
Artificial Intelligence in
Medical Imaging

ISSN 2644-3260 (online)

Artif Intell Med Imaging  2021 February 28; 2(1): 1-12

Published by Baishideng Publishing Group Inc



AIMI https://www.wjgnet.com I February 28, 2021 Volume 2 Issue 1

Artificial Intelligence in 

Medical ImagingA I M I
Contents Bimonthly Volume 2 Number 1 February 28, 2021

EDITORIAL

New Year's greeting and overview of Artificial Intelligence in Medical Imaging in 20211

Wu YXJ, Shen J

MINIREVIEWS

Artificial intelligence in ophthalmology: A new era is beginning5

Panda BB, Thakur S, Mohapatra S, Parida S



AIMI https://www.wjgnet.com II February 28, 2021 Volume 2 Issue 1

Artificial Intelligence in Medical Imaging
Contents

Bimonthly Volume 2 Number 1 February 28, 2021

ABOUT COVER

Georges Nassar, PhD, Academic Research, Professor, Ultrasonic Division, Institute of Electronic, Microelectronic 
and Nanotechnology, Lille 59300, Hauts-de-France, France. gnassar@univ-valenciennes.fr

AIMS AND SCOPE

The primary aim of Artificial Intelligence in Medical Imaging (AIMI, Artif Intell Med Imaging) is to provide scholars 
and readers from various fields of artificial intelligence in medical imaging with a platform to publish high-quality 
basic and clinical research articles and communicate their research findings online. 
      AIMI mainly publishes articles reporting research results obtained in the field of artificial intelligence in medical 
imaging and covering a wide range of topics, including artificial intelligence in radiology, pathology image 
analysis, endoscopy, molecular imaging, and ultrasonography. 

INDEXING/ABSTRACTING

There is currently no indexing.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Yan-Xia Xing; Production Department Director: Yun-Xiaojian Wu; Editorial Office Director: Yun-Xiaojiao Wu.

NAME OF JOURNAL INSTRUCTIONS TO AUTHORS

Artificial Intelligence in Medical Imaging https://www.wjgnet.com/bpg/gerinfo/204

ISSN GUIDELINES FOR ETHICS DOCUMENTS

ISSN 2644-3260 (online) https://www.wjgnet.com/bpg/GerInfo/287

LAUNCH DATE GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

June 28, 2020 https://www.wjgnet.com/bpg/gerinfo/240

FREQUENCY PUBLICATION ETHICS

Bimonthly https://www.wjgnet.com/bpg/GerInfo/288

EDITORS-IN-CHIEF PUBLICATION MISCONDUCT

Xue-Li Chen, Caroline Chung, Jun Shen https://www.wjgnet.com/bpg/gerinfo/208

EDITORIAL BOARD MEMBERS ARTICLE PROCESSING CHARGE

https://www.wjgnet.com/2644-3260/editorialboard.htm https://www.wjgnet.com/bpg/gerinfo/242

PUBLICATION DATE STEPS FOR SUBMITTING MANUSCRIPTS

February 28, 2021 https://www.wjgnet.com/bpg/GerInfo/239

COPYRIGHT ONLINE SUBMISSION

© 2021 Baishideng Publishing Group Inc https://www.f6publishing.com

© 2021 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

E-mail: bpgoffice@wjgnet.com  https://www.wjgnet.com

https://www.wjgnet.com/bpg/gerinfo/204
https://www.wjgnet.com/bpg/GerInfo/287
https://www.wjgnet.com/bpg/gerinfo/240
https://www.wjgnet.com/bpg/GerInfo/288
https://www.wjgnet.com/bpg/gerinfo/208
https://www.wjgnet.com/2644-3260/editorialboard.htm
https://www.wjgnet.com/bpg/gerinfo/242
https://www.wjgnet.com/bpg/GerInfo/239
https://www.f6publishing.com
mailto:bpgoffice@wjgnet.com
https://www.wjgnet.com


AIMI https://www.wjgnet.com 1 February 28, 2021 Volume 2 Issue 1

Artificial Intelligence in 

Medical ImagingA I M I
Submit a Manuscript: https://www.f6publishing.com Artif Intell Med Imaging 2021 February 28; 2(1): 1-4

DOI: 10.35711/aimi.v2.i1.1 ISSN 2644-3260 (online)

EDITORIAL

New Year's greeting and overview of Artificial Intelligence in Medical 
Imaging in 2021

Yun-Xiaojian Wu, Jun Shen

ORCID number: Yun-Xiaojian Wu 
0000-0003-1146-7872; Jun Shen 
0000-0001-7746-5285.

Author contributions: Wu YXJ 
drafted this editorial; Shen J 
revised the manuscript.

Conflict-of-interest statement: The 
authors declare having no conflicts 
of interest.

Open-Access: This article is an 
open-access article that was 
selected by an in-house editor and 
fully peer-reviewed by external 
reviewers. It is distributed in 
accordance with the Creative 
Commons Attribution 
NonCommercial (CC BY-NC 4.0) 
license, which permits others to 
distribute, remix, adapt, build 
upon this work non-commercially, 
and license their derivative works 
on different terms, provided the 
original work is properly cited and 
the use is non-commercial. See: htt
p://creativecommons.org/License
s/by-nc/4.0/

Manuscript source: Invited 
manuscript

Specialty type: Radiology, nuclear 
medicine and medical imaging

Country/Territory of origin: United 
States

Peer-review report’s scientific 
quality classification

Yun-Xiaojian Wu, Production Department, Baishideng Publishing Group Inc, Pleasanton, CA 
94566, United States

Jun Shen, Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 
Guangzhou 510120, Guangdong Province, China

Corresponding author: Yun-Xiaojian Wu, BSc, Vice Director, Production Department, 
Baishideng Publishing Group Inc, 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 
94566, United States. y.xj.wu@wjgnet.com

Abstract
As editors of Artificial Intelligence in Medical Imaging (AIMI), it is our great pleasure 
to take this opportunity to wish all of our authors, subscribers, readers, Editorial 
Board members, independent expert referees, and staff of the Editorial Office a 
Very Happy New Year. On behalf of the Editorial Team, we would like to express 
our gratitude to all of the authors who have contributed their valuable 
manuscripts, our independent referees, and our subscribers and readers for their 
continuous support, dedication, and encouragement. Together with an excellent 
of team effort by our Editorial Board members and staff of the Editorial Office, 
AIMI advanced in 2020 and we look forward to greater achievements in 2021.

Key Words: New Year’s greeting; Artificial Intelligence in Medical Imaging; Baishideng; 
Journal development
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INTRODUCTION
As editors of Artificial Intelligence in Medical Imaging (AIMI), it is our great pleasure to 
take this opportunity to wish all of our authors, subscribers, readers, Editorial Board 
members, independent expert referees, and staff of the Editorial Office a Very Happy 
New Year. On behalf of the Editorial Team, we would also like to express our 
gratitude to all authors who have contributed their valuable manuscripts, to 
independent referees, and to our subscribers and readers for their continuous support, 
dedication, and encouragement.

AIMI mainly focuses on reporting research results obtained in the field of artificial 
intelligence (AI) in medical imaging, but covers a wide range of topics within that 
field. With the joint efforts of Editorial Board members and Editorial Office staff, it is 
our hope that AIMI will achieve further advancement in 2021, establishing a strong 
foundation upon which we may build to become the top journal in the field of AI.

ACADEMIC INFLUENCE OF AIMI
AIMI is a high-quality, bimonthly, online, open-access, and single-blind peer-reviewed 
journal, featuring research advances in AI involving the emerging fields of medical 
imaging in each issue. The scope of AIMI covers a wide range of topics, including but 
not limited to coronavirus disease 2019, radiomics, computed tomography, magnetic 
resonance imaging, machine learning, deep learning, nuclear medicine, positron 
emission tomography, pathology image analysis, endoscopy, molecular imaging, and 
ultrasonography.

With the rapid development of AI technology, the combination of deep learning and 
image-omics will enjoy broader application and more substantive development 
prospects, ultimately creating new fields of computer-aided diagnosis and 
personalized medical imaging. As a future research hotspot, they will continue to 
support even further investigative and clinical focus, advancing the overall use of AI 
and its benefit to human health. We will invite global experts to contribute original 
articles that focus on key scientific issues in medical imaging technology, 
methodology, and applied research, and propose research ideas, key research 
directions, and future research trends, to lead the development of the field.

As one of the key developing journals of the Baishideng Publishing Group Inc 
(BPG), AIMI was launched in 2020, publishing Volume 1, Issue 1 on June 28[1]. To date, 
it has published 3 issues with 11 articles (Figure 1). The authors of these manuscripts 
come from countries across the globe (Figure 2). In 2020, the Editorial Board of AIMI 
consisted of 77 members from 23 countries and regions including 33 from China 
(42.9%), 9 from the United States (11.7%), 7 from India (9.1%), and 28 from other 
countries and regions (36.3%) (Figure 3)[2].

To help AIMI develop more efficiently, BPG instituted and implemented the 
following in 2020. (1) In order to provide authors with better services, and supervise 
and promote BPG’s efforts to publish each article more openly and transparently, BPG 
published the Author Reviews (https://www.f6publishing.com/AuthorReviews) for 
each publication, so that all can see the authors’ evaluation and feedback on the 
publication process. (2) Throughout 2020, BPG continued systematic efforts to 
encourage more authors to generate articles that are outstanding for their originality 
and innovativeness and to strengthen our open-access strategy of publication; these 
efforts were motivated by our dedication to maximizing readers’ access to the latest 
research results, to promote development of the medical sciences worldwide. In doing 
so, BPG invited Editorial Board members to conduct Article Quality Tracking-Peer-
Review and published the comments (https://www.f6publishing.com/
ArticleQualityTrackings) after the publication of the article. (3) To continue to advance 
BPG’s publishing efficiency and quality, we successfully developed an automated 
manuscript editor system for manuscript revision and submission, as well as an 
artificially intelligent program to generate a PDF version of the manuscript. (4) To 
enable more peers to read, share, and cite authors’ published research results and to 
help enhance their global academic influence and reputations, thereby also promoting 
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Figure 1 Column type distribution of manuscripts published in Artificial Intelligence in Medical Imaging in 2020.

Figure 2 Distribution of authors’ countries for the manuscripts published in Artificial Intelligence in Medical Imaging in 2020.

Figure 3 Distribution of Editorial Board members’ countries for Artificial Intelligence in Medical Imaging.

the overall development of the field, BPG initiated the routine of sending its published 
articles to 1000-10000 highly influential experts in a topically accurate manner. After 
completing this outreach activity, BPG formally notifies the paper’s authors of the 
number of experts to whom their manuscript was sent via email.

We are pleased to announce that we have now submitted evaluation applications to 
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the Web of Science, with the expectation that the AIMI could be included in Science 
Citation Index Expanded in 2021.

CONCLUSION
With the collective support of BPG’s contributors and staff, we expect to continue the 
trajectory towards more productive efforts that will raise the academic rank of AIMI in 
2021. To achieve these goals, we appreciate the need for continuous support and 
submissions from authors and the dedicated efforts and expertise by our invited 
reviewers, many of them who also serve on our Editorial Board. As the chief editors of 
AIMI, we strive to work with the journal’s Editorial Office staff to make the 
manuscript submission process as simple as possible and to ensure efficient 
communication with the authors to provide professional support and answer their 
questions. We are also open to any suggestions that could improve AIMI’s operations 
and publication. Please feel free to contact us at (editorialoffice@wjgnet.com) with any 
question on your submission or suggestions.

Once again, on behalf of AIMI, we wish you and your families the best for the New 
Year.
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Abstract
The use of artificial intelligence (AI) in ophthalmology is not very new and its use 
is expanding into various subspecialties of the eye like retina and glaucoma, 
thereby helping ophthalmologists to diagnose and treat diseases better than 
before. Incorporating “deep learning” (a subfield of AI) into image-based systems 
such as optical coherence tomography has dramatically improved the machine's 
ability to screen and identify stages of diabetic retinopathy accurately. Similar 
applications have been tried in the field of retinopathy of prematurity and age-
related macular degeneration, a silent retinal condition that needs to be diagnosed 
early to prevent progression. The advent of AI into glaucoma diagnostics in 
analyzing visual fields and assessing disease progression also holds a promising 
role. The ability of the software to detect even a subtle defect that the human eye 
can miss has led to a revolution in the management of certain ocular conditions. 
However, there are few significant challenges in the AI systems, such as the 
incorporation of quality images, training sets and the black box dilemma. 
Nevertheless, despite the existing differences, there is always a chance of 
improving the machines/software to potentiate their efficacy and standards. This 
review article shall discuss the current applications of AI in ophthalmology, 
significant challenges and the prospects as to how both science and medicine can 
work together.

Key Words: Artificial intelligence; Retina; Diabetic retinopathy; Glaucoma; Retinopathy of 
prematurity; Image-based learning

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Artificial intelligence has improved the diagnostic ability in the 
ophthalmology field, thereby improving patient care. The in-depth image recognition 
in diabetic retinopathy, retinopathy of prematurity and age-related macular 
degeneration has helped in early diagnosis and prevention. The detection of visual filed 
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defect even at its minute stage in glaucoma and other ocular conditions has accurately 
staged the disease with the prediction of its severity. Still, many challenges need to be 
addressed, such as image incorporation, training sets and the black box dilemma. 
Nevertheless, despite the existing differences, there is always a chance of improving 
machines to potentiate their efficacy and standards.

Citation: Panda BB, Thakur S, Mohapatra S, Parida S. Artificial intelligence in ophthalmology: 
A new era is beginning. Artif Intell Med Imaging 2021; 2(1): 5-12
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INTRODUCTION
Artificial intelligence (AI) software can perform cognitive functions like problem-
solving and learning by processing and analyzing a large amount of data; in other 
words, the machine can gain experience as humans do. It came into existence in 1956 
and in no time spread its roots into many medical fields, including ophthalmology in 
the late 1990s when colour fundus photography had started gaining importance in 
diabetic retinopathy (DR) screening[1]. Later on, its use was not limited to but tried 
extensively in many subspecialties of the eye such as cataract, myopia and glaucoma 
screening, corneal ectasia, keratoconus, retinopathy of prematurity (ROP) and ocular 
reconstruction. It can also be used in calculating intraocular lens power and while 
planning squint surgery and intravitreal injections. AI can even detect cognitive loss, 
Alzheimer's disease and cerebrovascular stroke risk from fundus photographs and 
optical coherence tomography (OCT). AI in ophthalmology started with machine 
learning (ML), which meant automatic behaviour modification after exposure to 
several inputs. Deep learning (DL) is a subset of ML that uses convolutional neural 
networks (CNN) to add decision-making capability. When incorporated into OCT, 
these features can help in the diagnosis of many anterior and posterior segment 
diseases.

AI AND DR
The disease burden of diabetes mellitus increases day by day, and millions of people 
are affected. According to published data, the present disease burden is 463 million[2] 
and likely to rise to 642 million by 2040. DR is a microvascular complication affecting 
the retina's blood vessels, leading to progressive damage and irreversible blindness. 
These patients need to be diagnosed early, and prompt treatment should be started 
regardless of the type of diabetes. Routine dilated fundus screening in these patients 
with ophthalmoscopy and colour fundus photographs is the need of the hour and, 
therefore, eases the burden on the retina specialists. AI has shown promising results in 
the automated grading of DR based on ML and DL models, the CNN and the massive-
training artificial neural network. The lesions in DR are recognized by ML as different 
colours like red (microaneurysms, haemorrhage, venous abnormalities, intraretinal 
microvascular abnormalities, new vessels, etc.), yellow (hard exudates, drusens) and 
white (cotton wool spots, fibrous proliferation, retinal oedema)[3]. Staging in DR is 
usually done by the Davis staging practiced worldwide[4]. In 2017, Takahashi et al[5] 
developed a modified Davis staging adopting the DL criterion. The DL approach 
increases the possibility of identifying neovascularization or other features of 
proliferative DR (PDR) outside a 45° angle to the posterior pole by detecting non-
verbalizable unclear signals. A major breakthrough in this arena was the United States 
Food and Drug Administration approval of IDx-DR in 2018[6]. A CNN DL algorithm-
based AI system to be used along with a Topcon fundus camera has now been proven 
to be an essential tool in non-ophthalmic healthcare places where it can diagnose DR 
in just a matter of 20 sec. Lately, the automated DR image accessing system has been 
applied in conditions affecting the macula such as PDR and clinically significant 
macular oedema. Another new entity has evolved termed as mtmDR (more than 
minimal DR), which is defined as the presence of Early Treatment Diabetic 
Retinopathy Study level 35 or higher, i.e. showing microaneurysms, hard exudates, 
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cotton wool spots and mild retinal haemorrhages and presence of macular oedema in 
at least one eye[7].

Abràmoff et al[8] reported that DL enhanced algorithm for automated detection of 
DR has better sensitivity than the Iowa Detection Program–without DL components. 
The sensitivity and specificity of DL-based automated DR detection algorithm was 
96.8% [95% confidence interval (CI): 93.3%-98.8%] and 87.0% (95%CI: 84.2%-89.4%) 
with 6/874 false negatives, resulting in a negative predictive value of 99.0% (95%CI: 
97.8%-99.6%). The authors did not miss a single case of severe non-proliferative DR, 
PDR or macular oedema with DL technology[8]. Gargeya et al[9] developed a data-
driven DL algorithm where the colour fundus images were classified as healthy (no-
retinopathy) or DR. Their model achieved a 0.97 area under the curve with a 94% and 
98% sensitivity and specificity, respectively[9].

Several studies came out with different proposals of classifying DR stages, some of 
which are worth mentioning[10]. A three-layer feed-forward neural network based on 
identifying microaneurysms and haemorrhages was proposed by Wong et al[11] to stage 
DR. A novel technique known as morphological component analysis was formulated 
by Imani et al[12] to detect oedema and haemorrhages. Yazid et al[13] used inverse surface 
thresholding and Lattice Neural Network with Dendritic Processing or enhancement 
techniques to identify hard exudates and optic disc pathologies. Akyol et al[14] tried 
using key point detection, texture analysis and visual dictionary techniques to detect 
automatically the optic disc changes from fundus images. The sensitivity and 
specificity of these studies ranged from 75% to 94.7%. Few studies have used the Eye 
Art software smartphone-based fundus photography with a sensitivity of around 95% 
and specificity of 91.5%. The EyeNuk software using the desktop fundus cameras to 
evaluate retinal images showed that EyeArt's sensitivity for DR screening was 91.7% 
and specificity was 91.5%[15-17]. Ting et al[18] validated the DL algorithm with retinal 
images taken with conventional fundus cameras that had high sensitivity and 
specificity for identifying DR and age-related macular degeneration (AMD). The 
intelligent retinal imaging system is another milestone achieved in the field of AI. It is 
a tele-retinal DR screening program that compares non-mydriatic retinal images taken 
by a fundus camera with a standard set of images from Early Treatment Diabetic 
Retinopathy Study to recommend referral in selected cases of severe non-proliferative 
DR or more advanced vision-threatening disease[19].

Wong et al[20] pointed out certain limitations of DL technology in AI for the screening 
of DR. There is no simple, standardized algorithm to follow. The technology can talk 
about the referral cases but fail to detect severe sight-threatening DR that need urgent 
attention. The software may fail to detect associated glaucoma and AMD while 
screening for DR. The most severe problem is the development of the faith of the 
physicians on the machine. The heterogeneous population, different races and 
variability in pupil dilatation, cataract severity and media opacities may befool the 
machine and can be one of the reasons for refusal of the technology by the 
physicians[20].

AI AND ROP
ROP is one of the leading causes of childhood blindness throughout the world. This 
vasoproliferative condition affects preterm infants with low gestational age and those 
with low birth weight. This condition should be diagnosed promptly so that timely 
intervention can be done. This can be abetted with the help of AI, which provides an 
automated, quantifiable and highly objective diagnosis in plus disease in ROP[21]. One 
more area of application of AI in ROP is the utilization of the DL algorithms into 
medical training to standardize ROP training and education through tele-education. 
However, there are few clinical and technical challenges in the implementation of AI 
in the actual scenario.

According to International Classification of Retinopathy of Prematurity, ROP is 
classified based on the location, extent and severity of disease[22]. However, there is 
much inter-observer variability in the subjective and qualitative assessment of disease 
severity (zone, stage and plus-disease) due to wide disparities among the diagnosing 
abilities of ophthalmologists attending these preterm babies. Therefore, there is a need 
to add objective methods of diagnosis and record-keeping for future comparisons to 
improve accuracy. Today, digital fundus photography using telemedicine has already 
paved the way for screening at-risk preterm babies at any geographical location that 
can be evaluated by a trained retina specialist sitting at another location.

Earlier systems of computer-based ROP diagnosis as described by Wittenberg et al[23] 
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(2012) include the ROP-Tool, retinal image multiScale analysis, vessel map and 
computer-assisted image analysis of the retina, which were feature extraction–based 
systems. These systems could quantify vessel type, dilation and tortuosity into some 
value that had a variable diagnostic agreement with the clinical diagnosis of ROP.

Newer ML-based systems used a support vector machine that is trained to combine 
the features (vessel tortuosity) and the field of view (six-disc diameter radius) and then 
provide the diagnosis, quite similar to what an expert can do. This improved machine 
efficacy and accuracy to almost 85%-95%[24,25]. However, there were few limitations as 
they required manual drawings for input. In 2018, Brown et al[24] described a fully 
automated convoluted neural networks-based system known as the i-ROP DL system 
for the diagnosis of plus-ROP that can diagnose plus disease with a sensitivity and 
specificity of 93% and 94%, respectively. Taylor et al[25] used the i-ROP DL algorithm to 
create a scoring system related to vascular tortuosity and termed it as continuous ROP 
vascular severity score (1–9), which could classify ROP as no ROP, mild ROP, type 2 
ROP and pre-plus disease or type 1 ROP. This scoring system could help augment 
treatment regimens by better predicting the preterm infants at risk for treatment 
failure and disease recurrence. However, few regulatory and medicolegal issues in 
utilizing the DL systems for ROP diagnosis need to be resolved for proper implication.

AI AND AMD
AMD is considered the leading cause of central vision loss in the elderly age group. 
The challenges in diagnosing and managing this silent progressive retinal condition 
have led to the rising prevalence of the disease. AI has evolved to help in the 
automated detection of drusens in the very early stages and stratify the disease's 
progression. AMD is clinically characterized by the presence of drusens and retinal 
pigment epithelium changes progressing into geographic atrophy and neovasculari-
zation.

Many of the studies related to incorporating AI in the screening of AMD have used 
colour fundus images as input materials and then extract features of early, 
intermediate and late AMD to differentiate from the healthy ones with relatively high 
accuracy and sensitivity ranging from 87%-100%[26,27]. They found this technique much 
cheaper than using OCT to stage the disease. Fang et al[28] proposed a spectral-domain 
OCT combined with DL system that could determine the macular fluid quantity of 
neovascular AMD and the segmentation of the retinal layers of dry AMD and 
validated the accuracy as 100%. Bogunovic et al[29] developed an algorithm to evaluate 
the response to treatment using OCT images. More recently, Bhuiyan et al[30] did 
pioneer research in creating and validating AI-based models for AMD screening 
(accuracy 99.2%) and predicting late dry and wet AMD progression within 1 and 2 
years (accuracy 66%-83%). They used the DL screening methods on the Age-related 
Eye Disease Study (AREDS) dataset to classify their colour fundus photos into no, 
early, intermediate or advanced AMD and further classified them along the AREDS 12 
Level severity scale[30]. They combined the AMD scores with sociodemographic, 
clinical data and other automatically extracted imaging data by a logistic model tree 
ML technique to predict risk for progression to late AMD.

AI AND GLAUCOMA
Glaucoma is a progressive optic neuropathy caused by high intra-ocular pressure 
leading to retinal nerve fibre loss and irreversible blindness. Early treatment can retard 
the progression of the disease. AI can help in identifying the borderline cases and 
predict the course of the disease. Many studies have tried to apply ML to identify the 
disease. A comprehensive AI for glaucoma should be able to evaluate all the necessary 
parameters such as optic disc changes, intraocular pressure (IOP), gonioscopy, retinal 
nerve fiber layer thickness, visual fields etc. However, such a comprehensive package 
is yet to come to the real-time world. The application of AI in measuring IOP is now 
limited to the Sensimed Triggerfish, a contact lens-based continuous IOP monitoring 
device that measures the corneal strain changes induced by IOP fluctuations. Martin 
et al[31] used data from 24 prospective studies of Triggerfish using Random Forest 
Modelling (a ML method) to identify the parameters associated with glaucoma 
patients.

Omodaka et al[32] developed a ML algorithm based on the segmentation technique 
where the parameters such as optic disc cupping, neuroretinal rim thickness and 
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ganglion cell thickness could be quantified with the help of swept-source OCT to the 
accuracy as high as 87%. Other studies by Christopher et al[33], Barella et al[34], Bizios 
et al[35] and Larrosa et al[36] evaluated unsupervised ML, ML classifiers, artificial neural 
networks, support vector machines and segmentation methods for glaucoma OCT.

Many studies have evaluated a DL algorithm to detect glaucomatous optic disc 
changes from colour fundus photographs with high sensitivity and specificity[37,38]. The 
available AI devices for detecting glaucomatous optic neuropathy from fundus photos 
are the Pegasus (Orbis Cybersight Consult Platform), NetraAI (Leben Care 
Technologies Pte Ltd) and the Retinal Image Analysis - Glaucoma (RIA-G). RIA-G is 
the AI device based on DL made by the Indian startup Kalpah Innovations 
(Vishakapatnam, India). It is a cloud-based software that uses advanced image 
processing algorithms to measure the cup disc size and ratio, NeuroRetinal Rim 
Thickness and Disc Damage Likelihood Score[39].

AI can also augment the interpretation of visual fields in studies showed by Asaoka 
et al[40] and Andersson et al[41] using a Feed-Forward Neural Network to identify pre-
perimetric visual fields (VF). Goldbaum et al[42] used unsupervised ML and variational 
Bayesian independent component analysis mixture model (vB-ICA-mm) to analyze VF 
defects. Bowd et al[43] used the variational Bayesian independent component analysis-
mixture model, which is an unsupervised machine-learning classifier and can be used 
in the analysis of frequency doubling technology perimetry data[43].

AI AND CATARACT
Studies have described techniques to grade nuclear cataracts by the help of AI using 
algorithms based on ML or DL systems that work as efficiently as a clinician's grading. 
Gao et al[44] proposed a system that could process slit-lamp images to grade cataracts. 
Liu et al[45] focused on identifying and categorizing pediatric cataracts with excellent 
accuracy and sensitivity. Wu et al[46] developed a universal AI platform and multilevel 
collaborative pattern that could perform effectively in diagnostic and referral service 
for pediatric and age-related cataracts. Dong et al[47] have proposed the automated 
detection and grading of cataracts from colour fundus photographs using a 
combination of a DL system to extract images (Caffe software) followed by a ML 
algorithm (called as Softmax function) for severity grading. AI has also been tried in 
residents’ cataract surgery training due to recognizing different phases of cataract 
surgery[48,49]. Some researchers have derived new AI-based calculation formulae for 
pre-cataract surgery intraocular lens power, e.g., the Hill-Radial basis function method 
and the Kane formula, which are reported to be able to estimate individual eye's 
intraocular lens power with promising results with further improvements needed for 
short axial length eyes[50-52].

CONCLUSION
AI-assisted screening and diagnosis of high incidence diseases will help in better 
medical care and reduce the limitations to access ophthalmic care at remote areas 
devoid of ophthalmologists. In doing so, it will also reduce the overburdened 
healthcare system. However, this project at its infancy is nonetheless riddled with 
certain limitations. The assessment is highly dependent on image quality. Hence, 
patient factors such as head and eyeball movement and poor fixation may lead to a 
substandard image and a wrong assessment. However, this is the basis of ML, and in 
future, we expect a much more robust system. A certain degree of human supervision 
is required to find the subtle variations and atypical findings missed by AI. 
Computational cost and running expenses could be over the roof. AI mainly targets 
diseases with high incidence and morbidity, but not much effective for rare diseases 
with fewer incidences.

Future outlook
Not only for screening and diagnosis, AI has also been found to be instrumental in 
maintaining Electronic Health Record (EHR) data. Given the plethora of diagnostic 
tests that patients undergo, these collected EHR data could be fed into the AI system 
and trained through exposure to normal and pathological clinical data. Therefore, it 
could be used for risk assessment as well as to predict postoperative complications 
and outcome.
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Abstract
Artificial intelligence (AI) is a computer science that tries to mimic human-like 
intelligence in machines that use computer software and algorithms to perform 
specific tasks without direct human input. Machine learning (ML) is a subunit of 
AI that uses data-driven algorithms that learn to imitate human behavior based 
on a previous example or experience. Deep learning is an ML technique that uses 
deep neural networks to create a model. The growth and sharing of data, 
increasing computing power, and developments in AI have initiated a 
transformation in healthcare. Advances in radiation oncology have produced a 
significant amount of data that must be integrated with computed tomography 
imaging, dosimetry, and imaging performed before each fraction. Of the many 
algorithms used in radiation oncology, has advantages and limitations with 
different computational power requirements. The aim of this review is to 
summarize the radiotherapy (RT) process in workflow order by identifying 
specific areas in which quality and efficiency can be improved by ML. The RT 
stage is divided into seven stages: patient evaluation, simulation, contouring, 
planning, quality control, treatment application, and patient follow-up. A 
systematic evaluation of the applicability, limitations, and advantages of AI 
algorithms has been done for each stage.

Key Words: Radiation oncology; Radiotherapy; Artificial intelligence; Deep learning; 
Machine learning
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the automated segmentation of both the organs at risk and target volumes and the 
treatment planning process with advanced dose optimization. AI can optimize the 
quality control process and support increased safety, quality, and maintenance 
efficiency.

Citation: Yakar M, Etiz D. Artificial intelligence in radiation oncology. Artif Intell Med Imaging 
2021; 2(2): 13-31
URL: https://www.wjgnet.com/2644-3260/full/v2/i2/13.htm
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INTRODUCTION
Artificial intelligence (AI) is a computer science branch that tries to imitate human-like 
intelligence in machines using computer software and algorithms without direct 
human input to perform certain tasks[1,2]. Machine learning (ML) is a subunit of AI 
that uses data-driven algorithms that learn to imitate human behavior based on 
previous example or experience[3]. Deep learning (DL) is an ML technique that uses 
deep neural networks to create a model. Increasing computing power and reduction of 
financial barriers led to the emergence of the domain of DL[4]. The growth and sharing 
of data, increasing computing power, and developments in AI have initiated a 
transformation in healthcare services. Advances in radiation oncology, clinical and 
dosimetric information from increasing cases, and computed tomography (CT) 
imaging before each fraction have resulted in the accumulation of a significant amount 
of information in big databases.

Evidence-based medicine is based on randomized controlled trials designed for 
large patient populations. However, the increasing number of clinical and biological 
parameters that need to be investigated makes it difficult to design studies[5]. New 
approaches are required for all patient populations. Clinicians should use all 
diagnostic tools, such as medical imaging, blood testing, and genetic testing, to decide 
on the appropriate combination of treatments (e.g., radiotherapy, chemotherapy, 
targeted therapy, and immunotherapy). There are a number of individual differences 
that are responsible for each patient's disease or associated with response to treatment 
and clinical outcome. The concept of personalized treatment is based on determining 
and using these factors for each patient[6]. Integrating such a large amount of 
heterogeneous of data and producing accurate models may present difficulties and 
subjective individual differences for the human brain from time to time.

Beginning with the initial patient interview, AI can help predict posttreatment 
disease prognosis and toxicity. Additionally, AI can assist in the automated 
segmentation of both the organs at risk and target volume and the treatment planning 
process, with advanced dose optimization. AI can optimize the quality control (QA) 
process and support increased safety, quality, and maintenance efficiency.

The aim of this review is to summarize the radiotherapy (RT) process in workflow 
order by identifying specific areas where quality and efficiency can be improved with 
AI. The RT stage is divided into seven stages: patient evaluation, simulation, 
contouring, planning, QA, treatment application, and patient follow-up, and the flow 
chart is given in Figure 1. A systematic evaluation of the applicability, limitations, and 
advantages of AI algorithms has been made to each stage.

CLINICAL EVALUATION
Clinical radiation therapy workflow begins with patient assessment. This step 
typically includes a series of consultations including reviews of the radiation 
oncologist on the patient's symptoms, medical history, physical examination, 
pathological and genomic data, diagnostic studies of prognosis, comorbidities, and 
risk of toxicity from RT. The radiation oncologist then suggests a treatment plan based 
on the synthesis of these data. For clinicians involved in this process, the accumulation 
of big data beyond what people can quickly interpret is the biggest challenge[7]. AI-
based methods that can be used in routine functioning may be important decision 
support tools for clinicians in the future. Such AI-based models have been reported to 

https://www.wjgnet.com/2644-3260/full/v2/i2/13.htm
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Figure 1 Workflow in radiation oncology. DVH: Dose value histogram; RT: Radiotherapy.

improve prognosis and predict treatment outcomes, but are not yet used in routine 
clinical practice[8].

The recent implementation of electronic health records has significantly increased 
the clinical documentation burden of physicians. The notes having constituted 34%-
78% of physicians’ working days, for each hour a physician spends in direct contact 
with the patient, he spends an additional 2 h in front of the computer[9]. AI solutions 
have the potential to automate structured documentation. They can save time 
requirements that add to the documentation burden, reduce burnout, protect 
confidentiality, and organize medical data into searchable and available items[10]. In 
addition, an AI-supported electronic record system may have pre-consultation and 
disease pre-diagnosis power, by including a timeline and the outcomes of relevant 
tests, procedures, and treatments from various sources[10]. AI-based systems can 
record patient-doctor conversations and use speech recognition and natural language 
processing to create a coherent narrative. Such an AI-based system does not yet exist, 
significant technical advances for clinical and persuasive speech require the learning of 
hours of selected recording of patient speech[11]. According to patient demands AI 
systems can present information to the patient at low, medium, or high complexity 
levels.

The radiation oncologist should consider many factors during the evaluation of the 
patient and include consideration of their interactions when making treatment 
decisions. At this point, data-based forecasting models can guide the doctor and make 
the decision phase faster and more accurate. For example, when a patient diagnosed 
with lung cancer is being evaluated for stereotactic RT, the patient's respiratory 
functions, lung capacity, tumor size, proximity of the tumor to critical organs, 
comorbid diseases, and performance of the patient will affect both treatment response 
and toxicity. If modeling is made with these and similar factors, response and toxicity 
rates can be determined before starting treatment. In a case with a diagnosis of left 
breast cancer and treatment with breast-conserving surgery, modeling created with the 
patient and treatment characteristics can be predicted whether she can benefit from a 
breath-holding technique. Big data are needed to create these estimation models. The 
transition to the use of AI will also increase collaboration between centers in the data 
collection phase and make treatments more standardized. In addition, depending on 
the distribution of technology in the centers in the country, AI can direct patients to 
appropriate treatment centers. For example, it can direct pediatric cases requiring 
proton therapy to a specialized center, and cases requiring palliative treatment to a 
conventional center).

