World Journal of *Pharmacology*

World J Pharmacol 2022 January 28; 11(1): 1-5

Published by Baishideng Publishing Group Inc

WJP World Journal of Pharmacology

Contents

Continuous Publication Volume 11 Number 1 January 28, 2022

EDITORIAL

Mammalian target of rapamycin; novel insight for management of inflammatory bowel diseases 1 Lashgari NA, Roudsari NM, Momtaz S, Abdolghaffari AH

Contents

Continuous Publication Volume 11 Number 1 January 28, 2022

ABOUT COVER

Peer Reviewer of World Journal of Pharmacology, Yoshihiro Ikura, DSc, MD, Chief Doctor, Professor, Department of Pathology, Takatsuki General Hospital, Takatsuki 569-1192, Osaka prefecture, Japan. ikura@ajk.takatsuki-hp.or.jp

AIMS AND SCOPE

The primary aim of World Journal of Pharmacology (WJP, World J Pharmacol) is to provide scholars and readers from various fields of pharmacology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJP mainly publishes articles reporting research results and findings obtained in the field of pharmacology and covering a wide range of topics including antineoplastic protocols, chelation therapy, chemoprevention, chemoradiotherapy, adjuvant chemotherapy, consolidation chemotherapy, drug administration routes, drug administration schedule, drug delivery systems, drug prescriptions, combination drug therapy, computer-assisted drug therapy, electrochemotherapy, enema, fluid therapy, home infusion therapy, hormone replacement therapy, inappropriate prescribing, induction chemotherapy, maintenance chemotherapy, opiate substitution treatment, orthomolecular therapy, photochemotherapy, pleurodesis, polypharmacy, premedication, prescription drug misuse, sclerotherapy, self-administration, self-medication, and thrombolytic therapy.

INDEXING/ABSTRACTING

World Journal of Pharmacology is now indexed in China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database (CSTJ), and Superstar Journals Database.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Hua-Ge Yu; Production Department Director: Xiang Li; Editorial Office Director: Ya-Juan Ma.

NAME OF JOURNAL	INSTRUCTIONS TO AUTHORS
World Journal of Pharmacology	https://www.wjgnet.com/bpg/gerinfo/204
ISSN	GUIDELINES FOR ETHICS DOCUMENTS
ISSN 2220-3192 (online)	https://www.wjgnet.com/bpg/GerInfo/287
LAUNCH DATE	GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
February 9, 2012	https://www.wjgnet.com/bpg/gerinfo/240
FREQUENCY	PUBLICATION ETHICS
Continuous Publication	https://www.wjgnet.com/bpg/GerInfo/288
EDITORS-IN-CHIEF	PUBLICATION MISCONDUCT
Pharkphoom Panichayupakaranant, Ahmed M Kabel, Muhammad Shahzad	https://www.wjgnet.com/bpg/gerinfo/208
EDITORIAL BOARD MEMBERS	ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/2220-3192/editorialboard.htm	https://www.wjgnet.com/bpg/gerinfo/242
PUBLICATION DATE	STEPS FOR SUBMITTING MANUSCRIPTS
January 28, 2022	https://www.wjgnet.com/bpg/GerInfo/239
COPYRIGHT	ONLINE SUBMISSION
© 2022 Baishideng Publishing Group Inc	https://www.f6publishing.com

© 2022 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com

WJP World Journal of Pharmacology

Submit a Manuscript: https://www.f6publishing.com

World J Pharmacol 2022 January 28; 11(1): 1-5

DOI: 10.5497/wjp.v11.i1.1

ISSN 2220-3192 (online)

EDITORIAL

Mammalian target of rapamycin; novel insight for management of inflammatory bowel diseases

Naser-Aldin Lashgari, Nazanin Momeni Roudsari, Saeideh Momtaz, Amir Hossein Abdolghaffari

ORCID number: Naser-Aldin Lashgari 0000-0003-0502-6114; Nazanin Momeni Roudsari 0000-0003-1230-7969; Saeideh Momtaz 0000-0003-3957-3300; Amir Hossein Abdolghaffari 0000-0001-9961-9097.

Author contributions: Lashgari NA, Roudsari NM and Momtaz S performed the collection and/or assembly of data and interpretation, manuscript writing; Abdolghaffari AH and Momtaz S performed the provision of study material, conception and design, and final approval of manuscript; all the authors have read and approved the manuscript.

Conflict-of-interest statement: The authors have no conflicts of interest to disclose.

Country/Territory of origin: Iran

Specialty type: Pharmacology and pharmacy

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report's scientific quality classification

Grade A (Excellent): 0 Grade B (Very good): B Grade C (Good): 0 Grade D (Fair): 0

Naser-Aldin Lashgari, Nazanin Momeni Roudsari, Amir Hossein Abdolghaffari, Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran

Saeideh Momtaz, Amir Hossein Abdolghaffari, Department of Pharmacology, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 1417614411, Iran

Saeideh Momtaz, Amir Hossein Abdolghaffari, Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1941933111, Iran

Saeideh Momtaz, Amir Hossein Abdolghaffari, Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1941933111, Iran

Saeideh Momtaz, Amir Hossein Abdolghaffari, Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran 1941933111, Iran

Corresponding author: Amir Hossein Abdolghaffari, PhD, Assistant Professor, Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran 1941933111, Iran. amirhosein172@hotmail.com

Abstract

Inflammatory bowel diseases (IBDs), with blurred etiology, show a rising trend and are of global concern. Of various factors involved in IBD pathogenesis and development, inflammation has been shown to play a major role. Recognition of the molecular and cellular pathways that induce IBD is an emerging subject to develop targeted therapies. Mammalian target of rapamycin (mTOR) is one the most common receptors of many inflammatory pathways, including that of IBD. To this end, we intend to overview the mTOR inhibitors for their possible efficacy in present and future approaches to treatment of IBD.

Key Words: Inflammatory bowel diseases; Inflammation; Mammalian target of rapamycin; Mammalian target of rapamycin inhibitors

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

WJP | https://www.wjgnet.com

Grade E (Poor): 0

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: htt p://creativecommons.org/License s/by-nc/4.0/

Received: March 25, 2021 Peer-review started: March 25, 2021 First decision: July 27, 2021 Revised: August 11, 2021 Accepted: January 11, 2022 Article in press: January 11, 2022 Published online: January 28, 2022

P-Reviewer: Feng Y S-Editor: Fan JR L-Editor: Kerr C P-Editor: Fan JR

Core tip: Inflammation is the main participant in the pathogenesis and development of inflammatory bowel disease (IBD). Since the mammalian target of rapamycin (mTOR) pathways are suggested to be involved in IBD progression, inhibition of the mTOR signaling may lead to a novel treatment modality for patients with IBD. Several biologics and synthetic and natural compounds have been introduced as mTOR inhibitors, which may control or eradicate intestinal inflammatory conditions such as IBD.

Citation: Lashgari NA, Roudsari NM, Momtaz S, Abdolghaffari AH. Mammalian target of rapamycin; novel insight for management of inflammatory bowel diseases. World J Pharmacol 2022; 11(1): 1-5

URL: https://www.wjgnet.com/2220-3192/full/v11/i1/1.htm DOI: https://dx.doi.org/10.5497/wjp.v11.i1.1

INTRODUCTION

Inflammatory bowel diseases (IBDs) include two major types: ulcerative colitis (UC) and Crohn's disease (CD) that mainly progress due to abnormal dysregulation of the immune system[1]. Aberrations of the innate and adaptive immune responses and inflammatory processes play crucial roles in IBD pathogenesis^[2]. Unregulated immune response stimulates Toll-like receptor-4 and the gastrointestinal enteric bacteria flora, thus activating the mucosal T cells and interferon (IFN) production and release. These events initiate the signal transduction cascades such as the nuclear factor (NF)-xB pathway; the mammalian target of rapamycin (mTOR) and transducer and activator of transcription 1 (STAT1) pathway. As a result, the activation of these pathways leads to elevation of inflammatory cytokines and induction of IBD. In the next step, leukocytes are aberrantly activated, leading to enhanced infiltration into the injured colonic site.

Therefore, modulation of inflammatory cytokines and chemokines could be important for IBD treatment. Pharmacological products or surgery are commonly used in IBD patients. Anti-inflammatory drugs (i.e. corticosteroids and aminosalicylates); immunomodulatory treatments (i.e. azathioprine, mercaptopurine, cyclosporine and methotrexate); biologic compounds [*i.e.* tumor necrosis factor (TNF)-α inhibitors]; and antimicrobials (i.e. ciprofloxacin and metronidazole) are current therapeutic options for IBD treatment. Among them, mTOR is a serine/threonine protein kinase of the phosphatidylinositol-3 kinase related kinase (PIKK) family, and a critical regulator of the inflammatory pathways[3,4]. mTOR has two subtypes of mTORC1 and mTORC2. Structurally, mTORC1 contains SEC13 protein 8 (mLST8)/G-protein b subunit-like protein (GbL), the regulatory-associated protein of mTOR (Raptor), DEPTOR, PRAS40, and a scaffold protein TTI1/TEL2 complex. The composition of mTOR, the mammalian stress-activated protein kinase interacting protein 1 (mSIN1), Tor2 (mTOR ortholog), mLST8/G_L, insensitive drug companion of mTOR (DICTOR), DEPTOR, TTI1, and TEL2 forms the mTORC2[5]. Activation of the mTOR pathway in intestinal epithelial cells has been shown to induce inflammation (Figure 1). In addition, mTOR is a downstream molecule of the PI3K/AKT/mTOR signaling pathway that plays a key role in the cellular transduction system and biological processes. Activation of the mTOR signaling pathway in the intestinal epithelial cells induces inflammation events that lead to IBD. In addition, activation of the mTOR/NF-KB pathway results in upregulation of IFN- γ , interleukin (IL)-6, IL-8, IL-1, and TNF- α . Induction of the P13K/AKT/mTOR pathway promotes TNF-α, IL-1β, transforming growth factor (TGF)-β, IL-12 and IL-6 secretion. The TLR/P38MAPK/mTOR pathway increases the serum levels of IL-12, IL-6, IL-8 and TNF-a. All of these pathways together could trigger IBD due to the induction of inflammatory processes. Activation of the mTOR signaling pathway induces immune cells such as macrophages and T cells, which in turn elevates the secretion of IFN- γ , IL-6, IL-8, IL-1 and TNF- α . It has been shown that regulatory T cells (Tregs) improve colitis through immunosuppression and reduction of inflammatory factors such as IL-1 β , TNF- α , IL-6, IL-10 and IL-17A[6].

The myeloid-derived suppressor cells (MDSCs) are also attributed to the etiology of IBD and have been shown to improve colitis in vivo. It was demonstrated that mTOR inhibitors could suppress MDSCs and improve IBD. MDSCs have shown superior

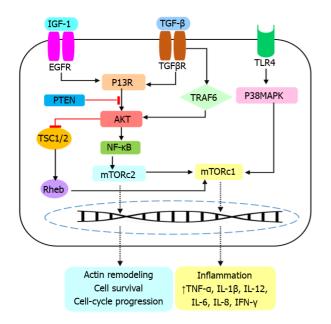


Figure 1 Activation of the mammalian target of rapamycin pathway in intestinal epithelial cells has been shown to induce inflammation. TNF: Tumor necrosis factor; IL: Interleukin; IFN: Interferon; IGF: Insulin-like growth factor; EGFR: Epidermal growth factor receptor; mTOR: Mammalian target of rapamycin.

immunosuppressive activities against IBD. mTOR inhibitors increase Tregs but reduce Th1 cells in IBD. These results indicate that some of the mTOR inhibitors attenuate IBD *via* Treg expansion promoted by MDSCs[6,7]. Inhibition of the mTOR pathway can improve IBD due to suppression of inflammatory processes. Hence, the factors that target the components of this pathway or the mTOR signaling proteins are of interest for drug development. Severe IBD could lead to several dangerous diseases such as colon cancer, irritable bowel syndrome, visceral hypersensitivity, neurodegenerative disease, *etc.* Induction of proinflammatory and inflammatory cytokines, *i.e.*, the cytokine storm in conditions such as COVID-19 may affect IBD patients. Therefore, the mTOR inhibitors are important not only to improve IBD, but also to reduce the risk of health-threatening conditions[8,9].

