
lays a foundation for the real-time diagnosis of H. pylori infection under endoscopy; (3) 
High quality control: Some studies have found that adenoma detection rate decreases 
gradually with the extension of the working hours of endoscopists. This also suggests 
that endoscopist fatigue may lead to a decrease in the effectiveness of screening 
colonoscopy[50,51]. However, the CAD system based on AI technology is not 
disturbed by external factors and provides excellent quality control; (4) High 
objectivity: As we all know, it is completely subjective for endoscopists to judge H. 
pylori infection by observing the features of the gastric mucosa under endoscopy. 
Although the decision-making power is still in the hands of endoscopists, AI assisted 
endoscopy can help to provide an objective second opinion as a reference[52]; and (5) 
High-effect teaching: AI is capable of undertaking the teaching work of skilled 
endoscopists, and provides novices with more accessible, convenient, and objective 
guidance.

However, the application of AI in endoscopic diagnosis of H. pylori infection is still 
in the preliminary research stage at present, which has many limitations to be 
overcome. It is promising to put this technology into real clinical practice, but much 
research and further refinement are needed before that can happen. First of all, all of 
the above studies are single-center studies and most of them only used images from a 
single endoscopic device. Different images at different endoscopy centers may not 
guarantee compatibility and extensibility of the CAD system developed by the 
researchers and limit the generalization of the results. Next, so far, most of the studies 



Lu YF et al. AI in diagnosis of H. pylori infection

AIGE https://www.wjgnet.com 57 June 28, 2021 Volume 2 Issue 3

Table 1 Characteristics of current studies about AI-assisted endoscopic diagnosis of Helicobacter pylori infection

Ref. Type of AI Type of 
endoscopy Training set Validation set AUC Sensitivity (%) Specificity (%) Accuracy (%)

Huang et al[39], 
2004

RFSNN WLI 30 patients 74 patients NA 85.4 90.9 NA

SVM with SFFS WLI 236 patients 236 patients NA 82.6 (antrum); 89.1 (body); 100 
(cardia)

94.0 (antrum); 85.8 (body); 72.0 
(cardia)

87.8 (antrum); 87.6 (body); 86.7 
(cardia)

Huang et al[40], 
2008

SVM without SFFS WLI 236 patients 236 patients NA 98.5 (antrum); 98.7 (body); 99.1 
(cardia)

70.8 (antrum); 71.5 (body); 70.3 
(cardia)

86.3 (antrum); 86.4 (body); 86.0 
(cardia)

CNN (first) WLI 1750 patients, 
32208 images

397 patients, 
11481 images

0.89 81.9 83.4 83.1Shichijo et al
[41], 2017

CNN (second, constructed 
according to anatomical 
locations)

WLI 1750 patients, 
32208 images

397 patients, 
11481 images

0.93 88.9 87.4 87.7

Shichijo et al
[42], 2019

CNN WLI 5236 patients, 
98564 images

847 patients, 
23699 images

NA NA NA 48 (H. pylori-positive); 84 (H. 
pylori-eradicated); 80 (H. pylori-
negative)

CNN (first, single image for 
all image)

WLI 1507 patients, 
76146 images

452 patients, 
3755 images

0.93 81.4 90.1 84.5Zheng et al[45], 
2019

CNN (second, single image 
by different locations)

WLI 1507 patients, 
76146 images

452 patients, 
3755 images

0.90 (antrum); 0.91 
(angularis); 0.94 (corpus); 
0.82 (fundus)

76.1 (antrum); 78.8 (angularis); 
81.6 (corpus); 72.4 (fundus)

88.5 (antrum); 90.5 (angularis); 
92.1 (corpus); 80.5 (fundus)

80.3 (antrum); 82.8 (angularis); 
85.6 (corpus); 75.3 (fundus)

CNN (third, multiple images 
per patient)

WLI 1507 patients, 
76146 images

452 patients, 
3755 images

0.97 91.6 98.6 93.8

Yoshii et al[19], 
2020

ML (model without H. pylori 
eradication history)

WLI NA 498 patients NA 91.6 (non-infection); 75.0 (past 
infection); 59.5 (current 
infection)

88.6 (non-infection); 89.9 (past 
infection); 94.7 (current 
infection)

88.6

ML (model with H. pylori 
eradication history)

WLI NA 498 patients NA 94.0 (non-infection); 94.0 (past 
infection); 88.1 (current 
infection)

93.4 (non-infection); 100.0 (past 
infection); 94.7 (current 
infection)

93.4

Nakashima et al
[49], 2018

CNN WLI 162 patients, 
1944 images

60 patients, 60 
images

0.66 66.7 60.0 NA

CNN BLI-bright 162 patients, 
1944 images

60 patients, 60 
images

0.96 96.7 86.7 NA

CNN LCI 162 patients, 
1944 images

60 patients, 60 
images

0.95 96.7 83.3 NA

Yasuda et al
[21], 2020

SVM LCI 32 patients, 128 
images

105 patients, 525 
images

NA 90.4 85.7 87.6%
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AI: Artificial intelligence; AUC: Area under curve; BLI: Blue laser imaging; CNN: Convolutional neural network; H. pylori: Helicobacter pylori; LCI: Linked color imaging; ML: Machine learning; NA: Not applicable; RFSNN: Refined feature 
selection with neural network; SFFS: Sequential forward floating selection; SVM: Support vector machine; WLI: White-light imaging.

have adopted a retrospective method which could be subject to considerable selection 
bias. As it is, images of high quality or with distinct features of H. pylori infection may 
be preferred for inclusion in studies, which probably lead to exaggerated diagnostic 
performance of AI and overestimation of the accuracy.

In addition, researchers and endoscopists need to be aware of potential pitfalls and 
biases in AI research, such as overfitting, spectrum bias, data snooping bias, straw 
man bias, and P-hacking bias, which can be reduced or eliminated through rigorous 
research design and appropriate methods[53]. Overfitting occurs when the AI 
algorithm modulates itself too much on the training dataset and the developed 
prediction system does not generalize well to new datasets. The translation, rotation, 
scaling, and clipping of the original endoscopic images to enlarge datasets may be one 
of the causes of overfitting. Spectrum bias occurs when the training dataset does not 
adequately represent the range of patients who will be applied in clinical practice 
(target population)[54]. External validation using independent datasets for model 
development, collected in a way that minimizes the spectrum bias, is necessary to 
prove the real performance of an AI algorithm and is important in the verification of 
any diagnostic or predictive model[55,56]. It is a pity that there is no study that 
utilized external validation for the performance of an established AI system in this 
review. It is worth noting that AI has one unavoidable disadvantage that needs to be 
addressed: “Black box” nature (lack of interpretability), which means that AI 
technology cannot explain the decision-making processes. But precise interpretability, 
which can provide diagnostic evidence, assist reduce bias, and build social acceptance, 
is extremely important in clinical practice. Some methods, such as class activation 
map, can supplement the “black box” features, hoping to be applied to future research
[57].

Besides, some studies only divided H. pylori infection status into infected and 
uninfected, without considering H. pylori post-eradication, which is not in line with the 
clinical reality. Some studies only used single diagnostic method as the gold standard 
to judge H. pylori infection, which will lead to a great loss of diagnostic accuracy. Some 
studies included a small quantity of subjects and images, which may cause large errors 
and affect the credibility of the conclusions. IEE has great potential to improve the 
diagnosis rate of H. pylori infection, but there are few studies on the construction of 
CAD system based on AI using IEE images. What's more, all of the studies in this 
review were conducted in Asia, and racial difference cannot be avoided.

Finally, before any new technology is introduced into medical practice, ethical 
problems cannot be avoided and need to be properly solved, including AI technology. 
AI is not perfect, making no perfect predictions. If a CAD system based on AI 
technology misdiagnoses or misses diagnoses, who will be held accountable — the 
endoscopist, medical institution, or manufacturer? What is the attitude of endoscopists 
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towards the results of AI diagnosis? Question and reject the AI, learn from it, or accept 
the diagnosis indiscriminately? In the era of AI, how to build a harmonious doctor-
patient relationship?

Anyway, in the future, we should expect a “perfect study”, a multicenter, large 
sample, generalized, and prospective study, which has strict inclusion/exclusion 
criteria, a suitable gold standard for diagnosis and external validation of third-party 
independent datasets, using high quality datasets to establish a high diagnostic 
accuracy, and the stability of the CAD system based on AI technology to judge the H. 
pylori infection status. More importantly, ethical principles and laws and regulations 
related to AI technology need to be improved to protect everyone's legitimate 
interests. However, it should be pointed out that AI will not completely replace 
physicians, but will increase diagnostic accuracy, improve diagnostic efficiency, and 
reduce the burden on physicians. Health care workers need to consider patients’ 
preferences, environment, and ethics before making decisions, which AI cannot 
replace[58].

CONCLUSION
The era of AI is coming, with both opportunities and challenges. AI is undoubtedly a 
greatly excellent assistant, which can help endoscopists to evaluate H. pylori infection 
status more quickly, accurately and easily under the endoscope. At the same time, 
there are some issues as well as ethical considerations that need to be addressed before 
AI is applied in clinical practice.
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INTRODUCTION
Artificial intelligence (AI) is a new technological science that studies and develops 
theories, methods, technologies and application systems for simulating and expanding 
human intelligence. It relates to many fields, for instance, computer science, 
cybernetics, information theory, and neuroscience. The first AI seminar at Dartmouth 
College in 1956 marked the birth of the AI, but the development of AI has experienced 
several ups and downs. AI has achieved results both theoretically and practically in 
these cycles. It has made solid progress in the world, especially when scientists made 
breakthrough progress in deep learning.

In its more than 60 years of development, AI has been used in computer vision, 
natural language processing, data mining, automatic speech recognition. The applic-
ations of intelligent robot, automatic programming, and expert systems are becoming 
increasingly mature, making AI one of the three cutting-edge technologies in the 21st 
century.

AI is hailed as the stethoscope of the 21st century[1]. With the strengthening of 
people's health awareness, preventive and precise treatments have been paid more 
attention at the same time. The improvement of medical standards and the 
improvement of medical equipment have made the process of patients' visits produce 
increasingly medical data. Image recognition, speech/semantic recognition, and expert 
system have received more and more attention in the medical field, smart medical 
products have gradually emerged[2-4]. A large amount of image data and diagnostic 
data are used to simulate the mind and diagnostic process of medical experts 
especially in the field of medical image recognition, AI is expected to partially replace 
traditional empirical diagnosis so as to provide a more reliable diagnosis and 
treatment plan.

AI HELPS BREAK THROUGH THE BOTTLENECK OF COLONOSCOPY
In recent years, the incidence of colorectal adenoma, colorectal cancer, and inflam-
matory bowel disease has increased significantly[5-7], causing great harm to human's 
health. Colonoscopy is the first choice for the diagnosis and treatment of colorectal 
diseases. It can not only intuitively judge the nature of the lesion, but also obtain 
biopsy specimens for pathological diagnosis. Colonoscopy is of great significance, 
especially in preventing and treating colorectal cancer, as it can be used to screen and 
follow up high-risk groups in patients who are asymptomatic. We can greatly reduce 
the incidence of colorectal cancer by adopting corresponding treatments according to 
the condition, and achieve the purpose of primary prevention. Even if colorectal 
lesions develop to the early stage of cancer, the 5-year survival rate of endoscopic 
treatment can still exceed 90%[6].

Studies have found that gradual expansion of colorectal cancer screening in 
asymptomatic populations and the early diagnosis promotion have extremely 
important socio-economic significance[8-10]. The popularization of colonoscopy 
screening among high-risk populations is restricted by the hard operation, excessive 
physical exertion, and limitation of technical inheritance, which has caused 
bottlenecks. At this time, the development and maturity of AI technology provides 
new ideas and possibilities for breaking through these bottlenecks.

RESEARCH ON THE MECHANISM OF COLONOSCOPY INTO LOOPS AND 
UNLOOPS
According to the anatomical characteristics of the intestine, the ascending colon, 
descending colon and upper rectum, which are straighter and smaller in extension, are 
generally easier to pass with colonoscopy. However, the transverse colon and sigmoid 
colon are in a free state, with longer mesentery and larger mobility, which can easily 
cause loops. Common types of loops in the sigmoid colon include N loops, α loops, 
reverse α loops, and atypical loops, while the common types of loops in the transverse 
colon include deep loops/dangling loops, deep large γ loops, and inverted splenic 
loops[11]. Usually, the time for a skilled endoscopist to enter the cecum is about 4-6 
minutes, but someone who have difficulty in this process may not be able to reach it, 
even if the operation time is more than 1 h[12].
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In view of the factors of patients who develop a loop during colonoscopy, experts 
have conducted many studies which found that factors including long-term 
constipation, abdominal surgery history, female, body mass index is lower or higher 
than normal, the volume of visceral fat tissue is low and the proficiency of 
colonoscopy directly affect the formation of intestinal loops[13] (Figure 1).

The successful removal of the loop is key for a colonoscopy to reach the cecum, and 
it is necessary for the endoscopist to be able to observe and monitor the shape of 
colonoscopy in order to overcome this technical difficulty. With the continuous 
advancement of colonoscopy accessories, magnetic endoscopic imaging (MEI), a real-
time three-dimensional imaging colonoscopy-assisted positioning technology, has 
become an effective tool for observing the shape of the colonoscopy in human body
[14]. There is a meta-analysis that summarizes 8 randomized controlled trials and 
contains 2967 patients which compares cecal intubation rates and times, sedation dose, 
abdominal pain scores and the use of ancillary maneuvers between MEI and standard 
colonoscopy. The conclusion is that compared with traditional technique, MEI has an 
advantages in cecal intubation rate, but MEI did not have any distinct advantages for 
cecal intubation time and lower pain scores[15] (DW1). The variable stiffness of the 
colonoscopy body, flexible tubing, and Responsive Insertion Technology (RIT)[16,17] 
make the inspection equipment more maneuverable. Prieto-de-Frías et al[17] and 
Pasternak et al[18] studied the application of RIT technology in reducing discomfort 
and pain during colonoscopy insertion. The results showed that the RIT group 
shortened the cecal intubation time, decrease intestinal loop formation, lower manual 
pressure of abdomen and decrease discomfort or pain of patients. Although RIT 
technology has shown good application prospects, it still relies on the experience of 
unwinding of endoscopists, some examinations are time-consuming and patients 
cannot achieve a good medical result.

MEI and RIT technology are an improvement of traditional colonoscopy in response 
to the actual problems in the endoscopy process. AI can explore the images of MEI 
technology in guiding colonoscopy. Applying deep learning to analyze a large number 
of unloop images, it is possible in the future to form a complete set of loop prediction 
and unlooping strategies system. The RIT technology can automatically adjust the 
bending angle of the intestinal cavity by sensing the degree of curvature of the 
endoscopic body, and minimize the formation of acute angles. These measures help to 
reduce the traction of the colonoscopy on the mesentery and the damage to the 
intestinal mucosa, and achieve the purpose of reducing the pain and injury of the 
patient during the colonoscopy. In general, MEI and RIT technologies provide useful 
explorations for the gradual migration of colonoscopy from artificial to intelligent 
(DW2).

COMBINATION OF COLONOSCOPY AND AI
Traditional research methods have limitations, such as multi-factors, complex 
variables, interrelationships, descriptive difficulties and quantitative mechanisms. It is 
urgent to introduce new ideas and methods to solve these problems. It can be 
described with a simplified model by demonstrating whether the colonoscopy is 
looped, and providing the corresponding unlooping strategy, as we mentioned above. 
The operation of the colonoscopy handle and insertion part by the endoscopist can be 
regarded as an input function. Analyze the correspondence between the data of the 
input function under the loop condition and the corresponding results of loop and 
unloop in a large number of cases, also fitting the unloop strategy function to assist the 
doctor in decision-making through the intelligent system. MEI and other technologies 
can display the posture of the colonoscopy in the intestine in real time, and wearable 
pressure sensor device can generate a series of mechanical data. A specific neural 
network model can be constructed to synthesize a loop-free strategy function by 
analyzing large amounts of data. We look forward to the AI-assisted system will be 
able to realize a loopless and painless colonoscopy in the future (DW3).

COLONOSCOPY FOR SMART MEDICINE
Smart medicine is the application of AI to improve the ability of medical services, 
which is the trend of future medical advancement. Smart medical care is to create a 
regional medical information platform for health records and use advanced Internet of 
Things technology to realize the interaction among patient-medical staff, institutions 
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Figure 1 The idea of using magnetic endoscopic imaging to guide endoscopists in colonoscopy. MEI: Magnetic endoscopic imaging.

and equipment for achieving informatization gradually. Intelligent medicine cannot be 
separated from AI technology. On the basis of digital medicine, internet medicine and 
mobile medicine, smart medicine is gradually taking shape.

The emergence of smart medicine provides a new feasible path to solve the 
outstanding problems that restrict the medical development. Intelligent medical care 
plays an important role in science, it not only changes the traditional diagnosis and 
treatment methods but also improves the accuracy and efficiency, in addition, it relies 
on the advanced algorithms and powerful computing power of AI technology to 
significantly increase the success rate of medical innovation research and development 
and shorten time. In addition, smart medicine can also solve social problems, such as 
insufficient medical resources, unbalanced regional distribution, costs, personalized 
medical services, and respond to aging and chronic disease diagnosis and treatment 
needs. With the development of smart medical technology, AI can completely assist 
doctors in such arduous diagnoses in future, for example pathological diagnosis, 
laboratory test diagnosis, and imaging diagnosis.

COLONOSCOPY CONTINUUM ROBOT-ASSIST SYSTEM
Regarding the colonoscopy continuum robot-assisted system, some scholars have 
studied structural design, passability, compliance control based on force perception, 
and multi-motor control system design. Lee et al[19] proposed a caterpillar-like flexible 
self-propelled colonoscopy robot, which can effectively corner bends and conducted 
clinical trials, while Breedveld proposed a colonoscopy robot movement method based 
on a rollable doughnut[20]. Scholars research on the relevant working environment 
and clinical experiment results of the colonoscopy continuum robot assistance system, 
the flexible arbitrary bending of the colonoscopy assistance system, the exploration of 
the biomimetic and the continuum robot design, which are the most irreplaceable 
(DW4) part of the robot-assisted colonoscopy system, its structure and design provide 
an important reference.

FLEXIBLE ENDOSCOPY CONTROL ROBOT
In December 1998, the first Da Vinci Robot-Assisted Surgery System came out. In June 
2000, the Da Vinci Robot-Assisted Surgery System became the first automatic 
mechanical system approved by the Food and Drug Administration for laparoscopic 
surgery. At present, the system is widely used. In 2017, the flexible endoscopy 
manipulation robot developed by the General Hospital of the Chinese People's 
Liberation Army successfully carried out clinical applications. It surpassed the 
traditional endoscopy operation method in terms of coordinated operation of multiple 
degrees of freedom of the endoscopy and quantitative display of operating 
parameters, and laid the foundation for high-quality standardized operation and 
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internet medical treatment.
The research on small soft robots with multi-mode motion published by Hu has 

attracted widespread attention[21]. The article pointed out that the soft robot has 
bright prospects in the fields of bioengineering and minimally invasive treatment. 
They have greater potential to achieve high maneuverability through multi-channel 
motion because small soft robots have a higher degree of freedom than rigid robots. 
We can expect that these small flexible robots are equipped with camera devices to 
produce soft motion which is similar to worms that can move in the human digestive 
tract and has better control and operability than the magnetic-control capsule 
endoscopy.

At present, there are no reports on the use of flexible endoscopic robots for 
endoscopic treatment, and the author believes that the reason is that endoscopic 
treatment is different from examination. Endoscopic treatment have higher 
requirements for the operation technology, including horizontal and vertical joint 
movement of the endoscope handle to achieve rotation, control colonoscopy and 
handle strength during the treatment (DW5). The grasp of the patients’ breathing and 
coordination with its movement are relatively subtle that are difficult to achieve at this 
stage. However, with the accumulation of quantitatively analyzed endoscopic 
operation data and the construction of software endoscopic operation strategy 
functions, combined with powerful algorithms and machine learning, AI will continue 
to improve the existing colonoscopy equipment, accessories and instruments in the 
future. At the same time, it may partly replace manual labor, reduce medical costs and 
improve efficiency.

APPLICATION STATUS OF AI IN COLONOSCOPY IMAGE RECOGNITION
With the progress of colonoscopy operation technology and endoscopic imaging 
technology, especially magnifying endoscopy has achieved remarkable results in the 
detection of fine structure on the surface of colorectal tumors. It should be pointed out 
that the development of electronic staining endoscopy is extremely rapid, such as 
narrowband imaging technology (NBI), flexible spectral imaging color enhancement 
technology (FICE) and i-Scan digital contrast technology (iSCAN), etc. (DW6). These 
imaging technologies can highlight the mucosal surface structure or capillary 
morphology by switching between different wavelengths of light, clearly observe the 
boundary and scope of the lesion, and obtain a visual effect similar to chromoen-
doscopy.

Depth research for colonoscopy image recognition has already started, using 
specific data sets and special deep learning network structure models to establish a 
labeled colonic lesion image data set to provide technical support for intelligent image 
recognition of colonoscopy images. Computer-aided diagnosis analysis used for 
accurately classify neoplastic/hyperplastic, adenoma/non-adenomas colorectal polyps 
found that the system have a classification accuracy rate above 90%, and the diagnosis 
time required is decreased compared with endoscopy experts and non-experts[4,22-
24].

The dynamic recognition system decomposes the real-time video of the colonoscopy 
into a continuous picture. The deep learning neural network is used for the recognition 
of the marked images, and the fine recognition of each image is carried out to realize 
the purpose of automatically discovering and classifying the lesions. Mori et al[25] 
used deep learning models to analyze colonoscopy videos to classify adenomatous 
and hyperplastic polyps in real time, the results find that the accuracy of the AI model 
is 94%, the sensitivity and the specificity is 98% and 83% respectively (Figure 2).

We expect that AI combined with white light, chromoendoscopy and magnifying 
endoscopy will greatly reduce the time spent on diagnosis and treatment in the future, 
thereby providing great help for the clinical and scientific research of gastrointestinal 
diseases.

APPLICATION OF AI IN CAPSULE ENDOSCOPY
In recent years, the rapid development of capsule endoscopy technology, especially 
the appearance of magnetron capsule endoscopy, which has realized the control-
lability of the capsule endoscopy on some extent. The emergence of capsule endoscopy 
has made up for the insufficiency of gastroscopy and colonoscopy, the patients 
acceptance is high because of the whole examination process is painless. Nowadays, 
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Figure 2 Artificial intelligence diagnosis system for colonoscopy lesions based on deep learning.

the application of capsule endoscopy is mostly focused on discovery of small bowel 
disease, for example bleeding.

AI is widely used in capsule endoscopy technology. The pixels are grouped by 
super pixel segmentation, the red ratio in the RGB space is used to extract the features 
of each super pixel, and these things are input into Support Vector Machines (SVM) 
for classification for intelligent recognition of capsule endoscopic bleeding. The 
specificity of the experimental results is 83%-98%, and the sensitivity is 94%-99%[26,
27].

In order to identify polyps in capsule endoscopy images, Yuan and Meng[28] 
proposed a new complex feature learning method, which is a stacked sparse 
autoencoder with image manifold constraint. This method introduces multiple image 
constraints force images in the same category to share similar learning features and 
keep them, so the learned features retain a large number of differences and small 
internal differences in the images. The results show that the average overall 
recognition accuracy of this method is 98%, and could be further utilized in the clinical 
trials to help physicians from the tedious image reading work.

THE PROBLEMS FACED BY AI IN THE APPLICATION OF COLONOSCOPY
The development of depth research has enabled AI to achieve fruitful results in many 
aspects. However, there is no major breakthrough in the theory that AI follows, and 
the methods from supervised learning to unsupervised learning are still being 
explored. Therefore, looking for in-depth theoretical explanations is an important issue 
that must be solved in the development of the studies. In addition, deep learning 
generally requires a large amount of data, but not all applications have the conditions 
for it. Therefore, how to realize traditional knowledge expression and data-driven 
knowledge learning is an important research direction in the future. Furthermore, the 
neural network model needs to be adapted to transfer the learned knowledge to new 
conditions and environments in order to acquire the ability to solve many practical 
problems from a small number of learning samples. Finally, the method of machine 
learning is determined according to the functional relationship between the data and 
the target, a "deep forest" learning method, with a comparable setting proposed by 
Zhou and Feng[29], achieved a considerable or even better than deep neural networks.

In the field of colonoscopy image recognition, experts and scholars have made very 
useful explorations on the intelligent recognition of colorectal lesions, but most of 
them are limited to judge colorectal polyps. To achieve the integration of doctors and 
patients with auxiliary examination equipment, it is necessary to further expand the 
colorectal lesion image data set and the types of diseases involved. It must be pointed 
out that the endoscopic manifestations of colorectal diseases are various, the same 
disease often manifests differences in different periods and different diseases have 
very little difference in a specific period, and pathological diagnosis is still the gold 
standard.
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CONCLUSION
In short, AI in colonoscopy has significant social benefits and bright application 
prospects, and it is foreseeable that smart medicine is an inevitable trend in medical 
development. Based on previous research, integrating colonoscopy’s loop factors, 
unlooping strategies, active lesion capture and recognition, and assistive robotics 
technology, we have reason to believe that the future smart colonoscopy system will 
bring a revolution, and promote the diagnosis and treatment of colorectal diseases, 
especially the widespread development of colorectal cancer screening for the benefit of 
mankind.
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Abstract
Gastric cancer (GC) is the fifth most common cancer in the world, and at present, 
esophagogastroduodenoscopy is recognized as an acceptable method for the 
screening and monitoring of GC. Convolutional neural networks (CNNs) are a 
type of deep learning model and have been widely used for image analysis. This 
paper reviews the application and prospects of CNNs in detecting and classifying 
GC, aiming to introduce a computer-aided diagnosis system and to provide 
evidence for subsequent studies.

Key Words: Artificial intelligence; Convolutional neural network; Endoscopy; Gastric 
cancer; Deep learning

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: With the development of new algorithms and big data, great achievements in 
artificial intelligence (AI) based on deep learning have been made in diagnostic 
imaging, especially convolutional neural network (CNN). Esophagogastroduoden-
oscopy (EGD) is currently the most common method for screening and diagnosing 
gastric cancer (GC). When AI was combined with EGD, the diagnostic efficacy of GC 
could be improved. Therefore, we review the application and prospect of CNN in 
detecting and classifying GC, aiming to introduce a computer-aided diagnosis system 
and provide evidence for following studies.
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INTRODUCTION
Gastric cancer (GC) is a globally prevalent cancer, and its incidence and mortality rank 
fifth and fourth, respectively, among cancers worldwide[1]. It is estimated that in 2020 
there were over 1000000 new cases and 769000 deaths of GC globally. The lack of early 
detection and treatment contributes to the high mortality and poor outcomes of GC
[2]. Esophagogastroduodenoscopy (EGD) is currently the most common method for 
screening and diagnosing GC. However, the efficacy of EGD varies significantly[3]. It 
has been reported that the false negative rate of EGD in detecting GC ranges from 
4.6%-25.8%[4-6]. GC lesions are difficult to recognize due to the subtle changes in the 
gastric mucosa[7]. Additionally, the quality of EGD can be heavily influenced by the 
subjective determination of endoscopists[8]. Therefore, it is significant to develop an 
objective and reliable method to recognize possible early GC (EGC) lesions and blind 
spots.

With the development of new algorithms and big data, great achievements in 
artificial intelligence (AI) based on deep learning (DL) have been made for diagnostic 
imaging. Meanwhile, as one of the most representative network models in DL, 
convolutional neural network (CNN) contributes to enhancing the accuracy of image 
analysis. CCN is now being successfully applied in detecting the gastrointestinal tract
[9-11]. CNNs have achieved tremendous successes and wide application in image 
recognition and classification[12,13]. Therefore, we applied CNN in endoscopic 
diagnosis, aiming to improve the diagnostic efficacy of EGC. In this review, we 
scrupulously elucidate the application and evolution of CNN in the detection and 
classification of GC.

CONVOLUTIONAL NEURAL NETWORK
With the development of neuroscience, researchers have attempted to build artificial 
neural networks to simulate the structure of the human brain by mathematically 
activating neuronal activity. DL has been the mainstream machine learning method in 
many applications. It is a type of representation learning method in which a complex 
neural network architecture automatically learns representative data by transforming 
the input information into multiple levels of abstractions[10]. Computer-aided 
diagnosis requires the extraction of extensive original image data and the application 
of a series of complex algorithms. DL has a strong modeling and reasoning ability that 
is superb in realizing computer output diagnosis.

CNNs are neural networks sharing connections between hidden units that feature a 
shortened computational time and translational invariance properties[14]. A typical 
CNN framework includes three main components: A convolutional layer, an 
activation function, and a pooling layer. The convolutional layer is composed of 
several small matrices. These matrices are convolved throughout the whole input 
image working as filters, and then a nonlinear transformation is applied in an element-
wise fashion. Finally, the pooling layer aggregates contiguous values to one scalar. The 
common types of pooling in popular use are either average or max[15,16].

In the early 1990s, CNNs were used in many applications, such as object detection 
and face recognition. With the advances of technology, CNN was first applied to the 
analysis of medical images in 1993. Lo et al[17] reported the detection of lung nodules 
using a CNN in 1995. However, due to the limitation of computer language, CNNs 
have been underestimated in their value for a long time. In 2012, Krizhevsky et al[18] 
proposed a CNN with five convolutional layers and three fully connected layers 
(namely, AlexNet) and achieved breakthrough performances in the ImageNet Large 
Scale Visual Recognition Challenge. Since then, CNNs have been of great interest and 
widely applied. For example, CNNs have been applied to identify diabetic retinopathy 
from fundus photographs and distinguish benign proliferative breast lesions from 
malignant[19]. In 2020, Plaksin et al[20] estimated the possibility of diagnosing 
malignant pleural effusion from facies images of pleural exudates obtained by the 
method of wedge-shaped dehydration using CNNs.

Compared with the general neural network, CNN is superior in the adaptation of 
the image structure, extraction, and classification, and as a result it presents 
satisfactory work efficiency.

http://creativecommons.org/Licenses/by-nc/4.0/
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APPLICATION OF CNN IN GC
Automatic detection
At present, CNNs have been applied to detect GC, showing distinctive improvements. 
Hirasawa et al[10] created and trained a CNN-based diagnostic system containing 
13584 endoscopic images. In this study, the constructed CNN was able to detect 92.2% 
of GC cases, including small intramucosal GC, through a quick analysis of an 
independent test set involving 2296 stomach images, which is extremely difficult even 
by experienced endoscopists. To achieve the real-time detection of EGD, Ishioka et al
[21] tested their CNN system for identifying video images and achieved a high 
detection rate (94.1%). The detection rate in video images by CNN is similar to that of 
still images, demonstrating the great potential of CNN in the early detection of GC.

Magnifying endoscopy with narrow band imaging (M-NBI) has been used for the 
differential diagnosis of various focal, superficial gastric lesions. By observing the 
microvasculature and fine mucosal structure, M-NBI has a better accuracy in the 
diagnosis of early GC than ordinary white light endoscopy[22]. Li et al[23] developed a 
novel CNN-based system for analyzing gastric mucosal lesions observed by M-NBI. 
The test results showed that the sensitivity, specificity, and accuracy of the CNN 
system in diagnosing early GC were 91.18%, 90.64%, and 90.91%, respectively. 
Notably, the specificity and accuracy of CNN diagnostics are comparable to those of 
experts with more than 10 years of clinical experience.

Ikenoyama et al[24] compared the diagnostic ability of CNN and 67 endoscopists, 
and the results showed that CNN had a faster processing speed and 25% higher 
sensitivity than endoscopists [95% confidence interval (CI): 14.9-32.5]. The use of CNN 
can effectively urge endoscopists to re-examine and evaluate ambiguous lesions, 
which also helps reduce false negatives and false positives (Table 1).

Histological classification
An excellent endoscopist not only detects mucosal lesions but also distinguishes 
benign and malignant features. Cho et al[25] trained three CNN models, namely, 
Inception-v4, Resnet-152, and Inception-Resnet-v2, to classify gastric lesions into five 
categories: Advanced GC, EGC, high-grade dysplasia, low-grade dysplasia, and non-
neoplasm. Among these systems, the Inception-Resnet-v2 model showed the best 
performance; the weighted average accuracy reached 84.6%, and the mean area under 
the curve (AUC) of the model for differentiating GC and neoplasm was 0.877 and 
0.927, respectively.

To date, pathological diagnosis is still the gold standard to assess the presence or 
absence of cancerous lesions, cancer types, and degree of malignancy. Nevertheless, 
the accuracy of diagnosis and workload alleviation of pathologists are still challenging, 
and advanced computer-aided technologies are expected to play a key role in assisting 
pathological diagnosis. By optically scanning histologic tissue slides and converting 
them into ultrahigh-resolution digital images called whole slide images (WSIs), digital 
pathology is available for further investigations[26]. With the rapid development of 
EGD, the combination of DL models such as CNN and digital pathology is expected to 
greatly reduce the increasing workload of pathologists.

Sharma et al[27] explored two computerized applications of CNNs in GC, cancer 
classification and necrosis detection, based on immunohistochemistry of human 
epidermal growth factor receptor 2 and hematoxylin-eosin staining of histopatho-
logical WSIs. The overall classification accuracies that they obtained were 0.6990 and 
0.8144, respectively. However, their study is limited by a small sample size with only 
11 WSIs involved.

Iizuka et al[28] collected a large dataset of 4128 WSIs of stomach samples to train 
CNN and a recurrent neural network, and the evaluation results of CNN showed that 
the AUC for detecting gastric adenocarcinoma and adenoma was up to 0.97 and 0.99, 
respectively. They proposed that DL models can be used as a component in an 
integrated workflow alongside slide scanning, thus determining the top priority of the 
most valuable case, enhancing the accuracy of diagnosis, and speeding up the work 
efficacy.

Song et al[29] established a multicenter massive WSI dataset and tested slides 
collected from different hospitals that were detected with the histopathological 
diagnosis system for GC detection using DL. The results showed that the AUCs of the 
AI assistance system developed at the Chinese PLA General Hospital, Peking Union 
Medical College Hospital, and Cancer Hospital, Chinese Academy of Medical 
Sciences, were 0.986, 0.990, and 0.996, respectively, confirming its consistent stable 
performance. Their model-building approach may also be applied to identify multiple 
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Table 1 Detailed information on studies concerning automatic detection by convolutional neural network in gastric cancer

Ref. Endoscopic images Training 
dataset

Test 
dataset Resolution Sensitivity 

%
Specificity 
%

Accuracy/AUC 
%

PPV 
%

NPV 
%

Hirasawa et al
[10] (2018)

WLI/NBI/chromoendoscopy 
images

13584 2296 300 × 300 92.2 NA NA 30.6 NA

Ishioka et al
[21] (2019)

Video images NA 68 NA 94.1 NA NA NA NA

Li et al[23] 
(2020)

M-NBI images 20000 341 512 × 512 91.18 90.64 90.91 90.64 91.18

Ikenoyama et 
al[24](2021)

WLI/NBI/chromoendoscopy 
images

13584 2940 300 × 300 58.4 87.3 75.7 26.0 96.5

AUC: Area under the curve; PPV: Positive predictive value; NPV: Negative predictive value; WLI: White-light imaging; NBI: Narrow-band imaging; M-
NBI: Magnifying narrow-band imaging; NA: Not applicable.

cancers in different organ systems in the future (Table 2).

Prediction of depth of tumor invasion
EGC is categorized as a lesion confined to the mucosa (T1A) or the submucosa (T1B). 
An accurate identification of the depth of tumor invasion is the basis for determining 
the therapeutic schedule[30]. Endoscopic mucosal changes, such as irregular surfaces 
and submucosal tumors (e.g., marginal elevation), have been suggested as predictors 
of the depth of tumor invasion[31].

Zhu et al[11] built a CNN computer-aided detection (CNN-CAD) system to 
determine the depth of tumor invasion, which is expected to avoid unnecessary 
gastrectomy. In this system, there was a development dataset of 790 images and a test 
dataset of 203 images. The final results showed that the AUC for the CNN-CAD 
system was 0.94 (95%CI: 0.90-0.97), and the overall accuracy was 89.16%, which was 
significantly higher than that determined by endoscopists (17.25%, 95%CI: 11.63-
22.59). Yoon et al[32] proposed a novel loss function for developing an optimized EGC 
depth prediction model, called the lesion-based visual geometry group-16. Using this 
novel function, the depth prediction model is able to accurately activate the EGC 
regions during training and simultaneously measure classification and localization 
errors. After experimenting with a total of 11539 endoscopic images, including 896 
images of T1A-EGC, 809 of T1B-EGC, and 9834 of non-EGC, the AUC of the EGC 
depth prediction model was 0.851. In this study, it was also demonstrated that 
histopathological differentiation significantly affects the diagnostic accuracy of AI for 
determining T staging.

Upper abdominal enhanced computed tomography (CT) is the main imaging 
examination for T staging of GC[33]. Zheng et al[34] retrospectively collected 3500 
venous phase-enhanced CT images of the upper abdomen from 225 patients with 
advanced GC, aiming to predict the depth of GC invasion and extract different regions 
of interest. The dataset was then enhanced by cropping and flipping, and the Faster R-
CNN detection model was trained using other data enhancement methods. They 
found that the AUC of the experimentally established CNN model was 0.93, and the 
recognition accuracies for T2, T3, and T4 GC were 90%, 93%, and 95%, respectively. 
The abovementioned findings may be helpful for radiologists to predict the 
progression and postoperative outcomes of advanced GC (Table 3).

CURRENT EXISTING PROBLEMS
Limitations of studies
Selection bias: In most studies, researchers tend to select clear, typical, high-quality 
endoscopic images for training and testing image sets[10,35]. Because low-quality 
images with air, postbiopsy bleeding, halation, blurs, defocusing, or mucus secretion 
have been excluded, the results of retrospective clinical tests are often superior to 
actual ones. Therefore, prospective studies that are less affected by biases should be 
thoroughly analyzed to improve the accuracy and specificity of clinical trials, thus 
ensuring the reliability of the results.
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Table 2 Detailed information on studies concerning histological classification by convolutional neural network in gastric cancer

Ref. Training dataset Test dataset Resolution Group AUC %

Five-category classification 84.6

Cancer vs non-cancer 87.7

Cho et al[25] (2019) 4205 812 1280 × 640

Neoplasm vs non-neoplasm 92.7

231000 for cancer 
classification

Cancer classification 69.9Sharma et al[27] 
(2017)

47130 for necrosis detection

NA 512 × 512

Necrosis detection 81.4

Adenocarcinoma 98Iizuka et al[28] (2020) 3628 500 512 × 512

Adenoma 93.6

3212 from PLAGH 98.6

595 from PUMCH 99.0

Song et al[29] (2020) 2123

987 from CHCAMS

320 × 320 Benign and malignant cases and tumour 
subtypes

99.6

PLAGH: Chinese PLA General Hospital; PUMCH: Peking Union Medical College Hospital; CHCAMS: Cancer Hospital, Chinese Academy of Medical 
Sciences; AUC: Area under the curve.

Table 3 Detailed information on studies concerning prediction of depth of tumor invasion by convolutional neural network in gastric 
cancer

Ref. Dataset Resolution Sensitivity 
%

Specificity 
% Accuracy/AUC % PPV 

%
NPV 
%

Zhu et al
[11] (2019)

Development datasets: 5056; Validation datasets: 1264; 
Test dataset: 203

299 × 299 76.47 95.56 89.16 89.66 88.97

Yoon et al
[32] (2019)

11539 images were randomly organized into five 
different folds, and at each fold, the training: validation: 
testing dataset ratio was 3:1:1

NA 79.2 77.8 85.1 79.3 77.7

Zheng et al
[34] (2020)

Totally 5855, training:verification dataset ratio was 4:1 512 × 557 NA NA T2 stage: 90; T3 stage: 
93; T4 stage: 95

NA NA

AUC: Area under the curve; PPV: Positive predictive value; NPV: Negative predictive value; NA: Not applicable.

Single-center studies: Most of the testing images are obtained from a single-center 
institution using the same type of endoscope and endoscopic video system, which may 
result in potential biases. In future studies, images obtained from multicenter 
institutions using different types of endoscopic devices should be collected for 
analysis.

Lack of endoscopic video images: Still images are used for the training and test 
dataset in most studies, which may limit the extensive clinical application[36]. Using 
video images may improve the performance of the CNN and represent real-life 
scenarios[21].

Limitations of CNN
False positive and false negative results: The specificity and sensitivity of automatic 
detection are very important to determine the choice of therapeutic schedule. False 
positive and false negative results directly lead to improper treatment. For example, 
gastritis with pathological manifestations of redness, atrophy, and intestinal 
metaplasia is easily confused with EGC, which increases the false positive rate[10]. In 
addition, early-stage cancer lesions are often too small to be found, which increases the 
false negative rate. The main reason for false positive and false negative results may be 
attributed to the limited quantity and quality of learning samples. Therefore, it is 
necessary to collect a large number of high-quality endoscopic images for training 
algorithms, thus enhancing the detection accuracy.



Feng XY et al. Convolutional neural network in gastric cancer

AIGE https://www.wjgnet.com 76 June 28, 2021 Volume 2 Issue 3

Ethical and moral issues: AI will not completely replace doctors. Who should be 
responsible for the safety of patients if misdiagnosed? Patient consent should be 
obtained before using AI to determine who should be responsible for misdiagnosis or 
incorrect treatment that can possibly occur[37].

CONCLUSION
As a classical and widely used DL model, CNN has been widely used in the medical 
field, especially for EGD detection. In remote or crowded areas, CNNs can be used to 
assist early cancer screening to prevent misdiagnosis due to a lack of experience and 
professional knowledge of endoscopists. Additionally, CNN is a promising method to 
provide online professional training for improving the professional skills of young 
endoscopists. Most importantly, CNN helps endoscopists detect, classify, and even 
predict the invasion depth of EGC.

At present, most of studies are still in the early stages of system development. More 
powerful, efficient, and stable algorithms, and more prospective studies are urgently 
required in the future to make AI more sensitive, specific, and accurate in cancer 
detection and classification.
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Abstract
Colorectal cancer is one of the major causes of death worldwide. Colonoscopy is 
the most important tool that can identify neoplastic lesion in early stages and 
resect it in a timely manner which helps in reducing mortality related to colorectal 
cancer. However, the quality of colonoscopy findings depends on the expertise of 
the endoscopist and thus the rate of missed adenoma or polyp cannot be 
controlled. It is desirable to standardize the quality of colonoscopy by reducing 
the number of missed adenoma/polyps. Introduction of artificial intelligence (AI) 
in the field of medicine has become popular among physicians nowadays. The 
application of AI in colonoscopy can help in reducing miss rate and increasing 
colorectal cancer detection rate as per recent studies. Moreover, AI assistance 
during colonoscopy has also been utilized in patients with inflammatory bowel 
disease to improve diagnostic accuracy, assessing disease severity and predicting 
clinical outcomes. We conducted a literature review on the available evidence on 
use of AI in colonoscopy. In this review article, we discuss about the principles, 
application, limitations, and future aspects of AI in colonoscopy.

Key Words: Artificial intelligence; Colonoscopy; Colorectal cancer; Inflammatory bowel 
disease; Adenoma detection rate; Adenoma
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Core Tip: Artificial intelligence (AI) pertains to performance of intelligent tasks like 
human beings by computer-controlled machines. Machine learning, one of the most 
important and fundamental principles of AI, essentially means automatically using the 
available data to learn and make decisions without human intervention. AI based 
detection models have been developed for polyp detection and to differentiate 
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malignant from nonmalignant lesions. It has been also utilized to analyze endoscopic 
images for inflammatory bowel disease diagnosis, grading its severity and predicting 
treatment response.
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INTRODUCTION
What is artificial intelligence
The capability of human brain to perceive, analyze and react is defined as intelligence. 
Gottfredson[1] described it as ability of a human beings to reason, plan, solve 
problems, think abstractly, comprehend complex ideas, learn quickly and learn from 
experience. It has been a long desire of human beings to build machines which can 
think and act autonomously to ease human work. Several complex computer 
algorithms and models have been developed to provide automation to these machines. 
The famous Turing test invented by Alan Turing in 1950 demonstrated that it may be 
difficult for a blinded investigator to distinguish humans from intelligent machines[2]. 
However, intelligence of these machines is still way below human intelligence which is 
based on logic, reasoning, and adaptive learning. In 1997 International Business 
Machines’s artificial intelligence (AI) driven chess playing system defeated world 
chess champion Garry Kasparov. Although this victory of computer programs over 
human beings in chess was criticized by many, and it was argued that machines can 
only be as good as the programs developed for them by human beings, nevertheless it 
remains an important landmark in the history of AI.

There is no one formal definition of AI. It is vaguely defined as ability of computer-
controlled machines to perform intelligent tasks like human beings. There are two 
basic subtypes of AI- weak or soft and strong or hard AI[3]. Weak or soft AI is also 
called as narrow AI and as the name suggests it specializes in a very specific task like 
face recognition, voice recognition capabilities. On the other hand, strong or hard AI 
which is also known as general AI has more broad application due to its capability to 
understand, think and act like human beings. It is at the core of advanced robotic 
systems.

Machine learning (ML) is one of the most important and fundamental principles of 
AI. ML is at the heart of any AI system and essentially means automatically using the 
available data to learn and make decisions without human intervention. It is an 
adaptive technology which is continuously learning and hence gets better with each 
use. ML utilizes three fundamental methods which include supervised learning, 
unsupervised learning, and reinforcement learning. Artificial neural network (ANN) is 
a ML algorithm adapted from model of biological neurons in humans. ANN is an 
information processing technology, also considered as mathematical models utilized to 
analyze data.

AI IN THE FIELD OF GASTROENTEROLOGY
In the last two decades, substantial progress has been made in the use of AI driven 
algorithms in the field of medical science. Use of AI in the field of medical practice can 
be categorized in two broad categories-virtual and physical[4].  The virtual category of 
AI pertains to its use in electronic health record.  It is based on ML and deep learning 
via mathematical algorithms to identify individuals at risk of some specific disease and 
help in clinical decision making.  The physical category of AI includes use of medical 
devices and robotics for delivering medical care.

AI operated systems have been utilized to monitor patient's medical conditions 
remotely.  More specifically in gastroenterology, AI based detection models have been 
developed to differentiate malignant from nonmalignant lesions, detect gastroin-
testinal bleeding using wireless video capsule endoscopy, detecting pancreatic cancer, 
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and detecting liver fibrosis.  In the subsequent sections, we have detailed progress of 
AI and its application during colonoscopy.

AI AND COLON POLYPS
Colorectal cancer (CRC) is the third most common form of the cancer worldwide and 
is the 2nd most common cause of cancer related mortality globally[5]. Colonoscopy is 
the primary method for detection and removal of polyps and thus for prevention of 
CRC. It has been shown in the study that with every 1% increase in the adenoma 
detection rate (ADR), the risk of CRC decreases by 3%[6]. However, colonoscopy is not 
the perfect tool as polyps can be missed during colonoscopy mainly because of two 
factors: Blind spot and proceduralist error. The error due to blind spot can be 
overcome by using wide-angle camera, but the error due to proceduralist cannot be 
overcome easily. Small polyps (1-5 mm) are prone to be missed regardless of 
experience of proceduralist. Some studies have shown improvement in the rate of 
polyp detection with the help of second observer[7,8]. The factors responsible for 
proceduralist error could be fatigue, distraction, visual perception, impaired level of 
alertness, recognition error and poor bowel preparation. The application of AI in 
endoscopic field has shown improvement in ADR in recent studies and it helps in 
overcoming proceduralist error. Computer-aided detection and characterization of 
colorectal polyps is now getting popular among endoscopists.