SIMULATION
After the RT decision is made, a good simulation is required to choose the right 
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treatment. Immobilization technique, scanning range, and the treatment area should 
be accurately determined. Preliminary preparations such as use of fiducial markers for 
simulation, full/empty bladder, whether an empty rectum is required, renal function 
tests, and fasting status should be carefully considered if intravenous contrast is to be 
applied. Accurate and good simulation is essential to obtain a high-quality, robust 
treatment plan for the patient. In clinical practice, it is not uncommon to repeat a CT 
during CT simulation because of deficiencies and inaccuracies such as insufficient 
scanning range, inadequate/incorrect immobilization technique, an inappropriate 
level of bladder/rectum content, and hardware-related artifacts[12]. There are many 
questions that can be answered with AI to improve overall workflow efficiency. For 
example, will the patient benefit from the use of an intravenous contrast agent? Which 
immobilization technique should be used? Is 4-dimensional (4D)-CT simulation 
necessary?

Depending on the location of the disease, this process can be very complex, and 
optimal patient immobilization is individual, so this process often requires the 
participation of a radiation oncologist and a medical physicist. For example, special 
care should be taken to assess potential interference between the immobilization 
device and treatment beam angles, or patient-specific problems that could cause 
collisions with the RT device. In simulation, CT is still used in many centers, but brain 
and prostate tumors can be seen better with magnetic resonance (MR). As a solution, 
efforts have been made to develop CT scans using MR data, also called synthetic CT 
(sCT) scans using the atlas-based, sparse coding-based, or learning-based methods. 
Convolutional neural networks (CNNs), which are less time consuming and more 
efficient AI-based method with fewer artifacts, increasingly used to convert MR data 
to sCT[13]. Therefore, in the future, sCT scans with AI-based methods may 
compensate for the need for CT scanning, as they can be created with electron density 
data faster and are more reliable for plan generation than MR. Compared with 
traditional sCT methods, DL methods can be fully automated. Training with MR-CT 
images has been improved by the use of cycle-consistent generative adversarial 
networks (GANs)[14]. GANs require a new DL algorithm using two networks, a 
generator network creates realistic images and a differential mesh distinguishes 
between real and created images[14]. Studies have reported that images created by 
sCT and DL are accurate enough for dose calculation[15,16]. The same method can be 
used for other image syntheses. For example, virtual 4D-MR images can be 
synthesized from 4D-BT in order to see liver tumors well in image-guided RT 
(IGRT)[17].

Simulation is one of the most important steps in RT because ant deficiencies or 
errors that occur are reflected in the entire treatment process. AI techniques can be 
used to increase the accuracy of the simulation, to personalize it according to the 
patient characteristics, and to better characterize the tumor, but more studies are 
needed for its routine clinical use.

IMAGE REGISTRATION - SEGMENTATION
Image registration
Image registration is the process of spatially aligning two or more sets of images of the 
same region shot in different modalities at different times[17]. Commercially available 
automated image registration algorithms are typically designed to perform well only 
with modality-specific registration problems and require additional manual 
adjustments to achieve a clinically acceptable registration[7]. The two main 
registration methods used in RT are density based and have rigid registration. In a 
review of image registration Viergever et al[18] examined relevant developments 
between 1998 and 2016. They stated that DL approaches to registration can be novel 
game-changers in facilitating the implementation process and doing more, and they 
advocated the application of DL concepts to make it a routine integral part of the 
entire clinical imaging spectrum[18]. AI tools are also trained to determine the 
sequence of motion actions that result in optimal registration. These algorithms can 
provide better accuracy than various state-of-the-art registration methods and can be 
generalized to multiple display methods[19]. AI approaches have been shown to 
mitigate the effects of image artifacts like metal screws, guide wires, prostheses, and 
motion artifacts, which pose difficulties in both registration and segmentation[7].

Segmentation
In the standard workflow, the target volume and organs at risk (OARs) are manually 
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contoured by the radiation oncologist in a cross-section. As a result, the process is long 
and has a high degree of variability as a result of individual differences[20]. Manual 
segmentation directly affects the quality of the treatment plan and dose distribution 
for OARs[21]. There have been some attempts at automatic segmentation. It is the 
most widely available atlas-based segmentation in clinical use. First, the target image 
is matched with one or more selected reference images. Then, the contours in the 
reference image are transferred to the target image[22]. Atlas-based methods depend 
on the choice of atlas and the accuracy of reference images[23]. AI can be used to 
minimize the differences between physicians and to shorten the duration of this step in 
RT planning.

Segmentation of at-risk organs: To protect at-risk organs and to correctly evaluate RT 
toxicity, the segmentation of OARs should be done correctly. To fully benefit from 
technological developments in RT planning and devices, at-risk organs must be 
identified correctly. In clinics with high patient density, this step can be rate limiting. 
In addition, there may be differences among the practitioners, and because of 
significant anatomical changes (e.g., edema, tumor response, weight loss, and others) 
during treatment, a new plan with new segmentation may be required. AI, particularly 
CNN, is a potential tool to reduce physician workload and define a standard 
segmentation. In recent years, DL methods have been widely used in medical 
applications such as organ segmentation in CNN, head-neck, lung, brain, and prostate 
cancers[24-27].

In a head and neck cancer study by Ibragimov et al[28] contouring the spinal cord, 
mandible, parotid glands, submandibular glands, larynx, pharynx, eyes, optic nerves, 
and optic chiasm was done in 50 patients by DL using CT images. They obtained dice 
similarity coefficients (DSCs) of between 37.4% (optic chiasm) and 89.5% (mandible). 
Compared with the contouring algorithm of current commercial software, contouring 
of the medulla spinalis, mandibular and parotid glands, larynx, pharynx, and eye 
globes, was better and that of the optic nerve, submandibular gland (SMG), and the 
optic chiasm was worse with DL. CT images were used in that study, and higher 
accuracy rates were achieved with MR image support[28]. In a study of head and neck 
organ segmentation in 200 patients with oropharyngeal squamous cell carcinoma, 
Chan et al[29] used CT for planning, with 160 cases used for training, 20 for internal 
validation, and 20 for testing. Mandibula, right and left parotid glands, oral cavity, 
brainstem, larynx, esophagus, right and left SMG, right and left temporomandibular 
joints were contoured. In a lifelong learning-based CNN (LL-CNN) comparison, 
manual contouring was used as the gold standard and DSC and root-mean-square 
error (RMSE) was used for accuracy. LL-CNN was then compared to 2D U-Net, 3D U-
Net, single-task CNN (ST-CNN) and multitask CNN. Higher DSC and lower RMSE 
were obtained with LL-CNN compared with the other algorithms. The study found 
that LL-CNN had a better prediction accuracy than all alternative algorithms for the 
head and neck organs at risk[29]. In another study, Rooij et al[30] used CT images of 
157 head and neck cancer patients, 142 for case training and 15 for testing. The right 
and left SMGs, right and left parotid glands, larynx, cricopharynx, pharyngeal 
constrictor muscle, upper esophageal sphincter, brain stem, oral cavity, and esophagus 
were contoured. With DL, contouring of the 11 OARs was < 10 s per patient. The mean 
DSC of seven of the 11 contoured organs ranged from 0.78 to 0.83, and the DSC values 
for the esophagus, brainstem, PMC and cricopharynx were 0.60, 0.64, 0.68 and 0.73, 
respectively[30]. The study found that for the head and neck OAR, DL-based 
segmentation was fast and performed well enough for treatment planning purposes 
for most organs and most patients.

OARs in the thorax area have also contoured for RT with AI[31-34]. Zhu et al[25] 
used CT images of 66 lung cancer cases, 30 cases for training and 36 cases for testing. 
CNN was used for segmentation, and compared with atlas-based automatic 
segmentation (ABAS). DSC, the mean surface distance (MSD), and 95% Hausdorff 
distance (95% HD) were used to evaluate the results. The MSD (mm) values for CNN 
and ABAS were 2.92 and 3.14 for the heart, 3.21 and 3.83 for the liver, 1.81 and 3.03 for 
ms, 2.65 and 2.67 for the esophagus, and 1.93 and 1.85 mm for the lungs. The 95% HD 
(mm) values for CNN and ABAS were 7.98 and 9.53 in the heart, 10.0 and 11.87 in the 
liver, 8.74 and 11.97 in ms, 9.25 and 9.45 in the esophagus, and 7.96 and 8.07 mm in the 
lungs[25]. According to the results of that study, CNN can be used in segmentation for 
RT of lung cancer. Zhang et al[33] compared CNN-based segmentation and ABAS and 
reported that CNN-based segmentation required 1.6 minutes per case and atlas-based 
contouring required 2.4 min (P < 0.001). Accuracy rates were measured by DSC and 
MSD and found that CNN-based segmentation was better than atlas-based 
segmentation for left lung and heart RT[33]. A study by Vu et al[34] that included 



Yakar M et al. AI in radiation oncology

AIMI https://www.wjgnet.com 18 April 28, 2021 Volume 2 Issue 2

22411 CT images obtained from 168 cases reported training, validation, and test rates 
of 66%, 17% and 17%, respectively. CNN-based and atlas-based segmentation models 
were compared with verification by DSC and 95% HD. All differences were found to 
be statistically significant in favor of CNN-based segmentation[34].

Looking at other studies in the literature, Feng et al[32] evaluated 36 cases, with 24 
used as training and 12 used as testing. The DSC obtained with 3D U-Net for medulla 
spinalis, right lung, left lung, heart, and esophagus were 0.89, 0.97, 0.97, 0.92, and 0.72, 
respectively. The corresponding MSDs were 0.66, 0.93, 0.58, 2.29 and 2.34 mm; and the 
95% HDs were 1.89, 3.95, 2.10, 6.57, 8.71[32]. The conclusion was that because of the 
improved accuracy and low cost of OAR segmentation, DL has the potential to be 
clinically adopted in RT planning. Loap et al[31] performed AI-based heart 
segmentation with CT images obtained from 20 breast cancer cases. The performance 
of the model was evaluated by DSC, and this value was found to be 95% for the whole 
heart and 80% for the heart chambers[31].

Studies on OAR segmentation in the pelvic region have generally been done with 
cervical and prostate cancer[27,35]. The bladder, bone marrow, left femoral head, right 
femoral head, rectum, small intestine, and ms were contoured using CT images of 105 
locally advanced cervical cancer cases. U-Net was used and the accuracy of the model 
was evaluated by DSC and 95% HD. The DSC of OARs ranged from 92% to 79%, with 
the best results in the bladder and the worst in the rectum. 95% HD values ranged 
between 5.09 and 1.39 mm[35]. Savenije et al[27] included 150 prostate cancer cases 
with MR imaging. DeepMedic and dense V-net were used in modeling. Bladder, 
rectum and femoral heads are contoured. The duration of DeepMedic, dense V-net, 
and atlas-based segmentation were 60 s, 4 s and 10-15 min, respectively. The accuracy 
of the DeepMedic algorithm that had been obtained in a feasibility study was 
confirmed the clinical setting in that study[27].

Additional evidence is available from a study by Ahn et al[36] who used CT images 
of 70 cases diagnosed with liver cancer, 45 for training, 15 for validation, and 19 for 
testing. The reference was accepted segmentation by three senior physicians. The 
model was created with deep CNN (DCNN). The accuracy rate was evaluated with 
95% HD, DSC, volume overlap error (VOE), and relative volume difference (RVD). In 
ABAS, the DSCs were 0.92, 0.93, 0.86, 0.85, and 0.60 for the heart, liver, right kidney, 
left kidney and stomach. In the DCNN-based model, the values were 0.94, 0.93, 0.88, 
0.86, and 0.73. The VOE% values in DCNN and atlas-based segmentation were 10.8 vs 
15.17, 10.82 vs 13.52, 12.19 vs 17.51, 16.31 vs 25.63 and 37.53 vs 62.64. The RVD% values 
in DCNN and atlas-based segmentation were 5.17 vs 12.90, 1.86 vs 5.56, 4.53 vs 9.75, 
2.45 vs 10.23 and 21.26 vs 50.6[36]. In that study, DL-based segmentation appeared to 
be more effective and efficient than atlas-based segmentation for most of the OAR in 
liver cancer RT.

Dolz et al[26] performed brainstem segmentation from the MR images of 14 brain 
cancer cases. A support vector machine (SVM) algorithm was used for the model, 
DSC, absolute volume difference (AVD) and percentage volume difference (pVD) 
between automatic and manual contours were used for the performance evaluation of 
the model. The mean values were, DSC 0.89-0.90, AVD 1.5 cm3 and pVD 3.99%[26]. The 
proposed approach has consistently shown similarity to manual segmentation and can 
be considered promising for adoption in clinical practice. Studies that investigated 
segmentation of OARs are summarized in Table 1.

Learning algorithms are trained to maximize measures of similarity between 
outcomes and examples given to them. Therefore, although they are increasingly 
skilled at imitating human-drawn contours, they are limited by the quality of their 
training samples. Until more concrete consensus definitions are specified for 
boundaries, machines cannot be more accurate than the human input taken as their 
clinically fundamental truth. Machine “accuracy” is only considered to be meaningful 
in the context of individuals and institutional protocols. More case numbers and 
multicenter studies are needed for the development and standardization of contouring 
models.

Target volume contouring: Target volume contouring is a labor-intensive step in the 
treatment planning flow in RT. Differences in manual contouring result from 
variability between contours, differences in radiation oncology education, or quality 
differences in imaging studies. Current automatic contouring methods aim to reduce 
manual workload and increase contour consistency, but still tend to require significant 
manual editing[37]. Recent studies have shown that DL-based automatic contouring of 
target volumes is promising, with greater accuracy and time savings compared with 
atlas-based methods.
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Table 1 Contouring of at-risk organs

Ref. Tumor 
site

Artificial 
intelligence 
technique 

Patient number Contouring Results

Ibragimov 
et al[28], 2017

Head-
neck

CNN 50 Contoured with CT. OARs: (1) Ms; (2) Mandible; (3) 
Parotid; (4) SMG; (5) Larynx; (6) Pharynx; (7) Eyes; 
(8) Optic nerve; and (9) Optic chiasm

DSC: (1) Ms: 87%; (2) Mandible: 89.5%; (3) Right parotid gland: 77.9%; (4) Left parotid gland: 76.6%; 
(5) Left SMG: 69.7%; (6) Right SMG: 73%; (7) Larynx: 85.6%; (8) Pharynx: 69.3%; (9) Left eye glob: 
63.9%; (10) Right eye glob: 64.5%; (11) Left optic nerve: 63.9%; (12) Right optic nerve: 64.5%; and (13) 
Optical chiasm: 37.4%

Chan 
et al[29], 2019

Orafarenx LL-CNN, 2D U-Net, 
3D U-Net, ST-CNN, 
MT-CNN

200 (160 training, 20 
validation, 20 test)

Contoured with CT. OAR: (1) Mandible; (2) Right 
and left parotid gland; (3) Oral cavity; (4) Brain stem; 
(5) Larynx; (6) Esophagus; (7) Right and left SMG; 
and (8) Right and left TMJ

DSC (mm) for LL-CNN and RMSE: (1) Mandible: 0.91 and 0.66; (2) Right parotid gland: 0.86 and 
1.67; (3) Left parotid gland: 0.85 and 1.86; (4) Oral cavity: 0.87 and 0.83; (5) Brain stem: 0.89 vs 0.96; 
(6) Larynx: 0.86 vs 1.34; (7) Esophagus: 0.86 vs 1.03; (8) Right SMG: 0.85 vs 1.24; (9) Left SMG: 0.84 vs 
1.22; (10) Right TMJ: 0.87 vs 0.43; and (11) Left TMJ: 0.84 vs 0.47

Rooij 
et al[30], 2019

Head-
neck 

3D U-Net 157 (142 training, 15 tests) Contoured with CT. OAR: (1) Right and left SMG; (2) 
Right and left parotid gland; (3) Larynx; (4) 
Cricopharynx,; (5) PCM; (6) UES; (7) Brain stem; (8) 
Oral cavity; and (9) Esophagus

DSC: (1) Right SMG: 0.81; (2) Left SMG: 0.82; (3) Right parotid gland: 0.83; (4) Left parotid gland: 
0.83; (5) Larynx: 0.78; (6) Cricopharynx: 0.73; (7) PCM: 0.68; (8) UES: 0.81; (8) Brain stem: 0.64; (9) 
Oral cavity: 0.78; and (10) Esophagus: 0.60

Zhu et al[25], 
2017

Lung CNN 66 (30 training, 36 tests) Contoured with CT. OAR: (1) Heart; (2) Liver; (3) Ms; 
(4) Esophagus; and (5) Lung 

MSD (mm) (CNN vs ABAS): (1) Heart: 2.92 vs 3.14; (2) Liver: 3.21 vs 3.83; (3) Ms: 1.81 vs 3.03; (4) 
Esophagus: 2.65 vs 2.67; and (5) Lung: 193 vs 1.85; 95% HD (mm) (CNN vs ABAS): (1) Heart: 7.98 vs 
9.53; (2) Liver: 10.06 vs 11.87; (3) Ms: 8.74 vs 11.97; (4) Esophagus: 9.25 vs 9.45; and (5) Lung: 7.96 vs 
8.07

Zhang 
et al[33], 2020

Lung CNN 200: training;50: validation 
19: test 

Contoured with CT. OAR: (1) Lungs; (2) Esophagus; 
(3) Heart; (4) Liver; and (5) Ms

DSC (CNN vs atlas based): (1) Left lung: 94.8% vs 93.2%; (2) Right lung: 94.3% vs 94.3%; (3) Heart: 
89.3% vs 85.8%; (4) Ms: 82.1% vs 86.8%; (5) Liver: 93.7% vs 93.6%; and (6) Esophagus: 73.2% vs -; MSD 
(mm) (CNN vs atlas based): (1) Left lung: 1.10 vs 1.73; (2) Right lung: 2.23 vs 2.17; (3) Heart: 1.65 vs 
3.66; (4) Ms: 0.87 vs 0.66; (5) Liver: 2.03 vs 2.11; and (6) Esophagus: 1.38 vs -

Vu et al[34], 
2020

Lung 2D-CNN 168 (66% training, 17% 
validation, 17% testing)

Contoured with CT. OAR: (1) Ms; (2) Lungs; (3) 
Heart; and (4) Esophagus

DSC (CNN vs atlas - based model): (1) Ms: 71% vs 67%; (2) Right lung: 96% vs 94%; (3) Left lung: 96% 
vs 94%; (4) Heart: 91% vs 85%; and (5) Esophagus: 63% vs 37%; 95% HD (mm) (CNN vs atlas - based 
model): (1) Ms: 9.5 vs 25.3; (2) Right lung: 5.1 vs 8.1; (3) Left lung: 4.0 vs 8.0; (4) Heart: 9.8 vs 15.8; and 
(5) Esophagus: 9.2 vs 20

Feng 
et al[32], 2019

Lung 3D U-Net 36 (24 training, 12 tests) Contoured with CT. OAR: (1) Ms; (2) Right lung; (3) 
Left lung; (4) Heart; and (5) Esophagus

DSC: (1) Ms: 0.89; (2) Right lung: 0.97; (3) Left lung: 0.97; (4) Heart: 0.92; and (5) Esophagus: 0.72; 
95% HD (mm): (1) Ms: 1.89; (2) Right lung: 3.95; (3) Left lung: 2.10; (4) Heart: 6.57; and (5) 
Esophagus: 8.71; MSD (mm): (1) Ms: 0.66; (2) Right lung: 0.93; (3) Left lung: 0.58; (4) Heart: 2.29; and 
(5) Esophagus 2.34

Liu et al[35], 
2019

Cervix 3D U-Net 105 (77 training, 14 
validation, 14 tests)

Contoured with CT. OAR: (1) Bladder; (2) Bone 
Marrow; (3) Left femoral head; (4) Right femoral 
head; (5) Rectum; (6) Small intestine; and (7) Ms

DSC: (1) Bladder: 0.92; (2) Bone Marrow: 0.86; (3) Left femoral head: 0.89; (4) Right femoral head: 
0.89; (5) Rectum: 0.79; (6) Small intestine: 0.83; and (7) Ms: 0.82; 95% HD (mm): (1) Bladder: 5.09; (2) 
Bone marrow: 1.99; (3) Left femoral head: 1.39; (4) Right femoral head: 1.43; (5) Rectum: 5.94; (6) 
Small intestine: 5.21; and (7) Ms: 3.26

Savenije 
et al[27], 2020

Prostate DeepMedic and 
Dense V-net

48 (36 training, 16 tests) for 
feasibility study; 150 cases 
in total (97 train, 53 tests)

Contoured by MR. OAR: (1) Bladder; (2) Rectum; (3) 
Left femur; and (4) Right femur

DSC/95% HD (mm)/MSD (mm): (DeepMedic and dense V-net (feasibility study): (1) Bladder: 
0.95/3.8/1.0; (2) Rectum: 0.85/8.3/2.1; (3) Left femur: 0.96/2.2/0.6; and (4) Right femur: 
0.96/1.9/0.6; DSC/95% HD (mm)/MSD (mm): (Clinical application with DeepMedic): (1) Bladder: 
0.96/2.5/0.6; (2) Rectum: 0.88/7.4/1.7; (3) Left femur: 0.97/1.6/0.5; and (4) Right femur: 0.97/1.5/0.5

Ahn et al[36], 
2019

Liver DCNN 70 (45 training, 15 
validation, 10 tests)

Contoured with CT. OAR: (1) Heart; (2) Liver; (3) 
Kidney; and (4) Stomach

DSC (DCNN vs atlas-based contouring): (1) Heart: 0.94 vs 0.92; (2) Liver: 0.93 vs 0.93; (3) Right 
kidney: 0.88 vs 0.86; (4) Left kidney: 0.86 vs 0.85; and (5) Stomach: 0.73 vs 0.60
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95% HD: 95% Hausdorff distance; ABAS: Atlas-based automatic segmentation; CNN: Convolutional neural network; CT: Computational Tomography; DCNN: Deep convolutional neural network; DSC: Dice similarity coefficient; ms: 
Medulla spinalis; MSD: Mean surface distance; MSD: The mean surface distance; MT-CNN: Multitask Convolutional neural network, RMSE: Root-mean-square error; OAR: Organ at risk; PCM: Pharyngeal constrictor muscle; SMG: 
Submandibular gland; ST-CNN: Single-task Convolutional neural network; TMJ: Temporamandibular joint; UES: Upper esophageal sphincter.

The first reason for the necessity of computer-aided delineation is the variation 
between contours or even between contours of the same person at different times. 
Chao et al[38] reported that differences in defining CTVs from scratch among radiation 
oncologists is important, and the use of computer-aided methods reduces volumetric 
variation and improves geometric consistency[38]. The second reason is that it is time 
consuming. In a study by Chao et al[38], computer-assisted contouring provided 36%-
29% time savings for experienced physicians and 38%-47% for less experienced 
physicians[38]. Ikushima et al[39] estimated the gross tumor volume (GTV) of 14 lung 
cancers. Six were solid, six were part-solid, and four had mixed ground-glass opacity 
(GGO) using AI. Image properties around the GTV contours were taught to the SVM 
algorithm during training, after which the algorithm was tested to generate GTV for 
each voxel. Diagnostic CT, planning CT and PET were used for image properties. The 
final GTV contour was determined using the optimum contour selection method. DSC 
was used for the performance of the algorithm and was determined to be 0.77 for 14 
cases. The DSC values for solid, part-solid and mixed GGO were 0.83, 0.70 and 0.76, 
respectively[39]. In a study conducted by Cui et al[40], 192 cases of lung cancer (118 
solid, 53 part-solid, and 21 pure GGO) with stereotactic body radiotherapy (SBRT) 
were contoured with dense V-networks using planning it. Of those, 147 cases were for 
training, 26 for validation, and 19 cases were for testing. Evaluation was performed 
with a DSC and HD 10-fold cross validation test. The 3D-DSC values were 0.838 ± 
0.074, 0.822 ± 0.078, and 0.819 ± 0.059 for solid, part-solid, and GGO tumors 
respectively. The HD value of each inner group was 4.57 ± 2.44 mm[40]. The proposed 
approach has the potential to assist radiation oncologists in identifying GTVs for 
planning treatment of lung cancer SBRT.

Zhong et al[41] performed segmentation with 3-D DL and fully convolutional 
networks (DFCN) using both PET and BT images of 60 lung SBRT cases. Delineation 
was performed by three senior physicians. A simultaneous truth and performance 
level estimation algorithm was accepted as a reference, and DSC was used to evaluate 
DFCN performance. The mean DSCs were for 0.861 ± 0.037 for CT and 0.828 ± 0.087 for 
PET[41]. Kawata et al[42] used pixel-based MÖ techniques such as fuzzy-c-means 
clustering (FCM), artificial neural network (ANN), and SVM to evaluate the GVT of 16 
lung cancer tumors (six solid, four GGO, six part-solid) for SBRT by AI using PET/CT. 
The performance of the algorithms was determined by DSC. The DSC values for FCM, 
ANN, and SVM were 0.79 ± 0.06, 0.76 ± 0.14 and 0.73 ± 0.14, respectively[42]. FCM had 
the highest accuracy rates of GTV contouring compared with the other algorithms.

There are also GTV and CTV contouring studies with AI in head and neck 
cancers[43-47]. In a study by Li et al43], tumor segmentation was performed in 
nasopharyngeal cancer by using CT images. The U-Net model was used, 302 cases 
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were used for training, 100 for validation, and 100 for testing. In the U-Net model, DSC 
was found to be 65.8% for lymph nodes and 74.0% for tumor segmentation. Automatic 
delineation was calculated as 2.6 h per patient and manual delineation as 3 h[43]. This 
study found that DL increased the accuracy, consistency, and efficiency of tumor 
delineation and that additional physician input might be required for lymph node 
delineation. Multimodality medical images can be very useful for automated tumor 
segmentation as they provide complementary information that can make the 
segmentation of tumors more accurate. Ma et al[44] used multimodality CNN (M-
CNN) based methods to investigate the segmentation of nasopharyngeal cancer using 
CT and MR images. M-CNN is designed to co-learn the segmentation of matched CT-
MR images. Considering that each modality has certain distinctive features, it was 
planned to create a combined-CNN (C-CNN) using single-modality (S-CNN) and 
higher-layer features derived from M-CNN. Ninety CT and MR images were used, 
and positive predictive value (PPV), sensitivity (SE), DSC, and average symmetric 
surface distance (ASSD) were used to evaluate modalities. The PPV, SE, DSC and 
ASSD obtained by C-CNN, were 0.797 ± 0.109, 0.718 ± 0.121, 0.752 ± 0.043, and 1.062 ± 
0.298 mm respectively. The included two main models, M-CNN and C-CNN, which 
can integrate complementary information from CT and MR images for tumor 
identification. The results in the clinical CT-MR dataset show that the proposed M-
CNN can learn the correlations of two modalities and tumor segmentation together 
and perform better than using a single modality[44].

Zhao et al[45] used PET-CT and FCN to contour 30 nasopharyngeal cancer tumors. 
The mean DSC was 87.47% after threefold cross validation. Guo et al[46] performed 
GTV contouring with Dense Net and 3D U-Net using PET/CT and PET-CT in 250 
head and neck cancer patients. DSC, MSD, and HD95 were calculated for each of the 
three imaging methods separately. For Dense Net, the DSC values were 0.73 for PET-
CT, 0.67 for PET, and 0.32 for CT. The DSC for 3D-U-Net and PET-CT was 0.71. MSD, 
HD for Dense Net PET-BT were 2.88, 6.48 and 3.96 mm, respectively. For Dense Net 
PET, the MSD, and HD95 DC were 3.38, 8.29 and 5.56 mm, respectively. For 3D U-Net, 
the MSD, HD95, DC were 2.98, 7.57 and 4.40 mm respectively[46]. In a study using a 
deep deconvolutional neural network (DDNN), the GTVtumor, GTVlymph node, and CTV 
were determined from CT images of 230 nasopharyngeal cancer cases that were 
randomly allocated to 184 cases for training and 46 cases for testing. The DSC values 
were 80.9% for GTVtumor, 62.3% for GTVlymph node, and 82.6% for CTV[47].

AI-based contouring studies have also been performed in primary brain tumors and 
brain metastases[48-53]. In a study by Jeong et al[51], T1-weighted dynamic contrast-
enhanced (DCE) perfusion MR images of 21 patients diagnosed with brain tumors 
were used for tumor segmentation. 3D mask region-based CNN (R-CNN) was used 
and algorithm performance was evaluated with DSC, HD, MSD, and center of mass 
distance. The values were 0.90 ± 0.04, 7.16 ± 5.78 mm, 0.45 ± 0.34 mm and 0.86 ± 0.91 
mm, respectively[51]. The results support the feasibility of accurate localization and 
segmentation of brain tumors from DCE perfusion MRIs. Segmentation with 3D mask 
R-CNN in DCE perfusion imaging holds promise for future clinical use. Tang et al[53] 
described postoperative glioma segmentation of the CTV region using MR image 
information on CT. A deep feature fusion model (DFFM) guided by multisequence MR 
was used in CT images for postop glioma segmentation. DFFM is a multisequence 
MR-guided CNN that simultaneously learns deep features from CT and 
multisequence MR images and then combines the two deep features. In this study, 59 
BT and MR (T1/T2-weighted FLAIR, T1-weighted contrast-enhanced, T2-weighted) 
data sets were used. The DSCs were 0.836 and 0.836[51]. Given the DSC rate, this 
algorithm can be used in the presegmentation stage to reduce the workload of the 
radiation oncologist.

Liver tumor segmentation with CT is difficult because the image contrast between 
liver tumors and healthy tissues is low, the boundary is blurred, and images of the 
liver tumor are complex, and vary in size, shape, and location. To solve these 
problems, Meng et al[54] performed liver tumor segmentation with 3D dual-path 
multiscale CNN (TDP-CNN). In the study, 81 CT images were used for training and 25 
were used for the test. Tumor segmentation determined by an experienced radiologist 
was used as a reference. Performance evaluation was determined as DSC, HD average 
distance, and the values were 0.689, 7.69, and 1.07mm[54].

There are also studies using AI in pelvic tumor and CTV contouring[55-59]. In a 
prostate cancer study, MR images and the DeepLabV3 + method were used for with 
target volume segmentation. Volumetric DSC and surface DSC were used to evaluate 
performance, and these values were 0.83 ± 0.06 and 0.85 ± 0.11, respectively[56]. 
According to this model, the planning workflow can be accelerated with MR. Voxel-
based ML was evaluated, and MR images of 78 cases were used in a study of tumor 
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delineation in locally advanced cervical cancer. The model was trained according to 
the delineation of two radiologists, mean sensitivity was 94% and specificity was 
52%[57]. CT images were used for CTV delineation in rectal cancer, and 218 randomly 
selected cases were used for training and 60 cases for validation. Deep dilated CNN 
(DDCNN) was used and the DSC for the model was 87.7%[59]. According to that 
study, the accuracy rate was high and effective in CTV segmentation in the DDCNN 
rectal cancer. Deep dilated residual network (DD-ResNet) was used in breast cancer 
CTV contouring, and the model was compared with DDCNN and DDNN. CT images 
of 800 breast cancer cases were used in the study, and the training/test rate was 
determined as 80%/20%. Mean DSC was used for segmentation accuracy. For the right 
and left breast, DD-ResNet was 0.91 and 0.91, 0.85 and 0.85, 0.88 and 0.87 for DDCNN 
and DDNN, respectively. HD values were 10.5 and 10.7 mm, 15.1 and 15.6 mm, and 
13.5 and 14.1 mm, respectively. Mean segmentation times were 4, 21 and 15 s per 
patient[60]. The method proposed in the study contoured the CTV in a short time and 
with high accuracy. The studies of target volume segmentation are summarized in 
Table 2. More cases and multidisciplinary studies are needed to reduce the 
heterogeneity in tumor response and in GTV and CTV contouring, shorten the 
contouring step, and create standard delineations.

RADIOTHERAPY PLANNING
RT planning process is quite complex. A mistake during planning can lead to life-
threatening situations such as tumor incontinence or high doses of radiation to normal 
tissue. As technology advances, the margin given to the tumor also decreases, so even 
with a small margin of error, it is possible to miss the tumor geographically. After 
target volumes and OARs are defined, the planning process continues with the 
determination of dosimetric targets for targets and OARs, selection of an appropriate 
treatment technique [e.g., 3DCRT, intensity-adjusted RT (IMRT), volumetric 
modulated arc therapy (VMAT), protons], the achievement of planning goals, and 
evaluation and approval of the plan. Treatment planning, which is an RT design for 
each case, can be considered as both a science and an art.

Because of the complex mathematics and physics involved, RT planning includes 
computer-aided systems. During planning, humans interact many times with the 
computer-aided system, using their experience and skills to ensure the satisfactory 
quality of each plan. Planning is a very complex process. There are AI studies related 
to the planning steps of RT, such as dose calculation, dose distribution, dose-volume 
histogram (DVH), patient-specific dose calculation, IMRT area determination, beam 
angle determination, real-time tumor tracking, and replanning in adaptive RT[61-71].

The purpose of researching the dose calculation algorithm is to increase calculation 
accuracy while maximizing computational efficiency. In the study conducted by Zhu 
et al[61], it was aimed to calculate the 3D distribution of total energy release per unit 
mass and electron density based on CNN. Twelve sets of CT images were used for 
training, and a random beam configuration was created with a convolution/ 
superposition (CCCS) algorithm. 7500 samples were created for each single-energy 
photon model training set and 1500 samples for validation. Training included 0.5 MeV, 
1 MeV, 2 MeV, 3 MeV, 4 MeV, 5 MeV, and 6 MeV monoenergetic photon models. To 
evaluate its usability under linear accelerator (Linac) conditions, 12 additional new CT 
images with different anatomical regions and 1512 samples were used for testing. For 
all anatomies, the mean value for the criterion of 3%/2mm, 95% lower confidence 
limit, and 95% upper confidence limit were 99.56%, 99.51%, and 99.61%, respectively. 
In that study, DL was investigated for CCCS dose calculation[61]. With DL, calculation 
accuracy can be improved and calculation efficiency can be increased, and the method 
can speed up dosing algorithms and also has great potential in adaptive RT.