CONCLUSION

Given the high risk of inflammatory diseases and their influence on organ failure, new therapeutic triggers with fewer side effects and more specialization are needed. Clinical evidence demonstrates that inflammatory processes can increase the risk of many diseases. For example, it has been shown that inflammatory factors cause neurodegeneration and increase the risk of neurodegenerative disease such as Alzheimer's disease, Parkinson's disease and multiple sclerosis[10,11]. IBD could also lead to other gastrointestinal impairments such as colonic cancer. Recently, it has been proposed that IBD induces colonic angiotensin-converting enzyme 2 expression, probably due to the stimulation of cytokines storm, which finally increases susceptibility to COVID-19 and could end in death[12,13]. Although the etiopathogenesis of IBD is poorly understood, available evidence suggests that genetic susceptibility and environmental stimuli can predispose to immunological responses, and provoke IBD [14,15]. Many inflammatory signaling pathways participate in pathogenesis of IBD [16, 17]. The severity of IBD relies on the location and extent of the lesions, resulting in numerous extraintestinal manifestations. The mTOR signaling pathway is one of the most important mechanisms that contributes to progression of IBD. In this context, mTOR induces the NF-KB pathway, which together participate in production of several inflammatory mediators such as IFN- γ , IL-6, IL-8, IL-1 and TNF- α [18]. The TGF- β /P13K/AKT/mTOR pathway upregulates TNF- α , IL-1 β , TGF- β , IL-12 and IL-6 expression. The TLR/P38MAPK/mTOR interaction increases serum levels of IL-12, IL-6, IL-8 and TNF- α [3]. Induction of the TLR4, MAPK and NF-κB pathways stimulates autophagy by the regulation of mTOR, thus improving the gut inflammatory responses and IBD[19]. These all suggest that inhibition of mTOR and/or the mTORdependent downstream signaling pathways represent promising insight for IBD

treatment. To assess such a hypothesis, several biologics such as everolimus, temsirolimus, deforolimus, sunitinib, bevacizumab, vedolizumab, etrolizumab, and the diverse mTOR analogs, AZD-8055, WYE-354, VS-5584, LY3023414, Ku-0063794, PI-103 and SKLB-M8 were analyzed and found to target mTOR and o block inflammatory processes^[20,21]. Several natural compounds such as resveratrol, curcumin, acacetin, capsaicin, epigallocatechin-3, fisetin, harmine, panduratin A, prodigiosin, sinomenine, honokiol and isoliquiritigenin have shown the ability to inhibit mTOR. Taken together, targeting the mTOR signaling pathway could block secretion of cytokines and chemokines and not only improves IBD but also prevents the risk of other diseases, in which inflammation plays a key pathogenic role[6,22]. Future attempts should focus on planning clinical trials to evaluate the therapeutic efficacy of the mTOR inhibitors against IBD. Probable interaction of mTOR signaling with other pathways and effectors of IBD should also be considered to design targeted inhibitors with a broader action.

REFERENCES

- Larabi A, Barnich N, Nguyen HTT. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy 2020; 16: 38-51 [PMID: 31286804 DOI: 10.1080/15548627.2019.1635384
- Matsuda C, Ito T, Song J, Mizushima T, Tamagawa H, Kai Y, Hamanaka Y, Inoue M, Nishida T, Matsuda H, Sawa Y. Therapeutic effect of a new immunosuppressive agent, everolimus, on interleukin-10 gene-deficient mice with colitis. Clin Exp Immunol 2007; 148: 348-359 [PMID: 17437423 DOI: 10.1111/j.1365-2249.2007.03345.x]
- Lashgari NA, Roudsari NM, Momtaz S, Ghanaatian N, Kohansal P, Farzaei MH, Afshari K, 3 Sahebkar A, Abdolghaffari AH. Targeting Mammalian Target of Rapamycin: Prospects for the Treatment of Inflammatory Bowel Diseases. Curr Med Chem 2021; 28: 1605-1624 [PMID: 32364064 DOI: 10.2174/0929867327666200504081503]
- Feng Y, Chen X, Cassady K, Zou Z, Yang S, Wang Z, Zhang X. The Role of mTOR Inhibitors in Hematologic Disease: From Bench to Bedside. Front Oncol 2020; 10: 611690 [PMID: 33489922 DOI: 10.3389/fonc.2020.611690]
- Chen X, Liu M, Tian Y, Li J, Qi Y, Zhao D, Wu Z, Huang M, Wong CCL, Wang HW, Wang J, Yang H, Xu Y. Cryo-EM structure of human mTOR complex 2. Cell Res 2018; 28: 518-528 [PMID: 29567957 DOI: 10.1038/s41422-018-0029-3]
- 6 Li C, Zhu F, Wang S, Wang J, Wu B. Danggui Buxue Decoction Ameliorates Inflammatory Bowel Disease by Improving Inflammation and Rebuilding Intestinal Mucosal Barrier. Evid Based Complement Alternat Med 2021; 2021: 8853141 [PMID: 33531923 DOI: 10.1155/2021/8853141]
- Shi G, Li D, Ren J, Li X, Wang T, Dou H, Hou Y. mTOR inhibitor INK128 attenuates dextran 7 sodium sulfate-induced colitis by promotion of MDSCs on Treg cell expansion. J Cell Physiol 2019; 234: 1618-1629 [PMID: 30132862 DOI: 10.1002/jcp.27032]
- 8 Murugan AK. mTOR: Role in cancer, metastasis and drug resistance. Semin Cancer Biol 2019; 59: 92-111 [PMID: 31408724 DOI: 10.1016/j.semcancer.2019.07.003]
- Xu F, Na L, Li Y, Chen L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative 9 diseases and tumours. Cell Biosci 2020; 10: 54 [PMID: 32266056 DOI: 10.1186/s13578-020-00416-0]
- 10 Heras-Sandoval D, Pérez-Rojas JM, Pedraza-Chaverri J. Novel compounds for the modulation of mTOR and autophagy to treat neurodegenerative diseases. Cell Signal 2020; 65: 109442 [PMID: 31639492 DOI: 10.1016/j.cellsig.2019.109442]
- Maiese K. Targeting the core of neurodegeneration: FoxO, mTOR, and SIRT1. Neural Regen Res 11 2021; 16: 448-455 [PMID: 32985464 DOI: 10.4103/1673-5374.291382]
- El Ouali S, Philpott J, Vargo J, Regueiro M. COVID-19 in patients with IBD and pancreaticobiliary 12 disorders. Cleve Clin J Med 2020 [PMID: 32855178 DOI: 10.3949/ccjm.87a.ccc062]
- 13 Nie K, Yang YY, Deng MZ, Wang XY. Gastrointestinal insights during the COVID-19 epidemic. World J Clin Cases 2020; 8: 3934-3941 [PMID: 33024750 DOI: 10.12998/wjcc.v8.i18.3934]
- 14 Alimohammadi N, Koosha F, Rafeian-Kopaei M. Current, New and Future Therapeutic Targets in Inflammatory Bowel Disease: A Systematic Review. Curr Pharm Des 2020; 26: 2668-2675 [PMID: 32250220 DOI: 10.2174/1381612826666200406081920]
- 15 Guan Q. A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. J Immunol Res 2019; 2019: 7247238 [PMID: 31886308 DOI: 10.1155/2019/7247238]
- 16 Annese V. Genetics and epigenetics of IBD. Pharmacol Res 2020; 159: 104892 [PMID: 32464322 DOI: 10.1016/j.phrs.2020.104892]
- Attauabi M, Zhao M, Bendtsen F, Burisch J. Systematic Review with Meta-analysis: The Impact of 17 Co-occurring Immune-mediated Inflammatory Diseases on the Disease Course of Inflammatory Bowel Diseases. Inflamm Bowel Dis 2020; 27: 927-939 [PMID: 32628745 DOI: 10.1093/ibd/izaa167]
- Park S, Regmi SC, Park SY, Lee EK, Chang JH, Ku SK, Kim DH, Kim JA. Protective effect of 7-O-18 succinyl macrolactin A against intestinal inflammation is mediated through PI3-kinase/Akt/mTOR

and NF-KB signaling pathways. Eur J Pharmacol 2014; 735: 184-192 [PMID: 24769511 DOI: 10.1016/j.ejphar.2014.04.024]

- 19 Zhou M, Xu W, Wang J, Yan J, Shi Y, Zhang C, Ge W, Wu J, Du P, Chen Y. Boosting mTORdependent autophagy via upstream TLR4-MyD88-MAPK signalling and downstream NF-kB pathway quenches intestinal inflammation and oxidative stress injury. EBioMedicine 2018; 35: 345-360 [PMID: 30170968 DOI: 10.1016/j.ebiom.2018.08.035]
- Tian T, Li X, Zhang J. mTOR Signaling in Cancer and mTOR Inhibitors in Solid Tumor Targeting 20 Therapy. Int J Mol Sci 2019; 20 [PMID: 30754640 DOI: 10.3390/ijms20030755]
- 21 Magaway C, Kim E, Jacinto E. Targeting mTOR and Metabolism in Cancer: Lessons and Innovations. Cells 2019; 8 [PMID: 31817676 DOI: 10.3390/cells8121584]
- 22 Chamcheu JC, Roy T, Uddin MB, Banang-Mbeumi S, Chamcheu RN, Walker AL, Liu YY, Huang S. Role and Therapeutic Targeting of the PI3K/Akt/mTOR Signaling Pathway in Skin Cancer: A Review of Current Status and Future Trends on Natural and Synthetic Agents Therapy. Cells 2019; 8 [PMID: 31370278 DOI: 10.3390/cells8080803]

Published by Baishideng Publishing Group Inc 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA Telephone: +1-925-3991568 E-mail: bpgoffice@wjgnet.com Help Desk: https://www.f6publishing.com/helpdesk https://www.wjgnet.com

World Journal of *Pharmacology*

World J Pharmacol 2022 June 16; 11(2): 6-15

Published by Baishideng Publishing Group Inc

World Journal of Pharmacology Pharmacology

Contents

Continuous Publication Volume 11 Number 2 June 16, 2022

MINIREVIEWS

6

Botanical, chemical, and pharmacological characteristics of Lomatogonium rotatum: A review Dai LL, Eni RG, Fu MH, Ba GN

Contents

Continuous Publication Volume 11 Number 2 June 16, 2022

ABOUT COVER

Peer Reviewer of World Journal of Pharmacology, Lekshmi R Nath, PhD, Assistant Professor, Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ernakulum 682041, India. lekshmirnath@aims.amrita.edu

AIMS AND SCOPE

The primary aim of World Journal of Pharmacology (WJP, World J Pharmacol) is to provide scholars and readers from various fields of pharmacology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WIP mainly publishes articles reporting research results and findings obtained in the field of pharmacology and covering a wide range of topics including antineoplastic protocols, chelation therapy, chemoprevention, chemoradiotherapy, adjuvant chemotherapy, consolidation chemotherapy, drug administration routes, drug administration schedule, drug delivery systems, drug prescriptions, combination drug therapy, computer-assisted drug therapy, electrochemotherapy, enema, fluid therapy, home infusion therapy, hormone replacement therapy, inappropriate prescribing, induction chemotherapy, maintenance chemotherapy, opiate substitution treatment, orthomolecular therapy, photochemotherapy, pleurodesis, polypharmacy, premedication, prescription drug misuse, sclerotherapy, self-administration, self-medication, and thrombolytic therapy.