PRINCIPLES AND APPLICATION OF AI IN COLONOSCOPY FOR POLYP 
DETECTION
AI has been a part of medical field since early 1950s. The concept and use of basic 
technology of computer-aided diagnosis (CAD) for colonoscopy has been explored 
since past one decade[9]. Use of CAD system in detection of colon polyps was first 
demonstrated by Karkanis et al[10]. Although the sensitivity of detecting adenomatous 
polyps demonstrated by these authors was 90%, this system was not used in clinical 
practice as it relied on static images rather than live endoscopic videos. In 2011, Bernal 
et al[11] introduced how intelligent systems can help in colonoscopy. Bernal et al[12] 
later introduced window median depth of valley accumulation (WM- DOVA) energy 
maps as a tool for automatic polyp detection in colonoscopy images. Fernández-
Esparrach et al[13] for the first-time reported use of CAD system based on WM-DOVA 
maps and utilized colonoscopy videos in assisting colon polyp detection. With 
significant advancements in computer power and emergence of deep learning 
algorithms over past decade, it is being realized that CAD assistance during 
colonoscopy can be used in real time[14]. The inclusion of CAD for colonoscopy can 
help by automatic detection of polyps in real time which could be easily overlooked by 
endoscopists visually, thus resulting in higher ADR. Additionally, it helps in charac-
terization of polyps in real time that in turn would help in reducing unnecessary 
biopsies of non-neoplastic polyps significantly[15].

There have been multiple studies to prove the advantage of inclusion of AI in the 
field of colonoscopy (Table 1). Most of these studies are of retrospective design, 
however few of them done recently were conducted prospectively. Luo et al[16] 
conducted a prospective, randomized cohort study using 150 participants to explore 
whether a high-performance, real-time automatic polyp detection system could 
improve the polyp detection rate in the actual clinical environment. The results 
showed that a real-time automatic polyp detection system can increase the ADR, 
especially for small polyps which are usually easily missed by conventional 
colonoscopy technique. Furthermore, Misawa et al[17] developed a 3-D convolutional 
network model for automated polyp detection which worked nearly in real time. They 
demonstrated sensitivity of 90% and a specificity 63% using 50 polyp videos and 85 
non-polyp videos as test sets. Subsequently, Urban et al[18] developed a CAD model to 
improve polyp detection rate and they tested the model for its diagnostic capability on 
8641 hand-labeled colonoscopy images collected from more than 2000 patients and on 
20 colonoscopy videos. The results showed diagnostic accuracy of 96.4% and an area 
under the receiver operating characteristic curve of 0.991. However, the false positive 
rate was 7%. Additionally, Wang et al[19] developed the deep-learning algorithm 
which provided > 90% sensitivity and specificity for video-based analysis after testing 
their model on many polyp images and colonoscopy video recordings from patients. 
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Table 1 List of studies evaluating role of artificial intelligence in the detection of colon polyps during the colonoscopy

Ref. Country of 
origin

Study 
design Results

Fernandez-Esparrach et al
[13], 2016

Spain Retrospective Sensitivity 70%, Specificity 72 % 

Geetha et al[36], 2016 India Retrospective Sensitivity 95%, Specificity 97%

Misawa et al[37], 2017 Japan Retrospective Accuracy higher than trainees (87.8 vs 63.4%; P = 0.01), but similar to experts (87.8 vs 
84.2%; P = 0.76)

Zhang et al[38], 2017 China Retrospective Accuracy 86%

Yu et al[39], 2017 China Retrospective Sensitivity 71%, PPV 88%

Billah et al[40], 2017 Bangladesh Retrospective Sensitivity 99%, Specificity 98.5%, Accuracy 99%

Chen et al[23], 2018 Taiwan Retrospective Sensitivity 96.3%, Specificity 78.1%

Urban et al[18], 2018 United States Retrospective Accuracy 96.4%

Misawa et al[17], 2018 Japan Retrospective Sensitivity, Specificity, and Accuracy were 90%, 63%, and 76%, respectively

Wang et al[19], 2018 China Retrospective Sensitivity 94.38%, Specificity 95.92%

Su et al[41], 2019 China Prospective Polyp detection rate was 38.3% as compared to 25.4% in control group (P < 0.001)

Wang et al[42], 2019 China Prospective Polyp detection rate was 45% as compared to 29% in the control group (P < 0.001)

Klare et al[43], 2019 Germany Prospective Larger polyp detection, Odds ration 2.71, P =  0.042 

Figueiredo et al[44], 2019 Portugal Retrospective Sensitivity 99.7%, Specificity 84.9%, Accuracy 91.1%

Yamada et al[45], 2019 Japan Retrospective Sensitivity 97.3%, Specificity: 99%

Lee[46], 2020 South Korea Retrospective Accuracy 93.4%, Sensitivity 89.9%, Specificity 93.7%

Luo et al[16], 2020 China Prospective Polyp detection rate for diminutive polyps increased (38.7% vs 34%, P < 0.001). No 
difference was found for larger polyps

Gong[47], 2020 China Prospective Polyp detection rate was 47% as compared to 34% in control group (P =  0.0016)

Liu et al[48], 2020 China Prospective Polyp detection rate was 44% as compared to 28% in control group (P < 0.001)

Ozawa et al[49], 2020 Japan Retrospective Sensitivity 92%, PPV 86%, Accuracy 83%

Wang et al[50], 2020 China Prospective Polyp detection rate was 52% as compared to 37% in control group (P < 0.0001)

Hasssan et al[51], 2020 Italy Retrospective Sensitivity 99.7%

Repici et al[52], 2020 Italy Prospective Adenoma detection rate was 54.8% as compared to 40.4% in control group (P < 0.001)

PPV: Positive predictive value.

In a recent meta-analysis[20] from the researchers in Norway, who included five 
randomized control trials, AI aided colonoscopy had a ADR of 29.6% as compared to 
19.3% without AI. In another recent meta-analysis involving 5 randomized control 
trials including 4354 patients, ADR was 36.6% with AI aided colonoscopy as compared 
to 25.2% in the standard control group (P < 0.01)[21].

In addition to improvement in colorectal polyp detection, AI has also been shown 
accuracy in polyp characterization in several studies. Byrne et al[22] developed an AI 
model for real-time characterization of colorectal polyps. They assessed their model 
using 125 unaltered endoscopic videos containing diminutive polyps. The AI model 
did not generate sufficient confidence to predict the histology of 19 out of 125 
diminutive polyps which was about 15% of the polyps. For the remaining 106 
diminutive polyps, the accuracy of the model was 94%, the sensitivity for identi-
fication of adenomas was 98%, specificity was 83%, negative predictive value (NPV) 
was 97%, and positive predictive value (PPV) was 90%. On the other hand, Chen et al
[23] assessed their model using 284 diminutive polyps. The model identified 
neoplastic or hyperplastic polyps with 96.3% sensitivity, 78.1% specificity, NPV of 
91.5% and PPV of 89.6%. There have been several other studies from across the world 
analyzing capacity of AI to characterize colon polyps (Table 2).
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Table 2 List of studies evaluating role of artificial intelligence in characterization of colon polyps during the colonoscopy

Ref. Country of origin Study design Results

Misawa et al[53], 2016 Japan Retrospective Sensitivity 84.5%, Specificity 98%

Mori et al[54], 2016 Japan Retrospective Accuracy 89%

Kominami et al[55], 2016 Japan Prospective Sensitivity 93%, Specificity 93.3%

Komeda et al[56], 2017 Japan Retrospective Accuracy 75%

Takeda et al[57], 2017 Japan Retrospective Sensitivity 89.4%, Specificity 98.9%, Accuracy 94.1 %

Chen et al[23], 2018 Taiwan Retrospective PPV of 89.6%, and a NPV of 91.5%

Renner[58], 2018 Germany Retrospective Sensitivity 92.3% and NPV 88.2%

Mori et al[59], 2018 Japan Prospective Accuracy 98.1%

Blanes-Vidal et al[60], 2019 Denmark Retrospective Accuracy 96.4%

Min et al[61], 2019 China Prospective Sensitivity 83.3%, Specificity 70.1%

Byrne [22], 2019 Canada Retrospective Accuracy 94%

Sánchez-Monteset al[62], 2019 Spain Retrospective Sensitivity 92.3%, Specificity 89.2%

Horiuchi et al[63], 2019 Japan Prospective Sensitivity 80%, Specificity 95.3%

Lui et al[64], 2019 China Retrospective Sensitivity 88.2%, Specificity 77.9%

Ozawa et al[49], 2020 Japan Retrospective Sensitivity 97%, PPV 84%, NPV 88%

Jin et al[65], 2020 South Korea Prospective Sensitivity 83.3%, Specificity 91.7%

Rodriguez-Diazet al[66], 2020 United States Prospective Sensitivity 96%, Specificity 84%

Kudo et al[67], 2020 Japan Retrospective Sensitivity 96.9%, Specificity 100%

NPV: Negative predictive value; PPV: Positive predictive value.

AI AND INFLAMMATORY BOWEL DISEASE
Inflammatory bowel disease (IBD) comprises of mainly ulcerative colitis and crohn's 
disease. It results from complex interplay of environmental, immunological, microbial, 
and genomic factors[24]. The prevalence of IBD has exceeded 0.3% in the Western 
countries, and its incidence is rising in newly industrialized countries all over the 
world[25].

Over the last decade, role of AI has been explored in the field of inflammatory 
bowel disease (IBD). It has been utilized to analyze endoscopic images for disease 
diagnosis, grading of severity of disease and predicting treatment response. It has been 
also utilized to build risk prediction models based on integration of clinical, laboratory 
as well as gene expression data[26]. There are limited studies exploring the utility of 
AI aided colonoscopy in the field of IBD. Mosotto et al employed machine learning 
mathematical model of endoscopic and histologic data to distinguish different types of 
pediatric IBD and found 83.3% accuracy[27]. Similarly, a study from China found AI 
through machine learning model to be a promising approach specially for unexper-
ienced endoscopists for subtyping of IBD[28].

There are clinical scores available for grading the severity of IBD. AI assisted models 
have been applied to improve accuracy and precision in assessing the disease severity. 
In a prospective study from Japan, deep neural network was utilized for evaluating 
endoscopic images from patients with ulcerative colitis and it showed 90.1% accuracy 
for endoscopic remission and 92.9% accuracy for histologic remission[29]. In another 
study from Belgium, computer algorithm for pattern recognition from endoscopic 
images had significantly better accuracy in determining endoscopic and histologic 
inflammation in patients with ulcerative colitis[30]. In a retrospective study involving 
777 patients with ulcerative colitis, deep learning aided assessment of  Mayo 
endoscopic sub-score for the automated grading of disease yielded 72.4% sensitivity, 
85.7% specificity, 77.7% PPV, 87% NPV[31]. Ozawa et al[32] constructed a CAD system 
using convolutional neural network and the results showed better performance for 
identification of normal mucosa in patients with ulcerative colitis. In a prospective 
trial, Gottlieb et al showed that deep learning algorithm can be used effectively in 
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predicting ulcerative colitis disease severity[33].
Currently, these AI aided algorithms are mainly used in research setting. Further 

studies are needed to explore their utility in clinical practice and management of 
patients with IBD.

LIMITATIONS
One of the possible limitations for the use of CAD could be significantly large number 
of false positive results[34]. Sometimes CAD system may flag frames which usually 
endoscopists may never have considered as suspicious area. Thus, the endoscopists 
may have to spend some extra time to go through all those flagged frames to differ-
entiate between actual false positives and possible false negatives[35]. Additionally, 
false positive results may lead to unnecessary biopsy and thus related complications 
which could have been avoided. Hassen et al[34] conducted a post hoc analysis of 
randomized trial comparing colonoscopy with and without CAD to assess relative 
distribution of false positives in real life setting. During this analysis, two main reasons 
were found as causes of false positive results, such as artifacts from either mucosal 
wall or bowel content. Out of total false positives, 88% were due to artifacts from 
bowel wall, while 12% were due to artifacts from bowel content. However, most of the 
false positives were rejected by endoscopists right away and there was only 1% 
increase in the total withdrawal time due to false positives. Another limiting factor is 
cost effectiveness of the use of AI in colonoscopy, and it needs to be established.  Also, 
the impact of the use of AI in colonoscopy on long-term clinical outcomes, such as 
decrease in CRC rate or increase in surveillance interval for colonoscopy is not known
[35]. We require long-term prospective cohort studies to address these issues.

FUTURE DIRECTIONS
Food and Drug Administration has recently approved the first real-time CAD system 
for colonoscopy in April 2021, known as gastrointestinal (GI) Genius. It can identify 
the regions of the colon within the endoscope’s field of view where a colorectal polyp 
might be located, allowing for a more extended examination in real time during 
colonoscopy. After getting the alert from the device, it is up to the clinician to decide 
whether the identified region contains a suspected lesion, and how the lesion should 
be managed and processed per standard clinical practice and guidelines. However, GI 
Genius is not intended to characterize or classify a lesion, nor to replace lab sampling 
as a means of diagnosis. The device does not provide any diagnostic assessments of 
colorectal polyp pathology, nor does it suggest to the clinician how to manage 
suspicious polyps.

Although many studies have shown good results but most of these studies were 
retrospective studies which could be subject to considerable selection bias. On the 
other hand, only few prospective studies are available till date which are more statist-
ically significant than retrospective studies. Thus, we need to design more prospective 
studies and should be directed towards polyp characterization during real-time 
colonoscopy. Additionally, future studies can explore AI assisted identification of 
polyps with submucosal invasion. The prospect of a fully automated independent 
colonoscopy system is still too premature at this stage. Furthermore, trials to build 
more cost-effective models should be conducted in near future before considering use 
of CAD assisted colonoscopy widespread in daily practice.

CONCLUSION
In conclusion, utility of AI methods and algorithms have significantly evolved over the 
last decade. AI technology provides us a very robust tool to improve the accuracy and 
precision during the colonoscopy. ML models of AI technology provide us a valuable 
tool to transform the healthcare. Further larger and prospective studies are needed to 
see if these positive outcomes can be replicated in a cost-effective manner in clinical 
practice.
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INTRODUCTION
Artificial intelligence (AI) has emerged as a mechanism to assist clinicians, particularly 
in the analysis and interpretation of clinical data such as radiologic images and 
pathology. In general, AI encompasses the use of computer algorithms and learning 
models designed to complete undertakings that typically require conscious human 
processing[1]. For pattern recognition in images, a deep neural network learns 
multiple representations of the input images at different levels of abstractions. Subsets 
of AI include machine learning (support vector machine algorithms, artificial neural 
networks) and direct learning (convolutional neural networks, recurrent neural 
networks[1-3]. Deep learning has shown great promise in healthcare applications 
ranging from early detection of cancers to predicting disease survivability. The 
overarching goal of AI in medicine has been to decrease inter-operator variability 
while improving diagnostic accuracy and real-time decision making[4]. The 
application of AI in Gastroenterology has largely been focused on endoscopy, ranging 
from the detection and classification of colon polyps, to the diagnosis of esophageal 
and gastric cancer[1,3]. However, more recently there has been further evaluation of 
the role of AI in biliopancreatic endoscopy, including improved endoscopic 
ultrasound (EUS) differentiation between pancreatic ductal adenocarcinoma (PDAC) 
and other pancreatic pathologies such as autoimmune pancreatitis (AIP), chronic 
pancreatitis (CP) and cystic pancreas lesions such as intraductal papillary mucinous 
neoplasm (IPMN). This “topic highlight” will focus on the potential use of AI in the 
EUS evaluation of pancreatic conditions.

HISTORY OF AI IN GASTROINTESTINAL ENDOSCOPY
Early studies on the application of AI in GI endoscopy dating back to the 1990s-2000s 
were focused on aiding the detection and classification of colorectal polyps to improve 
adenoma detection rates and decrease interval colon cancers[5-8]. Additional studies 
have used AI to help diagnose inflammatory bowel disease and predict histologic 
inflammation during colonoscopy evaluation[9,10], as well as grade bowel preparation
[11]. The use of AI in upper endoscopy has been assessed in the identification and 
labeling of basic anatomic structures with automatic image capture[12], diagnosis of 
Helicobacter pylori infection[13], identification of gastric and esophageal cancer[14], as 
well as diagnosis of dysplasia in Barrett’s esophagus[15]. With regards to capsule 
endoscopy, existing technology within current software platforms allows for removal 
of redundant or uninformative images and identifies potential images of bleeding 
through color detection, while more recent studies are looking into the use of AI to 
identify other small bowel pathologies[16]. PDAC and AIP are diseases with a highly 
analogous visual presentation that are difficult to distinguish by imaging. AI systems 
have been developed to aid EUS evaluation of pancreatic lesions with the particular 
goal of distinguishing pancreatic cancer from other pancreatic pathologies including 
CP and AIP[17-19].

AI IN PANCREATICOBILIARY ENDOSCOPY
The use of AI in pancreaticobiliary endoscopy is still in its infancy, therefore there is a 
paucity of literature related to EUS evaluation of pancreatic conditions using AI-based 
systems. However, the need for improved diagnostic evaluation of pancreatic 
conditions including AIP, PDAC, CP and pancreatic cystic lesions, provides an 
exciting niche for further research. AI has previously been applied in EUS differen-
tiation of pancreatic cystic lesions and pancreatic tumors, thereby offering the 
capability of earlier and more accurate diagnosis. Both conventional machine learning 
and deep learning architectures have been used. A convolutional neural network 
(CNN) is a deep learning algorithm developed based on the concepts of visual tasks 
and signaling. In building a CNN for EUS, initial image data is collected and labeled 
based on the findings, these images are then entered as input and filtered through a 
multi-layer deep learning program which allows the system to learn key features of 
the provided EUS images. Multiple rounds of this process allow for the formation of a 
neural network where the system can then apply the previously learned features in 
analyzing novel images (Figure 1).
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Figure 1 Example of neural network design.

LITERATURE SEARCH
To identify relevant literature on this topic, we searched the PubMed database through 
our institution’s library for articles combining the terms “autoimmune pancreatitis”, 
“pancreatic adenocarcinoma”, “chronic pancreatitis”, “intraductal papillary mucinous 
neoplasm”, “artificial intelligence”, and “endoscopic ultrasound”.

AI IN THE EVALUATION OF AUTOIMMUNE PANCREATITIS
Autoimmune pancreatitis is an inflammatory condition of the pancreas commonly 
associated with a constellation of findings referred to as immunoglobulin G4-related 
disease. AIP is characterized radiologically/endoscopically by diffuse or focal 
enlargement of the pancreas parenchyma and diffuse irregular narrowing of the main 
pancreatic duct, histologically by pancreatic fibrosis and lymphoplasmacytic infilt-
ration, and serologically by increased levels of serum gamma globulin, including 
immunoglobulin G4 (IgG4)[20,21]. The diagnosis of AIP can be challenging due to the 
overlap of clinical, laboratory and imaging findings with those of PDAC[22-24]. 
Studies have shown that 2%-5% of patients who undergo pancreatic resection of 
suspected cancer are found to have AIP on histopathologic evaluation, and instead of 
receiving highly effective immunosuppressive therapy such as corticosteroids, these 
patients are left to manage the morbidity associated with an invasive surgery[25,26]. 
While EUS remains the preeminent diagnostic tool in evaluating pancreatic diseases, 
the yield of needle aspiration/biopsy techniques can be inconclusive or non-specific, 
creating a diagnostic dilemma that may ultimately delay or compromise patient care
[25-28].

In late 2020, Marya et al[22] published novel research on the development of EUS-
based AI to improve the diagnosis of AIP. Using a CNN built from a large collection of 
EUS images and videos (583 patients: 146 AIP, 292 PDAC, 72 CP, 73 normal pancreas), 
their team sought to develop a reliable, real-time method of distinguishing AIP from 
PDAC on EUS evaluation. Going one step further, they also used occlusion 
heatmapping to identify key sonographic features of AIP compared to PDAC, further 
strengthening the utility of their model. On combined still image and continuous video 
image analysis, the developed CNN was able to distinguish AIP from PDAC with 90% 
sensitivity and 87% specificity; and distinguish AIP from all other studied diagnoses 
(PDAC, CP, normal pancreas) with 90% sensitivity and 78% specificity. On continuous 
video image analysis, the developed CNN was able to successfully differentiate AIP 
from PDAC with a sensitivity of 90% and specificity of 93%; and differentiate AIP from 
all other studied diagnoses with a sensitivity of 90% and specificity of 85%. 
Furthermore, occlusion heatmap evaluation showed that “enhanced hyperechoic 
interfaces between pancreas parenchyma and pancreas duct/vessels” were predictive 
of AIP, and “post-acoustic enhancement deep to a dilated pancreas duct” was more 
commonly associated with PDAC. In addition, the study evaluated the accuracy of 
diagnosis between the CNN and a group of expert endosonographers, showing that 
the CNN correctly diagnosed AIP with a sensitivity of 88.2% and specificity of 82.5%, 
while expert endosonographers correctly diagnosed AIP with a sensitivity of 53.8% 
and specificity of 86.7%. Overall, this study serves as a model for the application of AI 
in the EUS evaluation of pancreatic pathologies including AIP.



Mankoo R et al. AI in EUS evaluation of pancreas

AIGE https://www.wjgnet.com 92 June 28, 2021 Volume 2 Issue 3

AI IN THE EVALUATION OF CHRONIC PANCREATITIS
CP is an irreversible fibro-inflammatory condition caused by recurrent or persistent 
pancreatic parenchymal injury[29]. The diagnosis of CP is often made by analyzing a 
patient’s risk factors, radiographic imaging results and direct/indirect pancreatic 
function laboratory tests. EUS-guided tissue acquisition still serves as the gold 
standard for CP diagnosis when less invasive tools are inconclusive, however, studies 
have found similar sensitivities and specificities in the diagnosis of CP using EUS, MRI 
or CT[30]. This again identifies another diagnostic dilemma for which AI may serve a 
role to improve diagnostic accuracy, thereby improving patient care and outcomes.

Computer aided diagnosis based on digital image analysis (DIA) was initially 
utilized in a small study attempting to differentiate between focal, pseudotumorous 
pancreatitis and pancreatic malignancy with an overall diagnostic accuracy of 89%
[31]. In 2008, Săftoiu et al developed a neural network to differentiate between CP and 
pancreatic malignancy through imaging features of EUS-elastography, further 
expanding to include the evaluation of contrast-enhanced EUS images in 2015[19]. 
Their initial system was able to differentiate between malignant and benign pancreatic 
masses with a sensitivity of 91.4%, specificity of 87.9% and accuracy of 89.7%. Das et al
[32] used DIA of the spatial distribution of pixels on EUS images to create a neural 
network that could differentiate PDAC and CP with a 93% accuracy. In 2013, Zhu et al
[33] published data on the use of a support vector machine predictive model to differ-
entiate PDAC and CP based on EUS images which achieved a diagnostic accuracy of 
94%. Overall, these studies provide positive reinforcement to the notion that AI can 
improve EUS differentiation of pancreatic malignancy from other pathologies 
including CP.

AI IN THE EVALUATION OF INTRADUCTAL PAPILLARY MUCINOUS 
NEOPLASMS
With the increasing detection of pancreatic cystic lesions on cross-sectional imaging, 
IPMNs have become an important pancreatic pathology given their potential for 
malignant transformation[34]. Early resection of IPMNs, particularly those with high 
grade dysplasia limit the progression to PDAC. International consensus guidelines for 
IPMN management have identified high risk stigmata (i.e., obstructive jaundice) and 
worrisome features (size > 3 cm, enhancing mural nodule < 5 mm, thickened cyst wall, 
MPD > 5-9 mm, abrupt change in MPD diameter) of malignancy associated with 
IPMN[34]. However, the use of these features alone to differentiate benign vs 
malignant IPMN leaves room for improvement, particularly through the use of AI-
assisted EUS evaluation. In 2019, Kuwahara et al[35] performed a retrospective single-
center study that developed an EUS-based CNN to differentiate benign vs malignant 
IPMNs. Their model identified malignant IPMNs with a diagnostic accuracy of 94%, 
compared to the human pre-operative diagnosis control group based on consensus 
guidelines which had an accuracy of 56%. While further research in this area is 
needed, the overarching theme of improved diagnostic accuracy when AI is applied to 
EUS evaluation of pancreatic disease appears to be evident.

CONCLUSION
The diagnosis of pancreatic lesions can be difficult, often stemming from the overlap of 
features found in benign lesions with those found in PDAC. The development of 
improved diagnostic tools to differentiate PDAC from other pancreatic lesions 
presents an opportunity for significant impact on the overall care of patients with 
pancreatic disease. More robust studies are needed to validate the current available 
research, namely in the form of prospective, multicenter studies which may further 
determine the generalizability of current models and the overall, real-time clinical 
application of these AI systems. It should be noted that standardization of endoscopic 
image capture and reporting may better help facilitate future interdisciplinary work in 
this field[36,37]. While the use of AI to evaluate the pancreas appears to be in its early 
stages, the potential for AI-assisted EUS assessment provides an exciting and 
promising future for the diagnosis and management of pancreatic lesions.
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Abstract
Assessment of endoscopic disease activity can be difficult in patients with inflam-
matory bowel disease (IBD) [comprises Crohn's disease (CD) and ulcerative colitis 
(UC)]. Endoscopic assessment is currently the foundation of disease evaluation 
and the grading is pivotal for the initiation of certain treatments. Yet, disharmony 
is found among experts; even when reassessed by the same expert. Some studies 
have demonstrated that the evaluation is no better than flipping a coin. In UC, the 
greatest achieved consensus between physicians when assessing endoscopic 
disease activity only reached a Kappa value of 0.77 (or 77% agreement adjustment 
for chance/accident). This is unsatisfactory when dealing with patients at risk of 
surgery or disease progression without proper care. Lately, across all medical 
specialities, computer assistance has become increasingly interesting. Especially 
after the emanation of machine learning – colloquially referred to as artificial 
intelligence (AI). Compared to other data analysis methods, the strengths of AI lie 
in its capability to derive complex models from a relatively small dataset and its 
ability to learn and optimise its predictions from new inputs. It is therefore 
evident that with such a model, one hopes to be able to remove inconsistency 
among humans and standardise the results across educational levels, nationalities 
and resources. This has manifested in a handful of studies where AI is mainly 
applied to capsule endoscopy in CD and colonoscopy in UC. However, due to its 
recent place in IBD, there is a great inconsistency between the results, as well as 
the reporting of the same. In this opinion review, we will explore and evaluate the 
method and results of the published studies utilising AI within IBD (with 
examples), and discuss the future possibilities AI can offer within IBD.

Key Words: Inflammatory bowel disease; Artificial intelligence; Deep learning; 
Endoscopy; Disease severity; Machine learning
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Core Tip: Artificial intelligence (AI) is on the rise in inflammatory bowel diseases 
(IBD). Endoscopic evaluation is so far the most studied modality with promising 
results. Studies with others or the combination of several modalities have been carried 
out with moderate results leaving room for future research. Data availability and 
standardisation of the reporting of these new models seem to be the biggest challenges 
for AI's breakthrough within IBD. International consensus in the field is required to 
optimise research in AI.
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INTRODUCTION
The inflammatory bowel diseases (IBD), which mainly consist of Crohn's disease (CD) 
and ulcerative colitis (UC), are idiopathic immune-mediated diseases usually affecting 
young adults[1,2].

Currently, colonoscopy is considered the gold standard in the disease assessment of 
patients with UC as well as CD located in the terminal ileum and/or colon[3,4]. 
Disease activity of UC is assessed using scoring systems such as the Mayo Endoscopic 
Subscore (MES) or UC Endoscopic Index of Severity[5]. Despite their widespread use 
and being easy to use, both indices suffer from moderate to high inter-observer 
variation which reduces the credibility of the scores[6]. This has been demonstrated in 
clinical trials where up to one-third of patients deemed eligible for inclusion based on 
the MES did not live up to the inclusion criteria after reassessment[7]. Even central 
reading is associated with noteworthy inter-observer variation[7,8].

In CD, the CD Endoscopic Index of Severity and Simple Endoscopic Score for CD 
are currently the most used indices[4]. Both have demonstrated varying observer 
variance with central reading improving the inter-observer variation[9-11]. Capsule 
endoscopy (CE) for evaluating the small bowel can be scored using the Lewis score
[12]. While widely used, the interobserver agreement between parameters in the index 
fluctuates widely (kappa 0.37-0.83)[13,14].

These interobserver variations and the risk of misclassification has led to the 
exploration of artificial intelligence (AI) assisted endoscopic assessment[15], especially 
in the field of colon cancer detection[16,17]. AI, depending on which method is used, 
mimics the human brain by having interconnected neurons that process the 
information given; however, in contrast to the human brain, AI can theoretically 
process an unlimited number of variables. In the field of IBD, the use of AI remains 
limited although it has received increasing attention. In the following review, we will 
discuss the use of AI-assisted assessment of endoscopic disease activity among CD and 
UC patients from a clinical perspective, the challenges the model faces and unexplored 
areas where AI has the potential to help patients and physicians.

CROHN’S DISEASE
CD can be examined using many modalities. Imaging has been an area of interest in 
terms of AI - especially CE[18]. A CE camera takes between 2-4 frames per second and 
has an approximate transit time of 250 min which can result in a total of approximately 
60000 images[18]. One of the challenges CE entails is that it is a time-consuming 
process whereby a trained person must subsequently review all images. New AI has 
since assisted physicians and endoscopists in filtering out non-informative images, 
thereby leaving an image series where the computer believes there is an area of 
interest. Since the year 2000, AI has been used to identify polyps/tumours, ulcers, 
celiac disease, hookworms, angioectasia, and bleeding[18]. Among CD patients, 
special focus has been on small bowel lesions, erosions and ulceration[19]. The 
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majority of recent studies that have examined the listed parameters use a convolu-
tional neural network - a deep learning method that has been shown to be effective in 
image recognition[18,20]. Overall, these studies have shown an accuracy of > 90% 
which must be considered close to perfect. However, the majority of these studies are 
conducted retrospectively and prospective results are wanted to demonstrate the 
models potential in clinical practice.

ULCERATIVE COLITIS
Due to UC only involving the colon it has been easier to categorise these patients than 
CD according to the extent and severity of inflammation[21]. Accordingly, most 
advances regarding AI in IBD has been done in UC and several clinical tools have been 
developed to assess the endoscopic disease severity. Such models have achieved an 
accuracy of 56%–77% in assessing the disease severity according to the MES or UC 
Endoscopic Index of Severity which was comparable to IBD experts[22-27]. The 
majority of studies have used methods such as the convolutional neural network to 
categorize images taken during a colonoscopy or sigmoidoscopy according to the 
MES. Recently, studies have also investigated the applicability of AI on videos; 
demonstrating a promising area under the receiver operating characteristic curve 
(AUROC or AUC) > 90%[24,26,27].

Currently, the available models are unable to distinguish between the different 
levels of the MES with sufficient accuracy. However, this is an area under great 
development and it is expected that within the coming years a model will be able to 
distinguish between the different MES levels with a satisfactory result and thereby 
eliminate the inter-observer variance, and standardize the clinical and academic 
evaluation of the endoscopic disease severity[28].

Few studies have further examined their model's MES score in relation to 
histological findings[29,30]. One study used endocytoscopy with a support vector 
machine and achieved an accuracy of approximately 90% in predicting histological 
findings which must be considered excellent results[29]. Endocytoscopy is, however, 
not an integral method in most clinics. Furthermore, although the study group utilized 
both a training and a test set, the training and optimizing process of the models is not 
described, leaving the reader with uncertainty with regard to e.g., model selection and 
tuning of. Finally, samples were divided into active inflammation vs remission which 
might be too simplified a way of considering both the endoscopic and histological 
findings. Similar results were demonstrated by Takenaka et al[30] with white-light 
endoscopy, but with the same challenges. Ultimately, none of these studies validated 
the results on an independent cohort analyzed by independent experts, in order to test 
the performance of their model when compared to another population or to the point 
of view of different experts.

POTENTIAL AND DIFFICULTIES
As previously mentioned, AI has been shown to have great potential in the evaluation 
of endoscopic severity among patients with CD and UC. The models have shown to be 
at a level with or better than physicians to classify endoscopic disease severity; 
especially among UC patients[25]. Uniformity in the approach to the endoscopic 
procedure will make new clinical tools more credible and hopefully lead to less 
discrepancy between clinical and observational studies[31]. However, it is crucial that 
new models are developed for clinical purposes, which can be implemented more 
quickly, thereby reducing the gap between research and clinical practice.

Besides endoscopic evaluation, disease prediction in IBD has also been investigated 
using AI models. Waljee et al[32,33] used two clinical trial databases to predict C-
reactive protein < 5 mg/L after 42 wk treatment with ustekinumab and steroid-free 
remission after 52 wk treatment with vedolizumab among CD patients, respectively. 
These studies used a combination of demographic, clinical, and biochemical data in a 
random forest model to predict patients' course after initiation of treatment. The 
models achieved an accuracy of 42% and 69%, respectively. Furthermore, the same 
study group investigated the treatment effect of vedolizumab in UC patients[34]. 
Using a random forest model, the model achieved an accuracy of 58% in predicting 
corticosteroid-free remission after 52 wk. When grouping UC and CD together, Biasci 
et al[35] used transcriptomics to identify a blood sample panel of 17 genes with 
sensitivity and specificity of approximately 73% to predict patients' risk of treatment 
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escalating within 1 year. A 5-year prediction study from Choi et al[36] demonstrated a 
sensitivity and specificity of 71% for predicting the risk of the use of biologics. In 
contrast to Biasci et al[35], this study utilized only demographical, clinical and 
common laboratory markers. Furthermore, Waljee et al[37,38] attempted twice to 
predict the treatment effect within 1 year, resulted in an AUC of 79% and 87% and 
accuracy of 72% and 80%, respectively. A limitation of these studies is that findings are 
only presented for IBD patients in total and not stratified according to the type of IBD. 
Despite these efforts, accuracies below at least 80% must be considered insufficient. 
Furthermore, even with accuracies above 80%, the results must be taken into 
perspective with the sensitivity, specificity and AUC to achieve an overall picture of 
the model's performance. Unfortunately, the majority of the studies have only 
reported some but not all measures of validity of which AUC is most commonly 
reported.

OTHER AREAS
It is not uncommon for some patients to undergo a lengthy diagnostic process before a 
definite diagnosis of CD or UC can be made[39]. This can be a challenge for both 
physicians and patients, and result in over or under treatments with major 
consequences for the patient. Recent studies using AI have attempted to use several 
modalities to better distinguish between these patients: endoscopy, histology, genetic 
markers, biochemical markers, clinical factors, omics, or a combination of one or more 
of these modalities[40-43]. These have shown acceptable results with AUC and 
accuracy of > 80%. It should be emphasized that these studies do not always report all 
results and many of the results are from validation data and not necessarily test data 
(unseen data) exposing the models to overfitting. However, to our knowledge, none of 
these models has been applied in clinical practice and real-life data are warranted to 
evaluate their efficacy.

To our knowledge, no other modalities explored in connection with AI have been 
published to date. In particular, the complexity of CD results in several challenges 
when developing new AI models. One area that remains untouched is the use of AI 
during colonoscopy in CD patients. This could be due to challenges in the endoscopic 
disease assessment of CD as the disease can be patchy and the severity varies between 
patches. Besides, indices for CD are difficult or time-consuming to use in clinical 
practice[4]. This could be accommodated by developing new scoring indices based on 
an evaluation from an AI model, allowing the possibility of assessing the gut as a 
whole rather than the segmented method currently being used.

In addition to endoscopies for both UC and CD, modalities such as ultrasound, 
magnetic resonance imaging, colon CE and computed tomography are obvious 
opportunities for the development of new clinical tools[44].

Unfortunately, this field is also challenged by several issues. First and foremost, a 
paradigm shift is needed; from a medical professional to a computer-aided 
assessment. This will first and foremost require doctors to accept the new technology
[45] which can be difficult to understand as the latest AI architectures use deep 
learning where a black-box appears (the process between input and output)[46]. As it 
is not 100% possible to account for what happens in this black-box, mistrust might 
arise among the clinicians toward the models. Despite different ways of explaining the 
black-box, mathematically and illustratively, it is only possible to give an estimate of 
its process[46].

Secondly, medical education may need to be reorganized in the future to have more 
focus on interpretation and critical evaluation of the results of these new models. The 
medical field has experienced a similar paradigm shift before with the introduction of 
the World Wide Web[47]. This gave patients equal access to knowledge that 
physicians had and doctors went from being the ultimate definitive truth to now 
having to explain how the symptoms and the disease are connected and which 
diagnosis and disease courses are most likely[47]. However, a new organization of the 
medical education in connection with AI may require interdisciplinary involvement 
with, among others, bioinformatics and computer scientists to better equip doctors to 
interpret and critically evaluate the models' output.

Thirdly, larger amounts of data are needed – more than previously accustomed to 
developing these new models. However, the amount of data needed varies 
significantly in relation to the outcome and the methods used and no specific number 
of required data exists. As data is resource demanding, the estimate must be adjusted 
to what is clinically possible. In recent years, cross-border collaborations have been 



Lo B et al. Artificial intelligence in inflammatory bowel disease

AIGE https://www.wjgnet.com 99 August 28, 2021 Volume 2 Issue 4

Table 1 Recommendations for reporting of studies regarding artificial intelligence

Section Requirements
Method

Origin of dataset and description of the acquisition process

Pre-processing methods

Definition of ground truth

Split of data set and should include a training, validation and test set. A clear statement that the test set is not used to tune hyperparameters 
or in the selection of the model

Method and architecture used, whether it is pretrained or not, and what dataset it is pretrained on

Full technical detail should be included in supplementary files

Statement of post-selection analyses and why these are conducted

Results

A complete report of all results including but not restricted to AUC, sensitivity, specificity, accuracy and kappa value for the overall model's 
performance and not for selected tasks

Discussion

Risks of overfitting and bias

Generalisability and cautions to take

Clinical implementation

AUC: Area under the receiver operating characteristic curve.

formed to make large amounts of data available. However, these are rarely freely 
available and the quality must also be critically evaluated when the workflow and 
equipment vary markedly between nations. We, therefore, encourage everyone to 
make their data at least partially accessible - a good example is The HyperKvasir 
dataset[48].

Finally, international reporting standards must be set within the field of IBD 
regarding AI studies. AI is still a relatively unexploited territory within IBD. This has 
led to great variation in the way the studies report both their methods and results, 
despite several calls for uniformity[49]. A good example is the endoscopic evaluation 
of disease severity in UC patients. Often, only AUC is reported, which can be 
misleading as sensitivity, specificity and accuracy may be only modest[25]. This is due 
to the fact that the AUC is a measure of how well the true positive can be separated 
from the rest, while measures of e.g., accuracy hint at the actual performance of the 
models. Even when the studies report the wanted parameters, the reporting method 
can vary. For example, calculating the sensitivity, specificity and accuracy for each 
class rather than reporting the overall sensitivity, specificity and accuracy for the entire 
index. We, therefore, encourage that future articles as a minimum must report the 
information and parameters described in Table 1.

In addition, international journals should set standards for what is required of 
future AI studies within the field. The use of previous reporting methods, e.g., STARD 
guidelines, seems outdated and should be updated to the new technological reality
[50].

CONCLUSION
AI is on the rise in IBD. Endoscopic evaluation is so far the most studied modality with 
promising results. Studies with others or the combination of several modalities have 
been carried out with moderate results leaving room for future research. Data 
availability and standardization of the reporting of these new models seem to be the 
biggest challenges for the AI's breakthrough within IBD. International consensus in the 
field is required to optimize research in AI.
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Abstract
Pancreaticoduodenectomy (PD) is a complex operation accompanied by 
significant morbidity rates. Due to this complexity, the transition to minimally 
invasive PD has lagged behind other abdominal surgical operations. The safety, 
feasibility, favorable post-operative outcomes of robotic PD have been suggested 
by multiple studies. Compared to open surgery and other minimally invasive 
techniques such as laparoscopy, robotic PD offers satisfactory outcomes, with a 
non-inferior risk of adverse events. Trends of robotic PD have been on rise with 
centers substantially increasing the number the operation performed. Although 
promising, findings on robotic PD need to be corroborated in prospective trials.
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Core Tip: The robotic Whipple procedure is a safe and technically feasible surgical 
operation. Robotic pancreaticoduodenectomy has shown favorable outcomes and is 
currently increasing in widespread implementation. Prospective trials are needed 
before this relatively new approach can be fully adopted as a standard of care in 
patients with pancreatic neoplasms.
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INTRODUCTION
Pancreaticoduodenectomy (PD) or Whipple surgery, is a complex procedure 
associated with significant morbidity rates[1]. Due to the complexity of this operation, 
PD’s move to a more minimally invasive approach has lagged behind other general 
surgery procedures[2]. Gagner and Pomp[3], pioneered the laparoscopic PD (LPD) 
back in 1994, but LPD has not successfully transitioned into routine surgical care[3]. 
This is partly due to the difficulty associated with LPD in terms of expertise needed to 
perform the operation and the complexity of teaching the approach. In addition, the 
LEOPARD-2 trial demonstrated that LPD has a higher 90-d mortality as compared to 
the open PD (OPD). This eventually led to the discontinuation of the trial[4].

Robotic PD (RPD), which was first performed by Giulianotti et al[5], was originally 
described in 2001. Later in 2003, the same team published a series of 8 robotic-assisted 
cases[6]. The preliminary results established that RPD is both safe and feasible. Their 
reported mean operative time was around 8 h (490 min) in this case series.

Following these promising results, an increasing number of surgeons started 
utilizing the RPD approach. Different than initial reports of LPD, where some showed 
that LPD does not provide benefit as compared to the open approach, RPD benefits 
and advantages have been reported with increasing rate since its launch[7,8]. 
However, the “Miami International Guideline on Minimally Invasive Pancreas 
Resection” still does not assume minimally invasive PD is equal to OPD due to 
insufficient data[9].

WHAT IS THE ROBOTIC SURGICAL TECHNIQUE AND ITS CHALLENGES? 
Robotic surgery is considered a direct advancement of laparoscopy. The most widely 
utilized surgical system to perform RPD in specific, as well as in other operations, is 
the DaVinci system developed by Intuitive Surgical Incorporated[10]. The robotic 
system provides surgeons increased dexterity employing endo-wristed instruction, 
three-dimensional stereoscopic views of the surgical field, filtering of user tremors, 
and it provides pancreatic surgeons the capability to perform extremely complex 
dissections, sutures, knots and reconstructions with unparalleled precision, 
magnification and accuracy[11,12].

Variations in robotic Whipple techniques exist between pancreatic surgeons. While 
some groups undergo the operation completely robotically, other choose to use a cross 
laparoscopic/robotic approach. Giulianotti et al[5] support a performing the operation 
entirely using the robotic approach, while other groups advocate the “hybrid” 
approach. The hybrid or cross method entails dissecting first using laparoscopy and 
then performing the reconstruction part using the robot[13,14]. At the University of 
Pittsburgh Medical Center, the surgeons employ a robotic exclusive approach, using 
four robotic ports, two assistant and one retractor port as shown in Figure 1. RPD 
follows the same steps as Whipple’s 1935 description[15]. The gastrocolic ligament is 
first dissected to gain access to the lesser sac. Then, the ascending and transverse colon 
are mobilized. This is followed by a complete Kocher maneuver. Transection of the 
jejunum and the stomach (in classic Whipple) are then performed using stapling 
devices. Then, the porta is approached to transect the gastroduodenal artery and the 
hepatic duct. This is followed by transection of the pancreas at the neck and finally 
dissecting the uncinate of the mesenteric vessels. The reconstruction phase includes 
the creation of a pancreaticojejunostomy, followed by hepaticojejunostomy and finally 
a gastrojejunostomy. Finally, a drain is left behind and the port and extraction sites are 
closed.

The challenges facing the introduction of RPD are numerous. First, robotic 
operations are known to still have long operating time as compared to open ones. 
Second, due to the complexity of the robotic approach, there an increased need of 
training (higher learning curve) than the open and other minimally invasive 
techniques (laparoscopic). Third, robotic surgeries carry a high financial burden to 
patients, covering bodies and hospitals. This helps favor the open or laparoscopic 
approach for PD by insuring bodies and patients paying out-of-pocket. Fourth, RPDs 
require high-end infrastructure, which includes larger operating rooms, more technical 
staff present (in case any issues arise), and robotic certification by faculty and trainees. 
Finally, there is an increased difficulty in making prospective randomized trials in 
robotic operations. This issue arises with the decreased apparel/enrollment into 
robotic trials due to patient preference of open or laparoscopic approaches.
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Figure 1 Port placement for robotic pancreaticoduodenectomy. R1: Robotic arm 1; R2: Robotic arm 2; R3: Robotic arm 3; C: Camera; A1: Assistant arm 
1; A2: Assistant arm 2. Camera may be inserted through an 8 mm port in the Xi System. It may be inserted through a 12 mm port in the Si System.

WHAT ARE THE TRENDS AND OUTCOMES OF THE ROBOTIC WHIPPLE 
PROCEDURE?
A recent study exploring the trends of the RPD for pancreatic cancers demonstrated an 
increasing number of RPDs over the past decade. This was accompanied by a greater 
reach of RPD where it may be found in community centers across the US, after being 
present only in a few number of academic medical facilities[16]. Robotic procedures 
increased from 150 operations/year to around 450 operation/year from 2010-2016[16]. 
This is likely owing to an increase in the number of graduates from fellowship 
programs that include robotic pancreas surgery as part of their curriculum, as well as 
greater experience and "retraining" of experienced pancreatic surgeons in the robotic 
approach[17-20].

Overall, the robotic method appears to enhance short-term outcomes over time. 
Between 2010 and 2016, there was a substantial rise in the number of lymph nodes 
harvested (from 18 to 21), as well as a drop in postoperative mortality (from 6.7 
percent to 1.8 percent)[16]. Yan et al[21] found that as compared to open PD, RPD had 
considerably longer operating time, less blood loss, shorter length of stay, and reduced 
infection rates in a recent meta-analysis comprising 2403 patients (788 robotic and 1615 
open). There was no discernible change in lymph node harvesting, reoperation, 
readmission rate, or death rate[21]. Another meta-analysis by Kamarajah et al[22] 
found that RPD had substantially lower conversion and transfusion rates than LPD, 
with 3462 participants (1025 robotic and 2437 Laparoscopic]. RPD had a substantially 
shorter hospital stay after surgery, but there was no significant difference in 
postoperative outcomes or R0 resection rates. Zureikat et al[23] demonstrated that RPD 
was linked with decreased operating time, perioperative blood loss, and postoperative 
pancreatic fistula development in the largest series of RPD comprising 500 robot-
assisted PD. These findings were described early in the group's experience and 
remained low despite growing complexity of cases. Less frequent conversion to open 
was also noted. As for long term outcomes, Nassour et al[24] identified 17831 PD from 
the National Cancer Database, of which 626 were RPDs. The median overall survival 
did not differ between the robotic (22 mo) and open (21.8 mo) approaches. Table 1 
highlights RPD findings from a variety of research. In the hands of skilled surgeons, 
RPD is a relatively safe procedure with excellent perioperative and postoperative 
results.
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Table 1 Outcomes of robotic pancreaticoduodenectomy in selected studies

Ref. n OR time 
(mean in min)

EBL (mean 
in mL)

Conversion 
(%)

R0 
(%)

LN harvest 
(mean)

Fistula 
(%)

Morbidity 
(%)

Mortality 
(%)

LOS (mean 
in days)

Giulianotti et al
[28], 2010 

60 421 394 18.3 82 18 31.6 NR 3.3 22

Narula et al[29], 
2010

5 420 NR 37.5 100 16 0 0 0 9.6

Zhou et al[30], 
2011

8 718 153 0 100 NR 25 NR 0 16.4

Lai et al[31], 2012 20 491.5 247 5 73.3 10 35 50 0 13.7

Chalikonda et al
[32], 2012

30 476 485 10 100 13.2 6.6 30 3 9.8

Bao et al[33], 2014 28 431 100 14 88 15 29 NR 2 7.4

Boone et al[34], 
2015

200 483 250 6.5 92 22 17 67.5 3.3 9

Chen et al[26], 
2015

60 410 400 1.7 97.8 13.6 13.3 35 1.7 20

Boggi et al[35], 
2016

83 527 NR 1.5 NR 37 33.7 73.5 3 17

Nassour et al[36], 
2017

193 399 NR 11.4 NR NR 20.8 54.9 1 8

Jin et al[37], 2020 17 240 100 0 NR 4 59 66.4 NR 15

Mejia et al[38], 
2020

102 352 321 12.7 73 24.2 3.9 31.3 2.9 7

Shi et al[39], 2020 187 279 297 3.7 94 16.6 10.2 35.6 2.1 22.4

Zureikat et al[23], 
2021

500 415 250 5.2 85 28 20.2 68.8 1.8 8

EBL: Estimated blood loss; LN: Lymph node; LOS: Length of stay; NR: Not reported; OR: Operation; R0: Margin negative resection.