In their study, Zhang et al[62] aimed to estimate voxel level doses by integrating the 
distance information between the planning target volume (PTV) and OAR as well as 
the image information into the DCNN. First, they created a four-channel feature map 
consisting of PTV image, OAR image, CT image, and distance image. A neural 
network was created and trained for dose estimation at the voxel level. Given that the 
shape and size of OARs are highly variable, dilated convolution was used to capture 
features from multiple scales. The network was evaluated by five-fold cross validation 
based on 98 clinically validated treatment plans. The voxel level mean absolute error 
values of the DCNN for PTV, left lung, right lung, heart, spinal cord and body were 
2.1%, 4.6%, 4.0%, 5.1%, 6.0% and 3.4% respectively[62]. This method significantly 
improved the accuracy of the dose distribution estimated by the DCNN model. In their 
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Table 2 Target volume segmentation

Ref. Tumor site Artificial intelligence 
technique Patient number Contouring Results

Ikushima 
et al[39], 2017

Lung SVM 14 (solid: 6, GGO: 4, 
mixed GGO: 4)

GTV DSC: (1) 0.777 for 14 cases; and (2) 0.763 for GGO, 0.701 for mixed GGO 

Cui et al[40], 2021 Lung DVNs 192 (solid: 118, part-
solid:53, pure GGO: 
21)

GTV 3D-DSC: (1) Solid: 0.838 ± 0.074; (2) Part-solid: 0.822 ± 0.078; and (3) GGO: 0.819 ± 0.059

Zhong et al[41], 
2019

Lung 3D-DFCN 60 GTV DSC: (1) CT: 0.861 ± 0.037; and (2) PET: 0.828 ± 0.087

Kawata et al[42], 
2017

Lung FCM, ANN, SVM 16 (solid: 6, GGO:4, 
part-solid GGO:6)

GTV DSC: (1) FCM-based framework:0.79 ± 0.06; (2) ANN-based framework: 0.76 ± 0.14; and (3) SVM-based framework: 0.73 ± 0.14

Li et al[43], 2019 Nasopharynx U-Net 502 GTV DSC: (1) Lymph nodes: 65.86%; (2) Primary tumor: 74.00%; HDs: (1) Lymph nodes: 32.10 mm; and (2) Primary tumor:12.85 mm

Zhao et al[45], 
2019

Nasopharynx FCN 30 GTV DSC: 87.47%

Guo et al[46], 
2020

Head and neck Dense Net and 3D U-
Net

250 GTV DSC: (1) Dense Net with PET/CT: 0.73; (2) Dense Net with PET: 0.67; (3) Dense Net with CT: 0.32; and (4) 3D U-Net with 
PET/CT: 0.71; MSD: (1) Dense Net with PET/CT: 2.88; (2) Dense Net with PET: 3.38; (3) Dense Net with CT: -; and (4) 3D U-Net 
with PET/CT: 2.98; HD95: (1) Dense Net with PET/CT: 6.48; (2) Dense Net with PET: 8.29; (3) Dense Net with CT: -; and (4) 3D 
U-Net with PET/CT: 7.57

Jeong et al[51], 
2020

Brain 3D-R-CNN 21 GTV DSC: 0.90 ± 0.04; HD: 7.16 ± 5.78 mm; MSD: 0.45 ± 0.34 mm; Center of mass distance: 0.86 ± 0.91 mm

Meng et al[54], 
2020

Liver TDP-CNN 106 GTV DSC: 0.689; HD: 7.69mm; Average distance: 1.07 mm

Elguindi 
et al[56], 2019

Prostate 2D-CNN, DeepLabV3 
+

50 Prostate Volumetric DSCL: 0.83 ± 0.06; Surface DSC: 0.85 ± 0.11

Men et al[59], 
2017

Rectum DDCNN 278 CTV DSC: 87.7%

ANN: Artificial neural network; CT: Computed tomography; CTV: Clinical target volume.; DDCNN: Deep dilated convolutional neural network; DFCN: Fully convolutional network; DSC: Dice similarity coefficient; DVNs: Dense V-
network; FCM: Fuzzy-c-means clustering method; GGO: Ground-glass opacity; GTV: Gross tumor volume; HD: Hausdorff distance; MSD: Mean surface distance; PET: Positron emission tomography; R-CNN: Region-based convolutional 
neural network; SVM: Support vector Machine; SVM: Support vector machine; TDP-CNN: Three-dimensional dual-path multiscale convolutional neural network.

studies, Fan et al[64] aimed to develop a 3D dose estimation algorithm based on DL 
and create a treatment plan based on the dose distribution for IMRT. The DL model 
was trained to estimate a dose distribution based on patient-specific geometry and 
prescription dose. A total of 270 head and neck cancer cases, 195 in the training data 
set, 25 in the validation set, and 50 in the test set, were included in the study. All cases 
were treated with IMRT. The model input consisted of CT images and contours that 
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defined the OAR and plot target volumes. The algorithm output was trained to 
estimate the dose distribution from the CT image slice. The resulting estimation model 
was used to estimate the patient dose distribution. An optimization target function 
was then created based on the estimated dose distributions for automatic plan 
generation. In the study, Differences between the prediction and the actual clinical 
plan in DVH for all OARs were not significant except for the brainstem, right, and left 
lens. Differences between PTVs (PTV70.4, PTV66, PTV60.8, PTV60, PTV56, PTV54, PTV51) in 
the estimated and the actual plan were significant only for PTV70.4[64]. In that study, 
optimization based on 3D dose distribution and an automatic RT planning system 
based on 3D dose estimation were developed. The model is a promising approach to 
realize automatic treatment planning in the future.

Ma et al[65] created a DVH prediction model that depended on support vector 
regression as the backbone of the ML model. A database containing VMAT plans of 63 
prostate cancer cases was used, and a PTV plan was created for each patient. A 
correlative relationship between the OAR DVH (model input) of the PTV plan and the 
corresponding DVH (model output) of the clinical treatment plan was established with 
53 training cases. The predictive model was tested with a validation group of ten cases. 
In the control of dosimetric endpoints for the training group, 52 of 53 bladder cases 
(98%) and 45 of 53 rectum cases were found to be within a 10% error limit. In the 
validation test group, 92% of the bladder cases and 96% of the rectum cases were 
within the 10% error limit. Eight of the ten validation plans (80%) were found to be 
within the 10% error margin for both rectum and bladder[65]. In that study, only the 
PTV plan was used for DVH estimation and an ML model was created based on new 
dosimetric characteristics. The framework had high accuracy for predicting the DVH 
for VMAT plans.

In lung cancer, as in other types of cancer, optimum selection of radiation beam 
directions is required to ensure effective coverage of the target volume by external RT 
and to prevent unnecessary doses to normal healthy tissues. IMRT planning is a 
lengthy process that requires the planner to iterate between selecting beam angles, 
setting dose-volume targets, and conducting IMRT optimization. The beam angle 
selection is made according to the planner's clinical experience. Mahdavi et al[67] 
planned to create a framework that used ML to automatically select treatment beam 
angles in thoracic cancers, intended to increase computational efficiency. They created 
an automatic beam selection model based on learning the relationship between beam 
angles and anatomical features. The plans of 149 cases who underwent clinically 
approved thoracic IMRT were used in the study. Twenty-seven cases were randomly 
selected and used to test the automated plan and the clinical plan. When the estimated 
and clinically used beam angles were compared, a good mean agreement was 
observed between the two (angular distance 16.8 ± 10◦, correlation 0.75 ± 0.2). The 
target volume of automated and clinical plans was found to be equivalent when 
evaluated in terms of winding and the OAR. The vast majority of plans (93%) were 
approved as clinically acceptable by three radiation oncologists[69].

Treatment planning is an important step in the RT workflow. It has become more 
sophisticated in the past few decades with the help of computer science, allowing 
planners to design highly complex RT plans to minimize damage of normal tissue 
while maintaining adequate tumor control. A need of individual patient plans has 
resulted in treatment planning becoming more labor-intensive and time consuming. 
Many algorithms have been developed to support those involved in RT planning. The 
algorithms have had a major impact on focusing on automating and/or optimizing the 
planning process and improving treatment planning efficiency and quality. Studies of 
treatment planning are summarized in Table 3.

QUALITY ASSURANCE
Quality assurance (QA) is crucial in order to evaluate the RT plan and detect and 
report errors. Features of RT QA programs such as error detection, and prevention, 
and treatment device QA are very suitable for AI application[72-75]. Li et al[73] 
developed an application to estimate the performance of medical linear accelerators 
(Linacs) over time. Daily QA of RT in cancer treatment closely monitors Linac 
performance and is critical for the continuous improvement of patient safety and 
quality of care. Cumulative QA measures are valuable for understanding Linac 
behavior and enabling medical physicists to detect disturbances in output and take 
preventive action. Li et al[73] used a time series estimation model of ANNs and an 
autoregressive moving average to analyze 5-yr Linac QA data. Verification tests and 
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Table 3 Radiotherapy planning

Ref. Aim Patient number Artificial intelligence 
technique Results

Zhu et al[61], 2020 Calculating TERMA and ED 24 CNN 3%/2 mm, 95% LCL, and 95% UCL to 
99.56%, 99.51%, 99.61%

Zhang et al[62], 
2020

Making voxel level dose estimation by 
integrating the distance information 
between PTV and OAR

98 DCNN MAEV: (1) PTV: 2.1%; (2) Left lung: 4.6%; (3) 
Right lung: 4.0%; (4) Heart: 5.1%; (5) Spinal 
cord: 6.0%; and (6) Body: 3.4%

Fan et al[64], 2019 Developing a 3D dose estimation 
algorithm

270 Significant difference was found between 
the estimated and the actual plan in only 
PTV70.4

Ma et al[65], 2019 Creating a DVH prediction model 63 SVR The error limit of 10% for the bladder and 
rectum was 92% and 96%

Mahdavi et al[69], 
2015

Selecting treatment beam angles in 
thoracic cancers

149 ANN The majority of plans (93%) were approved 
as clinically acceptable by three radiation 
oncologists

ANN: Artificial neural networks.; CNN: Convolutional neural network; DCNN: Deep convolutional neural network; DVH: Dose value histogram; ED: 
Electron density; LCL: Lower confidence limit; MAEV: Voxel level mean absolute error; OAR: Organ at risk; PTV: Planning target volume; SVR: Support 
vector regression; TERMA: Three-dimensional distribution of total energy release per unit mass; UCL: Upper confidence limit.

other evaluations were made for all models and they reported that the ANN algorithm 
can be applied correctly and effectively in dosimetry and QA[73]. Valdes et al[72] 
developed AI applications to predict IMRT QA transition rates and automatically 
detect problems in the Linac imaging system. Carlson et al[76] developed an ML 
approach to predict multileaf collimator (MLC) position errors. Inconsistencies 
between planned and transmitted motions of multileaf collimators are a major source 
of error in dose distribution during RT. In their study, factors such as leaf movement 
parameters, leaf position and speed, leaf movement towards or away from the 
isocenter of the MLC were calculated from plan files of AI forecasting models. Position 
differences between synchronized DICOM-RT planning files and DynaLog files 
reported during QA delivery were used for training the models. To assess the effect on 
the patient, the DVH in the treated positions and the planned and anticipated DVHs 
were compared. In all cases, they found that the DVH parameters predicted for the 
OAR, especially around the treatment area, were closer to the DVHs in the treated 
position than to the planned DVH parameters[76].

The use of treatment plan features to predict patient-specific QA measurement 
results facilitate development of automated pretreatment validation workflows or 
provide a virtual assessment of treatment quality. Granville et al[77] trained a linear 
support vector classifier to classify the results of patient-specific VMAT QA 
measurements, using the complexity of the treatment plan and characteristics that 
define the Linac performance criteria. The “targets” in this model are simple 
classifications that represent the median dose difference between measured and 
expected dose distributions; median dose deviation was considered “hot” if > 1%, 
“cold” if < 1%, and “normal” if ± 1%. A total of 1620 patient-specific QA 
measurements were used for model development and testing’ and 75% of the data was 
used for model development and validation. The remaining 25% was used for the 
independent evaluation of model performance. Receiver operating characteristic 
(ROC) curve analysis was used to evaluate model performance. Of the ten variables 
that are considered important for prediction, half consist of treatment plan 
characteristics, and half are QA measures that characterize Linac performance. For this 
model, the micro-averaged area under the ROC curve was 0.93, and the macro-
averaged area under the ROC curve was 0.88[77]. The study demonstrates the 
potential of using both treatment plan features and routine Linac QA results in the 
development of ML models for patient-specific VMAT QA measurements.

RT APPLICATION, SETUP
During radiation therapy, treatment may need to be adjusted to ensure that the plan is 
properly implemented. Need of adjustment may result from both online factors such 
as the patient's pretreatment position, and longer-term factors related to anatomical 
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changes and response to treatment. Images taken before treatment should be aligned 
with the images in the planning CT and kept in alignment. Although many modern 
Linac devices currently have daily "cone-beam" CT (CBCT) using mega-voltage X-rays 
for treatment confirmation, but that imaging is not sufficient to distinguish soft tissue 
structures. However, those images are considered suitable for image-guided RT as 
they are used to adapt the treatment plans to the daily anatomy of the patient and to 
reduce intra-fractional shifts. When performing daily RT, the CBCT should be 
reviewed before each treatment. Two, or at least one experienced RT technician, are 
required for this procedure. When the RT technician sees an anatomical difference 
between the CBCT and the planning CT, she/he should inform the radiation 
oncologist and medical physicist. At that stage, it is necessary to decide whether to 
continue treatment with the difference or to require a new CBCT. Each of the steps 
delays patient treatment and causes a significant increase in the RT department 
workload. All this opens a path for the growth of AI in parallel with the training 
program in radiation oncology. In addition to the ability of existing staff to cope with 
the growing workload, innovations in modern technology and the ability to benefit 
from it are limited by access to adequate human resources[78]. In addition, AI 
replanning has been used to identify candidates for adaptive RT. Based on anatomical 
and dosimetric variations such as shrinkage of the tumor, weakening of the patient, or 
edema, classifiers and clustering algorithms have been developed to predict the 
patients who will benefit most from updated plans during fractionated RT[71,79]. 
However, it should also be kept in mind that the algorithm will mimic past protocols 
rather than determine the ideal time for replanning because AI learns from data about 
previous patients, their plans, and adaptive RT.

PATIENT FOLLOW-UP
AI has the potential to change the way radiation oncologists follow definitive-treated 
patients. After surgery, the tumor may disappear during imaging, and tumor markers 
can quickly normalize. In contrast, imaging changes such as loss of contrast-
enhancement, PET involvements or diffusion restriction, or size reduction, and the 
response of tumor markers after RT are gradual. Those characteristics are monitored 
regularly over time, and response assessments are made according to changes that are 
complemented by clinical experience and are considered indicative of therapeutic 
efficacy. Time is required for this assessment. However, if cases that will not respond 
to treatment can be predicted earlier, additional doses of RT or additional systemic 
treatments may be introduced earlier, which may improve oncological outcomes. In 
this context, early work in the field of radiology is promising. In radiology, 
quantitative features are extracted based on size and shape, image density, texture, 
relationships between voxels, and some characteristics to typify an image. AI 
algorithms can be used to correlate image-based features with biological observations 
or clinical outcomes[80-85]. The use of AI techniques for response and survival 
prediction in RT patients is a serious opportunity to further improve decision support 
systems and provide an objective assessment of the relative benefits of various 
treatment options for patients.

Cancer is the most common cause of death in developed countries, and it is 
estimated that the number of cases will increase further in aging populations[86,87]. 
Therefore, cancer research will continue to be the top priority for saving lives in the 
next decade. Prognosis studies have been conducted with AI on many types of cancer. 
The use of AI techniques for response and survival prediction in RT patients is a 
serious opportunity to further improve decision support systems and provide an 
objective assessment of the relative benefits of various treatment options for patients.

Six different ML algorithms were evaluated in a prognosis study with 72 cases of 
nasopharyngeal cancer. Age, weight loss, initial neutrophil/lymphocyte ratio, initial 
lactate dehydrogenase and hemoglobin values, RT time, tumor size, concurrent CT 
number, and T and N stage were determined as critical variables. The highest 
performing model among logistic regression, ANN, XGBoost, support-vector 
clustering, random forest, and Gaussian Naïve Bayes algorithms was determined as 
Gaussian Naïve Bayes, and the accuracy rate was found to be 88% (CI: 0.68-1)[88]. In a 
study using radionics obtained from clinical and PET-CT, prognosis was evaluated in 
101 lung cancer cases, with 67% used for training and 33% validation and testing. The 
highest accuracy rate was achieved with an SVM algorithm that had an accuracy rate 
of 84%, a sensitivity of 86%, and a specificity of 82%[89]. In another study in which 
prognosis was predicted in prostate cancer, somatic gene mutations were evaluated 
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and an accuracy rate of 66% was obtained with an SVM algorithm[90]. Post cystectomy 
bladder cancer prognosis was evaluated in 3503 cases using an SVM algorithm. 
Recurrence, 1-, 3, and 5-yr survival rates were estimated with sensitivity and 
specificity above 70%[91]. In a study including 75 gastric cancer patients, the accuracy 
of survival, distant metastasis, and peritoneal metastasis predictions were 81% for 
GNB, 86% for XGBoost, and 97% for Random Forest (97%)[92]. Pham et al[93] used AI 
to detect DNp73 expression associated with 5-yr overall survival and prognosis in 143 
rectal cancer cases. Ten different CNN algorithms were used, and each 
immunochemical image was resized. For the algorithm, 90% of the images were used 
in training and 10% as test data. The accuracy of ten algorithms varied between 90% 
and 96%[93].

In oncological treatment, forecasting is crucial in the decision-making process 
because survival prediction is critical in making palliative vs curative treatment 
decisions. In addition, the estimation of remaining life expectancy can be an incentive 
for patients to live a fuller or more fulfilling life. It is also a question of which answer is 
sought by health insurance companies. Survival statistics assist oncologists in making 
treatment decisions. However, these are data from large and heterogeneous groups 
and are not well suited to predict what will happen to a specific patient. AI algorithms 
for the prediction of RT and chemotherapy oncological outcomes have attracted 
considerable attention recently. In cases diagnosed with cancer, predicting survival is 
critical for improving treatment and providing information to patients and clinicians. 
Considering the data set of rectal cancer patients with specific demographic, tumor, 
and treatment information, it is a crucial issue whether patient survival or recurrence 
can be predicted by any parameter. Today, many hospitals store medical records as 
digital data. By evaluating these large data sets using AI techniques, it may be possible 
to predict patient treatment outcomes, plan individualized patient treatment, improve 
corporate performance, and regulate health insurance premiums.

CONCLUSION
Although AI can take place at every step in radiation oncology, from patient 
consultation to patient monitoring, and can contribute to the clinician and the society, 
there are still many challenges and problems to be solved. Initially, Large data sets 
should be created for AI and then undergo continuing improvement. The 
development of estimation tools with a wide variety of variables and models limits the 
comparability of existing studies and the use of standards. Estimation algorithms can 
be standardized by sharing data between centers, data diversity, and establishing 
immense databases. In addition, models can be made clinically applicable by updating 
with entry of new data into the models. Today, the accuracy and quality of data are 
also of great importance, as no AI algorithm can fix problems in training data.
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Abstract
Intrathyroidal ectopic thymus (IET) is defined as an ectopic thymus tissue that is 
generally found incidentally and rarely in the thyroid gland in the pediatric 
group. It occurs as a result of disruption of the embryological migration path and 
the settling of the thymus tissue into the thyroid gland. In the differential 
diagnosis, it is mostly confused with thyroid nodules. Although thyroid nodules 
are less common in children than adults, the rate of malignancy is much higher. 
Therefore, knowing the general ultrasound findings of IET better may prevent 
unnecessary invasive attempts and surgical procedures. In this article, we tried to 
compile the key imaging findings of IET.
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Core Tip: The unique ultrasonographic features of intrathyroidal ectopic thymus (IET) 
can be remembered as; well-circumscribed, hypoechoic eco pattern with linear or 
punctate echogenic foci resembling thymus, fusiform or oval shape, diameters smaller 
than 1 cm, location of middle and/or lower 1/3 part of thyroid gland, hypovascularity 
or avascularity and the same strain ratio values with the surrounding thyroid gland on 
elastography. Although some studies suggested cytopathological examination for the 
accurate diagnosis of a suspected IET case, majority of the previous studies stated that 
IET can be followed without the presence of any atypical findings. So that, 
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unnecessary surgical or interventional procedures can be avoided.
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INTRODUCTION
Thyroid lesions in children are mostly in the benign category, but malignant lesions 
can also be encountered, even rarely. Intrathyroidal ectopic thymus (IET) is a benign 
lesion that can be encountered in children and does not require treatment. Although it 
has typical sonographic aspects, it may be misdiagnosed as a thyroid nodule by 
radiologists who do not have sufficient experience. As a result, a process leading to 
interventional procedures or even surgery may occur. However, some of its features 
conflict with thyroid nodules. In these cases, a cytopathological evaluation must be 
made for the distinction. If IET common ultrasound (US) features are familiarized it 
can be distinguished from malignant pathologies of the thyroid.

DEVELOPMENT
Thymus tissue develops in the intrauterine 6th week from the 3rd and 4th branchial 
saccule. Bilaterally developing primordial thymus tissues descend to the anterior 
mediastinum in the 8th week and combine to form the bilobuled thymus tissue at the 
9th week. This descent is from the mandibular angle level to the anterior mediastinum 
caudally and medially. During migration, the thymic remnant can replace ectopically 
anywhere along the descent line in the cervical region. Although some articles report 
that the most ectopic cervical location is intrathyroidal[1], some articles also report it is 
less common than other ectopic locations in the cervical region[2]. The reason for 
intrathyroidal localization is thought to be due to the thyroid diverticulum being close 
to the 3rd branchial sac, although the thyroid tissue basically develops from the 1st and 
2nd branchial sac[3].

IET was first described as pathologically by Gilmour in 1937[4]. It does not present 
with any clinical or physical examination findings in children and is often detected 
incidentally. Although it is a benign condition, cases showing malignant 
transformation have been reported in the literature[5]. Its prevalence has been 
reported between 0.99% and 5.9% in studies[1,4-6]. The mean age of onset varies 
between 1-10 years in studies[3,5,7,8]. Although not statistically significant, it has been 
reported slightly more frequently in men[1,3,8].

IET consists of 2 types as abutting and enclosed types, and abutting type is more 
common than the other. When abutting type is seen, it should be taken into 
consideration that ectopic thymus tissue may be extending from the anterior 
mediastinum to the thyroid gland and should be examined carefully[9].

The first diagnostic modality should be US to evaluate the IET and other thyroid 
lesions[5]. In US, it is observed as a well-circumscribed, hypoechoic lesion containing 
linear or punctate echogenic foci resembling thymus[1,3,5,7,8,10]. Its contours may be 
irregular in some cases[8].

Internal punctate echogenicities indicate the Hassall's Corpuscle and their typical 
histopathological appearance confirms the diagnosis of thymus tissue[10]. Also, 
because of the similarity of the echo structure and presence of internal echogenic foci, 
IET can resemble the thymus tissue in the anterior mediastinum[10,11] (Figure 1). 
When the shape characteristics are examined, IET mostly presents as fusiform or 
oval[1,3,5,9]. In studies, its dimensions were found to be smaller than 1 cm[3,8,11]. 
When the location in the thyroid gland is evaluated, it is mostly observed in the 
middle and lower 1/3 part and more commonly in the posterior parts[1-3,11]. The 
reason is thought to be that the thymus develops under the pharyngeal sac, where the 
thyroid develops during embryological development[1]. Only 2 IETs were observed in 
the upper pole in the study of Erol et al[2].
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Figure 1 Eight-year-old asymptomatic girl. Longitudinal sonographic images obtained with 7 MHz linear transducer. A: Intrathyroidal ectopic thymus with 
typical ultrasonographic findings; hypoechoic, fusiform appearance with linear and punctate echogenic focil; B: The resemblance with mediastinal thymic tissue can 
be seen easily.

In color Doppler examination, IET is hypovascular or avascular compared to 
surrounding thyroid tissue[1,3,10,11] (Figure 2). Only a few cases have been reported 
to be isovascular[1,3,11]. Erol et al[2] stated that the observation of a vascular structure 
that passes through the nodule without any compression is a useful hint to 
differentiate IET and the other nodules.

Elastography was used in two studies, showing that IET had the same stiffness as 
the surrounding thyroid tissue and the average strain ratio (SR) was defined as 
0.99[5,8].

In US follow-up, the dimensions of IET either remain stable or show 
regression[2,3,12]. Additionally, hormones and enzymes associated with the thyroid 
gland were also evaluated, and no significant relationship was found with IET[3,5].

In the presence of typical findings of IET described above, absence of palpable 
thyroid nodule and cervical lymphadenopathy, no prior risk to increased risk of 
malignancy (radiation exposure to the neck, family history), follow-up will be enough 
for the management of IET cases[1,2,5,9,10,12]. In the study of Januś et al[5], it was 
underlined that US features of IET can be similar to papillary thyroid cancer 
(especially diffuse sclerosing variant]. In these cases it can be challenging to 
differentiate the two entities, and elastography can be helpful[5,8]. Exceptionally, 
Stasiak et al[8] emphasized that cytopathological examination should be performed in 
cases with suspected IET and the diagnosis could only be reliable in this way[8].

IET is generally confused with thyroid nodules (Figure 3). In pediatric patients, the 
incidence of thyroid nodules is between 0.2%-1.5%, much less common than adults, 
but the rate of malignancy is higher[9]. In addition, bilateral lesions in children do not 
reduce the suspicion of malignancy because thyroid cancer is more common in 
children when it is multifocal and bilateral[8]. Therefore, further examinations should 
be made and the distinction between benign and malignant nodules should be 
revealed. If the ultrasound findings are insufficient for differentiation and the 
suspicion continues, fine needle aspiration biopsy should be performed first. There are 
some cases diagnosed by hemi lobectomy in the literature. Although IET is a benign 
process, it should be known that it may undergo malignant transformation such as 
thymoma, thymic carcinoma and lymphoblastic lymphoma[5,8]. There are some 
findings that support the malignant nature of a hypoechoic nodule echo pattern, solid 
component, ill-defined contour, irregular or round shape, microcalcification, increased 
vascularity, and pathological lymph node presence[8,9].

Focal thyroiditis is also included in the differential diagnosis. Focal thyroiditis is 
more hypoechoic and mostly does not contain diffuse echogenic focuses. The contour 
of focal thyroiditis is ill-defined. Vascularity is also increased (Figure 4)[2].

Intrathyroidal parathyroid gland is similar to IET, but it is differentiated by the 
absence of echogenic punctate foci. Clinical symptoms and laboratory findings are also 
useful in differential diagnosis[5].

Intrathyroidal esophageal diverticulum should be considered in differential 
diagnosis. Its echo pattern is isoechoic or hypoechoic compared to the surrounding 
thyroid tissue. Internal and peripheral echogenic focuses can be seen. In the 
differentiation, showing the relationship with the esophagus, changing shape with 
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Figure 2 Eight-year-old asymptomatic girl. Longitudinal sonographic images obtained with 7 MHz linear transducer. Both intrathyroidal ectopic thymus cases 
are hypo vascular in comparison within the surrounding thyroid parenchyma.

Figure 3 Nine-year-old male with hypothyroidism symptoms. Longitudinal sonographic images obtained with 7 MHz linear transducer. A thyroid nodule 
presenting with a similar appearance with intrathyroidal ectopic thymus tissue.

Figure 4 Ten-year-old male with recurrent cough. Longitudinal sonographic images obtained with 7 MHz linear transducer. Abutting type intrathyroidal 
ectopic thymus. The lesion is located at the lower half of the gland, it has unclear margins. This appearance can be confused with focal thyroiditis.

swallowing and a comet tail artifact due to the inside air can be helpful[1].
Hashimoto thyroiditis nodular form has a solid, hypoechoic echo structure and 

echogenic punctate focus that can also be observed. It can be well-circumscribed or ill-
defined. Laboratory findings may be normal in this type of Hashimoto thyroiditis. 
Therefore, cytopathological correlation is required[1].
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Artificial intelligence (AI) has been playing an increasing role in the diagnosis of 
thyroidal disease[13], however as far as we know there is not a study concentrating on 
the use of AI in detecting IET in the English literature.

CONCLUSION
The unique ultrasonographic features of IET can be remembered as well-
circumscribed, hypoechoic eco pattern with linear or punctate echogenic foci 
resembling thymus, fusiform or oval shape, diameters smaller than 1 cm, location of 
middle and/or lower 1/3 part of thyroid gland, hypovascularity or avascularity and 
the same SR values with the surrounding thyroid gland on elastography. Although 
some studies suggested cytopathological examination for the accurate diagnosis of a 
suspected IET case, most stated that IET can be followed since there is absence of 
atypical findings. Therefore, unnecessary surgical or interventional procedures can be 
avoided.
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Abstract
Artificial intelligence (AI) has seen tremendous growth over the past decade and 
stands to disrupts the medical industry. In medicine, this has been applied in 
medical imaging and other digitised medical disciplines, but in more traditional 
fields like medical physics, the adoption of AI is still at an early stage. Though AI 
is anticipated to be better than human in certain tasks, with the rapid growth of 
AI, there is increasing concerns for its usage. The focus of this paper is on the 
current landscape and potential future applications of artificial intelligence in 
medical physics and radiotherapy. Topics on AI for image acquisition, image 
segmentation, treatment delivery, quality assurance and outcome prediction will 
be explored as well as the interaction between human and AI. This will give 
insights into how we should approach and use the technology for enhancing the 
quality of clinical practice.
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INTRODUCTION
Radiotherapy (RT) is an important component of cancer treatment and nearly half of 
all cancer patients receive RT during their treatment pathways[1]. Increasingly, the use 
of new technologies such as artificial intelligence (AI) tools plays an important role in 
RT in various aspects from image acquisition, tumour segmentation, treatment 
planning, delivery, quality assurance (QA), etc. The list will no doubt continue to 
develop and grow over time as the technology continues to mature. Advancements in 
computing power and data collection have increased the utilization of AI. The 
adaptation of a more sophisticated modelling approach has become more widespread 
creating more accurate predictions. Available datasets from radiation oncology have 
been generally smaller and more limited than datasets from other medical disciplines 
such as medical imaging, so the performance of AI is constrained in medical physics 
disciplines by the available data[2].

According to the data on PubMed search engine performed in Figure 1, which is 
queried on March 20, 2021, there is a clear increasing trend in AI in the medical 
literature. Both graphs show an increasing trend but the numbers in medical physics 
and RT disciplines are several orders of magnitudes lower than in the general medical 
diagnosis groups. However, the increasing interest in AI applications in medical 
physics and RT is clear.

In this review article, we will focus on the different aspects of medical physics 
practice and RT applications and discuss the emerging applications and potentials 
relating to each area. This is summarised in Figure 2. The structure of this paper is as 
follows. In section 1, we introduce image synthesis application and benefit in image 
acquisition. In section 2, we discuss how AI is being used in image segmentation 
moving from the traditionally manual labour-intensive task to a more automated 
system. In section 3, we present the function of treatment planning and demonstrate 
how AI techniques can improve the plan accuracy. In section 4, we describe the benefit 
in treatment delivery, such as accuracy in position/motion management, organ 
tracking and dose calculation. In section 5, we explain how AI can be used to improve 
the performance in the QA process and the advantages of using AI in QA. In section 6, 
we talk about the prediction of patient outcome and discuss the concerns of patients 
and clinicians when using AI in the fields that mentioned above. In section 7, we 
discuss aspects of human-AI interaction. Finally, in section 8, we summarize and 
evaluate whether AI involved in medical decision making is a benefit or a threat?

IMAGE ACQUISITION 
Image synthesis application in RT
RT planning images are used to segment and contour organ at risks (OARs) and target 
volume (TV), and to plan the treatment. The images require accurate geometric 
coordinates and excellent image contrast to accurately contour the target in question. 
A summary, flow chart of image acquisition is shown in Figure 3. The other 
prerequisites include having a correct electron density of the tissues being imaged to 

https://www.wjgnet.com/2644-3260/full/v2/i2/37.htm
https://dx.doi.org/10.35711/aimi.v2.i2.37
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Figure 1 Number of papers in ‘Artificial intelligence in diagnosis’, ‘Artificial intelligence in medical physics’, and ‘Artificial intelligence in 
radiotherapy’. AI: Artificial intelligence.

Figure 2 Potential applications of artificial intelligence in medical physics and radiotherapy. AI: Artificial intelligence; QA: Quality assurance; IMRT: 
Intensity modulated radiotherapy; VMAT: Volumetric-modulated arc therapy; CT: Computed tomography; MRI: Magnetic resonance imaging.

calculate the amount of dose from the treatment beams being attenuated and absorbed 
by tissues in treatment planning so that an accurate dose can be delivered to the 
tumour.

Since magnetic resonance imaging (MRI) has advantages in soft tissue contrast for 
tissues such as brain and prostate (and allows for more accurate lesion localization) 
but MRI does not have a correlation of electron density in its image. There is a need to 
fuse the images together with computed tomography (CT) in the current practice. 
Therefore, when physicians contour on a set of images, the aligned geometric 
coordinates can ensure a correct contour registration. However, the patient might 
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Figure 3 Flow chart of Image processing.

require scanning both MRI and CT image and even the diagnostic PET images 
beforehand. To reduce the workload or increase the efficiency of those MRI, CT 
machines, many kinds of image synthesis research have been carrying on based on 
deep learning technique[3]. The followings are the different applications of image 
synthesis and advancement using AI as applied to image acquisition. Table 1 
summarises the most recent contemporary work.

Pseudo CT/ MRI synthesis
There are several pieces of research on pseudo CT image synthesis from MRI images to 
help registration of different image modalities or target delineation[4]. Fu et al[5] 
synthesized CT image using cycle consistent generative adversarial network which is 
an image synthesis network to assist registration of CT-MRI images by directly 
registering synthetic-CT to original CT images or to have MR-only treatment planning 
by generating synthetic-CT for treatment planning based on scanned MR image . In 
addition, Liu et al[6,7] researched on generating synthetic-CT from MRI-based 
treatment planning to derive electron density from routine anatomical MRI so that it 
can be possible to have MRI-only treatment planning for liver, and prostate cancer.

There is also pseudo MRI synthesis from a CT image for prostate target delineation 
based on the synthetic MR image from CT image using fully convolution network[8].

Super-resolution image synthesis
To improve the image resolution and quality, Dong et al[9] presented a novel super-
resolution convolution neural network approach to map between low and high-
resolution images in order to synthesize superior-resolution images than other 
approaches. Bahrami et al[10] and Qu et al[11] also focus on pseudo synthesis of 7T 
MRI image from normal 3T MRI using deep learning technique. The high resolution 
can have a better tissue contrast which can enhance contouring accuracy and on the 
other hand, will not pose additional dose or scanning time for the patient simulation.

Image denoising
Image denoising is important to improve the signal-to-noise ratio of low-dose CT. 
Yang et al[12] have introduced a CT image denoising method using a generative 
adversarial network (GAN) with Wasserstein distance and perceptual similarity, so 
that it can function as conventional CT while keeping a low radiation dose level to the 
patient. Wang et al[13] and Chen et al[14] also train the low-dose CT data with a fully 
convolution neural network with residual blocks and attention gates so to generate a 
set of data with improved noise, contract-to-noise ratio.