INDEXING/ABSTRACTING

The WJP is now indexed in Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Yu-Xi Chen; Production Department Director: Xiang Li; Editorial Office Director: Ya-Juan Ma.

INSTRUCTIONS TO AUTHORS https://www.wjgnet.com/bpg/gerinfo/204
GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GerInfo/287
GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240
PUBLICATION ETHICS
https://www.wjgnet.com/bpg/GerInfo/288
PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208
ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242
STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/GerInfo/239
ONLINE SUBMISSION
https://www.f6publishing.com

© 2022 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com

WJP World Journal of Pharmacology

Submit a Manuscript: https://www.f6publishing.com

DOI: 10.5497/wjp.v11.i2.6

World J Pharmacol 2022 June 16; 11(2): 6-15

ISSN 2220-3192 (online)

MINIREVIEWS

Botanical, chemical, and pharmacological characteristics of Lomatogonium rotatum: A review

Li-Li Dai, Rong-Gui Eni, Ming-Hai Fu, Gen-Na Ba

Specialty type: Pharmacology and pharmacy

Provenance and peer review: Unsolicited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report's scientific quality classification

Grade A (Excellent): 0 Grade B (Very good): B, B Grade C (Good): 0 Grade D (Fair): 0 Grade E (Poor): 0

P-Reviewer: Khidhir ZK, Iraq; Ortiz LT, Spain A-Editor: Liu X, China

Received: January 18, 2022 Peer-review started: January 18, 2022 First decision: February 8, 2022 Revised: February 19, 2022 Accepted: May 17, 2022 Article in press: May 17, 2022 Published online: June 16, 2022

Li-Li Dai, Ming-Hai Fu, Gen-Na Ba, School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China

Rong-Gui Eni, NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China

Corresponding author: Gen-Na Ba, PhD, Professor, School of Mongolian Medicine, Inner Mongolia Minzu University, No. 996 Xilamulun Street, Horqin District, Tongliao 028000, Inner Mongolia Autonomous Region, China. bagenna@126.com

Abstract

Lomatogonium rotatum (L. rotatum) Fries ex Nym, a dry whole grass belonging to the family Gentianaceae, is widely used to treat liver diseases in Mongolian medicine. In Mongolian medicine, L. rotatum Fries ex Nym, also known as Digeda, is a rare medicinal herb with low yield and widespread clinical use. Currently, it is included in over 25 traditional Mongolian medicine prescriptions that help reduce heat, dispel xieri, enhance stomach function, and heal wounds. Recent studies have shown that L. rotatum Fries ex Nym contains a variety of metabolites, including flavonoids, xanthone compounds, terpenoids, organic acids, steroids, and alkaloids. In addition, its anti-hepatitis B, anti-inflammatory, anti-acute liver injury, and anti-obesity effects have been proven by pharmacological studies. In this review, we summarize the ecological resources, traditional pharmacodynamics, chemical constituents, and pharmacological actions of L. rotatum Fries ex Nym, with an aim to provide a theoretical basis for future applied research and new product development.

Key Words: Mongolian medicine; Lomatogonium rotatum; Chemical composition; Pharmacological action; Research progress

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

WJP | https://www.wjgnet.com

Core Tip: As a highly distinctive Mongolian medicinal herb, *Lomatogonium rotatum (L. rotatum)* Fries ex Nym is traditionally used to prevent and treat liver and gallbladder diseases. However, its clinical application value and further development are limited by strict requirements on its growing environment, high demand for medicinal materials, decrease in wild resources, and insufficient scientific and technological availability in ethnic minority areas. Currently, a total of 38 compounds have been isolated and identified from L. rotatum Fries ex Nym, with flavonoids, xanthones, and terpenoids being the main metabolites. Pharmacological studies have mainly focused on hepatitis, liver injury, and weight loss, but mechanisms of pharmacological activity remain elusive and further comprehensive in vivo and in vivo experimental designs are needed to elucidate these issues.

Citation: Dai LL, Eni RG, Fu MH, Ba GN. Botanical, chemical, and pharmacological characteristics of Lomatogonium rotatum: A review. World J Pharmacol 2022; 11(2): 6-15 URL: https://www.wjgnet.com/2220-3192/full/v11/i2/6.htm **DOI:** https://dx.doi.org/10.5497/wjp.v11.i2.6

INTRODUCTION

Lomatogonium rotatum (L. rotatum) Fries ex Nym is a dry whole grass belonging to the family Gentianaceae. L. rotatum Fries ex Nym, also known as Habirigen-Digeda or Temuri-Digeda, is a commonly used Mongolian medicine to treat liver diseases. In traditional Mongolian medicine, L. rotatum Fries ex Nym is believed to clear heat, remove *xieri*, strengthen the stomach, treat poisoning, and heal wounds. It is widely used to prevent and treat influenza and fever, hepatobiliary disease, typhoid fever, and jaundice. It also has a therapeutic effect on heatstroke symptoms[1,2]. In addition, it is clinically effective in the prevention and treatment of liver and gallbladder diseases. Recent chemical and pharmacological studies have shown that L. rotatum Fries ex Nym contains organic compounds (xanthones), swertiamarin, oleanolic acid, luteolin, and other metabolites that play a role in enhancing the liver and biliary tract functions[3].

MORPHOLOGY, RESOURCES, AND BREEDING

Floral morphology of L. rotatum Fries ex Nym

L. rotatum Fries ex Nym is a 30- to 50-cm-high annual herb with an erect stem, four prisms, and a few branches. The leaves are sessile and opposite, and the leaf blades are narrowly lanceolate, 1.5 to 3 cm long, 0.4 to 0.6 cm wide, and apically acute, with a wider base. It has five calyces, deep, lanceolate lobes, and an equally long corolla. The corolla has five deeply lobed segments; the lobes are spheric and obtuse, with a toothed tube on each side of the base (Figure 1). The plant usually grows on hillsides and wetlands at an altitude of 2500 m. After picking the grass in the autumn flowering season, adherent soil and moisture are removed, and it is mashed or sun-dried before use.

Resources and geographical distribution of L. rotatum Fries ex Nym

L. rotatum Fries ex Nym for medicinal use primarily grows in the wild. However, the yield is low because of environmental factors and excessive mining, necessitating artificial breeding, which also has a low yield. A survey found wild L. rotatum Fries ex Nym in Xilingol League, Horqin, and Hulun Buir of the Inner Mongolia Autonomous Region, but observed a decreasing growth trend year on year[4]. The shortage of L. rotatum Fries ex Nym has led to the use of Viola yedoensis Makino of the family Violaceae as a substitute medicine in most Mongolian hospitals. It is, therefore, crucial to immediately protect and direct increasing efforts toward improving resources required for growing L. rotatum Fries ex Nym. Currently, several challenges, such as the low germination rate of group embryos and the low success rate of inoculation, which affect the large-scale cultivation of L. rotatum Fries ex Nym, continue to persist in artificial cultivation and domestication of the plant[4]. Li[4] conducted a field investigation and found that the plant shows optimum growth during the dry season in February, with an average temperature of -13 to 18 °C and precipitation of 6-19 mm. The vegetation growth types include temperate grasses, mixed grasses meadow, halophytic meadow, temperate deciduous shrub, and broad-leaved forest[5]. According to the literature, L. rotatum Fries ex Nym is widely distributed in Inner Mongolia, Gansu, Yunnan, Xinjiang, Qinghai, Tibet, Sichuan, and other regions[6], usually on grassy slopes of hillsides and shrublands below an altitude of 4200 m[7]. Li[4] pointed out that L. rotatum Fries ex Nym is scattered in shrublands, alpine meadows, grassland wetlands, flat meadow grasslands associated with rivers, and alpine and hillside meadows in Xilingol, Inner Mongolia, Heilongjiang, Hebei, and other regions[4].

DOI: 10.5497/wjp.v11.i2.6 Copyright ©The Author(s) 2022.

Figure 1 The whole plant of Lomatogonium rotatum.

Characteristics of breeding and pollen viability of L. rotatum Fries ex Nym

Li et al^[7] set up fixed points in the field to monitor the morphology and characteristics of L. rotatum Fries ex Nym organs, dynamics during flowering, and types of pollinators. A systematic inspection and measurement of its growth and reproduction were conducted by calculating pollen viability, pollinable characteristics such as stigma, estimation of pollen-to-ovule ratio, and hybridization index, and artificially controlled pollination[7]. The results demonstrated that the flowering time of a single L. rotatum Fries ex Nym flower was 6-7 d and that the flowering time of a single plant could be classified into a common bud stage followed by the initial flowering, blooming, wilt, and litter periods. During this process, the open stigma was always higher than the anther, and the pollen vitality and stigma receptivity were relatively strong at 2-3 d after anthesis. In addition, the researchers also observed that the breeding system was mainly outcrossing, and some were self-compatible, which may require insect thrips as the primary pollinators. In the case of bagging without pollination after emasculation, the seed setting rate of the fruit was 0, indicating a lack of fusion reproduction[8]. Zhu et al[9] investigated the effects of different storage times and temperatures and the use of gibberellin reagents in promoting the flowering and growth rates of L. rotatum Fries ex Nym seeds. They found that changes in outdoor temperature and gibberellin immersion significantly promoted the germination and flowering of L. rotatum Fries ex Nym seeds[9].

Similarly, Li *et al*[10] intervened in the *L. rotatum* Fries ex Nym germination rate by adopting different temperatures and germination sites. They found that the highest germination index was on sand, under which condition the rot rate of the seeds was the lowest. Furthermore, the germination rate was highest at 40 °C. Therefore, the optimal conditions for *L. rotatum* Fries ex Nym seed germination may be the temperature of 40 °C and planting on sand[10].

TRADITIONAL APPLICATIONS

L. rotatum Fries ex Nym is a typical medicinal plant used for internal applications to prevent and treat various liver and gallbladder diseases. In 1998, it was recorded in the Drug Standard (Mongolian Medicine Volume) of the Ministry of Health. The plant helps degrade xieri and clears heat. In Mongolian medicinal prescriptions, L. rotatum Fries ex Nym is either combined with Herpetospermum caudigerum Wall and Ixeris Chinensis (Thunb.) Nakai to formulate a Lidan powder containing 28 medicinal herbs, or it is used alone to degrade the xieri heat of the gallbladder. In addition, it is used as a prescription combination of Digeda-15, Digeda-20, and Digeda-25 to treat common clinical diseases such as liver and gallbladder heat, redness, yellow appearance of the eye and skin, gallbladder stasis, and stasis of xieri, which may lead to organ injury[11]. In addition, Digeda-4, a combination of L. rotatum Fries ex Nym and Coptidis rhizoma, Gardenia jasminoides Ellis, and Dianthus superbus L., is used to reduce problems such as inflammation, sore throat, liver and gallbladder heat, blood heat, thirst, and irritability[2]. Furthermore, L. rotatum Fries ex Nym is used as an adjuvant, subordinate, or auxiliary medicine in several compound preparations. There are a total of 24 Mongolian medicine prescriptions that include L. rotatum Fries ex Nym, including three where L. rotatum Fries ex Nym is used as a monarch medicine, four where L. rotatum Fries ex Nym is used as a minister medicine, 16 as assistant medicines, and one as a guide medicine.