WHAT IS THE LEARNING CURVE AND FUTURE OF ROBOTIC WHIPPLE 
PROCEDURE?
The reported learning curves for RPD are currently variable among different 
institutions. The University of Pittsburgh Medical center reported that 80 RPDs would 
be required to optimize operative time, 40 cases for an optimal pancreatic fistula rate 
and 20 cases to improved blood loss and conversion[25]. This was due to the that fact 
the surgeons at the center had no prior training, mentorship, or guidance in the 
technique as the robotics program was implemented in 2008. According to Chen et al
[26], a comparable result can be reached after 40 RPDs. At 40 patients, Zhang et al[27] 
found a comparable learning curve for RPD. The learning curve may be short if 
adequate training and guidance is performed in surgical formative years. A formal 
mastery-based curriculum which integrates complex robotic procedures into practice 
may help in shortening the learning curve.

The future directions of RPD will likely involve the use of robotics in borderline 
resectable or locally advanced pancreatic lesion cases i.e. more surgically complex 
cases. This also includes performing complex vasculature reconstructions using the 
robotic approach. However, in order to develop these surgical techniques, better 
infrastructure, increased training, and more prospective randomized clinical trials are 
required. The first step needed is to prove that RPD is noninferior to the open 
technique in PD with level 1 evidence. This entails increasing the number of 
prospective trials in order to perform meta-analyses and systematic reviews. 
Afterwards, increased funding and training can follow, which will allow for further 
developments of the RPD technique discussed. Additionally, robotic training will need 
to be introduced and integrated early into residency programs (possibly using 
simulation labs) to help with the learning curve of future robotic surgeons.
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CONCLUSION
Current evidence indicates that RPD is a safe and feasible procedure. The robotic 
approach overcomes many of technical challenges associated with the laparoscopic 
Whipple procedure. RPD, in the proper hands, can help patients and surgeons with 
periampullary lesions achieve good results. More prospective clinical trials are still 
needed to verify previously published retrospective research on RPD.
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Abstract
In the last 10 years, surgery has been developing towards minimal invasiveness; 
therefore, robotic surgery represents the consequent evolution of laparoscopic 
surgery. Worldwide, surgeons’ performances have been upgraded by the 
ergonomic developments of robotic systems, leading to several benefits for 
patients. The introduction into the market of the new Da Vinci Xi system has 
made it possible to perform all types of surgery on the colon, an in selected cases, 
to combine interventions in other organs or viscera at the same time. Optimization 
of the suprapubic surgical approach may shorten the length of hospital stay for 
patients who undergo robotic colonic resection. From this perspective, single-port 
robotic colectomy, has reduced the number of robotic ports needed, allowing a 
better anesthetic outcome and faster recovery. The introduction on the market of 
new surgical robotic systems from multiple manufacturers is bound to change the 
landscape of robotic surgery and yield high-quality surgical outcomes.
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Core Tip: Robotic surgery represents the natural evolution of laparoscopic surgery in 
the way to perform less-invasive operations. The robotic system Da Vinci Xi® with its 
technological innovations has made it possible to perform all types of interventions on 
the colon and has yielded large benefits to patients.
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INTRODUCTION
Cancer of the colon and rectum is one of the most common neoplastic diseases 
worldwide and is associated with high mortality rate[1]. Just as laparoscopic surgery 
has progressively replaced laparotomy, robotic surgery is becoming increasingly 
important in the treatment of this type of cancer. The advantages of robotic systems 
have been well known for years. Wrist flexibility, 3D vision and prevention of hand 
tremor enable surgeons to operate in reduced operative fields.

Many technological innovations have been introduced in recent years, such as a 
suprapubic approach, single port techniques and the use of tracers such as 
indocyanine green (used for the research of the sentinel lymph node and to verify 
tissues’ vascularization).

The efficiency and effectiveness of robotic colonic resection have drawn the 
attention of many surgeons. Just as laparoscopic surgery in the late 1990s was 
compared to open surgery in terms of safety and effectiveness, nowadays robot-
assisted surgery is often compared to the laparoscopic approach. From this point of 
view, robotic surgery seems to overcome the limits of laparoscopy. In fact, the proper 
value of the robot can be clearly appreciated in challenging tasks, such as performing 
intra-abdominal anastomoses in a restricted space, or in low pelvic dissection[2].

Although early results seem to encourage robot-assisted surgery, comparative 
studies investigating the effects of laparoscopic versus robotic colonic surgery are still 
ongoing and have not yet provided definitive data[3,4].

ROBOTIC VERSUS LAPAROSCOPY
The indications for robot-assisted and laparoscopic colorectal surgery are the same. 
Relative contraindications are emergency procedures, pneumoperitoneum intolerance 
and massive bleeding.

Comparison between robotic and laparoscopic surgery in terms of advantages and 
disadvantages has been considered a “hot topic” lately. Detractors of robotic surgery 
doubt its effective usefulness, citing the lack of definitive data demonstrating its 
superiority compared to the traditional laparoscopic approach[5] (many have stated 
that it is an “expensive toy” built to entertain surgeons). Nevertheless, increasing data 
about the effectiveness of robot-assisted surgery, in addition to its well-described 
technical advantages, have drawn the attention of surgeons all over the world.

Since the da Vinci System has been approved, an increasing number of robotic 
procedures has been registered worldwide. As a consequence, available data on 
robotics in colorectal surgery have increased greatly. In the international scientific 
literature, single- and multicenter studies, systemic reviews and meta-analyses can be 
easily found, focusing on the evaluation of robotic outcomes[6]. Two National 
Impatient Sample databases of laparoscopic and robotic colectomies[7,8] found no 
significant differences in overall complication rates and length of stay, while 
conversion rates were significantly lower in patients who underwent robotic resection 
(6.3% vs 10.5 %). One large study, based on the American College of Surgeons National 
Surgical Quality Improvement Program database, compared robotic and laparoscopic 
colorectal surgery in more than 11000 patients[9]. Focusing on pelvic surgery, the rate 
of conversion to open approach was lower in the robotic surgery group, while no 
significant differences in conversion rates were found in abdominal surgery. No 
differences were found in rates of wound infection, anastomotic leak, 30-day 
reoperation and 30-day readmission. When robot-assisted surgery was performed, 
mean hospital stay was significantly shorter but operating times were significantly 
longer. The reason for longer operating time is easily imagined. Robotic surgery needs 
longer preparation in terms of patient and arm positioning, moreover, being a new 
technique, the learning curve of the performing surgeon strongly affects the overall 
operating time. In our opinion, this highlights the importance of continued evaluation 
of the advances in robot-assisted surgery compared to more traditional minimally 
invasive techniques.

https://www.wjgnet.com/2689-7164/full/v2/i4/110.htm
https://dx.doi.org/10.37126/aige.v2.i4.110
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A retrospective cohort study of the Michigan Surgical Quality Collaborative registry 
compared robotic versus 2735 laparoscopy-assisted colorectal procedures in 2012–2014
[10]. Conversion rates were lower in robotic surgery, and this was significant for rectal 
resection. Also, hospital stay was significantly shorter in those operated upon with the 
robotic technique. No significant difference in rates of complications were found.

In our opinion, the most meaningful, largest and better-designed study was the 
Robotic Versus Laparoscopic Resection for Rectal Cancer (ROLARR) Trial[11] 
published in 2017. It was an international, multicenter, randomized controlled trial 
(RCT), involving 10 countries and 29 centers. Primary outcome was conversion to 
open procedure when performing total mesorectal excision (TME). Intra- and 
postoperative complications, circumferential resection margin, quality of life, bladder 
and sexual dysfunction and oncological outcomes were considered secondary 
outcomes. The results showed no differences in conversion rates or other secondary 
endpoints, demonstrating that, in expert hands, robotic colonic resection is safe and 
feasible. What deserves to be highlighted is that, once again, robotic surgery did result 
in longer operating time. Only experienced surgeons were included in the study 
(surgeons who performed at least 90 laparoscopic or at least 50 robotic procedures), 
excluding the influence of the learning curve on operating time. Therefore, we can 
conclude that, more likely, robotic operating time is more affected by its longer patient 
preparation, and instrument placement and changing. In our opinion, it is important 
to highlight that conversion rates were lower in the robotic versus laparoscopic surgery 
in men. This suggests that, when it comes to narrower pelvis, robotic surgery could be 
superior to the laparoscopic approach, bringing great benefits to patients. The authors 
concluded that robotic surgery does not confer an advantage in rectal cancer and has 
equivalent outcomes with increased costs (due to the price of robotic instruments and 
components).

A meta-analysis of five RCTs in 2018[12], including ROLARR, by Prete et al[12] 
compared laparoscopic versus robotic resection for rectal cancer. The results 
demonstrated no significant differences in circumferential radial margin positive rate, 
TME grade, postoperative leakage, number of lymph nodes harvested, mortality or 
complication rate. This meta-analysis highlighted that robotic procedures are 
connected to a decreased rate of conversion to open surgery but, at the same time, a 
significant increase in operating time.

Conversion rate is an important outcome that can influence other outcomes. The 
passage from minimally invasive to open surgery can influence postoperative 
complication rates. It can also be the cause of increased costs (due to longer hospital 
stay) and delays in chemotherapy, which can affect 5-year disease-free survival, 
leading to higher recurrence rates[9,13,14].

All the advantages and disadvantages of robotic surgery are summarized in the 
Table 1.

From the analysis of the literature, the following conclusions can be drawn 
regarding the different aspects taken into consideration.

Postoperative days until the first flatus and first oral diet
Robot-assisted colorectal surgery is associated with a shorter time to first flatus and to 
first oral intake[15-17].

Time of operation
The literature shows longer operating time for robotic surgery[15-20]. In most cases, 
the reason is probably related to the early learning phase of the surgeons. We believe 
that after an adequate learning curve, surgical times should be significantly reduced to 
be compared to laparoscopic surgery. Nevertheless, it is easy to imagine that overall 
operating time will be always slightly longer for robotic surgery due to longer time 
needed for patients’ preparation and instrument placement and changing.

Length of hospital stay
The robotic approach had a shorter hospital stay in several studies[19-25].

Mortality (perioperative or 30 d after the operation)
A few studies have demonstrated that mortality rate is significantly reduced in robotic 
surgery[20-26], but, on the contrary, other systematic reviews and meta-analysis have 
not confirmed this result[16,21-23].

Conversion to open surgery
It has been demonstrated that, compared to laparoscopy, robotic surgery is associated 



Tagliabue F et al. Colon cancer robotic surgery

AIGE https://www.wjgnet.com 113 August 28, 2021 Volume 2 Issue 4

Table 1 Advantages and disadvantages of robotic surgery

Advantages Disadvantages

High-resolution 3D view Longer operating times due to patient preparation and positioning and docking 
time

Tool and wrist flexibility (seven degrees of freedom) Lack of tactile sensation and stenic feedback

Elimination of hand tremors High acquisition and maintenance cost

Ergonomic position which benefits the surgeon

Faster learning curve

Dual console and simulation software for training

Integrated table motion

Four trocars visualization with fluorescent/optical systems

Robot-designed tools, like robotic stapler with smart-fire 
technology

with a significantly lower rate of conversion to open surgery. This is more relevant in 
high-risk patients, such as men with a narrow pelvis, obese patients with lower rectal 
tumors, or those undergoing neoadjuvant therapy[13,16-23].

Intraoperative blood loss
In terms of blood loss, some studies have reported significantly lower rates in robotic 
surgery[17,18,20,24].

Anastomotic leakage
As far as we know, no significant differences regarding anastomotic leakage have been 
found in the literature. In our opinion, in the near future the introduction of new 
automatized stapling systems and new robotic technologies will reduce the rate of 
anastomotic leakage.

Resected lymph nodes
No differences have been reported in the number of lymph nodes resected using 
robotic versus laparoscopic surgery, although some studies have shown a higher 
number of harvested lymph nodes in the robotic approach[15].

Sexual and urological outcomes
Considering rectal cancer surgery, recovery of sexual and urological function is faster 
in patients who have undergone a robot-assisted approach compared to laparoscopic 
surgery. In one retrospective cohort study, rates of erectile dysfunction 1 mo after 
surgery were similar in both laparoscopic and robotic groups. However, 1 year after 
complete recovery, physiological functions were completely restored in all sexually 
active patients who underwent robotic resection and only in 43% of patients in the 
laparoscopic group[25-27].

Surgical wound infection
Review articles and clinical trials have not shown any significant difference between 
the robotic and laparoscopic groups for surgical wound infection. There is only one 
systematic review published in 2019 by Ng et al[16] that showed a significant 
difference in favor of the robotic approach. We believe that future technological 
innovation will allow an increasing number of full robotic procedures, and 
consequently, the size of the skin incisions will progressively reduce, therefore 
decreasing surgical wound infections.

Resection margins
Simillis et al[28] in a systematic review and network meta-analysis published in Annals 
of Surgery in 2019[28] demonstrated no significant differences regarding the involved 
resection margins. A study by Nixon et al[29] focusing on high-risk patients 
(preoperative chemoradiotherapy, male sex, tumor < 8 cm from the anal verge, body 
mass index > 30, and previous abdominal surgery) demonstrated that robotic surgery 
is related to higher rates of sphincter preservation, lower conversion rates, lower blood 
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loss and operating time, and consequently it is associated with shorter length of 
hospital stay.

THE PRESENT AND THE FUTURE
With advances in engineering and technology, surgical robots are constantly being 
improved. Exploration of new surgical approaches like the suprapubic approach or 
single port technique is of interest in the surgical field. The suprapubic surgical 
approach refers to a particular robotic technique in which ports used to perform 
colonic resection are placed in a horizontal line in the suprapubic area, and it is usually 
applied in robotic right colectomy. Recently, some authors have demonstrated[30,31] 
that the suprapubic approach has more advantages than the traditional port 
placement, with less console time and shorter hospital stay. Surgeons are attempting to 
reduce the number of ports used for robotic surgery. By reducing the number of 
surgical wounds, they aim to reduce the risk of postoperative wound infections. In this 
light, single port robotic surgery has begun to be performed more often. A systemic 
review[32] revealed that single port robotic surgery for colonic cancer is safe and 
feasible, with acceptable postoperative outcomes. These new changes have demon-
strated promising potential in robotic surgery, in particular in colonic resection.

Until now, the surgical robot market has been monopolized, but it is easy to predict 
that the market for robotic platforms will rapidly grow in the near future as several 
manufactures are investing in the development of new robotic systems. For instance, 
MicroHand S is a robotic system produced in China and has recently entered clinical 
trials. Some studies have reported good performances and encouraging application 
prospects[33,34]. Senhance robotic system (TransEnterix Surgical Inc. Morrisville, NC, 
USA) has been recently introduced in Europe and approved for limited clinical use in 
the USA. Darwich et al[35] and Samalavicius et al[36] reported that procedures 
performed with this robotic system were safe and feasible and the robot could be used 
in general surgery. Versius from Cambridge Medical Robotics Ltd (Cambridge, UK), 
Hugo RAS from Medtronic Inc. (Dublin, Ireland), Meere Company (South Korea), 
Titan Medical (Toronto ON, Canada) and Virtual Incision (Pleasanton, CA, USA) have 
demonstrated potential in clinical applications. Competition between these new 
surgical robots from different manufacturers will surely change the market, leading to 
a reduction in costs with increased benefits for patients.

CONCLUSION
Robotic surgery offers a new minimally invasive approach in complex procedures or 
in anatomical areas that are difficult to reach. Robot-assisted procedures are not easier 
to perform, but robotic technology can make hard tasks feasible for less-experienced 
surgeons. In our opinion, robotic surgery could be considered the best option for rectal 
cancer surgical treatment, especially when compared to more traditional approaches 
(laparoscopic, open or transanal), since it offers the best combination of oncological, 
functional and patient recovery outcomes. Furthermore, the development of new 
approaches, like suprapubic and single port techniques, and the use of new devices, 
like the robotic stapler or vessels and lymph nodes tracers, will allow us to reach better 
results in oncological and clinical terms. The introduction of new surgical robots from 
multiple different suppliers will reduce their cost, leading to the widespread of the 
robot-assisted approach for colonic resection.
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software systems being approved by both Europe and United States. This paper 
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ations towards the development of a real-time, clinical implementable, 
interpretable and robust diagnosis support systems.
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Core Tip: Precancerous changes in the lining of the oesophagus are easily missed 
during endoscopy as these lesions usually grow flat with only subtle change in colour, 
surface pattern and microvessel structure. Many factors impair the quality of 
endoscopy and subsequently the early detection of oesophageal cancer. Artificial 
intelligence (AI) solutions provide independence from the skills and experience of the 
operator in lesion recognition. Recent developments have introduced promising AI 
systems that will support the clinician in recognising, delineating and classifying 
precancerous and early cancerous changes during the endoscopy of the oesophagus in 
real-time.
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INTRODUCTION
AI is the artificial intelligence exhibited by computer machines, which is in opposition 
to the natural intelligence that is displayed by human being, including consciousness 
and emotionality. With the advances on both computer hardware and software 
technology, at present, we are able to model about 600 K neurons and their interlaced 
connections, leading to processing over 100 million parameters. Since the human brain 
contains about 100 billion neurons[1], there is still a long way to go to before AI 
models are close enough to a human brain. Hence machine learning (ML) techniques 
are developed to perform task specific modelling that is in part supervised by human. 
While this supervised ML process is transparent and understandable, the human’s 
ability to comprehend large amounts of parameters, e.g., in millions, is limited, from a 
calculation point of view. Hence the application areas are restricted by employing 
semi- or fully supervised ML approaches. More recently, propelled by the advances of 
computer hardware, including large memory and graphics processing unit (GPU), task 
specific learning by computer itself, i.e., deep learning (DL), is realised, forming one of 
the most promising AI branches under the ML umbrella.

DL first made the headline when DL based computer program, AlphaGo, won the 
competition when playing board game Go with human players[2]. Since then, it has 
shown that nearly all winners in major competitions apply DL led methodologies, 
achieving state-of-the-art (SOTA) performance in nearly every domain, including 
natural language translation and image segmentation and classification. For example, 
the competition organised by Kaggle on detection of diabetics based on retinopathy 
has been won by DL based approach by a large margin in comparison with the other 
methods. While DL oriented methods have become a mainstream choice of meth-
odology, there are advantaged and disadvantages, especially in the medical field. For 
example, a DL-based approach requires large amount of training datasets, better in 
millions, which is hardly met in medical domains. In addition, the training in deep 
layers demands higher computational power, leading to real-time processing a great 
challenge.

Hence this paper aims to review the latest development of application of AI to 
endoscopy realm and is organised below. Section 2 details the SOTA DL techniques 
and their application to medical domains. Section 3 explores the challenges facing 
early detection of oesophageal diseases from endoscopy and current solutions of 
computer aided systems. Section 4 points out future directions in achieving accurate 
diagnosis of oesophageal diseases with summaries provided in conclusion.

STATE OF THE ART DL TECHNIQUE AND ITS APPLICATION TO MEDICAL 
FIELD
DL neural networks refer to a class of computing algorithms that can learn a hierarchy 
of features by establishing high-level attributes from low-level ones. One of the most 
popular models remains the convolutional neural network (CNN)[3], which comprises 
several (deep) layers of processing involving learnable operators (both linear and non-
linear), by automating the process of constructing discriminative information from 
learning hierarchies. In addition, recent advances in computer hardware technology (
e.g., the GPU) have propagated the implementation of CNNs in studying images. 
Usually, training a DL system to perform a task, e.g., classification, employs an arch-
itecture in an end-to-end training fashion. As a result, by input of a raw datum, the 
trained system will output a classification label. The training activity takes place by 
processing the input data with known annotations (labels, or segmented regions) with 
a goal to establish a model to differentiate these annotated labels/region automatically 
by fine-tuning the relationship between parameters without the intervention of 
humans.

Conventionally, training a DL model requires large datasets and substantial training 
time. For example, the pre-trained CNN classifier, AlexNet[4], is built upon 7 Layers, 
simulating 500000 (K) neurons with 60 million (M) parameters and 630 M connections, 
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and trained on a subset (1.2 M with 1 K categories) of ImageNet with 15 M 2D images 
of 22 K categories, taking up 16 d on a CPU and 1.6 d on a GPU. Usually, more data 
will lead to more accurate systems. In the development of electric cars of Tesla’s 
Autopilot, the training takes place with more than 780 million miles[5] whereas for 
playing AlphaGo[6] game using a computer, the training employed more than 100 
million games.

DL-oriented approaches have recently been applied to medical images in a range of 
domains and achieved SOTA results. Although some doubt on DL has been casted on 
the ‘black box’ status while training without the embedding of human’s knowledge in 
the middle stages (e.g., hidden layers) apart from the initial input of labelled datasets, 
the performance of AI-led approached has been widely recognised, which is evidenced 
by the approval of medical devices by authorities. Between the year 2015 and 2020, 124 
(about 15%) medical devices (mainly software) that are AL/ML/DL-based have been 
approved in Europe with Conformité Européene -marked and United States Food and 
Drug administration agency[7], highlighting the importance of AI/ML to the medical 
field, including an imaging system that uses algorithms to give diagnostic information 
for skin cancer and a smart electrocardiogram device that estimates the probability of a 
heart attack[8]. Table 1 summaries the recent achievements of DL-oriented approaches 
in medical domains.

Recently, AI or more specific DL-based approaches have won a number of compet-
itions including the Kaggle competition on detection of diabetic retinopathy, 
segmentation of brain tumors from MRI images[9], analysis of severity of tuberculosis 
(TB) from high resolution 3D CT images in Image CLEFmed Competition[10] and 
detection of endoscopic artefacts from endoscopy video images in EAD2019[11] and 
EAD2020[12].

While applying AI/ML/DL approaches in medical domain, there are several 
challenges in need of responding. Firstly, in the medical domain, the number of 
datasets is limited, usually in hundreds whereas in other application, e.g., self-driving 
cars, datasets are in millions. Secondly, images are in multiple dimensions ranging 
from 2D to 5D (e.g., a moving heart at a specific location). And thirdly, perhaps the 
most outstanding obstacle is that medical data present subtle changes between normal 
and abnormal demanding the developed systems to be more precise.

Hence progress has been made to allow additional measures to be taken into 
account in order to apply DL techniques in medical fields. For example, for classi-
fication of 3D echocardiographic video images[13], a fused CNN architecture is 
established to incorporate both unsupervised CNN and hand-crafted features. For 
classification of 3D CT brain images[14], integration of both 2D and 3D CNN networks 
is in place. In addition, patch-based DL technique is designed to analyse 3D CT images 
for classification of TB types and analysis of multiple drug resistance[15,16] to 
overcome the sparse presence of diseased regions (< 10%). Another way to address 
small dataset issue is to employ transfer ML technique that is frequently implemented 
whereby a model developed built upon one dataset (e.g., ImageNet) for a specific task 
is reused as a starting point for a model on a different task with completely different 
datasets [e.g., coronavirus disease 2019 (COVID-19) computed tomography (CT) 
images]. Subsequently, most currently developed learning systems commence with a 
pre-trained model, such as VGG16[17] that is pre-trained on ImageNet datasets to 
extract initial feature maps that are then retrained to fit the new datasets and new 
tasks[18], capitalising on the accuracy a pre-trained model sustaining whilst saving 
considerable training times.

More recently, these AI techniques have been applied to predict COVID-19 virus 
and have demonstrated significant performance. With regard to medical images for 
diagnosis of COVID-19, CT and chest X-ray (CXR) represent the most common 
imaging tools. For 3D CT images, attention-based DL networks have shown effect-
iveness in classifying COVID-19 from normal subjects[19,20]. In relation to CXR, 
patch-based CNN is applied to study chest x-ray images[21] and to differentiate 
discriminatory features of COVID-19. In addition, COVID-Net[22], one of the pioneer 
studies, classifies COVID-19 from normal and pneumonia diseases through the 
application of a tailored DL network. To overcome the shortage of datasets, a number 
of researchers[23] apply generative adversarial neural network (GAN) to augment 
data first and subsequently to classify COVID-19.

In this paper, the application of AI/ML/DL techniques is exploited to endoscopy 
video images.
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Table 1 Examples of deep learning-based approaches in application of medical tasks

Ref. Medical domain Tasks

Muehlematter et al[7] Skin Diagnosis of skin cancer

United States Food and Drug Administration[8] Electrocardiogram Detection of heart attack

Pereira et al[9] Retinopathy Detection of diabetics

Gao et al[10] Pulmonary CT 
images

Detection of tuberculosis types and severity

Sharib et al[11], Ali et al[12] Endoscopy Detection of artefact.

Gao et al[14] CT Brain images Classification of Alzheimer’s disease

Gao et al[15,16] Pulmonary CT 
images

Analysis of multi-drug resistance

Gao et al[13] Ultrasound Classification of 3D echocardiographic video images

Wang et al[19], Ouyang et al[20] Chest CT Diagnosis of COVID-19

Oh et al[21], Wang et al[22], Waheed et al[23] Chest X-Ray Diagnosis of COVID-19

Everson et al[33], Horie et al[34], Ghatwary et al[35], Ohmori et 
al[38]

Endoscopy Still image based cancer detection for 2 classes (normal vs 
abnormal)

de Groof et al[32], Everson et al[35], He et al[41], Guo et al[42] Endoscopy Video detection of SCC in real time

Gao et al[44], Tomita et al[45] Endoscopy Explainable AI for early detection of SCC

CT: Computed tomography; AI: Artificial intelligence; SCC: Squamous cell cancer; COVID-19: Coronavirus disease 2019.

ENDOSCOPY FOR DIAGNOSIS OF OESOPHAGEAL DISEASES
The oesophagus is the muscular tube that carries food and liquids from mouth to the 
stomach. The symptoms of oesophageal disorders include chest or back pain or having 
trouble swallowing. The most common problem with the oesophagus is gastroeso-
phageal reflux disease which occurs when stomach contents frequently leak back, or 
reflux, into the oesophagus. The acidity of the fluids can irritate the lining of the 
oesophagus. Treatment of these disorders depends on the problem. Some problems get 
better with over-the-counter medicines or changes in diet. Others may need prescribed 
medicines or surgery.

As the 8th most common cancer worldwide[24], one of the most serious problems 
with regard to oesophagus is oesophageal cancer that constitutes the 6th leading cause 
of cancer-related death[25]. The main cancer types include adenocarcinoma and 
squamous cell carcinoma cancer (SCC). Globally, about 87% of all oesophageal cancers 
are in the form of SCC. The highest incidence rates often take place in Asia, the Middle 
East and Africa[26,27]. Early oesophageal cancer usually does not cause symptoms. At 
later stage, the symptoms might include swallowing difficulty, weight loss or 
continuous cough. Diagnosis of oesophageal cancer relies on imaging test, an upper 
endoscopy, and a biopsy.

Optical endoscopy or endoscopy is the primary diagnostic and therapeutic tool for 
management of gastrointestinal malignancies, in particular oesophagus cancers. As 
illustrated in Figure 1A, to perform an endoscopy procedure of monitoring oesopha-
gus, an endoscopic camera along with a lighting inspection is inserted into the food 
pipe of the patient in concern, whereby the appearance inside the oesophageal tube in 
the form of video images can be visualised on a computer monitor that is linked to the 
camera image processing system, which is depicted in Figure 1B.

While Figure 1 presents the surface of oesophageal walls, it also shows the artefact 
in a number of frames. This is because the movements of the inserted camera is 
confined within the limited space of the food pipe. The most common artefacts include 
colour misalignment (C), burry (B), saturation (S), and device (D) as demonstrated in 
Figure 1B.

Challenges for detecting oesophageal squamous cancer
Commonly the five-year survival rate of oesophagus cancer is less than 20% as 
reported in[28]. However, this rate can be improved significantly to more than 90% if 
the cancer is detected in its early stages due to the fact that at this early stage, 
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Figure 1 The endoscopy procedure. A: The oesophagus camera; B: A montage display of a clip of an endoscopic video including narrow-band imaging and 
conventional white light endoscopy (e.g., top 2 rows). C: Colour misalignment; S: Saturation; B: Blurry; D: Device.

oesophageal cancer can be treated endoscopically[29], e.g., by removing diseased 
tissues or administrating (spraying) treatment drugs. The challenge lies here is that 
precancerous stages (dysplasia in the oesophageal squamous epithelium) and early 
stages of SCC display subtle changes in appearance (e.g., colour, surface structure) and 
in microvasculature, which therefore are easily missed at the time of conventional 
white light endoscopy (WLE) as illustrated in Figure 2A-D. To overcome this 
shortcoming while viewing WLE images, narrow-band imaging (NBI) can be turned 
on to display only two wavelengths [415 nm (blue) and 540 nm (green)] (Figure 2E-G) 
to improve the visibility of those suspected lesions by filtering out the rest of colour 
bands. Another approach is dye-based chromoendoscopy, i.e. Lugol’s staining 
technique, which highlights dysplastic abnormalities by spraying iodine[30] 
(Figure 2H).

While NBI technique improves the visibility of the vascular network and surface 
structure, it mainly facilitates the detection of unique vascular and pit pattern 
morphology that are present in neoplastic lesions[31], whereas precancerous stages 
can take a variety of forms. With the Lugol’s staining approach, many patients react 
uncomfortably to the spray.

It is therefore of clinical priority to have a computer assisted system to help 
clinicians to detect and highlight those potential suspected regions for further examin-
ations. Currently, a number of promising results for computer-aided recognition of 
early neoplastic oesophageal lesions from endoscopic have been achieved based still 
images[32,33]. However, fewer less algorithms are applicable to real-time endoscopy 
to allow computer-aided decision-making during endoscopy at the point of 
examination. In addition, most of the existing studies focus mainly on the classification 
of endoscopic images between normal and abnormal stages with little work providing 
bounding boxes of the suspicious regions (detection) and delineating (segmentation).

Following challenges have been identified for the development of computerised 
algorithms for early detection of oesophageal cancers, which are inconspicuous 
changes on oesophageal surfaces artefacts of video images due to movement of 
endoscopic camera entering the food pipe limited time for patients undergoing each 
session of endoscopic procedure (about 20min) to minimise discomfort and 
invasiveness real time processing of video images to be in time to prompt endoscopist 
collecting biopsy samples while undertaking endoscopy limited datasets to train DL 
systems multiple modalities, including WLE, NBI and Lugol’s multiple classes, 
including LD, GD, SCC, normal, and artefact.
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Figure 2 Examples of endoscopic images where green and blue masks refer to low and high grade dysplasia respectively and red for 
squamous cell cancer. A-D: White light endoscopy; E-G: Narrow band imaging; H: Lugol’s. Mask colours: Green = low grade dysplasia; Blue = high grade 
dysplasia; Red = Squamous cell cancer.

Progress on the development of AI-based computer assisted supporting system for 
early detection of SCC
Progress on diagnosis of oesophageal cancer through the application of AI has been 
made by several research teams, mainly focusing on three directions, classification of 
abnormal from normal images, classification taking into consideration of processing 
speed, and detection of artefacts.

AI-based classification
Horie et al[34] conducted research to distinguish oesophageal cancers from non-cancer 
patients with an aim to reproduce diagnostic accuracy. While applying conventional 
CNN architecture to classify two classes, the researchers have achieved 98% sensitivity 
for cancer detection. In the study conducted by Ghatwary et al[35], researchers have 
evaluated several SOTA CNN approaches aiming to achieve early detection of SCC 
from high-definition WLE (HD-WLE) images and come to the conclusion that the 
approaches of single shot detection[36] and Faster R-CNN[37] perform better. They 
use one image modality of WLE. Again, two classes are investigated in their study, i.e., 
cancerous and normal regions. While these studies demonstrate high accuracy of 
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classification, the main focus of those research remains on the binary classification 
distinguishing abnormal from normal. Similarly, in the study by Ohmori et al[38], 
while the authors studied oesophageal lesions on several imaging modes including 
blue-laser images, only two classes of either cancer or non-cancer are classified by 
employing a deep neural network. For detection of any potential suspected regions 
regardless how small they are, segmentation of abnormal regions also plays a key role 
in supporting clinical decisions.

Classification with near real-time processing
In addition, in order to assist clinicians in early diagnosis during endoscopic 
procedures, real-time processing of videos, i.e., with processing speed of 24+ frames 
per second (fps) or at most 41 milliseconds (ms) per frame, should be realised. Everson 
et al[33] have achieved inference time between 26 to 37ms for an image of 696 × 308 
pixels. The work conducted by de Groof et al[32] requires 240ms to process each frame 
(i.e., 4.16 fps). For processing a video clip, frame processing and video playing back 
times all need to be considered to allow processed frames being played back 
seamlessly.

In order to ensure lesion detection takes place in time while patients undertaking 
endoscopy procedure, processing speed constitutes one of the key elements. Hence, 
comparisons are made to devalue the processing speed when detecting, classifying, 
and delineating multi-class (LD, HD, SCC) on multi-modality images (WLE, NBI, 
Lugol’s)[39] employing DL architectures of YOLOv3[40] and mask-CNN[41]. In this 
study by applying YOLOv3, the average processing time is in the range of 0.064-0.101 
s per frame, which leads to 10-15 frames per second while processing frames of 
endoscopic videos with a resolution of 1920 × 1080 pixels. This work was conducted 
under Windows 10 operating system with 1 GPU (GeForce GTX 1060). The averaged 
accuracies for classification and detection can be realised to 85% and 74% respectively. 
Since YOLOv3 only provides bounding boxes without masks, the approach of mask-
RCNN is utilised to delineate lesioned regions, producing classification, segmentation 
(masks) and bounding boxes. As a result, mask-RCNN achieves better detection result 
(i.e., bounding box) with 77% accuracy whereas the classification accuracy is similar to 
that obtained using YOLOYv3 with 84%. However, the processing speed applying 
mask-RCNN appears to be more than 10 times slower with an average of 1.2 s per 
frame, which is mainly stemmed from the time spent on the creation of masks. For the 
segmentation while employing mask-RCNN, the accuracy retains 63% measured on 
the overlapping regions between predicted and ground truth regions.

More recently, a research group by Guo et al[42] has developed a CAD system to aid 
decision making for early diagnosis of precancerous lesions. Their system can realise 
video processing time at 25 frames per second while applying narrow band images 
(NBI) that present clearer lesion structures than WLE. It appears that only one 
detection is identified for each frame, hence the study does not support localisation by 
bounding boxes.

Artefact detection
Due to the confined space to film the oesophageal tube, a number of artefacts are 
present, which not only hamper clinician’s visual interpretation but also mislead 
training AI-based systems. Therefore, endoscopic artefact detection challenges were 
organised in 2019 (EAD2019)[11] and 2020 (EAD2020)[12] aiming to find solutions to 
these challenges. As expected, all top performant teams apply DL-based approaches to 
detect (bounding box), classify and segment artefacts including bubbles, saturation, 
blurry and artefacts[43].

FUTURE WORK
While significant progress has been made towards development of AI-enhanced 
systems to support clinicians’ diagnosis, especially for early detection of oesophageal 
cancer, there is a still a considerable distance to go to benefit clinical diagnosis and to 
equip these assistant systems in an operative room. The following recommendations 
might shed light on future research directions.

Firstly, detection should be based on multi-classes, especially early onset lesions 
should be included. This is because most of the currently developed systems work on 
binary classifications between cancer and normal whereas cancers present most distin-
guishable visual features. At present, in 1 in 4 patients, the diagnosis of early stage 
oesophageal cancer is missed in their first visit[30]. Hence more work should emphasis 
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on the detection of early onset of SCC. Only in this way can patients’ 5-year survival 
rates be increased to 90% from current 20%.

In addition, to circumvent data shortage, conventional data augmentation 
techniques appear to increase system accuracy by cropping, colour shifting, resizing 
and rotating. Due to the subtle change of early stages of SCC, data augmentation by 
inclusion of fake datasets generated by employing generative adversarial DL networks 
(GAN) appear to decrease the performance in this regard. Furthermore, when training 
with data that include samples with artefact, data augmentation with colour shifting 
also tend to hamper the system performance. Computational spectral imaging appears 
to benefit in this regard.

Secondly, to increase the wide acceptance by clinicians, the developed systems 
should be explainable and interpretable to a certain degree. For example, case-based 
reasoning[44] or attention-based modelling[45] are a way forward.

Lastly, real-time process should be achieved before the developed systems can make 
any real impact. This is because a collection of biopsy takes place only during the time 
of endoscopy. If those suspicious regions are overlooked, the patients in concern will 
miss the chances of correct diagnosis and appropriate treatment.

CONCLUSION
In conclusion, this paper overviews the current development of AI-based computer 
assisted systems for supporting early diagnosis of oesophageal cancers and proposes 
several future directions, expediting the clinical implementation and hence benefiting 
both patient and clinician communities.
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Abstract
Each year, hepatocellular carcinoma is diagnosed in more than half a million 
people worldwide. It is the fifth most common cancer in men and the seventh 
most common cancer in women. Its diagnosis is currently made using imaging 
techniques, such as computed tomography and magnetic resonance imaging. For 
most cirrhotic patients, these methods are enough for diagnosis, foregoing the 
necessity of a liver biopsy. In order to improve outcomes and bypass obstacles, 
many companies and clinical centers have been trying to develop deep learning 
systems that could be able to diagnose and classify liver nodules in the cirrhotic 
liver, in which the neural networks are one of the most efficient approaches to 
accurately diagnose liver nodules. Despite the advances in deep learning systems 
for the diagnosis of imaging techniques, there are many issues that need better 
development in order to make such technologies more useful in daily practice.
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cirrhotic liver. Neural networks have become one of the most efficient approaches to 
accurately diagnose liver nodules using deep learning systems. Therefore, with the 
improvement of these techniques in the long term, they could be applicable in daily 
practice, modifying outcomes.
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INTRODUCTION
Each year, hepatocellular carcinoma (HCC) is diagnosed in more than half a million 
people worldwide, and it is the fifth most common cancer in men and the seventh 
most common cancer in women[1]. The greatest burden of this disease is in developing 
countries, such as Southeast Asia and Sub-Saharan Africa, where hepatitis B is 
endemic[2,3].

The incidence of HCC has been rising, unlike many other types of neoplasms[4]. 
This is expected to change, as the worldwide incidence of viral hepatitis B and C is 
expected to subdue in the next generation via vaccination and treatment, respectively. 
Nevertheless, the acute rise in the prevalence of nonalcoholic steatohepatitis in the last 
couple of decades might become a key risk factor for HCC and could become solely 
responsible for sustaining its incidence, both in the Western and Eastern population[5,
6].

Therefore, understanding the diagnostic and therapeutic approaches to this disease 
is essential, especially if we keep in mind the quintessential basics of prevention and 
early detection to improve results[7,8].

DIAGNOSIS OF HCC
HCC diagnosis is currently made using imaging techniques, such as computed 
tomography and magnetic resonance imaging (MRI). For most cirrhotic patients, these 
methods are enough for diagnosis, foregoing the necessity of a liver biopsy[9-11]. 
Nevertheless, the precise diagnosis of a liver nodule via imaging techniques is a rather 
challenging task, requiring a highly trained and specialized multidisciplinary team of 
radiologists, hepatologists and oncologists.

In order to facilitate communication between professionals of such a team, a system 
for reporting imaging of liver nodules has been developed and adopted world-
wide–the Liver Imaging Reporting And Data System (LI-RADS)[12]. The LI-RADS 
classification[13] can be found in Table 1. Although this was an attempt into standard-
ization, a high discordance rate among radiologists has been described[14]. Inter-rater 
reliability has varied greatly in studies, with Cohen’s kappa coefficients ranging from 
0.35 to 0.73[15-19]. This is expected, since this classification requires high-quality 
imaging and radiologists with vast experience[19,20]. Another very important 
argument is that where HCC incidence is higher (developing countries), highly 
specialized radiologists are scarcest despite a high volume of patients[21]. In order to 
improve outcomes and bypass these obstacles, many companies and clinical centers 
have been trying to develop deep learning systems (DLS) intended to accurately 
diagnose liver nodules in the cirrhotic liver[22].

DLS AND HCC
There are many DLS approaches available in the literature, where neural networks are 
gaining much attention currently as one of the best approaches to accurately diagnose 
liver nodules. Particularly, a DLS based on convolutional neural networks (CNN) 
could achieve such capacities after machine learning (ML) by using examples of 
images with and without the disease in question[8]. Unlike other DLS, CNN does not 
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Table 1 Liver imaging reporting and data system classification[13]

Category Description

LR-1 Definitely benign

LR-2 Probably benign

LR-3 Intermediate probability of HCC

LR-4 High probability of HCC, not 100%

LR-5 Definitely HCC

LR-5V Definite venous invasion regardless of other imaging features 

LR treated LR-5 lesion status post-locoregional treatment

LR-M Non-HCC malignancies that may occur in cirrhosis: metastases, lymphoma, cholangiocarcinoma, PTLD

HCC: Hepatocellular carcinoma; PTLD: Post-transplant lymphoproliferative disorder.

demand a clear definition of the lesion in order to interpret the images[23], which 
might lead to discovery of additional differential characteristics that are not currently 
known by radiologists[24]. Table 2 summarizes the main characteristics about the 
studies in diagnosis of liver tumors with images and clinical data using DLS.

There are several DLS applied in the recognition of image patterns[25,26], from 
which CNN-based approaches have achieved the highest performance[25]. While 
conventional deep learning algorithms require specific features to be extracted from 
images before the learning process, the application of CNNs requires rather a simpler 
feature representation based on the original image pixel intensities, also allowing to 
use all available image information in the learning process[27]. Moreover, CNNs can 
process extracted image features by several convolution filters, which allow analysis of 
the image at different granularities. Therefore, CNN is one of the most advanced 
techniques for artificial intelligence[25], which has been implemented with success for 
imaging and clinical interpretation in many medical fields. For example, CNN has 
been validated to identify liver tumors[28], the prognosis of esophageal variceal 
bleeding in cirrhotic patients[29], to predict the mortality of liver transplantation[30,
31], to predict the prognosis of HCC[32-37] Helicobacter pylori infection[38], colonic 
polyps[39], to help classify mammary cancer, head and neck cancer and gliomas[36] 
and to focal liver disease detection[40].

In the topic of liver tumors, many studies have shown that CNNs performed the 
same or better when compared to experienced radiologists. Hamm et al[8] developed 
and validated a CNN that classified six types of common hepatic lesions on multi-
phasic MRI, achieving better sensitivity and specificity when compared to board-
certified radiologists[8]. Nevertheless, this study was developed in only one center, 
using local and typical images, with no external validation. In a follow-up to this 
study, Wang et al[41] used a pre-trained CNN in a model-agonistic approach capable 
of distinguishing among several types of lesions and developed a post-hoc algorithm 
with the purpose of standardizing the lesion features used in the diagnosis. Such a tool 
could interact with other standardized scales, such as LI-RADS, validating auxiliary 
resources and improving clinical practicality[41]. This study found a sensitivity of 
82.9% for adequate identification of imaging characteristics when analyzing lesions 
from a databank. It is expected that this type of DLS that can be transparent regarding 
its steps towards the diagnosis will have better clinical acceptance.