Benefits of using image synthesis technique in RT planning
With the introduction of machine learning and deep learning, various modalities of 
images can be artificially synthesized for oncologists to take reference, draw different 
contours on images with superior tissue contrast and fuse together afterwards with the 
treatment planning software. This can greatly reduce patient scanning time with 
different modalities. On the other hand, the improvement of images tissue contrast 
and resolution can help to reduce the margin of the target in order to reduce the 
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Table 1 Summary of contemporary deep learning methods in image acquisition

Ref. Architecture Purpose

Fu et al[5], 2020 Cycle consistent generative adversarial network To enable pseudo CT-aided CT-MRI image registration

Liu et al[6], 2019 Cycle generative adversarial network To derive electron density from routine anatomical MRI for MRI-
based SBRT treatment planning

Liu et al[7], 2019 3D Cycle-consistent generative adversarial network To generate pelvic synthetic CT for prostate proton therapy treatment 
planning

Lei et al[8], 2020 Cycle generative adversarial network for synthesis and fully 
convolution neural network for delineation

To help segment and delineate of prostate target by pseudo MR 
synthesis from CT

Dong et al[9], 
2016

Super resolution convolution neural network To develop novel CNN for high- and low-resolution images mapping

Bahrami 
et al[10], 2016

Convolution neural network To reconstruct 7T-like super-resolution MRI from 3T MR images

Qu et al[11], 
2020

Wavelet-based affine transformation layers network To synthesize superior quality of 7T MRI from its 3T MR images than 
existing 7T MR images

Yang et al[12], 
2018

Generative adversarial network with Wasserstein distance and 
perceptual loss function

To denoise low-dose CT image and improve contrast for lesion 
detection

Chen et al[14], 
2017

Deep convolution neural network To train the mapping between low- and normal-dose images so to 
efficiently reduce noise in low-dose CT

Wang et al[13], 
2019

Cycle-consistent adversarial network with residual blocks and 
attention gates

To improve the contrast-to noise ratio for low-dose CT simulation in 
brain stereotactic radiosurgery radiation therapy

CNN: Convolutional neural network; CT: Computed tomography; MRI: Magnetic resonance imaging.

uncertainty and improve the dosimetric accuracy of the RT treatment.

IMAGE SEGMENTATION
What is image segmentation?
Image segmentation is an important routine for RT for distinguishing anatomical 
structures and target[15], as well as comprising sets of pixels[16]. Before the advent of 
AI, radiation oncologists segment those regions of interest on RT simulation scans (i.e., 
CT and MRI) manually. They originally used a rigid algorithm and need human 
interference, professional judgement, and experience. These include thresholding, K-
means clustering, histogram-based image segmentation and edge detection[16].

The long duration for manual segmentation is one of the main reasons for the delay 
in the start of RT treatment, especially in clinics with limited resources. The 
locoregional control and overall survival rates are lowered because of the inefficiency 
in the workflow. It also hinders the adaptive RT treatment, because the new images 
indicating the anatomical changes of the patients have to be segmented for an accurate 
dose accumulation estimation after each treatment cycle[15].

AI in image segmentation
Accurate segmentation for TV and OARs are necessary for RT plans, but inconsistency 
such as inter-and intra-observer variability for manual segmentation has been 
reported. This is because the task is subjective in nature; the decision is made based on 
an individual’s knowledge, judgement and experience. The quantitative and 
dosimetric analyses are therefore affected, with a varying degree of impact. If an AI 
tool can be developed with less inherent variability, this would be an invaluable tool 
for addressing this issue. In order to keep up with modern development, automatic 
segmentation is needed. It has to overcome image-related problem and provide 
accurate, efficient and safe RT planning[15].

There are many segmentation types, such as Atlas-based segmentation and Image-
based segmentation etc. Deep learning in segmentation is a very broad topic, and in 
broader medical applications, there are several architectures used (Table 1).

The availability of segmented data and computer power were the main reason for 
manual segmentation in the earlier years. Most segmentation techniques utilised little 
to no prior knowledge, and these are regarded as low-level segmentation approach. 
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Examples of these techniques are region growing, heuristic edge detection and 
intensity thresholding algorithms[15].

Improvement in auto-segmentation
In the past twenty years, a good amount of effort has been poured into the medical 
imaging field to make use of prior knowledge. Anatomical structures, such as the 
shape and appearance characteristics are used to compensate for the insufficient soft 
tissue contrast of CT data, in order to produce an accurate definition of the anatomical 
boundary[15].

In recent years, deep learning-based software for auto-segmentation has been 
shown to provide a great leap of improvements over previous approaches. The field of 
deep learning has become more popular, notably after the seminal paper by 
Krizhevsky et al[17] (2012) which showed a much-improved prediction in image 
classification and recognition tasks using a deep convolutional neural network (CNN) 
architecture called AlexNet. More researches followed this approach with the use of a 
CNN for image segmentation, and the results performed better than prior algorithms, 
leading to a quick adaptation for deep learning in auto segmentation for medical 
images[15].

The use of CNNs involves feeding segments of an image as an input, labelling the 
pixels. The image is scanned by the network, then the network observes the image 
with a small filter each time until the entire image is mapped[18].

The newest auto-segmentation
Automatic segmentation is usually used in conjunction with manual and 
semiautomatic segmentation. Manual segmentation requires considerable time and 
expertise, but often with poor reproducibility. Semiautomatic segmentation relies on 
human involvement, errors and mistakes can also be expected. Automatic 
segmentation can provide more accurate results with minimal errors, however, several 
limitations such as noise existence, partial volume effects, the complexity of three 
dimensions (3D) spatial multiclass features, spatial and structural variability hinder 
the effectiveness of automatic segmentation[19].

DeepLab[20], U-Net[21], fully convolutional networks (FCN)[22], dense FCN and 
residual dense FCN are some of the state-of-the-art neural networks that have been 
used to tackle this issue. Qayyum et al[23] proposed volumetric convolutions for 
processing 3D input slices as a volume, with no postprocessing steps required. It 
provided an accurate and robust segmentation that indicated the complete volume of a 
patient at once.

The test between the proposed model and the current state of the art methods using 
SegTHOR 2019 dataset was compared. The challenge for this dataset is the position 
and shape of each organ at each slice has low contrast in CT images as well as the great 
variation in shape and position. The dataset presented a multiclass problem, and 
performance metrics are used to evaluate existing deep learning methods and the 
method proposed by Qayyum et al[23] The proposed model provided an improved 
segmentation performance and produced superior results compared with existing 
methods.

Limitation in segmentation
The training of deep neural networks (DNNs) for 3D models is challenging, as most 
deep learning architectures are based on FCN. FCN uses a fixed receptive field and 
objects with varying size can cause a failure in segmentation. Increasing the field of 
view and using a sliding window based on complete images can solve the fixed field 
issue[23].

Several other issues have been reported, such as overfitting, prolonged training time 
and gradient vanishing. Target organs that do not have a homogeneous appearance 
and ill-defined borders pose a great challenge to automatic segmentation. In addition, 
the heterogeneity of appearances even for a single disease entity is a challenge e.g., the 
appearance of the target could change from patient to patient as well as intra-patient 
variation between treatment cycles (as if often caused by tumour necrosis). These 
issues can cause a decrease in performance in 3D deep learning models when handling 
3D volumetric datasets. Using an atrous spatial pyramid pooling module with 
multiscale contextual feature information can assist in handling the issue of changes in 
sizes, locations and heterogeneous appearances of the target organs and nearby 
tissues[23].

There is also an issue of paucity of data. A large amount of annotated data is 
required for training accurate segmentation using deep learning approach. 
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Increasingly there are several open-source labelled datasets in medical 
imaging[24-26]. Increasing numbers as well as diversity are needed to increase 
innovation in this field.

TREATMENT PLANNING 
The function of treatment plans
In modern RT, it is crucial to maximize the radiation to the cancer tumour while 
minimising radiation and potential damage to the surrounding healthy tissues. 
Intensity modulated RT (IMRT) and volumetric-modulated arc therapy (VMAT) are 
the two standard treatment techniques for external beam RT treatments that can 
achieve the tissue-sparing effect while delivering a suitable amount of dose to the 
planned TV. The treatment plan often involves dose calculations and dose-volume 
histogram (DVH) which are tools to evaluate the dose to various organs and help the 
medical staff to determine the quality of the plan. The plans require a lot of time and 
effort to produce due to the dose constraints and inter-operator variation[27-29].

Methods for improving plan accuracy
Accurate DVH predictions are essential for automated treatment planning, and the 
predictions keep on improving over the past decade. Concepts such as overlapping 
volume histogram to describe the geometry of OARs and method for searching similar 
plans in a clinical database to guide the treatment planning for new patients were 
proposed. Deep learning methods were used recently to predict the dose distribution 
in 3D. Because of the nature of DNNs, it relies heavily on the amount and quality of 
the sample to achieve a high prediction accuracy. The performance could also be 
affected by parameters such as beam arrangement and voxel spacing in the treatment 
plan. The robustness of the prediction model can be enhanced with additional pre-
processing layers and data augmentation. Through the usage of de-noising auto-
encoder for pre-training DNN, more robust feature can be learnt, and less complex 
neural network can also produce excellent feature fitting capabilities[27].

Benefits provided by automation
Treatment planning is time-consuming, and the method used by each person 
performing the optimisation can affect the quality of the outcome[30-32]. Automating 
the treatment planning process can potentially lower the time required for manual 
labour and reduce the interobserver variations for dose planning. It is generally 
anticipated that the overall plan quality should improve with the use of AI[32].

The dose objective defined by the dosimetrist determines the dose distribution, 
usually according to the institution-specific guidelines. However, guidelines cannot 
provide an optimal dose distribution for specific patients, since the lower achievable 
dose limit to healthy surrounding tissues for the patient is not known. So, each 
treatment plan is patient-specific and is produced by trained dosimetrists. 
Optimisation of the plan is still labour-intensive, it makes it difficult to ensure the 
clinical treatment plan is properly optimised. All of these concerns lead to the need for 
automation as a solution to reduce the amount of time spent on the plans and the 
variations between dosimetrists[32].

The outcome of automated plans
Auto planning software produces comparable or better results for prostate cancer 
according to Nawa et al[28] (2017) and Hazell et al[32] (2016). Most OARs receive 
significant better results with the dose level of the DVHs, and auto planning managed 
to give clinically acceptable plans for all cases. The results were similar with head and 
neck cancer treatment. Dosimetrists can potentially have more time to focus on 
difficult dose planning goals, fine-tuning specific area and spend less time on the 
mundane tasks of the planning process[32].

TREATMENT DELIVERY
AI in the future will have the ability to accurately identify both normal and TV during 
treatment and estimates the best modality and beam arrangement from various clinical 
options. This will lead to an increase in local tumour control and reduces the risk of 
toxicity to surrounding normal tissue. Integration of clinically relevant data from other 
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sources in addition will allow AI system to tailor the treatment approach beyond the 
current state of the art methods. The time burden of human intervention and the time 
taken for the overall process can be reduced substantially[2].

Position and motion management
Integrated cone-beam CT (CBCT) is commonly used to image the position of the 
patients. As CBCT has a much lower quality than planning CT images, AI is needed to 
improve the image quality of CBCT to enable more accurate positioning for 
treatment[33]. Other imaging techniques such as onboard MRI, ultrasound and 
infrared surface camera, are used to monitor the motion of the patients as shown in 
Figure 4. These provide an opportunity for AI to refine and enhance the monitoring 
during the treatment[34].

The motion of the patient or organ throughout the treatment contributing to 
inaccuracies in treatment delivery will inevitably increase the radiation dose to 
surrounding healthy tissues. Motion managements are used for monitoring the extent 
of the motion from respiration or digestion[35]. There is a potential for the use of AI to 
predict the diverse variables by creating patient-specific dynamic motion management 
models[36]. Complex breathing patterns in real-time to accurately track tumour 
motion are the major task for predictive algorithms[37].

Throughout the treatment, there are changes in the patient’s anatomy between the 
planning appointment and treatment delivery, or even throughout the treatment. Re-
planning is necessary when the tumour shrinks or grows, or sometimes with 
anatomical variations such as the movement of internal organs and gas or liquid filling 
of the bowels and stomach. Adaptive treatments require a new plan to be created 
based on up-to-date images of the patient’s anatomy. AI tools help predict geometric 
changes in patient throughout the treatment, thus identify the ideal time point for 
adaptation[34].

Tumour tracking in MRI only workflow
Apart from conventional cone-beam CT images, AI is involved in the RT treatment for 
motion tracking using MR images. MRI provides superior soft-tissue contrast 
compared to conventional CT, and thus target delineation in prostate cancer RT using 
MRI has become more widespread[38]. However, in RT planning, the combination of 
MRI and CT image is there is a spatial uncertainty of < 2 mm from the image 
registration for prostate between MRI and CT[39]. A systematic registration error 
could lead to an error in treatment, so the dose distribution does not conform to the 
intended target and results in the tumour control being compromised[40].

As briefly mentioned in section 1, one way to minimize the error is to implement an 
MRI-only workflow so the plan does not rely on the image from CT scanners. Gold 
fiducial markers are commonly used in prostate cancer for target positioning, they are 
detected by using the difference in magnetic susceptibility between the gold markers 
and the tissue nearby. Multi-echo gradient echo sequence is proposed by Gustafsson 
et al[40] for identifying the fiducial markers. The automatic detection of gold fiducial 
markers can save time and resources, as well as removing inter-observer differences. 
From the experiment performed by Gustafsson et al[40] and Persson et al[41], the true 
positive detection rates achieved were 97.4% and 99.6% respectively. The results were 
comparable to manual observer results and they were better than most non deep 
learning automatic detection methods. A quality control method was also introduced 
to call upon the attention of the clinical staff when a failure in detection had occurred, 
which provided a step towards AI automation for MRI-only RT especially for the 
prostate[40].

Plan optimization for online adaptive planning
Besides monitoring the anatomical changes and motion during treatment, AI is heavily 
involved in the process of delivery of the treatment beam. VMAT delivery is one of the 
current standard RT technique. Currently, the treatment plan for VMAT is time-
consuming[42]. Machine parameter optimization (MPO) is used to determine the 
sequence of linac parameters such as multileaf collimators (MLCs) movements, the 
planning usually involves a manual trial and error approach to determine the best 
optimizer inputs to obtain an acceptable plan, and execution time for the optimizer is 
escalated further due to it being run multiple times. There is a need for a fast VMAT 
MPO algorithm, so while the patient is in the treatment position, the MPO can be 
executed multiple times for online adaptive planning[43-45].

Reinforcement learning (RL) is a form of machine learning approach, trained to 
estimate the best sequence of actions to reduce a cost as low as possible in a simulated 
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Figure 4 Different strategies used in motion management in radiotherapy. AI: Artificial intelligence.

environment through trial and error. It can be applied to new cases to quickly optimise 
treatment plans, machine parameters and corresponding dose distributions. The result 
shows RL VMAT approach produces a rapid and consistent result in both training and 
test cohort, showing a generalisable machine control policy without notable overfitting 
in the training cohort despite the small number of patients. The total execution time for 
plan optimisation was 30 s, with the potential to decrease the time even further 
because the algorithm can be implemented in parallel across different slices within the 
plan[45].

Dose calculation and organ tracking using a deep learning technique
Dose calculation of RT treatment using Monte Carlo (MC) simulation is very time 
consuming[1]. Kernel-based algorithm using DNN proposed by Debus et al[46] 
manages to calculate the peak dose and valley dose in a few minutes with little 
difference to MC simulation.

Besides the fast calculation speed for dose, kernel-based algorithm is used for 
identifying the irradiation angle to optimized beam angle for intensity-modulated RT 
plan. The optimized beam angle spares the organs at risk better in pancreatic and 
intracranial cancer[47]. It also gives a low-cost computational solution to markerless 
tracking of tumour motion, such as in kilovoltage fluoroscopy image sequence in 
image-guided RT (IGRT). The kernel-based algorithm provides a better tracking 
performance than the conventional template matching method, and it is comparable to 
the fluoroscopic image sequence[48]. DNN is used to interpret projection X-ray images 
for markerless prostate localization. The experimental result shows the accuracy is 
high and can be used for real-time tracking of the prostate and patient positio-
ning[1,49].

QUALITY ASSURANCE
QA is a way to figure out and eliminate errors in radiation planning and delivery but 
more importantly to ensure consistent quality of the treatment plans. It is an important 
tool in evaluating the dosimetric and geometric accuracy of the machine and treatment 
plans. There are a lot of QA researches based on deep learning and machine learning 
technique[50,51] for improving the accuracy and efficiency of QA procedures. Most 
adopt a ‘human creates while machine verifies’ approach. The followings are different 
sorts of applications of applying AI onto QA in RT. A summary is presented in 
Table 2.

Plan parameters QA validation
Machine learning can be applied to automated RT plan verification. It aims to verify 
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Table 2 Summary of contemporary deep learning methods in quality assurance

Ref. Architecture Purpose

Chang et al[52], 
2017

Bayesian network model To verify and detect external beam radiotherapy physician prescription errors

Kalet et al[53], 
2015

Bayesian network model To detect any unusual outliners from treatment plan parameters

Tomori et al[54], 
2018

Convolutional neural network To predict gamma evaluation of patient-specific QA in prostate treatment planning

Nyflot et al[55], 
2019

Convolutional neural network To detect the presence of introduced RT delivery errors from patient-specific IMRT QA 
gamma images

Granville et al[56], 
2019

Support vector classifier To predict VMAT patient-specific QA results

Li et al[57], 2017 ANNs and ARMA time-series 
prediction modelling

To evaluate the prediction ability of Linac’s dosimetry trends from routine machine data 
for two methods (ANNs and ARMA)

QA: Quality assurance; RT: Radiotherapy; IMRT: Intensity modulated radiotherapy; VMAT: Volumetric-modulated arc therapy; ANNs: Artificial neural 
networks; ARMA: Autoregressive moving average.

the human-created treatment plan to eliminate any outliners in plan parameters, error-
containing contours. Chang et al[52] developed a Bayesian network model to detect 
external beam RT physician order errors ranging from total prescription dose, 
modality, patient setup options so that these errors can be figured out and rectified as 
soon as possible without undergoing re-simulation and re-planning. Kalet et al[53] 
further investigated around 5000 prescription treatment plans within 5 years and 
construct a Bayesian learning model for estimating the probability of different RT 
parameters from given clinical information. It can act as a database to cross-reference 
with existing physicians’ prescription, for example, to safeguard against human errors, 
e.g., new doctors. However, such QA checking does not mean to override some 
exceptional case/physicians’ decisions but acts as supporting information as a safety 
net.

IMRT/VMAT QA results prediction
Patient-specific QA is time-consuming, but this is the most direct and comprehensive 
way to validate an IMRT or VMAT plan that uses sophisticated MLC patterns. Tomori 
et al[54] made use of a CNN network to predict and estimate the gamma passing rate 
of these planning plans for prostate cancer based on input training data (volume of 
planning TV and rectum, monitor unit values of individual field). In the future, 
patient-specific QA can hopefully be fully automated. Nyflot et al[55] also use a CNN 
with triplet learning to extract the features from IMRT QA gamma comparison results 
and train the model to distinguish any introduced RT treatment delivery errors like 
MLC mispositioning error just based on QA gamma results.

Granville et al[56] also trained a linear support vector classifier to predict the VMAT 
QA measurements results based on training measured dose distribution using 
biplanar diode arrays.

Machine performance prediction based on machine QA
To ensure the accuracy and stability of the treatment machine and plans, sufficient QA 
tests ought to be performed. Kalet et al[50] highlighted that by using machine 
performance and regular QA measurement logs as input, it can train the model to 
predict machine performance so as to trigger any preventive maintenance from the 
service engineers or save time spent to perform additional routine machine QAs.

Li et al[57] have used longitudinal daily Linear accelerator (Linac) QA results over 5 
years to build and train the model using artificial neural networks or autoregressive 
moving average time-series prediction modelling techniques so to help understand 
Linac’s behaviour over time and predict the trends in the output[57]. In the future, 
timely preventive maintenance can be scheduled if necessary after prediction.

The benefit of AI in QA
Chan et al[51] highlighted currently many research applications of AI in RT QA 
focused on predicting the machine performance and patient-specific QA passing rate 
results. These QA prediction tools based on deep and machine learning can be 
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incorporated into the treatment planning optimiser so that has a timely prediction of 
QA gamma rate before finalizing the plan. It minimises time spent on repeating 
measurement/replanning in case of failing QA tests. By monitoring the machine 
output performance, it can also help to give feedback to the treatment planning system 
to improve the accuracy of planning.

PREDICTING PATIENT OUTCOMES
AI also has a role in following outcomes of patients being treated with RT. Many 
prediction models have been developed, which can be organised by the outcomes 
predicted as well as the methods used. For RT, the main outcomes that have been 
investigated are treatment response (e.g., local tumour control and survival) and 
toxicity. However, the methods used to make these predictions vary widely based on 
the available data. As studies often acquire these data points retrospectively, the 
availability of ‘ground truth’ data may vary according to the clinical setting. To reflect 
the heterogeneity of data used in some studies, for example, Xu et al[58] predicted the 
chemoRT response of NSCLC patients using 2 datasets. The first set did not have 
surgery, whereas the second set required surgery and thereby providing data for the 
pathologic response.

Studies also required data in varying quantity. Various combinations of clinical, 
imaging, dosimetry, pathological, genomic data have been used to generate the 
models. Longitudinal data is also important, as shown by Shi et al[59] using both a pre-
treatment and mid radiation MRI to predict chemoradiation therapy response in rectal 
cancer . To overcome, difficulties of acquiring large amounts of medical data, 
techniques such as transfer learning has been used to allow algorithms to train on 
separate large data sets[60].

The outcome predicted: Treatment response assessment
Tumor control occurs when the appropriate dose is delivered to the tumor, leading to 
a reduction in the growth of the tumor. It can be assessed grossly by the degree to 
which the tumor’s size changes. Increasingly, changes have been assessed at a more 
microscopic level based on imaging characteristics (e.g., functional imaging and 
quantitative analysis such as radiomics). It can also be conceptualized over multiple 
time points, ranging from the initial treatment response to recurrence, and to the 
overall survival.

For example, Mizutani et al[61] used clinical variables and dosimetry to predict the 
overall survival of malignant glioma patients after RT using SVM. Oikonomou et al[62] 
analyzed radiomics of PET/CT to predict recurrence and survival after SBRT for lung 
cancer. Regarding treatment failure, Aneja et al[63] used a DNN to predict the local 
failure over 2 years after SBRT for NSCLC, while Zhou et al[64] predicted the distant 
failure after SBRT for NSCLC using SVM . In shorter time frames, Wang et al[65] 
predicted the anatomic evolution of lung tumors halfway through the 6-wk course of 
RT using a CNN. Furthermore, Tseng et al[66] used RL to allow ‘adaptation’ of RT to 
the tumor response. Several studies have also examined treatment response in terms of 
prediction of pathological response following neoadjuvant chemotherapy using pre-
treatment CT scans using radiomics with machine learning classification[67,68].

There are several studies utilising machine learning and AI in the task of 
prognostication. For example, a multi-centre study using a radiomics approach was 
utilised in predicting recurrence-free survival in nasopharyngeal carcinoma using MRI 
data[69]. In this study, an attempt was also made to explain the model using SHAP 
analysis which could help derive feature importance used in the predictive model.

The outcome predicted: Toxicity
Radiation toxicity is the other outcome that has been used for prediction. Whereas 
tumor control is the desired outcome from radiation targeting tumorous tissue, 
toxicity is the unwanted effects of radiation inevitably affecting surrounding normal 
tissue. Various applications have been applied to different sites of cancer. For example, 
Zhen et al[60] predicted rectum toxicity in cervical cancer using CNN, Ibragimov 
et al[70] predicted hepatobiliary toxicity after liver SBRT using CNN, and Valdes 
et al[71] predicted radiation pneumonitis after SBRT for stage I NSCLC using 
RUSBoost algorithm with regularization.

There have also been works that combine the outcomes of both the toxicity and the 
tumor response to RT. For example, Qi et al[72], applied a DNN to predict the patient 
reported quality of life in urinary and bowel symptoms, after SBRT for prostate cancer. 
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The model was trained on the dosimetry data alone. The urinary symptoms were 
predicted by the volume of the tumor, while the bowel symptoms represent the 
toxicity to the rectum.

HUMAN AI INTERACTION
As the use of AI technology progress, we need to examine the role of AI in conjunction 
with human. In the short term, this is likely to be in a collaborative/hybrid manner, 
rather AI operating autonomously, although this will depend on the tasks at hand. The 
impact of AI in the radiation oncology field is increasing rapidly, but at the same time 
the concern surrounding the use of AI is rising. One of the main concerns is the 
replacement of many jobs in the field of medical physics and radiation oncology, 
which can lead to a change in how patients are being treated. It is important to 
understand the perception of radiation oncology staff about the progression of AI and 
increase the awareness of the using of AI as a cooperative tool instead of job 
replacements. With the integration of AI in the profession, there is a huge potential in 
improving radiation oncology treatments and decision-making processes[73].

Limitations of AI
The efficiency and accuracy will be revolutionized by AI, but the future role of AI is 
not as clear, and the responsibility of the AI algorithm and clinicians using the AI 
needs to be addressed. In RT treatment planning, most plans are generated based on 
ground truth with low variability, but the optimization requires insights from 
clinicians to provide a creative solution for the patient. With the heavy reliance on 
technology, the innovative aspect may be reduced with the lack of human inputs. 
Safety risks such as AI being reluctant to highlight its own limitations are possible, 
with the potential of suboptimal plans being passed for treatment[74]. There is likely 
to be ongoing need of human/clinical oversight, not least due to regulatory 
requirements.

The concerns of using AI stem from the key issues surrounding the lack of empathy 
and intuition, unlike human practitioners. The development of empathy, which leads 
to the clinician focusing on the patients’ well-being could play a subconscious role in 
providing a creative, innovative and safe RT treatment. This philosophical issue relates 
to human consciousness, and it contributes to how health practitioners should 
approach, use and interact with AI. The term preconceptual understanding, can be 
referred to as common sense for human in general. Since AI is perceived to not possess 
human common sense, it may affect its ability to perform certain tasks that require 
incorporation of these kinds of thinking[74].

Human cognition has two main attributes, which are concept and intuition. Human 
relies on these attributes to relate to the world and people around us. The concept of 
being affected by other people has an impact on how we behave towards them. 
Affectivity between individuals makes us take responsibility for other people, altering 
our behaviours either consciously or unconsciously. The intended consequence is 
generally thought to be that humans will behave in an ethical manner. In RT practice, 
clinical guidance exists for clinicians to follow and failure to act ethically would have 
serious consequences[74].

With the lack of intuition, AI may not behave with identical traits as human. The 
focus of the AI will be based on preprogrammed objectives, instead of patient 
outcomes and may even display a lack of creative input. Patient care and 
communication should be performed by human professionals because human needs to 
be involved in the RT routines, so the safety, creativity and innovation can be 
maintained. In the short term, the use of AI may assist treatment planning, potentially 
saving time. Clinicians will be required to integrate the technology into their practice, 
being aware of limitations, and how it can assist decision making. The unintended 
consequence may be that there are less opportunities or experience in training, and the 
training the future generation of medical staff for providing competent oversight may 
need to be addressed[74].

Karches[75] proposed that AI should not replace physician judgement. Technology 
should help us to extract things from their context, but when technological 
advancement leads us to reduce qualitative into quantitative information, eventually 
interactions between people could become mere data and information, driven to the 
point where only the quantifiable entities matter. Karches[75] mentioned two 
examples, which are stethoscopes and electronic health record (HER), to explain 
technologies can both help or hinder primary care. A stethoscope allows the 
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physicians to pay attention to the sounds of the patients’ body functions. The 
physicians merely utilize a tool to increase their ability to extract information, the tool 
acts as an extension of the physician which still allows the physicians to conform their 
judgement to the patients’ reality. However, EHR tends to distance the physician from 
the patient. A collection of fact is presented to the physicians before meeting the 
patient can surely make the examination process to be more efficient, but the lack of 
interaction between physician and patient can lead the physician to be less adapted to 
handle aspects of patient care that is not quantifiable by technology[75]. Limiting 
patient interaction also leads to less empathy and rapport, potentially leading to less 
trust in medical professionals.

They are unlikely to devote more time to uncompensated activities such as 
educating students[75]. These examples are an important reminder of how clinicians 
should interact with AI, where AI needs to be a tool to assist the clinicians to gain a 
better understanding of the patient and situation, but not something to distract 
themselves which compromise primary care. The more optimistic model of AI usage 
may be that AI frees the physicians or medical practitioners from repetitive or 
mundane, enabling them to spend more time with patients.

AI perception
Wong et al have surveyed the Canadian radiation oncology staff in 2020 regarding 
their views towards the impact of AI. Even though more than 90% of the respondents 
were interested in learning more about AI, only 12% of them felt they were 
knowledgeable about AI. For the forecast of AI, the majority of the respondents felt 
optimistic, and it would save time and benefit the patients. Common concerns among 
the staff were the economic implications and the lack of patient interaction. The 
precision of AI in identifying organs at risk is the top priority, and most concurred that 
AI system could produce better than average performance, but human oversight is still 
necessary for providing the best quality of patient care. Many respondents, especially 
radiation trainees, had concerns about AI could replace their professional 
responsibilities[73].

Medical practitioners have expressed frustration at the technologies because the 
relationship between the patient and medical staff are undermined. The AI produces a 
medical judgement, often disregarding the particular circumstances of each patient. 
This is because any extra consideration for the patient may lead to an increase in cost, 
lowering efficiency. Many experienced clinicians would not rely solely on the patients’ 
verbal description because patients could be untruthful about their purpose of visit, or 
they might understate the burden of their symptoms. AI would tend to take the 
history of patients at face value, and depending on the technology used, it may never 
have the ability to interpret subtle non-verbal cues. The ability to understand the 
patients’ needs remain questionable, as the best patient outcome does not always have 
a binary result which computers are good at producing[75].

The reduction of time-consuming tasks due to the AI integration may cause a 
reduction in job opportunities. On the other hand, the decrease in a more time-
consuming task can lead to better inter-professional collaboration and an increase in 
interaction time with the patient. According to the survey from Wong et al[73], the cost 
benefits of AI was unclear for the respondents and it can be one of the reasons for the 
limitation on AI advancement. There could be a need for incorporating the knowledge 
of AI in the early stages of education, this is because the trainees which will be the 
future generation of practitioners, showed the least positivity towards AI. The fear of 
the unknown is part of human nature, and therefore, the investment of educating 
professionals to raise the knowledge and importance of AI is essential[73].

Techniques to improve human-AI interaction
Although AI has the potential to expand or extend beyond the cognitive abilities of 
humans, it still has its limitations in its current form that only humans can 
demonstrate such as generalisability and empathy. These limitations are especially 
pronounced in fields where data is limited and social context is paramount, such as in 
medicine and RT. There is an idea to create systems that combine humans and AI in 
symbiosis, with the intention that the whole is greater than the sum of its parts[76]. 
The ideal hybridized system would allow the two parties to combine the strengths yet 
hide the weaknesses of each other. However, the key to optimizing these systems is to 
have an efficient Human-AI interaction process. The interaction process has been 
subject to recent research. Design principles have been set forth, though applications 
within RT may be in its infancy.
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To conceptualise the process of human-AI interaction, some groups have written 
guidelines and taxonomies for the design of such processes. Amershi et al[77] have 
created design guidelines for human-AI interaction, based on the feedback and 
experience of design practitioners. The focus is on a human-centric system with AI as 
an assistant. Key features can be divided over different time points of the interaction: 
(1) Before interaction (initiation): How does AI set expectations on its strengths and 
limitations? (2) On interaction: How does AI present information to a human? How 
does human provide feedback to AI? and (3) After interaction (over time): How does 
AI learn and adapt to human preferences?

The initiation phase occurs before any interaction occurs when expectations are set 
out for each other. Cai et al[78] have investigated what medical practitioners desired to 
know about the AI before using it. The requirements were akin to what the users 
desired to know about their human colleagues when consulting or cooperating with 
them. The properties of the AI can be described along these lines including its known 
strengths and limitations (e.g., bias of training data), its functionality (e.g., the task it 
was trained to perform), its objective (e.g., was it designed to be sensitive or specific) 
and socioeconomic implications. With appropriate expectations set, the user may be 
motivated to adopt the system in various modes of collaboration. For example, the 
human-AI system can divide labour according to their strengths, or they can perform 
the same task as a second opinion to each other.

During the interaction, the AI and human communicate to share information. 
Firstly, there is a consideration of what information is to be shared. With current AI 
systems using deep learning, a decision or prediction is made based on given inputs. 
However, there is a common concern of interpretability of such decisions of AI 
systems because of the lack of explicit steps of reasoning between input and output. In 
order to gain trust in AI decision, interpretability or explanability has been a growing 
area in AI research in general. To this end, Luo et al[79] reviewed different AI 
algorithms with improved interpretability for RT outcome prediction. Some examples 
include using handcrafted features or activation maps. However, there is a trade-off 
between the algorithm’s interpretability and its accuracy. Other methods include using 
SHAP analysis which is used to explain feature importance in tree-based models[80]. 
Secondly, there is a consideration of how to present the information in the workflow 
so that this integrates well in clinical practice. Ramkumar et al[81] explored the user 
interaction in semi-automatic segmentation of organs at risk. It was shown that the 
physicians’ subjective preferences of different workflows play an important role, 
suggesting flexibility in system design needs to be bourne in mind. The experience 
and/or personal preference of an individual practitioner may also play a role. A recent 
study demonstrated that humans are susceptible to bias when given advice and this is 
particularly more pronounced with doctors with less experience on the task of chest 
radiograph interpretation[82]. Figure 5 shows the likely future direction of the 
development of AI and human-AI interaction. The incorporation of AI under human 
supervision will likely become mainstream in clinical practice in the future, until the 
AI has sufficient or near-human consciousness to perform tasks autonomously. In 
between, there may also be a hybrid mode of operation, whereby a direct interface 
with human may be used. For example, there are developments to implant chips in 
human brain so that we can directly interface with a computer system. This mode of 
operation could be used for example, for real-time adjustment in treatment plan 
during treatment delivery.

CONCLUSION
The examples of applications and potential of AI provide insights on how and why 
health care professionals such as medical physicists and radiation oncologists should 
use AI. The pros and cons with AI usage needs to be understood fully in order to both 
strengthen our ability to provide primary care and reduce the amount of weaknesses 
that human and AI possess.