WJP https://www.wjgnet.com

CHEMICAL COMPOSITION

Research on the pharmacodynamic substances and chemical components of L. rotatum Fries ex Nym is still in the initial stages. To date, 38 compounds have been isolated and identified, mainly including flavonoids and xanthones, with a small number of iridoids, alkaloids, steroids, organic acids, amongst others.

Flavonoids

Flavonoids are abundant in most herbaceous plants, especially in higher plants, and possess a plethora of biological activities. According to the literature, L. rotatum Fries ex Nym contains about 16 flavonoids, including luteolin[12], apigenin, 5,7,3',4',5'-pentahydroxy flavonoids, quercetin, kaempferol, luteolin-7-O-glucoside, apigenin-7-O-glucoside[13], swertisin[14], swertianolin[15], isoorientin, mangiferin, isovitexin[16], carinoside A[17], carinoside B, carinoside C, and carinoside D[18] (Table 1 and Figure 2).

Xanthones

Ten xanthone compounds have been identified in L. rotatum Fries ex Nym: 6,8-dihydroxy-1,2-dimethoxy xanthone[19], 1,8-dihydroxy-3,4,5-trimethoxyxanthone, 1-hydroxy-3,7,8-trimethoxy xanthone, 8hydroxy-1,3,5-trimethyl xanthone, 1-hydroxy-3,5,8-trimethoxy xanthone[13], 1,8-dihydroxy-4,5dimethoxy-6,7-methylenedioxy xanthone, 5-O-D-gluco-pyranosyl-1,3,8-trihydroxy-5,6,7,8-tetrahydroxanthone, 1,3,5,8-tetrahydroxy-5,6,7,8-tetrah-ydroxanthone[20], 1,2,6-trihydroxyl xanthone-8-O-β-Dglucoside, and 1,4,8-trimethoxyxanthone--6-O- β -D-glucoronyl-(1 \rightarrow 6)O- β -D-glucoside[21] (Table 1 and Figure 2).

Terpenoids

Terpenoids are a class of compounds derived from methylcarboxylic acid with ≥ 2 isoprene units in the basic carbon frame. According to the literature, three iridoids (*i.e.*, swertiamarin[22-25], ursolic acid 3β hydroxy-ursol-11,12-ene-28,13β-lactone[14], and amarogentin[16,26]), as well as two pentacyclic triterpenes, oleanolic acid^[20], 2a-hydroxyoleanolic acid^[13], lomacarinoside A, and lomacarinoside B [27] are present in *L. rotatum* Fries ex Nym (Table 1 and Figure 2).

Other compounds

L. rotatum Fries ex Nym also contains organic acids, steroids[14], alkaloids[28,29], and other compounds (erythrocentaurin), in addition to the above-mentioned metabolites [13]. However, current research on this aspect is inadequate, warranting further studies (Table 1 and Figure 2).

Study on extraction process of L. rotatum Fries ex Nym

Chen et al[30] investigated the primary factors affecting total flavonoid extraction in L. rotatum Fries ex Nym using single-factor experiments. They then optimized the extraction method for the total flavonoids in L. rotatum Fries ex Nym by an orthogonal test using the rutin concentration as the standard and formulated the optimal extraction process for the total flavonoids. The results demonstrated that the optimal parameters for total flavonoid extraction from L. rotatum Fries ex Nym were: Ethanol concentration, 60%; solvent volume, 150 mL; extraction time, 8 h; total flavonoid extraction rate from *L. rotatum* Fries ex Nym, about 3.47%.

In addition, single-factor experiments were conducted to explore the effects of the ethanol percentage and volume used for extraction, the ultrasonic extraction time, and the liquid-to-sample ratio on the total saponin concentration extracted from L. rotatum Fries ex Nym. Response surface methodology was used to optimize the experimental conditions for ultrasonic extraction of L. rotatum Fries ex Nym, resulting in a gradual increase in the total saponin extraction yield. The experimental results demonstrated that the optimal experimental conditions for the extraction of total saponins from L. rotatum Fries ex Nym were as follows: Average volume content fraction of ethanol, 77%; average liquidto-solid ratio, 40 mL/g; ultrasound duration, 33 min. Under these conditions, the researchers found that the average total saponin concentration extracted from L. rotatum Fries ex Nym was 27.36 mg/g, which was close to the theoretically predicted value[31]. However, the optimization of the extraction process, using 65% ethanol, a solid-to-liquid ratio of 20 mL/g, and an extraction time of 20 min, defined by Liu et al[32]'s study, is considered the best method[32].

Fingerprint and mineral elements of L. rotatum Fries ex Nym

Sun et al[33] used high-performance liquid chromatography to determine the fingerprint of L. rotatum Fries ex Nym plants from 15 different places and cultivation areas. The results showed 15 common peaks, of which the five most common were swertiamarin, isoorientin, swertisin, apigenin, and luteolin. In addition, Yuan et al[34] measured the mineral elements in two Lomatogonium species using inductively coupled plasma-optical emission spectrometry, finding 21 mineral elements in Lomatogonium macranthum and 18 elements in Lomatogonium carinthiacum. Both Lomatogonium species had relatively high Ca, Mg, and Fe contents while the greatest difference was seen in the Co concentrations and the least difference was found in the Ti contents[34].

WJP | https://www.wjgnet.com

avonoids Luteolin Luteolin Apigenin S7.3'.4'.5'-pentahydroxy flavonoids U S7.3'.4'.5'-pentahydroxy flavonoids U S7.3'.4'.5'-pentahydroxy flavonoids U Cuercetin Cuercetin Kaempferol Luteolin-7-O-glucoside Luteolin-7-O-glucoside Cuercetin Swertisin	[12] [13]
Iuteolin [Apigenin [5/3 // 5'-pentahydroxy flavonoids [Quercetin [Kaempferol [Kaempferol [Juteolin 7-O-glucoside [Ayigenin 7-O-glucoside [Swertisin [Swertisin [Soorientin [Isoorientin [Angiferin [Carinoside A [Carinoside B [Carinoside C [Inviside C [Arinoside C [Phydroxy-1, 2-dimethoxy xanthone [1-hydroxy-3, 8-trimethoxy xanthone [1-hydroxy-3, 8-trinnethoxy xanthone [<	
Apigenin[57,3'A',5'-pentahydroxy flavonoids[Quercetin[Quercetin[Kaempferol[Luteolin-7-O-glucoside[Swertisin[Swertisin[Swertisin[Sovientin[Isovientin[Larinoside A[Carinoside B[Carinoside C[Carinoside D[Shydroxy-1, 2-dimethoxy xanthone[1-hydroxy-3, 8-trimethoxy xanthone[
5,7,3,4,5-pentahydroxy flavonoids[Quercetin[Quercetin[Kaempferol[Luteolin-7-O-glucoside[Ayigenin-7-O-glucoside[Swertisin[Swertisin[Swertianolin[Isovientin[Isovientin[Carinoside A[Carinoside B[Carinoside C[Carinoside D[Hydroxy-1,2-dimethoxy xanthone[1-hydroxy-3,7,8-trimethoxy xanthone[1,8-dihydroxy-1,4,5-trimethoxy xanthone[1,8-dihydroxy-3,4,5-trimethoxy xanthone[1,8-dihydroxy-3,4,5-trimethoxy xanthone[1,8-dihydroxy-3,4,5-trimethoxy xanthone[1,8-dihydroxy-3,4,5-trimethoxy xanthone[1,8-dihydroxy-3,4,5-trimethoxy xanthone[1,8-dihydroxy-3,4,5-trimethoxy xanthone[1,8-dihydroxy-3,4,5-trimethoxy xanthone[1,8-dihydroxy-1,4,5-trimethoxy Xanthone[1,8-dihydroxy	[13]
Quercetin[Kaempferol[Luteolin-7-O-glucoside[Apigenin-7-O-glucoside[Swertisin[Swertisin[Isoorientin[Isoorientin[Angiferin[Carinoside A[Carinoside B[Carinoside C[Carinoside C[Hongifer D[Apigenty-1,2-dimethoxy xanthone[I-hydroxy-3,7,8-trimethoxy xanthone[I-hydroxy-3,4,5-trimethoxy Xanthone[I-hydroxy-3,4,5-trimeth	
kaempferol [] Luteolin-7-O-glucoside [] Apigenin-7-O-glucoside [] Swertisin [] Swertisin [] Swertianolin [] Isorientin [] Isorientin [] Isoriextin [] Amgiferin [] Carinoside A [] Carinoside B [] Carinoside C [] Anoside C [] Individors/-1,2-dimethoxy xanthone [] I-hydroxy-3,7,8-trimethoxy xanthone [] I-hydroxy-3,5,8-trimethoxy Xanthone [] I-hydroxy-3,6,8-trimethoxy Xanthone [] I-hydroxy-3,7,8-trimethoxy Xanth	13]
Iuteolin-7-O-glucoside [] Apigenin-7-O-glucoside [] Swertisin [] Swertisin [] Swertianolin [] Isoorientin [] Isoorientin [] Isoorientin [] Isovitexin [] Carinoside A [] Carinoside B [] Carinoside C [] Isovitexin [] Additydroxy-1, 2-dimethoxy xanthone [] I-hydroxy-3,7, 8-trimethoxy xanthone [] I-hydroxy-3,5, 8-trimethoxy xanthone [] I-hydroxy-3,6, 1-trimethoxy xanthone [] I-hydroxy-3,6, 1-trimethoxy xanthone [] I-hydroxy-3,7,8-trimethoxy xanthone [] <	[13]
Apigenin-7-O-glucoside[Swertissin[Swertianolin[Isovientin[Isovientin[Isoviexin[Isoviexin[Carinoside A[Carinoside B[Carinoside D[Isoviexin-1[<t< td=""><td>[13]</td></t<>	[13]
Swertisin[Swertisinolin[Swertianolin[Isoorientin[Mangiferin[Sovitexin[Carinoside A[Carinoside B[Carinoside C[Carinoside D[Hydroxy-1, 2-dimethoxy xanthone[S-hydroxy-3, 5. Frimethoxy xanthone[I-hydroxy-3, 4. 5-trimethoxy Xanthone[I-hydroxy-3, 4. 5-tri	[13]
Swertianolin[]Isoorientin[]Mangiferin[]Sovitexin[]Carinoside A[]Carinoside B[]Carinoside C[]Carinoside D[]Anoside D[]Sovitexin[]Sovitexin-1, 2-dimethoxy xanthone[]I-hydroxy-3,7,8-trimethoxy xanthone[]I-hydroxy-3,5,8-trimethoxy xanthone[]I-hydroxy-3,4,5-trimethoxy Xanthon	[13]
Isoorientin [Jaorientin [Mangiferin [Jaovitexin [Carinoside A [Carinoside B [Carinoside C [Carinoside C [Carinoside D [Carin	[14]
Mangiferin [Mangiferin [Isovitexin [Carinoside A [Carinoside B [Carinoside C [Carinoside D	[15]
Isovitexin[Isovitexin[Carinoside A[Carinoside B[Carinoside C[Carinoside D[Carinoside D[6,8-dihydroxy-1,2-dimethoxy xanthone[1-hydroxy-3,7,8-trimethoxy xanthone[8-hydroxy-1,3,5-trimethoxy xanthone[1-hydroxy-3,5,8-trimethoxy xanthone[1,8-dihydroxy-3,4,5-trimethoxy xanthone[1,8-dihydroxy-3,4,5-trimeth	[16]
Carinoside A[Carinoside B[Carinoside C[Carinoside D[Carinoside D[Abilydroxy-1, 2-dimethoxy xanthone[1-hydroxy-3,7, 8-trimethoxy xanthone[8-hydroxy-1,3, 5-trimethoxy xanthone[1-hydroxy-3,5, 8-trimethoxy xanthone[1,8-dihydroxy-3,4, 5-trimethoxy xanthone[[16]
Carinoside B[Carinoside C[Carinoside D[Carinoside D[6, 8-dihydroxy-1, 2-dimethoxy xanthone[1-hydroxy-3,7, 8-trimethoxy xanthone[8-hydroxy-1,3, 5-trimethyl xanthone[1-hydroxy-3,5, 8-trimethoxy xanthone[1, 8-dihydroxy-3, 4, 5-trimethoxy xanthone[1, 8-dihydroxy-3, 8-trimethoxy xanthone[1, 8-dihydroxy-3, 8-trimethoxy xanthone[1, 8-dihy	[16]
Carinoside C [Carinoside D [Carinoside D [of, 8-dihydroxy-1, 2-dimethoxy xanthone [carinoside D [carinosi	[17]
Carinoside D [] Inthones 6, 8-dihydroxy-1, 2-dimethoxy xanthone [] 1-hydroxy-3,7, 8-trimethoxy xanthone [] 8-hydroxy-1,3, 5-trimethyl xanthone [] 1-hydroxy-3,5, 8-trimethoxy xanthone [] 1, 8-dihydroxy-3, 4, 5-trimethoxy xanthone []	[18]
Initiana anti- anti- base anti- base anti- a	[18]
6, 8-dihydroxy-1, 2-dimethoxy xanthone[:1-hydroxy-3,7, 8-trimethoxy xanthone[:8-hydroxy-1,3, 5-trimethyl xanthone[:1-hydroxy-3,5, 8-trimethoxy xanthone[:1, 8-dihydroxy-3, 4, 5-trimethoxy xanthone[:	[18]
1-hydroxy-3,7, 8-trimethoxy xanthone[18-hydroxy-1,3, 5-trimethyl xanthone[11-hydroxy-3,5, 8-trimethoxy xanthone[11, 8-dihydroxy-3, 4, 5-trimethoxy xanthone[1	
8-hydroxy-1,3, 5-trimethyl xanthone[11-hydroxy-3,5, 8-trimethoxy xanthone[11, 8-dihydroxy-3, 4, 5-trimethoxy xanthone[1	[19]
1-hydroxy-3,5, 8-trimethoxy xanthone[11, 8-dihydroxy-3, 4, 5-trimethoxy xanthone[1	[13]
1, 8-dihydroxy-3, 4, 5-trimethoxyxanthone	[13]
	[13]
5-O-D-glucopyranosyl-1,3,8-trihydroxy-5,6,7,8-tetrahydroxanthone [2	[13]
	[20]
1,3,5,8-tetrahydroxy-5,6,7,8-tetrah-ydroxanthone	[20]
1, 8-dihydroxy-4, 5-dimethoxy-6, 7-methylene dioxy xanthone	[20]
1,2, 6-trihydroxyl xanthone-8-O-β-D-glucoside	[21]
$1,4,8$ -trimethoxyxanthone-6-O- β -D-glucoronyl- $(1\rightarrow 6)$ O- β -D-glucoside [2]	[21]
rpenoids	
Oleanolic acid	[20]
2a-hydroxyoleanolic acid	[13]
Swertiamarin [2	[22-25]
Amarogentin [7	[16,26]
Ursolic acid 3 β-hydroxy-ursol-11, 12-ene-28, 13β-lactone	[14]
Lomacarinoside A	[27]
Lomacarinoside B	[27]
ganic acids	
Ferulic acid	[12]
Caffeic acid	[29]
kaloids	
Berberine hydrochloride [2	[28]