Yamashita et al[14] developed a DLS applied to diagnose liver carcinoma by using 
two CNNs: a pre-trained network with an input of triple-phase images (trained with 
transfer learning from other CNNs) and a custom-made network with an input of 
quadruple-phase images (trained from scratch from internal data)[14]. However, by 
using external data from other pre-trained CNNs, Zech et al[42] showed that the 
performance of the DLS worsened when compared to CNNs trained with internal 
data, showing that it is not still proved that CNNs trained on X-rays from one hospital 
or one group of hospitals will work equally well at different hospitals. This has also 
been demonstrated for the detection of pneumonia in chest X-rays, where CNN 
performed worse when exposed to external data with a wide range of diseases and 
radiological findings[42]. Besides, such CNNs could be used for the determination of 
LI-RADS category, which has been shown to be possible[14], even from a small data 
set. Nevertheless, external validation seems to be a major obstacle for the dissem-
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Table 2 Main characteristics of the studies that evaluate deep learning for liver tumor diagnosis throughout images or clinical data

Ref. Country Deep learning 
method Accuracy Sensitivity Specificity AUROC

DLS 
performance 
compared 

Multicenter 
validation Conclusion

Hamm et 
al[8], 2019

United 
States

Proof-of-concept 
validation CNN

92% 92% 98% 0.992 Better than 
radiologists

Not done DLS was feasibility 
for classifying lesions 
with typical imaging 
features from six 
common hepatic 
lesion types

Yamashita 
et al[14], 
2020

United 
States

CNN 
architectures: 
custom-made 
network and 
transfer learning-
based network

60.4% NA NA LR-1/2: 
0.85. LR-3: 
0.90. LR-4: 
0.63. LR-5: 
0.82

Transfer 
learning model 
was better

Performed There is a feasibility 
of CNN for assigning 
LI-RADS categories 
from a relatively 
small dataset but 
highlights the 
challenges of model 
development and 
validation

Shi et al
[23], 2020

China Three CDNs Model-A: 
83.3%, B: 
81.1%, C: 
85.6% 

NA NA Model-A: 
0.925; B: 
0.862; C: 
0.920

Three model 
compared, A 
and C with 
better results

Not done Three-phase CT 
protocol without 
precontrast showed 
similar diagnosis 
accuracy as four-
phase protocol in 
differentiating HCC. 
It can reduce the 
radiation dose

Yasaka et 
al[25], 2018

Japan CNN 84% Category1: 
A: 71%; B: 
33%; C: 94%; 
D: 90%; E: 
100%

NA 0.92 Not applicable Not done Deep learning with 
CNN showed high 
diagnostic 
performance in 
differentiation of 
liver masses at 
dynamic CT

Trivizakis 
et al[28], 
2019

Greece 3D and 2D CNN 83% 93% 67% 0.80 Superior 
compared with 
2D CNN model

Not done 3D CNN architecture 
can bring significant 
benefit in DW-MRI 
liver discrimination 
and potentially in 
numerous other 
tissue classification 
problems based on 
tomographic data, 
especially in size-
limited, disease 
specific clinical 
datasets

Wang et al
[41], 2019

United 
States

Proof-of-concept 
“interpretable” 
CNN

88% 82.9% NA NA Not applicable Not done This interpretable 
deep learning system 
demonstrates proof 
of principle for 
illuminating portions 
of a pre-trained deep 
neural network’s 
decision-making, by 
analyzing inner 
layers and 
automatically 
describing features 
contributing to 
predictions

Frid-Adar 
et al[45], 
2018

Israel GANs Classic 
data: 
78.6%. 
Synthetic 
data: 85.7%

Classic data: 
78.6%. 
Synthetic 
data: 85.7%

Classic data: 
88.4%. 
Synthetic 
data: 92.4%

NA Synthetic data 
augmentation 
is better than 
classic data 
augmentation

Not done This approach to 
synthetic data 
augmentation can 
generalize to other 
medical classification 
applications and thus 
support radiologists’ 
efforts to improve 
diagnosis

Wang et al CNN with Clinical Combined The AUC of the Japan NA NA NA Not done
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[47], 2019 clinical data model: 
0.723. 
Model: A: 
0.788; B: 
0.805; C: 
0825.

model C 
present with 
better results 

combined model is 
about 0.825, which is 
much better than the 
models using clinical 
data only or CT 
image only

Sato et al
[48], 2019

Japan Fully connected 
neural network 
with 4 layers of 
neurons using 
only biomarkers, 
gradient boosting 
(non-linear 
model) and 
others

DLS: 
83.54%. 
Gradient 
boosting: 
87.34%

Gradient 
boosting: 
93.27%

Gradient 
boosting: 
75.93%

DLS: 
0.884. 
Gradient 
boosting: 
0.940

Deep learning 
was not the 
optimal 
classifier in the 
current study

Not done The gradient 
boosting model 
reduced the 
misclassification rate 
by about half 
compared with a 
single tumor marker. 
The model can be 
applied to various 
kinds of data and 
thus could 
potentially become a 
translational 
mechanism between 
academic research 
and clinical practice

Naeem et 
al[49], 2020

Pakistan MLP, SVM, RF, 
and J48 using 
ten-fold cross-
validation 

MLP: 99% NA NA MLP: 
0.983. 
SVM: 
0.966. RF: 
0.964. J48: 
0.959

MLP model 
present with 
better results

Radiopaedia 
dataset

Our proposed system 
has the capability to 
verify the results on 
different MRI and CT 
scan databases, 
which could help 
radiologists to 
diagnose liver tumors

1Five categories: A: Classic hepatocellular carcinomas; B: Malignant liver tumors other than classic and early hepatocellular carcinomas; C: Indeterminate 
masses or mass like lesions (including early hepatocellular carcinomas and dysplastic nodules) and rare benign liver masses other than hemangiomas and 
cysts; D: Hemangiomas; E: Cysts. AUC: Area under the curve; AUROC: Area under the receiver operating characteristic curve; CDNs: Convolutional dense 
networks CNN: Convolutional neural network; CT: Computed tomography; DLS: Deep learning system; DW-MRI: Diffusion weighted magnetic resonance 
imaging; GANs: Generative adversarial networks; HCC: Hepatocellular carcinoma; LI-RADS: Liver Imaging Reporting and Data System; LR: LI-RADS; 
MLP: Multiplayer perceptron; MRI: Magnetic resonance imaging; NA: Not available; RF: Random forest; SVM: Support vector machine.

ination of ML tools. There are many devices that produce images, and there are many 
ways to store data from these exams.

When compared to other DLS, another advantage of the use of CNNs is that it can 
improve the diagnosis by using less images for ML, reducing the time of exam and the 
amount of exposure to radiation[23,43,44]. Moreover, by generating additional 
training samples through data augmentation, the liver lesion classification sensitivity 
and accuracy are enhanced whilst less images are required in the ML process[45]. 
Moreover, the sensitivity, specificity, and accuracy can be manually calculated with 
the confusion matrix. In Table 3, we compare the best ML algorithms for classification
[46].

A DLS has been proposed for the prediction of HCC recurrence, using data from 
computed tomography combined with clinical information[47]. The triple layer model 
including imaging studies, clinical data and a filtering of this data has had the better 
performance, with an area under the receiver operating characteristic curve (AUROC) 
of 0.825. This is way more precise than the current tools are. Furthermore, Sato et al[48] 
proposed a ML model for predicting HCC using data obtained during clinical practice
[48]. The AUROC of the optimal hyperparameter, gradient boosting model, involving 
multiple laboratories and tumor markets was 0.940. However, when compared with 
single tumor markers the AUROC to the prediction of HCC for alpha-fetoprotein, des-
gamma-carboxy prothrombin and alpha-fetoprotein-L3 were 0.766, 0.644 and 0.683, 
respectively. Accordingly, a combination of multiple data can provide a reliable 
diagnostic tool.

A preliminary study has attempted to diagnose liver masses using a CNN without 
the aid of a radiologist, achieving a high accuracy to differentiate HCC from benign 
liver masses, achieving an AUROC of 0.92[25]. In another study, a CNN was designed 
to differentiate HCC from metastatic liver masses on MRI, but this time the DLS used a 
3-D representation, with higher accuracy (83.0% of the 3-D model vs 65.2% of the 2-D 
model)[28]. Nevertheless, the authors stressed that more studies with larger databanks 
are needed to verify the accuracy of this method. Besides that, Naeem et al[49] 
performed a hybrid-feature analysis between computed tomography scans and MRI 
for differentiation of liver tumors using DLS. The accuracy of multilayer perceptron 
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Table 3 Best machine learning algorithms for classification[36]

Algorithm Pros Cons

Naïve Bayes 
Classifier

Simple, easy and fast. Not sensitive to irrelevant features. Works great in 
practice. Needs less training data. For both multi-class and binary 
classification. Works with continuous and discrete data

Accepts every feature as independent. This is not always 
the truth

Decision 
Trees

Easy to understand. Easy to generate rules. There are almost no 
hyperparameters to be tuned. Complex decision tree models can be 
significantly simplified by its visualizations

Might suffer from overfitting. Does not easily work with 
nonnumerical data. Low prediction accuracy for a dataset 
in comparison with other algorithms. When there are 
many class labels, calculations can be complex

Support 
Vector 
Machines

Fast algorithm. Effective in high dimensional spaces. Great accuracy. Power 
and flexibility from kernels. Works very well with a clear margin of 
separation. Many applications

Does not perform well with large data sets. Not so simple 
to program. Does not perform so well when the data 
comes with more noise i.e. target classes are overlapping

Random 
Forest 
Classifier

The overfitting problem does not exist. Can be used for feature engineering 
i.e. for identifying the most important features among all available features in 
the training dataset. Runs very well on large databases. Extremely flexible 
and have very high accuracy. No need for preparation of the input data

Complexity. Requires a lot of computational resources. 
Time-consuming. Need to choose the number of trees

KNN 
Algorithm

Simple to understand and easy to implement. Zero to little training time. 
Works easily with multi-class data sets. Has good predictive power. Does 
well in practice

Computationally expensive testing phase. Can have 
skewed class distributions. The accuracy can be decreased 
when it comes to high-dimension data. Needs to define a 
value for the parameter k

KNN: K-nearest neighbors.

model for hepatoblastoma, cyst, hemangioma, hepatocellular adenoma, HCC and 
metastasis were 99.67%, 99.33%, 98.33%, 99.67%, 97.33% and 99.67% respectively[49]. 
This method can be helpful to reduce human error.

Therefore, despite the advances in DLS for the diagnosis of imaging techniques, 
there are many points that need better development in order to become useful and 
common tools in daily practice. These techniques currently require comparison with 
trained radiologists and the application for many databanks with atypical images to 
achieve better results and the use of less radiation for HCC diagnosis.

We previously presented several DLS applied to liver nodule diagnosis; however, 
they are not able to segment the nodule from the liver in the analyzed images. 
Moreover, automatic nodule segmentation in an image is a challenging task since this 
kind of lesion may show a high variability in shape, appearance and localization and is 
dependent on the equipment, contrast, lesion type, lesion stage and so on[50].

There are some liver nodule segmentation methods available in the literature, and in 
one of them[50] a fully convolutional network architecture was adopted to determine 
an approximation for where the nodule was located on the image. This CNN works on 
four resolution levels, learning local and global image features. The final nodule 
segmentation is obtained by using post-processing techniques and a random forest 
classifier, achieving a quality comparable to a human expert.

However, this method uses hand-crafted features that need the supervision of an 
expert. There are also automatic approaches that can segment the nodule[51], where a 
CNN is used for ML. To refine the segmentation results, this method applies 
conditional random fields to eliminate the false segmentation points in the seg-
mentation results, improving accuracy. However, liver nodule segmentation in general 
still needs improvements to achieve a better accuracy and practical applicability. 
Furthermore, it is necessary for more research effort in DLS to at the same time detect 
the tumor in the liver and segment it on the image.

CONCLUSION
In conclusion, the goal of statistical methods is to achieve conclusions about a 
population from data that are collected from a representative sample of that 
population, such as linear and logistic regression. Therefore, the objective is to 
comprehend the associations among variables. However, as reported by Sidey-
Gibbons and Sidey-Gibbons[36], the primary concern about DLS is an accurate 
prediction. Moreover, explaining the relationship between predictors and outcomes 
when the relationship is non-linear is difficult. However, in several DLS as improving 
navigation, translating documents or recognizing objects in videos, understanding the 
relationship between features and outcomes is less important[46]. In summary, 
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enhancement of DLS features will allow more accurate diagnosis in the medical field. 
For future research, we recommend to test deep learning methods in other datasets (
e.g., other hospitals), develop an easy usable interface and introduce the tool in daily 
medical practice.
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Abstract
Capsule endoscopy (CE) is a recently developed diagnostic method for diseases of 
the small bowel that is non-invasive, safe, and highly tolerable. Its role in patients 
with inflammatory bowel disease has been widely validated in suspected and 
established Crohn’s disease (CD) due to its ability to assess superficial lesions not 
detected by cross-sectional imaging and proximal lesions of the small bowel not 
evaluable by ileocolonoscopy. Because CE is a highly sensitive but less specific 
technique, differential diagnoses that can simulate CD must be considered, and its 
interpretation should be supported by other clinical and laboratory indicators. 
The use of validated scoring systems to characterize and estimate lesion severity 
(Lewis score, Capsule Endoscopy Crohn’s Disease Activity Index), as well as the 
standardization of the language used to define the lesions (Delphi Consensus), 
have reduced the interobserver variability in CE reading observed in clinical 
practice, allowing for the optimization of diagnoses and clinical management 
strategies. The appearance of the panenteric CE, the incorporation of artificial 
intelligence, magnetically-guided capsules, and tissue biopsies are elements that 
contribute to CE being a promising, unique diagnostic tool in digestive tract 
diseases.
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Core Tip: Capsule endoscopy (CE) is the non-invasive diagnostic method of choice for 
visualizing the small bowel. Its utility is widely validated in both suspected and 
established Crohn’s disease (CD) due to its high sensitivity for detecting early lesions 
and a high negative predictive value. CE enables estimating the activity and extent of 
disease, establishing prognosis, and evaluating the therapeutic response in patients with 
CD. New technologies, such as the panenteric CE and the recent incorporation of 
artificial intelligence to CE image analysis, render CE an attractive, unique diagnostic 
tool for diseases of the digestive tract in the future.
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INTRODUCTION
Capsule endoscopy (CE) is a non-invasive diagnostic method of increasing 
development in the study of small bowel diseases. Since its appearance in 2000[1], it 
has shown its greatest utility in studying obscure gastrointestinal bleeding, celiac 
disorder, polyposis syndromes, and Crohn’s disease (CD). The role of CE in inflam-
matory bowel disease (IBD), especially in CD, has been extensively investigated in the 
diagnosis of suspected CD and the management of established CD for the evaluation 
of disease severity, extent, and response to treatment[2]. The main advantage of CE 
over ileocolonoscopy is its ability to visualize the mucosa of the proximal small bowel, 
and compared to imaging studies, its ability to detect superficial mucosal ulcerations 
missed on magnetic resonance enterography (MRE)[3] and computed tomography 
enterography[4]. This point is fundamental, considering that studies report that the 
involvement of the small bowel affects up to 66% of patients diagnosed with CD[5], 
corresponding to up to 90% of lesions located in the terminal ileum accessible by 
ileocolonoscopy[6]. Before CE development, the proximal small bowel was examined 
using indirect imaging methods such as radiography, cross-sectional imaging, and 
enteroscopy. Detection of lesions in the proximal small bowel is critical due to the 
implications for managing patients with CD. Jejunal lesions visualized by CE have 
been found in up to 56% of patients with CD, and these are associated with more 
severe disease and more rapid progression[7]. Moreover, the role of CE in ulcerative 
colitis (UC) is not well established because the evidence remains limited. In recent 
years, remarkable advances in CE technology and design, and the recent use of 
artificial intelligence, have improved its diagnostic yield in CD.

This review aims to assess the role of CE in IBD and discusses advances in the field 
and their implications for clinical practice going forward.

DIAGNOSTIC YIELD OF CE IN PATIENTS WITH CD
Studies comparing the diagnostic yield of CE with other diagnostic techniques in 
patients with CD conclude that CE has a high sensitivity[4,8] and a high negative 
predictive value (NPV)[9]. However, the diagnostic accuracy of CE has not been 
determined due to the lack of a gold standard for the diagnosis of CD. A meta-analysis
[8] found that CE had a better diagnostic yield than small bowel radiography [52% vs 
16%; incremental yield (IY) 32%, P < 0.0001, 95% confidence interval (CI) = 16%-48%], 
computed tomography enterography (68 vs 21%; IY 47%, w = 47%, P < 0.00001, 95%CI 
= 31%-63%), and ileocolonoscopy (47 vs 25%; IY 22%, P = 0.009, 95%CI = 5%-39%) in 
unsuspected CD patients. Similarly, in patients with established CD, CE also outper-
formed these diagnostic tests[8]. Furthermore, CE was superior to MRE in detecting 
small bowel lesions in patients with CD, mainly superficial and proximal lesions[10]. 
A subsequent meta-analysis of 13 studies[3] compared the diagnostic performance of 
CE with MRE and small bowel contrast ultrasound imaging for the evaluation of small 
bowel CD. These authors found that the diagnostic yield of CE was similar to MRE 
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[odds ratio (OR) 1.17; 95%CI: 0.83–1.67] and small bowel contrast ultrasound (OR 0.88; 
95%CI: 0.51–1.53) when detecting lesions in the small bowel for both established and 
suspected CD. However, CE was superior to MRE in detecting proximal small bowel 
lesions (OR 2.79; 95%CI: 1.2–6.48).

In a recent study among the pediatric population, CE was as sensitive as MRE in 
identifying inflammatory activity in the terminal ileum and the proximal small bowel; 
however, the distribution of small bowel inflammation was more extensive when 
characterized by CE[11].

In summary, the diagnostic yield of CE is at least similar to MRE for established CD 
in the evaluation of the small bowel. However, the main advantage of CE is the 
detection of the most proximal and superficial lesions missed on MRE. In suspected 
CD, CE is more useful when the ileocolonoscopy results are negative.

DIAGNOSTIC SCORES IN CE
At the moment, there are no established diagnostic criteria for the diagnosis of CD by 
CE. Currently, the Lewis score (LS)[12,13] and Capsule Endoscopy Crohn’s Disease 
Activity Index (CECDAI)[14] are the two validated diagnostic indexes for the 
evaluation of CE images. Their results must be interpreted in the patient’s clinical 
setting because lesions are not pathognomonic for CD and can be found in other 
inflammatory conditions. The LS was the first and most widely used index for 
evaluating inflammatory changes in the mucosa of the small intestine, which is 
divided into three tertiles according to the transit time estimated using CE. Each 
characteristic CD finding (villous edema, ulceration, stenosis) is assigned a score for 
each tertile. The final result of the LS corresponds to the tertile with the highest score, 
in addition to the stenoses score. A score < 135 is considered normal or clinically 
insignificant inflammation; from 135 to 790 indicates mild inflammation; and > 790 
moderate to severe inflammation[12]. The CECDAI evaluates the proximal and distal 
segments of the small bowel using an inflammation score (A; 0–5), an extent score (B; 
0–3), and a stricture score (C; 0–3), which are combined using the formula A × B + C. 
The total score (from 0–26) results from adding both the proximal and distal segments. 
A higher CECDAI score reflects more severe mucosal inflammation[14]. Although 
there is a good correlation between the LS and CECDAI (Pearson’s = 0.81, P = 0.0001)
[15], a recent study of 102 patients with CD found that CECDAI was superior to LS in 
reflecting active intestinal inflammation[16]. Recently, Eliakim et al[17] published the 
Eliakim score, a quantitative measure for PillCamTM Crohn’s with excellent reliability 
that significantly correlates with LS and fecal calprotectin (FC).

CE READING METHOD
So far, manual video review is the method of choice for the detection of lesions in CE. 
However, a fast-reading method is offered by TOP100, a new software tool in RAPID 
Reader version 9.0[18]. TOP100 automatically selects the 100 best images from the 
video with relevant findings, allowing the LS to be calculated quickly. An initial study 
that compared both reading techniques found agreement in 89.6% of cases calculated 
by TOP100 as having LS > 135 and those calculated by manual review of the video. 
Despite these encouraging results, TOP100 should not replace the traditional reading 
method but rather constitutes a complementary tool for quick LS calculation[18].

DESCRIPTION OF LESIONS WITH CE
Although studies have shown the usefulness of CE in identifying small bowel lesions, 
one of the difficulties in IBD studies was the lack of nomenclature and descriptions of 
small bowel lesions. The high interobserver variability in the interpretation and 
evaluation of the severity of the lesions has both clinical and research implications. 
Published in 2005, the Capsule Endoscopy Structured Terminology (CEST)[19] is an 
international consensus on standardized terminology for the findings or lesions 
detected by CE and also contains guidelines for reporting these findings (structure and 
content). However, the description of ulcerative and inflammatory lesions in the CEST 
is ambiguous and limited and, as such, fails to inform clinicians as to which type of 
lesion is most suspicious for the diagnosis of CD. Therefore, the international Delphi 
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consensus statement established seven definitions describing the ulcerative and 
inflammatory lesions seen in CD by CE: aphthoid erosion, deep ulceration, superficial 
ulceration, stenosis, edema, hyperemia, and denudation[20]. The use of a common 
language enables standardizing the results of clinical studies and improves patients’ 
health care (Figure 1).

The use of virtual chromoendoscopy, such as flexible spectral color enhancement 
(FICE), can also be applied in the revision of CE images to improve the visualization of 
any lesions. FICE enhances mucosal surface patterns using software to convert white 
light images to certain ranges of wavelengths (red, blue, green). A systematic review 
and meta-analysis of 13 studies found that the use of FICE failed to significantly 
improve the injury detection rate in CE[21].

RETENTION OF CE
The CE retention rate (not passed in more than two weeks post-ingestion or less if 
endoscopic or surgical intervention is required)[22] in the general population ranges 
from 1.0% to 2.5%[23]. Due to the potential occurrence of stenosis in patients with CD, 
the retention rate in patients with suspected CD is 2.35%, and with established CD is 
up to 4.63%[24]. The risk of EC retention can be estimated with a patency capsule 
(PillcamTM), a capsule with a lactose body, and a barium section for follow-up by 
fluoroscopy. The disintegration that induces deformation of the capsule or non-
expulsion after 30 h suggests small bowel stenosis[23]. The NPV of the patency capsule 
to predict CE retention ranges from 98% to 100%[25,26]. Given the high risk of CE 
retention in patients with established CD, and due to the impossibility of distin-
guishing high from low-risk retention in the clinic, the use of a patency capsule is 
recommended before CE[24].

CE IN IBD: CLINICAL SCENARIOS
The main clinical scenarios for the application of EC for IBD are both suspected and 
established CD. CE studies in UC are limited.

CE and suspected CD
The European Society of Gastrointestinal Endoscopy Clinical Guideline[23] and the 
Clinical practice guidelines for the use of CE[27] recommend the use of CE in patients 
with suspected CD and negative ileocolonoscopy[23,27] and imaging results[27] as a 
diagnostic method for the evaluation of the small bowel, in the absence of obstructive 
symptoms or known stricture.

In a study with 95 patients, CE excluded the diagnosis of CD if the result was 
negative (NPV of 96%). Only 3% of the cases with negative CEs were diagnosed with 
CD after 15 mo of follow-up[9]. Moreover, minor lesions detected by CE may be 
present in more than 10% of healthy subjects[28]. Non-steroidal anti-inflammatory 
drug (NSAID)-induced enteropathy is one of the main differential diagnoses of small 
bowel lesions. In this setting, lesions can appear as early as 2 wk from the onset of 
NSAID therapy[29,30]. Other differential diagnoses include radiation enteritis, 
ischemia, Bechet’s disease, lymphoma, and gastrointestinal infections[30]. Then, the 
interpretation of the findings from CE against suspected CD must be supported for 
other clinical elements due to the impossibility of obtaining tissue samples by CE.

The use of biomarkers as a screening method for intestinal inflammation, such as 
FC, could be useful in patients with suspected CD. FC is a cytosolic protein present in 
neutrophils that is released during inflammation; as such, its elevation in stool samples 
is a good indicator of intestinal inflammation[31]. Although it is highly sensitive, it is 
not specific since its levels can increase in IBD, colon cancer, ischemic colitis, and 
NSAID-induced enteropathy, among others[31]. Although FC has shown higher 
sensitivity and a stronger correlation with inflammatory activity in UC[32], in CD, the 
usefulness of FC is less established[33,34], particularly in the small bowel. However, 
recent studies have shown that FC could be a useful tool for selecting which patients 
should undergo CE for suspected CD when the ileocolonoscopy results are negative 
due to its ability to predict inflammatory activity in CE in patients with suspected CD
[35-37]. Monteiro et al[35] found a moderate positive correlation (r = 0.56, P < 0.0019) 
between FC and the LS. FC > 100 µg/g were correlated with LS > 135 in 89% of 
patients, showing a sensitivity of 78.6%, specificity of 87.9%, positive predictive value 
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Figure 1 Capsule endoscopy findings in Crohn’s disease. A: Deep ulceration; B: Aphthoid erosion (superficial lesion).

of 89.2%, and NPV of 76.3%[35]. Similar findings for FC[27,36,38] and, to a lesser 
degree, for CRP[36,38] were described by other authors. In a subsequent meta-analysis 
of 463 patients from seven studies, FC had a significant diagnostic accuracy in 
detecting small bowel CD, and with FC values < 50 µg/g, the probability of a positive 
diagnosis was very low[39].

Considering the available evidence and due to CE’s ability to diagnose early 
disease, in patients with suspected CD (typical symptoms, elevated fecal and plasma 
biomarkers, anemia, or extraintestinal manifestations of CD), CE should be performed 
even if ileocolonoscopy results are positive due to the need to evaluate proximal 
lesions that could determine prognosis and treatment strategies (Figure 2).

CE in established CD
The American consensus guidelines for the use of CE recommends its use in patients 
with established CD when: (1) Clinical features unexplained by ileocolonoscopy or 
imaging studies are present; (2) The assessment of small bowel mucosal healing (not 
evaluable by ileocolonoscopy) is needed; and (3) Small bowel recurrence of CD after 
colectomy is suspected, undiagnosed by ileocolonoscopy or imaging studies[27]. 
Recently, the European Crohn’s and Colitis Organisation and the European Society of 
Gastrointestinal and Abdominal Radiology guidelines recommend CE along with 
intestinal ultrasound and MRE for initial evaluation and follow-up of established CD
[40] (Figure 3).

CE in patients with CD with unexplained clinical features
The persistence of irritable bowel disease-like symptoms in patients with IBD in 
remission can occur in almost one-third of patients[41,42], being more frequent in 
patients with CD[42]. In a scenario where traditional diagnostics tests (ileocolonoscopy 
and cross-sectional imaging) are normal, CE could play a role in evaluating the small 
bowel to rule out disease activity as the symptom origin. Another clinical scenario is 
the study of persistent anemia in patients with CD in remission.

CE in follow-up and prediction of relapse
Studies have shown that the clinical response to treatment does not correlate with 
mucosal healing in patients with CD of the small bowel evaluated by CE[43]. 
Therefore, objective monitoring of disease activity in the small bowel is necessary. Hall 
et al[43] conducted the first prospective study in 43 patients with CD evaluated with 
CE at baseline and after 52 wk of treatment. The authors found that 90% of the patients 
had an active CD in their small bowel at baseline, yet only 65% at week 52 of 
treatment, with 42% of the patients achieving complete mucosal healing at week 52 (P 
< 0.0001, 95%CI: 0.62-0.22). Stenosis detected by CE was a poor prognostic factor for 
the response to treatment in this study[43]. In a subsequent prospective study in 43 
patients with CD in clinical remission, fecal biomarkers (FC, lactoferrin, and S100A12) 
were good predictors of mucosal healing assessed by CE, proving useful in monitoring 
the CD progression[44]. Finally, a recent prospective observational cohort study 
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Figure 2 Diagnostic algorithm recommended for suspected Crohn’s disease. MRE: Magnetic resonance enterography; CTE: Computed tomography 
enterography; FC: Fecal calprotectin; CRP: C-reactive protein; EIM: Extraintestinal manifestations.

Figure 3 Diagnostic algorithm recommended for established Crohn’s disease. T2T: Treat to target; MRE: Magnetic resonance enterography; CTE: 
Computed tomography enterography; CD: Crohn’s disease; SB: Small bowel.

assessed the ability of MRE, FC, and CE to predict flare-ups in patients with quiescent 
CD. CE predicted both short-term (3 mo) and long-term [24 mo, area under curve 
(AUC) 0.79, 95%CI: 0.66–0.88; P = 0.0001] flares, while FC only predicted short-term 
flares within 3 mo (AUC 0.81, 95%CI: 0.76-0.85), and MRE correlated with 2-year flare 
risk (AUC 0.71, 95%CI: 0.58-0.82; P = 0.024)[45].

CE and post-surgical recurrence of CD
In a recent study, Shiga et al[46] compared the postoperative follow-up for CE in 
patients with CD who underwent intestinal resection with the appearance of clinical 
symptoms for treatment adjustment. In the CE group, 87% residual or recurrent 
lesions were found at the 3rd postoperative month. Adjusted treatment based on EC 
findings revealed a strong protective effect (0.30, 0.10–0.75)[46]. This study did not 
compare the use of CE with ileocolonoscopy in the postoperative follow-up. However, 
it included 37% of small bowel resections not evaluable by ileocolonoscopy. Previous 
studies have shown post-surgical recurrence by CE that was not detected by 
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ileocolonoscopy, which has allowed active treatment in this group of patients[47]. 
Although ileocolonoscopy continues to be the gold standard for the search for 
postoperative recurrence, CE is an excellent complementary tool, if available, that 
improves diagnostic performance in this clinical setting.

CE and “treat to target” in CD
The “treat to target” strategy in CD[48] is based on the regular assessment of disease 
activity by using validated outcome measures and the subsequent adjustment of 
treatment of disease activity, following targets, where the main target is mucosal 
healing. A recent systematic review that included 47 studies highlighted CE as an 
objective method of evaluating CD activity that enables reclassifying patients with CD, 
monitoring the effect of medical treatment through the evaluation of mucosal healing, 
and detecting postoperative recurrence[49]. Owing to its diagnostic accuracy, CE could 
be incorporated into the “treat to target” management of patients with CD[49]. 
However, larger, randomized, controlled trials are necessary to confirm these findings.

CE and IBD – undefined
CE allows the classification of patients with a diagnosis of IBD-undefined (IBD-U)[50-
53], where the inflammatory involvement of the colon cannot differentiate between UC 
and CD. IBD-U occurs in up to 10% to 15% of patients[54], and at least 15% to 30% of 
patients will be reclassified as having CD during their disease[50,55]. Establishing this 
difference is important from a surgical point of view regarding the selection of the 
type of surgery and which complications to expect in patients with CD and, from the 
medical point of view, in the selection of the type of biological therapies.

CE and UC
The role of CE in the evaluation of the colonic mucosa in UC is unclear. Colon CE 
(CCE and later CCE-2 or second-generation) was developed in 2006 and was designed 
for non-invasive visualization of the colon[56]. A systematic review showed that the 
diagnostic accuracy of CCE in the colon is comparable with ileocolonoscopy in 
assessing the severity and extent of the disease[57]. However, some studies with a 
small number of patients have found a weak correlation between the findings from 
CCE and colonoscopy, which supports the latter for the evaluation of the mucosa in 
UC[58,59].

Regarding the evaluation of the small intestine in UC, a prospective observational 
study (capcolitis) on CE in 127 patients with known UC found that only 4% of the 
diagnoses changed to CD upon evaluating the small bowel with CE[60].

PANENTERIC CE
Panenteric CE (PCE) is a new type of CE similar to PillCamTM COLON 2 (CCE-2) and is 
currently known as PillCamTM Crohn’s System (Medtronic, Dublin, Ireland)[61]. 
PillCamTM Crohn’s System is designed for the evaluation of the mucosa of patients 
with CD. This capsule has a field of view that allows for a 344º view between both 
capsule heads to provide a pan-intestinal panoramic visualization. The rate frame of 
PillCamTM Crohn’s System ranges from 4–35 frames per second depending on the 
speed of the capsule into the gut and has an operating time of more than 12 h[61]. PCE 
was first described in a multicenter prospective study where it demonstrated a better 
diagnostic yield of PCE than ileocolonoscopy in 66 patients with active CD who 
underwent both modalities[62]. The authors found that the per-subject diagnostic 
yield rate for active CD lesions was 83.3% for PCE and 69.7% for ileocolonoscopy 
(yield difference 13.6%; 95%CI: 2.6%–24.7%), and the per-segment diagnostic yield rate 
was 40.6% for PCE and 32.7% for ileocolonoscopy (yield difference 7.9%; 95%CI: 
3.3%–12.4%)[62].

In an observational cohort study performed on 93 patients (established CD: 71 and 
suspected CD: 22), the use of PCE allowed to change the treatment in 38.7% of patients
[63]. Moreover, Montreal classification was up-staged in 33.8% of patients with 
established CD, and identifying proximal small bowel disease in 12.7% predicted 
treatment intensification[63]. A recent prospective, multicenter study in patients with 
established CD found that sensitivity of PCE was superior to MRE for proximal small 
bowel inflammation (97% vs 71%, P = 0.021) and similar to MRE and/or 
ileocolonoscopy in the terminal ileum and colon[64]. However, the overall sensitivity 
for active enteric inflammation for CE vs MRE and/or ileocolonoscopy was similar 
(94% vs 100%, P = 0.125), but the specificity was 74% vs 22%, respectively (P = 0.001)
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[64]. In the pediatric population, a prospective study in 48 children with CD found that 
PCE led to a change in therapy for 71% of patients at baseline and 23% at 24 wk. A 
“treat to target” strategy in these children led to increased mucosal healing and deep 
remission from 21% at baseline to 54% at week 24 and 58% at week 52[65]. A recent 
multicenter study[66] compared the 344° panoramic-view recorded by PillCamTM 

Crohn’s System (lesions detected by cameras A and B) with the standard 172°-view 
(lesions detected by one camera only) in 41 patients who underwent CE for suspected 
or established CD. The study found that the panoramic 344º-view increased small 
bowel CE accuracy vs the standard 172º-view, detecting a greater number of relevant 
lesions (56.1% vs 39.0%; P = 0.023), resulting in higher LS (222.8 vs 185.7; P = 0.031), 
and improved clinical management (48.8% vs 31.7%, P = 0.023)[66].

PCE, as the only study modality, could reduce costs associated with the evaluation 
of patients with CD, considering the need for MRE and ileocolonoscopy for the 
complete evaluation of the intestine in these patients. Furthermore, PCE is a safe 
method preferred by patients[64] that does not require sedation, representing 
advantages for the pediatric population[65].

Table 1 presents the main characteristics of the capsules used in IBD.
In summary, based on the available literature, CE is essential in evaluating patients 

with CD. The finding of lesions in the small bowel detected by CE and not observed in 
conventional studies (cross-sectional imaging, ileo-colonoscopy) determines changes 
in the Montreal classification in patients with CD[10]. This leads to a modification of 
the therapeutic strategies, with the earlier introduction of immunomodulators and/or 
biological therapy, improving the prognosis of these patients[67].

ARTIFICIAL INTELLIGENCE IN CE AND ITS APPLICATION IN IBD
In recent years, the development of artificial intelligence (AI) in medicine has made it 
possible to apply this technology to the automated identification of images on CE. AI, 
through deep learning artificial neural network (ANN) algorithms[68], facilitates 
image recognition according to which characteristics the algorithm chooses for itself 
based on what it considers best for that task, which requires much less time than 
conventional readings by endoscopists (5.9 min vs 96.6 min)[69]. Convolutional neural 
network (CNN), a type of ANN[68] applied to CE, has shown excellent performance 
for the detection of ulcers, polyps, celiac disease, and bleeding[69].

A recent study by Klang et al[70] evaluated the accuracy of CNN for the detection of 
ulcers in CD on CE for image sets from 49 patients. They reported an AUC of 0.99 for 
split images and accuracies ranging from 95.4% to 96.7%. The AUC for individual 
patients was 0.94 to 0.99[69]. Also, the use of CNN enabled characterizing the severity 
of ulcers on CE images in patients with CD with high accuracy in the detection of 
severe CD ulcerations and better differentiation between mild and severe ulceration 
(accuracy 0.91, 95%CI: 0.867-0.954) but a less accurate separation of moderate from 
severe: (Accuracy 0.78, 95%CI: 0.716–0.844) and mild vs moderate (accuracy 0.624, 
95%CI: 0.547–0.701)[71]. Undoubtedly, this technology provides accurate and rapid 
detection of ulcers from CE images, thereby decreasing reading times. Moreover, deep 
neural networks are highly accurate in detecting stenosis in CE images (accuracy 
93.5%) and differentiating between stenosis and healthy mucosa (AUC 0.989), stenosis, 
and all ulcers (AUC 0.942), and stenosis and different degrees of ulcer severity[72]. In 
another area, recent studies suggest that CNN would allow for the automatic 
evaluation of the degree of intestinal cleansing in CE studies, which could serve as a 
means of comparing different intestinal preparation methods and thus design 
recommendations[73].

Despite the encouraging results on the use of AI on CE in IBD, prospective studies 
are necessary to evaluate its usefulness in the diagnosis and follow-up in CD.

OTHER NEWS IN CE
Because CE passage is passive and dependent on the peristalsis of the intestine, only 
80 to 90% of patients have their entire intestine visualized. Thus, up to 30% of minor 
injuries may not be seen during the study[23]. One of the new challenges is the 
possibility of directing the navigation of the CE in the intestine. Magnetically-assisted 
CE (MACE) has been tested as a screening tool in gastric cancer[74], Barrett’s 
esophagus, and esophageal varix[75]. MACE has generated results comparable with 
esophagogastroduodenoscopy in detecting focal lesions[76] and the study of iron 
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Table 1 Characteristics of available capsule endoscopy systems for the study of inflammatory bowel disease

SB CE Colon CE PillCam CrohnÒ

(Pillcam SB3Ò)

Dimensions 26 mm × 11 mm 32 mm × 11 mm 32.3 mm ± 0.5 mm × 11.6 mm 

Weight 3.0 g 2.9 g 2.9 g

Camera One 2-one at each end 2-one at each end

Field of view 156º ISO-8600-3 344º: 172° ISO-8600-3 per camera 344º: 172° ISO-8600-3 per camera

Frame rate 2-6 fps (2-6) 4-35 fps (AFR) 4-35 fps (AFR)

operating time ≥ 8 or longer (max.15) 10 h Minimum of 10 hr

Operating temperature 20-40 ºC 20-40 ºC 20-40 ºC

SB: Small bowel; CE: Capsule endoscopy; AFR: Adaptative frame rate; fps: Frames per second.

deficiency anemia[77]; however, it has not been evaluated in patients with IBD.
Other CE prototypes in development include biopsy[78] and drug delivery[79] 

capabilities, which could be clinically relevant for patients with IBD in the future.

CONCLUSION
The use of CE has played a fundamental role in evaluating the small bowel of patients 
with IBD, mainly in those with suspected CD and established CD. The development of 
new types of capsules, such as the panenteric capsule, and the integration of AI into 
CE image analysis, have improved the visualization and automated the identification 
of lesions in the digestive tract using a non-invasive, safe, highly tolerated method. 
Treatment optimization for patients with CD, thanks to CE findings, has improved the 
course of the disease. More studies are needed to support the use of CE in the 
evaluation of all patients with CD.
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Abstract
Traditional endoscopic techniques for Barrett’s esophagus (BE) surveillance relied 
on factor of probability as endoscopists performed cumbersome random biopsies 
of low yield. Optical coherence tomography (OCT) is a novel technique based on 
tissue light interference and is set to break conventional barriers. OCT was 
initially introduced in ophthalmology but was soon adopted by other areas of 
medicine. When applied to endoscopy, OCT can render images of the superficial 
layers of the gastrointestinal tract and is highly sensitive in detecting dysplasia in 
BE. Volumetric laser endomicroscopy is a second generation OCT endoscope 
device which is able to identify buried glands after ablation. Addition of artificial 
intelligence to OCT has rendered it more productive. The newer additions to OCT 
such as angiogram and laser marking will increase the accuracy of investigation. 
In spite of the few inevitable drawbacks associated with the technology, it 
presently outperforms all newer endoscopic techniques for the surveillance of BE.

Key Words: Optical coherence tomography; Volume laser endomicroscopy; Esophageal 
adenocarcinoma; Endoscopy; Gastroesophageal reflux disease
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Core Tip: Surveillance of Barrett’s esophagus for dysplasia is a long-debated and 
intensively researched topic. Optical coherence tomography (OCT) is a breakthrough 
technology in the medical field that enables the visualization of the layers of a structure 
in an office setting. The application of artificial intelligence (AI) to OCT endoscopy is 
the latest addition to the armamentarium of endoscopists. AI-based diagnostic 
algorithm scores are proven to be better than clinical scores. The accuracy of AI-based 
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system is enhanced further by using color coding software and convolutional neural 
networks. Multi-center randomized control trials validating these technologies is the 
need of the hour.
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INTRODUCTION
Barrett’s esophagus (BE) is defined as columnar metaplasia (or intestinal metaplasia, 
as some authorities prefer to call it) of the stratified squamous epithelium, lining the 
lower end of the esophagus[1]. It occurs due to chronic exposure of the distal eso-
phagus to acidic contents as a part of gastroesophageal reflux disease. The prevalence 
of BE is around 1.6% in general population[2]. It varies in different regions of the 
world with increased prevalence in the western population. Apart from the gastroeso-
phageal reflux disease, other risk factors for BE include advancing age, male gender, 
obesity, tobacco consumption, and Caucasian race[3].

Once the diagnosis of BE is made based on endoscopy, the endoscopist evaluates its 
extent as per the Prague C and M classification. All cases of BE should be biopsied at 
multiple levels as per the Seattle biopsy protocol to identify the presence of dysplasia 
or adenocarcinoma, which is the main concern. Traditional endoscopic techniques 
relied on the chance factor as endoscopists performed random cumbersome biopsies of 
low yield. The early diagnosis of esophageal neoplasia is important because it helps to 
initiate curative therapies for cancer. This has directed the path of research to identify 
newer techniques and technologies to increase the accuracy of biopsies during 
endoscopy[4]. Optical coherence tomography (OCT) is one of such techniques which is 
set to break conventional barriers.

Humans are prone to do errors due to fatigue, increased workload and working 
environment. The use of artificial intelligence (AI) has grown rapidly in the past few 
decades from using technology to perform simple household tasks to piloting aircraft. 
AI is also adopted into the medical field in the form of surgical robots in the last 
decade. The application of AI to endoscopy is widely researched as newer techno-
logies of endoscopy are being developed. The purpose of this narrative review is to 
enlighten the readers about the principles of OCT and its application to BE and the use 
of AI in the OCT endoscopy.

OCT
OCT is an imaging modality based on light interference. It is used to produce cross-
sectional images of a structure based on the differential properties of various layers 
with respect to light refraction[5]. The basic setup of OCT consists of a light source 
which is a low-coherence semiconductor super-luminescent diode. The light is split 
into two beams by an optical splitter: A reference beam and a sample beam. The 
reference beam is reflected back by a mirror, while the sample beam is focused onto 
the tissue to be imaged. Based on the refractory properties of the layers of the tissue, 
the sample beam is variably reflected back. The reflected light from the reference and 
sample beams are coupled in a coupler, producing interference patterns which are 
analyzed, after which a cross-sectional image is created (Figure 1). The axial resolution 
of OCT will depend on the spectral band of the light source with large spectral bands 
having better resolution[5]. The transverse resolution is independent of axial 
resolution and will depend on the numerical aperture of the lens through which the 
light beam passes[5].

The conventional OCT technology is based on the time-domain (TD-OCT) concept 
in which variations in the time of the travelled beams of light are analyzed to form an 
image with the help of moving mirrors. The technology has now evolved into the 
Fourier-domain (FD-OCT) which uses static mirrors so an image is formed based on 
the modulations in the source spectrum. The FD-OCT has higher image acquisition 
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Figure 1 Basic schematic representation of the principle of optical coherence tomography.

speeds than TD-OCT. The resolution of FD-OCT is 1-3 μm, which is far better than the 
10 μm resolution of TD-OCT. The FD-OCT is based on either charge-coupled device-
based image acquisition (spectral-domain OCT) or photodetector-based image 
detection with longer wavelengths of the light source (swept-source OCT)[6]. The 
swept-source OCT has better resolution and twice the image acquisition speed 
compared to spectral-domain OCT[6].

OCT was initially introduced in ophthalmology as a method to visualize the layers 
of the retina but it was soon adopted into other areas of medicine. Nevertheless, the 
utility of OCT is still only the “tip of the iceberg” with its vast potential yet to be 
unleashed. When applied to endoscopy, OCT is able to render images of the 
superficial layers of the gastrointestinal tract. OCT can be combined with either a 
forward-viewing endoscope or a side-viewing endoscope, with the forward-viewing 
endoscope enabling the sampling of the desired tissue[7]. There are two main types of 
OCT endoscopes: The proximal scanning rotating endoscope, which is less expensive 
but has lower capture speed, and the distal scanning endoscope, which comes with a 
micromotor, acquires images at a much higher speed but comes at a cost higher than 
the proximal scanning endoscope[7].

Volumetric laser endomicroscopy (VLE) is a second generation OCT endoscope 
device presently used for imaging[8] (Figure 2). It uses balloon centered imaging 
probes for imaging with a high axial resolution of 7 μm and a depth of 3 mm, which is 
10 times greater compared to the standard endoscopic ultrasound[9]. It images the 
esophagus in six-centimeter intervals and is quite fast in image acquisition compared 
to the conventional OCT. It images about 1200 cross-sectional areas in the six cm span 
which are reconstructed. The application of VLE in BE is mainly to diagnose 
suspicious areas of mucosal abnormalities and in the post-treatment surveillance of BE 
and early neoplastic lesions.

PREDICTIVE FEATURES OF DYSPLASIA IN BE USING OCT/VLE AND THE 
USE OF AI
The absence of layering, surface maturation, and gland maturation are the three 
independent predictive factors for dysplasia in OCT imaging. The surface maturation 
is assessed in terms of the surface OCT signal, which if equal or stronger than the sub-
surface signal, is predictive of dysplasia. Gland maturation is assessed in terms of the 
number of abnormal glands identified in imaging with more than five glands 
predictive of dysplasia.

AI is based on computer algorithms which provide result based on the received 
input. The algorithms are created based on previous OCT images which are correlated 
with histological diagnosis. The AI system has been automated to evolve with time, 
based on its previous results just as a human brain which is known as machine 
learning. Machine learning may be supervised, semi-supervised or unsupervised. 
Hence, AI is said to as good as a human brain and sometimes even better. Swager et al
[10] created an AI-based VLE prediction score using multivariable logistic regression 
analysis of 60 VLE images[10]. The components of the score were: the lack of layering 
of superficial layers, higher surface intensity than sub-surface intensity, and the 
number of abnormal glands (Table 1). A cut-off score of ≥ 8 was predicative of 
dysplasia with a sensitivity and specificity of 83% and 71% respectively[10]. This VLE 
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Table 1 Volumetric laser endomicroscopy prediction score and diagnostic algorithm[9]

VLE prediction score

Parameter Score

Layering present-more than 50% 0Layering

Layering present–less than 50% 8

Surface signal < subsurface signal 0

Surface signal = subsurface signal 6

Surface signal

Surface signal > subsurface signal 8

0-5 0Abnormal glands

> 5 5

VLE-diagnostic algorithm

Abnormal glands > 5 DysplasiaMucosal layer partial effacement

Abnormal glands ≤ 5 Non-dysplasia

Surface intensity > subsurface intensity DysplasiaMucosal layer complete effacement

Surface intensity ≤ subsurface intensity Non-dysplasia

VLE: Volumetric laser endomicroscopy.

Figure 2 Parts of the volumetric laser endomicroscopy device.

prediction score based on computer-based VLE diagnostic algorithm (VLE-DA) was 
more sensitive (86%) and specific (88%) than the clinical VLE predication score[10-12]. 
The components of VLE-DA are listed in Table 1.

Outcomes of first generation OCT
The traditional OCT criteria were found to be 97% sensitive and 93% specific when 
applied to BE surveillance prospectively in a study by Poneros et al[13] in 2001. The 
accuracy of OCT in diagnosing dysplasia in BE was about 78% in a double-blinded 
study by Isenberg et al[14] in 2005. The utility of OCT in diagnosing dysplasia was also 
confirmed in a study by Evans et al[15] using the dysplasia index which was 83% 
sensitive and 75% specific[15]. Chen et al[16] used ultra-high-resolution OCT for 
diagnosing dysplasia and adenocarcinoma with an accuracy of 83.3% and 100% 
respectively[16]. The utility of ultra-high-resolution OCT was also confirmed in the 
study by Cobb et al[17].
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OUTCOMES OF SECOND-GENERATION OCT
The imaging capability of three-dimensional OCT is faster than conventional OCT. Its 
utility was proved in the study by Adler et al[18]. VLE has been found to be more 
sensitive and specific than random blind biopsies as per Seattle protocol. The role of 
VLE was initially proved in a study by Vakoc et al[19], while in a study by Trindade et 
al[20] five out of six patients were upstaged due to the diagnosis of dysplasia which 
was missed by conventional endoscopy and narrow band imaging[19,20]. The 
sensitivity and specificity of VLE in diagnosing dysplasia was 86% and 88% in a study 
by Leggett et al[11]. In a study by Jain et al[21], VLE was compared with histology; the 
sensitivity in diagnosing BE-related dysplasia was 50% and specificity was 47.1%[21]. 
The false negative rate was 2.9%. Even though the specificity was low in the study, it is 
far better than the random biopsies. In a systematic review by Kohli et al[22], the 
sensitivity and specificity of OCT in diagnosing dysplasia and early malignancy was in 
the ranges of 68%-83% and 75%-82% respectively[22].

POST-ABLATION BE SURVEILLANCE USING OCT
A variety of ablation therapies such as radiofrequency ablation, cryoablation, laser 
ablation, photodynamic therapy, etc. are used for the treatment of high-grade BE 
dysplasia and insitu carcinoma. One of the main disadvantages of these procedures is 
the occurrence of buried glands or subsquamous glandular structures[23,24]. These 
glands, present beneath the epithelium, may undergo dysplastic changes and turn 
malignant, but are not visualized on routine endoscopy as the surface epithelium 
appears normal. OCT is one of the few techniques able to diagnose buried glands[25]. 
The sensitivity and specificity in identifying buried glands in post-treatment BE using 
VLE was shown to be 92.3% and 23.8% in a study by Jain et al[21]. However, in the 
study by Swager et al[26], most of the subsquamous glandular structures identified on 
OCT were histologically normal[26]. The role of OCT in post-ablative surveillance was 
also proved in a study by Benjamin et al[27].