The role of medical physicists will likely migrate away from QA of equipment, 
towards the QA of the patient treatments and overall treatment environment and 
processes. The decision-making capacity is expected to be improved and the 
knowledge gaps between experts and non-experts of a specific domain may be 
lowered. Clinicians are going to interact with computers more often and the efficiency 
of the human-computer interface will play a larger role in reducing duplicative and 
manual efforts. With the advancement of AI in the near future, the performance may, 
if not already, have surpassed human in specific tasks. It is crucial to re-think the 
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Figure 5 Future direction of human and artificial Intelligence. AI: Artificial intelligence.

ethical clinical practice, when do we decide to let a human make a “correction” to the 
output provided by an AI[2], or when can we allow AI system to operate 
autonomously.

The growth of AI also poses security challenges as the data are shared more often 
across governance structures and stakeholders. Implications of unintended third-party 
data reuse may be more common. As a consequent, already there are some efforts such 
as the increased requirements of European Union’s General Data Protection 
Regulation to reduce the concern of the breach in privacy. Early AI that is clinically 
adopted might have flaws that result in patient harm just as some early IMRT systems. 
Nevertheless, AI will one day become widespread and effective technology[2].

Despite the potential drawbacks, the enormous benefit provided by AI will allow 
medical practitioners to provide a better healthcare service to patients. In the previous 
sections of this review, many techniques are currently in research. The clinical practice 
will be adopting the use of AI more in the future, and the examples listed above will 
likely become available and applied within the next decade.

While we are still a long way from having fully autonomous AI to determine the 
best treatment options, steps were taken in this direction such as improving AI 
algorithms through trainings and feedbacks. In the short term, there are likely to be 
some changes in the working environment. It would be foolhardy to expect that we 
maintain the status quo. Although medical practitioners are unlikely to be replaced 
any time soon, we expect the profession to evolve. Displacement of practitioner’s roles 
rather than replacement may be the impact in the foreseeable future.
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Abstract
Lung ultrasound (US) has been shown that it is able to detect interstitial lung 
disease, subpleural consolidations and acute respiratory distress syndrome in 
clinical and physical studies that assess its role in upper respiratory infections. It 
is used worldwide in the coronavirus disease 2019 (COVID-19) outbreak and the 
effectiveness has been assessed in several studies. Fast diagnosis of COVID-19 is 
essential in deciding for patient isolation, clinical care and reducing transmission. 
Imaging the lung and pleura by ultrasound is efficient, cost-effective, and safe and 
it is recognized as rapid, repeatable, and reliable. Obstetricians are already using 
the US and are quite proficient in doing so. During the pandemic, performing 
lung US (LUS) right after the fetal assessment until reverse transcription 
polymerase chain reaction results are obtained, particularly in settings that have a 
centralized testing center, was found feasible for the prediction of the severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The use of LUS is 
efficient in the triage and monitoring of pregnant women. Clinicians dealing with 
pregnant women should consider LUS as the first-line diagnostic tool in pregnant 
women during the SARS-CoV-2 pandemic.

Key Words: COVID-19 pandemics; Lung; Ultrasound imaging; Pregnancy; SARS-CoV-2; 
Triage

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Lung ultrasound (US) is based on specific pattern recognition and does not 
require complex measurements, therefore obstetricians can easily learn and use lung 
ultrasound (LUS) in the pandemic. LUS examination can be a routine after a routine 
obstetric US examination. Fast diagnosis of coronavirus disease 2019 is essential in 
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deciding for patient isolation, clinical care, and reducing transmission. Clinicians 
dealing with pregnant women should consider LUS as the first-line diagnostic tool in 
pregnant women during the severe acute respiratory syndrome coronavirus 2 pandemic.

Citation: Tekin AB, Yassa M. Implementation of lung ultrasound in the triage of pregnant 
women during the SARS-CoV-2 pandemics. Artif Intell Med Imaging 2021; 2(3): 56-63
URL: https://www.wjgnet.com/2644-3260/full/v2/i3/56.htm
DOI: https://dx.doi.org/10.35711/aimi.v2.i3.56

INTRODUCTION
Lung ultrasound (US) use has been discussed for years in emergency medicine, 
intensive care units, and cardiovascular diseases. The use of lung US (LUS) has 
increased in the last 15-20 years upon advancements in the visualization of pleural 
effusions, lung masses, and afterward evolved to be able to evaluate lung parenchyma 
mainly as a point-of-care technique[1]. Pulmonologists, emergency medicine 
physicians, thoracic and cardiac surgeons often benefit from LUS in the management 
of traumatic conditions and intraoperative situations[2]. Coronavirus disease 2019 
(COVID-19) pneumonia mainly involves the lung periphery and causes interstitial 
pneumonia. Therefore, LUS is highly suitable for the management of this disease[3]. 
The obstetricians are already familiar with the US and they are at the frontline in the 
fight against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
pandemic for infected pregnant women treatment[4]. LUS is based on specific pattern 
recognition and does not require complex measurements, therefore the obstetricians 
can easily learn and use LUS in the pandemic[1,5].

SCORING SYSTEM FOR LUS
LUS has been shown that it is able to detect interstitial lung disease, subpleural consol-
idations and acute respiratory distress syndrome in clinical and physical studies that 
assess its role in upper respiratory infections[6-8]. It is widely used worldwide in the 
COVID-19 outbreak and the effectiveness has been assessed in several studies[9-14]. 
LUS evaluation covers 14 anatomical regions, 3 posterior, 2 lateral, 2 anterior, in both 
hemithorax and intercostal spaces in supine, right lateral, left lateral positions during 
at least 10 s[6]. In different scoring systems, the target regions were varied between 4 
to 7 regions for each hemithorax[15]. Pleural thickness, pleural continuity, pleural drift 
(with inspiration and expiration), presence of subpleural consolidated areas, 
parenchymal artifacts (vertical, horizontal), and the presence of a white lung pattern 
should be focused in every region. The results of 14 anatomical regions are scored 
between 0 and 3; LUS 0 is defined as normal LUS findings, LUS score of 1 is defined as 
mild involvement, LUS score of 2 is defined as moderate involvement and LUS score 
of 3 is defined as severe lung involvement[6]. Normal US findings (LUS 0) represent 
thin, continuous, and regular pleural lines, presence of respiratory pleural shift and 
parenchymal horizontal artifacts due to normally aerated lung surface reflectivity (A 
lines) in LUS. Mild involvement (LUS 1) is defined with an indented pleural line 
(irregularities in the pleural line, continuity is not broken), the sporadic vertical white 
area under the pleura (B line). Moderate involvement (LUS 2) is defined with broken 
pleura (continuity disorder in the pleural line), small to the large white area of consol-
idation under pleura, and multiple white vertical lines (B lines) that progress to the 
end of the viewed area. Severe lung involvement (LUS 3) is defined as a severe broken 
pleura pattern in addition to a dense and wide “white lung” pattern with or without 
consolidated area in LUS[6]. B lines, small consolidated areas and broken pleural lines 
are suggestive of COVID-19[16]. Bacterial pneumonia is mainly represented with 
isolated large lobar consolidation with or without pleural effusion and dynamic air 
bronchograms[17].

https://www.wjgnet.com/2644-3260/full/v2/i3/56.htm
https://dx.doi.org/10.35711/aimi.v2.i3.56


Tekin AB et al. Lung ultrasound in the triage of pregnant women

AIMI https://www.wjgnet.com 58 June 28, 2021 Volume 2 Issue 3

ADVANTAGES OF LUS
Fast diagnosis of COVID-19 is essential in deciding for patient isolation, clinical care 
and reducing transmission. For diagnosis of COVID-19, symptoms are leading us and 
mainly reverse transcription polymerase chain reaction (RT-PCR) testing is the first 
choice for definitive diagnosis. However, the sensitivity of the SARS-CoV-2 RT-PCR 
which is the gold standard for diagnosis is estimated as 75%[18]. Furthermore, RT-
PCR results may need several days and cannot be sufficient in places with high patient 
density[18]. Concerning radiologic diagnosis of COVID-19 is based on chest computed 
tomography (CT) with typical ground-glass opacities and patchy infiltrates in chest 
radiography, or both[10]. The main advantage of LUS is not only reducing the 
exposure to ionizing radiation but also reducing the risk of contamination and 
decrease the burden on the health system. Moreover, it enables monitoring (repetitive 
measurements)[4,9-11]. However, CT has disadvantages of ionizing radiation 
exposure, the need for extensive decontamination and is unobtainable in resource-
limited situations. Owing to these facts, CT is not an optimal screening tool and not 
feasible in monitoring the patient’s clinical situation[18]. Especially when we think of a 
special population such as pregnant women or pediatric patients, CT is not an 
attractive choice for the diagnosis of lung involvement. A low level of ionizing 
radiation exposure by chest imaging during pregnancy is considered relatively safe, 
but this can cause anxiety for many pregnant women and health care providers[10]. 
More than half of the pregnant women refused to have the chest CT in our center 
(unpublished data).

Imaging the lung and pleura by the US is efficient, cost-effective, and safe, and it is 
recognized as rapid, repeatable, and reliable[8]. LUS is convenient for bedside 
evaluation of patients and suitable for vulnerable populations such as pregnant 
women and children[11,19]. It is already well-known that LUS has the advantages of 
being a non-ionizer, rapid and easy to perform, and provides dynamic imaging. In 
addition, LUS has a value and an advantage of applicability to a variety of practice 
environments, when the other diagnostic tools are unavailable[18].

Obstetricians are already using the US and quite proficient in the use of it. During 
the pandemic, it was proposed that LUS may be performed by obstetricians and 
therefore, LUS examination can be a routine after a routine obstetric US examination
[4]. This approach might have an impact on reducing the workload of radiologists and 
the need for chest CT, thereby minimizing the risk of transmission. Pregnant and non-
pregnant women have previously been reported to be similar with regard to radiologic 
findings of COVID-19[10,20]. Performing LUS right after the fetal assessment until RT-
PCR results are obtained, particularly in settings that have a centralized testing center, 
was found feasible for the prediction of the SARS-CoV-2 infection. This approach is 
successful in reducing the use of chest CT or X-rays for pregnant women.

TRIAGE WITH LUS
Despite the extensive use of LUS in clinical studies, the use of LUS in the triage of 
pregnant women during the COVID-19 pandemic is still scarce in the literature.

One of the main problems in the management of the population during the SARS-
CoV-2 pandemic is to determine the asymptomatic carriers[21]. This issue becomes 
prominent in pregnant women due to the mixed symptoms that can naturally be 
interpreted as common complaints of pregnancy. In a recent study by Sutton et al[21], 
the asymptomatic carrier rate in the labor ward was found as 13.7%. Another 
milestone study from Vintzileos et al[22] showed that two-thirds of all pregnant 
women infected with SARS-CoV-2 were asymptomatic during admission to the labor 
ward unit. Those results have raised concerns about the high rate of asymptomatic 
carriers during intensely progressing pandemic.

In our clinic, patients with symptoms are isolated in the hospital until SARS-CoV-2 
RT-PCR results are obtained. Asymptomatic pregnant women are initially triaged 
using LUS and their clinic management is adjusted according to the obtained LUS 
score. Asymptomatic patients with mild lung involvement were closely followed up 
until RT-PCR results with home isolation and further close monitoring with LUS is 
planned. Pregnant women with moderate or severe lung involvement in US receive 
medical treatment regardless of being symptomatic or asymptomatic. Possible false-
negative cases, that are symptomatic with initial normal LUS findings are scheduled 
for a repeat US in 3 d and offered for Chest CT. This algorithm is schematized in 
Figure 1.
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Figure 1 Main triage algorithm of pregnant women based on lung ultrasound. COVID: Coronavirus disease; COVID-19: Coronavirus disease 2019; 
CT: Computed tomography; LUS: Lung ultrasound; PCR: Polymerase chain reaction; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2.

Pregnant women are vulnerable population that possess medical and social 
burdens. In the COVID-19 pandemic, they require several encounters with the 
healthcare staff, and most of them are hospitalized for birth[23]. The common 
physiological changes of pregnancy may coincide with the symptoms of COVID-19 
infection and undetected cases of COVID-19 were 4-9 cases to 1 detected case in a 
study in the labor ward[24]. The undetected infection has been thought to contribute 
to the transmission of the virus[25]. Due to the excess of undetected cases and 
transmission of infection from asymptomatic carriers, the need for universal screening 
of pregnant women is emphasized[21,22]. All pregnant women should be offered RT-
PCR testing for SARS-CoV-2 infection regardless of the maternal symptoms on 
admission to the hospital according to the Royal College of Obstetricians & Gyneco-
logists statement[26]. Our study investigating the universal testing strategy for SARS-
CoV-2 infection with RT-PCR in pregnant women who were admitted to the hospital 
showed an overall and asymptomatic infection diagnosis rate of 7.77% and 4.05%, 
respectively[27]. The false positivity of LUS was due to previous benign lung diseases 
where the main maternal symptom status comes forward in the interpretation of LUS 
findings[27]. In our routine approach, LUS comes prior to the maternal sympto-
matology because mild COVID-19 symptoms can interfere with the natural 
pregnancy-related symptoms, moreover, we observed that LUS signs can alert the 
clinician before bothersome symptoms occur. In our algorithm for the interpretation of 
LUS findings that combines the lung imaging and the maternal symptomatology; a 
LUS score of 1 was accepted as a normal finding in asymptomatic pregnant women 
with aiming to reduce the false positivity of LUS imaging. LUS scores of 2 and 3 were 
adopted as abnormal regardless of the symptom status. In addition, using LUS in the 
triage of pregnant women was found more predictive in detecting the infection than 
the use of symptomatology solely with a positive predictive value and sensitivity of 
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82.3% and 60.9%, respectively[27].

MONITORING WITH LUS AND OTHER AREAS OF USE
In monitoring the clinical progress of pregnant women, LUS is a harmless choice and 
valuable in terms of deciding either delivery or upgrade the medical treatment[10]. 
LUS is a very practical alternative in the respiratory system propaedeutic as it allows 
for repetition of exams, can be portable and performed at the patient’s bedside[15]. 
The recent study suggested the integration of LUS into the routine clinical 
management of COVID-19[28]. In addition, this recent study emphasized in the 
emergency department that LUS may correctly triage patients according to their 
degree of lung involvement[28]. Abnormal LUS findings were reported as relevant 
with early admission into emergency units or intensive care units[27]. It is reasonable 
to offer LUS for the triage and monitoring of the clinical progress of patients with 
leaving the indication of chest CT scan as reserved only for the more complex cases, 
such as unexpected deterioration in clinical progress and patients with previous lung 
diseases[28]. Moreover, the detection power for the presence of consolidations there 
was found in a good agreement between the chest CT and LUS[29]. The studies 
regarding LUS usage in pregnant women are summarized in Table 1[10,27,30-36].

Considering the patients who are receiving respiratory support is recommended 
that they should be monitored closely for clinical deterioration[37]. In this regard, 
serial LUS is suitable for efficient monitoring[37]. The decision to proceed with 
invasive mechanical ventilation and intubation can be a challenging choice and LUS 
might be an accurate indicator of the ideal moment of intubation[37]. In intubated 
patients, LUS could evaluate the pulmonary aeration loss and ventilation condition 
dynamically thus, enabling the prediction of the healing process[37]. In intensive care 
units, chest CT scan is risky for transporting critically unwell patients, and decontam-
ination is a time-consuming process[37]. The use of portable chest radiographs is not 
suitable due to the poor correlation with clinical picture[37].

LIMITATIONS OF LUS
Despite the several advantages of LUS in the COVID-19 pandemic setting, the 
diagnostic accuracy of LUS may be affected by the patient’s characteristics and co-
morbidities including elevated body-mass index and pre-existing interstitial lung 
diseases[38,39]. The findings of preexisting interstitial inflammation, scarring, and 
pleural thickening can mimic the initial COVID-19 imaging. In addition, heart failure 
causing pulmonary edema or end-stage renal disease may lead to diagnostic confusion 
with the interstitial inflammation caused by COVID-19. Approximately 70% of the 
lung surface can be visualized with a systematic LUS examination, however, lesions 
located in the blind area of the US can be missed[31].

The studies investigating the use of LUS in the COVID-19 pandemic have included 
small sample sizes and much effort is needed to increase the quality of those studies to 
promote the LUS scanning in the triage of COVID-19[15]. The specific protocols for 
triage should be formed and the effects of the clinicians’ experience and the inter-
operator agreement should be further studied[40-42].

User-related limitations can be challenging in the management of the patient that 
depends on the LUS scores. It is postulated that less-experienced users are tended to 
label the mild abnormalities in a single lung field as compatible with COVID-19. The 
US settings of the LUS can affect the interpretation of LUS images such as undergained 
or overgained images may lead to false-negative or positive assessments[18].

CONCLUSION
LUS is promising in the management of pregnant women with COVID-19 with 
considering the advantages of being non-ionizer, dynamic, rapid, reliable, and 
reproducible. The use of LUS seems efficient in the triage and monitoring of pregnant 
women. LUS scanning can be combined with initial maternal symptom status in order 
to reduce the false positivity of LUS. Clinicians dealing with pregnant women may 
consider LUS as the first-line diagnostic tool in pregnant women during the SARS-
CoV-2 pandemic.
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Table 1 Studies reported the use of lung ultrasound in pregnant women with coronavirus disease 2019

Ref. Country Type of study Cohort Diagnosis LUS technic Conclusion

Buonsenso et 
al[30], 2020

Italy Case report 4 pregnant women at 24, 38, 17, 
and 35 wk gestational age

LUS was carried out before the 
positive RT-PCR result. 
Nasopharyngeal swab RT-PCR 
confirmation

14 regions evaluation with the convex probe. LUS was correlated with CT findings, this tool should be 
considered in clinical deterioration to check the lung status for 
COVID-19 pneumonia and LUS might be preferred to chest X-
ray in pregnant women

Deng et al
[31], 2021

China Retrospective 
study

27 of pregnant women at the third 
trimester, 8 of them at the second 
trimester, and 4 of them at the first 
trimester

29 of them with pharynx RT-PCR 
testing and 10 with epidemiologic 
history, symptoms, and imaging 
results

12 zones: 2 anterior zones, 2 lateral zones, and 2 
posterior zones per side. Each zone was scored 
0 to 3 and total LUS scores were used in the 
clinical assessment of patients

Quantitative LUS can be considered a reliable follow-up tool 
for dynamic lung monitoring in pregnant women with COVID-
19 and can reduce the use of chest CT

Gil-Rodrigo et 
al[32], 2021

Spain Letter to the 
editor

4 women at gestational weeks 6, 9, 
19 and 25, 2 of them confirmed as 
COVID-19

Symptoms and LUS were used as 
initial assessment and 
nasopharyngeal swab RTPCR was 
used for confirmation

With convex transducer, 8 posterior lung areas With regard to potential disease transmission during a 
pandemic, LUS in pregnant women enables safe diagnosis and 
early treatment. One of the limitations is the absence of 
standardized training, the learning curve is relatively

Inchingolo et 
al[33], 2020

Italy Case report 1 pregnant woman at 23 wk 
gestational age

Oropharyngeal swab RT-PCR 14 regions with Convex wireless transducer 
(3.5 MHz)

Point-of-care LUS examination could play a key role in the 
assessment of pregnant women with suspected COVID-19

Kalafat E et al
[34], 2020

Turkey Case report 32-yr-old woman at 35 + 3 wk 
gestational age

Symptoms and lung ultrasound 
findings first and confirmed by 
nasopharyngeal RT-PCR after

Thick and bilateral B-lines in the basal posterior 
lungs area (during the first assessment), diffuse 
B-lines (2 d later)

Report of positive lung ultrasound findings consistent with 
COVID-19 in a pregnant woman with an initially negative RT-
PCR result

Porpora et al
[35], 2021

Italy Prospective 
observational 
study

30 pregnant women at 36 wk of 
median gestational age (range 
between 28-38 wk)

Nasopharyngeal swab RT-PCR Linear or convex probes, the LUS investigation 
was carried out with the 12-zone method, both 
in the supine and lateral positions

LUS is proven to be safe, reliable, sensitive, easily repeatable, 
and could be a guide to define the most appropriate strategy 
for improving clinical and pregnancy outcomes

Yassa et al
[10], 2021

Turkey Case series 8 Pregnant women (9-38 wk) who 
underwent LUS examinations after 
obstetric US examinations

Symptoms and LUS first and 
confirmed by nasopharyngeal RT-
PCR testing later

Fourteen areas (3 posterior, 2 lateral, and 2 
anterior) were scanned per patient for 10 
seconds along the indicated lines

After an obstetric US assessment, the routine use of LUS can 
substantially influence the clinical treatment of pregnant 
women with COVID-19

Yassa et al
[27], 2020

Turkey Prospective 
Cohort

296 pregnant women (23 with a 
positive result for COVID-19) at 5 
to 42 wk gestational ages (mean = 
35.18 wk)

LUS first and confirmed by 
nasopharyngeal RT-PCR later

12 areas, with the posterior ones in the 
posterior axillary line

Using lung ultrasound was found more predictive in detecting 
the infection than the use of symptomatology solely

Youssef et al
[36], 2020

Italy Case report 1 pregnant woman, 33 yr old at 26 
wk of gestational age

LUS findings were former, positive 
nasopharyngeal swab RTPCR 
confirmation later

6 regions in each hemithorax (2 anterior, 2 
lateral, and 2 posterior). Linear or convex 
probes

We believe that extensive training of physicians may be 
considerably helpful in terms of the ongoing pandemic of 
COVID-19

COVID-19: Coronavirus disease 2019; CT: Computed tomography; LUS: Lung ultrasound; RT-PCR: Reverse transcription polymerase chain reaction; US: Ultrasound.
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Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver 
cancer with low 5-year survival rate. The high molecular heterogeneity in HCC 
poses huge challenges for clinical practice or trial design and has become a major 
barrier to improving the management of HCC. However, current clinical practice 
based on single bioptic or archived tumor tissue has been deficient in identifying 
useful biomarkers. The concept of radiomics was first proposed in 2012 and is 
different from the traditional imaging analysis based on the qualitative or semi-
quantitative analysis by radiologists. Radiomics refers to high-throughput 
extraction of large amounts number of high-dimensional quantitative features 
from medical images through machine learning or deep learning algorithms. 
Using the radiomics method could quantify tumoral phenotypes and hetero-
geneity, which may provide benefits in clinical decision-making at a lower cost. 
Here, we review the workflow and application of radiomics in HCC.
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Core Tip: The high molecular heterogeneity in hepatocellular carcinoma poses huge 
challenges for clinical practice or trial design and has become a major barrier to 
improving the management of hepatocellular carcinoma. Radiomics could quantify 
tumoral phenotypes and heterogeneity, which may provide benefits in clinical decision-
making at a lower cost. Here, we review the workflow and application of radiomics in 
hepatocellular carcinoma.
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INTRODUCTION
Liver cancer is one of the most common malignant tumors worldwide. There are 
approximately 906000 new cases and 830000 deaths every year, ranking as the sixth 
most commonly diagnosed cancer and the third mortality[1]. Hepatocellular 
carcinoma (HCC) comprises 75%-85% of cases of primary liver cancer. There is high 
molecular heterogeneity in HCC at three levels, including the heterogeneity between 
tumor nodules within the same individual (intertumoral heterogeneity), between 
different regions of the same tumor nodule (intratumor heterogeneity), and between 
patients (interpatient heterogeneity)[2]. HCC has one of the fewest somatic mutations 
in solid tumors that can be targeted by molecular therapies and of which treatment 
response could not be predicted by mutations in clinical practice[3]. These character-
istics of HCC pose huge challenges for clinical practice or trial design and have 
become a major barrier to improving the management of HCC[4,5]. However, current 
clinical practice based on single bioptic or archived tumor tissue has been deficient in 
identifying useful biomarkers[5].

Radiomics was first proposed in 2012 and is different from the traditional imaging 
analysis based on the qualitative or semi-quantitative analysis by radiologists[6]. This 
method refers to high-throughput extraction of large amounts of high-dimensional 
quantitative features from medical images through machine learning (ML) or deep 
learning (DL) algorithms[7,8]. These features that have been transformed into minable 
data could be used for diagnosis, treatment evaluation, and prognosis prediction[9]. 
Using the radiomics method could quantify tumoral phenotypes and heterogeneity, 
which may provide benefits in clinical decision-making at a lower cost[10,11]. Here, 
we review the workflow and application of radiomics in HCC.

WORKFLOW OF RADIOMICS
The workflow of radiomics mainly includes: image data acquisition and prepro-
cessing, the volume of interest (VOI) segmentation, feature extraction, model 
establishment, and performance validation (Figure 1)[9].

Data acquisition
Although radiomics was first and widely utilized in computed tomography (CT) and 
magnetic resonance imaging (MRI) images, there were more and more studies using 
ultrasound (US) as well as positron emission tomography images. Most studies were 
conducted based on retrospective image data sets, even different hospitals and 
different scanning equipment. The standardized imaging protocols could reduce the 
unnecessary confounding variability, or it will affect the quality and stability of the 
extracted imaging features. A previous study found that the feature variability caused 
by different CT scanners was even comparable to the feature variability found in the 
tumor[12]. The disclosed imaging protocols were suggested to increase the reprodu-
cibility and comparability in future radiomics studies[9].

Segmentation
The three-dimensional VOI segmentation that captures the tumor comprehensive 
panorama could be delineated by using manual, semi-automatic, and automatic 
segmentation methods. However, the variability in the segmentation process 
inevitably introduces bias. Meanwhile, the partial volume effect makes the 
segmentation challenge that could lead to the blurring of the edge and morphological 
variation of the lesion. Multiple segmentation is an effective method that can limit bias 
and help to select robust features, including the evaluation by multiple clinicians and 
the combination of different segmentation algorithms. However, the commonly used 
segmentation method in radiomics is manual segmentation and relies on an 
experienced clinician, which is quite boring and time-consuming. Several semi-
automatic or automatic segmentation methods have been reported[13,14]. These 
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Figure 1 The workflow of radiomics. AUC: Area under the curve; CT: Computed tomography; MRI: Magnetic resonance imaging; PET: Positron emission 
tomography; ROC: Operating curve.

methods could minimize labor costs and improve the repeatability and reliability of 
studies but are not widely recognized and applied.

Feature extraction and selection
The high-throughput extraction of quantitative features from VOI is the key process in 
radiomics analysis after appropriate image preprocessing. The imaging features that 
are empirically defined by radiologists are named semantic features. These features 
cannot be described by specific mathematical expressions nor can they be specifically 
extracted from images, but they are still meaningful in imaging interpretation and 
clinical application. These non-semantic features quantitatively described by mathem-
atical expressions can usually be divided into four categories: morphological features, 
first-order statistics features, second-order texture features, and transformation-based 
features. Morphological features describe the three-dimensional and two- dimensional 
size and shape of VOI, such as diameter, perimeter, sphericity, and flatness. First-order 
statistics features (also called histogram features) evaluate the gray-level frequency 
distribution in VOI, including maximum, median, minimum, and entropy, while 
second-order texture features are often derived from the gray-level matrix and 
describe the statistical relationship between voxel gray levels, including gray-level co-
occurrence matrix and gray level run length matrix. The voxel gray-level patterns in 
different spatial frequencies are analyzed by transformation-based features, including 
Fourier, Gabor, and wavelet features.
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According to the number of filters, feature categories, and other parameters, the 
number of features extracted from the images can be infinite. The inclusion of all 
relevant features in a predictive model inevitably leads to overfitting, which 
negatively impacts the efficacy of its prediction performance. It is necessary to 
introduce a feature selection method to eliminate unsuitable features, that is, feature 
dimensionality reduction methods (such as principal component analysis or 
clustering). By reducing redundant and interference items by dimensionality 
reduction, the features for further analysis contain useful and repeatable information 
to a large extent.

Model building and performance validation
The prediction model composed of selected features was constructed by an ML 
algorithm, including support vector machine, random forest, linear discriminant 
analysis, and so on. The specific method was chosen according to the preference and 
experience of the researchers. However, different modeling methods have been 
proved to affect the prediction performance of imaging models and have inherent 
limitations, such as the independence assumption in logistic regression, feature 
discretization in Bayesian networks, or network structure dependence in DL. 
Therefore, a variety of ways could be considered to build the model in the study.

The predictive performance evaluation of the model requires an internal or external 
validation set to determine whether the model has good generalization performance or 
only predictability for the specific samples analyzed. This process is often measured by 
the receiver operating characteristic curve with area under the curve (AUC), 
sensitivity, and specificity. In addition, the consistency between the observed results 
and the model prediction was also evaluated necessarily, which can be evaluated by 
the calibration curve and Brier score. An effective model shows consistency in both 
training and validation sets. The models validated by an independent external set are 
more reliable than those validated by an internal set, and of course, the models that 
could be prospectively verified are more persuasive.

THE APPLICATION OF RADIOMICS IN HCC
Diagnosis 
Imaging is a crucial part of the HCC diagnosis. Multiphasic contrast-enhanced CT or 
contrast-enhanced MRI should be used first with high sensitivity recommended by the 
European Association for the Study of the Liver[15]. Li et al[16] extracted the texture 
features from the SPAIR T2WI sequence in MRI and used four different classifiers to 
identify single intrahepatic lesions (hepatic hemangioma, hepatic metastases, and 
HCC). The error rates were 11.7% (hepatic hemangioma vs hepatic metastases), 9.6% 
(hepatic metastases vs HCC), and 9.7% (hepatic hemangioma vs HCC). The 
combination of quantitative apparent diffusion coefficient histogram parameters and 
the Liver Imaging Reporting And Data System could distinguish HCC from other 
subtypes of primary liver cancer, such as intrahepatic cholangiocarcinoma and mixed 
HCC-intrahepatic cholangiocarcinoma[17]. A total of 63 patients confirmed by 
pathology were included, and it was found that the model combined with gender, 
Liver Imaging Reporting And Data System, and the fifth percentile apparent diffusion 
coefficient could achieve a good prediction efficiency. The AUCs could reach 0.90/0.89 
with the accuracy of 81.5%/80.0%, the sensitivity of 79.3%/86.2%, and the specificity 
of 88.9%/77.8% for two independent observers. Huang et al[18] managed to 
distinguish dual phenotypic HCC by different classifiers based on Gd-EOB-DTPA-
enhanced MRI and showed good predictive performance.

For the new HCC nodules in patients with a liver cirrhosis background, radiomics 
features extracted from multiphasic contrast-enhanced CT combined with the ML 
algorithm could bring benefits. Mokrane et al[19] retrospectively included 178 patients 
from 27 centers and divided them into a training set (142 patients) and validation set 
(36 patients). All the patients had nodules that were classified as indeterminate liver 
nodules by the European Association for the Study of the Liver guidelines, and the 
histological classification was finally confirmed by liver biopsy. A total of 13920 
quantitative radiomics features were extracted from the plain, arterial, venous, and 
dual-phase (delta) phases. Three supervised ML classification algorithms: K nearest 
neighbor, support vector machine, and random forest algorithm were used to establish 
the models. A single feature was finally obtained, which represented the character-
istics of changes in nodule phenotype between arterial and portal venous phases 
(corresponds to the “washout” pattern during the contrast agent clearance). Finally, 
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the radiomics signature used reached an AUC value of 0.66 with a sensitivity of 0.70 
and specificity of 0.59 in the external validation set.

US is one of the important methods in the diagnostic algorithm and recall policy by 
the European Association for the Study of the Liver guidelines[15]. However, US 
images are more heterogeneous because of the images acquired by different clinicians 
with multiple examination parameters. There was a study that reported that the 
features extracted from US images could be classified by using neural network 
classifiers to distinguish focal liver lesions, including typical and atypical cysts, hepatic 
hemangiomas, liver metastases, and HCC lesions, with an accuracy of up to 95%[20]. 
A multitask DL algorithm was constructed that detects and characterizes focal liver 
lesions in a public dataset[21]. The model simultaneously yielded AUCs of 0.935 for 
lesion detection and 0.916 for focal liver lesions characterization (benign vs malignant).

Radiomics could effectively diagnose and distinguish the HCC lesion from the 
different intrahepatic lesions, new nodules, and even the subtypes of primary liver 
cancer. Although the above studies are based on different imaging modalities and 
ML/DL methods, this method is expected to further assist doctors in clinical diagnosis 
and decision-making in the future.

Treatment evaluation
Surgical resection is the first choice for HCC patients with good performance status 
and liver function reserve. But the postoperative 5-year recurrence rate could be as 
high as 70%. To solve this problem, a multicenter retrospective study was carried out 
from three independent centers. The study included 295 early-stage HCC patients 
within Milan criteria who have received preoperative contrast-enhanced CT 
examination. Recurrence-free survival was selected as the primary endpoint of this 
study. Based on 177 patients from one center (training set), two prediction models 
have been constructed that incorporated preoperative variables or postoperative 
variables. The results showed that the prediction efficiency of the two radiomics-based 
models was higher than that of previous clinical models and staging systems and can 
well stratify patients with a low, moderate, and high risk of recurrence.

The application of radiomics in predicting postoperative recurrence has also been 
verified in other studies. In addition, some studies have found that the radiomics 
model based on preoperative MRI images can better predict the 5-year survival of 
patients after hepatectomy. Cai et al[22] retrospectively included 112 patients who 
underwent hepatectomy to predict postoperative liver failure by a radiomics-based 
nomogram. The AUC value of the training set was 0.822 (95% confidence interval: 
0.753-0.917), and the AUC value of the validation set was 0.762 (95% confidence 
interval: 0.576-0.948). When it was compared with MELD, Child-Pugh, and ALBI 
score, the radiomics model showed a significant advantage. The researchers conducted 
a prospective validation analysis of 13 patients who underwent hepatectomy with an 
AUC of 0.833 (95% confidence interval: 0.591-1.000). Decision curve analysis showed 
that the model could bring clinical benefits. Radiomic features could identify the 
tumor invasion and predict recurrence after liver transplantation[23].

Ablation is recommended for HCC patients with Barcelona Clinic Liver Cancer 0 or 
A stage who are not suitable for surgery. Radiomic features extracted from periop-
erative CT images could predict early recurrence after curative ablation[24,25]. Among 
them, the features based on portal vein phase CT images performed best in the 
validation set. When the clinicopathological factors were added to the model, the 
portal vein phase-based combined model showed good prediction performance in the 
training/validation set and significantly better than that of the simple clinical model. 
Microwave ablation was performed in pigs under CT guidance for improving the 
visualization of post ablational coagulation necrosis in a proof of concept study[26]. 
The results showed that radiomic profiles of the fully necrotic areas seemed to be 
different from those areas with vital tissue. The subregion radiomics analysis could 
identify these differences with classification algorithms.