Steroid		
37	Daucosterol	[14]
Other		
38	Erythrocentaurin	[<mark>13</mark>]

PHARMACOLOGICAL ACTION OF L. ROTATUM FRIES EX NYM

Effects of L. rotatum Fries ex Nym powder on hepatitis B

Bai et al[35] investigated the anti-hepatitis B effect of L. rotatum Fries ex Nym powder and found that L. rotatum Fries ex Nym had a relatively low cytotoxicity to HepG2 cells, with some inhibitory effect on the number of hepatitis B virus (HBV) DNA copies in the cells. In addition, in vitro experiments showed that L. rotatum Fries ex Nym is able to counteract HBV to some degree. This may be because L. rotatum Fries ex Nym acts against HBV by directly inducing apoptosis, thereby blocking HBV replication in HepG 2 cells.

Anti-inflammatory effects of L. rotatum Fries ex Nym

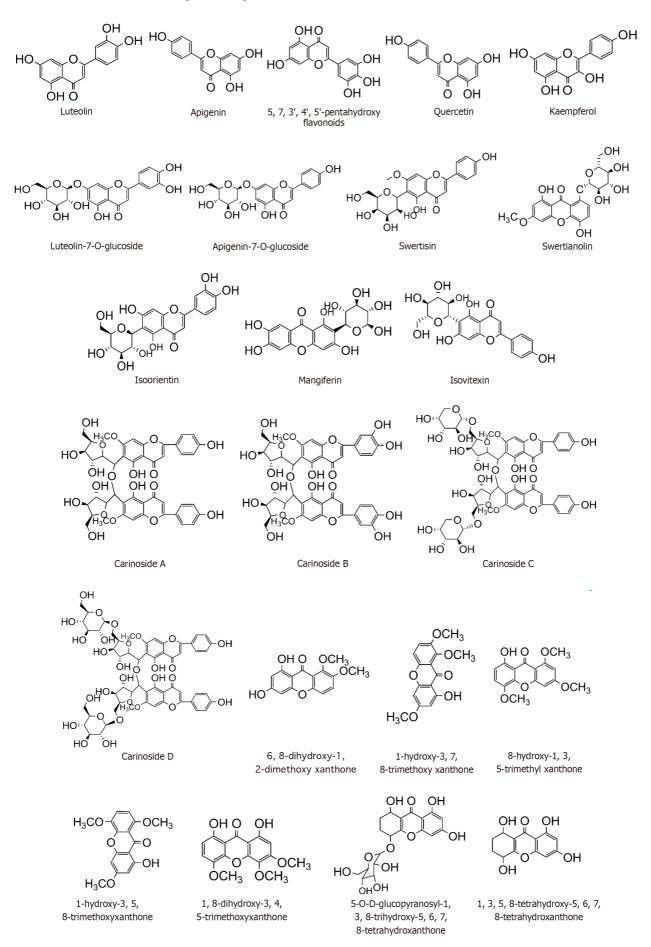
Ethyl acetate has been found to be the active component responsible for the anti-inflammatory effect of L. rotatum Fries ex Nym, which has significant antibacterial activity against both Gram-positive and negative bacteria such as Escherichia coli, Staphylococcus alba, drug-resistant Staphylococcus aureus, S. aureus, and Pseudomonas aeruginosa [36]. L. rotatum Fries ex Nym also contains several anti-inflammatory compounds, including sweroside, swertiamarin, and luteolin. Chen et al [37] reported that swertiamarin had anti-inflammatory, antioxidant, and anti-fibrotic effects in rats with smoking-exposed prostate dysfunction[37]. Aziz et al [38] also reported that luteolin had strong anti-inflammatory effects in both in vivo and in vitro experiments[38].

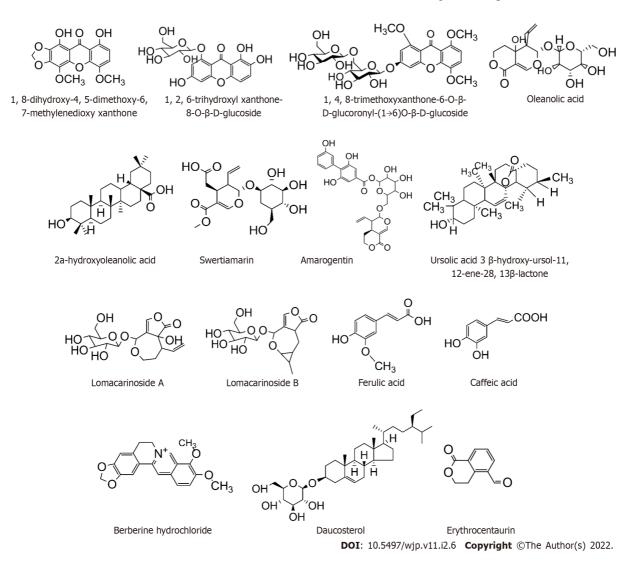
Anti-acute liver injury effect

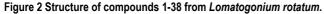
L. rotatum Fries ex Nym extracts with different polarities were reported to have pharmacological effects on acute liver injury[39]. In a drug interaction study of L. rotatum Fries ex Nym prescription medication, an L. rotatum Fries ex Nym water extract was found to significantly protect liver function in rats with carbon tetrachloride (CCl₄)-induced liver astrocyte damage[40]. In a further study, the urine of rats with liver injury was analyzed after L. rotatum Fries ex Nym administration, showing 19 common peaks, one of which was the drug itself, 14 were metabolites passed through the body, and the rest were endogenous components of urine[41]. In addition, the study found that the Digeda-4 decoction had a protective action in mice with pyloric ligation-induced liver injury. It has been suggested that L. rotatum Fries ex Nym may affect the protein expression of MRP3 and MRP4 by regulating the nuclear receptors CAR and PXR, resulting in liver protection [42]. An experimental metabolomics study found that L. rotatum Fries ex Nym administration restored several disturbed metabolic pathways, including those involving linoleic acid and glycerolipid metabolism. The use of another eight metabolites as potential biomarkers was proposed to help clarify the liver protective mechanism of L. rotatum Fries ex Nym[43]. Zhao et al[44] also proposed that the liver protective activity of L. rotatum Fries ex Nym may be related to metabolites in rat plasma and liver[44].

Anti-obesity effect

Bao et al[45] investigated the effect of L. rotatum Fries ex Nym on weight loss based on the function of bitter receptors in rats with obesity induced by a high-fat and high-energy diet. The L. rotatum Fries ex Nym extract significantly reduced body weight, Lee's index, epididymal fat, perirenal fat, and mesenteric fat deposition in the rats. It also reduced serum triglyceride and total cholesterol levels to a certain extent, indicating its potential for lipid-lowering, cholesterol-lowering, and weight-loss effects. Chemical analysis demonstrated that flavonoids, glycosides, and alkaloids were the primary components of L. rotatum Fries ex Nym, and the main source of bitterness was base substances. The effects of L. rotatum Fries ex Nym on fat metabolism and its bitter receptor activation mechanism require further investigation^[46].


CONCLUSION


As a highly distinctive Mongolian medicinal herb, L. rotatum Fries ex Nym is traditionally used to prevent and treat liver and gallbladder diseases. However, its clinical application value and further development are limited by the strict requirements of its growing conditions, high demand for medicinal materials, decrease in natural resources, and insufficient scientific and technological expertise in ethnic minority areas. To date, a total of 38 compounds have been isolated and identified from L.



WJP | https://www.wjgnet.com

Dai LL et al. Botanical, chemical, and pharmacological characteristics of L. rotatum

rotatum Fries ex Nym, with flavonoids, xanthones, and terpenoids being the main metabolites. While pharmacological studies on L. rotatum Fries ex Nym have mainly focused on hepatitis, liver injury, and weight loss, the mechanisms of its pharmacological activity remain elusive and further comprehensive in vivo and in vivo experimental studies are necessary. Thus, our study may provide a foundation for further research on L. rotatum Fries ex Nym and its clinical applications.