Doppler-OCT is useful in detecting the changes in the sub-mucosal micro-vascular 
network, which further improves the accuracy of OCT. Doppler-OCT is also used to 
detect the change in the vascular pattern during post-photodynamic therapy for BE. 
Doppler-OCT helps to monitor the dose of photodynamic therapy[28,29].

NEWER ADDITIONS TO OCT
As neoplasia is associated with neovascularization, this is one of the features used to 
distinguish benign epithelium form malignancy. OCT angiography is used to image 
the subsurface vasculature without the need for any contrast and is useful in 
diagnosing neoplasia[30]. The changes in the OCT signal caused by the movement of 
erythrocytes are quantified by calculating the decorrelation. However, this makes the 
OCT signal susceptible to artifacts due to respiratory and cardiac movements.

As a balloon is used to augment the scanning speed in VLE, simultaneous sampling 
of mucosa is not possible. The biopsy taken from the mucosa may not be the original 
mucosa intended on imaging. This disadvantage is overcome by using laser marking 
along with VLE. The laser fiber is used for creating point coagulation spots which act 
as markers for biopsy after the scan[31,32]. Simultaneous laser coagulation along with 
OCT is also possible[32].

The addition of deep learning to AI-based OCT systems further improved the 
accuracy of prediction of BE related dysplasia. Deep learning is one kind of machine 
learning where multiple diagnostic algorithms are layered to form a convolutional 
neural network just as a human brain. The output from one layer is fed to the next 
layer which further processes it and feeds it to the next layer to produce a refined 
output[33]. Deep learning also increases the speed of processing the images.

Trindade et al[34] used an AI-based new software termed intelligent real-time image 
segmentation for BE surveillance. The software provided color codes based on the 
degree of dysplasia using the previously mentioned VLE prediction features[34]. A 
multi-center randomized control trial with trial number NCT03814824 is going on, 
validating the above software, the results of which are awaited.
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OCT IN COMPARISON TO OTHER ADVANCED ENDOSCOPIC IMAGING
VLE has been proved to be better than confocal laser endomicroscopy (CLE), which is 
one of the emerging endoscopic imaging techniques for BE and associated dysplasia. 
The sensitivity and specificity of VLE using VLE-DA were higher than CLE in a study 
by Leggett et al[11]. CLE is also disadvantageous as it requires injection of contrast into 
the blood and a limited field of view and imaging depth[35]. Endoscopic ultrasound is 
an excellent imaging modality for assessing the depth of tumor involvement. 
However, its accuracy is lower in differentiating early invasive carcinoma (T1 and T2). 
In a study by Kahn et al[36], VLE showed good results in differentiating T1a lesions 
from T1b lesions[36].

DRAWBACKS OF OCT
All technologies have one or more drawbacks and OCT is no exception. The main 
drawback of OCT is the absence of real-time imaging, as it is the case with other 
imaging modalities. Even the fastest OCT technology and probes require seconds to 
process the reflected waves. VLE requires balloon apposition and although perfect 
apposition is theoretically possible, it is rare in reality. The mucous layer on the surface 
epithelium, the contractions of the esophagus, and the presence of blood interfere with 
the close approximation resulting in artifacts. Simultaneous biopsy is not possible 
during imaging in VLE probes, which may pose a difficulty in biopsying the originally 
identified area. Movement artifacts are common in Doppler-OCT and OCT 
angiography. Unlike endoscopic ultrasound, OCT cannot be used to image the deeper 
tissues. Finally, cost is one of the main limiting factors for the widespread usage in all 
institutes.

The application of AI to OCT requires inputs from a large number of experts with 
expertise in this new technology who are fewer at present. The accuracy of the AI 
systems is based on the data fed which requires advanced imaging techniques and 
higher quality images. As AI and machine learning require input from humans it may 
be the victim of human errors during data input. Much of the knowledge of AI in OCT 
is based on pilot studies and case series. The number of randomized control trials and 
multi-center trials are very less due to concerns raised by ethical committees.

CONCLUSION
Surveillance of BE for dysplasia is a long-debated and intensively researched topic. 
OCT is a breakthrough technology in the medical field that enables the visualization of 
the layers of a structure in an office setting. The application of OCT to endoscopy is the 
latest addition to the armamentarium of endoscopists. Even though earlier OCT 
instruments were slow to image tissues, the newer AI-based technologies are fast 
enough to add only a few minutes to the conventional endoscopy time and are highly 
accurate compared to clinical diagnosis. OCT is highly sensitive in detecting dysplasia 
in BE. Even though the specificity in diagnosing dysplasia is lower, it is far more 
efficient than the conventional blind biopsy protocol. An especially important feature 
is the ability of VLE to identify buried glands after ablation. The newer additions to 
OCT, such as angiogram and laser marking, will help to increase the accuracy of the 
investigation. The AI software systems and deep learning systems are evolving over 
time. However, the utility of AI to BE surveillance is still at its bud stage. In spite of the 
few unavoidable drawbacks associated with the technology, AI-based OCT system is 
presently the most promising of all newer endoscopic techniques for the surveillance 
of BE.
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Abstract
Artificial intelligence is a technology that processes and analyzes information with 
reproducibility and accuracy. Its application in medicine, especially in the field of 
gastroenterology, has great potential to facilitate in diagnosis of various disease 
states. Currently, the role of artificial intelligence as it pertains to colonoscopy 
revolves around enhanced polyp detection and characterization. The aim of this 
article is to review the current and potential future applications of artificial 
intelligence for enhanced quality of detection for colorectal neoplasia.

Key Words: Artificial intelligence; Colon polyp; Adenoma detection rate; Dysplasia; 
Inflammatory bowel disease; Colon preparation

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The application of artificial intelligence (AI) in medicine and gastroen-
terology has demonstrated to date, broad utility in both disease diagnostics and 
management. The utility of AI in colonoscopy has recently demonstrated enhanced 
polyp detection and characterization, assessment for mucosal healing and identification 
of dysplasia associated with inflammatory bowel disease, as well as assessment of the 
quality of bowel preparation for colonoscopy.
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INTRODUCTION
Although artificial intelligence (AI) was first conceptually presented as a means for 
machines to mechanize human actions and cognitive thinking approximately 70 years 
ago, the current applications are exponentially broad[1,2]. This technology is 
predicated on the fact that AI is able to exhibit certain facets of human intelligence 
which is derived from techniques known as machine learning (ML) and deep learning 
(DL)[3]. Machine learning involves automatically building mathematical algorithms 
from data sets and forming decisions with or without human supervision[3,4]. When 
an algorithm is able to learn predictive models, it can use new inputs to form outputs
[3,5,6]. These models can be combined to form artificial neural networks (ANN) which 
mimic the neural network of a brain. Each algorithm assumes the role of a neuron and 
when grouped together form a network that interacts with different neurons[5,6]. 
ANN have pathways from inputs to outputs with hidden layers in between to help 
make the inner nodes more efficient and improve the overall network[3]. DL is a 
domain in which AI process a vast amount of data and self-creates algorithms that 
interconnect the nodes of ANN with interplay in the hidden neural layers[3,6]. 
Researchers have been using DL to form computer aided diagnosis systems (CADS) to 
aid in polyp detection and characterization[7]. Two major CAD systems have been 
developed so far: CADe (termed for computer-aided detection) and CADx (termed for 
computer-aided characterization). CADe uses white-light endoscopy for image 
analysis with the ultimate goal to increase the number of adenomas found in each 
colonoscopy thereby increasing adenoma detection rate (ADR) and reducing the rate 
of missed polyps[8]. CADx is designed to characterize polyps found during 
colonoscopy, thereby improving the accuracy of optical biopsies and reducing 
unnecessary polypectomy for non-neoplastic lesions[8]. It predominantly uses 
magnifying narrow band imaging (mNBI) but could also incorporate a variety of other 
techniques including white-light endoscopy, magnifying chromoendoscopy, confocal 
laser endomicroscopy, spectroscopy, and autofluorescence endoscopy[8]. In addition, 
AI technology is being applied to evaluate the quality of bowel preparation for 
colonoscopy. In this review, we outline the role of AI in polyp detection and character-
ization of dysplastic and/or neoplastic lesions. We also provide the current data on 
utility of AI in evaluation of bowel preparation and future directions of AI in 
colonoscopy.

POLYP DETECTION AND CADS 
Polyps are abnormal tissue growths that arise in the colon that carry malignant 
potential[9]. Polyps are detected during colonoscopy but can sometimes be missed due 
to a variety of factors e.g., age of patient, diminutive polyp size, failure to reach cecum, 
quality of bowel preparation, and experience of endoscopist[10,11]. The ADR is the 
frequency to detect one or more adenomatous polyps during screening colonoscopy 
and is a universal quality metric with the strongest association to the development of 
interval cancers[11-13]. Owing to growing concerns of increasing rates of colon cancer 
in adults, CADS have been developed and utilized to aid in polyp detection and 
ultimately increase ADR[9,14-18].

Multiple research groups have created automated computer vision methods to help 
analyze and detect polyps during colonoscopy[15-19] (Figure 1). One of the first 
groups to use CADe to help detect polyps relied mainly on still images from videos for 
analysis and polyp detection[20]. Their CADe used 24 videos containing a total of 31 
polyps which were detectable in at least 1 frame[20]. The study demonstrated a 
sensitivity and specificity for polyp detection of 70.4% and 72.4%, respectively[20]. 
Another group created a model using DL which used 546 short videos and 73 full 
length videos to create the software and train it with positive and negative polyp 
containing videos[21]. The sensitivity and specificity were 90% and 63.3% respectively, 
showing that the model could potentially be used in a clinical setting to help minimize 
polyp miss rates during colonoscopy[21]. A recent, prospective multicenter trial 
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Figure 1 Polyp detection without artificial intelligence (top) and with artificial intelligence (bottom).

comparing a CADe system to trained endoscopists and found that endoscopists (with 
a baseline ADR ≥ 35%) and CADe had a diagnostic accuracy of 98.2% and 96.5% 
respectively[22]. This led the authors to conclude that CADe was non-inferior to expert 
endoscopists[22].

As CADe systems proved to enhance polyp detection, researchers then focused on 
the role of AI on improving ADR. A prospective, randomized, controlled study 
evaluated 1058 patients undergoing colonoscopy with or without an automatic polyp 
detection system (APDS) found a relative ADR increase of 43.3% (29.1% vs 20.3%) 
using the APDS compared to standard colonoscopy[23]. This increase was most 
prevalent amongst diminutive adenomas which suggests that smaller adenomas are 
more likely to be missed compared to larger adenomas[23]. To expand upon the 
previous study, a double-blinded, randomized, controlled trial was performed with a 
sham group to control for operational bias[24]. There was a 21.4% relative increase of 
ADR in the CADe group (34% vs 28%) when compared to controls[24]. They found the 
delta to be higher amongst endoscopists with lower baseline ADR than compared to 
those with a higher baseline ADR[24]. A recent meta-analysis which included 6 
randomized controlled trials comparing AI-assisted-colonoscopy to non-AI-assisted-
colonoscopy totaling 5058 patients showed a significantly higher ADR within the AI 
group compared to the control (33.7% vs 22.9%, respectively)[25]. The study also 



Yoo BS et al. Enhancements in AI-assisted colonoscopy

AIGE https://www.wjgnet.com 160 August 28, 2021 Volume 2 Issue 4

showed an overall increase in detecting proximal colon adenomas with the AI-
assisted-group compared to the control group (23.4% vs 14.5%, respectively)[25]. This 
is important because currently colorectal cancer (CRC) screening with colonoscopy 
alone is not effective at reducing proximal colon cancers and their mortality[25,26]. 
Thus while improving ADR is vital to preventing CRC, particularly in the proximal 
colon, the use of AI alongside endoscopists can be an ideal starting point. The CADe 
systems could be used as second observers, as second observers have been shown to 
increase ADR[27].

POLYP CHARACTERIZATION AND AI
Worldwide, CRC is the third most common cancer diagnosed in men and second in 
women[28]. Overall incidence of CRC in the United States has decreased due to lower 
smoking rates, early colonoscopy screenings, and early identification of patient-
specific risk factors, but recent studies have reported a global increase in incidence of 
CRC in the younger population[29,30]. Thus, the latest endoscopic research is aimed 
towards techniques to better identify polyps and allow for real-time polyp histologic 
characterization which provides vital information for early intervention through 
endoscopic or surgical resection[31].

Studies evaluating AI and histologic assessment with optical biopsy have been a 
targeted focus- in particular for a “resect and discard” strategy for diminutive polyps 
< 6 mm, thereby avoiding the costs of pathology for low risk lesions[32] (Figure 2) top.

Several studies have found the range of sensitivity and specificity for polyp 
detection and characterization to be 70%-98% and 63%-98%, respectively[33]. An 
optical biopsy allows for differentiation of polyp type based on certain features. For 
example, NBI is an image-enhanced type of endoscopy that is used to identify 
microstructures and capillaries of the mucosal epithelium and allow for prediction of 
histologic features of colorectal polyps. Use of this advanced imaging technique often 
requires expertise to differentiate hyperplastic polyps from neoplastic polyps with 
high accuracy. AI systems offer a standardization of polyp characterization that 
overcomes the expertise or training differences across endoscopists[34]. Analysis of a 
CAD system with a deep neural network for analyzing NBI of diminutive polyps 
found that the AI system could identify neoplastic or hyperplastic polyps with 96.3% 
sensitivity and 78.1% specificity[34]. The system was compared to both novice (in-
training) and expert endoscopists and it was notable that over half of the novice 
endoscopists classified polyps with a negative-predictive value of ranging from 73%-
84%, compared to 91.5% of the system. The system also had a shorter time-to-classi-
fication compared to both expert and novice endoscopists (P < 0.05)[34]. Other groups 
have had similar results showing promise for AI-identification. One study compared 
images of 225 polyps as evaluated by a CAD system compared to diagnosis by 
endoscopists[35]. The polyps were classified using the Kudo and NBI international 
colorectal endoscopic classifications which found of the 225 polyps, 142 were 
dysplastic and 83 were non-dysplastic after endoscopy. The results of the CAD system 
correctly classified 205 polyps (91.1% of the total) and correctly delineated 131/142 
(92%) as dysplastic and 74/83 (89%) as non-dysplastic[35]. There were no statistically 
significant differences in histologic prediction between the CAD system and 
endoscopic assessment, thus they concluded that a computer vision system based on 
characterization of the polyp surface could accurately predict polyp histology[35].

AI IN INFLAMMATORY BOWEL DISEASE
Inflammatory bowel disease (IBD), which includes Crohn’s disease (CD) and 
ulcerative colitis (UC), is a chronic inflammatory gastrointestinal tract disorder that 
remains a global concern as incidence in developing countries continues to grow[36]. 
Studies with AI and large datasets of endoscopic images have shown that AI can 
improve the way to diagnose IBD, evaluate the severity of disease, and follow-up 
treatments and provide follow-up[37]. Initial diagnosis of IBD through endoscopic 
evaluation remains a challenge due to wide ranging clinical manifestations of IBD and 
overlap across subtypes. Key endoscopic features of IBD include ulceration or 
erosions, and AI has shown its role in better predicting the need for further evaluation
[38]. Aoki et al[38] have demonstrated that a deep convolutional neural network 
(DCNN) can be trained to detect erosions and ulcerations seen on wireless capsule 
endoscopy. Their system evaluated 10440 images in 233 s and demonstrated an area 
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Figure 2 Optical pathology of detected polyps with associated probability utilizing artificial intelligence. A-C: Hyperplastic polyps; D-F: 
Adenomas; G-I: Sessile serrated adenomas.

under the curve for detection of erosions and ulcerations at 0.958 (95% confidence 
interval: 0.947-0.968) and sensitivity, specificity and accuracy of 88%, 90% and 90%, 
respectively[38]. Tong et al[39] studied 6399 patients with UC, CD, or intestinal 
tuberculosis (ITB) who underwent colonoscopies. The colonoscopic images were then 
translated in the form of free texts and Random Forest (RF) and CNN were utilized to 
distinguish the three diseases. Diagnostic sensitivity and specificity of RF in 
UC/CD/ITB were 0.89/0.84, 0.83/0.82, and 0.72/0.77, respectively and that of CNN 
were 0.99/0.97, 0.87/0.83, and 0.52/0.81, respectively[39]. The studies showed that AI 
can be employed to discern and diagnose IBD although real-time diagnostic utility 
remains an area to develop[39].

Determining disease severity and activity in IBD can be done using endoscopic 
inflammation indices, and histologic scores. However, there can be certain flaws to 
using these methodologies such as intra-observer and inter-observer variability[40]. 
Studies using AI have been done to help control some of these factors. Bossuyt et al[41] 
developed a red density (RD) system, which was specific for endoscopic and histologic 
disease activity in UC patients, to help mitigate the observer bias by endoscopists. The 
study had 29 UC patients compared against 6 control patients using the RD score 
gained during colonoscopy[41]. The RD score was linked to the Robart’s Histologic 
Index in a multiple regression analysis and was found to be correlated with the RHI (r 
= 0.65, P < 0.00002) from the patients with UC[41]. The RD score from the control 
patients was also correlated with the RHI, Mayo endoscopic subscores (r = 0.76, P < 
0.0001) and UC Endoscopic Index of Severity scores (r = 0.74, P < 0.0001), showing it 
correlated well with the validated tests[41]. A study done by Takenaka et al[40] used 
their algorithm, the deep neural network for evaluation of UC (DNUC), in 875 UC 
patients. The DNUC was developed using 40785 images from colonoscopies and 6885 
biopsy results from 2012 UC patients[40]. The DNUC was able to identify patients in 
endoscopic remission with 90.1% accuracy and a kappa coefficient of 0.798 and 
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identify patients in histologic remission with 92.2% accuracy and a kappa coefficient of 
0.895 between the biopsy result and the DNUC[40]. The researchers concluded that it 
could be used to identify patients in remission and potentially avoid mucosal biopsy 
and analysis[40]. Stidham et al[42] created a 159-layer CNN using 16514 images from 
3082 UC patients to help categorize patients groups in remission (Mayo subscore 0 or 
1) to moderate to severe (Mayo subscore 2 or 3). The CNN had a positive predictive 
value of 0.87, sensitivity 83% and specificity of 96%[42]. The CNN was compared 
against human reviewers when assigned the Mayo scores, with a kappa coefficient of 
0.84 for the CNN vs 0.86 for the human reviewers[42]. This shows that the AI is 
effectively able to help categorize patients into their respective severity stages[42].

Patients with IBD are at increased risk for CRC and it is important for these patients 
to undergo frequent surveillance. Guidelines differ depending on the medical society, 
but overall recommended intervals are from 1-5 years[43]. IBD surveillance guidelines 
and whether AI has a role in CRC detection has yet to be directly studied. A large 
reason for the lack of studies of AI and IBD has been due to IBD being an exclusion 
criterion for many of the early colonoscopic AI studies. A single study by Uttam et al
[44] was one of the first to look at IBD and cancer risk, utilizing a three-dimensional 
nanoscale nuclear architecture mapping (nanoNAM). By analyzing 103 patients with 
IBD that were undergoing colonoscopy, their system measured for submicroscopic 
alterations in the intrinsic nuclear structure within epithelial cells and compared 
findings to histologic biopsies after 3 years. They found that their nanoNAM could 
identify colonic neoplasia with an AUC of 0.87, sensitivity of .81, and specificity of 0.82
[44]. Additional studies on AI in IBD surveillance could help personalize surveillance 
strategies or guidelines for patients.

AI SYSTEMS IN PRACTICE
The most recent developments in clinical practice have been with the approval of 
several different devices: EndoBRAIN (Olympus Corporation, Tokyo, Japan), GI 
Genius (Cosmo Pharmaceuticals N.V., Dublin, Ireland), and WavSTAT4 (SpectraS-
cience, Inc., San Diego, CA)[33,45,46]. EndoBRAIN is an AI-based system that is able to 
analyze pathologic features present on endoscopic imaging, and was developed and 
approved as a class II medical device[33]. In a multi-center study to determine the 
diagnostic accuracy of EndoBRAIN, their system was trained using 69142 endocyto-
scopic images taken from patients that had undergone endoscopy and the EndoBRAIN 
was compared against 30 endoscopists (20 trainees, 10 experts) with primary outcome 
of assessing neoplastic vs non-neoplastic lesions. Their results found that EndoBRAIN 
distinguished neoplastic from non-neoplastic lesions with 96.9% sensitivity, 94.3% 
specificity, which was higher than trainees and comparable to experts[33].

GI Genius has been approved by the FDA as an AI device to detect colonic lesions. 
GI Genius was compared to experienced endoscopists for colorectal polyp detection
[45]. This system was trained on a data-set using white-light endoscopy videos in a 
randomized controlled trial and primarily looked at reaction time on a lesion as the 
primary endpoint. Results demonstrated that the AI system held a faster reaction time 
when compared with endoscopists in 82% of cases[45].

Lastly, laser-induced fluorescence spectroscopy using a WavSTAT4 optical biopsy 
system was evaluated for efficacy in accurately assessing the histology of colorectal 
polyps with the end goal of reducing time, costs, and risks of resecting diminutive 
colorectal polyps[46]. The overall accuracy of predicting polyp histology was 84.7%, 
sensitivity of 81.8%, specificity of 85.2%, and negative predictive value of 96.1%. This 
suggests that the system is accurate enough to allow distal colorectal polyps to be left 
in place and nearly reaches the American Society for Gastrointestinal Endoscopy 
threshold for resecting and discarding without pathologic assessment[46].

REAL-TIME EVALUATION FOR INVASIVE CANCER
AI prediction of invasive cancers through the utilization of real-time identification of 
colorectal polyps has the potential to improve CRC screening by limiting misses and 
improving outcomes, especially in geographic regions with less access to highly 
trained endoscopists.

Advanced imaging techniques during endoscopy (without AI) to provide a real-
time prediction of lesion pathology and depth of invasion has been widely used. For 
example, a study assessed white-light endoscopy, mNBI, magnifying chromoen-
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doscopy, and probe-based confocal laser endomicroscopy in real-time, in order to 
evaluate and classify the depth of invasion for colorectal lesions[31]. Of the 22 
colorectal lesions, 7 were adenomas, 10 were intramucosal cancers, and 5 had deep 
submucosal invasion or deeper involvement. Sensitivity and specificity of white light 
endoscopy and mNBI were both 60% and 94%, respectively. Magnifying chromoen-
doscopy and probe-based confocal laser endomicroscopy were both 80 and 94%, 
respectively[31].

With data showing reliability of advanced imaging techniques in real-time for 
information to establish a diagnosis and drive intervention pursuits, integration of AI 
systems with these advanced imaging techniques has been a growing research focus. 
A recent review assessed 5 retrospective studies with wide ranging sensitivities 
ranging from 67.5%-88.2% sensitivity and 77.9%-98.9% specificity in finding invasive 
cancers[47]. The prediction of cancer invasion was made using magnified NBI, 
confocal laser endomicroscopy, white light endoscopy, or endocytoscopy. As the 
numbers reflect, more studies are needed to better evaluate how AI can provide more 
stable reliability in evaluation for invasive cancers[47].

COLON PREPARATION AND AI 
Bowel preparation significantly impacts the diagnostic accuracy of colonoscopies. 
Inadequate colon preparation impairs visualization of the mucosa, thus causing 
missed lesions, extended operative time, and increased need for repeat colonoscopies
[48,49]. Approximately 10%-25% of all colonoscopies are inadequately prepared[50-
52]. In addition, studies have shown that suboptimal bowel preparation can result in 
an adenoma miss rate ranging from 35%-42%[51]. A recent prospective study 
discovered that variable bowel preparation quality did not have a measurable effect on 
their AI algorithm’s ability to accurately identify colonic polyps. However, the applic-
ability of these findings is limited by the study’s small sample size of 50[50]. Therefore, 
the ability of AI to accurately identify polyps in suboptimal conditions remains 
unknown.

Currently several scales, the most validated and reliable of which is the Boston 
Preparation Scale (BBPS), are used to assess bowel preparation quality[52]. Scores 
ranging from 0-3 are individually given to the right, transverse, and left colon during 
colonoscope withdrawal. A bowel preparation that fails to have a total BPPS score of ≥ 
2 would mandate a repeat colonoscopy before the recommended 10-year interval 
(assuming a normal colon)[48,52]. Despite BBPS being deemed the most reliable scale, 
it cannot accurately account for variability in bowel preparation throughout the entire 
colon or gradients in adequacy of cleansing. Although BBPS takes into consideration 
the 3 colonic segments, regions of the same segment can be variably cleansed[49,52]. 
Therefore, 1 score cannot accurately represent one-third of the colon. This limitation is 
further exacerbated by the scale’s susceptibility to subjectivity, as individual expe-
riences can shape how physicians interpret data[49].

Most studies indicating the efficacy of AI in detecting colonic polyps utilized still 
images and videos of ideally prepared colons to train and test their AI software[53]. A 
DCNN known as ENDOANGEL (Wuhan EndoAngel Medical Technology Company, 
Wuhan, China) provided real-time and objective BPPS scores during the colonoscopy. 
ENDOANGEL circumvents subjective bias via DL using thousands of images scored 
by different endoscopists[49]. Additionally, the DCNN simultaneously calculates a 
real-time BPPS score every 30 s throughout the colonoscopy and provides a cumu-
lative ratio of the different stages, thus providing an accurate assessment of 
preparation quality throughout the colon[49,52]. Through DL and frequent scoring, 
ENDOANGEL proved to be far more effective than endoscopists at accurate BPPS 
scoring (93.33% vs 75.91%)[49].

Overall, poor bowel preparation quality significantly increases ADR[51]. Although 
previous applications of CADe and CADx have been used to optimize endoscopic 
image quality and mucosal visualization, ENDOANGEL, is the first utilization of AI to 
provide objective, real-time assessments of bowel preparation quality throughout the 
entire colon[49,54,55]. Another laboratory group has since independently released 
promising results regarding use of their AI to assess bowel preparation, indicating AI’s 
potential to improve the preparatory-phase of colonoscopy[56].
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FUTURE DIRECTIONS
A significant problem in the advanced imaging trials is that these are done by experts 
and accordingly, there is good inter-observer performance characteristics. These 
results are not the same when evaluated by lesser experienced providers[57]. 
Application of AI as a formidable tool seems logical and promising to mitigate the 
costs and learning curves for application of these newer techniques across the broad 
and variable ranges of providers.

Although the current CADS provide promising results, a larger data sets for 
training the systems can provide improvements in sensitivity and specificity in 
addition to minimizing false positives and false negatives. The larger training data also 
increases the burden of annotations, however, this can be overcome by an annotation 
software which incorporates a DL module. The precise effects of AI once it is widely 
available in clinical practices are yet to be determined, but the evidence based on 
EndoBRAIN, GI Genius, and WavSTAT4 are hopeful that significant benefits in 
training gastroenterologist and diagnosing a polyp can be expected.

Additional areas of future study include better detection of various polyps 
(adenomatous, non-adenomatous, dysplastic), evaluation of lesion size and 
morphology, and distinguishing invasive involvement. Additionally, further study is 
necessary to evaluate the adequacy of large polyp resection (i.e., margins free of 
adenomatous change). Much of the early data to date have used AI systems which are 
based on algorithms using still-images and videos[58]. Larger-scale studies can help us 
better understand real-time use of AI to show how it compares to endoscopists. Due to 
the novelty of AI systems in the clinical setting, study methods utilizing AI have also 
largely been done in a non-blinded manner, which may interfere with how the 
endoscopists perform the procedure, leading to a component of observation bias.

Finally, the future of AI lies in simplifying the tool for utilization by many 
endoscopists as well as achieving the goal of treatment. One way to overcome the 
complexity is incorporating the CADS into the colonoscope and display instead of 
existing as a separate entity that needs to be installed. In addition, an improved model 
for distinguishing polyps and invasion can further facilitate treatment process for 
patients.

CONCLUSION
AI is widely applied and utilized in endoscopy and continues to be researched to 
augment the accuracy of screening and differentiation of neoplastic vs non-neoplastic 
lesions. Although this wide applicability and active investigations are encouraging, 
further work is needed to solidify the integration of AI into everyday practice. Real-
time diagnosis using AI remains technically challenging, however, these recent studies 
exemplify promising advancements for enhanced quality assessment and management 
of colonic disease.

REFERENCES
McCarthy J, Minsky ML, Rochester N, Shannon CE.   A proposal for the Dartmouth summer 
research project on artificial intelligence. [cited 10 May 2021]. Available from: http://www-
formal.stanford.edu/jmc/history/dartmouth/dartmouth.html

1     

Kaplan A, Haenlein M. Siri, Siri, in my hand: Who’s the fairest in the land? Bus Horiz  2019; 62: 15-
25 [DOI: 10.1016/j.bushor.2018.08.004]

2     

Yang YJ, Bang CS. Application of artificial intelligence in gastroenterology. World J Gastroenterol 
2019; 25: 1666-1683 [PMID: 31011253 DOI: 10.3748/wjg.v25.i14.1666]

3     

Deo RC. Machine learning in medicine. Circulation 2015; 132: 1920-1930 [PMID: 26572668 DOI: 
10.1161/CIRCULATIONAHA.115.001593]

4     

Lee JG, Jun S, Cho YW, Lee H, Kim GB, Seo JB, Kim N. Deep learning in medical imaging: general 
overview. Korean J Radiol 2017; 18: 570-584 [PMID: 28670152 DOI: 10.3348/kjr.2017.18.4.570]

5     

Min JK, Kwak MS, Cha JM. Overview of deep learning in gastrointestinal endoscopy. Gut Liver 
2019; 13: 388-393 [PMID: 30630221 DOI: 10.5009/gnl18384]

6     

Hoerter N, Gross SA, Liang PS. Artificial intelligence and polyp detection. Curr Treat Options 
Gastroenterol 2020; epub ahead of print [PMID: 31960282 DOI: 10.1007/s11938-020-00274-2]

7     

Vinsard DG, Mori Y, Misawa M, Kudo SE, Rastogi A, Bagci U, Rex DK, Wallace MB. Quality 
assurance of computer-aided detection and diagnosis in colonoscopy. Gastrointest Endosc 2019; 90: 
55-63 [PMID: 30926431 DOI: 10.1016/j.gie.2019.03.019]

8     

http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
https://dx.doi.org/10.1016/j.bushor.2018.08.004
http://www.ncbi.nlm.nih.gov/pubmed/31011253
https://dx.doi.org/10.3748/wjg.v25.i14.1666
http://www.ncbi.nlm.nih.gov/pubmed/26572668
https://dx.doi.org/10.1161/CIRCULATIONAHA.115.001593
http://www.ncbi.nlm.nih.gov/pubmed/28670152
https://dx.doi.org/10.3348/kjr.2017.18.4.570
http://www.ncbi.nlm.nih.gov/pubmed/30630221
https://dx.doi.org/10.5009/gnl18384
http://www.ncbi.nlm.nih.gov/pubmed/31960282
https://dx.doi.org/10.1007/s11938-020-00274-2
http://www.ncbi.nlm.nih.gov/pubmed/30926431
https://dx.doi.org/10.1016/j.gie.2019.03.019


Yoo BS et al. Enhancements in AI-assisted colonoscopy

AIGE https://www.wjgnet.com 165 August 28, 2021 Volume 2 Issue 4

Ribeiro E, Uhl A, Wimmer G, Häfner M. Exploring deep learning and transfer learning for colonic 
polyp classification. Comput Math Methods Med 2016; 2016: 6584725 [PMID: 27847543 DOI: 
10.1155/2016/6584725]

9     

Ahn SB, Han DS, Bae JH, Byun TJ, Kim JP, Eun CS. The miss rate for colorectal adenoma 
determined by quality-adjusted, back-to-back colonoscopies. Gut Liver 2012; 6: 64-70 [PMID: 
22375173 DOI: 10.5009/gnl.2012.6.1.64]

10     

Liem B, Gupta N. Adenoma detection rate: the perfect colonoscopy quality measure or is there more? 
Transl Gastroenterol Hepatol 2018; 3: 19 [PMID: 29682626 DOI: 10.21037/tgh.2018.03.04]

11     

Rex DK, Schoenfeld PS, Cohen J, Pike IM, Adler DG, Fennerty MB, Lieb JG 2nd, Park WG, Rizk 
MK, Sawhney MS, Shaheen NJ, Wani S, Weinberg DS. Quality indicators for colonoscopy. 
Gastrointest Endosc 2015; 81: 31-53 [PMID: 25480100 DOI: 10.1016/j.gie.2014.07.058]

12     

Corley DA, Jensen CD, Marks AR, Zhao WK, Lee JK, Doubeni CA, Zauber AG, de Boer J, Fireman 
BH, Schottinger JE, Quinn VP, Ghai NR, Levin TR, Quesenberry CP. Adenoma detection rate and 
risk of colorectal cancer and death. N Engl J Med 2014; 370: 1298-1306 [PMID: 24693890 DOI: 
10.1056/NEJMoa1309086]

13     

Repici A, Badalamenti M, Maselli R, Correale L, Radaelli F, Rondonotti E, Ferrara E, Spadaccini M, 
Alkandari A, Fugazza A, Anderloni A, Galtieri PA, Pellegatta G, Carrara S, Di Leo M, Craviotto V, 
Lamonaca L, Lorenzetti R, Andrealli A, Antonelli G, Wallace M, Sharma P, Rosch T, Hassan C. 
Efficacy of real-time computer-aided detection of colorectal neoplasia in a randomized trial. 
Gastroenterology 2020; 159: 512-520.e7 [PMID: 32371116 DOI: 10.1053/j.gastro.2020.04.062]

14     

Liu WN, Zhang YY, Bian XQ, Wang LJ, Yang Q, Zhang XD, Huang J. Study on detection rate of 
polyps and adenomas in artificial-intelligence-aided colonoscopy. Saudi J Gastroenterol 2020; 26: 
13-19 [PMID: 31898644 DOI: 10.4103/sjg.SJG_377_19]

15     

Pannala R, Krishnan K, Melson J, Parsi MA, Schulman AR, Sullivan S, Trikudanathan G, Trindade 
AJ, Watson RR, Maple JT, Lichtenstein DR. Artificial intelligence in gastrointestinal endoscopy. 
VideoGIE 2020; 5: 598-613 [PMID: 33319126 DOI: 10.1016/j.vgie.2020.08.013]

16     

Tajbakhsh N, Gurudu SR, Liang J. Automated polyp detection in colonoscopy videos using shape 
and context information. IEEE Trans Med Imaging 2016; 35: 630-644 [PMID: 26462083 DOI: 
10.1109/TMI.2015.2487997]

17     

Wang Y, Tavanapong W, Wong J, Oh JH, de Groen PC. Polyp-alert: near real-time feedback during 
colonoscopy. Comput Methods Programs Biomed 2015; 120: 164-179 [PMID: 25952076 DOI: 
10.1016/j.cmpb.2015.04.002]

18     

Lee J, Wallace MB. State of the Art: The impact of artificial intelligence in endoscopy 2020. Curr 
Gastroenterol Rep 2021; 23: 7 [PMID: 33855659 DOI: 10.1007/s11894-021-00810-9]

19     

Fernández-Esparrach G, Bernal J, López-Cerón M, Córdova H, Sánchez-Montes C, Rodríguez de 
Miguel C, Sánchez FJ. Exploring the clinical potential of an automatic colonic polyp detection 
method based on the creation of energy maps. Endoscopy 2016; 48: 837-842 [PMID: 27285900 DOI: 
10.1055/s-0042-108434]

20     

Misawa M, Kudo SE, Mori Y, Cho T, Kataoka S, Yamauchi A, Ogawa Y, Maeda Y, Takeda K, 
Ichimasa K, Nakamura H, Yagawa Y, Toyoshima N, Ogata N, Kudo T, Hisayuki T, Hayashi T, 
Wakamura K, Baba T, Ishida F, Itoh H, Roth H, Oda M, Mori K. Artificial intelligence-assisted polyp 
detection for colonoscopy: Initial experience. Gastroenterology 2018; 154: 2027-2029 [PMID: 
29653147 DOI: 10.1053/j.gastro.2018.04.003]

21     

Sinonquel P, Eelbode T, Hassan C, Antonelli G, Filosofi F, Neumann H, Demedts I, Roelandt P, 
Maes F, Bisschops R. Real-time unblinding for validation of a new CADe tool for colorectal polyp 
detection. Gut 2021; 70: 641-643 [PMID: 33046559 DOI: 10.1136/gutjnl-2020-322491]

22     

Wang P, Berzin TM, Glissen Brown JR, Bharadwaj S, Becq A, Xiao X, Liu P, Li L, Song Y, Zhang 
D, Li Y, Xu G, Tu M, Liu X. Real-time automatic detection system increases colonoscopic polyp and 
adenoma detection rates: a prospective randomised controlled study. Gut 2019; 68: 1813-1819 
[PMID: 30814121 DOI: 10.1136/gutjnl-2018-317500]

23     

Wang P, Liu X, Berzin TM, Glissen Brown JR, Liu P, Zhou C, Lei L, Li L, Guo Z, Lei S, Xiong F, 
Wang H, Song Y, Pan Y, Zhou G. Effect of a deep-learning computer-aided detection system on 
adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study. Lancet 
Gastroenterol Hepatol 2020; 5: 343-351 [PMID: 31981517 DOI: 10.1016/S2468-1253(19)30411-X]

24     

Ashat M, Klair JS, Singh D, Murali AR, Krishnamoorthi R. Impact of real-time use of artificial 
intelligence in improving adenoma detection during colonoscopy: A systematic review and meta-
analysis. Endosc Int Open 2021; 9: E513-E521 [PMID: 33816771 DOI: 10.1055/a-1341-0457]

25     

Nakagawa-Senda H, Hori M, Matsuda T, Ito H. Prognostic impact of tumor location in colon cancer: 
the Monitoring of Cancer Incidence in Japan (MCIJ) project. BMC Cancer 2019; 19: 431 [PMID: 
31072372 DOI: 10.1186/s12885-019-5644-y]

26     

Aslanian HR, Shieh FK, Chan FW, Ciarleglio MM, Deng Y, Rogart JN, Jamidar PA, Siddiqui UD. 
Nurse observation during colonoscopy increases polyp detection: a randomized prospective study. Am 
J Gastroenterol 2013; 108: 166-172 [PMID: 23381064 DOI: 10.1038/ajg.2012.237]

27     

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: 
GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA 
Cancer J Clin 2018; 68: 394-424 [PMID: 30207593 DOI: 10.3322/caac.21492]

28     

Aran V, Victorino AP, Thuler LC, Ferreira CG. Colorectal cancer: epidemiology, disease 
mechanisms and interventions to reduce onset and mortality. Clin Colorectal Cancer 2016; 15: 195-
203 [PMID: 26964802 DOI: 10.1016/j.clcc.2016.02.008]

29     

http://www.ncbi.nlm.nih.gov/pubmed/27847543
https://dx.doi.org/10.1155/2016/6584725
http://www.ncbi.nlm.nih.gov/pubmed/22375173
https://dx.doi.org/10.5009/gnl.2012.6.1.64
http://www.ncbi.nlm.nih.gov/pubmed/29682626
https://dx.doi.org/10.21037/tgh.2018.03.04
http://www.ncbi.nlm.nih.gov/pubmed/25480100
https://dx.doi.org/10.1016/j.gie.2014.07.058
http://www.ncbi.nlm.nih.gov/pubmed/24693890
https://dx.doi.org/10.1056/NEJMoa1309086
http://www.ncbi.nlm.nih.gov/pubmed/32371116
https://dx.doi.org/10.1053/j.gastro.2020.04.062
http://www.ncbi.nlm.nih.gov/pubmed/31898644
https://dx.doi.org/10.4103/sjg.SJG_377_19
http://www.ncbi.nlm.nih.gov/pubmed/33319126
https://dx.doi.org/10.1016/j.vgie.2020.08.013
http://www.ncbi.nlm.nih.gov/pubmed/26462083
https://dx.doi.org/10.1109/TMI.2015.2487997
http://www.ncbi.nlm.nih.gov/pubmed/25952076
https://dx.doi.org/10.1016/j.cmpb.2015.04.002
http://www.ncbi.nlm.nih.gov/pubmed/33855659
https://dx.doi.org/10.1007/s11894-021-00810-9
http://www.ncbi.nlm.nih.gov/pubmed/27285900
https://dx.doi.org/10.1055/s-0042-108434
http://www.ncbi.nlm.nih.gov/pubmed/29653147
https://dx.doi.org/10.1053/j.gastro.2018.04.003
http://www.ncbi.nlm.nih.gov/pubmed/33046559
https://dx.doi.org/10.1136/gutjnl-2020-322491
http://www.ncbi.nlm.nih.gov/pubmed/30814121
https://dx.doi.org/10.1136/gutjnl-2018-317500
http://www.ncbi.nlm.nih.gov/pubmed/31981517
https://dx.doi.org/10.1016/S2468-1253(19)30411-X
http://www.ncbi.nlm.nih.gov/pubmed/33816771
https://dx.doi.org/10.1055/a-1341-0457
http://www.ncbi.nlm.nih.gov/pubmed/31072372
https://dx.doi.org/10.1186/s12885-019-5644-y
http://www.ncbi.nlm.nih.gov/pubmed/23381064
https://dx.doi.org/10.1038/ajg.2012.237
http://www.ncbi.nlm.nih.gov/pubmed/30207593
https://dx.doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/26964802
https://dx.doi.org/10.1016/j.clcc.2016.02.008


Yoo BS et al. Enhancements in AI-assisted colonoscopy

AIGE https://www.wjgnet.com 166 August 28, 2021 Volume 2 Issue 4

Siegel RL, Jakubowski CD, Fedewa SA, Davis A, Azad NS. Colorectal cancer in the young: 
epidemiology, prevention, management. Am Soc Clin Oncol Educ Book 2020; 40: 1-14 [PMID: 
32315236 DOI: 10.1200/EDBK_279901]

30     

Abe S, Saito Y, Oono Y, Tanaka Y, Sakamoto T, Yamada M, Nakajima T, Matsuda T, Ikematsu H, 
Yano T, Sekine S, Kojima M, Yamagishi H, Kato H. Pilot study on probe-based confocal laser 
endomicroscopy for colorectal neoplasms: an initial experience in Japan. Int J Colorectal Dis 2018; 
33: 1071-1078 [PMID: 29700599 DOI: 10.1007/s00384-018-3059-x]

31     

Rex DK. Can we do resect and discard with artificial intelligence-assisted colon polyp “optical 
biopsy? Tech Innov Gastrointest Endosc 2020; 22: 52-55

32     

Kudo SE, Misawa M, Mori Y, Hotta K, Ohtsuka K, Ikematsu H, Saito Y, Takeda K, Nakamura H, 
Ichimasa K, Ishigaki T, Toyoshima N, Kudo T, Hayashi T, Wakamura K, Baba T, Ishida F, Inoue H, 
Itoh H, Oda M, Mori K. Artificial intelligence-assisted system improves endoscopic identification of 
colorectal neoplasms. Clin Gastroenterol Hepatol 2020; 18: 1874-1881 [PMID: 31525512 DOI: 
10.1016/j.cgh.2019.09.009]

33     

Chen PJ, Lin MC, Lai MJ, Lin JC, Lu HH, Tseng VS. Accurate classification of diminutive 
colorectal polyps using computer-aided analysis. Gastroenterology 2018; 154: 568-575 [PMID: 
29042219 DOI: 10.1053/j.gastro.2017.10.010]

34     

Sánchez-Montes C, Sánchez FJ, Bernal J, Córdova H, López-Cerón M, Cuatrecasas M, Rodríguez de 
Miguel C, García-Rodríguez A, Garcés-Durán R, Pellisé M, Llach J, Fernández-Esparrach G. 
Computer-aided prediction of polyp histology on white light colonoscopy using surface pattern 
analysis. Endoscopy 2019; 51: 261-265 [PMID: 30360010 DOI: 10.1055/a-0732-5250]

35     

Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, Panaccione R, Ghosh S, Wu 
JCY, Chan FKL, Sung JJY, Kaplan GG. Worldwide incidence and prevalence of inflammatory bowel 
disease in the 21st century: a systematic review of population-based studies. Lancet 2017; 390: 2769-
2778 [PMID: 29050646 DOI: 10.1016/S0140-6736(17)32448-0]

36     

Gubatan J, Levitte S, Patel A, Balabanis T, Wei MT, Sinha SR. Artificial intelligence applications in 
inflammatory bowel disease: emerging technologies and future directions. World J Gastroenterol 
2021; 27: 1920-1935 [PMID: 34007130 DOI: 10.3748/wjg.v27.i17.1920]

37     

Aoki T, Yamada A, Aoyama K, Saito H, Tsuboi A, Nakada A, Niikura R, Fujishiro M, Oka S, 
Ishihara S, Matsuda T, Tanaka S, Koike K, Tada T. Automatic detection of erosions and ulcerations in 
wireless capsule endoscopy images based on a deep convolutional neural network. Gastrointest 
Endosc 2019; 89: 357-363.e2 [PMID: 30670179 DOI: 10.1016/j.gie.2018.10.027]

38     

Tong Y, Lu K, Yang Y, Li J, Lin Y, Wu D, Yang A, Li Y, Yu S, Qian J. Can natural language 
processing help differentiate inflammatory intestinal diseases in China? BMC Med Inform Decis Mak 
2020; 20: 248 [PMID: 32993636 DOI: 10.1186/s12911-020-01277-w]

39     

Takenaka K, Ohtsuka K, Fujii T, Negi M, Suzuki K, Shimizu H, Oshima S, Akiyama S, 
Motobayashi M, Nagahori M, Saito E, Matsuoka K, Watanabe M. Development and validation of a 
deep neural network for accurate evaluation of endoscopic images from patients with ulcerative 
colitis. Gastroenterology 2020; 158: 2150-2157 [PMID: 32060000 DOI: 
10.1053/j.gastro.2020.02.012]

40     

Bossuyt P, Nakase H, Vermeire S, de Hertogh G, Eelbode T, Ferrante M, Hasegawa T, Willekens H, 
Ikemoto Y, Makino T, Bisschops R. Automatic, computer-aided determination of endoscopic and 
histological inflammation in patients with mild to moderate ulcerative colitis based on red density. 
Gut 2020; 69: 1778-1786 [PMID: 31915237 DOI: 10.1136/gutjnl-2019-320056]

41     

Stidham RW, Liu W, Bishu S, Rice MD, Higgins PDR, Zhu J, Nallamothu BK, Waljee AK. 
Performance of a deep learning model vs human reviewers in grading endoscopic disease severity of 
patients with ulcerative colitis. JAMA Netw Open 2019; 2: e193963 [PMID: 31099869 DOI: 
10.1001/jamanetworkopen.2019.3963]

42     

Clarke WT, Feuerstein JD. Colorectal cancer surveillance in inflammatory bowel disease: Practice 
guidelines and recent developments. World J Gastroenterol 2019; 25: 4148-4157 [PMID: 31435169 
DOI: 10.3748/wjg.v25.i30.4148]

43     

Uttam S, Hashash JG, LaFace J, Binion D, Regueiro M, Hartman DJ, Brand RE, Liu Y. Three-
dimensional nanoscale nuclear architecture mapping of rectal biopsies detects colorectal neoplasia in 
patients with inflammatory bowel disease. Cancer Prev Res (Phila) 2019; 12: 527-538 [PMID: 
31164345 DOI: 10.1158/1940-6207.CAPR-19-0024]