Transarterial chemoembolization (TACE) is the most widely used treatment for 
unresectable HCC in clinical practice. Radiomics plays a role in the prediction of 
treatment response to TACE[27-29]. Chen et al[27] analyzed the radiomic features 
extracted from tumoral VOI and peritumoral VOI, drawn at the hepatic arterial and 
non-contrast phases, respectively. The radiomic signature extracted from the 
peritumoral VOI with expanded 10 mm rim away from the main tumor part achieved 
excellent performance in predicting the first TACE response. Several studies 
established a radiomic model based on the preoperative images to predict long-term 
outcomes of patients who underwent TACE with good performance[30,31]. However, 
there were various confounding factors during multiple TACE sessions that may 
weaken the actual predictive performance. Fu et al[32] included 520 patients from five 
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independent centers (divided into a training set and validation set). A comprehensive 
model including treatment (liver resection or TACE), age, sex, modified Barcelona 
Clinic Liver Cancer stage, fusion focus, tumor capsule, and three radiomic features 
was established with good differentiation and calibration. The AUC value of the 
predicted 3-year recurrence-free survival was 0.80 in the training set and 0.75 in the 
test set.

Sorafenib is the first oral multikinase inhibitor recommended in patients with 
advanced HCC. Various clinical trials tried to explore the possibility of combining 
sorafenib and TACE that may inhibit revascularization and tumor proliferation after 
TACE. Most of these trials failed, except the TACTICS trial conducted recently. It is 
important to identify HCC patients who may benefit from the combination of TACE 
plus sorafenib. A DL-based radiomic model provided a significant prediction value 
with an AUC value of 0.717 in the training set and 0.714 in the validation set[33].

Radiopathologic evaluation
Microvascular invasion (MVI) of HCC mainly refers to the presence of cancer cells in 
the endothelial-lined vascular lumen under the microscope, which is a powerful 
validated, important independent risk factor for early recurrence and poor survival 
after surgical resection of HCC. Radiomic features extracted from preoperative 
enhanced MRI multi-phase images could predict the occurrence of MVI favorably[34,
35]. By using the least absolute shrinkage and selection operator method to select 
appropriate radiomic features, the predictive performance of the combined model 
incorporating clinicoradiological predictors and radiomic features was better than the 
clinicoradiological model (AUC 0.943 vs 0.850 in the training set, and 0.861 vs 0.759 in 
the validation set). The sensitivity, specificity, and accuracy of the combined model 
were 88.2%/89.5%, 87.5%/81.4%, and 87.7%/83.9% in two sets, respectively. Several 
studies reported that using contrast-enhanced CT images to develop and validate 
radiomics nomogram was a clinically useful tool to identify patients[36,37]. However, 
a retrospective study that included 495 patients with postoperative MVI status 
confirmed by histology (MVI- group, n = 346, and MVI + group, n = 149)[38] found 
that radiomics analysis with current CT imaging protocols does not provide significant 
additional value to the conventional semantic features.

Pathological grading of HCC is one of the factors that influence prognosis. Most 
patients with high-grade tumors have a higher rate of intrahepatic recurrence than 
those without low-grade tumors. The radiomics signatures based on MRI T1WI or 
T2WI images could be helpful for the preoperative prediction of the pathological grade 
of HCC[39]. The combination of the radiomic signatures and clinical factors achieved 
the best predictive performance over the other simple model and distinguished 
between high-grade and low-grade HCC (AUC = 0.800). In addition, cytokeratin 19 
status of HCC that is associated with clinical aggressiveness could be identified by a 
radiomic-based model with satisfactory prediction performance[40]. Ye et al[41] 
managed to use the texture feature analysis on gadoxetic acid-enhanced MRI images 
preoperatively to predict Ki-67 status of HCC. However, the optimal cut-off value of 
the Ki-67 level was defined by the researcher, which weakened the generalization of 
the study.

Radiogenomics
Gene expression patterns of cancer tissues could reflect the underlying cellular 
pathophysiology and enrich the understanding of cellular pathways and numerous 
pathological conditions. Imaging traits have the potential to be a surrogate marker of 
the clinically relevant genomic/molecular signature of HCC[42-45]. One study found 
that the dynamic imaging traits from CT systematically correlated with the global gene 
expression programs of HCC[42]. The combination of 28 imaging traits was sufficient 
to reconstruct the variation of 116 gene expression profiles, revealing cell proliferation, 
liver synthetic function, and patient prognosis. Moreover, they developed a two-
imaging-trait decision tree, including internal arteries and hypodense halos in HCC 
that is associated with a gene expression signature of venous invasion and could 
predict histologic venous invasion and survival of patients. Based on that result, a 
similar team defined a contrast-enhanced CT imaging biomarker for predicting MVI 
named radiogenomic venous invasion[43]. In a multicenter retrospective study, the 
radiogenomic venous invasion biomarker was a robust predictor of MVI with a 
diagnostic accuracy of 89%, sensitivity of 76%, and specificity of 94% and was 
associated with a poor overall survival that could have broad clinical use. They 
considered that radiogenomic venous invasion derived from a gene expression 
signature of venous invasion may reflect a more fundamental phenotype of the tumor.
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Qualitative and quantitative MRI radiomic features could serve as the noninvasive 
biomarker to predict HCC immuno-oncological characteristics and tumor recurrence
[46]. One study analyzed the correlation between radiomics, immunoprofiling (CD3, 
CD68, CD31), and genomic (PD-1 at the protein level, PD-L1 and CTLA4 at the mRNA 
expression level) features with statistical significance[46]. Radiomic features, including 
tumor size, showed good prediction performance for early HCC recurrence after 
resection, while immunoprofiling and genomic features did not.

CONCLUSION
Systemic therapy in advanced HCC has developed rapidly in recent years, with the 
most prominent success of the combination of atezolizumab (anti-PD-L1 antibody) and 
bevacizumab (anti-VEGF antibody). However, due to the huge tumor heterogeneity in 
HCC, several promising trials (such as keynote-240 and checkmate-459) have failed, 
and the best objective response rates of successful systemic therapies are only around 
30%. In addition, there are more and more ongoing trials in the adjuvant or 
combination therapies setting of HCC that are explored and practiced currently. 
Personalized treatment and more precise patient stratification may be required under 
such circumstances. Radiomics technology based on ML/DL algorithms is expected to 
become a bridge that connects the clinical personalized precision treatment of HCC 
patients and its tumor phenotype. Further radiomics research with multicenter and 
prospective validation is still needed for improving its interpretability and reprodu-
cibility.
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Abstract
Coronary computed tomography angiography (CCTA) is recommended as a 
frontline diagnostic tool in the non-invasive assessment of patients with suspected 
coronary artery disease (CAD) and cardiovascular risk stratification. To date, 
artificial intelligence (AI) techniques have brought major changes in the way that 
we make individualized decisions for patients with CAD. Applications of AI in 
CCTA have produced improvements in many aspects, including assessment of 
stenosis degree, determination of plaque type, identification of high-risk plaque, 
quantification of coronary artery calcium score, diagnosis of myocardial infarc-
tion, estimation of computed tomography-derived fractional flow reserve, left 
ventricular myocardium analysis, perivascular adipose tissue analysis, prognosis 
of CAD, and so on. The purpose of this review is to provide a comprehensive 
overview of current status of AI in CCTA.

Key Words: Coronary computed tomography angiography; Coronary artery disease; 
Artificial intelligence; Deep learning; Machine learning; Prognosis
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Core Tip: The application of artificial intelligence in coronary computed tomography 
angiography mainly focuses on the following aspects: (1) Studies based on the 
coronary arteries and plaques for determination of stenosis degree, identification of 
plaque types, quantification of coronary artery calcium score, prediction of myocardial 
infarction, and prognosis evaluation; (2) Studies around the perivascular adipose tissue, 
which were mainly conducted using radiomics analysis and machine learning 
algorithm, for improvement of risk stratification; and (3) Studies based on the texture 
analysis of the left ventricular myocardium for assessment of functionally significant 
stenosis or for prognosis evaluation.
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INTRODUCTION
Coronary computed tomography angiography (CCTA) has merged as a first-line 
diagnostic tool in the non-invasive evaluation of patients with suspected coronary 
artery disease (CAD), as recommended in the international guidelines[1,2]. With rich 
information provided in the luminal stenosis, the morphology and composition of 
plaques, and the overall circulation, CCTA can safely rule out the obstructive CAD 
and improve prognosis.

However, the information derived from CCTA images is recognized and interpreted 
by human readers, and varies among different scanning protocols, scanners, contrast 
medium injection protocols, and readers. The arrival of artificial intelligence (AI) 
brought hope that it can be applied for intelligent decision-making with autonomous 
acquired knowledge by identifying and extracting patterns among a group of 
observations[3,4].

With the frontline role of CCTA in the diagnostic strategies for CAD, “big data” is 
available and offers an optimal platform to bridge AI with CCTA. Recently, AI 
techniques in CCTA have gained much attention and have been widely applied in 
clinical care ranging from diagnosis to prognostic stratification. We seek to summarize 
the recent application of AI techniques in CCTA images, so as to investigate and 
identify the most important and promising research topics, the problems that have 
been resolved and remain to be resolved, and the future directions with many 
challenges and opportunities.

CURRENT APPLICATION OF AI IN CCTA
The application of AI in CCTA images mainly focuses on the following aspects: (1) 
Studies based on the coronary arteries and plaques for determination of stenosis 
degree, identification of plaque types, quantification of coronary artery calcium (CAC) 
score, prediction of myocardial infarction (MI), and prognosis evaluation; (2) studies 
around the perivascular adipose tissue (PVAT), which were mainly conducted using 
radiomics analysis and machine learning (ML) algorithm, for improvement of risk 
stratification; and (3) studies based on the texture analysis of the left ventricular 
myocardium (LVM) for assessment of functionally significant stenosis or for prognosis 
evaluation, as shown in Figure 1.

AUTOMATIC DETECTION AND CLASSIFICATION OF CORONARY 
ARTERY PLAQUE AND STENOSIS
Since different grades of coronary artery stenosis and varying types of plaque would 
lead to different patient management strategies, it is therefore crucial to: (1) Detect and 
determine the stenosis; (2) Detailedly characterize plaques (i.e., non-calcified, calcified, 
mixed plaques); and (3) Identify the so-called “high-risk” plaque features. Recently, 
there are already applications of AI techniques in related CCTA fields, including 
stenosis evaluation and plaque characterization. Commonly, the anatomical evaluation 
of coronary stenosis and quantification of plaques rely on a relative accurate 
segmentation and successful automatic lesion localization in CCTA images. Several 
vendors are developing AI-based platform for stenosis evaluation. However, the 
identification of “high-risk” plaques remains challenging, and only a few studies have 
been proposed but are of great promise with prognostic value.

Kang et al[5] proposed a structured learning technique for automatic detection of 
obstructive and non-obstructive CAD on CCTA. Taking the visual identification of 
lesions with stenosis ≥ 25% by three expert readers, using consensus reading, as the 
reference standard, the method achieved a high sensitivity (93%), specificity (95%), 
and diagnostic accuracy (94%), with an area under the curve (AUC) of 0.94. Zreik et al
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Figure 1 The application of artificial intelligence in coronary computed tomography angiography.

[6] employed a multi-task recurrent convolutional neural network to determine the 
stenosis severity based on the MPR view of a coronary artery extracted from the CCTA 
scan, as well as to automatically detect and characterize the coronary plaques. The 
approach achieved an accuracy of 0.80 for the determination of the anatomical 
significance of the coronary artery stenosis, and 0.77 for the detection and character-
ization of coronary plaques. Wei et al[7] developed a topological soft-gradient (TSG) 
detection method to prescreen for noncalcified plaque (NCP) candidates, which 
achieved AUCs of 0.87 ± 0.01 and 0.85 ± 0.01 in the training and validation sets, 
respectively. Jawaid et al[8] utilized support vector machine algorithms for automated 
detection of NCPs, and their approach achieved a detection accuracy of 88.4% with 
respect to the manual expert and a dice similarity coefficient of 83.2%.

In 2017, Kolossváry et al[9] investigated whether radiomics analysis improves the 
identification of coronary plaques with or without Napkin-ring sign (NRS). NRS is 
characterized as a so-called “high-risk” plaque features, which is defined as a plaque 
core with low CT attenuation apparently in contact with the lumen that is surrounded 
by a ring-shaped higher attenuation as napkin ring like in CCTA images[10,11]. 
However, the identification of the NRS remains challenging because it is assessed by a 
qualitative read of CCTA images which is affected by clinical experience and intra-
/inter-reader variability[12]. Based on the segmented CCTA datasets, 8 conventional 
quantitative metrics and 4440 radiomic features were extracted. They found that none 
of the conventional quantitative parameters but 20.6% (916/4440) of radiomics 
features were significantly different between NRS and non-NRS plaques (Bonferroni-
corrected P < 0.0012). In addition, almost half of the features (418/916) reached an 
AUC > 0.80, of which three features, including short- and long-run low gray-level 
emphasis and surface ratio of high attenuation voxels to total surface, exhibited 
excellent discriminatory value with AUCs of 0.918, 0.894, and 0.890, respectively. In 
2019, the same research group validated the radiomics features extracted from CCTA 
in an ex-vivo histological study. One ML algorithm incorporating 13 parameters was 
superior compared with visual assessment (AUC = 0.73 vs 0.65) in the identification of 
advanced lesions[13].

DEEP LEARNING FOR AUTOMATIC CAC SCORING
CAC scoring plays a key role in risk stratification of CAD. Non-contrast-enhanced 
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cardiac CT, which is routinely acquired as a stand-alone test or an adjunct study prior 
to CCTA, is considered as the reference for quantification of CAC. CAC is defined as a 
high-attenuation area with > 130 HU in at least three contiguous pixels in non-
contrast-enhanced cardiac CT. Recently, it has been shown that CAC can be also 
detected in CCTA images, which could reduce the radiation dose of a typical cardiac 
CT examination by 40%-50%[14]. Besides, the increased visibility of the coronary 
arteries in CCTA compared to non-contrast-enhanced cardiac CT could improve the 
identification of CAC. However, manual quantification of CAC requires substantial 
clinical experience to identify and make of every calcified lesion in each image slice, 
which is a time-consuming process. Consequently, a series of automatic methods have 
been proposed for CAC scoring in CCTA. Many investigations have shown promising 
results for clinical application in this field.

Some researchers[15,16] developed the automatic methods using two stages, 
including: (1) Segmentation of the coronary arteries; and (2) Identification of the CAC 
with the deviation from a trend line through the lumen intensity, or the voxels above a 
specific HU threshold, or the deviation from a model of non-calcified artery segments.

Wolterink et al[17,18] proposed an automatic CAC quantification method without a 
need for segmentation of the coronary artery tree in CCTA images using a 
combination of a convolutional neural network (CNN) and a Random Forest classifier. 
Thereafter, the same working group further extended and optimized their framework 
using a pair of CNNs in five ways[18], and the automatic CAC scoring in CCTA using 
a pair of CNNs yielded a high correlation (Pearson P = 0.950) and high consistency 
(intraclass correlation coefficient of 0.944) with the reference CAC scoring in non-
contrast-enhanced CT.

In 2020, Fischer et al[19] proposed a novel fully automated algorithm using 
recurrent neural network with long short-term memory to detect CAC from CCTA 
data in a total of 565 vessels. An accuracy of 90.3% [95% confidence interval (CI): 
88.0%-90.0%] was achieved on a per-vessel basis.

In summary, the CAC scoring performed on routine CCTA images without 
additional radiation exposure is highly desirable and the application of AI has 
provided considerable progress in the field and would become more influential in the 
clinical setting. In the near future, with the widespread application of AI techniques, 
CAC scoring using CCTA may eliminate the need for separate dedicated coronary 
calcium-scoring non-contrast enhanced CT scans.

IDENTIFICATION OF MYOCARDIAL ISCHEMIA
ML-based fractional flow reserve-CT for detection of functionally significant 
stenosis
It has been demonstrated that the anatomically significant appearance of a coronary 
stenosis is insufficient to detect hemodynamic significance and does not always equate 
with functional significance, which is particularly true for intermediate type coronary 
lesions[20,21]. Fractional flow reserve (FFR) performed during cardiac catheterization 
has been the reference standard in the detection of lesion-specific ischemia and is 
recommended for therapeutic decision-making[22]. However, the invasive 
measurement with a pressure wire and the relatively high cost restrict the clinical 
applica-tion of FFR.

Recently, novel non-invasive approaches utilizing ML algorithms for determination 
of FFR based on conventional CCTA images (FFR-CT) were developed and validated 
with a considerable diagnostic accuracy. The most popular algorithm is FFR-CTML 
(Figure 2). FFR-CTML was developed by Itu et al[23] in 2016 and provided by only one 
vendor (Siemens Healthineers, Germany) for research purpose. With the rapid 
development of AI, some FFR-CT platforms were provided for commercial use, such 
as the DEEPVESSE-FFR Platform provided by Keya Medical (Beijing, China). The 
DEEPVESSE-FFR Platform was developed by Wang et al[24] using MLNN + BRNN 
and has been commercially available since 2020.

So far, ML-based FFR-CT has been evaluated in several multi-center and single-
center studies[23-35] using a threshold of ≤ 0.80 acquired from invasive FFR to detect 
lesion-specific ischemia. It has been demonstrated that ML-based FFR-CT performed 
equally in detecting flow-limiting stenosis compared with the computer fluid 
dynamics (CFD) based FFR-CT (FFR-CTCFD)[26], while the FFR-CTCFD algorithm is 
time-consuming and heavily affected by the image quality[25,27,36]. The performance 
of ML-based FFR-CT in the related literature is summarized in Table 1.
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Table 1 Summary of the current literature on machine learning-based fractional flow reserve-computed tomography

Ref. Journal Prospective
Multi- or 
single 
center

Platform No. of 
patients 

No. of 
vessels

Compared 
with CT-
FFRCFD

Accuracy AUC

Itu et al[23], 
2016

Journal Application 
Physiology

No Single center - 87 125 Yes Per-lesion: 83% Per-lesion: 0.90

Coenen et al
[25], 2018

Circulation: 
Cardiovascular 
Imaging

Yes The 
MACHINE 
registry

cFFR, version 
2.1, Siemens

351 525 Yes Per-lesion: 
78%Per-
patient: 85%

Per-lesion: 0.84

Tesche et al
[26], 2018

Radiology No Single 
Center

cFFR, version 
1.4, Siemens

85 104 Yes Per-lesion: 
88%; Per-
patient: 92%

Per-lesion: 0.89; 
Per-patient: 
0.91

Mastrodicasa 
et al[34], 2019

Journal of 
Cardiovascular 
Computed 
Tomograph

No Single center cFFR, version 
3.0, Siemens

10/40 160 No IRIS: 82%; FBP: 
82%

-

Baumann et al
[32], 2019

European Journal 
of Radiology

No The 
MACHINE 
registry

cFFR, version 
2.1, Siemens

351 525 No - Per-patient: 
Women:0.83; 
Men: 0.83

Doeberitz et al
[27], 2019

European 
Radiology

No Single center cFFR, version 
2.1, Siemens

48 103 No - Per-lesion: 0.93

Wang et al
[24], 2019

Journal of Geriatric 
Cardiology

Yes Single center DEEPVESSE-
FFR Platform

63 71 No Per-lesion: 
89%; Per-
patient: 87%

Per-lesion: 0.93; 
Per-patient: 
0.93

Tesche et al
[30], 2020

Journals of the 
American College 
of Cardiology: 
Cardiovascular 
Imaging

Yes The 
MACHINE 
registry

cFFR, version 
2.1, Siemens

314 482 No Per-lesion: 
78%; CAC ≥ 
400: 76%CAC 
0-100: 79%; 
CAC 100-400: 
76%

Total: 0.84 CAC 
≥ 400: 0.71; 
CAC 0-400: 
0.85

De Geer et al
[31], 2019

American Journal 
of Roentgenology

No The 
MACHINE 
registry

cFFR, version 
2.1, Siemens

351 525 No Total: 78%; 80 
kv: 86%; 100 
kv: 77%; 120 
kv: 78%

Total: 0.84; 80 
kv: 0.90; 100 
kv: 0.82; 120 
kv: 0.84

Xu et al[33], 
2020

European 
Radiology

No 10 individual 
centers 
across China

cFFR, version 
3.2.0, Siemens

437 570 No Total: 89%; 
High quality: 
94%; Low 
quality: 83%

Total: 0.89; 
High quality: 
0.93; Low 
quality: 0.80

Kumamaru et 
al[28], 2020

European Heart 
Journal - 
Cardiovascular 
Imaging

No Multi-center Python 3.6 131 - No Per-patient: 
76%

Per-patient: 
0.78

Li et al[29], 
2021

Acta Radiologica No Single center DEEPVESSE-
FFR Platform

73 85 No Per-lesion: 
92%; Per-
patient: 91%

Per-lesion: 0.96

Xu et al[35], 
2020

European 
Radiology

No A Chinese 
multicenter 
study

cFFR, version 
3.1.0, Siemens

442 544 No Per lesion: 90% -

IRIS: Iterative reconstruction in image space; FBP: Filtered back projection; CAC: Coronary artery calcium; FFR: Fractional flow reserve; AUC: Area under 
the curve; CT: Computed tomography.

In addition, the influences of CT reconstruction algorithms, image quality, tube 
voltage, coronary calcium, and gender on the diagnostic performance of FFR-CTML 

were investigated in several studies. In a sub-study of MACHINE Registry, Tesche et al
[30] examined the impact of calcification on CT-FFRML determination and concluded 
that CT-FFRML revealed a statistically significant different (P = 0.04) performance as 
Agatston calcium score increased: The AUC in high Agatston scores (CAC ≥ 400) was 
0.71 (95%CI: 0.57-0.85) and in low-to-intermediate Agatston scores (CAC > 0 to < 400) 
was 0.85 (95%CI: 0.82-0.89). In another sub-study of MACHINE Registry, De Geer et al
[31] examined the impact of different tube voltages on CT-FFRML determination and 
concluded that  performance does not vary significantly between tube voltages of 100 
kVp (AUC: 0.82) and 120 kVp (AUC: 0.84), while the AUC was 0.90 in examination 
with a tube voltage of 80 kVp. Based on data of the MACHINE Registry, Baumann et al
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Figure 2 The workflow of the fractional flow reserve-computed tomography derivation. 1A total of 12000 coronary anatomies were generated;  
2twenty-eight geometric features were extracted from the synthetically generated database; 3a deep neural network with four hidden layers was used to train the 
machine learning-based model. FFR-CT: Fractional flow reserve-computed tomography; CCTA: Coronary computed tomography angiography.

[32] evaluated the impact of gender on the performance of FFRCTML and they found 
that FFRCTML performs equally in men and women (both with an AUC of 0.83). In a 
retrospective Chinese multicenter study, Xu et al[33] investigated the effect of image 
quality on the diagnostic performance of FFRCTML in 437 patients with 570 vessels. 
They found that the AUC of high-quality images [0.93 (95%CI: 0.88-0.98), n = 159] was 
significantly (P = 0.02) superior to that of low-quality images [0.80 (95%CI: 0.70-0.90), n 
= 92]. And CCTA with a score ≥ 3, intracoronary enhancement degree of 300–400 HU, 
and heart rate below 70 bpm at scanning could be of great benefit to more accurate 
FFRCTML analysis. In a retrospective single center study, Mastrodicasa et al[34] 
evaluated the influence of different CT reconstruction algorithms on the performance 
of CT-FFRML in 40 CCTA datasets. CT-FFRML values were significantly different 
between iterative reconstruction in image space (IRIS) and filtered back projection 
algorithms, whereas no difference was observed in diagnostic accuracy (both 81.8%, P 
= 1.000). Additionally, they found that IRIS improved CT-FFRML post-processing 
speed significantly.

It should be mentioned that CT-FFRML value for each location along the coronary is 
trained when taking the CT-FFRCFD as ground truth. Although the diagnostic accuracy 
of CT-FFR derived using deep learning (DL) methods was validated in several studies, 
it is still susceptible to the CCTA scanning factors. In the future, more attention should 
be paid to the widespread use of a local software solution that allows for image-
variation and user-variation.

OTHER AI ALGORITHMS FOR PREDICTION OF MYOCARDIAL ISCHEMIA
Except for the ML based FFR-CT platforms described above, some other AI algorithms 
were developed recently for prediction of myocardial ischemia. These approaches are 
in early stage but show better interpretability, which were established via an 
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integration of qualitative or quantitative features derived from CCTA images and 
clinical factors.

In 2018, Dey et al[37] developed an integrated ML ischemia risk score (ML-IRS) from 
quantitative plaque measures using a supervised learning process to predict 
functionally significant stenosis in a prospective multicenter trial of 254 patients with 
484 vessels. The ML-IRS exhibited a higher AUC (0.84) than conventional CCTA 
measures, including stenosis (0.76), LD-NCP volume (0.77), total plaque volume (0.74), 
and pre-test likelihood of CAD (0.63), for predicting lesion-specific ischemia by 
invasive FFR. Thereafter, the ML-IRS was integrated into coronary plaque analysis 
research software for generating a percent probability of pathological FFR on CCTA 
data.

In 2019, van Hamersvelt et al[38] proposed a DL method based on the LVM in 
resting CCTA images to identify functionally significant coronary artery stenosis using 
126 patients. The DL approach achieved a higher AUC of 0.76 compared to degree of 
stenosis (AUC = 0.68).

In 2020, Shu et al[39] established a radiomics nomogram based on myocardial 
segments for predicting chronic myocardial ischemia using multivariate logistic 
regression. The accuracy of the nomogram for distinguishing chronic myocardial 
ischemia from normal myocardium was 0.839, 0.832, and 0.816 in the training, test, and 
validation cohorts, respectively.

PROGNOSTIC SIGNIFICANCE 
PVAT-based radiomics for improving cardiac risk prediction
Early detection of vascular inflammation, which is a major contributor to athero-
genesis and atherosclerotic plaque rupture[40,41], would enable better cardiovascular 
risk stratification[42]. The vascular inflammation can be detected by characterizing the 
phenotypic changes in PVAT using the fat attenuation index (FAI) in routine CCTA 
images[43,44]. FAI was defined as the average attenuation of all voxels with 
attenuation values between -190 HU and -30 HU located within a radial distance from 
the outer coronary artery wall equal to the average diameter of the respective vessel, 
as described previously[43,44]. However, FAI is an average of the voxel intensity 
values and does not account for the complex spatial relationship among voxels.

Recently, some studies investigated whether radiomics analysis could help to 
extract more information from the PVAT that cannot be captured by human eyes. The 
radiomics features surrounding PVAT mainly include two parts: (1) PVAT 
surrounding the standardized coronary segments, which was often investigated at a 
per-patient level; and (2) PVAT around the target lesion, which was at a per-lesion 
level.

As for the per-patient level, Oikonomou et al[45] developed an AI-powered 
radiotranscriptomic signature for predicting cardiac risk based on the radiomics 
features extracted from PVAT around the proximal to distal right coronary artery 
(RCA) and the left coronary artery in CCTA images. A fat radiomic profile (FRP) was 
established, using random forest model based on the features extracted from the 
standardized coronary segments, to distinguish the 101 patients who experienced 
major adverse cardiac events (MACE) within 5 years from 101 matched controls. The 
FRP was significantly associated with the risk of MACE [adjusted hazard ratio (HR): 
1.12, 95%CI: 1.08-1.15, P < 0.001]. And patients with an FRP ≥ 0.63 had a 10.8-fold 
higher risk of MACE than those with an FRP < 0.63, after adjusted for clinical factors. 
The AUC of FRP in predicting MACE was 0.774 (95%CI: 0.622-0.926) in the external 
validation dataset (20% of the 202 samples). When added to the traditional model, FRP 
improved the distinguishing performance from an AUC of 0.754 to 0.880. 
Additionally, they found that FRP was significantly higher in 44 patients with acute 
MI compared with 44 controls (P < 0.001), but unlike FAI, FRP remained unchanged 6 
mo later in 16 patients with acute MI (AMI), confirming that FRP detects persistent 
PVAT changes that cannot be captured by FAI.

As for the per-lesion level, in 2020, Lin et al[46] further explored the prognostic 
value of the radiomics features of PVAT around not only the standardized coronary 
segments but also lesions in a prospective case-control study. They found no 
significant difference between the PVAT radiomics features of culprit and non-culprit 
lesions in patients with AMI, lending further support to the pan-coronary inflam-
matory hypothesis. But on the other hand, as for the per-patient level, patients with 
AMI (n = 60) have a distinct PVAT radiomics phenotype surrounding the proximal 
RCA compared with patients with stable (matched, n = 60) or no CAD (matched, n = 
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60). Among the three models that they developed, the PVAT-based radiomics model 
(AUC: 0.87) outperforms the clinical model (AUC: 0.76) and the combined model 
incorporating clinical factors and PVAT attenuation (AUC: 0.77) in identifying AMI 
with stable CAD and controls. Additionally, after a 6-mo follow-up of patients with 
AMI, no significant change was observed in the radiomics features of PVAT 
surrounding the proximal RCA or non-culprit lesions.

QUANTITATIVE CT FEATURES-BASED ML FOR OUTCOME PREDICTION
Information extracted from CCTA images along with other clinical factors are 
associated with prognosis, and AI technology demonstrated great potential to enhance 
decision-making and improve patient outcomes. Currently, the prognostic value of 
ML algorithms using quantitative CCTA features together with clinical variables was 
investigated by researchers in several studies[47-53], in which promising results were 
obtained. The ML algorithms performed better than traditional predictors, not only for 
short-term treatment decisions but also for long-term risk predictions, as summarized 
in Table 2.

One of the first major studies using CCTA based ML approach for prognosis 
evaluation is a large prospective multi-center study conducted by Motwani et al[48] in 
2017. They developed an ML model in CCTA to predict 5-year all-cause mortality 
using a dataset of 10030 patients with suspected CAD from the CONFIRM registry 
(Coronary CT Angiography Evaluation for Clinical Outcomes: An International 
Multicenter). The ML model was established after an automated feature selection 
procedure based on 44 CCTA-derived parameters and 25 clinical parameters. One 
summary score for clinical parameters (Framingham risk score, FRS) and three 
composite CCTA-based scores [including the segment stenosis score (SSS), the 
segment involvement score (SIS), and the modified Duke prognostic CAD index (DI)] 
were derived. The ML model exhibited a significant higher AUC compared with the 
conventional scores alone for predicting 5-year all-cause mortality (ML: 0.79 vs FRS: 
0.61, SSS: 0.64, SIS: 0.64, and DI: 0.62; P < 0.001).

Two years later, in 2019, Johnson et al[49] developed another ML model using 64 
vessel features derived from CCTA images, to discriminate between patients with and 
without subsequent death or cardiovascular events in a retrospective single-center 
study with 6892 patients. The performance of the ML model was compared with that 
of Coronary Artery Disease Reporting and Data System (CAD-RADS) score. For 
prediction of all-cause mortality, the AUC of the ML model was significantly higher 
than that of CAD-RADS (0.77 vs 0.72, P < 0.001). For prediction of coronary artery 
deaths, the AUC was significantly higher for the ML model than for CAD-RADS (0.85 
vs 0.79, P < 0.001).

In 2020, Commandeur et al[52] developed an ML model integrating clinical 
parameters with quantitative imaging-based variables for predicting events of long-
term risk of MI and cardiac death in asymptomatic subjects using the dataset with 1912 
cases from the randomized EISNER trial. The ML model obtained a significantly 
higher AUC than atherosclerotic cardiovascular disease (ASCVD) risk and CAC score 
for predicting events (ML: 0.82; ASCVD: 0.77; CAC: 0.77; P < 0.05). Subjects with a 
higher ML score had a significant high hazard of suffering events (HR: 10.38, P < 
0.001).

As for the short-term decision-making, in 2020, Kwan et al[53] examined whether 
the ML-IRS, developed by Dey et al[37] in 2018, as described previously (Figures 1 and 
2), can predict revascularization in patients referred to ICA after CCTA in a 
prospective dual-center study of 352 patients with 1056 analyzable vessels. It would be 
beneficial to effectively identify the patients who were referred for standard clinical 
CCTA followed by ICA due to decision by a primary treating physician but did not 
receive revascularization, because those patients are a high-cost population with low 
yield from the invasive procedure. The results indicated that ML-IRS, when added to 
the traditional risk model, significantly improve the prediction of future revascular-
ization with an increased AUC from 0.69 (95%CI: 0.65-0.72) to 0.78 (95%CI: 0.75-0.81) (
P < 0.0001).

Overall, the application of AI in CCTA has a potential future for improving the 
short-term risk stratification and long-term prognostic evaluation. The ML algorithms 
that have been proposed should be validated and tested in real world with larger 
external cohorts including diversity of patients so as to make sure the models be 
optimized and generalized.
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Table 2 summary of the current literature on the prognostic value of machine learning algorithms in coronary computed tomography 
angiography

Ref. Journal Prospective Multi 
Center

No. of 
Patients

No. of 
Events Algorithm Endpoint Follow-up 

time Performance

Motwani et al
[48], 2017

European Heart 
Journal

Yes Yes 10030 745 died LogitBoost 5-yr all-cause 
mortality

5.4 ± 1.4 yr AUC = 0.79

van Rosendael 
et al[47], 2018

Journal of 
Cardiovascular 
Computed 
Tomograph

Yes Yes 8844 350 
death 
and 259 
non-fatal 
MI

XGBoost MI and death 4.6 ± 1.5 yr AUC = 0.77

Johnson et al
[49], 2019

Radiology No No 6892 380 died 
of all 
causes 
and 70 
died of 
CAD

Logistic 
regression, 
KNN, Bagged 
trees, and 
classification 
neural network

Death or 
cardiovascular 
events

9.0 yr 
(interquartile 
range, 8.2–9.8 
yr)

For all-cause 
mortality: AUC 
= 0.77; For CAD 
deaths: AUC = 
0.85

van Assen et al
[50], 2019

European 
Journal of 
Radiology

No No 45 16 
MACEs

Regression 
analysis

MACE 12 mo AUC = 0.94

von Knebel 
Doeberitz et al
[51], 2019

The American 
Journal of 
Cardiology

No No 82 18 
MACEs

Integration of 
CT-FFR, 
stenosis ≥ 50% 
and plaque 
markers 

MACE 18.5 mo 
(interquartile 
range 11.5 to 
26.6 mo)

AUC = 0.94

Commandeur 
et al[52], 2020

Cardiovascular 
Research

Yes 1912 76 MI 
and/or 
cardiac 
death

ML Long-term risk of 
MI and cardiac 
death

14.5 ± 2 yr AUC = 0.82

Kwan et al
[53], 2021

European 
Radiology

Yes Yes 352 ML Future 
revascularization

AUC = 0.78

XGBoost: Extreme gradient boosting; KNN: K-nearest neighbors; ML: Machine learning; AUC: Area under the curve; MACE: Major adverse cardiac events; 
CT-FFR: Computed tomography-fractional flow reserve; CAD: Coronary artery disease; MI: Myocardial infarction.