FOOTNOTES

Author contributions: Dai LL and Eni RG performed the data collection and wrote the manuscript; Fu MH and Ba GN wrote and reviewed the manuscript.

Supported by National Natural Science Foundation of China, No. 81803845; Natural Science Foundation of Inner Mongolia Autonomous Region, No. 2018MS08040; Construction Project of "Inner Mongolia Autonomous Region Mongolian Medicine and Food Source Protection and Utilization Innovation Team", No. 190301; and Graduate Research Project of Inner Mongolia Minzu University, No. NMDBS1901.

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is noncommercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

WJP | https://www.wjgnet.com

ORCID number: Li-Li Dai 0000- 0003-4821-596X; Rong-Gui Eni 0000-0003-2481-3009; Ming-Hai Fu 0000-0002-5096-8744; Gen-Na Ba 0000-0002-0834-3863.

S-Editor: Fan JR L-Editor: Wang TQ P-Editor: Chen YX

REFERENCES

- Health Department of Inner Mongolia Autonomous Region. Inner Mongolia Mongolian medicinal materials standard. 1 Chifeng: Inner Mongolia Science and Technology Press; 1987: 162-163
- Pharmacopoeia Committee, Ministry of Health, PRC. Drug standard of the Ministry of Health of the People's Republic 2 of China•Mongolian Part. China; 1998: 91
- Bai MR, Gao YF, BA GN. Study on Lomatogonium rotatum powder and its anti-hepatitis B virus in vitro. Zhongyaocai 3 2010; **33**: 789-791 [DOI: 10.13863/j.issn1001-4454.2010.05.045]
- Li ZH. The Ecology Suitability and Wildlife Tending Studies of Lomatogonium rotatum (L.) Fries ex Nym. Neimenggu Minzu Daxue 2015; 3
- Chen SL, Wei JH, Sun CZ, Liu ZQ, Zhao RH, Wang JY, Zhou YQ, Xiao XH. The development of geographic information system and the study on the suitability of origin of astragalus mongolicus. Shijie Kexue Jishu-Zhongyiyao Xiandaihua 2006; 3: 47-53
- Sun CZ, Liu ZQ, Chen SL, Wei JH, Zhao RH, Wang JY, Zhou YQ. Design and implementation of a GIS-based suitability analysis system for Chinese medicinal materials. Shijie Kexue Jishu-Zhongyiyao Xiandaihua 2006; 3: 112 117
- Li XX, Ba GN, Yang HS, Sun DZ, Bao JH. Comparison on Pollen Germination and Viability Determination Method of Lomatogonium rotatum. Anhui Nongye Kexue Xuebao 2017; 45: 127-129
- Li XX, Ba GN, Yang HS, Zhang SJ. Studies on Flowering Dynamics and Breeding System of Mongolian Medicine Lomatogonium rotatum. Yuanyi Xuebao 2018; 45: 1393-1401 [DOI: 10.16420/j.issn.0513-353x.2018-0168]
- Zhu Hong, Zhang CH, Wei KH, Zhang L, Li WH, Zhou LS. Study on Influencing Factor of Lomatogonium rotatum Seed Germination. Xiandai Zhongyiyao 2015; 17: 232-235
- 10 Li XX, Yang HS, Ba GN, Bao JH, Sun DZ. Seed Germination Condition of Mongolia Medicine Plant Lomatogonium rotatum. Nongye Xuebao 2017; 7: 48-51
- Luo BS. Mongolian pharmacy. Beijing: Ethnic Publishing House; 1989: 149-151 11
- Wang XM, Ba GN, Bai MG. Determination of luteolin in Lomatogonium rotatum by HPLC. Zhonghua Minzu Yixue Zazhi 12 2009: 38-39
- Jia LY, Yuan JZ, Sun QS. Isolation and identification of chemical constituents of flower of Lomatogonium 13 rotatum(L.)Fries ex Nym(2). Shenyang Yiyao Daxue Xuebao 2011; 28: 260-263
- Wang ZW, Long P, Zhang CH, Wu GD, Zhang N, Li MH. HPLC Determination of Swertiamain and Swertisin in Herba 14 Lomalogonium rotatum by HPLC. Zhonghua Shiyan Fangji Zazhi 2013; 19: 106-108 [DOI: 10.11653/syfj2013100106]
- 15 Zhang ZH, Zeng QY, Lin PC, Zhao Y. Content Analysis of Three Constituents in Tibetan Herb Lomatogonium rotatum (L.) Fries es Nym by RP HPLC. Hubei Nongye Kexue 2015; 54 [DOI: 10.14088/j.cnki.issn0439-8114.2015.03.047]
- 16 Li YL, Suo YR, Liao ZX, Ding LS. The glycosides from Lomatogonium rotatum. Nat Prod Res 2008; 22: 198-202 [PMID: 18266146 DOI: 10.1080/147864105004626031
- Bao B, Wang Q, Wu X, Tai W. The isolation and structural elucidation of three new biflavonoid glycosides from 17 Lomatogonium carinthiacum. Nat Prod Res 2015; 29: 1358-1362 [PMID: 25812750 DOI: 10.1080/14786419.2015.1025399]
- 18 Wang Q, Han N, Wu X, Tai W, Dai N, Wu R, Wu J, Bao B. A biflavonoid glycoside from Lomatogonium carinthiacum (Wulf) Reichb. Nat Prod Res 2015; 29: 77-81 [PMID: 25260189 DOI: 10.1080/14786419.2014.959009]
- Bao L, Hu L, Zhang Y, Wang YI. Hypolipidemic effects of flavonoids extracted from Lomatogonium rotatum. Exp Ther 19 Med 2016; 11: 1417-1424 [PMID: 27073459 DOI: 10.3892/etm.2016.3038]
- Jia LY, Li Q, Yuan JZ, Sun QS. Isolation and identification of chemical constituents of whole plant of Lomatogonium 20 rotatum(L.)Fries ex Nym. Shenyang Yiyao Daxue Xuebao 2010; 29: 704-706
- Wang Q, Bao B, Chen Y. Structure elucidation and NMR assignments of two unusual xanthones from Lomatogonium 21 carinthiacum (Wulf) Reichb. Magn Reson Chem 2014; 52: 37-39 [PMID: 24347400 DOI: 10.1002/mrc.4024]
- 22 Chen YL. Study of the Chemical Contituents of a Lomatogonium rotatum Turez. Neimenggu Minzu Daxue 2014; 6
- 23 Wang XM, Ba GN, Bai MG. Determination of Swertiamain Content in Herba Lomatogonii by HPLC. Neimenggu Minzu Daxue 2007; 22: 320-322
- 24 Bao TLG. Contents Determination of Swertiamarin from Lomatogonium Rotatum of Different Origins by HPLC. Liaoning Zhongyi Zazhi 2013; 40: 2558-255 [DOI: 10.13192/j.issn.1000-1719.2013.12.066]
- 25 Song P, Wu QX, Yu XR. HPLC simultaneous determination of swertiamarin in Lomatogonium rotatum (L.) Fries ex Fern. Yaowu Fenxi Zazhi 2009; 29: 1013-1015
- 26 Ba GN, Bao ML, Wang XM, Wu YG, Ao WLJ, Wang XL. Study on Quality Standard of Mongolian Medicine Lomatogonium rotatum. Zhongguo Minzu Yiyao Zazhi 2018; 24: 40-42 [DOI: 10.16041/j.cnki.cn15-1175.2018.04.026]
- 27 Wang QH, Dai NYT, Han NRCGT. The structural elucidation and antimicrobial activities of two new monoterpene glucoside derivatives from Lomatogonium carinthiacum (Wulf) Reichb. Magn Reson Chem 2014; 52: 511-514 [DOI: 10.1002/mrc.4095
- Yu QF, Lin PC. Determination of Amarogerth in Lomatogonium Rotatum by RP-HPLC. Anhui Nongye Kexue 2007; 35: 28

967-968

- 29 Xi HS, Xu L, Wang ZM, Na RH. Determination of Content of Berberine Hydrochloride in the Mongolian Medicine Leizhuhua by RP-HPLC. Guangpu Shiyanshi 2008; 25: 1281-1283
- 30 Chen YL, Ye RG, Tong YF, Ba DRH, Ba GN. Study on the extraction technology of total flavonoids from Lomatogonium rotatum(L.)Fries ex Nym. Shizhen Guoyi Guoyao 2014; 25: 1544-1546 [DOI: 10.3969/j.issn.1008-0805.2014.07.003]
- 31 Li HJ, Liu T, Sun xj, Fan P, Li X. Optimization of Ultrasonic-Assisted Extraction of Total Saponins from Lomatogonium Rotatum by Response Surface Method*. Zhongguo Yaoye 2018; 27: 26-30 [DOI: 10.3969/j.issn.1006-4931.2018.02.007]
- 32 Liu T, Gao YH, Ge CJ, Yan CH, Liang YQ, Li X. Optimization of ultrasonic-assisted extraction of total flavonoids from Lomatogonium rotatum by response surface analysis*. Beijingdaxue Xuebao 2016; 39: 502-507
- Sun XJ, Xi LTY, Na SS, Li HJ, Li Y, Xiang CL, Li X. HPLC fingerprint of Lomatogonium rotatum. Zhongcaoyao 2019; 33 50: 1703-1707 [DOI: 10.7501/j.issn.0253-2670.2019.07.031]
- 34 Yuan YY, Sun J, Wang YH, Zhou YB, Ye RR, Deng J, Peng M, Lu XF. Measurement of 21 mineral elements in two Lomatogonium by ICP-OES. Gansu Nongye Daxue Xuebao 2016; 51: 79-83 [DOI: 10.13432/j.cnki.jgsau.2016.02.014]
- 35 Bai MR, Gao YF, Ba GN. In vitro study on anti - hepatitis b virus of Lomatogonium rotatum powder. Zhongyaocai 2010; 33: 789-791
- 36 Sun JJ, Dong Y, Yu DS, Hu Y. Studies on antibacterial effective fraction of Lomatogonium rotatum. Neimenggu Yike Daxue Xuebao 2014; 36: 452-454 [DOI: 10.16343/j.cnki.issn.2095-512x.2014.05.004]
- Chen J, Liu J, Lei Y, Liu M. The anti-inflammation, anti-oxidative and anti-fibrosis properties of swertiamarin in cigarette 37 smoke exposure-induced prostate dysfunction in rats. Aging (Albany NY) 2019; 11: 10409-10421 [PMID: 31739286 DOI: 10.18632/aging.102467]
- 38 Aziz N, Kim MY, Cho JY. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J Ethnopharmacol 2018; 225: 342-358 [PMID: 29801717 DOI: 10.1016/j.jep.2018.05.019]
- 39 He NL. Lomatogonium different extracts of pharmacological effects of anti acute liver injury research. Neimenggu Minzu Daxue 2016
- 40 Bao ML, Su RGLT, Aa LS, Yu H, Wang H. Mongolian medicine lomatogonium rotatum antibody-induced CCl4 Study on the injury of rat hepatic stellate cells. Zhongguo Minzu Minjian Yiyao 2019; 25: 42-45
- Tong YF, Ba GN, Bai MR, Bao ML, Ye RG, La XNMJL. Chemical composition analysis of Herba Lomatognii in the urine 41 from ratmodel of D-GlaN induced acute liver injury by LC-MS. Zhongguo Minzu Yixueyuminzuyixue Zazhi 2015; 12-16
- 42 Wang H, Hong M, Tu L, Bai MR, Bao ML, Ba GN. Effect and Mechanism of "Digda-4 Decoction"in Acute Liver Injury Induced by Pylorus Ligation. Zhongguo Zhongyi Dangan 2017; 35: 29-32
- 43 Chen R, Wang Q, Zhao L, Yang S, Li Z, Feng Y, Chen J, Ong CN, Zhang H. Lomatogonium Rotatum for Treatment of Acute Liver Injury in Mice: A Metabolomics Study. Metabolites 2019; 9 [PMID: 31615066 DOI: 10.3390/metabo9100227]
- Zhao L, Ouyang H, Wang Q, Fan D, Wang Y, Yang S, Li Z, Pan L, Feng Y. Chemical fingerprint analysis and metabolic 44 profiling of 50% ethanol fraction of Lomatogonium rotatum by ultra-performance liquid chromatography/quadrupole-time of flight mass spectrometry. Biomed Chromatogr 2019; 33: e4651 [PMID: 31313844 DOI: 10.1002/bmc.4651]
- 45 Bao TRGL. The study of anti-obesity effect of bitter Mongolian Medicine Digeda on high-fat high-energy diets induced obese rats. Neimenggu Minzu Daxue 2019
- 46 Wu QZ, Bao BTE, Bai HH. Research Development of Traditional Mongolian Medicine Herba lomatognii. Shizhen Guoyi Guovao 2004: 15: 366-367