44     

Hassan C, Wallace MB, Sharma P, Maselli R, Craviotto V, Spadaccini M, Repici A. New artificial 
intelligence system: first validation study vs experienced endoscopists for colorectal polyp detection. 
Gut 2020; 69: 799-800 [PMID: 31615835 DOI: 10.1136/gutjnl-2019-319914]

45     

Rath T, Tontini GE, Vieth M, Nägel A, Neurath MF, Neumann H. In vivo real-time assessment of 
colorectal polyp histology using an optical biopsy forceps system based on laser-induced fluorescence 
spectroscopy. Endoscopy 2016; 48: 557-562 [PMID: 27009081 DOI: 10.1055/s-0042-102251]

46     

Mori Y, Kudo SE, Misawa M, Takeda K, Kudo T, Itoh H, Oda M, Mori K. How far will clinical 
application of AI applications advance for colorectal cancer diagnosis? J Anus Rectum Colon 2020; 4: 
47-50 [PMID: 32346642 DOI: 10.23922/jarc.2019-045]

47     

Lai EJ, Calderwood AH, Doros G, Fix OK, Jacobson BC. The Boston bowel preparation scale: a 
valid and reliable instrument for colonoscopy-oriented research. Gastrointest Endosc 2009; 69: 620-
625 [PMID: 19136102 DOI: 10.1016/j.gie.2008.05.057]

48     

Zhou J, Wu L, Wan X, Shen L, Liu J, Zhang J, Jiang X, Wang Z, Yu S, Kang J, Li M, Hu S, Hu X, 
Gong D, Chen D, Yao L, Zhu Y, Yu H. A novel artificial intelligence system for the assessment of 

49     

http://www.ncbi.nlm.nih.gov/pubmed/32315236
https://dx.doi.org/10.1200/EDBK_279901
http://www.ncbi.nlm.nih.gov/pubmed/29700599
https://dx.doi.org/10.1007/s00384-018-3059-x
http://www.ncbi.nlm.nih.gov/pubmed/31525512
https://dx.doi.org/10.1016/j.cgh.2019.09.009
http://www.ncbi.nlm.nih.gov/pubmed/29042219
https://dx.doi.org/10.1053/j.gastro.2017.10.010
http://www.ncbi.nlm.nih.gov/pubmed/30360010
https://dx.doi.org/10.1055/a-0732-5250
http://www.ncbi.nlm.nih.gov/pubmed/29050646
https://dx.doi.org/10.1016/S0140-6736(17)32448-0
http://www.ncbi.nlm.nih.gov/pubmed/34007130
https://dx.doi.org/10.3748/wjg.v27.i17.1920
http://www.ncbi.nlm.nih.gov/pubmed/30670179
https://dx.doi.org/10.1016/j.gie.2018.10.027
http://www.ncbi.nlm.nih.gov/pubmed/32993636
https://dx.doi.org/10.1186/s12911-020-01277-w
http://www.ncbi.nlm.nih.gov/pubmed/32060000
https://dx.doi.org/10.1053/j.gastro.2020.02.012
http://www.ncbi.nlm.nih.gov/pubmed/31915237
https://dx.doi.org/10.1136/gutjnl-2019-320056
http://www.ncbi.nlm.nih.gov/pubmed/31099869
https://dx.doi.org/10.1001/jamanetworkopen.2019.3963
http://www.ncbi.nlm.nih.gov/pubmed/31435169
https://dx.doi.org/10.3748/wjg.v25.i30.4148
http://www.ncbi.nlm.nih.gov/pubmed/31164345
https://dx.doi.org/10.1158/1940-6207.CAPR-19-0024
http://www.ncbi.nlm.nih.gov/pubmed/31615835
https://dx.doi.org/10.1136/gutjnl-2019-319914
http://www.ncbi.nlm.nih.gov/pubmed/27009081
https://dx.doi.org/10.1055/s-0042-102251
http://www.ncbi.nlm.nih.gov/pubmed/32346642
https://dx.doi.org/10.23922/jarc.2019-045
http://www.ncbi.nlm.nih.gov/pubmed/19136102
https://dx.doi.org/10.1016/j.gie.2008.05.057


Yoo BS et al. Enhancements in AI-assisted colonoscopy

AIGE https://www.wjgnet.com 167 August 28, 2021 Volume 2 Issue 4

bowel preparation (with video). Gastrointest Endosc 2020; 91: 428-435.e2 [PMID: 31783029 DOI: 
10.1016/j.gie.2019.11.026]
Millien VO, Mansour NM. Bowel Preparation for Colonoscopy in 2020: A look at the past, present, 
and future. Curr Gastroenterol Rep 2020; 22: 28 [PMID: 32377915 DOI: 
10.1007/s11894-020-00764-4]

50     

Lebwohl B, Kastrinos F, Glick M, Rosenbaum AJ, Wang T, Neugut AI. The impact of suboptimal 
bowel preparation on adenoma miss rates and the factors associated with early repeat colonoscopy. 
Gastrointest Endosc 2011; 73: 1207-1214 [PMID: 21481857 DOI: 10.1016/j.gie.2011.01.051]

51     

Kastenberg D, Bertiger G, Brogadir S. Bowel preparation quality scales for colonoscopy. World J 
Gastroenterol 2018; 24: 2833-2843 [PMID: 30018478 DOI: 10.3748/wjg.v24.i26.2833]

52     

Becq A, Chandnani M, Bharadwaj S, Baran B, Ernest-Suarez K, Gabr M, Glissen-Brown J, Sawhney 
M, Pleskow DK, Berzin TM. Effectiveness of a deep-learning polyp detection system in prospectively 
collected colonoscopy videos with variable bowel preparation quality. J Clin Gastroenterol 2020; 54: 
554-557 [PMID: 31789758 DOI: 10.1097/MCG.0000000000001272]

53     

Byrne MF, Shahidi N, Rex DK. Will computer-aided detection and diagnosis revolutionize 
colonoscopy? Gastroenterology 2017; 153: 1460-1464.e1 [PMID: 29100847 DOI: 
10.1053/j.gastro.2017.10.026]

54     

Stanek SR, Tavanapong W, Wong J, Oh J, Nawarathna RD, Muthukudage J, de Groen PC. 
SAPPHIRE: a toolkit for building efficient stream programs for medical video analysis. Comput 
Methods Programs Biomed 2013; 112: 407-421 [PMID: 24001925 DOI: 
10.1016/j.cmpb.2013.07.028]

55     

Thakkar S, Carleton NM, Rao B, Syed A. Use of artificial intelligence-based analytics from live 
colonoscopies to optimize the quality of the colonoscopy examination in real time: Proof of concept. 
Gastroenterology 2020; 158: 1219-1221.e2 [PMID: 31945357 DOI: 10.1053/j.gastro.2019.12.035]

56     

Picot J, Rose M, Cooper K, Pickett K, Lord J, Harris P, Whyte S, Böhning D, Shepherd J. Virtual 
chromoendoscopy for the real-time assessment of colorectal polyps in vivo: a systematic review and 
economic evaluation. Health Technol Assess 2017; 21: 1-308 [PMID: 29271339 DOI: 
10.3310/hta21790]

57     

Wu J, Chen J, Cai J. Application of artificial intelligence in gastrointestinal endoscopy. J Clin 
Gastroenterol 2021; 55: 110-120 [PMID: 32925304 DOI: 10.1097/MCG.0000000000001423]

58     

http://www.ncbi.nlm.nih.gov/pubmed/31783029
https://dx.doi.org/10.1016/j.gie.2019.11.026
http://www.ncbi.nlm.nih.gov/pubmed/32377915
https://dx.doi.org/10.1007/s11894-020-00764-4
http://www.ncbi.nlm.nih.gov/pubmed/21481857
https://dx.doi.org/10.1016/j.gie.2011.01.051
http://www.ncbi.nlm.nih.gov/pubmed/30018478
https://dx.doi.org/10.3748/wjg.v24.i26.2833
http://www.ncbi.nlm.nih.gov/pubmed/31789758
https://dx.doi.org/10.1097/MCG.0000000000001272
http://www.ncbi.nlm.nih.gov/pubmed/29100847
https://dx.doi.org/10.1053/j.gastro.2017.10.026
http://www.ncbi.nlm.nih.gov/pubmed/24001925
https://dx.doi.org/10.1016/j.cmpb.2013.07.028
http://www.ncbi.nlm.nih.gov/pubmed/31945357
https://dx.doi.org/10.1053/j.gastro.2019.12.035
http://www.ncbi.nlm.nih.gov/pubmed/29271339
https://dx.doi.org/10.3310/hta21790
http://www.ncbi.nlm.nih.gov/pubmed/32925304
https://dx.doi.org/10.1097/MCG.0000000000001423


AIGE https://www.wjgnet.com 168 August 28, 2021 Volume 2 Issue 4

Artificial Intelligence in 

Gastrointestinal 
EndoscopyA I G E

Submit a Manuscript: https://www.f6publishing.com Artif Intell Gastrointest Endosc 2021 August 28; 2(4): 168-178

DOI: 10.37126/aige.v2.i4.168 ISSN 2689-7164 (online)

MINIREVIEWS

Impact of endoscopic ultrasound elastography in pancreatic lesion 
evaluation

Cosmas Rinaldi Adithya Lesmana, Maria Satya Paramitha

ORCID number: Cosmas Rinaldi 
Adithya Lesmana 0000-0002-8218-
5971; Maria Satya Paramitha 0000-
0003-0614-0517.

Author contributions: Lesmana 
CRA build the idea and wrote the 
main manuscript; Paramitha MS 
involved in writing the 
manuscript.

Conflict-of-interest statement: 
Authors have no conflict of 
interest.

Open-Access: This article is an 
open-access article that was 
selected by an in-house editor and 
fully peer-reviewed by external 
reviewers. It is distributed in 
accordance with the Creative 
Commons Attribution 
NonCommercial (CC BY-NC 4.0) 
license, which permits others to 
distribute, remix, adapt, build 
upon this work non-commercially, 
and license their derivative works 
on different terms, provided the 
original work is properly cited and 
the use is non-commercial. See: htt
p://creativecommons.org/License
s/by-nc/4.0/

Manuscript source: Invited 
manuscript

Specialty type: Gastroenterology 
and hepatology

Country/Territory of origin: 

Cosmas Rinaldi Adithya Lesmana, Maria Satya Paramitha, Internal Medicine, Hepatobiliary 
Division, Dr. Cipto Mangunkusumo National General Hospital, Universitas Indonesia, Jakarta 
10430, Daerah Khusus Ibukota, Indonesia

Cosmas Rinaldi Adithya Lesmana, Digestive Disease & GI Oncology Center, Medistra Hospital, 
Jakarta 12950, Daerah Khusus Ibukota, Indonesia

Corresponding author: Cosmas Rinaldi Adithya Lesmana, FACG, FACP, MD, Senior Lecturer, 
Internal Medicine, Hepatobiliary Division, Dr. Cipto Mangunkusumo National General 
Hospital, Universitas Indonesia, Jl. Diponegoro 71 Jakarta, Jakarta 10430, Daerah Khusus 
Ibukota, Indonesia. medicaldr2001id@yahoo.com

Abstract
Pancreatic malignancy still becomes a major global problem and is considered as 
one of the most lethal cancers in the field of gastroenterology. Most patients come 
in the late stage of the disease due to organ’s location, and until now the treatment 
result is still far away from satisfaction. Early detection is still the main key for 
good, prolonged survival. However, discerning from other types of tumor 
sometimes is not easy. Endoscopic ultrasound (EUS) is still the best tool for 
pancreatic assessment, whereas fine-needle aspiration biopsy (FNAB) is 
considered as the cornerstone for further management of pancreatic malignancy. 
Several conditions have become a concern for EUS-FNAB procedure, such as risk 
of bleeding, pancreatitis, and even needle track-seeding. Recently, an artificial 
intelligence innovation, such as EUS elastography has been developed to improve 
diagnostic accuracy in pancreatic lesions evaluation. Studies have shown the 
promising results of EUS elastography in improving diagnostic accuracy, as well 
as discerning from other tumor types. However, more studies are still needed 
with further considerations, such as adequate operator training, expertise, 
availability, and its cost-effectiveness in comparison to other imaging options.
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Core Tip: The application of endoscopic ultrasound (EUS) elastography is one of the 
most potential roles of artificial intelligence in pancreaticobiliary disorders. EUS 
elastography becomes a promising method to evaluate pancreatic lesions by providing 
information of tissue elasticity, which may correlate with malignant characteristics. 
Incomplete elastographic delineation, especially in large tumor size, as well as 
compelling intra-/inter-observer variability also still become limitations in performing 
adequate EUS elastography examination on pancreatic lesions.
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INTRODUCTION
Pancreatic malignancy is still considered as the most lethal cancer in the field of 
gastroenterology. Based on Global Cancer Observatory database 2020, it is still holding 
the 12th rank of the most common malignancies all over the world. The mortality rate 
related to pancreatic cancer has increased more than double within 27 years. The 
survival rate has also been considered far from satisfaction with regards to the 
standard treatment development. In Asian population, the incidence and mortality 
related to pancreatic cancer are also quite high (47.1% and 48.1%, respectively)[1]. 
Most of the patients are diagnosed at the late stage due to organ’s location, non-
specific clinical manifestation in early stages, and the absence of simple screening test 
with high accuracy for early stages of the disease.

In the evaluation of pancreatic cancer, imaging has been proven to play a central 
and critical role. Imaging modalities are expected to be able to detect and characterize 
the tumor mass, evaluate local and vascular involvement, evaluate lymphatic and 
perineural invasion, and find any metastases. Evolution of diagnostic imaging 
examination such as abdominal computed tomography (CT) scan and magnetic 
resonance imaging (MRI) have shown good accuracy for detecting pancreatic lesion. A 
single-center retrospective study in 140 subjects showed higher sensitivity (89.5% vs 
81.4%) and specificity (63.4% vs 43%) in MRI compared to CT-scan for evaluating 
pancreatic adenocarcinoma. This study also showed that only 14% of the patients were 
diagnosed in the early stage at the time of diagnosis. Nevertheless, in the setting of 
small size of tumor mass, uncooperative patients for MRI evaluation, availability of 
MRI, lack of clinicians’ familiarity with the device, and high cost of performing MRI 
still become the limitations in clinical practice. Additionally, from the same study, the 
highest diagnostic accuracy was shown by endoscopic ultrasound (EUS) (sensitivity 
97.5%, specificity 90.3%). In the new era of the old instrument development, EUS has 
become the cornerstone in pancreatic malignancy, as it has a high sensitivity for small 
tumor size (< 2 cm), evaluation of staging (including the presence of lymph nodes, 
ascites, liver metastasis, and vascular involvement), and to perform direct tissue 
sampling[2,3]. However, in the conditions of uncertain malignant condition, normal 
tumor markers level, and possibility of needle tract seeding, a dilemmatic condition on 
whether the lesion should be punctured or not may arise[3-5]. Learning from the non-
invasive tool development, such as elasticity evaluation, has opened a better insight 
for utilizing EUS, not only for diagnostic purpose, but also for therapeutic purpose.

PRINCIPLE OF ENDOSCOPIC ULTRASOUND ELASTOGRAPHY
The concept of utilizing combination of elastography (EG) and ultrasonography in 
diagnosing pancreatic disorders has been proposed as a way to overcome the 
diagnostic problem of solid pancreatic lesions (Figure 1). A prospective study 
conducted by Uchida et al[6] showed that real-time tissue EG and transcutaneous 
ultrasonography can provide real-time visualization and information of pancreatic 
tissue elasticity. Combination of sonic and ultrasound waves will cause less 
compression in fibrotic and stiff tissue, in comparison to softer and healthy tissue. This 
characteristic may overcome the limitation of conventional EUS, especially in patients 
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Figure 1 Basic principles of endoscopic ultrasound elastography in pancreatic lesion evaluation. The possibility of combining endoscopy and 
ultrasonography in evaluating pancreatic lesion through the principle of strain elastography, in which, tissues with higher elasticity will exhibit more deformation after a 
form of pressure is being applied. The degree of displacement will then be represented as colour pattern analysis to determine the possible diagnosis (Red = Soft 
tissue; Green = Intermediate tissue; Blue = Hard tissue).

with coexistent chronic pancreatitis or “pseudotumoral” pancreatitis[7]. As one of the 
most recent approaches in gastrointestinal endoscopy, EUS real-time tissue EG has 
more diagnostic potentials compared to EUS with only a B-mode imaging ability. In 
general, EUS EG provides information of tissue elasticity through differences in 
deformation and displacement among tissue areas, as well as different amount of 
tissue distortion attained from spatial differentiation. Tissue consistency may correlate 
with malignancy characteristics, in which malignant tissues have harder consistency 
than benign tissues[8].

Reported for the first time in 2006 for evaluating pancreatic tissues, EUS EG has 
been continuously developed for tissue elasticity assessment. Two methods have been 
differently proposed and compared for each diagnostic performance, i.e., strain and 
shear-wave EG. Generally, strain elastograms are produced by internal physiological 
pulsations from respiratory contractions. Estimation of the target tissue’s stiffness is 
conducted with semiquantitative real-time elastography (RTE) using strain histogram 
(SH), and quantitative strain ration (SR) histogram EG. In particular, SR is a semi-
quantitative method to calculate relative tissue stiffness by dividing mean strain of 
reference area and mean strain in lesion of interest. Meanwhile, the global hardness of 
a lesion is expressed by the mean histogram value (numerical values from SH)[3,9]. 
There are three major important principles when RTE is applied for tissue elasticity 
evaluation, i.e., the stress compression, the region of interest (ROI), and the tissue 
displacement. Semi-quantitative SH EUS EG uses the manual method through tissue 
compression effect or pressure application, which will create color-based results. 
Quantitative strain elastograms or SH needs to calculate the ratio; however, this can be 
a combined assessment. This software methods usually will be incorporated to the 
echoendoscope for pancreatic tissue assessment[3,8]. In a healthy pancreatic tissue, the 
internal structure is isoechoic with soft elastogram. In elderly, the consistency of 
pancreatic tissue is remarkably harder, but not as hardened as the histogram result of 
chronic pancreatitis. In acute pancreatitis, softer consistency can be observed in the 
necrotic zones. Significantly higher stiffness (often unequivocal) can be found in ductal 
adenocarcinoma. The hue color-based parameter, where it is used for tissue elasticity 
evaluation, consists of red, green, and blue color. Soft tissue appears as red color, 
whereas intermediate tissue appears as green color, and blue color will represent hard 
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tissue. However, perception errors or variability of interpretation between endosono-
graphers may occur in the characterization of hue color-based parameter[8,9].

On the other hand, shear-wave EG is a quantitative tissue elasticity assessment, 
where it has been mostly used for liver, breast, prostate, rectum, and lymph node. In 
shear wave EG, focused ultrasound from the probe to target tissue is emitted and 
evaluation of target tissue’s stiffness is performed afterwards by measuring the shear 
wave’s propagation speed. An exploratory study of EUS shear-wave measurement 
(EUS-SWM) in the assessment and treatment of autoimmune pancreatitis showed 
approximately 97.6% success rate with no significant difference of success rate in the 
head, body, and tail of the pancreas (P = 0.4997)[10]. Another preliminary study also 
demonstrated similarly high success rate (96.8%) without any adverse events. In 
addition, the elastic value with unique reliability index of the velocity of shear wave 
measurement also allows more objective and repeated measurement with EUS-SWM
[11]. However, compared to strain EG, varying results with EUS-SWM are still found 
from previous study by Carlsen et al[12] This study also showed that target diameter 
had the most significant effect for all methods of shear-wave EG measurement, while 
target depth only affected shear-wave velocity measurement in targets with hard 
consistency.

ENDOSCOPIC ULTRASOUND EG IN PANCREATIC LESION EVALUATION
Throughout the years, evidences related to the use of EUS EG in pancreatic lesion 
evaluation keep emerging (Table 1). A pioneer study by Giovannini et al[13], 2006 
showed the impact of endosonoelastography examination for pancreatic masses 
evaluation in 49 patients, where the sensitivity and specificity in diagnosing malignant 
lesion were 100% and 67%, respectively. In this study, there were two misdiagnosed 
cases (neuroendocrine tumor and benign fibromyoblastic tumor of surgically resected 
pancreas). The sensitivity and specificity of endosonoelastography in assessing 
malignant lymph node invasion in this study were 100% and 50%, respectively. As 
mentioned in the previous section, the first experimental study for real-time tissue EG 
for pancreatic tissue assessment was investigated by Uchida et al[6], 2009, in which a 
linear probe, with B-mode and EG mode, was used to visualize the object. The color-
based (blue for hard and red for soft) was used in the ROI. In pancreatic cancer, the 
lesion was identified with blue color, which was subsequently confirmed through 
histopathologic examination result. Combination of B-mode and EG mode increased 
the diagnosis accuracy of pancreatic cancer from 73.3% to 100%, corrected by operator. 
The sensitivity and specificity between operator and another reviewer showed the 
same results for EG mode evaluation (64.3% vs 60.7% and 88% vs 88%). In the case of 
pancreatic endocrine tumor, the diagnosis accuracy also increased from 66.7% to 100%
[6]. In 2009, a prospective study by Iglesias-Garcia et al[14], where the EG pattern was 
compared to histological specimen, showed the blue color pattern supported the 
malignant pancreatic lesions, whereas the green color pattern excluded malignant 
lesions. The sensitivity and specificity of EG diagnosis in malignant pancreatic lesions 
were 100% and 85.5%, respectively. This study concluded that the overall diagnostic 
accuracy of EUS EG for malignancy was 94%. Further concordance analysis by two 
endosonographers yielded agreement of elastographic pattern by both of them in 
93.1% of the cases. This study also addressed the possibility of EUS EG in tackling the 
limitation of EUS-guided fine needle aspiration (EUS-FNA). One of the major 
drawbacks of EUS-FNA was interposition of malignant tissue and vascular structures, 
which may contribute to false negative results. EUS EG can overcome this limitation 
by assessing tissue elasticity and discerning hardness between normal and malignant 
tissues[14].

In contrast to previous evidences, a prospective study by Hirche et al[4] showed that 
EUS-EG had low sensitivity (41%), specificity (53%), and accuracy (45%) in predicting 
malignant pancreatic lesion. A subgroup analysis in ductal adenocarcinoma also 
demonstrated poor sensitivity (50%). Moderate intraobserver and interobserver 
reproducibilities were also demonstrated from the findings. However, in this study, 
the sample size was considered small. Additionally, some patients were diagnosed 
with cystic lesion tumor, suggesting that presence of fluid might interfere the 
elastographic pattern. On the other hand, larger tumor size was causing the inaccurate 
distance between the EUS probe and the mucosal wall. Incomplete border delineation 
by EUS- EG was also shown in lesions with a larger diameter, leading to insufficient 
display of surrounding pancreatic parenchyma[4]. In another small prospective single-
center study by Janssen et al[15], three groups were classified as normal pancreas, 



Lesmana CRA et al. EUS elastography in pancreatic lesion

AIGE https://www.wjgnet.com 172 August 28, 2021 Volume 2 Issue 4

Table 1 Summary of the studies utilizing endoscopic ultrasound elastography for evaluating pancreatic lesions

Ref. Population of the study Key findings

Sensitivity 100% and specificity 67% in diagnosing malignant 
lesions.

Giovannini et al
[13], 2006

24 patients with pancreatic masses. 

Sensitivity 100% and specificity 50% in diagnosing malignant 
invasion of lymph nodes. 

Diagnostic performance of real-time tissue elastography mode for 
diagnosing malignancy: Operator vs another reviewer 

Sensitivity: 64.3% vs 60.7%.

Specificity: 88% vs 88%. 

Phase 1: pancreatic cancer (5 subjects), endocrine tumor (2 
subjects), chronic pancreatitis (5 subjects), intraductal papillary 
mucinous neoplasm.

Positive predictive value: 85.7% vs 85%. 

Uchida et al[6], 
2009

Phase 2:  53 consecutive subjects with pancreatic lesions visible 
on B-mode images.

Negative predictive value: 68.8% vs 66.7%. 

Diagnostic performance of EUS elastography in diagnosing 
malignancy 

Sensitivity: 100%. 

Specificity: 85.5%.

Positive predictive value: 90.7%.

Negative predictive value: 100%.

Iglesias-Garcia et 
al[14], 2009

130 consecutive patients with solid pancreatic masses vs 20 
subjects with normal pancreases.

Overall accuracy: 94%. 

Diagnostic performance of EUS elastography in predicting the 
nature of pancreatic lesions 

Sensitivity: 41%. 

Specificity: 53%. 

Hirche et al[4], 
2008

70 patients with unclassified solid pancreatic lesions vs 10 
subjects with healthy pancreas.

Accuracy: 45%. 

Diagnostic performance of EUS elastography in diagnosing chronic 
pancreatitis 

Sensitivity: 65.9%. 

Specificity: 56.9%. 

Accuracy: 60.2%.

Diagnostic performance of EUS elastography in diagnosing focal 
pancreatic lesions 

Sensitivity: 93.8%. 

Specificity: 65.4%. 

Accuracy: 73.5%.

Janssen et al[15], 
2007

20 patients with chronic pancreatitis vs 33 patients with focal 
pancreatic lesions vs 20 subjects with normal pancreas.

Diagnostic performance of EUS elastography in differentiating 
pancreatic adenocarcinoma and inflammatory pancreatic masses 

Diagnostic performance of EUS elastography in differentiating 
pancreatic adenocarcinoma and inflammatory pancreatic masses 

AUC: 0.8227. 

In studies with color pattern as the diagnostic standard 

Sensitivity: 99%. 

Specificity: 76%.

Positive likelihood ratio: 3.36. 

Negative likelihood ratio: 0.03.

Diagnostic odds ratio: 129.96.

In studies with hue histogram as the diagnostic standard 

Li et al[16], 2013 Meta-analysis of 10 studies with 781 patients. 
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Sensitivity: 92%. 

Specificity: 68%. 

Positive likelihood ratio: 2.84.

Negative likelihood ratio: 0.12.

Diagnostic odds ratio: 24.69.

Diagnostic performance of EUS elastography in differentiating 
benign and malignant pancreatic masses 

In studies with qualitative color pattern as the diagnostic standard 

Sensitivity: 99%. 

Specificity: 74%. 

AUROC: 0.9624.

In studies with quantitative hue histogram value as the diagnostic 
standard 

Sensitivity: 85%-93%. 

Xu et al[17], 2013 Meta-analysis of 9 studies.

Specificity: 64%-76%. 

Diagnostic performance of EUS elastography in differentiating 
benign and malignant solid pancreatic masses 

Sensitivity: 95%. 

Specificity: 67%. 

Mei et al[18], 2013 Meta-analysis of 13 studies with 1044 patients. 

Diagnostic odds ratio: 42.28. 

Diagnostic performance of combined elasticity score and strain ratio 
in differentiating benign and malignant pancreatic lesions (cut-off 
point: 7.75) 

Sensitivity: 99%. 

Specificity: 94.6%. 

Positive predictive value: 98%. 

Negative predictive value: 98.5%.

Altonbary et al
[19], 2019

97 patients with malignant lesions vs 19 patients with benign 
lesions

Accuracy: 97%. 

Diagnostic performance of EUS elastography with high stiffness of 
the lesion in diagnosing malignancy

Sensitivity: 84%. 

Specificity: 67%. 

Positive predictive value: 56%.

Negative predictive value: 89%. 

Diagnostic performance of EUS elastography in diagnosing 
pancreatic ductal adenocarcinoma

Sensitivity: 96%. 

Specificity: 64%. 

Positive predictive value: 45%. 

Ignee et al[20], 
2018

218 patients with solid pancreatic lesions sized ≤ 15 mm and a 
definite diagnosis. 

Negative predictive value: 98%. 

EUS: Endoscopic ultrasound.

chronic pancreatitis, and focal pancreatic lesions. The elastographic pattern classi-
fication (homogenous, different colors, and honeycomb pattern) and elastographic 
colors classification (blue, green/yellow, and red) were combinedly used. In normal 
pancreas group, all showed homogenous green color interfered with blue clouds’ 
color. Whereas, in chronic pancreatitis group showed hard (blue) with honeycomb 
pattern. In pancreatic focal lesions’ group, examination showed that almost all patients 
had blue/green honeycomb pattern. Only one patient which has tumorlike due to 
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chronic pancreatitis showed blue/green honeycomb pattern. The sensitivity and 
specificity for group with chronic pancreatitis were 65.9% and 56.9%, respectively, 
with diagnostic accuracy of 60.2%; while the sensitivity and specificity in group with 
focal pancreatic lesions were 93.8% and 65.4%, respectively, with slightly higher 
diagnostic accuracy (73.5%). The findings from this study also addressed the limitation 
of EUS EG in distinguishing the elastographic patterns of chronic pancreatitis and 
malignant tumors due to the corresponding amount of fibrous pattern of chronic 
pancreatitis, which can also be found in desmoplastic pancreatic carcinomas and 
microcystic adenomas[15]. Another meta-analysis, which evaluated the use of EUS EG 
in discernment of pancreatic adenocarcinoma and inflammatory masses, indicated 
slightly better diagnostic performance in studies with color pattern as the diagnostic 
standard (sensitivity 99%, specificity 76%) compared to studies with hue histogram as 
the diagnostic standard (sensitivity 92%, specificity 68%)[16]. In differentiating benign 
and malignant pancreatic masses, better diagnostic performance was also 
demonstrated by studies using qualitative color pattern as the diagnostic standard 
(sensitivity 99%, specificity 74%) in comparison to studies using hue histogram as the 
diagnostic standard (sensitivity 85%-93%, specificity 64%-76%). This meta-analysis 
also acknowledged the difficulties in distinguishing neuroendocrine tumors and 
adenocarcinomas due to their similar hardness[17]. Regardless of the low specificity, 
EUS EG can still be considered as a complementary diagnostic method. A meta-
analysis by Mei et al[18] showed high pooled sensitivity (95%) with acceptable pooled 
specificity (67%) and moderate accuracy (summary Receiver Operating Characteristic: 
90.46%) of EUS EG in diagnosing solid pancreatic masses. Improvement of diagnostic 
accuracy may be achieved with application of more meticulous computer-aided 
diagnosis method for EUS-EG[18]. Recent findings from a single center retrospective 
study by Altonbary et al[19] also demonstrated promising results of EUS EG with 
combination of elasticity score and strain ratio in discerning solid pancreatic lesions 
(sensitivity 99%, specificity 94.6%, and accuracy 97%). Moderately well diagnostic 
performance in ruling out malignancy was also demonstrated by a multicenter study 
conducted in 218 patients with small (< 15 mm) solid pancreatic lesions (sensitivity 
84%). Higher sensitivity (96%) was shown when EUS EG was used in diagnosing 
Pancreatic Ductal Adenocarcinoma (PDAC)[20].

CLINICAL DILEMMA IN PANCREATIC LESION EVALUATION AND IMPACT 
OF EUS EG INNOVATION STUDY
Several conditions have been considered as clinical dilemma, such as small pancreatic 
lesion which also can be found incidentally, pseudo-tumoral in chronic pancreatitis, 
negative FNA biopsy (FNAB) results, and possibility of needle tract tumor seeding[3-
5]. It has been known that pancreatic cancer is mostly dominated by PDAC, a highly 
aggressive tumor with very poor prognosis and high mortality rate. It has been 
reported that Negative Predictive Value (NPV) of FNAB result can vary, ranging from 
16% to 85%. In the case of negative biopsy, patients with suspicion of PDAC should be 
referred immediately for surgical approach consideration. Spier et al[21] published a 
small retrospective EUS-FNA study in patients who had suspected pancreatic lesions 
with negative biopsy results. The study found that 30.9% of patients with negative/ 
non-diagnostic FNA results were later diagnosed with pancreatic cancer (mean time 66 
d to 360 d after FNA procedure)[21]. RTE has been proposed as a supplementary 
method to improve diagnostic performance of EUS-FNA, especially in terms of 
available rapid on-site tissue evaluation by a cytopathologist[22,23]. A retrospective 
study in 54 subjects with solid pancreatic lesions highlighted the benefit of combining 
RTE and EUS-FNA (sensitivity 94.4%, specificity 93.4%, and accuracy 100%) compared 
to the diagnostic performance of RTE alone (sensitivity 86.9%, specificity 75%, and 
accuracy 85.1%)[22].

Possibility of tumor seeding has become a challenging issue as it will impact on 
faster disease progression, patient’s clinical-based management, and patient’s survival 
after surgery or non-surgical biliary drainage procedure in patients with bile duct 
obstruction. There has been a debate on whether this tract seeding issue should be 
underestimated or overestimated, since most of the studies use retrospective study 
design. Small sample size and no clear tumor dissemination finding also become 
issues on the studies of needle tract seeding related to EUS-FNA[5]. The first reported 
case of EUS-FNA-related tumor dissemination was delivered in 2003, in which 
peritoneal dissemination occurred in intraductal papillary mucinous tumor (T1N0M0)
[5]. Approximately 80% of all needle tract seeding cases following EUS-FNA happened 
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in pancreatic cancer and pancreatic cystic tumors located in the body or tail of 
pancreas. In most of the cases, 22-G FNA needle was used, even though the 
relationship between needle size or number of needle passes and the risk of tumor 
seeding is still unclear. The range of interval from EUS-FNA procedure to diagnosis of 
needle tract seeding is 3-48 mo[24].

EG EUS multicenter study by Ignee et al[20] in small solid pancreatic lesions showed 
that sensitivity and specificity were 84% and 67%, respectively, with 56% of positive 
predictive value and 89% of NPV. In PDAC cases, sensitivity and specificity were 96% 
and 64%, respectively. Based on this study, it is clear that early detection in less than 
15 mm pancreatic lesion might prevent the delay for surgery management even 
though PDAC tends to be found in larger lesions (> 15 mm)[20]. Another prospective 
study was conducted by Dawwas et al[25] in patients underwent quantitative EUS EG 
procedure for differentiating pancreatic malignant lesion with pancreatic inflam-
matory lesion. The examination results were compared to histology or cytology results 
with follow-up imaging study. The sensitivity and specificity with quantitative EUS 
EG were 100% and 95.7%, respectively. This study has shown the important value of 
EUS EG in reducing the need of biopsy as the EUS-FNAB procedure still carries 
potentially harmful risks, such as pancreatitis and bleeding[25]. In 2018, Dong et al[26] 
reported the role of combination strategy using B-mode ultrasound, contrast-enhanced 
ultrasound (CEUS), and EUS EG in small case series of isolated pancreatic tuberculosis 
(PTB) cases. These findings were then compared with the clinical findings of PDAC 
cases. In PTB cases, common bile duct and pancreatic duct dilatation are considered to 
be rare findings, however, it is common to find multiple peripancreatic lymph nodes 
enlargement. The PTB lesion was showing less demarcation, whereas clear 
demarcation was found in PDAC cases. It might be difficult to differentiate PTB from 
PDAC cases by using the tissue stiffness result from EUS elastrography alone, 
however, with CEUS combination, PTB lesion showed hyperenhancement, whereas in 
PDAC cases showed hypoenhancement. In addition, peripancreatic pseudocysts were 
more commonly observed in PTB cases. This non-invasive strategy can be an accurate 
diagnosis tool with or without biopsy as a clinical-based approach in patients with 
PTB. Consequently, it can also avoid unnecessary surgical management[26].

A former retrospective analysis study by Iordache et al[27] in 50 consecutive patients 
with negative results of EUS-FNA who sequentially underwent EUS EG and CE-EUS, 
found that EUS EG has similar results with CE-EUS in diagnosing possibility of 
pancreatic malignancy. However, combination of both methods showed excellent 
specificity (100%). Another interesting finding from this study is the excellent 
specificity (100%) exhibited by CEH-EUS in patients with soft/mixed or hard (low 
strain) appearance from EG. Excellent specificity was shown by CEH-EUS for distin-
guishing chronic pancreatitis in soft/mixed (high strain) appearance; while in hard 
appearance, CEH-EUS exhibited outstanding specificity (100%) and sensitivity 
(88.89%) for distinguishing pancreatic cancer. These results suggested that hard 
hypovascular masses can indicate the presence of pancreatic adenocarcinoma or other 
malignant masses, whereas soft hyper-/isovascular masses can indicate the presence 
of chronic pseudotumoral pancreatitis or other benign masses[27]. Another pro-
spective multi-center study by Costache et al[28] about clinical impact of combination 
between SH EUS EG and CE-EUS in patients with pancreatic masses, showed that 
combined CE-EUS with SH EUS EG had similar sensitivity. However, higher 
specificity (81.48%) was found in the combination method for diagnosing pancreatic 
carcinoma in comparison to SH EUS EG with several cut-offs (80; 60; 40; 33). 
Meanwhile, the specificity of single method was ranging from 29.63% to 62.96% based 
on several cut-offs. The overall diagnostic accuracy in combination method reached 
93.81% for pancreatic cancer, whereas in the single method only ranged from 79.38 % 
to 80.41%. Overall, this study indicated that combination of CE-EUS and semi-
quantitative EUS EG can be utilized as a supplementary modality for distinguishing 
benign and malignant pancreatic masses and for continuous follow-up evaluation of 
patients during neo-adjuvant chemotherapy and/or anti-angiogenic therapy adminis-
tration[28]. A case series study by Jafri et al[29] showed the potential of EUS EG as a 
complementary method along with conventional EUS for targeting the FNA procedure 
in patients with suspected pancreatic masses. Also, in this case series, subjects with 
low risk of malignancy from EUS and EG examinations did not develop any interval 
cancer during the mean period of 2-year follow-up[29].
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CURRENT STATUS AND LIMITATIONS
According to most studies on EUS EG, it has been shown that EUS EG has a big role in 
managing pancreatic lesions. This method can be a primary choice for diagnosis 
evaluation in patients who have coagulation disorders or history of anticoagulation 
drugs consumption, who are not suitable yet for chemotherapy, and who have the 
possibility for direct surgical approach due to the needle tract seeding risk during 
FNA procedures. In targeting unclear demarcation and pancreatic lesion image, EUS 
EG can also be an additional tool. However, it cannot be used for pancreatic cystic 
mass tumor evaluation. Studies to differentiate between malignant and benign 
pancreatic mass lesion have not shown any strong evidence yet as some studies were 
only performed with small sample size, and some only used retrospective study 
analysis.

The main objectives of performing EG for the pancreas are to ensure that the 
elastogram is sufficiently meticulous to represent the histological structures and to be 
reproducible adequately. These objectives, however, are hampered by the small size of 
the pancreas, the depth of its anatomical location in the center of the body, the 
technical difficulties in extracting biopsy specimens, and the strong influence of aortic 
pulsation to pancreas. In addition, EG is an operator-independent modality[30]. Other 
pitfalls of EUS EG are the difficulty in controlling tissue compression by the EUS 
transducer, the presence of motion artifacts due to respiratory movement, as well as 
the careful selection of ROI from its surrounding soft tissues[31].

Overall, the application of EUS EG is one of the most potential roles of artificial 
intelligence (AI) in pancreaticobiliary disorders. In general, AI refers to the capacity of 
a computer to imitate the cognitive intelligence or the learning capability of human 
being in order to perform tasks appropriately. In medicine, AI consists of machine 
learning and deep learning, which are often utilized reciprocally[32]. A cross-sectional 
feasibility study in Denmark established the importance of AI in distinguishing 
pancreatic cancer from chronic pancreatitis through the application of neural network 
analysis of dynamic sequences of EUS EG. In this study, the sensitivity, specificity, and 
accuracy were 91.4%, 87.9%, and 89.7%, respectively. In addition, the application of 
multilayer perceptron neural networks with high training performance was able to 
reach an accuracy as high as 97%[33]. Another prospective and multicenter study in 
258 patients by Săftoiu et al[34] also highlighted the efficacy of AI in EUS EG. The 
utilization of multilayer perceptron as an artificial neural network demonstrated 
moderately high diagnostic performance (sensitivity 87.59%, specificity 82.94%, 
AUROC 0.94, training accuracy 91.14%, and testing accuracy 84.27%) in diagnosing 
focal pancreatic lesions.

CONCLUSION
EUS EG is a promising method to improve the diagnostic accuracy as well as helping 
to decide which type of management is probably more suitable for patients with 
pancreatic mass lesion. However, it would still need more studies with further consid-
erations, such as adequate operator training, expertise, availability, and its cost-effect-
iveness in comparison to other imaging options. Integrating clinical data into artificial 
intelligence techniques concomitantly with real-time imaging results is potentially 
favorable for faster and more accurate clinical-decision making in pancreatic lesion 
evaluation.
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Abstract
Gastrointestinal angiodysplasia (GIAD) is defined as the pathological process 
where blood vessels, typically venules and capillaries, become engorged, tortuous 
and thin walled – which then form arteriovenous connections within the mucosal 
and submucosal layers of the gastrointestinal tract. GIADs are a significant cause 
of gastrointestinal bleeding and are the main cause for suspected small bowel 
bleeding. To make the diagnosis, gastroenterologists rely on the use of video 
capsule endoscopy (VCE) to “target” GIAD. However, the use of VCE can be 
cumbersome secondary to reader fatigue, suboptimal preparation, and difficulty 
in distinguishing images. The human eye is imperfect. The same capsule study 
read by two different readers are noted to have miss rates like other forms of 
endoscopy. Artificial intelligence (AI) has been a means to bridge the gap between 
human imperfection and recognition of GIAD. The use of AI in VCE have shown 
that detection has improved, however the other burdens and limitations still need 
to be addressed. The use of AI for the diagnosis of GIAD shows promise and the 
changes needed to enhance the current practice of VCE are near.
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Core Tip: Video capsule endoscopy (VCE) is the primary modality to diagnose 
gastrointestinal angiodysplasias (GIADs). Typically, gastroenterologists rely on VCE 
to make a diagnosis of GIAD prior to referral for deep enteroscopy. However, VCE 
analysis can be cumbersome secondary to reader fatigue, suboptimal preparation, and 
difficulty in distinguishing images. Use of artificial intelligence in VCE has shown 
improved GIAD detection, however limitations exist that still need to be addressed. 
The use of artificial intelligence for GIAD diagnosis shows promise and changes 
needed to enhance current VCE practices are near.
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INTRODUCTION
Gastrointestinal angiodysplasia (GIAD) is defined as the pathological process where 
blood vessels, typically venules and capillaries, become engorged, tortuous and thin 
walled – which then form arteriovenous connections within the mucosal and 
submucosal layers of the gastrointestinal (GI) tract[1]. GIADs are found throughout 
the GI tract, but they most often occur in the small intestine (80% jejunum, 57% 
duodenum), stomach (22.8%) and less frequently the ascending colon (11.4%)[2]. The 
gold standard in diagnosis of GIAD has been endoscopy, with the addition of video 
capsule endoscopy (VCE) in 2001. The technology of VCE radically improved the 
diagnostic yield of GIADs as well as other small bowel diseases. VCE provided a 
means to target lesions in the small bowel and has played a role in the development of 
balloon enteroscopy for advanced diagnoses and treatment options. Although, VCE 
improved the diagnostic yield of GIADs, as well other as small bowel diseases, there 
are several challenges which a reader continues to face. First, review of these images 
has been an arduous process, which can last from 30-40 min to over an hour. The 
abnormalities that are of interest may only present in a couple of frames that last a 
minute or less. Second, the long reading time may lead to reader fatigue and a 
reduction in diagnostic accuracy. To address these issues, there have been several 
advances made to VCE technology such as a Quick-view algorithm, suspected blood 
indicator and adaptive frame rate technology. None of these technologic advances 
have improved diagnostic accuracy[3-5]. Despite these limitations, VCE is still the 
widely used technology to diagnose GIAD and has become a growing focus for the use 
of artificial intelligence (AI) to improve the identification of GIAD. We discuss the 
implementation of computer software known as AI, machine programs capable of 
learning and simulating patterns like the human brain.

TYPES OF AI
Several layers exist within AI and have been utilized throughout the field of gastroen-
terology, especially endoscopy. One aspect is machine learning (ML), a discipline 
where large, complex data sets are used to predict outcomes and identify patterns 
using various algorithms[6]. These algorithms are often trained to differentiate data 
sets or characteristics such as color, size and shape, which help to distinguish between 
lesions within the GI tract. Beyond ML, two other types of AI exist, artificial neural 
networks (ANNs) and convolutional neural networks (CNNs). ANNs utilize the 
patterns observed within data sets to perform complex task of cross comparison at 
various points of calculation. Therefore, numerous computed data sets can be collected 
at any stage and compared to provide one outcome. This simulates the intelligence 
and neurobiological processes of the human brain, as the computer continues to learn 
to perform new task through automated analysis. CNNs use real time or still images to 
distinguish between normal and abnormal, then further investigate abnormal objects 
to identify a diagnosis with relatively highly accuracy and efficacy (Table 1).

https://www.wjgnet.com/2689-7164/full/v2/i4/179.htm
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Table 1 Artificial intelligence methods for gastrointestinal angiodysplasia detection[17]

Artificial 
intelligence Description Function Advantages Disadvantages

Ability of a computer program to 
learn 

Automation of tasksMachine learning 

Algorithm workflow improves 
performance

Discern logic-based rules 
from input and output 
data

Detect patterns between 
input and output data

Requires high-quality data likely 
to have some causal link

Use of weighted/graded signals to 
perceive data

Mapping performance 
between input and output 
data

Requires labeled dataArtificial neural 
network 

Use of computational 
communication

Adaptive learning

Adaptive learning capability Requires large volumes of data

Image detection Highly dependent on a training 
modelor models

Convolutional 
neural network 

Interpretation through three-
dimensional convolutional layers

Computer vision Highly accurate image 
recognition and classification

Limited by image rotation or 
orientation 

CNNs have become one of the most commonly used AI modalities, particularly in 
VCE, which has significantly aided in the detection of GIADs. The use of AI, partic-
ularly CNNs, has created a new era in capsule endoscopy (CE) capable of improving 
lesion detection rates, reducing capsule reading time, as well as reducing reviewer 
fatigue. This shift towards computer-aided diagnostic tools in clinical practice may 
represent a future of common practice. Further investigation with AI in computer-
aided diagnosis of GIAD leans heavily towards CE. Three of the most popular areas of 
CNN implementation include newly developed algorithms, single-shot multibox 
detection (SSD) and region of interest (ROI) color contrast analysis.

MODALITIES WHERE AI CAN BE USED WHEN DETECTING GIAD
In 2019, Leenhardt et al[7] analyzed 2946 still frames with vascular lesions utilizing 
CNN, where two data sets were used to create a trained algorithm for GIAD detection. 
The first dataset, also termed the “training and learning phase,” consisted of a CNN 
analysis of 2946 still frame images containing vascular lesions for characteristic 
analysis of abnormal lesions based on size, shape, color, pattern, and contour. This 
helped the CNN distinguish GIADs within a still frame. The second data set utilized 
the learned features from the previous data set, which were applied to new images to 
detect and located GIAD within a still frame. The primary and secondary endpoints 
were the sensitivity and specificity of the computer aided diagnosis (CADx) algorithm. 
These values were 100% and 96% respectively[7].

Similarly, Hwang et al[8] developed their own CNN-based AI model bases on a 
collection of still images later classified as ulcerative or hemorrhagic, which were 
augmented by rotating each image by 90 degrees 3 times and flipping each rotated 
image horizontally. As a result, a collection of 30224 abnormal images (11776 
hemorrhagic lesions and 18,448 ulcerative lesions) and 30224 normal images were used 
to train their CNN model by observing similar outcomes in the Leenhardt et al[7] 
study. However, Hwang et al[8] went a step further in developing their own CNN 
based on VGGnet, a CNN that incorporates more convolution filters or layers when 
screening an image to improve its accuracy of image recognition[9]. Using two 
training protocols, Hwang et al[8] developed a binary model, trained to detect any 
pathological images as abnormal without distinguishing the types of lesions, and a 
combined model, trained to detect distinctive hemorrhage or ulcerative lesions.