CONCLUSION
Current AI applications in CCTA images are mostly designed in two dimensions: (1) 
For the radiologists, AI is applied to improve efficiency and reduce workload via 
optimizing the clinical workflow, such as improvement of image reconstruction from 
lower quality to high quality (e.g., low-dose acquisition or motion artifacts) and 
structured reporting; and (2) For the patients, AI is utilized to increase benefit and 
improve prognostic evaluation via providing valuable diagnostic information more 
accurately, such as detection of anatomic and functional stenosis, quantification of 
plaques, and estimation of the vascular inflammation.

In this review, we mainly focused on the second dimension which is patient 
oriented. AI algorithms in CCTA images provide information in a more objective, 
reproducible, and rational manner compared to human perception, and exhibits its 
potential to outperform human in several cardiac fields. However, CCTA imaging 
lagged behind cancer imaging in the clinical translational of AI-based methods, 
especially the radiomics analysis. It has long been demonstrated in the field of cancer 
imaging that radiomics signatures are superior to traditional factors in predicting 
outcomes of patients. But only a few studies using radiomics analysis have been 
conducted in CCTA images. Considering that regions of interest (ROIs) segmented 
before the extraction of radiomics features, can be drawn along the edge of the tumor 
in cancer imaging generally, in CCTA images the selection of ROIs brings about 
challenges. Researchers hereby performed radiomics analysis around the PVAT or 
LVM or plaques. And recently, several groups succeeded in developing automated 
segmentation of PVAT and LVM, which provides probabilities to explore more novel 
non-invasive predictors for improvement of risk stratification and prognosis in 
patients with CAD.

Additionally, FFR-CT driven by AI is a hot topic in recent years. Various FFR-CT 
platforms are developed and adding into the clinical diagnostic workflow for not only 
research purpose but also commercial use. In the near future, the FFR-CT platforms 
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would bring major changes in the way to make decisions for patients with CAD before 
invasive coronary angiography.

However, before AI solutions can be truly widely implemented in daily clinical 
workflow or the reading room, several issues should be noted: (1) The algorithms need 
to be carefully validated in multi-center studies or large clinical trials to ensure the 
robustness and generalization; (2) The approval of clinical application is required to 
prove the accuracy and safety of the AI products; and (3) The legal and ethical issues 
should be taken into consideration.

In summary, AI offers the possibility to optimize clinical workflow and provide 
precise information for diagnostic and treatment, which will benefit both radiologists 
and patients. However, it is pertinent to note that AI will not simply substitute the 
cardiac radiologists, and human support or supervision is still needed. Rather, the 
cardiac radiologists need to be fully aware of the strengths and limitations of AI.
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Abstract
Abdominal magnetic resonance imaging (MRI) and computed tomography (CT) 
are commonly used for disease screening, diagnosis, and treatment guidance. 
However, abdominal MRI has disadvantages including slow speed and vulner-
ability to motions, while CT suffers from problems of radiation. It has been 
reported that deep learning reconstruction can solve such problems while 
maintaining good image quality. Recently, deep learning-based image reconstru-
ction has become a hot topic in the field of medical imaging. This study reviews 
the latest research on deep learning reconstruction in abdominal imaging, 
including the widely used convolutional neural network, generative adversarial 
network, and recurrent neural network.

Key Words: Abdominal imaging; Reconstruction; Magnetic resonance imaging; Computed 
tomography; Deep learning
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Core Tip: We summarized the current deep learning-based abdominal image 
reconstruction methods in this review. The deep learning reconstruction methods can 
solve the issues of slow imaging speed in magnetic resonance imaging and high-dose 
radiation in computed tomography while maintaining high image quality. Deep 
learning has a wide range of clinical applications in current abdominal imaging.
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INTRODUCTION
The emergence of deep learning has made intelligent image reconstruction a hot topic 
in the field of medical imaging. The applications of deep learning technology in image 
reconstruction have the advantages of reduced scan time and improved image quality. 
Magnetic resonance imaging (MRI) is a critical medical imaging technology with 
characteristics such as non-invasiveness, non-radiation, and high contrast. However, 
prolonged scanning time is the main obstacle that restrict the development of MRI 
technology[1]. Long acquisition time can cause discomfort to the patients and severe 
artifacts due to the patient's motion. In order to solve this issue, under-sampled k-
space data can be acquired by reducing the measuring time during scans, and then an 
artifact-free image can be obtained through advanced reconstruction. Deep learning 
reconstruction (DLR) produces high-quality images while reducing scan time and 
patient discomfort. However, traditional MRI, has problems including low 
acceleration factor, long calculation time, and variability in parameter selection in the 
reconstruction algorithm[2]. Deep learning automatically captures high-level features 
from a large amount of data and builds non-linear mapping between the input and 
output. Wang et al[3] introduced deep learning into fast MRI reconstruction. The deep 
learning-based MRI reconstruction avoids the difficulty of parameter adjustment in 
traditional model-based reconstruction algorithms, which has the potential for a wide 
range of clinical applications. In addition, deep learning has also been used to solve 
the problem of abdominal motion. Presently, abdominal MRI reconstruction based on 
deep learning mainly adopts end-to-end remodeling. The current network structures 
for MRI reconstruction include the convolutional neural network (CNN)[4], U-net[5], 
generative adversarial network (GAN)[6], recurrent neural network (RNN)[7], and 
cascade-net[8].

On the other hand, CT imaging suffers from the problem of radiation. Low-dose CT 
(LDCT) is achieved by reducing the radiation dose. However, reduced radiation dose 
decreases the image quality, causing bias in the diagnosis. Therefore, an improved 
reconstruction algorithm is required for LDCT images. Traditional methods for 
reconstructing CT images include total variation[9], model-based iterative recon-
struction (MBIR)[10], and dictionary learning[11]. However, the performance of LDCT 
image reconstruction could be improved further by introducing some latest 
techniques. The emergence of deep learning[12-15] has become the mainstream 
research of LDCT in recent years.

In this review, we assessed the current status of deep learning in abdominal image 
reconstruction. Specifically, we reviewed the latest research on deep learning methods 
in abdominal image reconstruction, attempted to solve the related problems, and 
address the challenges in this field.

DEEP LEARNING ALGORITHM
The deep learning method is obtained through a simple combination of non-linear 
layers. Each module can transform the initial low-level features into high-level repres-
entation. The core of deep learning is feature representation to obtain information at 
various levels through network layering. Compared to traditional machine learning 
algorithms, deep learning improves the accuracy of learning from a large amount of 
data. Another advantage of deep learning is that it does not require feature 
engineering. Typically, classic machine learning algorithms require complex feature 
engineering. Conversely, deep learning algorithms only need to feed data into the 
network and learn the representation. Finally, the deep learning network is highly 
adaptable and easily converted into different applications. Transfer learning makes the 
pre-trained deep networks suitable for similar applications.

At present, several studies have applied deep learning to different aspects of 
medical imaging, such as image detection[16,17], image segmentation[18,19], image 
denoising[20,21], super-resolution[22,23], and image reconstruction[3,24,25]. As 
described above, traditional model-based reconstruction algorithms require manual 
adjustment of the reconstruction parameters, which results in low reconstruction 
speed and unstable performance. With the increased acceleration factor, the image 
quality worsens. The reconstruction method based on deep learning avoids the 
difficulty of manual parameter adjustment. In the case of high acceleration, DLR can 
still perform well. After the network model is trained, the image can be reconstructed 
within seconds.
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CNN FOR IMAGE RECONSTRUCTION
MRI 
CNN has an excellent performance in image reconstruction[4]. In recent years, a large 
number of CNN-based abdominal image reconstruction methods have been proposed
[26-36]. A major problem in abdominal imaging is the patient's motion, which blurs 
the image and produces severe artifacts. Breath holding while scanning can minimize 
these artifacts, but residual artifacts are persistent[37]. Self-gating techniques[38,39] 
can overcome this problem, but the reconstructed image at a low sampling rate causes 
additional streaking artifacts. In order to address the problem of free-breathing 
abdominal imaging under a high under-sampling rate, Lv et al[26] proposed a 
reconstruction algorithm based on a stacked convolutional autoencoder (SCAE). 
Experimental results showed that the SCAE method eliminates the streak artifacts 
caused by insufficient sampling. In order to realize high-resolution image 
reconstruction from radial under-sampled k-space data, Han et al[27] proposed a deep 
learning method with domain adaptation function. The network model was pre-
trained with CT images, and then tuned for MRI with radial sampling. This method 
could be applied to limited training real-time data and multichannel reconstruction, 
which is in line with the clinical situation when multiple coils are used to acquire 
signals. Zhou et al[28] proposed a network combining parallel imaging (PI) and CNN 
for reconstruction. Real-time abdominal imaging was used to train and test the 
network; expected results were obtained.

In addition, CNN can also be applied to improve the quality of dynamic contrast-
enhanced MRI. Tamada et al[29] proposed a multichannel CNN to reduce the artifacts 
and blur caused by the patient's motion. The detailed information on the MRI 
reconstruction methods mentioned above is described in Table 1.

CT imaging
In addition to the above application in abdominal MRI, CNN-based reconstruction 
methods show satisfactory results in CT images. Kang et al[30] used a deep CNN with 
residuals for LDCT imaging. The experimental results showed that this method 
reduces the noise level in the reconstructed image. Chen et al[31] proposed a residual 
encoder-decoder CNN by adding the autoencoder, deconvolution, and short jump 
connection to the residual encoder-decoder for LDCT imaging. This method had great 
advantages over the conventional method in terms of noise suppression, structure 
preservation, and lesion detection. Ge et al[32] proposed an ADAPTIVE-NET that 
directly reconstructs CT from sinograms. CNN can also be applied to pediatric LDCT 
images[33]. Zhang et al[34] proposed a graph attention neural network and CNN to 
reconstruct liver vessels.

Limited view tomographic reconstruction aimed to reconstruct images with a 
limited number of sinograms that could lead to high noise and artifacts. Zhou et al[35] 
proposed a novel residual dense reconstruction network architecture with spatial 
attention and channel attention to address this problem. The network used sinogram 
consistency layer interleaved to ensure that the output by the intermediate loop block 
was consistent with the sampled sinogram input. This method used the AAPM LDCT 
dataset[40] for validation and achieved the desired performance in both limited-angle 
and sparse-view reconstruction. In order to further improve the quality of sparse-view 
CT and low-dose CT reconstruction, Kazuo et al[36] proposed a reconstruction 
framework that combined CS and CNN. This method input a degraded filtered back 
projection image and multiplied CS reconstructed images obtained using various 
regularization items into a CNN. The detailed information on the abdominal CT 
reconstruction methods mentioned above is listed in Table 1.

GAN FOR IMAGE RECONSTRUCTION
MRI
GAN is optimized and learned through the game between generator G and discrim-
inator D. This method is also suitable for abdominal image reconstruction. Mardani et 
al[41] used GAN for abdominal MRI reconstruction. This method also solves the 
problem of poor reconstruction performance of traditional CS-MRI[42,43] due to its 
slow iteration process and artifacts caused by noise. This method used least-squares 
GAN[44] and pixel-wise L1 as the cost function during training. The data showed that 
the reconstructed abdominal MR image was superior to that obtained using the 
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Table 1 Abdominal image reconstruction algorithms based on a convolutional neural network

Ref. Task Method Images Metric

Kang et al[30], 2017 Low-dose CT reconstruction CNN Abdominal CT images PSNR: 34.55

Chen et al[31], 2017 Low-dose CT reconstruction RED-CNN Low-dose abdominal CT 
images

PSNR: 43.79 ± 2.01; SSIM: 0.98 ± 
0.01; RMSE: 0.69 ± 0.07

Han et al[27], 2018 Accelerated projection-
reconstruction MRI

U-netCNN Low-dose abdominal CT 
images; synthetic radial 
abdominal MR images

PSNR: 31.55

Lv et al[26], 2018 Undersampled radial free-
breathing 3D abdominal MRI

Auto-encoderCNN 3D golden angle-radial SOS 
liver MR images

P < 0.001

Ge et al[32], 2020 CT image reconstruction directly 
from a sinogram

Residual encoder-decoder 
+ CNN

Low-dose abdominal CT 
images

PSNR: 43.15 ± 1.93; SSIM: 0.97 ± 
0.01; NRMSE: 0.71 ± 0.16

MacDougall et al[33], 
2019

Improving low-dose pediatric 
abdominal CT

CNN Liver CT images;Spleen CT 
images

P < 0.001

Tamada et al[29], 2020 DCE MR imaging of the liver CNN T1-weighted liver MR images SSIM: 0.91

Zhou et al[28], 2019 Applications in low-latency 
accelerated real-time imaging

PICNN bSSFP cardiac MR images; 
bSSFP abdominal MR images

Abdominal: NRMSE: 0.08 ± 
0.02; SSIM: 0.90 ± 0.02

Zhang et al[34], 2020 Reconstructing 3D liver vessel 
morphology from contrasted CT 
images

GNNCNN Multi-phase contrasted liver 
CT images

F1 score: 0.8762 ± 0.0549

Zhou et al[35], 2020 Limited view tomographic 
reconstruction

Residual dense spatial-
channel attention + CNN

Whole body CT images LAR: PSNR: 35.82; SSIM: 0.97 
SVR: PSNR: 41.98; SSIM: 0.97

Kazuo et al[36], 2021 Image reconstructionin low-dose 
and sparse-view CT 

CS + CNN Low-dose abdominal CT 
images; Sparse-view abdominal 
CT images

Low-Dose CT case: PSNR: 33.2; 
SSIM: 0.91 Sparse-View CT case: 
PSNR: 29.2; SSIM: 0.91

NRMSE (× 10-2); RMSE (10-2). MRI: Magnetic resonance imaging; CT: Computed tomography; CNN: Convolutional neural network; PSNR: Peak signal to 
noise ratio; SSIM: Structural similarity; RMSE: Root mean square error; NRMSE: Normalized root mean square error; RED: Residual encoder-decoder; 
DCE: Dynamic contrast-enhanced; PI: Parallel imaging; CS: Compressed sensing; LAR: Limited angle reconstruction; SVR: Sparse view reconstruction; 
GNN: Graph neural network; RNN: Recurrent neural network; SOS: Stack-of-stars.

traditional CS method with respect to image quality and reconstruction speed. Lv et al
[45] compared the performance of GAN-based image reconstruction with DAGAN
[46], ReconGAN[25], RefineGAN[25], and KIGAN[47]. Among these, the RefineGAN 
method was slightly better than DAGAN and KIGAN. In addition, Lv et al[48] 
combined PI and GAN for end-to-end reconstruction. The network added data fidelity 
items and regularization terms to the generator to obtain the information from 
multiple coils.

Most supervised learning methods require a large amount of fully sampled data for 
training. However, it is difficult or even impossible to obtain the full sampled data, 
and hence, unsupervised learning is necessary under the circumstances. Cole et al[49] 
proposed an unsupervised reconstruction method based on GAN. The detailed 
information on the reconstruction methods is described in Table 2.

CT imaging
The usage of GAN can also improve the quality of abdominal LDCT images. Yang et al
[50] used GAN combined with Wasserstein distance and perceptual loss for LDCT 
abdominal image denoising. Based on Wasserstein GAN (WGAN)[51], Kuanar et al[52] 
proposed an end-to-end RegNet-based autoencoder network model, in which GAN 
was used in the autoencoder. The loss function of this network was composed of 
RegNet perceptual loss[52] and WGAN adversarial loss[51]. The experimental results 
showed that this method improves the quality of the reconstructed image while 
reducing the noise.

Zhang et al[53] proposed the use of conditional GAN (CGAN) to reconstruct super-
resolution CT images. The edge detection loss function was proposed in the CGAN to 
minimize the loss of the image edge. In addition, this study used appropriate 
bounding boxes to reduce the number of rays when performing 3D reconstruction. 
The reconstruction methods are described in Table 2.
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Table 2 Abdominal image reconstruction based on generative adversarial network and recurrent neural network

Ref. Task Method Images Metric

Mardani et al
[41], 2017

Compressed sensing 
automates MRI 
reconstruction

GANCS Abdominal MR images SNR: 20.48; SSIM: 0.87

Yang et al[50], 
2018

Low dose CT image 
denoising

WGAN Abdominal CT images PSNR: 23.39; SSIM: 0.79

Kuanar et al
[52], 2019

Low-dose abdominal CT 
image reconstruction

Auto-encoderWGAN Abdominal CT images PSNR: 37.76; SSIM: 0.94; 
RMSE: 0.92

Lv et al[45], 
2021

A comparative study of 
GAN-based fast MRI 
reconstruction

DAGANKIGANReconGANRefineGAN T2-weighted liver images; 
3D FSE CUBE knee images; 
T1-weighted brain images

Liver: PSNR: 36.25 ± 3.39; 
SSIM: 0.95 ± 0.02; RMSE: 2.12 
± 1.54; VIF: 0.93 ± 0.05; FID: 
31.94

Zhang et al[53], 
2020

3D reconstruction for 
super-resolution CT 
images 

Conditional GAN 3D-IRCADb-01database 
liver CT images

Male: PSNR: 34.51; SSIM: 
0.90Female: PSNR: 34.75; 
SSIM: 0.90

Cole et al[49], 
2020

Unsupervised MRI 
reconstruction 

UnsupervisedGAN 3D FSE CUBE knee images; 
DCE abdominal MR images

PSNR: 31.55; NRMSE: 0.23; 
SSIM: 0.83

Lv et al[48], 
2021

Accelerated multichannel 
MRI reconstruction

PIGAN 3D FSE CUBE knee MR 
images; abdominal MR 
images

Abdominal: PSNR: 31.76 ± 
3.04; SSIM: 0.86 ± 0.02; NMSE: 
1.22 ± 0.97

Zhang et al[54], 
2019

4D abdominal and in utero 
MR imaging

Self-supervised RNN bSSFP uterus MR images; 
bSSFP kidney MR images

PSNR: 36.08 ± 1.13; SSIM: 0.96 
± 0.01

RMSE (× 10-2); NMSE (× 10-5). MRI: Magnetic resonance imaging; CT: Computed tomography; SNR: Signal-to-noise ratio; PSNR: Peak signal to noise ratio; 
SSIM: Structural similarity; RMSE: Root mean square error; NRMSE: Normalized root mean square error; VIF: Variance inflation factor; FID: Frechet 
inception distance; GAN: Generative adversarial network; RNN: Recurrent neural network; PI: Parallel imaging.

RNN FOR IMAGE RECONSTRUCTION
RNN is suitable for processing data with sequence information. The dynamic 
abdominal images were collected from the currently collected frame and were similar 
to the previous and following frames. Unlike other networks, the nodes between the 
hidden layers of RNN are connected. Zhang et al[54] proposed a self-supervised RNN 
to estimate the breathing motion of the abdomen and in utero 4D MRI. The network 
used a self-supervised RNN to estimate breathing motion and then a 3D deconvo-
lution network for super-resolution reconstruction. Compared to slice-to-volume 
registration, the experimental results of this method predicted the respiratory motion 
and reconstructed high-quality images accurately. The detailed information on the 
reconstruction method mentioned above is shown in Table 2.

APPLICATION OF DL IMAGE RECONSTRUCTION
Motion correction
Deep learning can also be applied to abdominal motion correction. Lv et al[55] 
proposed a CNN-based image registration algorithm to obtain images during the 
respiratory cycle. In addition, methods based on U-net and GAN can also be applied 
to abdominal motion correction. Jiang et al[56] proposed a densely connected U-net 
and GAN for abdominal MRI respiration correction. Küstner et al[57] combined non-
rigid registration with 4D reconstruction networks for motion correction. The detailed 
information on the reconstruction methods mentioned above is summarized in 
Table 3.

DLR
The DLR developed by Canon Medical Systems’ Advanced Intelligent Clear-IQ Engine 
is a commercial deep learning tool for image reconstruction. Some studies have 
confirmed the feasibility and effectiveness of this tool for abdominal image 
reconstruction. Akagi et al[58] used DLR for abdominal ultra-high-resolution 
computed tomography (U-HRCT) image reconstruction. The present study proved 
that DLR reconstruction has clinical applicability in U-HRCT. Compared to hybrid-IR 
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Table 3 Applications of deep learning in abdominal reconstruction

Ref. Task Method Images Metric

Lv et al[55], 2018 Respiratory motion correction for 
free-breathing 3D abdominal MRI

CNN 3D golden angle-radial SOS 
abdominal images

SNR: 207.42 ± 96.73

Jiang et al[56], 2019 Respiratory motion correction in 
abdominal MRI

U-NetGAN T1-weighted abdominal 
images

FSE: 0.920; GRE: 0.910; Simulated 
motion: 0.928

Küstner et al[57], 2020 Motion-corrected image 
reconstruction in 4D MRI 

U-netCNN T1-weighted in-vivo 4D MR 
images

EPE: 0.17 ± 0.26; EAE: 7.9 ± 9.9; 
SSIM: 0.94 ± 0.04; NRMSE: 0.5 ± 
0.1

Akagi et al[58], 2019 Improving image quality of 
abdominal U-HRCT using DLR 
method

DLR U-HRCT abdominal CT 
images

P < 0.01

Nakamura et al[59], 2019 To evaluate the effect of a DLR 
method 

DLR Abdominal CT images P < 0.001

NRMSE (× 10-2). MRI: Magnetic resonance imaging; CT: Computed tomography; CNN: Convolutional neural network; GAN: Generative adversarial 
network; SNR: Signal-to-noise ratio; SSIM: Structural similarity; NRMSE: Normalized root mean square error; EPE: End-point error; EAE: End-angulation 
error; U-HRCT: Ultra-high-resolution computed tomography; DLR: Deep learning reconstruction; SOS: Stack-of-stars; FSE: Fast-spin echo; GRE: Gradient 
echo.

and MBIR[10], DLR reduces the noise of abdominal U-HRCT and improves image 
quality. In addition, the DLR method is applicable to widely-used CT images. 
Nakamura et al[59] evaluated the effectiveness of the DLR method on hypovascular 
hepatic metastasis on abdominal CT images. The detailed information on the 
reconstruction methods mentioned is summarized in Table 3.

CURRENT CHALLENGES AND FUTURE DIRECTIONS
In summary, deep learning provides a powerful tool for abdominal image 
reconstruction. However, deep learning-based abdominal image reconstruction has 
several challenges. First, collecting a large amount of data for training the neural 
networks is rather challenging. Supervised learning means that a large amount of fully 
sampled data is required, which is time-consuming in clinical medicine. In addition, it 
is difficult or even impossible to obtain full sampling data in some specific applic-
ations[49]. Therefore, some semi-supervised learning is necessary. In addition, some 
researchers have proposed the use of self-supervised learning methods[54,60,61]. Self-
supervised learning does not require training labels. It is suitable for image 
reconstruction problems when fully sampled data cannot be obtained easily. 
Therefore, self-supervised learning has great development potential and is one of the 
major research directions in the future. Second, deep learning is difficult to explain 
even if satisfactory reconstruction is achieved.

The current workflow of abdominal imaging starts from data acquisition to image 
reconstruction and then to diagnosis, deeming it possible to perform multiple tasks at 
the same time. For example, SegNetMRI[62] realizes image segmentation and image 
reconstruction simultaneously. Joint-FR-Net[63] can directly use k-space data for 
image segmentation. Thus, future studies could use the k-space data for lesion 
detection, classification, and other clinical applications directly.

CONCLUSION
We summarized the current deep learning-based abdominal image reconstruction 
methods in this review. The DLR methods can solve the issues of slow imaging speed 
in MRI and high-dose radiation in CT while maintaining high image quality. Deep 
learning has a wide range of clinical applications in current abdominal imaging. More 
advanced techniques are expected to be utilized in future studies.
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Abstract
Since its inception in 1959, artificial intelligence (AI) has evolved at an 
unprecedented rate and has revolutionized the world of medicine. Ophthal-
mology, being an image-driven field of medicine, is well-suited for the 
implementation of AI. Machine learning (ML) and deep learning (DL) models are 
being utilized for screening of vision threatening ocular conditions of the eye. 
These models have proven to be accurate and reliable for diagnosing anterior and 
posterior segment diseases, screening large populations, and even predicting the 
natural course of various ocular morbidities. With the increase in population and 
global burden of managing irreversible blindness, AI offers a unique solution 
when implemented in clinical practice. In this review, we discuss what are AI, 
ML, and DL, their uses, future direction for AI, and its limitations in ophthal-
mology.

Key Words: Artificial intelligence; Ophthalmology; Retina; Machine learning; Eye care
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Core Tip: Machine learning and artificial intelligence have evolved rapidly in recent 
years. Powerful machines and futuristic algorithms are bringing many possibilities 
towards the utilization of artificial intelligence in medical sciences. Ophthalmology is 
versatile in its adapting to newer and novel technologies earlier than other fields. 
Machine learning techniques assist clinicians and researchers in the detection and 
diagnosis of diseases as well as quantification of different disease biomarkers from 
ocular images. Interestingly, recent innovations like auto-machine learning has made it 
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possible for clinicians, with little knowledge in computing and mathematics, to partake 
in creating, modifying, and training models tailored to their area of interest.
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INTRODUCTION
Artificial intelligence (AI) refers to the ability of a machine to think independently. In 
1956, it was first described by John McCarthy at his workshop in Darthmouth which is 
now considered as the birthplace of AI[1]. Later in 1959, Arthur Samuel defined 
machine learning (ML) as the ability of a machine to learn and improve with 
experience without being explicitly programmed[2,3].

The two major subfields of AI used in medicine are ML and deep learning (DL). ML 
derives information based on manually selected features and classifiers from already 
labeled data which is presented to the machine as a training dataset. This approach can 
be used with small datasets and requires comparatively shorter training time. In 
contrast, DL implements the use of artificial neural network (ANN) which is a 
complex system consisting of several layers of artificial neurons mimicking the neural 
network of human brain and its pattern recognition abilities. When input is provided 
to a DL algorithm, it is propagated through the multiple layers of the ANN and 
pattern recognition is performed by the DL algorithm itself without manual feature 
selection. Figure 1 illustrates the principle difference between ML and DL. The DL 
algorithms are fed large volumes of data containing both negative and positive 
examples (for instance, images of the healthy and diseased retina) for training. The 
algorithm autonomously trains itself and learns to recognize the differences between 
the two types of data, thus classifying it into positive and negative categories. The 
deep neural network (DNN) is a more efficient subtype of ANN in which the pattern 
recognition ability of the algorithm improves with the volume of training dataset. The 
larger the input data volume, the better the performance of the DNN at the given task. 
Another type of ANN is convolutional neural network (CNN) that has found its 
application in ophthalmology owing to its image recognition and classification ability. 
Although DL requires substantially larger training data and high computational 
power, the recent advances in technology and availability of graphics processing units 
have made its application in medicine and research more convenient[1-3].

For diagnosis and record-keeping, modern ophthalmology is dependent on imaging 
and large volumes of visual data are generated in the form of color fundus 
photographs (CFP) and scans from optical coherence tomography (OCT), OCT 
angiography, corneal topography, and other diagnostic procedures. The multimodal 
imaging approach allows the clinicians to view relevant structures in greater detail 
and provides them with useful information for decision-making in routine practice. 
The accurate processing of this large data volume can be cumbersome if efficient data 
processing methods are not accessible; however, its availability offers an optimal 
platform to bridge AI with ophthalmology as it is essential to analyze massive 
volumes of data for making data-driven decisions in the training of DL algorithms[4]. 
This review aims to summarize the applications of AI in ophthalmology, its 
limitations, and potential paths forward.

SCREENING FOR OCULAR DISEASES 
With the increase in population, the burden of managing ocular disease has also 
increased. The need for regular follow-ups to timely detect and treat ocular adversities 
in the patients at risk can be challenging for the clinician as well as the patient. 
Diabetic retinopathy (DR), age-related macular degeneration (ARMD), and glaucoma 
are the leading causes of irreversible blindness worldwide. It has been estimated that 
288 million people will suffer from ARMD while 600 million people will be affected by 
DR by the year 2040. The care of these disorders requires frequent follow-ups as the 

https://www.wjgnet.com/2644-3260/full/v2/i5/95.htm
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Figure 1 Outline of principle difference between machine learning and deep learning.

optimal time of treatment is at the early stage of the disease to prevent profound visual 
loss[5]. AI can play a huge role in the screening of ocular diseases in large populations 
where the care of an optometrist or ophthalmologist is not accessible to the masses. 
The screening of DR with the help of CFPs by utilizing AI has been well documented
[6]. A summary of applications of AI in detection of various retinal diseases is given in 
Table 1. Moreover, studies have shown that DL can determine refractive errors from 
CFPs, which puts into perspective of how useful AI can be in extracting details from 
fundus images that are, otherwise, not discernable to human graders[7].

DIABETIC RETINOPATHY 
DR is the most prevalent cause of irreversible blindness in adults. The progressive 
nature of the disease requires vigilant monitoring of the retina over time to initiate 
treatment as soon as possible. The early treatment of DR is the key to avoid visual 
impairment in the working-age groups which experience visual impairment or 
blindness by the ocular complications of diabetes mellitus (DM).  Therefore, yearly 
follow-ups are required for the clinical examination of the eye in patients with DM, 
which presents a challenge to the ophthalmic community particularly in countries 
where medical services are not easily available to people. Moreover, about half of the 
patients fail to stick to their follow-up regimen[1,5]. To screen a large group of people 
and to keep efficient and timely follow-ups, AI can help reduce the burden by 
providing the convenience of quick analysis of large datasets[8].

The use of DL in ophthalmology has seen a rapid increase after its successful 
application for screening DR was reported in multiple papers in 2016[2]. Abràmoff et al
[9] conducted a study in 2016 using a validation dataset of 1748 images and a DL 
algorithm to detect referable DR from CFPs. Their algorithm achieved an accuracy of 
98% with a sensitivity of 96.8% and specificity of 87% in detecting vision threatening 
referable DR. In another study, Ting et al[6] trained an algorithm with a total of 494661 
CFPs obtained from a population of ten various ethnic origin groups for detecting 
referable DR, ARMD, and glaucoma. In the validity dataset, the area under receiver 
operating curve (AUC), sensitivity, and specificity for referable DR were 0.936, 90.5%, 
and 91.6%; for vision-threatening DR were 0.958, 100%, and 91.1%; for possible 
glaucoma were 0.942, 96.4%, and 87.2%; and for ARMD were 0.931, 93.2%, and 88.7% 
respectively[6]. In 2018, inception V3, a DL algorithm, was trained by Li et al[10] with 
58790 CFPs for the detection of DR. The model had an AUC of 0.989 with a sensitivity 
of 97% and specificity of 91.4%. It was also reported that 77.3% of false negatives were 
due to the undetected intraretinal microvascular abnormalities[10]. Son et al[11] 
developed a DL algorithm based on 103262 macula centered retinal photographs to 
detect hemorrhages, hard exudates, cotton-wool spots, macular hole, myelinated nerve 
fiber layer, chorioretinal atrophy, retinal nerve fiber layer (RNFL) defect, vascular 
abnormalities, glaucomatous disc change, and nonglaucomatous disc change. They 
reported that the DL accurately and reliably detected multiple abnormalities of the 
retina and recommended that DL could be used as a screening tool for routine clinical 
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Table 1 Summary of artificial intelligence applications in detection of suspected diabetic retinopathy, age related macular degeneration, 
and glaucoma

Ref. Imaging 
modality AI algorithm Dataset for 

training 
Dataset for 
validation AUC Sensitivity (%) Specificity (%)

Diabetic retinopathy 

Abràmoff et al[9], 2016 CFP AlexNet and 
VGGNet

10000 to 
1250000 
images

Messidor-2: 1748 0.980 96.8 87

Gulshan et al[29], 2016 CFP Inception-V3 128175 images EyePACS-1: 8788 
Messidor-2: 1745

0.9910.990 97.596.1 93.493.9 

SiDRP: 71896 
images

0.936 90.5 91.6 

Guangdong: 15798 0.949 98.7 81.6

SIMES: 3052 0.889 97.1 82

SINDI: 4512 0.917 99.3 73.3

SCES: 1936 0.919 100 76.3

BES: 1052 0.929 94.4 88.5

AFEDS: 1968 0.98 98.8 86.5

RVEEH: 2302 0.983 98.9 92.2

MEXICAN: 1172 0.95 91.8 84.8

CUHK: 1254 0.948 99.3 83.1

Ting et al[6], 2017 CFP VGG -19 76370 images

HKU: 7706 0.964 100 81.3

Abràmoff et al[30], 
2018

CFP AlexNet and 
VGGNet

10000 to 
1250000 
images

819 patients N/A 87.2 90.7

Li et al[10], 2018 CFP Inception V3 58790 images 8000 images for 
referable DR

0.989 97 91.4

Ruamviboonsuk et al
[31], 2019

CFP Inception V4 1665151 
images

25326 images 0.987 96.8 95.6

Two data sets: 
IDRiD: 144 images 
& 

0.957 to 0.980 88.9-92.6 94.0- 100Son et al[11], 2020 CFP Custom CNN 95350 images 

e-ophtha: 434 
images 

0.947 to 0.965 89.2-93.6 91.4 - 97.1 

Age related macular 
degeneration

Ting et al[6], 2017 CFP VGG-19 72610 images 35948 images 0.932 93.20 88.70

Lee et al[13], 2017 OCT scans - 
Spectralis

Modified VGG 16 80839 images 20163 images 0.974 92.64 93.69

CNN 1 image 
type selection 

53396 20% of training 
datasets 

0.979 97.7 92.4

CNN 1 CFP 
quality selection 

150075 0.989 98.3 96.6

CNN 1 OD/OS 30119 0.947 96.9 81.8

AMDNET 8832 0.936 90.2 82.5

Zapata et al[14], 2020 CFP

Modified 
RESNET 50 (23) 
Referable GON

3776 0.863 76.8 83.8

Glaucoma suspect

Ting et al[6], 2017 CFP VGG-19 125189 images 71896 images 0.942 96.40 93.20

Li et al[18], 2018 CFP 31745 images 8000 images 0.986 95.6 92
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CFP: Color fundus photographs; AUC: Area under curve; GON: Glaucomatous optic neuropathy; OCT: Optical coherence tomography; DR: Diabetic 
retinopathy; SiDRP: Singapore integrated diabetic retinopathy screening program; CNN: Convolutional neural network; VGG-19: Visual geometry group; 
CUHK: Chinese University Hong Kong; HKU: Hong Kong University; N/A: Not available; RVEEH: Royal Victorian Eye and Ear Hospital; SCES: 
Singapore Chinese Eye Study; SIMES: Singapore Malay Eye Study; SINDI: Singapore Indian Eye Study; BES: Beijing Eye Study; IDRiD: Indian Diabetic 
Retinopathy Image Dataset; AFEDS: African American Eye Disease Study.

practice[11]. The success of DL in detecting vision threatening DR shows that 
screening for DR can be carried out by utilizing AI in clinical practice, particularly, in 
the areas where direct access to an eye care provider is not available.