Published by Baishideng Publishing Group Inc 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA Telephone: +1-925-3991568 E-mail: bpgoffice@wjgnet.com Help Desk: https://www.f6publishing.com/helpdesk https://www.wjgnet.com

World Journal of *Pharmacology*

World J Pharmacol 2022 November 28; 11(3): 16-47

Published by Baishideng Publishing Group Inc

World Journal of Pharmacology Pharmacology

Contents

Continuous Publication Volume 11 Number 3 November 28, 2022

REVIEW

Controversial usages of kratom (Mitragyna speciosa): For good or for evil 16

Basheer M, Khudhair Jasim R, Harn GL

ORIGINAL ARTICLE

Basic Study

27 Antidepressant-like potential of silymarin and silymarin-sertraline combination in mice: Highlighting effects on behaviour, oxidative stress, and neuroinflammation

Onaolapo AY, Sulaiman H, Olofinnade AT, Onaolapo OJ

Contents

Continuous Publication Volume 11 Number 3 November 28, 2022

ABOUT COVER

Editorial Board Member of World Journal of Pharmacology, Fares EM Ali, MSc, PhD, Assistant Professor, Lecturer, Research Scientist, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt. FaresAli@azhar.edu.eg

AIMS AND SCOPE

The primary aim of World Journal of Pharmacology (WJP, World J Pharmacol) is to provide scholars and readers from various fields of pharmacology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WIP mainly publishes articles reporting research results and findings obtained in the field of pharmacology and covering a wide range of topics including antineoplastic protocols, chelation therapy, chemoprevention, chemoradiotherapy, adjuvant chemotherapy, consolidation chemotherapy, drug administration routes, drug administration schedule, drug delivery systems, drug prescriptions, combination drug therapy, computer-assisted drug therapy, electrochemotherapy, enema, fluid therapy, home infusion therapy, hormone replacement therapy, inappropriate prescribing, induction chemotherapy, maintenance chemotherapy, opiate substitution treatment, orthomolecular therapy, photochemotherapy, pleurodesis, polypharmacy, premedication, prescription drug misuse, sclerotherapy, self-administration, self-medication, and thrombolytic therapy.

INDEXING/ABSTRACTING

The WJP is now abstracted and indexed in Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Yi-Xuan Cai; Production Department Director: Xiang Li; Editorial Office Director: Yun-Xiaojiao Wu.

NAME OF JOURNAL World Journal of Pharmacology	INSTRUCTIONS TO AUTHORS https://www.wjgnet.com/bpg/gerinfo/204
ISSN	GUIDELINES FOR ETHICS DOCUMENTS
ISSN 2220-3192 (online)	https://www.wjgnet.com/bpg/GerInfo/287
LAUNCH DATE	GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
February 9, 2012	https://www.wjgnet.com/bpg/gerinfo/240
FREQUENCY	PUBLICATION ETHICS
Continuous Publication	https://www.wjgnet.com/bpg/GerInfo/288
EDITORS-IN-CHIEF	PUBLICATION MISCONDUCT
Pharkphoom Panichayupakaranant, Ahmed M Kabel, Muhammad Shahzad	https://www.wjgnet.com/bpg/gerinfo/208
EDITORIAL BOARD MEMBERS	ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/2220-3192/editorialboard.htm	https://www.wjgnet.com/bpg/gerinfo/242
PUBLICATION DATE	STEPS FOR SUBMITTING MANUSCRIPTS
November 28, 2022	https://www.wjgnet.com/bpg/GerInfo/239
COPYRIGHT	ONLINE SUBMISSION
© 2022 Baishideng Publishing Group Inc	https://www.f6publishing.com

© 2022 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com

World Journal of WŨ Pharmacology

Submit a Manuscript: https://www.f6publishing.com

World J Pharmacol 2022 November 28; 11(3): 16-26

DOI: 10.5497/wjp.v11.i3.16

ISSN 2220-3192 (online)

REVIEW

Controversial usages of kratom (Mitragyna speciosa): For good or for evil

Murtadha Basheer, Rana Khudhair Jasim, Gam Lay Harn

Specialty type: Pharmacology and pharmacy

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report's scientific quality classification

Grade A (Excellent): 0 Grade B (Very good): B Grade C (Good): C Grade D (Fair): 0 Grade E (Poor): 0

P-Reviewer: Emran TB, Bangladesh; Ma Y, China

Received: July 15, 2022 Peer-review started: July 15, 2022 First decision: September 26, 2022 Revised: October 4, 2022 Accepted: November 23, 2022 Article in press: November 23, 2022 Published online: November 28, 2022

Murtadha Basheer, Rana Khudhair Jasim, Gam Lay Harn, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia

Corresponding author: Gam Lay Harn, PhD, Professor, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Minden 11800, Penang, Malaysia. layharn@usm.my

Abstract

Kratom (*Mitragyna speciosa*) is a plant that grows well in tropical climates such as in Southeast Asia. Traditionally, people discovered it possessed a stimulating effect that relieved tiredness. Furthermore, it contains analgesic and medicinal properties for the treatment of pain, diarrhea, muscle discomfort, and blood pressure and to enhance stamina. Nevertheless, long term or regular consumption of kratom leads to addiction. This is because the main alkaloid of kratom, mitragynine, binds to opioid receptors and exerts a euphoric effect similar to that of morphine, which may lead to death. Due to this reason, kratom has been listed as a regulated substance in many countries including the United States, Thailand, Malaysia, Bhutan, Finland, Lithuania, Denmark, Poland, Sweden, Australia, and Myanmar. Usages of kratom carry two pharmacological effects depending on dosage. Low-dose kratom exerts a stimulating effect that refreshes the user. Highdose kratom exerts sedative effects that can lead to addiction similar to that of morphine. Despite the euphoric effect of kratom, the beneficial values of kratom to human health is indisputable. Therefore, a complete banning of kratom may cause a loss to pharmaceutical industry. Rather, a controlled or selective usage of kratom will be a better choice.

Key Words: Kratom; Opioid; Pharmacological actions; Toxicity; Addiction; Herbal plant

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Traditionally, people discovered kratom (Mitragyna speciosa) possessed a stimulating effect that relieved tiredness. Long term or regular consumption of kratom leads to addiction because the main alkaloid of kratom binds to opioid receptors and exerts a euphoric effect. Due to this reason, kratom has been listed as a regulated substance in many countries. Despite the euphoric effect of kratom, the beneficial values of kratom to human health is indisputable. Therefore, a complete banning of kratom may cause a loss to pharmaceutical industry. Rather, a controlled or selective usage of kratom will be a better choice.

Citation: Basheer M, Khudhair Jasim R, Harn GL. Controversial usages of kratom (Mitragyna speciosa): For good or for evil. World J Pharmacol 2022; 11(3): 16-26 URL: https://www.wjgnet.com/2220-3192/full/v11/i3/16.htm

DOI: https://dx.doi.org/10.5497/wjp.v11.i3.16

INTRODUCTION

Kratom (*Mitragyna speciosa*) (Figure 1) is a plant native to Southeast Asia. It has been planted as a recreational herb due to its analgesic properties^[1]. Kratom was originally recorded for its stimulating effect. The leaves of the tree that are exploited for its pharmacological actions contain different colored veins (white, green, or red) that have been connected to a variety of effects^[2]. The red vein leaf is popular in Thailand for its potency[3]. Traditionally, the raw leaves were chewed for their analgesic and soothing effect[2]. In addition, kratom leaves have been used to treat diarrhea, muscle discomfort, decrease blood pressure, and enhance stamina in Southeast Asia[4]. Antispasmodic, muscle relaxant, and antidiarrheal properties of kratom are still in use in the region, while its stimulant and analgesic effects are popular home remedies[3,5].

Folk medicine in Southeast Asia has recognized kratom as an herb[6] in the form of "herbal tea." Its use in the searing heat of the tropics helps workers stay alert and productive. Kratom is widely used to wean morphine addicts off the drug^[7]. In fact kratom was utilized historically as an opioid substitute, and it was once widely used in Malaysia and Thailand as an opium replacement and countermeasure [8]

Nevertheless, kratom use has been banned by the local government in Malaysia[8], where it was classified as a poison under the Poison Act[6]. In Thailand, kratom was classified as a Schedule 5 substance under the Thai Narcotics Act. Bhutan, Finland, Lithuania, Denmark, Poland, Sweden, Australia, and Myanmar have kratom under control or regulation [6]. The United States also regulated the use of kratom when the United States Drug Enforcement Administration classified it as a drug of concern^[9]. The Centers for Disease Control and Prevention (CDC) released a study on the harmful effects of kratom use on health, where 660 reports on the exposures were documented^[10]. In addition, the CDC also documented hundreds of deaths connected with kratom usage[11,12]. Furthermore, the Food and Drug Administration does not acknowledge it as a recognized supplement. Subsequently, the prominence of kratom in the American psyche was reintroduced, where mitragynine and 7hdroxymitragynine were announced as substances to be added to Schedule I of the Controlled Substances Act by the Drug Enforcement Administration. The Drug Enforcement Administration statement classified the chemicals as Schedule I, meaning kratom has no recognized medicinal value and a significant potential for misuse^[13]. Despite all these regulations, several nations continue to allow kratom use today as there is no conclusive evidence that kratom use has the same negative health consequences as conventional opioids[14].

Although the Poisons Act of 1952 makes it illegal to consume kratom in Malaysia, the native tree and tea decoctions are abundantly available in the country[15]. In the United States, kratom products can be purchased from shops and online distributors. Kratom products are available in a variety of forms, including tablets, tea drinks, and powders[10,15]. Increased sales of kratom in Europe and North America have increased worries about its safety and prompted some European governments to prohibit the plant and its active alkaloids^[16].

Kratom was legalized in Thailand in 2018 for therapeutic use after a prohibition on its usage, manufacture, and possession was overturned[17]. Following this legalization, many other countries may follow suit. In view of the potential negative effects of kratom, would this legalization be beneficial to society?