Another type of CNN is called SSD which is very similar to CNNs described above. 
However, in this instance, an expert endoscopist will demarcate a rectangular box 
around a lesion within an image making it much faster to provide a unifying 
framework for both training and interpretation[10]. Tsuboi et al[11] incorporated this 
technique with 2237 still images of small-bowel GIAD captured by VCE and placed a 
bounding box where GIAD were found. Through this method, Tsuboi et al[11] were 
able to test their ability to detect GIAD using an area under the receiver operating 
characteristic (ROC) curve for the probability score, as well as sensitivity, specificity, 
PPV and NPV of their CNN’s detection rate for GIAD and accurately distinguish their 
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location within an image. Lin et al[12] delved deeper into this approach by combining 
SSD with RetinaNet, a CNN that mimics VGGnet described above, with the enhanced 
ability to find shortcuts when comparing images in order to limit the number of layers 
used when training. Otani et al[13] was able to analyze and characterize images of 
erosions and ulcers, GIAD and tumors, then compared the ROC, sensitivity, 
specificity, and accuracy of their AI detection system for each lesion image.

Another prevalent area of CNN performance is color contrast analysis. Since color is 
one of the most relevant features in diagnosing GIAD, Noya et al[14] used color to 
detect potential regions of GIAE within an image. This is done in 4 categorized steps: 
Image preprocessing (contrast enhancement), selection of potential ROI (geometric 
outline of colored pixels making up the angiodysplastic lesion), feature extraction and 
selection (labeling a ROI based on color, texture and geometric pattern) and classi-
fication of a ROI (recognizing patterns of potential angiodysplasia lesions as 
pathological vs. non-pathological). Comparably, Iakovidis and Koulaouzidis[15] use 
color-based pattern recognition to separate pathological vs. normal lesions from 137 
still images, which they placed into four categories: vascular, inflammatory, 
lymphangiectatic, and polypoid. Iakovidis and Koulaouzidis[15] used a 4-step categor-
ization process, like Noya et al[14] above, however, they differ with the introduction of 
salient point saturation (SPS), an automated extraction algorithm which selects salient 
points in a digital image based on changes in observed color intensity[16].

OUTCOMES OF AI IN DETECTING GIAD
The effects of AI computer-aided diagnosis in GIAD are producing promising results 
that individual practitioners may hope to incorporate into their practices. The 
diagnostic yield of GIADs using AI leans heavily on VCE with the use of CNNs. 
Newly developed algorithms, such as SSD and ROI color contrast analysis have been 
areas of particular focus in medical literature. Each modality of these CNN 
implementing tools stands on their own, as very limited research compares these 
techniques by using the same data set or still images for a head-to-head comparison.

The diagnostic performance of a CADx algorithm for the detection of GIAD using 
VCE, assess its diagnostic precision as a means for a segmental approach in localizing 
lesions. Leenhardt et al[7] found a sensitivity of 100% [95% confidence interval (CI), 
100%-100%]. Secondary endpoints revealed a specificity of 96.0% (95%CI: 93.78%-
98.22%), a positive predictive value of 96.15% (95%CI: 93.97%-98.33%), a negative 
predictive value of 100.0% (95%CI: 100%-100%) and a kappa coefficient of reprodu-
cibility at 1.0[7]. Only "clean" images were used in their data set, which meant that 
images with poor preparation quality or the presence of bubbles would not be 
included. This is a limitation to the study, which the authors point to. In comparison, 
the algorithm of Hwang et al[8] combined (all images trained separately as 
hemorrhagic or ulcerative) vs binary training (all images trained without segregation) 
approach in the development of an automated CNN, demonstrated that combined 
training revealed higher sensitivity (97.61% vs 95.07%, P < 0.001). Although, accuracy 
classifying GIADs as small bowel lesions was 100% in both the combined and binary 
training models.

The use of SSD by Tsuboi et al[11] to automatically detect GIAD in VCE images 
focuses on diagnostic accuracy utilizing t-test analysis. The study reported a ROC 
curve for CNN detection of GIAD at 0.999. The cut-off value for the probability score 
was 0.36, exhibiting a sensitivity, specificity, positive predictive value, and negative 
predictive value of their CNN at 98.8%, 98.4%, 75.4%, and 99.9% respectively at this 
value[11]. Otani et al[13] enhanced CNN by combination of SSD with RetinaNet 
detection of vascular lesions displayed an AUC 0.950 (95%CI: 0.923-0.978) among the 
internal cohort (images obtained for training) and 0.884 (95%CI: 0.874-0.893) among 
the external cohort (randomly obtained imaged for cross-validation). This is an 
observable difference compared to Tsuboi et al[11] study, although still relatively high 
in automated lesion detection.

Color contrast has been used as well. Iakovidis and Koulaouzidis[15] assessed the 
validity of color-based pattern recognition in the classification of pathologic lesions 
with the addition of SPS, including p0 GIAD (low probability of bleeding), p1 GIAD 
(intermediate probability of bleeding) and p2 GIAD (high probability of bleeding). 
Classification per type of GIAD revealed an AUC of 69.9 ± 15.8 (P0 GIAD), 97.5 ± 2.4 
(P1 GIAD), and 79.6 ± 13.1 (P3 GIAD) respectively[15]. Noya et al[14] used the 
combination of a color-based, texture, statistical and morphological features analysis 
for GIAD detection. Utilization of this method led to a sensitivity of 89.51% and a 
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specificity of 96.8%, as well as an AUC 82.33% ± 10.43% detection of GIAD[14].

CONCLUSION
GIADs are a significant cause of GI bleeding and are the main cause for suspected 
small bowel bleeding. To make the diagnosis, gastroenterologists rely on the use of 
VCE to “target” GIAD. However, the use of VCE can be cumbersome secondary to 
reader fatigue, suboptimal preparation, and difficulty in distinguishing images. 
Humans are imperfect. The human eye is imperfect. The same capsule read by two 
different readers are noted to have miss rates like other forms of endoscopy. The use of 
AI in VCE have shown that detection has improved, however the other burdens and 
limitations still need to be addressed. AI used for the diagnosis of GIAD shows 
promise and the changes needed to enhance the current practice of VCE are near.
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Abstract
Early gastrointestinal (GI) cancer has been the core of clinical endoscopic work. Its 
early detection and treatment are tightly associated with patients’ prognoses. As a 
novel technology, artificial intelligence has been improved and applied in the field 
of endoscopy. Studies on detection, diagnosis, risk, and prognosis evaluation of 
diseases in the GI tract have been in development, including precancerous lesions, 
adenoma, early GI cancers, and advanced GI cancers. In this review, research on 
esophagus, stomach, and colon was concluded, and associated with the process 
from precancerous lesions to early GI cancer, such as from Barrett’s esophagus to 
early esophageal cancer, from dysplasia to early gastric cancer, and from 
adenoma to early colonic cancer. A status quo of research on early GI cancers and 
artificial intelligence was provided.

Key Words: Artificial intelligence; Early esophageal cancer; Early gastric cancer; Early 
colonic cancer
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Core Tip: Diagnosis and management of early gastrointestinal (GI) cancer is one of the 
cores of clinical practice. Endoscopy is the indispensable tool for standard surveillance 
and management. Artificial intelligence is a novel technology used in some fields of 
cancer including early GI cancer. Therefore, we provide an overview and introduce 
how artificial intelligence can be applied to endoscopy on early GI cancer mainly 
including esophagus, stomach, and colon from the point of view of the clinical 
diagnosis and management guidelines. Studies with quality control on the diagnosis 
and management of early GI cancer and their precancerous lesions have also been 
concluded.
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INTRODUCTION
Artificial intelligence (AI) is essentially a process of learning human thinking and 
transferring human experience. Recognizing images based on artificial neural 
networks/convolutional neural networks (CNNs) is one of the novel and main fields 
of AI. Computer-aided diagnosis (CAD) systems are designed to interpret medical 
images using advances in AI from method learning to deep learning (DL) and includes 
mainly three groups (CADe, CADx, and CADm)[1].

AI has been widely involved in cancer[2]. In regard to digestive cancer, it has been 
utilized to find more intelligent ways to facilitate detection, diagnosis, risk evaluation, 
and prognosis. For instance, radiomics machine learning signature for diagnosing 
hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules was 
also validated in a multicenter retrospective cohort, which could enhance clinicians’ 
decisions[3].

In the aspect of pancreatic cancer, it continues to be one of the deadliest 
malignancies with less than 10% overall survival rate. Survival rates will increase if 
pancreatic cancer can be detected at an early stage[4]. Intraductal papillary mucinous 
neoplasms are precursor lesions of pancreatic adenocarcinoma. A DL model was 
shown to be a more accurate and objective method to diagnose malignancies of 
intraductal papillary mucinous neoplasms in comparison to human diagnosis and 
conventional endoscopic ultrasonography (EUS) images[5]. Pancreatic cystic lesions 
are also precursors of pancreatic cancer. Radiomics utilizing quantitative image 
analysis to extract features in conjunction with machine learning and AI methods 
helped differentiate benign pancreatic cystic lesions from malignant ones[6]. An 
artificial neural network was trained to help predict pancreatic ductal adenocarcinoma 
based on gene expression[7]. An AI-assisted CAD system using DL analysis of EUS 
images was efficient to help detect pancreatic ductal carcinoma[8]. The artificial neural 
network model could accurately predict the survival of pancreatic adenocarcinoma 
patients as a useful objective decision tool in complex treatment decisions[9].

In this review, we concluded the application and research of AI based on 
endoscopic examination related to early gastrointestinal (GI) cancer mainly including 
esophagus, stomach, and colon. The progression of carcinogenesis from Barrett’s 
esophagus (BE) to early esophageal cancer (EEC), from dysplasia to early gastric 
cancer (EGC), and from adenoma to early colonic cancer (ECC) were reviewed in 
detailed as well as related AI research on the histopathology and invasion depth 
detection of these GI cancer.

LITERATURE SEARCH
This review was aimed to make a qualitative only review of the application of AI on 
early GI cancer. We searched the PubMed database for articles that were published in 
the last 5 years using the term combinations of AI/DL and EEC, esophageal squamous 
cell carcinoma (ESCC), esophageal adenocarcinoma (EAC), EGC, and ECC for early GI 
cancer, and term combinations of AI/DL and precancerous lesions [BE/ 
dysplasia/chronic atrophic gastritis (CAG)/gastric intestinal metaplasia/Helicobacter 
pylori/adenoma/polyp/inflammatory bowel diseases] for precancerous lesions of 
early GI cancer. Endoscopic-related results were qualitatively concluded in Table 1.

SEARCH RESULTS
Initially, a total of 424 articles were identified. After manually screening and reading, 
22 studies were tabulated in Table 1, and 2 prospective studies on detecting adenoma 
were also added in Table 1. Meanwhile, 13 studies on precancerous lesions of early GI 
cancer were showed in the review. The flowchart was presented in Figure 1.

https://www.wjgnet.com/2689-7164/full/v2/i4/185.htm
https://dx.doi.org/10.37126/aige.v2.i4.185
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Table 1 Early gastrointestinal cancer and artificial intelligence

Ref. Target 
disease 

Prospective/ 
retrospective AI Endoscopy 

image
Training 
dataset

Validation 
dataset Sensitivity Specificity

Accuracy1

/AUC

[1] Diagnosing 
ESCC and 
EAC

Retrospective CNNs 
(SSD)

WLI and NBI 8428 
images

1118 images 98% 95% 98%1

[2] Diagnosing 
ESCC

Retrospective CAD 
(SegNet)

NBI/videos 6473 
images

6671 images 98.04% 95.03% 0.989

[3] Detecting 
EEC and BE

Retrospective CAD 
(ResNet-
UNet)

WLI 494364 
images

1704 images 90% 88% 89%1

[4] Detecting 
E/J cancers

Retrospective CNNs 
(SSD)

WLI and NBI 3443 
images

232 images 94% 42% 66%1

[5] Detecting 
ESCC

Retrospective DCNNs-
CAD

NBI 2428 
images

187 images 97.80% 85.40% 91.4%1

[6] Diagnosing 
BE and EAC

Retrospective CAD 
(ResNet)

WLI and NBI 148/100 Leave-one 
patient-out 
cross 
validation

97%(WLI)/94%(NBI) 88% 
(WLI)/80%(NBI)

[7] Diagnosing 
ESCC

Retrospective CAD (FCN) ME-NBI 3-fold cross-
validation

[8] Detecting 
EAC

Retrospective CNNs 
(SSD)

WLI 100 images 96% 92%

[9] Detecting 
EGC

Retrospective CNNs WLI 348943 
images

9650 images 80.00% 94.80%

[10] Diagnosing 
EGC

Retrospective CNNs WLI 21217 
images

1091 images 36.8 91.20%

[11] Diagnosing 
EGC

Retrospective CNNs 
(Inception-
v3)

ME-NBI 1702 
images

170 images 91.18% 90.64% 90.91%1

Detection 
(0.981)

[12] Diagnosing 
EGC

Retrospective CNNs 
(VGG16)

WLI 896 t1a-
EGC and 
809 t1b-
EGC

5-fold cross-
validation

Depth 
prediction 
(0.851)

[13] Detecting 
EGC

Retrospective CNNs 
(VGG16 
and 
ResNet-50)

WLI/NBI/BLI 3170 
images 

94.00% 91.00% 92.5%1

[14] Diagnosing 
EGC

Retrospective CNNs 
(ResNet-50)

WLI 790 
images

203 images 76.47% 95.56% 89.16%1

[15] Detecting 
EGC

Retrospective CNNs 
(SSD)

WLI 13584 
images

2940 images 58.40% 87.30% 0.76

[16] Classifying 
EGC

Retrospective CNNs 
(Inception-
ResNet-v2)

WLI 5017 
images

5-fold cross-
validation

0.85

[17] Diagnosing 
EGC

Retrospective CNNs 
(ResNet-50)

ME-NBI 4460 
images 

1114 images 98% 100% 98.7%1

[18] Detecting 
and 
localizing 
colonic 
adenoma

Representative CNNs 
(VGG16,19, 
ResNet50)

WLI and NBI 8641 
images/9 
videos, 11 
videos

Cross-
validation

[19] Detecting 
ECC

Representative CNNs WLI 190 
images

3-fold cross-
validation 

67.50% 89.00% 81.2%1

/0.871

[20] Classifying 
ECC

Representative CNNs 
(ResNet-
152)

WLI 3-fold cross-
validation

95.40% 30.10%

Detecting 
colonic 

[21] Prospective Cade 1058 patients ADR (29.1% vs 20.3%)
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adenoma

[22] Detecting 
colonic 
adenoma

Prospective Cade 962 patients ADR (34% vs 28%)

1Accuracy is with “1” and AUC is without “1”, e.g., 100%1 means accuracy is 100%.
ADR: Adenoma detection rates; AI: Artificial intelligence; AUC: Area under the curve; BE: Barrett’s esophagus; BLI: Bright light imaging; CAD: Computer-
aided diagnosis; CNN: Convolutional neural network; DCNN: Deep convolutional neural network; EAC: Esophageal adenocarcinoma; ECC: Early colonic 
cancer; EEC: Early esophageal cancer; EGC: Early gastric cancer; E/J: Esophagogastric junctional; ESCC: Esophageal squamous cell carcinoma; ME-NBI: 
Magnifying narrow band imaging; NBI: Narrow-band imaging; SSD: Single-Shot Multibox Detector; WLI: White-light imaging.

Figure 1 Flow chart of study selection and logic arrangement of review. BE: Barrett’s esophagus; CAG: Chronic atrophic gastritis; EAC: Esophageal 
adenocarcinoma; ECC: Early colonic cancer; EEC: Early esophageal cancer; EGC: Early gastric cancer; ESCC: Esophageal squamous cell carcinoma; GI: 
Gastrointestinal; GIM: Gastric intestinal metaplasia; H. pylori: Helicobacter pylori; IBD: Inflammatory bowel diseases.

AI AND EEC FROM PRECANCEROUS LESIONS TO EEC
Esophageal cancer is one of most common cancers related to a considerable decline in 
health-related quality of life and a reduction in survival rate. ESCC and EAC are two 
main histological types. Many patients with ESCC have a history of heavy tobacco and 
alcohol use[10] as well as other risk factors including polycyclic aromatic hydro-
carbons, high-temperature foods, diet, oral health, microbiome, and genetic factors
[11]. Some risk factors for EAC have been considered mainly as gastroesophageal 
reflux disease, BE, obesity, and tobacco smoking as well as genetic variants[12]. 
Chronic gastroesophageal reflux disease can cause metaplasia from the native 
squamous cell mucosa to a specialized columnar epithelium[13]. BE and dysplasia in 
squamous epithelium are precancerous lesions to EAC and ESCC, respectively, and 
they are supposed to be as one of the main aims of early diagnosis. Endoscopic 
diagnosis of EEC, white-light imaging (WLI), iodine staining, narrow-band imaging 
(NBI), and biopsy have been widely used clinically[14].

There is also study on AI being involved in preclinical stage. For instance, the 
diagnostic ability of AI using DL to detect esophageal cancer including superficial and 
advanced squamous cell carcinoma and adenocarcinoma was characterized as highly 
sensitive (98%) and efficient based on WLI images. Small cancer lesions less than 10 
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mm in size could be detected[15].
In terms of EAC, AI using DL to diagnose superficial esophagogastric junctional 

adenocarcinoma showed favorable sensitivity (94%) and acceptable specificity (42%) of 
WLI images compared with experts[16]. A CAD using DL (CAD-DL) model was 
trained by two datasets based on two different kinds of images (WLI and NBI images) 
used to detect early EAC. The diagnosis of EAC by CAD-DL reached sensiti-
vities/specificities of 97%/88% for WLI images and sensitivities/specificities of 
94%/80% for NBI images, respectively (Augsburg dataset) and 92%/100% (another 
dataset) for WLI images[17]. Additionally, one research compared several AI methods 
including regional-based CNN (R-CNN), Fast R-CNN, Faster R-CNN, and Single-Shot 
Multibox Detector. Single-Shot Multibox Detector outperformed other methods 
achieving a sensitivity of 96% in automatically identify EAC[18].

In terms of ESCC, the endocytoscopic system (ECS) helps in virtual realization of 
histology. The CNN method was applied to detect ESCC with an overall sensitivity of 
92.6% based on ECS images aimed at replacing biopsy-based histology[19]. NBI is 
currently regarded as the standard modality for diagnosing ESCC. A CNN model was 
applied to detect ESCC based on NBI images and showed significantly higher 
sensitivity (91%), specificity (51%), and accuracy (63%) than those of endoscopic 
experts[20]. Besides NBI and ECS, AI was also applied in magnified endoscopy (ME). 
The accuracy, sensitivity, and specificity of AI based on ME images were 89%, 71%, 
and 95% for the AI system, respectively[21]. Accuracy, sensitivity, and specificity with 
WLI images were 87%, 50%, and 99%, respectively. Furthermore, as endoscopic 
resection (ER) is often used to treat ESCC when invasion depths are diagnosed as 
intraepithelial–submucosal layer (tumor invasion is within 0.5 mm of the muscularis 
mucosae). The invasion depth of superficial ESCC was also calculated by a CNN 
method based on WLI and NBI images, which demonstrated higher accuracy. The 
diagnosis accuracy of the CNN method was higher in the intraepithelial-lamina 
propria and muscularis mucosa groups (91.2% and 91.4%, respectively) than that in 
the submucosal layer group (67.8%)[22].

Recently, there have been some application and research of AI on precursor lesions 
of EEC including BE and dysplasia in squamous epithelium. For instance, AI could 
enhance the image of volumetric laser endomicroscopy to facilitate the surveillance BE
[23]. The CNN method was developed to recognized early esophageal neoplasia in BE. 
It could correctly detect early neoplasia with the sensitivity of 96.4%, the specificity of 
94.2%, and the accuracy of 95.4%. In addition, the object detection algorithm was able 
to draw a localization box around areas of dysplasia with a mean average accuracy of 
75.33% and sensitivity of 95.60%[24]. Another similar research demonstrated that a 
CAD system used five independent endoscopy datasets to detect early neoplasia in 
patients with BE. In dataset 4, the CAD classified images as containing neoplasms or 
non-dysplastic BE with 89% accuracy, 90% sensitivity, and 88% specificity. The CAD 
also identified the optimal site for biopsy of detected neoplasia in 97% of cases in 
dataset 4[25].

Moreover, AI was also applied in esophageal histopathology; attention-based deep 
neural networks were used to detect cancerous and precancerous esophagus tissue on 
histopathological slides. Classification accuracies of the proposed model were 85% for 
the BE-no-dysplasia class, 89% for the BE-with-dysplasia class, and 88% for the 
adenocarcinoma class[26].

AI AND EGC FROM CAG AND DYSPLASIA TO EGC
EGC is dened as a cancer conned to the mucosa or submucosa, regardless of lymph 
node metastasis (LNM). Standard WLI and image enhancement endoscopy, such as 
NBI and ME, have been widely used in screening and surveillance of EGC as well as 
EUS, which can enable the precise assessment of the risk of LNM of EGC[27]. Risk 
factors include Helicobacter pylori infection, age, high salt intake, diets low in fruit and 
vegetables, and genetic factors[28]. ER is a minimally invasive treatment for EGC with 
negligible risk of LNM[29]. Patients with CAG, intestinal metaplasia, or dysplasia are 
at risk for gastric adenocarcinoma and are recommended to accept the regular 
endoscopic surveillance. Virtual chromoendoscopy can guide biopsies for staging 
atrophic and metaplastic changes and can target neoplastic lesions[30]. The 5-year 
survival rate of EGC patients is significantly higher than that of advanced GC patients
[31,32]. Early detection and treatment are always one of the top priorities.

In regard to the application of AI in EGC, there are some considerations both related 
on the promise such as the benefits for endoscopists and patients and limitations[33]. 
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To detect and diagnose EGC via ME with NBI (ME-NBI) requires considerable 
experience; AI-assisted CNN CAD system based on ME-NBI images was constructed 
to diagnose EGC, and the overall accuracy, sensitivity, and specificity of the CNN 
were 98.7%, 98.0%, and 100%, respectively, in a short period of time[34]. Different 
deep CNN methods have been designed (such as VGG, Single-Shot Multibox Detector, 
and ResNet) based on different image types (such as WLI, NBI, and chromoen-
doscopy) and mucosal backgrounds (normal mucosa, superficial gastritis, and erosive 
mucosa) (shown in Table 1). There was also research on differentiating EGC from 
gastritis[35] and peptic ulcer[36] achieving reliable accuracy.

Moreover, training with video is considered to improve accuracy in a real clinical 
setting. A CNN model based on videos demonstrated a high detection rate (94.1%) 
with a high processing speed[37]. Furthermore, CNN-CAD was applied to diagnose 
the invasion depth of GC based on WLI images and distinguish EGC from advanced 
GC, with the sensitivity of 76.47%, specificity of 95.56%, and accuracy of 89.16%[38]. 
Another model was also involved in invasion depth. For instance, a CNN method 
(lesion-based VGG-16 model) was used to classify EGC with of sensitivity (91.0%), 
specificity (97.6%), and accuracy (98.1%), respectively. The prediction of invasion 
depth achieved sensitivity (79.2%), specificity (77.8%), and accuracy (85.1%), 
respectively, higher than results of non-lesion-based models, indicating a lesion-based 
CNN was an appropriate training method for AI in EGC[39].

In terms of histopathology, a CNN model trained with pixel-level annotated 
hematoxylin and eosin stained whole slide images achieved a sensitivity near 100% 
and an average specificity of 80.6% in diagnosing GC, aimed at alleviating the 
workload and increasing diagnostic accuracy[40]. Similarly, AI automatically classified 
GC in hematoxylin and eosin stained histopathological whole slide images from 
different groups and demonstrated favorable results[41,42]. Besides endoscopic 
images, machine learning based on radiographic-radiomic images could help predict 
adverse histopathological status of GC[43]. Dual-energy computed tomography based 
DL radiomics could improve LNM risk prediction for GC[44]

In the aspect of gastric precancerous conditions, the application of AI has also been 
focused. For example, atrophic gastritis, as a kind of precancerous condition was 
diagnosed by the pretrained CNN based on WLI images achieved an accuracy of 93% 
in an independent dataset, outperforming expert endoscopists[45]. The CNN method 
was trained by WLI images of gastric antrum in diagnosing CAG, and the diagnostic 
accuracy, sensitivity, and specificity were 94.2%, 94.5%, and 94.0%, respectively, which 
were higher than those of experts. The further detection rates of mild, moderate, and 
severe atrophic gastritis were 93%, 95%, and 99%, respectively[46]. Helicobacter pylori 
infection, as a dominant cause of CAG and GC, has also been detected via AI method 
based on endoscopic images, such as CNN (GoogLeNet) and CNN (ResNet-50 model), 
and achieved the higher accuracy and reliability in a considerably shorter time[47-49].

AI AND ECC FROM POLYPS AND ADENOMA TO ECC
ECC has been defined as a carcinoma with invasion limited to the submucosa 
regardless of lymph node status and according to the Royal College of Pathologists as 
TNM stage T1NXM0[50]. If the dysplasia is restricted to the layer of epithelium, it is 
defined as low-grade or high-grade intraepithelial neoplasia. Mild or moderate 
dysplasia is the pathological character of low-grade intraepithelial neoplasia, and 
severe dysplasia is the pathological character of high-grade intraepithelial neoplasia or 
preinvasive carcinoma[51]. Colonic precancerous lesions include traditional serrated 
adenoma and sessile serrated adenoma/polyps[52,53]. The submucosal invasion in 
clinical practice is considered as the superficial depth of tumor invasion and further as 
a surrogate for nominal LNM risk. Meanwhile, it can be a general criterion to identify 
whether patients are eligible for local ER or surgery[54]. Curative ER is indicated for 
lesions confined to the mucosal layer or invading less than 1 mm into the submucosal 
layer[50]. Endoscopic screening is proven to decrease the risk of disease-specific 
morbidity and mortality[55]. Current guidelines recommend screening beginning at 
age 50 and continuing until age 75 with fecal immunochemical test every year, flexible 
sigmoidoscopy every 5 years, and/or colonoscopy every 10 years[56]. Early diagnosis 
and treatment are pivotal. When colon carcinoma is detected in a localized stage, the 5-
year relative survival is 91.1%. However, the 5-year relative survival of colon 
carcinoma patients with regional metastasis or distant metastasis were 71.7% and 
13.3%, respectively[57].
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AI has been widely involved in the research of ECC on the aspect of detection, 
diagnosis, classification, invasion depth, and histopathology as well as inflammatory 
bowel diseases associated with inflammation-dysplasia-colon cancer pattern. 
Regarding the detection and diagnosis, a research trained Faster R-CNN with VGG16 
based on WLI images and videos covering ECC (Tis or T1) and precursor lesions 
including hyperplastic polyps, sessile serrated adenoma/polyps, traditional serrated 
adenoma, low-grade intraepithelial neoplasia, high-grade intraepithelial neoplasia, 
and submucosal invasive cancer was conducted. It showed the sensitivity and 
specificity were 97.3% and 99.0%, respectively[58]. Another research used two CNN 
methods trained by WLI images. ResNet-152 showed a higher mean area under the 
curve for detecting tubular adenoma + lesions (0.818), and the mean area under the 
curve for detecting high-grade intraepithelial neoplasia + lesions reached 0.876 by 
ResNet-v2[59]. Regarding the invasion depth, for deeply invasive cT1 (SM) (hereafter, 
cT1b) or deeper colorectal cancer (CRC), there is a 10%–15% or higher risk of lymph 
node metastases. Further surgical resection including lymph node dissection is 
required[60]. For an accurate depth of invasion diagnosis, the CNN method was used 
to assist in cT1b diagnosis and demonstrated that cT1b sensitivity, specificity, and 
accuracy were 67.5%, 89.0%, and 81.2%, respectively[61].

In the research of AI application in precancerous lesions such as polyps, there has 
been some research of AI, especially retrospective research related to polyp detection 
and diagnosis with high accuracy[62,63]. For example, a local-feature-prioritized 
automatic CADe system could detect laterally spreading tumors and sessile serrated 
adenoma/polyps with high sensitivity from 85.71% to 100%[64]. Besides retrospective 
research, AI has been designed into some associated prospective research. For 
instance, a multicenter randomized trial used CAD to detect colorectal neoplasia. It 
showed a significant increase in adenoma detection rates and adenomas detected per 
colonoscopy without increasing withdrawal time (54.8% vs 40.4%). Additionally, the 
detection rate of adenomas 5 mm or smaller was significantly higher in the CAD 
group (33.7%) than in the control group[65]. Another randomized study used CAD to 
detect adenomas and achieved increased adenoma detection rates (29.1% vs 20.3%) 
and the mean number of adenomas per patient (0.53 vs 0.31). Similarly, a higher 
number of diminutive adenomas were found (185 vs 102)[66]. In addition, inflam-
matory bowel diseases including Crohn’s disease and ulcerative colitis are also 
associated precancerous lesions, and some AI methods aiding in scoring have been 
trained, such as DL model in grading endoscopic disease severity of patients with 
ulcerative colitis[67] and in predicting remission in patients with moderate to severe 
Crohn’s disease[68].

In the aspect of histopathology, AI has been used in ECC and precancerous lesions. 
A systematic review has concluded that AI use in CRC pathology image analysis 
included gland segmentation, tumor classification, tumor microenvironment charac-
terization, and prognosis prediction[69]. A DL approach was developed to recognize 
four different stages of cancerous tissue development, including normal mucosa, early 
preneoplastic lesion, adenoma, and cancer and obtained an overall accuracy more than 
95%[70]. Prediction of LNM for early CRC is critical for determining treatment 
strategies after ER. An LNM prediction algorithm for submucosal invasive (T1) CRC 
based on machine learning showed better LNM predictive ability than the conven-
tional method on some datasets[71-82].

PROSPECTS AND CHALLENGES OF AI APPLICATION ON EARLY GI 
CANCER
Endoscopy is usually the first choice in the diagnosis and management of early GI 
cancer. According to the Clinical Practice Guideline, ER is now a standard treatment 
for early GI cancers without regional LNM. Early GI cancers can completely be 
removed by en bloc fashion (resection of a tumor in one piece without visible residual 
tumor) via endoscopic mucosal resection and/or endoscopic submucosal dissection. 
High-definition white light endoscopy, chromoendoscopy, and image-enhanced 
endoscopy such as ME-NBI can be used to assess the edge and depth of early GI 
cancers for delineation of resection boundaries and prediction of the possibility of 
LNM before the decision of ER. Histopathological evaluation can confirm the depth of 
cancer invasion and lymphovascular invasion[83]. From this review, we can see AI as 
a novel technology has been penetrated in early GI cancer detection, diagnosis, 
boundaries, invasion depth, lymphovascular invasion, and prognosis prediction based 
on endoscopic images and videos and pathological tissue slides obtained after ER.
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Both high-quality endoscopy and high-quality AI model construction research are 
crucial to ensure better health outcomes and benefits of patients. Some AI methods 
have been designed to identify and assure the quality of endoscopy to improve the 
detection rate of early GI cancer. In upper GI tract, missed EGC rates are an important 
measure of quality. A deep CNN model was built to monitor blind spots, time the 
procedure, and automatically generate photo-documentation during esophago-
gastroduodenoscopy[84]. Meanwhile, in colonoscopy, poorer adenoma detection rates 
are associated with poorer outcomes and higher rates of post-colonoscopy colonic 
cancer[85]. A deep CNN model was developed for timing withdrawal phase, 
supervising withdrawal stability, evaluating bowel preparation, and detecting 
colorectal polyps[86].

In the aspect of quality control of AI studies related to endoscopy, some limitations 
should be concerned. Different CNN models have demonstrated high accuracies or 
area under the curve and 7 out of 22 more than 90%/0.9 with high sensitivities and 
specificities in Table 1. These limitations were concentrated on the retrospective 
research, the single center, the small sample number, still images, background images, 
the only use of high-quality images, and not all images with lesions identified by gold 
standard such as pathology. They may discount the reliability of the results. As most 
endoscopic-related algorithms are trained in a supervised manner, labeling data is 
important. Meanwhile, videos and large, heterogenous, and prospectively collected 
data are less prone to biases[87].

CONCLUSION
AI has been widely used in medicine, although most studies have remained at the 
preclinical stage. In this review, we provided an overview of the associated application 
of AI in early GI cancer including EEC, EGC, and ECC as well as their precancerous 
lesions. Detection, diagnosis, classification, invasion depth, and histopathology have 
been involved. Indeed, AI will bring benefits to patients and doctors. It will provide 
useful support during endoscopies to achieve more precise diagnosis of early GI 
cancer after more intelligent detection and biopsy with high efficiency and reduce 
workload to fill the lack of clinical resources in the future.
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Abstract
The development of esophageal cancer (EC) from early to advanced stage results 
in a high mortality rate and poor prognosis. Advanced EC not only poses a 
serious threat to the life and health of patients but also places a heavy economic 
burden on their families and society. Endoscopy is of great value for the diagnosis 
of EC, especially in the screening of Barrett’s esophagus and early EC. However, 
at present, endoscopy has a low diagnostic rate for early tumors. In recent years, 
artificial intelligence (AI) has made remarkable progress in the diagnosis of 
digestive system tumors, providing a new model for clinicians to diagnose and 
treat these tumors. In this review, we aim to provide a comprehensive overview 
of how AI can help doctors diagnose early EC and precancerous lesions and make 
clinical decisions based on the predicted results. We analyze and summarize the 
recent research on AI and early EC. We find that based on deep learning (DL) and 
convolutional neural network methods, the current computer-aided diagnosis 
system has gradually developed from in vitro image analysis to real-time 
detection and diagnosis. Based on powerful computing and DL capabilities, the 
diagnostic accuracy of AI is close to or better than that of endoscopy specialists. 
We also analyze the shortcomings in the current AI research and corresponding 
improvement strategies. We believe that the application of AI-assisted endoscopy 
in the diagnosis of early EC and precancerous lesions will become possible after 
the further advancement of AI-related research.

Key Words: Artificial intelligence; Computer-aided diagnosis; Deep learning; Convolu-
tional neural network; Barrett’s esophagus; Early esophageal cancer
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Core Tip: The early diagnosis and early treatment of esophageal cancer (EC) have 
always been a hot spot in clinical medicine research and are of great importance to the 
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prognosis of patients. With continuous improvements in computer technology and the 
arrival of the era of big data, the artificial intelligence (AI)-assisted endoscopic 
diagnosis of EC has also flourished. This review mainly introduces the research 
progress of AI-assisted endoscopy in the diagnosis of Barrett’s esophagus and early 
EC.
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INTRODUCTION
Barrett’s esophagus (BE) is a premalignant condition characterized by the replacement 
of columnar epithelium with esophageal squamous epithelium. Esophageal cancer 
(EC) is the seventh most common cancer and the sixth leading cause of cancer-related 
mortality worldwide[1]. EC mainly consists of two histological types: Esophageal 
squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). ESCC is the 
main pathological type in Asian countries, and the 5-year survival rate is less than 20%
[2]. EAC is more common in Western countries, and its incidence has been on the rise 
globally in recent years[3]. The development of EC from early to advanced stage is 
accompanied by a high mortality rate and poor prognosis. Early detection and 
diagnosis greatly impact the prognosis of EC. The need for more efficient detection 
methods for early EC has led to in-depth research in the field of artificial intelligence 
(AI). The purpose of this review is to summarize the diagnostic value of AI for BE and 
early EC, which is conducive to the early treatment of patients and the reduction in 
mortality. In this review, we will discuss the following: (1) The utility of AI techniques 
in the endoscopic detection of BE; (2) the utility of AI techniques in the endoscopic 
detection of early EC; and (3) problems and prospects of AI-assisted endoscopic 
diagnosis.

ARTIFICIAL INTELLIGENCE 
AI refers to the abilities of computers to imitate the cognitive function of the human 
mind and conduct autonomous learning. In recent years, AI has made great progress 
in various fields of medicine, such as radiological oncology, diabetic retinopathy, and 
skin cancer[4-6]. Machine learning (ML) for AI can be roughly divided into traditional 
learning and deep learning (DL). Traditional learning methods require artificial 
design, which is time-consuming and laborious. DL methods can independently 
extract and learn image features and extract more complex and abstract advanced 
features layer by layer through a multilayer system, which allows them to be truly 
mature and be applied in clinical practice[7]. Convolutional neural networks (CNNs) 
are a kind of DL method commonly used in AI-assisted image recognition. These 
networks contain multilayer perceptrons and imitate human brain neural circuits to 
carry out high generalization, abstraction, and synthesis to process information. The 
DL method is an end-to-end learning method without the need to design specific 
image features[8,9]. With the rapid development of information technology, DL has 
received increasing attention in the medical field. The computer-aided diagnosis 
(CAD) of gastrointestinal (GI) diseases has become a hot research topic. CAD is an 
advanced technology used to preprocess endoscopic images, extract image features, 
process data, and obtain diagnostic results with the help of computer algorithms and 
graphics processing technology[10] (Figure 1).

https://www.wjgnet.com/2689-7164/full/v2/i5/198.htm
https://dx.doi.org/10.37126/aige.v2.i5.198
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Figure 1 Diagram representation of artificial intelligence domains. ML: Machine learning; DL: Deep learning; CAD: Computer-aided diagnosis; CNN: 
Convolutional neural network.

APPLICATION OF ARTIFICIAL INTELLIGENCE IN BARRETT’S ESO-
PHAGUS
BE is a result of chronic inflammation of the esophagus and is a risk factor for the 
development of EAC[11]. GI societies recommend regular endoscopy for BE patients 
to detect dysplasia or carcinoma early[12,13]. Endoscopic surveillance currently 
follows the Seattle protocol: Patients with BE are required to undergo a systematic 
four-quadrant biopsy, in which the entire BE area is sampled at intervals of 1-2 cm 
using a "turn and suction technique"[14]. However, this method can be invasive, 
costly, time-consuming, and difficult for patients to follow[15]. Due to poor patient 
compliance with the Seattle protocol, the American Society of Gastrointestinal 
Endoscopy established a performance threshold for optical diagnosis. Random 
biopsies can be replaced if targeted biopsies assisted by any imaging technique have a 
per-patient sensitivity of 90%, negative predictive value (NPV) of 98%, and specificity 
of 80%[16]. However, these requirements can only be achieved by experts.

In addition, early neoplastic lesions and dysplasia are subtle, showing focal distri-
bution, and are difficult to detect endoscopically[17]. Cases of BE progression to early 
tumors are rare, and endoscopic surveillance is generally carried out in community 
hospitals; therefore, general endoscopists may not be familiar with these lesions, and 
this lack of familiarity is an important reason for missed diagnosis[18,19]. In recent 
years, to improve the diagnosis of BE, many new endoscopic techniques have been 
developed, such as magnification endoscopy (ME), chromoendoscopy, confocal laser 
endomicroscopy, and volumetric laser endomicroscopy, most of which are expensive 
and take a long time for endoscopists to learn[20,21]. Differences in endoscopists' 
interpretations of the images can also lead to differences in diagnosis[22]. Therefore, 
there is an urgent need for a practical tool to improve the accuracy of endoscopists in 
the clinic. Moreover, the endoscopist's diagnosis may be influenced by the time of the 
endoscopy, psychological state, time pressure, and cumbersome procedures. However, 
AI has a short learning time and, unlike endoscopists, does not suffer from fatigue 
easily; therefore, it has good application prospects (Table 1).

Computer-aided diagnosis using white light imaging/narrow band imaging
van der Sommen et al[23] collected 100 images from 44 BE patients and  created an ML 
algorithm called support vector machine (SVM), which employed specific texture and 
color filters to detect early neoplasia in BE. The sensitivity and specificity of the system 
were both 83% for the per-image analysis and 86% and 87% for the per-patient 
analysis, respectively.

Struyvenberg et al[24] developed a CAD system based on a CNN model that was 
first trained with 494364 images and then further trained with 690 BE neoplasia and 
557 nondysplastic BE (NDBE) white light imaging (WLI) images. Next, 112 BE 
neoplasia and 71 NDBE narrow band imaging (NBI) zoom images were used for 
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Table 1 Application of artificial intelligence in endoscopic detection of Barrett’s esophagus

Ref. Target 
disease

Endoscopic 
modality

AI 
technology Database Outcomes

van der Sommen et 
al[23], 2016

Early 
neoplasia in 
BE

WLI SVM 100 images Per-image sensitivity 83%/specificity 83%; Per-
patient sensitivity 86%/specificity: 87%

Struyvenberg et al
[24], 2021

BE WLI/NBI CNN Train 494364 images/1247 
images; test 183 images/157 
videos

Images: Accuracy 84%/sensitivity 
88%/specificity 78%; Videos: Accuracy 
83%/sensitivity 85%/specificity 83%

de Groof et al[25], 
2020

Early 
neoplasia in 
BE

WLI ResNet-UNet Train 1544 images; test 160 
images

Dataset 4: Accuracy 89%/sensitivity 
90%/specificity 88%; Dataset 5: Accuracy 
88%/sensitivity 93%/specificity 83%

de Groof et al[26], 
2020

Barrett’s 
neoplasia

WLI ResNet-UNet Train 1544 images; test 20 
patients

Accuracy 90%/sensitivity 91%/specificity 89%

Hong et al[27], 
2017

BE Endomicroscopy CNN Train 236 images; test 26 
images

Accuracy 80.77%

Hashimoto et al
[28], 2020

Early 
neoplasia in 
BE

WLI/NBI CNN Train 1832 images; test 458 
images

Accuracy 95.4%/sensitivity 96.4%/ specificity 
94.2%

de Groof et al[29], 
2019

Barrett’s 
neoplasia

WLI SVM 60 images Accuracy 92%/sensitivity 95%/specificity 85%

BE: Barrett’s esophagus; WLI: White light imaging; SVM: Support vector machine; NBI: Narrow band imaging; CNN: Convolutional neural network.

training and validation. Finally, 59 BE neoplasia and 98 NDBE NBI zoom videos were 
used for training and validation. Fourfold cross-validation was used to evaluate the 
detection performance of the CAD system. The results showed that the accuracy, 
sensitivity, and specificity of the NBI zoom image based CAD system were 84%, 88%, 
and 78%, respectively. Accuracy, sensitivity, and specificity of the NBI zoom videos 
were 83%, 85%, and 83%, respectively.

de Groof et al[25,26] developed a CAD system based on ResNet/U-Net model to 
help endoscopists detect early BE neoplasia. The system was trained with 1544 
endoscopic images of BE neoplasia and NDBE and then validated on 160 images. In an 
in vitro study, the accuracy, sensitivity, and specificity of the CAD system for detecting 
early BE neoplasia were 89%, 90%, and 88% in dataset 4, and 88%, 93% and 83% in 
dataset 5, respectively. Compared with 53 nonspecialist endoscopists, the CAD system 
outperformed them in terms of accuracy and sensitivity. In an in vivo evaluation of the 
CAD system, endoscopic examinations were performed on ten patients with NDBE 
and ten patients with BE neoplasia. The images obtained by WLI were analyzed 
immediately by the CAD system and used to provide feedback to the endoscopist. The 
accuracy, sensitivity, and specificity of the CAD system were 90%, 91% and 89%, 
respectively. Therefore, the CAD system has a high accuracy for tumor detection and 
low false positive rate; thus, the CAD system can be tested in larger and multicenter 
trials.

Hong et al[27] constructed a CNN-based CAD system to distinguish intestinal 
metaplasia (IM), gastric metaplasia (GM), and BE neoplasia. The researchers obtained 
236 endoscopic images of BE from the 2016 International Symposium on Biomedical 
Imaging using 155 IM, 26 GM, and 55 BE neoplasia samples as a training set. Because 
the number of images in the training set was insufficient, the researchers implemented 
image distortion to achieve data enhancement and increase the sample size of the data. 
Then, 26 images, including 17 IM, 4 GM, and 5 BE neoplasia images, were used as the 
verification set. The results showed that the accuracy of the CAD system for the classi-
fication of IM, GM, and BE neoplasia was 80.77%. Although the number of images was 
small, this study suggested that the CNN-structured CAD system can be applied to the 
classification of esophageal lesions.

Real-time recognition by computer-aided diagnosis
Hashimoto et al[28] collected 916 images from 70 patients with early neoplastic BE and 
916 control images from 30 normal BE patients and then trained a CNN algorithm on 
ImageNet. The researchers analyzed 458 images using the CNN algorithm. The 
accuracy, sensitivity, and specificity of the system for detecting early neoplastic BE 
were 95.4%, 96.4%, and 94.2%, respectively.
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de Groof et al[29] designed an ML algorithm called SVM based on WLI images from 
40 BE neoplasias patients and 20 NDBEs patients. All of the images were delineated by 
endoscopic experts, with overlapping areas of at least four delineations marked as 
"sweet spots" and areas with at least one delineation marked as "soft spots". The CAD 
system was trained (color and texture features) and then evaluated for its performance 
using leave-one-out cross-validation. The accuracy, sensitivity, and specificity of the 
CAD system were 92%, 95%, and 85%, and the localization and labeling of soft spots 
were 100% and 90%, respectively. Therefore, this CAD system can detect and locate 
early BE neoplasia with a high accuracy on WLI images, which lays a foundation for 
the real-time automatic recognition of BE neoplasia in the future.

APPLICATION OF ARTIFICIAL INTELLIGENCE IN ESOPHAGEAL CANCER
EC is usually diagnosed at an advanced stage, and the main treatment is 
esophagectomy. Surgical treatment is a highly invasive treatment with relatively high 
mortality and recurrence rates and poor patient prognoses. However, if EC is detected 
at an early stage, the prognosis can be improved by endoscopic resection[30,31]. 
Therefore, the early diagnosis of EC is essential for favorable treatment. Some studies 
have applied certain dyes to the esophageal mucosa that can more clearly reveal the 
surface vasculature and neoplasia. The most commonly used dyes are acetic acid, 
iodine, indigo carmine, and methylene blue. However, there are limitations in terms of 
the cost and complexity of their application[32,33]. NBI provides a better view of 
intrapapillary capillary loops (IPCLs) and is used to detect superficial ESCC. However, 
inexperienced endoscopists are still prone to missed diagnoses[34-36]. Therefore, AI, 
which can outperform humans in image recognition, is expected to be used in the field 
of EC diagnosis (Table 2).

Detection of lesions
Ebigbo et al[37] created a CAD system based on CNN. In the Augsburg database, the 
sensitivity and specificity of the CAD system for the diagnosis of EAC in WLI images 
were 97% and 88%, respectively, and the sensitivity and specificity in NBI images were 
94% and 80%, respectively. In the MICCAI database, the sensitivity and specificity of 
the CAD system for the diagnosis of EAC in WLI images were 92% and 100%, 
respectively. Then, Ebigbo et al[38] developed an artificial neural network of encoder-
decoders with 101 layers of ResNet and trained the CAD system using 129 endoscopic 
images from the Augsburg database. The researchers evaluated 62 images using the 
CAD system, including 36 images of early EAC and 26 images of BE. Although the 
number of patients evaluated was low, real-time monitoring of EAC demonstrated 
good results. The sensitivity and specificity of the system were 83.7% and 100%, 
respectively, and the overall accuracy was 89.9%.