AGE-RELATED MACULAR DEGENERATION 
ARMD is a progressive disease of the retina and is one of the major causes of 
irreversible blindness in developed countries. The early stage of the disease can stay 
quiescent for several years without causing any further visual deterioration; however, 
it can rapidly progress to advanced geographic atrophy (GA) or CNV. The 
development of CNV can cause profound visual loss if not treated at the earliest, 
which makes the observation of the at-risk population indispensable[1]. For the 
screening of ARMD, Venhuizen et al[12] trained an algorithm on 3256 OCT scans to 
identify five stages of ARMD: No ARMD, early ARMD, intermediate ARMD, 
advanced GA, and advanced CNV. On a test dataset of 384 OCT scans, the algorithm 
had a sensitivity of 98.2%, specificity of 91.2%, and AUC of 0.980, thus performing 
fairly well at the given task[12]. Lee et al[13] used 80839 OCT scans for the training of a 
DL model and 20163 scans as the validation dataset to detect ARMD and achieved an 
AUC of 0.974 with a sensitivity of 92.64% and specificity of 93.69%[13]. In 2020, Zapata 
et al[14] used 8832 CFPs as a training dataset to classify the images into three stages of 
ARMD as early ARMD, intermediate ARMD, and advanced ARMD. Their model 
achieved an AUC of 0.936 with a 90.2% sensitivity and 82.5% specificity[14].

Another potential use of AI is to predict visual acuity outcomes and disease 
progression. The visual acuity outcomes of patients being treated with anti-vascular 
endothelial growth factor treatment (Anti-VEGF) are rather erratic. If AI could help the 
clinician decide which patients will have good functional response post-therapy, it 
would reduce the burden of extra treatment. One such study was conducted by 
Schmidt-Erfurth et al[15] in which they trained a DL model over one year to predict 
visual acuity outcomes after Anti-VEGF therapy. The model was able to predict with a 
71% accuracy[1].

As the course of ARMD progression is unpredictable in most cases, some studies 
have addressed this matter by applying AI in an attempt to predict the development of 
CNV. Schmidt-Erfurth et al[16] trained a model on 495 patients with intermediate 
ARMD in one eye and CNV in the fellow eye for 24 mo. The model was able to predict 
CNV development with an accuracy of 68% and development of GA with an accuracy 
of 80%[1]. Likewise, the progression of GA, its speed, and its course have also been 
investigated with the help of AI. Niu et al[17] reported a successful model trained for 
2.25 years on 38 eyes for predicting GA progression. The model accurately projected 
the future direction of GA development. The major biomarkers that governed this 
prediction by the model were thinning of outer retinal layers and reticular 
pseudodrusen[17]. These studies show the benefits that implementation of AI in 
clinical practice can help in screening, management, and future prediction of disease 
progression. However, for the introduction of AI in routine practice, more research 
work is crucial in future by training the algorithms on larger datasets and studying 
their use in clinical practice.

GLAUCOMA
Glaucoma is a neurodegenerative disease that leads to irreversible loss of vision and is 
the second most prevalent cause of global blindness. The patient remains 
asymptomatic in the early stages of most types of glaucoma and only a comprehensive 
eye examination may detect the pathology. The diagnosis of glaucoma consists of optic 
nerve examination, visual field assessment (VFA), corneal thickness profile, anterior 
chamber assessment, and RNFL analysis. Owing to the lack of eye care professionals 
in developing countries and the limited availability of adjunct imaging devices, the 
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need of an AI model for screening the disease efficiently is inevitable[5]. Previous 
studies have focused on the diagnosis of glaucoma by implementation of AI with the 
c-d ratio of the optic disc, neuroretinal rim width, and ISNT rule; however, the 
diagnosis of glaucoma without VFA remains incomplete[1].

In 2018, Li et al[18] developed a DL system by training it on 48116 CFPs to detect 
referable glaucomatous optic neuropathy. Their algorithm achieved an AUC of 0.986, 
sensitivity of 95.6%, and specificity of 92%. The false-negative results obtained were 
due to high myopia, DR, and ARMD while the false positives were attributed to 
physiological cupping of the optic disc by the authors[18]. In another study, to 
diagnose glaucoma from VFA and RNFL thickness, Kim et al[19] trained and 
compared various ML approaches. They found that the random forest model gave the 
most accurate result with an AUC of 0.979, sensitivity of 0.983, and specificity of 0.975 
while distinguishing between healthy and glaucomatous eyes[19]. A DL model was 
implemented on the macular RNFL thickness and ganglion cell complex layer 
thickness to diagnose open angle glaucoma by Asaoka et al[20]. The DL model had an 
AUC of 93.7%, whereas the AUC decreased to 82% and 67.4% with random forest and 
support vector model, respectively[20].

ANTERIOR SEGMENT DISORDERS 
The growing use of imaging for anterior segment disease management and diagnosis 
has facilitated the application of AI in this area. Recent studies have shown that AI 
algorithms can successfully differentiate between keratoconic and normal eyes from 
the corneal topography scans. Reportedly, KeratoDirect, a CNN integrated algorithm, 
was trained on 3000 scans containing 50% healthy scans and 50% scans from 
keratoconic eyes. When tested on a final set of 200 eyes, it distinguished between the 
normal and ectatic eyes with a 99.3% success rate[2]. By using corneal SS-OCT scans of 
3156 eyes, Yousefi et al[21] developed and trained an unsupervised algorithm that 
distinguished between normal and keratoconic corneas with a specificity of 97.4% and 
sensitivity of 96.3%. Moreover, the algorithm included a small number of normal eyes 
in the category of mild keratoconus which, according to the authors, represented form 
fruste keratoconus and needed further evaluation[21].

Owing to the development of Ocular Response Analyser and Corvis ST for the 
assessment of corneal biomechanics, it has become possible to evaluate the corneal 
ectatic disorders in greater detail. The development of Corvis, which used 
Scheimpflug camera with non-contact air-puff tonometer to evaluate the central 8mm 
horizontal cornea at a rate of 140 images per 33 ms, has yielded new parameters to 
study corneal ectasia. With the implementation of AI, Ambrosio et al[22] combined 
these parameters with corneal topographical data leading to the development of 
Tomographic and Biomechanical Index (TBI). TBI has not only detected the mild forms 
of corneal ectasia but it has also been suggested that TBI provided data about the 
susceptibility of the cornea to developing ectasia. It can play an important role in the 
pre-operative assessment for laser vision correction to rule out patients that might be 
at risk of developing postoperative complications[23,24]. AI has also been 
implemented in the grading of nuclear sclerosis. Recent studies have shown 
improvement in the grading of nuclear sclerosis from cross-sectional slit-lamp images 
of the lens with CNN as compared to its previous attempts[25].

FUTURE DIRECTIONS
The digital revolution has changed the pace of medicine globally. New treatments are 
being discovered and new investigative technologies are being introduced; 
meanwhile, the patients are growing older and co-morbidities are increasing. AI has 
been successfully integrated in the field of radiology and dermatology to make the 
decision-making process easier for clinicians. It has also been applied to screen people 
who cannot reach eye care services.

DR, ARMD, and glaucoma are the leading causes of blindness worldwide. These 
pathologies result in irreversible blindness which can be prevented if they are timely 
detected and treated. In rural areas and developing countries, there is a lack of eye 
care professionals and facilities. In future, the utilization of AI based screening 
strategies coupled with telemedicine can make it possible to screen the populations at 
risk in a time and cost- efficient manner. For the screening of DR, an FDA approved 
hybrid algorithm, IDx-DR, is currently in use to detect referable and non-referable 



Jahangir S et al. Artificial intelligence in ophthalmology

AIMI https://www.wjgnet.com 101 October 28, 2021 Volume 2 Issue 5

cases of DR[26]. Moreover, clinicians and researchers are working on training AI 
models by using larger datasets to enhance the already available models. Currently, an 
improved TBI model is in progress by training the model with bigger dataset[24].

BARRIERS
The process by which a DL algorithm learns pattern recognition from the training data 
remains largely unknown, which is often termed as the “black box”, consequently 
making it harder for the researchers to understand how the algorithm reaches its final 
decision. Moreover, the process of troubleshooting and debugging becomes 
inexplicable unless the researcher becomes familiar with the ANN.

Although the multimodal approach in ophthalmology has helped in attaining large 
datasets of digital images, the easy access to the data of patients can pose ethical 
challenges. Furthermore, the digital data may also be subject to cyberattacks[1]. 
Despite the recent advances that AI has made in ophthalmology, most of the 
successful ML models have not been validated or used in actual clinical practices 
where the machine models, cameras, and image quality vary from each other. 
Therefore, further studies need to be done by testing these models in real-world 
settings[27]. Lastly, another limitation of AI is the use of two-dimensional images for 
the training of DL algorithms, which makes the detection of space-occupying and 
three-dimensional lesions impractical. In future, the inclusion of stereoscopic images in 
training and validation datasets might address this challenge[28].

CONCLUSION
AI has revolutionized the world of medicine and ophthalmology in recent years. The 
success of DL in detecting ophthalmic pathologies in recent years is well proven; 
however, its implementation in routine practice is rare. Future research is crucial to 
address the challenges and limitations of AI in order to make it a part of daily practice 
in eye clinics.
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Abstract
Oral and maxillofacial anatomy is extremely complex, and medical imaging is 
critical in the diagnosis and treatment of soft and bone tissue lesions. Hence, there 
exists accumulating imaging data without being properly utilized over the last 
decades. As a result, problems are emerging regarding how to integrate and 
interpret a large amount of medical data and alleviate clinicians’ workload. 
Recently, artificial intelligence has been developing rapidly to analyze complex 
medical data, and machine learning is one of the specific methods of achieving 
this goal, which is based on a set of algorithms and previous results. Machine 
learning has been considered useful in assisting early diagnosis, treatment 
planning, and prognostic estimation through extracting key features and building 
mathematical models by computers. Over the past decade, machine learning 
techniques have been applied to the field of oral and maxillofacial surgery and 
increasingly achieved expert-level performance. Thus, we hold a positive attitude 
towards developing machine learning for reducing the number of medical errors, 
improving the quality of patient care, and optimizing clinical decision-making in 
oral and maxillofacial surgery. In this review, we explore the clinical application 
of machine learning in maxillofacial cysts and tumors, maxillofacial defect 
reconstruction, orthognathic surgery, and dental implant and discuss its current 
problems and solutions.

Key Words: Radiography; Artificial intelligence; Machine learning; Deep learning; Oral 
surgery; Maxillofacial surgery
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Core Tip: A dramatic increase in medical imaging data has exceeded the ability of 
clinicians to process and analyze, which calls for higher-level analytic tools. Machine 
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learning-based image analysis is useful for extracting key information to improve 
diagnostic accuracy and treatment efficacy. In this review, we summarize the applic-
ations of machine learning in oral and maxillofacial surgery as well as its current 
problems and solutions.
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INTRODUCTION
The oral and maxillofacial region is extremely complex, including many critical 
anatomical structures such as the maxillofacial bone, parotid gland, facial nerve, and 
major vessels. Computed tomography (CT), magnetic resonance imaging (MRI; an 
imaging technique mainly used for the examination of soft tissue), and other 
radiological examinations are commonly applied to improve the understanding of the 
three-dimensional spatial positional relationships among these anatomical structures. 
It is unavoidable to face rapid growth in the amount and complexity of medical 
imaging data, leading to increased workload for clinicians[1-2].

In recent years, artificial intelligence (AI) has been implemented in medicine to 
explore these enormous datasets and extract key information[1,3]. AI is a field focused 
on completing intellectual tasks normally performed by humans, and machine 
learning (ML) is one of the specific methods of achieving this goal[4]. AI models based 
on ML algorithms have demonstrated excellent performance in imaging data 
extraction and analysis and have increasingly matched specialist performance in 
medical imaging applications[5]. The integration of ML in oral and maxillofacial 
surgery has been proved to improve diagnostic accuracy, treatment efficacy, and 
prognostic estimation and reduce health care costs[6,7]. The purpose of this review is 
to explore the clinical application of ML in maxillofacial cysts and tumors, maxillo-
facial defect reconstruction, orthognathic surgery, and dental implant and discuss the 
current problems and solutions.

Arthur Samuel[6-8] first described the term ML in 1952. ML is a technique to build 
prediction outcomes by statistical algorithms learning from experience. According to 
the training types of the algorithms, ML can be divided into three categories: Super-
vised, unsupervised, and reinforcement learning[9]. Currently, supervised learning is 
the most commonly used training style in medical image analysis[10].

In supervised learning, labels are inputted simultaneously with the training data 
and then algorithms predict the known outcome[10]. Examples of supervised learning 
methods include classic Naive Bayes, decision tree (DF), support vector machine 
(SVM), random forest (RF), logistic regression, artificial neural network (ANN), and 
deep learning (DL). Specifically, SVM results in data classification by setting up an 
imaginary high-dimensional space and then separating labeled samples by a 
hyperplane[4,11]. RF is an extension of DF, in which each DF is independently trained 
and subsequently combined with others[4,12]. ANN has one hidden layer in addition 
to the input and output layer. Each layer is composed of neurons and sequentially 
stacked one after the other via weighted connections. The signals are transformed 
among neurons from the previous layer to the next and DL is comprised of multi-
layered ANN[13].

In unsupervised learning[10], the algorithm system will not be provided with labels 
but depends on itself for the detection of the hidden patterns in the data. Examples of 
algorithms of unsupervised learning include K-means, affinity propagation, and fuzzy 
C-means systems. Besides, reinforcement learning[14] holds a system including 
unlabeled data, agent, and environment. It aims to repeatedly optimize parameters 
based on environmental feedback through reward and punishment mechanisms. By 
accumulating the rewards, the models can keep adapting to the changing environment 
and obtaining the best return. Examples of reinforcement learning algorithms include 
Maja and Teaching-Box systems.

The protocol of ML comprises data procession and model construction, and the 
workflow of the model construction can be further divided into the training phase and 

https://creativecommons.org/Licenses/by-nc/4.0/
https://creativecommons.org/Licenses/by-nc/4.0/
https://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/2644-3260/full/v2/i6/104.htm
https://dx.doi.org/10.35711/aimi.v2.i6.104


Yan KX et al. Machine learning in maxillofacial surgery

AIMI https://www.wjgnet.com 106 December 28, 2021 Volume 2 Issue 6

the validating/testing phase. Due to the impact of data volume and quality on the 
performance of machine-learning models, raw data should be standardized in advance 
for the following aspects: (1) Reducing noise without losing the important features
[15]; (2) Splitting the image into parts and delineating the region of interest; and (3) 
Accumulating enough data[16]. Effective methods have been proposed for achieving 
the tasks, including image denoising, segment, and augment[15,17-20].

APPLICATION IN ORAL AND MAXILLOFACIAL SURGERY
Maxillofacial cystic lesions and benign tumors 
Maxillofacial cysts and benign tumors are common lesions in the oral and maxillo-
facial region. In most cases, maxillofacial cysts and benign tumors cause facial 
swelling, tooth displacement, large bone cavity, and even pathological fracture when 
diagnosed. Surgery is the only treatment option, including enucleation, decompre-
ssion, and resection. And the choice of treatment modality is based on the final 
diagnosis, lesion size, and age of selected patients. However, these lesions are 
asymptomatic at the early stage. Consequently, early detection and diagnosis of 
maxillofacial cysts and benign tumors are crucial for avoiding serious surgery and 
achieving satisfactory treatment outcomes[21,22]. Numerous studies have demon-
strated the usefulness of ML in early screening, accurate diagnosis, proper treatment, 
and morbidity prevention in maxillofacial cysts and benign tumors.

Frydenlund et al[23] applied two ML classifiers (a SVM and bagging with logistic 
regression) to distinguish among lateral periodontal cysts, odontogenic keratocysts, 
and glandular odontogenic cysts in hematoxylin and eosin-stained digital micro-
graphs. The results proved the effectiveness of the ML-based classifiers in predicting 
these three types of odontogenic cysts (96.2% correct classification for both classifiers). 
Moreover, Okada et al[24] demonstrated the usefulness of a semiautomatic computer-
aided diagnosis framework to differentiate between periapical cysts and granulomas 
in cone-beam CT (CBCT) data. And the 94.1% best accuracy was yielded with the 
integration of graph-based random walks segmentation and ML-based boosted classi-
fication algorithms. Similarly, Endres et al[25] compared the performance of the DL 
algorithm with that of 24 oral and maxillofacial surgeons in detecting periapical 
radiolucencies in panoramic radiographs, demonstrating the reliable diagnoses of ML 
algorithms in dentistry. In addition, Kwon et al[26] developed a deep convolution 
neural network (DCNN) to automatically diagnose jaw odontogenic cysts and tumors 
in panoramic images, showing higher diagnostic sensitivity, specificity, and accuracy 
with augmented datasets. Liu et al[27] applied deep transfer learning to classify 
ameloblastoma and odontogenic keratocyst in panoramic radiographs and achieved an 
accuracy of 90.36%. Yang et al[28] also showed that the diagnostic performance of 
CNN You OnlyLook Once v2 was similar to that of experienced dentists in detecting 
odontogenic cysts and tumors on panoramic radiographs.

Maxillofacial malignant tumors
Oral cancer is the most common malignancy in the oral and maxillofacial region, 
which can exert a severe impact on the survival and quality of life of the patients[29]. 
The most effective method for reducing mortality rates is early detection. However, 
the optimal strategy for early screening remains debated. The advent of high-quality 
ML provides potential to improve early diagnosis, prognostic evaluation, and accurate 
prediction of treatment associated toxicity in oral cancer patients.

Aubreville et al[30] presented a novel automatic identification of oral squamous cell 
carcinoma (OSCC) in confocal laser endomicroscopy images, using a deep ANN. The 
accuracy of this deep ANN-based method was 88.3%, with a sensitivity of 86.6% and 
specificity of 90%. It outperformed textural feature-based classification. DL algorithms, 
including the DenseNet121 and faster R-CNN algorithm, have also been applied to 
automatically classify and detect oral cancer in photographic images, achieving 
acceptable precision[31]. Furthermore, Kar et al[29] and Jeyaraj and Samuel Nadar[32] 
developed regression-based partitioned CNN using hyperspectral image datasets for 
automated detecting oral cancer, obtaining improved quality of diagnosis compared to 
traditional image classifiers including the SVM and the deep belief network.

In addition, ML has also been applied to predict cancer outcomes using the 
following prognostic variables: (1) Histological grade; (2) Five-year survival; (3) 
Cervical lymph node metastases; and (4) Distant metastasis. Ren et al[33] included 80 
patients finally diagnosed with OSCC and performed ML-based MRI texture analysis 
using a minimum-redundancy maximum-relevance algorithm, achieving the best 
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performance with an accuracy of 86.3%. Others also concluded that the predictive 
performance of DL-based survival prediction algorithms exceeded that of conven-
tional statistical methods[34-38]. Chu et al[17] and Ariji et al[39] have achieved a DL 
accuracy of extranodal extension of 84% on 703 CT images. The diagnostic per-
formance outranked that of radiologists. Others also proved the effectiveness of ML in 
predicting lymph node metastasis in patients with early-stage oral cancer and thus 
guiding proper treatment plans[32,40,41]. Keek et al[42] found that compared with 
peritumoral radiomics based prediction models, a clinical model was useful for the 
prediction of distant metastasis in oropharyngeal cancer patients.

ML also contributes to the evaluation of treatment complications. Chu et al[17] and 
Men et al[43] have introduced a 3D residual CNN for the prediction of xerostomia in 
patients with head and neck cancer and achieved satisfying performance with an area 
under the curve value of 0.84 (0.74-0.91), an index for reflecting the authenticity of the 
detection method (the closer the numerical value to 1.0, the higher the authenticity of 
the detection method).

Nasopharyngeal carcinoma is a malignancy of the head and neck, and radiotherapy 
is the primary treatment option for the suffered patients[44]. To avoid unnecessary 
toxicities derived from radiotherapy, radiation oncologists propose the concepts of 
precise radiotherapy and adaptive radiotherapy. Recently, advanced ML techniques 
have mainly been applied to auto-recognition, early diagnosis, target contouring, and 
complication prediction in patients with nasopharyngeal carcinoma[45].

Li et al[46] developed an endoscopic image-based model to detect nasopharyngeal 
malignancies. And this DL model outperformed experts in detecting malignancies. Du 
et al[47] investigated the diagnostic performance of seven ML classifiers cross-
combined with six feature selection methods for distinguishing inflammation and 
recurrence based on post-treatment nasopharyngeal positron emission tomography/ 
X-ray CT images (a high-level imaging method that can make an early diagnosis of 
tumors) and identified the optimal methods in the diagnosis of nasopharyngeal 
carcinoma.

Lin et al[48] constructed a 3D CNN on MRI data sets and validated the performance 
of automated primary gross tumor (GTV) contouring in patients with nasopharyngeal 
carcinoma, demonstrating improved contouring accuracy and efficacy with the 
assistance of a DL-based contouring tool. Men et al[49] proposed an end-to-end deep 
deconvolutional neural network for segmentation of nasopharyngeal carcinoma in 
planning CT images, showing a high-level performance than that of the VGG-16 
model in the segmentation of the nasopharynx GTV, the metastatic lymph node GTV, 
and the clinical target volume. In addition, Liang et al[44] developed a fully automated 
DL-based method for the accurate detection and segmentation of organs at risk in 
nasopharyngeal carcinoma CT images and achieved excellent performance. The results 
showed a sensitivity of 0.997 to 1 and specificity of 0.983 to 0.999. For early detecting 
the radiotherapy complication in nasopharyngeal carcinoma patients, Zhang et al[50] 
applied the RF method to early predict radiation-induced temporal lobe injury (RTLI) 
based on MRI examinations. The results demonstrated that the RF models can 
successfully predict RTLI in advance, which can allow clinicians to take measures to 
stop or slow down the deterioration of RTLI.

Altogether, ML techniques have been shown well-performed in early screening and 
prognosis evaluation of maxillofacial malignant tumors.

Maxillofacial bone defect reconstruction
Maxillofacial bone defects after congenital deformities, trauma, and oncological 
resection greatly decrease patients’ quality of life. The goal of reconstruction of 
maxillofacial bone defects is to restore optimal function and facial appearance using 
free tissue, vascularized autogenous bone flap transplantation, or prostheses. Maxillo-
facial reconstructive surgery remains challenging, especially in the cases of massive 
maxillofacial bone defects across the midline. Most recently, ML algorithms have 
achieved major success in virtual surgical planning and thus posed great potential in 
the reconstruction of facial defects.

Jie et al[51] proposed an iterative closest point (ICP) algorithm based on normal 
people database (a database comprised of normal and healthy adults) to predict the 
reference data of missing bone and performed symmetry evaluation between the 
postoperative skull and its mirrored model. The result showed that the ICP model 
achieved similar accuracy to that of navigation-guided surgery. Dalvit Carvalho da 
Silva et al[52] combined CNN with geometric moments to identify the midline 
symmetry plane of the facial skeleton from CT scans, which aided the surgeons in the 
maxillofacial reconstructive surgery.
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With the development of an imaging database, ML is a promising tool to assist the 
maxillofacial bone defect reconstruction.

Orthognathic surgery
Orthognathic surgery is used for the treatment of dental malocclusion, facial 
deformities, and obstructive sleep apnea to improve facial aesthetics and function. 
Traditionally, surgical planning is based on clinical examination, two-dimensional 
cephalometric analysis, and manually made splints. However, these procedures 
require considerable labor efforts and lack precision[53-56]. With the rapid deve-
lopment of technologies and materials, 3D printers, digital software, and ML are 
increasingly used in orthognathic surgery and greatly improve surgical outcomes. 
Hence, the applications of ML are promising in orthognathic surgery.

According to the study of Shin et al[57], the authors extracted the features from 
posteroanterior and lateral cephalogram and evaluated the necessity for orthognathic 
surgery using DL networks. The results showed that the accuracy, sensitivity, and 
specificity were 0.954, 0.844, and 0.993, respectively, proving the excellent perfor-
mance. Lin et al[58] used a CNN with a transfer learning approach on 3D CBCT images 
for the assessment of the facial symmetry before and after orthognathic surgery. In a 
retrospective cohort study, Lo et al[59] first applied a ML model based on the 3D 
contour images to automatically assess the facial symmetry before and after or-
thognathic surgery. According to the study by Knoops et al[60], a 3D morphable 
model, a ML-based framework involving supervised learning, was trained with 4216 
3D scans of healthy volunteers and orthognathic surgery patients. The model showed 
high diagnostic accuracy with a sensitivity of 95.5% and specificity of 95.2%, satisfying 
treatment simulation. In addition, Patcas et al[61] demonstrated that patients’ facial 
appearance and attractiveness improved after orthognathic surgery using a CNN 
model.

To sum up, ML has been considered a useful tool in orthognathic surgery for 
establishing a precise diagnosis, evaluating surgical necessity, and predicting treat-
ment outcomes.

Dental implant
The dental implant has been considered a reliable treatment option for the repla-
cement of missing teeth. Undoubtedly, an excellent bone environment and implant 
planning are key to the success rate of dental implants. It is crucial to have a basic 
understanding of the quality and quantity of bone at the planned site and site of 
placement[62]. In recent decades, ML is growing in the field of dental implants and its 
use has been applied to improve the success rate of implants and identify dental 
implants.

Kurt et al[63] applied a DL approach on three-dimensional CBCT images to perform 
implant planning and compared the performance of this method with manual 
assessment, achieving similarly acceptable results in the measurements in the maxilla 
molar/premolar region, as well as in the mandible premolar region. A pilot study by 
Ha et al[64] demonstrated that the mesiodistal position of the inserted implant is the 
most significant factor predicting implant prognosis using ML methods.

Besides, Lee et al[65] evaluated the performance of three different DCNN 
architectures for the detection and classification of a fractured dental implant using 
panoramic and periapical radiographic images. The results showed the best per-
formance by the automated DCNN architecture based on only periapical images. 
Mameno et al[66] applied three ML methods for the prediction of peri-implantitis and 
analyzed the risk indicators. RF model achieved the highest performance in the 
prediction. And the results demonstrated that implant functional time influenced most 
on prediction.

In addition, several investigations proved the effectiveness of ML methods for 
implant type recognition using radiographic images[67-69]. As for the application of 
ML models for implant design optimization, Roy et al[70] used an ANN combined 
with genetic algorithms for the prediction of the optimum implant dimension.

ML models have demonstrated great potential in the field of dental implants for 
assisting implant planning, evaluating implant performance, improving implant 
designs, and identifying dental implants.

PROBLEMS AND SOLUTIONS
ML has shown great potential in the field of oral and maxillofacial surgery for 
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Table 1 Machine learning applications in oral and maxillofacial surgery

Ref. Applications Purpose Method

[23] A support vector machine and bagging with logistic regression

[24] Integration of graph-based random walks segmentation and machine 
learning-based boosted classification algorithms

[26] Deep convolution neural network

[27] Deep transfer learning

[28]

Accurate diagnosis

Convolution neural work You OnlyLook Once v2’s

[25]

Maxillofacial cystic lesions and 
benign tumors

Early detection Deep learning

[30] Deep artificial neural network

[31] Deep learning (DenseNet121 and faster R-Convolution neural work)

[29,
32]

Regression-based partitioned convolution neural network

[46] Deep learning

[47]

Early diagnosis

Machine learning

[48] Convolution neural network

[49] End-to-end deep deconvolutional neural network

[44]

Early detection

Deep learning

[33] Minimum-redundancy maximum-relevance algorithm

[34-
39]

Deep learning

[40-
42]

Prognosis estimation

Machine learning

[43] Convolution neural network

[50]

Maxillofacial malignant 
tumors

Treatment complication evaluation

Random forest 

[51] Missing bone prediction and facia 
symmetry evaluation

Iterative closest point

[52]

Maxillofacial bone defect 
reconstruction

Midline symmetry plane identification Convolution neural network

[57] Surgery necessity evaluation Deep learning

[58] Convolution neural network

[59]

Facial symmetry assessment

Machine learning

[60] Diagnosis Machine learning

[61]

Orthognathic surgery

Facial appearance and attractiveness 
evaluation

Convolution neural network

[63] Implant planning designing Deep learning

[70] Implant planning optimizing Artificial neural network

[64] Prognosis estimation Machine learning 

[65] Detection and classification of fractured 
dental implant

Deep convolution neural network

[66] Complicationprediction Machine learning

[67-
69]

Dental implant

Implant type recognition Machine learning

improving detection accuracy, optimizing treatment plans, and providing reliable 
prognostic prediction. Despite all the potential, there still exist some limitations.

First, the performance of ML mainly depends on the volume and quality of data and 
superior algorithms. The scattered distribution of dental databases across healthcare 
settings often leads to the problem of relatively small datasets, exerting an impact on 
real clinical decision-making. Efforts should be made for the development of cloud-



Yan KX et al. Machine learning in maxillofacial surgery

AIMI https://www.wjgnet.com 110 December 28, 2021 Volume 2 Issue 6

based image databases and large open-access databases from diverse settings and 
populations[71].

Second, it is quite difficult for ML to analyze a large number of different and hetero-
geneous datasets. A set of well-standardized, segmented, and enhanced training data 
will enhance the performance of the ML model. Thus, the involved data should get 
properly pre-processed for maximally achieving homogenization of the data sets and 
reducing errors[15,17,72].

Third, the performance of ML algorithms in completing various common clinical 
tasks is similar to or outmatches that of experts. However, when dealing with cases of 
rare and complicated diseases, existing algorithms may have inferior performance[73,
74]. Consequently, further improvement of ML algorithms is required for computing 
enormous and complex medical data.

Lastly, there exist many ethical challenges, including privacy protection, data 
security, and legal and regulatory issue. Patients’ informed consent has to be obtained 
before using their clinical data for ML. Moreover, relevant guidelines should be 
developed for data acquisition and data sharing. Meanwhile, data should be trans-
parent and traceable without the disclosure of personal information. Strict legal 
requirements should be made regarding health data privacy.

CONCLUSION
ML will have an immense impact in the field of oral and maxillofacial surgery in the 
following aspects. First, ML is useful in early screening, accurate diagnosis, proper 
treatment, morbidity prevention, and accurate prediction of treatment associated 
toxicity in the treatment of maxillofacial cysts, benign tumors, and malignant tumors. 
Second, ML algorithms have achieved major success in virtual surgical planning and 
thus posed great potential in the reconstruction of facial defects. Third, ML has been 
considered a useful tool in orthognathic surgery for establishing a precise diagnosis, 
evaluating surgical necessity, and predicting treatment outcomes. Lastly, ML models 
have demonstrated great potential in the field of dental implants for assisting implant 
planning, evaluating implant performance, improving implant designs, and identi-
fying dental implants (Table 1).

Nonetheless, it remains vital to evaluate the reliability, accuracy, and repeatability 
of ML in medicine. Further studies should continually focus on improving the 
usability of algorithms for different diseases. Moreover, there exists an urgent need to 
develop guidelines for many ethical challenges, including privacy protection, data 
security, and legal and regulatory issue. Despite these issues, ML is still considered to 
be a powerful tool for clinicians. We believe that this review may provide detailed 
information regarding ML applications in oral and maxillofacial surgery and help 
assist clinicians to facilitate the clinical practices.
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Abstract
This is the consideration recalled from my reading of Acute pancreatitis: A pictorial 
review of early pancreatic fluid collections by Xiao. This perspective related to the 
works of Fellini might be able to contribute the future development of the 
research of pancreatic diseases.
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Core Tip: This paper offers, so to speak, a new postmodernist view of medicine. Partic-
ularly in medical imaging, where phenomena are observed in pictorial ways, research 
engaging with art and epistemology will be essential in the future. It will also go hand 
in hand with the use of artificial intelligence. Although philosophical discourse has not 
been greatly used in clinical research, the rapid development of psychopathology and 
medical philosophy suggests that such research will be needed in these fields. This 
thought was inspired by an article in this journal; therefore, it is most appropriate that it 
should be published in this journal.
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TO THE EDITOR
This is what I have considered since I read the article Acute pancreatitis: A pictorial 
review of early pancreatic fluid collections by Xiao[1]. This consideration is related with 
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the works of Fellini, as follows:

REALITIES OF DEFINING CHARACTERISTIC 
In the works of Fellini, a predominant concept is the concept of precapitalist 
consciousness. In a sense, Marx uses the term ‘dialectic socialism’ to denote the 
common ground between sexual identity and society.

“Truth is meaningless,” says Foucault; however, according to Bailey[2], it is not so 
much truth that is meaningless, but rather the defining characteristic, and some would 
say the failure, of truth. The main theme of Parry[3]’s model of the postconceptual 
paradigm of reality is the role of the writer as artist. But if the deconstructivist theory 
holds, we have to choose between dialectic socialism and Sartreist existentialism.

The primary theme of the works of Fellini is a subcapitalist reality. In a sense, 
Lyotard uses the term ‘semioticist narrative’ to denote the difference between society 
and class.

Any number of deconstructions concerning dialectic socialism exist. But Sartre 
promotes the use of the postconceptual paradigm of reality to modify society.

The main theme of Pickett[4]’s critique of dialectic socialism is the economy, and 
therefore the paradigm, of pretextual class. It could be said that Foucault uses the term

‘Baudrillardist simulacra’ to denote a mythopoetical whole.
An abundance of narratives concerning the role of the participant as artist may be 

discovered. But the subject is contextualized into a dialectic socialism that includes art 
as a paradox.

MATERIAL RATIONALISM AND SUBCULTURAL DEAPPROPRIATION 
If one examines dialectic socialism, one is faced with a choice: either reject capitalist 
libertarianism or conclude that sexual identity, perhaps ironically, has intrinsic 
meaning. Subcultural deappropriation implies that consensus is a product of the 
masses, but only if the premise of dialectic socialism is valid. Thus, several narratives 
concerning neomodern capitalist theory exist.

The primary theme of the works of Fellini is a self-sufficient totality. The main 
theme of Hernández[5] is an analysis of subcultural deappropriation as the common 
ground between narrativity and society. It could be said that Derrida uses the term 
‘dialectic socialism’ to denote not discourse as such, but postdiscourse.

The subject is interpolated into a subcultural deappropriation that includes culture 
as a whole. Therefore, a number of theories concerning a subconstructive reality may 
be found.

The primary theme of the works of Fellini is the bridge between truth and sexual 
identity. However, the subject is contextualised into a dialectic rationalism that 
includes reality as a paradox.

Geoffrey[6] holds that we have to choose between dialectic socialism and postdia-
lectic textual theory. In a sense, in La Dolce Vita, Fellini denies substructuralist 
nationalism; in Amarcord he affirms subcultural deappropriation.

CONCLUSION
Though mentioned above is my perspective recalled from Xiao’s article, it pertains to 
research on applying pictorial ways to the research of pancreatitis and other pancreatic 
diseases. This perspective concerning the works of Fellini might be able to contribute 
to the future development of the research field.
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