Horie et al[39] developed a CNN system using DL to correctly detect EC based on 
8428 images from 384 patients with EC. The researchers used the CNN system to 
analyze 1118 images (47 patients with EC and 50 patients without EC). The system 
takes 27 s and has a sensitivity of 98%; it can detect EC lesions less than 10 mm in size. 
The NPV was 95%, but the positive predictive value was only 40%. This may be due to 
the small number of DL training sets and few images from patients with esophageal 
inflammation. In addition, the system can distinguish between superficial EC and 
advanced EC with a 98% accuracy. These results indicate that the CNN system 
constructed by researchers can accurately analyze a large number of endoscopic 
images in a short period of time, which is conducive to the early diagnosis of EC.

Cai et al[40] developed a CAD system using a deep neural network based on 2428 
endoscopic images (746 patients) with the aim of identifying early ESCC from WLI 
images. Among these images, there were 1332 ESCC images and 1096 normal tissue 
images. The researchers evaluated the CAD system using 187 images (52 patients), and 
16 endoscopic physicians reviewed the images. The results showed that the accuracy, 
sensitivity, and specificity of the CAD system for the early diagnosis of ESCC were 
91.4%, 97.8% and 85.4%, respectively. With the help of the CAD system, the diagnostic 
accuracy and sensitivity of endoscopists with different seniority levels were improved, 
especially for those with less seniority. This result indicates that AI-assisted digestive 
endoscopy can reduce the rate of missed diagnosis and improve the diagnostic level of 
endoscopists with different experiences in early EC.

Ohmori et al[41] developed a CAD system based on CNN to evaluate the diagnosis 
of ESCC under ME and non-ME. The researchers used 7844 ME and 9591 non-ME 
images from ESCC and 3435 ME and 1692 non-ME images from noncancerous or 
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Table 2 Application of artificial intelligence in endoscopic detection of early esophageal cancer

Ref. Target 
disease

Endoscopic 
modality AI technology Database Outcomes

Ebigbo et al
[37], 2019

EAC WLI/NBI CNN 248 images Augsburg database: Sensitivity 97%/specificity 88% (WLI); 
Sensitivity 94%/specificity 80% (NBI); MICCAI database: 
Sensitivity 92%/specificity 100%

Ebigbo et al
[38], 2020

EAC WLI CNN Train 129 images; test 
62 images

Accuracy 89.9%/sensitivity 83.7%/specificity 100%

Horie et al[39], 
2019

EC WLI/NBI CNN Train 8428 images; 
test 1118 images

Accuracy 98%/sensitivity 98%

Cai et al[40], 
2019

ESCC WLI DNN Train 2428 images; 
test 187 images

Accuracy 91.4%/sensitivity 97.8%/specificity 85.4%

Ohmori et al
[41], 2020

ESCC WLI/NBI/BLI CNN Train 22562 images; 
test 727 images

Non-ME: Accuracy 81.0%/sensitivity 90%/specificity 76% 
(WLI); Accuracy 77%/sensitivity 100%/specificity 63% 
(NBI/BLI); ME: Accuracy 77%/sensitivity 98%/specificity 
56%

Liu et al[42], 
2020

EC WLI CNN Train 1017 images; 
test 255 images

Accuracy 85.83%/sensitivity 94.23%/specificity 94.67%

Kumagai et al
[43], 2019

ESCC ECS CNN Train 4715 images; 
test 1520 images

Accuracy 90.9%/sensitivity 92.6%/specificity 89.3%

Guo et al[44], 
2020

ESCC NBI CNN Train 6473 images; 
test 6671 images and 
80 videos

Images: Sensitivity 98.04%/specificity 95.03%; videos: Non-
ME sensitivity 60.8% (per frame)/100% (per lesion); ME 
sensitivity 96.1% (per frame)/100% (per lesion)

Tokai et al[46], 
2020

ESCC WLI/NBI CNN Train 1751 images; 
test 291 images

Accuracy 80.9%/sensitivity 84.1%/specificity 73.3%

Nakagawa et al
[47], 2019

ESCC WLI/NBI CNN Train 14338 images; 
test 914 images

Accuracy 91%/sensitivity 90.1%/specificity 95.8%

Zhao et al[48], 
2019

ESCC NBI Double-
labeling FCN

1350 images Lesion level: Accuracy 89.2%; pixel level: Accuracy 93%

Everson et al
[49]

ESCC NBI CNN 7046 images Accuracy 93.7%/sensitivity 89.3%/specificity 98%

Uema et al[50], 
2021

ESCC NBI CNN Train 1777 images; 
test 747 images

Accuracy 84.2%

Fukuda et al
[51], 2020

ESCC NBI/BLI CNN Train 28333 images; 
test 144 patients

Accuracy 63%/sensitivity 91%/specificities 51% (detection); 
accuracy 88%/sensitivity 86%/specificities 89% 
(characterization)

Shimamoto et al
[52], 2020

ESCC WLI/NBI/BLI CNN Train 23977 images; 
test 102 videos

Non-ME: Accuracy 87%/sensitivity 50%/specificity 99%; 
ME: Accuracy 89%/sensitivity 71%/specificity 95% 

Waki et al[53], 
2021

ESCC WLI/NBI/BLI CNN Train 18797 images; 
test 100 videos

Sensitivity 85.7%/specificity 40%

EAC: Esophageal adenocarcinoma; WLI: White light imaging; NBI: Narrow band imaging; CNN: Convolutional neural network; EC: Esophageal cancer; 
ESCC: Esophageal squamous cell carcinoma; DNN: Deep neural network; BLI: Blue laser imaging; ME: Magnification endoscopy; ECS: Endocytoscopic 
system; FCN: Fully convolutional network.

normal esophagi as a training set. Then, 255 non-ME WLI images, 268 non-ME-
NBI/blue laser imaging (BLI) images, and 204 ME-NBI/BLI images of ESCC were 
used as a validation set. The accuracy, sensitivity, and specificity of the CAD system 
were 81%, 90%, and 76%, respectively, in non-ME WLI images. In the non-ME 
diagnosis of NBI/BLI images, the accuracy, sensitivity, and specificity of the CAD 
system were 77%, 100%, and 63%, respectively. In the diagnosis of ME, the CAD 
system had an accuracy of 77%, sensitivity of 98%, and specificity of 56%. In 
conclusion, the diagnosis of ESCC with the CAD system was not significantly different 
from that of experienced endoscopists.

Liu et al[42] developed a CNN model using the DL approach to distinguish among 
normal esophagi, precancerous lesions, and EC. The model consists of two 
subnetworks: The O-stream and the P-stream. In the application process, the O-stream 
is used to input the original images to extract color changes and overall features, and 
the P-stream is used to input the preprocessing images to lift texture changes and 
detail features. In total, 1017 images (normal esophagi, precancerous lesions, and EC) 
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were used as the training set, and 255 images (normal esophagi, precancerous lesions, 
and EC) were used as the validation set. The results showed that the accuracy, 
sensitivity, and specificity of the CNN model were 85.83%, 94.23% and 94.67%, 
respectively, which shows good prospects in the diagnosis of esophageal lesions.

Kumagai et al[43] constructed an AI model based on CNN with GoogLeNet to judge 
benign and malignant endocytoscopic system (ECS) images with different degrees of 
magnification. The AI system was trained using 4715 esophageal ECS images (1141 
malignant and 3574 nonmalignant) and validated using 1520 images (27 ESCCs and 28 
nonmalignant lesions). The results showed that the sensitivity of the AI system was 
92.6% for the diagnosis of ESCC, the specificity was 89.3% for the diagnosis of 
nonmalignant lesions, and the accuracy was 90.9% for the overall diagnosis. Early EC 
under endoscopy usually presents as slight swelling, depression, or a color change in 
the mucosa, which is difficult to diagnose, especially for less experienced endoscopists. 
The above research results indicate that AI has good auxiliary value for the endoscopic 
diagnosis of early EC and its precancerous lesions and plays an important role in 
guiding learning for the applications of some new standards and technologies.

Scope of lesions
Guo et al[44] developed a CAD system based on CNN for the real-time detection of 
precancerous lesions and ESCC. A total of 6473 NBI images were used to train the 
CAD system, and endoscopic static images and dynamic videos were used to validate 
the CAD system. Each input endoscopic image generates an AI probabilistic heat map, 
where yellow indicates highly suspected cancerous lesions and blue indicates noncan-
cerous lesions. When the CAD system is used to detect canceration, the identified 
tumor area is covered with color. The CAD system was used to diagnose 1480 
malignant NBI images and 5191 nonmalignant NBI images with a sensitivity and 
specificity of 98.04% and 95.03%, respectively. In 27 non-ME and 20 ME videos of 
precancerous lesions and early ESCC, the sensitivities per frame were 60.8% and 
96.1%, respectively, and the sensitivities per lesion were 100% and 100%. In 33 normal 
esophageal videos, the specificities were 99.9% per frame and 90.9% per case. The AI 
model can mark the location and range of lesions according to the input images, and 
the range is roughly the same as that marked by endoscopists. This finding indicates 
the feasibility and great potential of AI in the identification of a range of precancerous 
or early EC lesions.

Depth of lesions
The depth of EC invasion is a key factor affecting treatment decisions. In principle, 
endoscopic resection can be performed for intraepithelial esophageal lesions confined 
to the lamina propria or muscularis mucosa and/or lesions with a submucosal infilt-
ration depth less than 200 μm. Surgical resection and chemoradiotherapy are required 
for lesions larger than 200 μm. Therefore, accurate determination of the depth of infilt-
ration can avoid the impact of overtreatment on patient quality of life[45].

Tokai et al[46] collected 1751 ESCC images to design an AI diagnostic system using 
CNN techniques. The system used DI technology to evaluate the infiltration depth of 
ESCC. The researchers used the AI system to evaluate 55 patients (291 images) and 
compared them with the evaluations of 13 endoscopists. It was found that the 
detection rate of the AI system for ESCC was 95.5%, taking 10 s. In the images with 
ESCC detected, the accuracy, sensitivity, and specificity of the assessment of infilt-
ration depth were 80.9%, 84.1%, and 73.3%, respectively, taking 6 s. Moreover, the AI 
system was more accurate than 12 of the 13 endoscopists. This result indicates that the 
AI system has great potential in detecting the infiltration depth of ESCC.

Nakagawa et al[47] developed a CNN-based AI system to assess the infiltration 
depth of ESCC. The researchers trained the AI system with images from 804 EC 
patients (8660 non-ME images and 5678 ME images) and then validated the system 
with images from 155 patients (405 non-ME images and 509 ME images). The accuracy, 
sensitivity, and specificity of the system were 91%, 90.1%, and 95.8%, respectively. 
When 16 endoscopists evaluated the same images, the accuracy, sensitivity, and 
specificity were 89.6%, 89.8%, and 88.3%, respectively. These results suggest that the 
AI system performs well in assessing the depth of ESCC infiltration, even better than 
endoscopists.

IPCLs are the hallmark of ESCC, and their morphologic changes correlate with the 
depth of tumor invasion. Zhao et al[48] used the ME-NBI technique to evaluate 
patients' esophageal conditions and established a CAD system for the automatic classi-
fication of IPCLs based on endoscopic diagnosis and histological analysis. This system 
uses a double-labeling fully convolutional network to evaluate 1350 images with 1383 
lesions and compare them with the evaluations of endoscopists. The results showed 
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that the diagnostic accuracy of the system was 89.2% at the lesion level and 93% at the 
pixel level, which were higher than those of endoscopists.

Everson et al[49] developed an AI system to detect the presence and stage of early 
ESCC lesions. A total of 7046 ME-NBI images from 17 patients were used to train the 
CNN. Among these patients, ten had early ESCC, and seven had a normal esophagus. 
All of the imaging areas were supported by histological results. Studies have shown 
that the accuracy of this CNN system for distinguishing normal and abnormal IPCL 
patterns is 93.7%, and the sensitivity and specificity for distinguishing abnormal IPCL 
patterns are 89.3% and 98%, respectively. Therefore, the CNN system can relatively 
accurately distinguish normal and abnormal IPCL patterns and may provide guidance 
for decision-making regarding the clinical treatment of ESCC.

Uema et al[50] constructed a CNN (ResNeXt-101) model to classify ESCC 
microvessels. The study used 1777 ESCC images under ME-NBI as a training set and 
747 ESCC images under ME-NBI as a validation set (validated by the CAD system and 
8 endoscopists). The results showed that the accuracy of the CAD system for 
microvascular classification was 84.2%, which was higher than the average accuracy 
achieved by endoscopists. Therefore, this CAD system has good application potential 
for ESCC microvascular classification.

Dynamic images
Fukuda et al[51] developed a CNN-based CAD system to diagnose ESCC. The 
researchers used 23746 ESCC images (1544 patients) and 4587 noncancerous images 
(458 patients) as a training set. Video image clips from 144 patients were used as a 
validation set, and then 13 endoscopic specialists used the same videos for diagnoses. 
The accuracy, sensitivity, and specificity of the CAD system in identifying suspicious 
lesions were 63%, 91%, and 51%, respectively. The accuracy, sensitivity, and specificity 
in differentiating cancerous from noncancerous lesions were 88%, 86% and 89%, 
respectively. In previous studies, the diagnosis of ESCC by CAD systems was mainly 
based on static images, with few video images. Because video images are affected by 
many factors, such as distance, angle, breathing movement, and esophageal motility, 
using a CAD system to analyze video images is more challenging. Fukuda et al[51] 
demonstrated that compared with endoscopic experts, CAD systems are more 
sensitive to ESCC detection and have a significantly higher accuracy and specificity in 
differentiating cancer from noncancer, which will provide valuable clinical support for 
endoscopists in their diagnoses.

Using 23977 ESCC images (6857 WLI images and 17120 NBI/BL images) as a 
training set, Shimamoto et al[52] developed a CNN-based AI system to assess the infilt-
ration depth of ESCC. The AI system was then validated on 102 video images, while 
some endoscopic specialists were invited to view the same video images for diagnoses. 
The study showed that the accuracy, sensitivity, and specificity of AI for ME diagnosis 
were 89%, 71%, and 95%, respectively, and those for non-ME diagnosis were 87%, 
50%, and 99%. Compared with the diagnostic parameters of endoscopic experts, those 
of the AI system were mostly higher. This suggests that AI system can provide useful 
support during endoscopy.

Waki et al[53] constructed an AI system based on CNN with 17336 images of ESCC 
(1376 patients) and 1461 images of noncancerous/normal esophagi (196 patients). 
While recording the verification video, the endoscopic operator passed through the 
esophagus at a constant speed to simulate a situation when a lesion was missed. A 
total of 100 videos (50 ESCCs, 22 noncancerous esophagi, and 28 normal esophagi) 
were then evaluated by the AI system and 21 endoscopists. The study showed that the 
sensitivity and specificity of the AI system for ESCC diagnosis were 85.7% and 40%, 
respectively, and those of the endoscopists were 75% and 91.4%, respectively. With the 
help of the AI system, the diagnostic specificity of the endoscopists was almost the 
same, but the sensitivity was improved. Therefore, the AI system, as an auxiliary tool, 
plays an important role in the diagnosis of ESCC by endoscopists.

PROBLEMS AND PROSPECTS OF AI-ASSISTED ENDOSCOPIC DIAG-
NOSES
With continuous improvements in endoscopic technology and the diagnostic levels of 
AI, the combination of AI and endoscopy has become popular. Although AI has made 
some achievements in the diagnosis of esophageal precancerous lesions and early EC, 
there are still some problems.
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False positive and false negative results
First, almost all AI diagnostic systems yield some false negative results. Small lesions 
are easily missed in clinical practice, so it is crucial to improve the detection accuracy 
of these easily neglected lesions. In addition, the AI diagnostic system yields false 
positive results, which can lead to overtreatment. Shadowed portions, color changes in 
the gastric antrum and pylorus, and changes in the normal tissue structure and benign 
lesions (scarring, local atrophy, inflammation, ectopic esophagus, and gastric mucosa) 
are all reasons for false positive results[54]. To solve this problem, on the one hand, a 
large number of high-quality endoscopic images should be accumulated for computer 
algorithm training and verification to produce more accurate results. On the other 
hand, endoscopic videos often contain more low-resolution real images, which are 
difficult to capture in still pictures. The use of a large number of images taken from 
videos as learning materials can reduce the rates of false positives and false negatives 
to a certain extent.

Retrospective experimental studies have a single source of learning materials, and 
prospective experimental studies are lacking
At present, most of the training data sets and validation data sets of AI systems have 
been derived from the same batch of data from the same center. Although the accuracy 
of AI systems has been internally verified, there is still a lack of external verification
[55]. The resolution of examination images obtained by different types of endoscopes 
varies greatly among different devices. Therefore, future studies should try to include 
endoscopic image data from multiple institutions, multiple models, and multiple 
devices to ensure the repeatability of the research results.

In addition, most of the current studies are retrospective, and researchers tend to 
select clear and high-quality endoscopic images after excluding low-quality images 
caused by interference factors (such as bleeding, mucus secretion, and food 
interference), thus resulting in selection bias. This bias often causes the results of 
retrospective trials to outperform the actual results in clinical applications[56]. In the 
future, a large number of prospective studies should be carried out to continuously 
improve AI systems and improve their accuracy, sensitivity, and specificity for clinical 
trials to lay a solid foundation for the real-time clinical application of AI.

Lack of endoscopic video-assisted diagnoses
Currently, most AI systems are based on the processing of static data rather than the 
modeling of dynamic videos. Static images are mostly taken after the mucosal 
environment is well prepared and the lesion location is determined. Due to the lack of 
environmental impact caused by poor preparation of the mucosal environment and 
endoscopic movement in dynamic videos, information is missing[57]. There is a large 
gap between AI training sets and the actual endoscopic working environment, which 
affects the clinical applicability of AI to some extent. The application of video sets can 
better solve the above problems. Moreover, endoscopic video analysis can be used for 
secondary review after real-time endoscopy to quickly identify and screen esophageal 
diseases and reduce the number of missed diagnoses, as this type of analysis has 
considerable development potential in DL-assisted endoscopy in the future.

Prospects for development
CAD system based on DL technology has gained increasing attention and is closely 
related to the good development prospects of DL technology applied in real-time 
endoscopy. CAD can indicate the lesion site in real-time endoscopic examinations, 
provide an accurate classification, and serve as a second observer to assist in disease 
diagnosis. In low-resource or densely populated areas, CAD is used for population-
based endoscopic screening, which can avoid missed diagnosis or misdiagnosis of 
diseases caused by endoscopists' lack of experience and professional knowledge or 
heavy work fatigue. CAD can be used to train new endoscopists who lack experience, 
provide them with professional knowledge training, and improve their professional 
skills. CAD can also be performed online to provide more professional endoscopic 
diagnoses in areas where experienced endoscopists are lacking, making it easier for 
patients to visit local hospitals.

CONCLUSION
Most of the current research is still focused on early system development and 
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feasibility studies, but subsequent product development has not followed. The CAD 
system based on DL is still in the experimental research stage. Therefore, in the future, 
a large number of high-quality prospective experimental studies should be carried out 
in combination with high-quality algorithms and frameworks with more powerful 
functions, higher efficiency, and better stability. With the establishment of a 
standardized and large sample data center, the CAD system can provide endoscopic 
physicians with more accurate diagnosis and treatment options, auxiliary teaching, 
auxiliary assessments, and telemedicine for early EC. An increasing number of 
patients and physicians will benefit from the progress of the CAD system.
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Abstract
The goal of artificial intelligence in colonoscopy is to improve adenoma detection 
rate and reduce interval colorectal cancer. Artificial intelligence in polyp detection 
during colonoscopy has evolved tremendously over the last decade mainly due to 
the implementation of neural networks. Computer aided detection (CADe) 
utilizing neural networks allows real time detection of polyps and adenomas. 
Current CADe systems are built in single centers by multidisciplinary teams and 
have only been utilized in limited clinical research studies. We review the most 
recent prospective randomized controlled trials here. These randomized control 
trials, both non-blinded and blinded, demonstrated increase in adenoma and 
polyp detection rates when endoscopists used CADe systems vs standard high 
definition colonoscopes. Increase of polyps and adenomas detected were mainly 
small and sessile in nature.  CADe systems were found to be safe with little added 
time to the overall procedure. Results are promising as more CADe have shown to 
have ability to increase accuracy and improve quality of colonoscopy. Overall 
limitations included selection bias as all trials built and utilized different CADe 
developed at their own institutions, non-blinded arms, and question of external 
validity.

Key Words: Neural networks; Computer aided detection; Artificial intelligence in 
colonoscopy and polyp detection; Artificial intelligence in adenoma detection
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Core Tip: Use of computer aided detection (CADe) in colonoscopy has been shown to 
increase polyp and adenoma detection rates compared to standard high-definition 
colonoscopy with little added procedure time. Additionally, CADe have been built to 
increase quality of screening colonoscopy. These advantages and features have been 
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INTRODUCTION
Colorectal cancer (CRC) is the second leading cause of cancer death in the United 
States. Adenomas are the most common type of precancerous polyp. Colonoscopy 
remains the gold standard for identifying these precancerous polyps and is the only 
nonsurgical intervention capable of removing them. The National polyp study showed 
that up to 90% of CRCs are preventable with polyp removal[1]. The adenoma 
detection rate (ADR) represents the percent of colonoscopies in which at least 1 
adenoma is found. ADR is regarded as the main quality indicator of colonoscopy and 
ideally ADR should equal adenoma prevalence, estimated to be greater than 50%[2]. 
Unfortunately, ADRs vary widely, with some endoscopists having ADRs as low as 7%
[3]. It has been shown that for each 1% increase in ADR, the interval CRC rate was 
decreased by 3%-6%[3,4]. The main cause of interval CRC incidence is overlooked 
lesions due to failure of recognition or incomplete mucosal exposure due to 
suboptimal technique during the withdrawal phase of colonoscopy[5]. Artificial 
intelligence in colonoscopy was expected to address these issues in hopes to reduce 
polyp detection miss rates and subsequently interval CRCs[6,7].

COMPUTER-AIDED DETECTION
The concept of computer-aided detection (CADe) in polyp detection was first 
described in the early 2000s where software was developed that utilized color and 
texture to identify polyps[8]. Polyp detection accuracy was as high as 95% however 
only applicable on static images due to high latency. Tajbakhsh et al[9] created CADe 
based on hybrid shape analysis. The system sensitivity reached close to 90% however 
proved un-competitive for real time video stream with high latency[9].

CADe of polyps has evolved exponentially since 2012 when deep learning models 
began utilizing convolutional neural networks (CNNs) to identify polyp-specific 
features independent of human input.

CNNs utilize statistical pattern recognition algorithms to identify an object, in this 
case, a polyp. In brief, the computer recognizes an array of numbers, or picture 
variables, based on pixel analysis of the captured images. The input layer is then 
filtered through several hidden layers each acting as distinctive feature identifiers or 
recognizable features. For example, if the desired outcome is for the CNN to recognize 
a discrete face, hidden layers would include the nose, mouth, eyebrows, etc. The fully 
connected layer comes at the end of this neural network and analyzes the output from 
previous layers to determine which features correlate best to a certain class, i.e., the 
probability of the image being Jack’s face vs Joe’s face. The higher the probability of 
identifying the image in effect strengthens the network[10].

CNNs are created and utilized by multiple disciplines including computer science, 
bioinformatics, machine learning/intelligent systems, and increasingly in healthcare 
and medicine. CNNs afford the ability to detect images, in this case polyps, in real 
time analysis.

Training these networks involves providing a groundwork of data sets or images. 
Urban et al[11] utilized five different data sets: First, data including over one million 
images of non-medical objects. Second, a set of over 8600 colonoscopy images 
containing over 4000 images of unique polyps of varying size and morphologies, as 
well as over 4500 images without polyps. Third, a separate set of 1330 colonoscopy 
images, half showing unique polyps and half showing other non-polyp images 
collected from different patients. Fourth, videos of colonoscopies, and fifth, a larger 
data set augmenting the original set of colonoscopy images.  This model identified 
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polyps with a 96.4% accuracy rate and demonstrated the ability to work in real time 
conditions with a processing rate of one frame per 10 milliseconds (ms). It identified 
all polyps discovered by expert viewers (ADRs > 50%) as well as any additional 
polyps that were missed. The authors believe utilizing real-time live analysis with this 
model during colonoscopies will prompt increasingly careful inspection and lead to 
discovery of additional polyps that may have been missed[11].

Five randomized control trials (RCTs) utilizing independent CADe systems are 
reviewed here demonstrating significant improvement in ADR compared to standard 
colonoscopy (Table 1).

RCT
In 2019, Wang et al[12] presented the first prospective single center RCT (Sichuan 
Provincial, China) investigating the influence of an automatic polyp detection method 
based on deep learning regarding the polyp detection rate and ADR. The study 
scheme was a non-blinded trial in which subjects who underwent diagnostic 
colonoscopy with or without assistance of a real-time automated polyp detection 
system. The primary outcome was ADR. The real-time automatic polyp detection 
system was based on SegNet architecture. The algorithm was authenticated and had a 
per image sensitivity of 94.4% and per image specificity of 95.9%. The system handled 
at least 25 frames per second with a dormancy of 76.8 ± 5.6 ms in simultaneous video 
analysis. The monitor was parallel with the original endoscopy monitor and it 
provided simultaneous visual notice and audible alarm when a polyp was detected. 
Subjects who had colonoscopy from September 2017 to February 2018 were suitable 
for enrollment and bowel preparation and high definition colonoscope's were 
standardized. Exclusion criteria included inflammatory bowel disease, CRC, previous 
unsuccessful colonoscopy, and high suspicion for polyposis syndromes.

Eight endoscopists participated in the study, half of which who were junior 
endoscopists. The experience was as follows – two seasoned endoscopists (> 20000 
colonoscopies), two midlevel endoscopist (3000-10000), and four junior endoscopist 
(100-500).

Standard colonoscopy was completed in the control group. In the CADe the 
endoscopist was assisted by the real-time automatic detection system. The system 
captured the endoscopy video and displayed the polyp location with a blue box on a 
neighboring screen with a coinciding audible alert. The system was turned on during 
withdrawal only. The endoscopist was obligated to check every polyp location 
detected by the system devoid of assistance. A missed polyp was delineated as a polyp 
confirmed by the endoscopist but unobserved by the system. A false alarm was 
delineated as detected lesion which was interminably traced by the system deemed by 
the endoscopist not to be a polyp.

Five hundred thirty-six patients were randomized prospectively into the control 
group and 522 into the CADe group. There were no statistical differences in 
demographics, total time of colonoscopy, no polyp withdrawal time or withdrawal 
time excluding biopsy, bowel preparation and endoscopist experience. There was a 
statistical difference with withdrawal time of 6.39 min in the routine colonoscopy vs 
6.89 minutes in the CADe group.

A 1.89-fold increase was found in the mean number of polyps discovered between 
the two groups [95% confidence interval (CI): 1.63 to 2.192, P < 0.001]. The PDR of the 
control and CADe group were 0.29 and 0.45, respectively [odds ratio (OR), 1.995; 
95%CI: 1.532-2.544, P < 0.001]. They found a 1.72-fold increase in the mean number of 
adenomas discovered. The ADR of the control and CADe groups were 0.20 and 0.29, 
respectively (OR, 1.61; 95%CI: 1.213 to 2.135, P < 0.001). The number of detected 
polyps was significantly higher in the CADe group when looking specifically at non-
pedunculated polyps, polyps 0 cm to 1 cm in size and polyps in all portions of the 
colon. There was also a considerably higher number of adenomas detected in the 
CADe group when looking at non-pedunculated polyps, polyps smaller than 0.5 cm 
and polyps in all portions of the colon except for the cecum and ascending colon. 
There was a total of 39 false positives in the CADe group. Of discovered polyps in the 
CADe cohort, none were missed by the automatic system.

ADR in the CADe group showed a trend of 6% increase in the subgroup of patients 
with excellent bowel preparation.  In addition, their results, including the mean 
number of detected adenomas, mean number of detected polyps and PDR, were 
significantly increased. However, this was not statistically significant given the small 
sample size.
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Table 1 Five randomized control trials utilizing independent computer aided detection systems

Ref. Study 
design Blinded? Type of 

system
ADR 
control ADR CADe False alarms (per 

colonoscopy)
Missed 
polyps

Wang et al[12], 
2019

RCT No CADe 0.2 0.29 (P < 0.001) 0.075 0

Repici et al[13], 
2020

RCT No CADe 0.404 0.548 (P < 
0.001)

- -

Liu et al[14], 2020 RCT No CADe 0.23 039 (P < 0.001) 0.071 0

Wang et al[2], 2020 RCT Yes CADe 0.28 0.34 (P = 0.03) 0.1 0

Su et al[15], 2020 RCT No CADe + Quality 0.165 0.289 (P < 
0.001)

0.2 0

RCT: Randomized control trial; CADe: Computer aided detection.

Limitations of this study include the inability to blind the endoscopists of each arm. 
In addition, the adenoma and polyp detection rates in this study are substantially 
lower than what is reported in Western countries, and thus there is a question of 
whether this study is applicable in centers with higher ADRs at baseline[12].

Repici et al[13] published work on a separate CNN by the GI genius, Medtronic 
system in 2020. The system was trained and validated with 99.7% per lesion sensitivity 
and 0.9% false-positive frames. Using a series of videos of 2684 histologically 
confirmed polyps from 840 patients. They performed a multicenter randomized trial to 
assess the safety and efficacy of this CADe in detection of colorectal neoplasia during 
real-time colonoscopy. Like Wang et al[12], the operator was not blinded to the study 
arm assigned to each patient. Colonoscopies were performed by 6 experienced 
endoscopist to from each center with over 2000 screening colonoscopies; inexperienced 
endoscopists were not included. High definition colonoscopes were utilized. The 
CADe system would signal the endoscopist with a bounding box only when a target 
polyp was recognized in the image. Primary outcome was ADR. Secondary outcomes 
were proximal ADR, total number of polyps detected, sessile serrated lesions detection 
rate, mean number of adenomas per colonoscopy (APC), cecal intubation rate and 
withdrawal time.

Patient's undergoing colonoscopy from September to November 2019 were 
included. Colonoscopy requirements included colorectal screening or post poly-
pectomy surveillance as well as work-up following FIT positivity or patients with 
appropriate signs and symptoms warranting further work up. Patients were excluded 
in the case of personal history of CRC or Inflammatory bowel disease (IBD), previous 
colon resection, or antithrombotic therapy precluding polyp resection.

A total of 685 patients were randomized, 341 in CADe arm and 344 in the control 
arm. There was no significant difference in terms of bowel preparation or cecal 
intubation rate. ADR in the CADe group was 54.8% vs 40.4% in the control group. 
After adjusting for age, gender, and indication the ADR was significantly higher in the 
CADe group compared to the control.

The CADe group identified more non-polypoid (26.6% vs 18.4%) and polypoid 
(37.3% vs 26.5%) lesions compared to control. The proportion of patients with < 10 mm 
adenomas was higher in the CADe group, 44.3%, vs in the control group, 32.3%. The 
difference between the 2 arms was significant for both ≤ 5 mm and 6 mm to 9 mm 
adenomas. Regarding location, the proportion of patients with proximal adenomas 
was higher in the CADe group then in the control group. This was also true for distal 
adenomas. Forty-five patients were diagnosed with advanced neoplasia in the CADe 
group compared with 36 in control group, demonstrating a detection rate for 
advanced neoplasia of 13.3% and 10.5% respectively.

Of the 460 patients who underwent polyp resection, 120 did not have histologically 
proven adenomas, sessile serrated lesions, or CRC. The non-neoplastic resection rate 
for CADe and control were 26% and 28.8%, respectively.

Repici et al[13] demonstrated that addition of real-time CADe to colonoscopy 
resulted in 30% and 46% relative increase in ADR and APC. Safety of the system was 
demonstrated by the lack of increase of both useless resections and withdrawal time. 
Computer aided detection efficacy appeared to be independent of morphology and 
location of neoplasia and was mainly explained by the additional detection of polyps 
that were less than 5 mm, or between 6 mm to 9 mm in size. Limitations of this study 
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were like Wang et al[12] in that the endoscopists in each arm were not blinded. In 
addition, they did not include inexperienced endoscopists in their study. They 
demonstrated the safety and efficacy of integrating a CADe with colonoscopy with a 
substantial improvement of ADR and adenoma per colonoscopy without increasing 
the removal of non-neoplastic lesions. This is likely to improve the quality of 
colonoscopy without affecting efficiency[13].

In 2020, Liu et al[14] published their work using yet another CNN or CADe system. 
Polyp positive videos (151) and polyp negative videos (384) were used to design the 
system. This system utilized spatiotemporal data to recognize polyps, which is 
presumed to be more suitable for video data sets. This was a prospective, single center, 
randomized control study (China) to demonstrate the effective of CADe on the 
detection rate of polyps and adenomas during colonoscopy. Bowel preparations and 
high definition colonoscope's were standardized. Exclusion criteria included inflam-
matory bowel disease, history of CRC surgery, history of radiotherapy and/or 
chemotherapy and biopsy contraindications. CADe was only utilized during 
withdrawal phase. The system processed each frame and displayed the detected 
polyp. When the lesion would appear on the screen a voice alarm would prompt 
endoscopist to view the system. This study was done without the assistance of nurses, 
trainees, or staff. Polyps identified by the endoscopist but not identified by the CADe 
system were deemed “missed polyps” and were documented. False alarms were 
defined as lesions detected and continuously tracked but were not identified as polyps 
by the system.

A total of 1026 patients were eligible: 518 in the control and 508 in the computer-
aided detected group. The two groups were similar in demographics and risk factors. 
Total withdrawal time in the standard group vs the CADe group was 6.74 min and 
6.82 min, respectively (P < 0.001).

A total of 734 polyps were detected. Three hundred and ninety-two of these were 
adenomas representing 53.41%, and 31 were sessile serrated adenomas representing 
4.22%. In total 248 polyps were detected in the control group and 486 polyps in the 
CADe group, a rate of 33.79% vs 66.21%, respectively. The corresponded to 1.53 times 
increase in the average number of polyps detected in both (95%CI: 1.652-2.297, P < 
0.001). The polyp detection rates in control and CADe were 0.28 and 0.44, respectively 
which corresponded to 1.51 times increase in number of adenomas detected (95%CI: 
1.423-2.016, P < 0.001). The detection rates of adenomas in control vs CADe group were 
0.23 and 0.39, respectively (CI: 1.201- 2.220, P < 0.001). The number of polyps detected 
in the CADe group was significantly higher than control group when looking at sessile 
polyps, polyps 0 cm to 1 cm in size, and polyps in all portions of the colon. The 
number of adenomas detected in the CADe group also increased significantly when 
considering sessile polyps, polyps ≤ 0.5 cm, and polyps in all parts of the colon 
excluding the cecum and ascending colon.

Similar to Wang et al[12], detection rate in the CADe was higher when intestinal 
preparation was deemed adequate. Insufficient sample size of the subgroup analysis 
failed to show statistical significance. There were 36 false alarms in the CADe group 
corresponding to an average of 0.071 false alarms per colonoscopy. Of all polyps 
detected in the CADe group no polyps were missed. In mirroring the results of 
previous RCTs, this study again demonstrated significantly higher detection rates of 
adenoma, and average number of polyps and adenomas by colonoscopy in the CADe 
group when contrasted to control groups. However, the overall rise in adenoma 
detection was mainly due to the rise in detection of small adenomas, less than 1 cm in 
most instances.

The study review shows that integration of computer aided detection systems can 
effectively detect polyps that were otherwise missed by the endoscopist, however 
there is a blind area with polyps that remain undetected which remains an 
unanswered problem. Similar to Wang et al[12] study limitations include non-blinded 
endoscopists and low ADRs of endoscopists, as compared to Western countries. In 
conclusion the study showed this CADe increases the detection rate of colorectal 
polyps and adenomas, therefore depicting its feasibility for detection of polyps and 
adenomas on colonoscopy[14].

The first single center, randomized, double-blind trial to evaluate the use of 
automatic polyp detection using the CAD system during colonoscopy was published 
in early 2020 by Wang et al[12]. They enrolled consecutive patients between September 
2018 and January 2019. After all exclusion criteria, there were 484 patients in the CADe 
group and 478 in the sham group. All qualified patients were randomized 1:1 to either 
white light colonoscopy with CADe assistance or to the control group consisting of 
white light colonoscopy with a mock system. Patients were not notified of their 
assignment and blinding of the operating endoscopists was achieved by the mock 
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system. Four senior endoscopists participated, each with at least 5 years’ experience, 
completing a minimum of 1000 colonoscopy procedures per year.

Endoscopists were told to perform all colonoscopy procedures with the aid of a 
CADe system, and they were unaware of the use of the mock system. Authors utilized 
the same CADe system as previously discussed in their non-blinded trial. A mock 
system was designed to appropriately mask the endoscopists. This system simulated 
alert boxes on polyp-like non polyp structures without tracking actual polyps during 
colonoscopy.  The sham model was built using a portion of the images used to develop 
the CADe system as previously described, producing a much lower sensitivity and 
specificity. The grouping and outputs of the mock and computer aided detection 
systems were only observable to a senior endoscopist using a separate monitor acting 
as a second observer.

In both study groups, if the operating endoscopist did not recognize an abnormality 
within an alert box, the observer was tasked with informing the location of any alert 
box for the operating endoscopist using a laser pointer on the principal monitor. An 
alarm sounded to the observer via earpiece if an alert box was visible. The observer 
was not blinded to the intervention and aware which system was being used.  All 
observable alert boxes were documented by the observer, however only the alert boxes 
that were on non-polyp structures were recorded as consistent false detections in the 
CADe, i.e., false alarms. Consistent false detections of the CADe were recorded and 
believed not to be a polyp by the operating endoscopist. In the CADe group the 
observer also recorded any missed detections, defined as a polyp discovered by the 
working endoscopist and proved by histology but not alerted by the CADe.

After the clinical analysis, they analyzed the videos of polyps that were detected by 
CADe, but initially missed by the operating endoscopist. The video clips were then 
independently reviewed by an addition 3 skilled, experienced endoscopists who did 
not partake in the clinical trial. Endoscopists labeled each video when they identified a 
polyp, and they were limited to single viewing of the videos. Analysis of sensitivity 
and specificity on these easily overlooked polyps was performed.

The primary outcome was proportion of individuals who underwent a complete 
colonoscopy and had 1 or more adenomas detected. Secondary outcomes were the 
proportion of individuals undergoing a complete colonoscopy who had 1 or more 
polyps detected, the number of polyps per colonoscopy, and the number of APC, 
which was calculated by dividing the total number of polyps that are adenomas 
detected by the total number of colonoscopies done.

Four hundred seventy-eight patients were allocated to sham group and 484 to the 
CADe. No difference was in terms of demographics and adenoma detection 
probability features. There were no recorded untoward events with these procedures. 
There was a statistically significant increase in withdrawal time with the CADe group, 
7.46 min vs 6.99 min (P < 0.0001).

More biopsies were performed for polyps in the CADe group than in the mock 
group. When omitting the time taken to do biopsies, the mean withdrawal time was 
not statistically significant between the groups. Overall, 809 polyps were detected, of 
which 38% were found in the mock group and 62% were found in the CADe group. Of 
these polyps, 57% were adenomas and 4% were sessile serrated adenomas. When 
considering shape (sessile) and size (0-5 mm), the CADe group had a significantly 
higher number of detected polyps and adenomas.

Notably, there was a 1.61-fold increase in polyps detected per colonoscopy between 
the 2 groups (95%CI: 1.39-1.85; P < 0.0001). The PDR was significantly higher in the 
CADe group then with the mock system, 52% vs 37%. A 1.53-fold increase in APC 
between the groups (95%CI: 1.27-1.85; P < 0.0001). The ADR was significantly higher 
with the CADe system compared to the mock system with 28% in the sham control 
group and 34% in the CADe group having an adenoma detected. Based on the 
observers’ judgement, here were 48 false detections in the CADe group, averaging 0.1 
per colonoscopy. Of all the detected polyps in the experimental group, none were 
missed by the CADe system.

An average of 0.17 adenomas and 0.33 polyps per patient were overlooked initially 
by the endoscopist in the CADe group. These polyps were small (mean adenoma size 
3.89 mm), isochromatic, flat in shape, had unclear boundaries, were partly behind 
colon folds, and were on the edge of the visual field. The sensitivity and specificity of 
three skilled endoscopist during review of the endoscopy videos was 17% and 64%, 
respectively.

Once again, Wang et al[12] demonstrated a CADe system can effectually increase the 
number of polyps and adenomas detected with colonoscopy, and after controlling for 
operational bias. The CADe system had higher sensitivity and specificity for detection 
of easy to overlook polyps compared to evaluation based solely on the utilities of the 
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human endoscopist.
The main contribution of CADe in this system demonstrated a rise detection of 

diminutive and non-pedunculated, non-advanced adenomas and hyperplastic polyps. 
The CADe system is safe and effectual approach to increase ADR during colonoscopy
[2].

In 2020, Su et al[15] published a prospective randomized control study comparing 
CADe with control, however, their CADe was built with quality control, specifically 
supervising withdrawal stability, from five different neural networks (AQCS). Similar 
to the other trials mentioned, AQCS was turned on during withdrawal. In addition to 
visual cue when polyps detected, the added features in this system were notifying the 
endoscopist to slow down withdrawal speed and re-examine colonic segments when 
unstable or blurry frames were detected continuously and prompting endoscopist to 
clean mucosa when inadequate score (Boston Prep Score < 2) was given by system. 
Study was single center in Qilu Hospital in China, from October 2018 to May 2019. 
Study included patients over 18yo who were able to give consent for screening 
colonoscopy. Exclusion criteria included history of IBD, CRC or colorectal surgery, 
patients with previously failed colonoscopy, or highly suspicious for polyposis 
syndromes, or patients whose colonoscopy could not be completed due to stenosis or 
large occupying lesions. Six endoscopists participated, each with 4-6 years of 
experience and colonoscopy volume of 5000 to 8000. Endoscopists were not blinded to 
randomization status, however, patients, data collection and study analyses were 
blinded.

A total of 659 patients were randomized, after exclusions, 308 in AQCS group and 
315 in control. There were no differences in demographics between the two groups. 
They performed retrospective review of 459 normal colonoscopies without positive 
findings performed by participating colonoscopists and there was no significant 
difference in the mean withdrawal times between the two groups.

A total number of 169 adenomas were detected, 56 control and 113 AQCS group. 
ADR in control 16.51% vs 28.9% AQCS group (OR, 2.055; 95%CI: 1.397-3.024; P < 
0.001). Additionally, there were more adenomas detected in AQCS when non 
pedunculated, diminutive adenomas (≤ 5 mm), larger adenomas (> 5 mm), and 
adenomas in all segments with exception of cecum and rectum were considered.

Polyp detection rates were also higher in the AQCS group, 38.1% vs 25.4% in control 
(OR, 1.824; 95%CI: 1.296-2.569; P = 0.001).

Withdrawal time excluding biopsy time was significantly longer in the AQCS group 
than in the control group (7.03 ± 1.01 min vs 5.68 ± 1.26 min, P < 0.001). For the AQCS 
group there was a significant improvement in withdrawal time in this study compared 
to their retrospective withdrawal times before this study. Adequate bowel preparation 
rate was 87.3% in the AQCS group vs 80.6% in control group, (OR, 1.656; 95%CI: 1.070-
2.564; P = 0.023).

There were 62 false prompts (false positives), averaging 0.201 false prompts per 
colonoscopy and no missed prompts (false negatives) in the AQCS group.

Su et al[15] demonstrated significant improvement in ADR when utilizing a quality-
controlled CADe system that supervises in withdrawal stability and prompts 
endoscopists to clean colonic mucosa when inadequate prep scores are recognized. 
The AQCS demonstrated significant increase in ADR and an increase detection of 
larger adenomas, compared to previously mentioned CADe systems.

Limitations of this study are similar to prior RCTs where endoscopists are not 
blinded to randomization. It is also a single center study with only experienced 
endoscopists participating. Authors mention that the system utilized 4 intra-
procedural quality metrics, and these combined, improved ADR. They did not 
perform preliminary testing to evaluate whether 2 or 3 metrics would increase ADR to 
standard colonoscopy.

CONCLUSION
The goal of computer aided detection of polyps and adenomas is to close the gap 
between ADR and adenoma prevalence and in turn reduce interval CRC rates. CADe 
systems could act as second observers and reduce miss-rates of polyps. Imple-
mentation of CNNs for image recognition has overhauled the playing field regarding 
artificial intelligence utilization in colonoscopy, as these networks are built to allow 
image recognition in real time. As mentioned above, multiple CADe systems are being 
built and programmed by multidisciplinary teams from bioinformatics, computer 
science, machine learning/intelligent systems and in medicine. A single system has 
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not been shown to be superior to others.
As demonstrated by randomized trials, the ability to integrate CADe with 

colonoscopy in real time has demonstrated overall ADR and polyp detection rates 
were significantly higher for CADe groups compared with control. These were most 
significant for small, diminutive polyps and adenomas ≤ 5 mm and those which were 
sessile in character. These CADe systems have been shown to be safe and efficient. The 
CADe systems mentioned here have scarce miss rates, if any, when it comes to polyp 
detection. Small adenomas have less probability for malignant transformation 
compared to larger, however the increase in total ADR may contribute to decreased 
risk of interval CRC. Conversely, increased detection and resection of diminutive 
lesions may represent additional unnecessary polypectomies and add to workload, 
cost, and pathology resource utilization. Wang et al[12] remarks that gaining the ability 
to identify small adenomas will provide the advantage of resecting small pre-
malignant lesions along with distinguishing patients who are at higher risk for future 
adenomas and interval cancer. Sue et al[15]’s AQCS network demonstrated increase 
detection of larger adenomas. Their system was unique to others in that it was built 
with a quality control feature that essentially improved the quality of colonoscopy by 
improving withdrawal time and identifying inadequate exposure of mucosa. Detection 
of polyps and adenomas by CADe relies on exposure of the entirety of the colonic 
mucosal field by the endoscopist. Polyps that remain outside of the visual field still 
pose a major deficiency that have the potential to be addressed by this system.

Endoscopists are still responsible for proper execution of the colonoscopy 
procedure, including cecal intubation rate. Inexperienced endoscopists are likely to 
have suboptimal results in the technical exposure of colorectal mucosa and perhaps 
adding quality control to CADe is the answer as demonstrated by Su et al[15]. 
Additionally, the AQCS was not utilized by inexperienced endoscopists in that RCT.

Artificial intelligence in colonoscopy has certainly made strides over the last decade, 
specifically in real time detection.  Currently, CADe systems based on CNN for the use 
of polyp and adenoma detection during colonoscopy are being built in single centers. 
This poses a risk of selection bias leading to difficulty implementing any one CADe 
system on a wide scale.  Appropriately curated large scale data sets are needed to limit 
data set bias. Collection of image and video inputs should be broad and include 
unsampled or under-represented lesions. The added complexity of developing CADe 
to assist in withdrawal stability and identification of inadequate exposure elevates the 
technology of AI as these enhance the ability and accuracy of the endoscopist who 
remains the critical portion of the colonoscopy, for now[15-17]. In addition to polyp 
detection, models built to aid in diagnosis and classification of inflammatory bowel 
disease have been described[18,19]. Current systems should have controlled and 
practical set up, as not add to the workflow of standard colonoscopy. Ideally these 
systems should predict pathology and size and improve accuracy, minimizing 
unnecessary pathologic assessment and avoidable resection of non-neoplastic lesions. 
While it is expected that technologic cost will increase initially, when used effectively 
and efficiently, CADe systems should ultimately reduce cost. The review of RCTs 
demonstrates undeniable improvement of ADR when utilizing CADe compared to 
standard colonoscopy.  Collectively they demonstrate CADe are safe and practical 
when used in real-time and more complex CADe systems have the potential to 
improve accuracy of the endoscopist improving quality of colonoscopy.
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