PHARMACOLOGICAL ACTIVE ALKALOIDS OF KRATOM

More than 40 compounds were isolated and chemically characterized from *Mitragyna speciosa* since the 1960s[18]. Thus far, only four of these components are pharmacologically active, namely mitragynine, 7-

DOI: 10.5497/wjp.v11.i3.16 Copyright ©The Author(s) 2022.

Figure 1 Kratom plant.

hydroxymitragynine, speciociliatine, and corynantheidine[19,20]. Mitragynine is the most common alkaloid of the kratom plant^[21], and it can be easily oxidized^[21]. Mitragynine makes up 66% of the alkaloid content of kratom. On the other hand, 7-hydroxymitragynine was identified as a minor ingredient of kratom leaves extract[6] that makes up 0.04% of the alkaloids[22]. Speciogynine, paynantheine, and mitraphylline are also indole alkaloids of kratom[23]. These compounds are not pharmacologically active, but they contribute synergistically to the overall effect of kratom that formed the diversity of alkaloids found in kratom extracts.

REPORTED MECHANISMS FOR PHARMACOLOGICAL EFFECTS OF KRATOM

Mitragynine and 7-hydroxymitragynine have the ability to target opioid receptors, yet their binding affinity to opioid receptors is significantly different[24]. Mitragynine has a lower binding affinity to opioid receptors than morphine, while 7-hydroxymitragynine is significantly more powerful than either, which is approximately 46 times the potency of mitragynine and 13 times the potency of morphine[25,26]. Therefore, 7-hydroxymitragynine has been targeted as the most important factor in the development of addiction and toxicity, while mitragynine poses a small danger[27,28]. The greater binding affinity of 7-hydroxymitragynine to opioid receptors is due to the addition of a hydroxyl group at the C7 position[19]. Both mitragynine and 7-hydroxymitragynine have been demonstrated to work as agonists, with mitragynine activating primarily μ - and δ -receptors and 7-hydroxymitragynine activating primarily μ - and κ -receptors[26,29,30]. Nonetheless, contradictory evidence suggests a different view. Rather than acting as simple agonists, mitragynine and 7-hydroxymitragynine appear to exert differential effects on distinct receptors^[21] in which mitragynine and 7-hydroxymitragynine exert both agonistic and antagonistic characteristic upon binding to opioid receptors. On the other hand, they are partial agonists to μ -receptors, competitive antagonists to δ -receptors, and their effects on κ -receptors are very minimal[31].

Kratom contains indole alkaloids. These indole alkaloids are structurally and pharmacodynamically unlike its opioid rival. Therefore, they were identified as atypical opioids in order to distinguish them from morphine, semisynthetic opioids, and endogenous ligands[32]. Upon binding to opioid receptors, the indole alkaloids (such as kratom alkaloids) activate G-protein-coupled receptors. However, unlike conventional opioids (such as morphine), indole alkaloids do not initiate the β -arrestin pathway when they activate G-protein-coupled receptors[5]. This process refers to biased agonism or ligand-directed signaling that permits a single receptor to exert numerous distinct intracellular effects by selectively disabling the receptor's various signaling cascades[33]. It is worth noting that symptoms of opioid use like respiratory depression, sleepiness, and constipation are due to β -arrestin recruitment[34,35]. The selective β-arrestin inactivation by mitragynine is a desirable trait for an opioid. Therefore, mitragynine may serve as a useful template for the development of novel opioids with more tolerable side effects [21].

Apart from its opioid-like analgesic actions, mitragynine appears to inhibit pain signals via other pathways than morphine. Implying a multimodal involvement in pain perception regulation. For example, mitragynine bears a high degree of structural similarity to yohimbine, another indole alkaloid with well-documented adrenergic effects[24]. Due to this similarity, mitragynine analgesic properties

WJP | https://www.wjgnet.com

appear to act similarly as yohimbine, which is through activating the α -2 adrenergic postsynaptic receptors [36,37]. α -2 receptors are found in pain modulatory "descending" pathways. These pathways constitute a significant improvement in complicated neurobiological knowledge of pain[38,39]. Another study showed that mitragynine inhibits neuronal pain transmission via Ca²⁺ channel blockage[30]. When cellular connections are considered, the release of neurotransmitters was inhibited from the nerve terminals of the vas deferens^[2] by the occlusion of neuronal Ca²⁺ channels^[6,40].

The indirect analgesic qualities have been ascribed to anti-inflammatory activities of mitragynine, which are thought to be mediated through the suppression of COX-2 and prostaglandin E2 mRNA expression^[41,42]. Apart from these antinociceptive properties, mitragynine exhibits some affinity for D2 dopamine receptors, A2A adenosine receptors, and 5-HT2C and 5-HT7 serotonin receptors. All these belong to central nervous system receptors. Although the physiological significance of these interactions is unknown[30], postsynaptic α -2 adrenergic receptor stimulation and serotonergic 5-HT2A receptor blockage were reported to cause stimulant action of the central nervous system [43,44].

G-protein-biased signaling mechanism of action of mitragynine and 7-hydroxymitragynine makes kratom act as a partial agonist in terms of respiratory depressant effects[31,45,46]. The physiological impact of kratom is a combination of stimulant and sedative, depending on the dose. Stimulant effects are predominant at low dosages, while sedative effects are predominant at higher dosages [15,47]. This differential effect is due to the assortment of alkaloids shown in kratom extricates, which is a distinctive potential pharmacodynamic property of kratom[15,47]. At larger doses, kratom possesses unique narcotic qualities that blend psychostimulant and opiate-like effects[48]. Chronic usage of kratom has been linked to dependency [39].

PHARMACOLOGICAL EFFECTS OF KRATOM LEAVES

Consumption of 5-15 g of kratom leaves is believed to give opioid-like effects[24]. The euphoric effects begin around 10 min after consuming a few grams of dried leaves. At this dosage, kratom may give pain relief and alleviate symptoms of opioid withdrawal, with diarrhea as a possible side effect. Euphoria is more frequently attained at this higher level. Nevertheless, the effects are typically less powerful than with opioid medications^[24]. Consumption of more than 15 g of kratom leaves could cause stupor, similar to the effects of opioids[24]. Most people will first suffer sweating, nausea, and dizziness. The early pleasure and tiredness are quickly replaced by a tranquil and dreamy state [44]. Tremors, anorexia, weight loss, convulsions, and psychosis have been reported in regular kratom users[6,24] who consumed high doses of kratom in a short period of time[6,24].

Synergistic effects of mitragynine and 7-hydroxymitragynine produce the analgesic effect desired by kratom users for self-treatment of pain and anxiety. Whilst these alkaloids exert sedative effects at high dosages (5-15 g), they exert stimulating effects at low levels (1-5 g)[44,47]. A dosage of 1-5 g of raw leaves is considered a low to moderate dose[16,24]. This dose is frequently associated with the stimulant effects frequently employed by laborers to combat weariness^[24] and achieve greater work capacity while increasing attentiveness, sociability, and libido. Additionally, users may experience normal to slightly constricted pupils and blushing at this dosage. In general, adverse effects are mild. Nonetheless, anxiety and internal agitation have been reported[24]. Other effects of mitragynine included inhibition of ileum motility[7], smooth muscle contraction[49], and stomach acid production[50].

PHARMACOKINETICS AND DRUG-DRUG INTERACTIONS OF KRATOM

Kratom users should anticipate the full effects within 30-60 min after administration; however onset can occur as early as 10-20 min. Mitragynine and 7-hydroxymitragynine have half-lives of approximately 3.5 h and 2.5 h, respectively. Both are mostly removed from the body via urine[24,51]. The effects of kratom normally last between 5-7 h, with the biggest effects occurring between 2 and 4 h after administration. However, mild side effects can persist up to a day[24,43,52,53].

Kratom metabolism is primarily hepatic, and there is evidence that it can influence the metabolism and efficacy of other medicines by inducing drug-metabolizing enzymes, namely CYP450s and UDPglucuronosyl transferase (UGT) [54]. The effects of kratom on human recombinant CYP450 enzyme activity have been studied in various research [55]. Herb-drug interactions were observed when mitragynine was used with herbal or modern medications that share the same metabolic pathway[56]. Mitragynine has a half-life of as little as 3 h, although it may be longer as suggested by others [57,58]. Significant advancement in kratom pharmacology conception revealed that mitragynine is transformed in vivo via hepatic metabolism into 7-hydroxymitragynine[59-61]. As a result, it has been hypothesized that 7-hydroxymitragynine is the active metabolite of mitragynine responsible for the majority, if not all, of the effects usually ascribed to the mitragynine precursor. Mitragynine is activated by CYP34Amediated dehydrogenation, a mechanism akin to how opiates such as codeine are activated via CYP2D6-mediated dehydrogenation. In spite of the fact that 7-hydroxymitragynine is found in kratom extracts at minimal levels, the endogenous synthesis of 7-hydroxymitragynine from mitragynine was

significant[59,60,62].

In contrast to oral treatment, intravenous injection of mitragynine in rats was shown to be rapidly distributed to the peripheral compartments through systemic circulation or the central compartment[63, 64]. Mitragynine has a high intestinal permeability in rats. Mitragynine and 7-hydroxymitragynine can pass the blood-brain barrier and are dispersed throughout the brain. Mitragynine has a larger bloodbrain barrier permeability and is more readily absorbed into brain tissue than 7-hydroxymitragynine[62, 65]. Mitragynine and 7-hydroxymitragynine inhibit P-glycoprotein[58,61]. These findings indicate that kratom not only penetrates the blood-brain barrier but also inhibits the brain from excreting other compounds via the P-glycoprotein efflux mechanism, hence enhancing the bioavailability of sensitive medicines

Given the rise of reports on toxicity when used in combination with other drugs[66-70], it is worthwhile to investigate the pharmacological interactions of kratom. Drug-drug interactions by modulation of hepatic P450 activity and drug metabolism have been demonstrated in animal investigations[54,55]. Mitragynine appears to inhibit hepatic demethylases, transferases, and the glucuronidation reaction spurred by UGT like UGT2B7 and UGT1A1[71-74]. This has a major indication for the possibility of interaction of kratom and other UGT substrates, such as buprenorphine and ketamine, which are metabolized by UGT2B7[74]. These findings have been cited as a possible explanation for cases of toxicity associated with co-administration of kratom and other drugs, including a fatality associated with supratherapeutic doses of a prescription antipsychotic concomitant with kratom ingestion[67].

A proposed explanation for drug-drug interactions is the effect of kratom on the cytochrome P450 system, a set of enzymes involved in the metabolism of a wide variety of drugs[75]. Two of the most important enzymes involved in drug metabolism are CYP2D6 and CYP3A4. Mitragynine inhibits CYP2C9 and CYP2D6 in a noncompetitive manner and CYP3A4 competitively[56] indicating that kratom has tremendous interaction potential [75]. The largest inhibitory impact is observed for CYP2D6 and CYP3A4, indicating compounds that share the same metabolic route may contribute to unfavorable interactions[55,56]. Due to the inhibitory effects of kratom, substrates for these enzymes may accumulate, leading a typically safe dosage to reach hazardous levels. Thus, while one of kratom's active ingredients, 7-hydroxymitragynine, is mostly responsible for the herb's sedative and analgesic properties, the other active ingredient, mitragynine, may be the cause of unfavorable medication interactions via its influence on cytochrome P450 enzymes. It is obvious that identifying herbs as possible medication inhibitors may assist or limit the risk of adverse effects associated with herb-drug interactions^[55].

BENEFIT AND RISK OF KRATOM USAGE

Concerns regarding the potential of kratom dependency and addiction in humans are well founded [30, 76,77]. However, for many frequent users, the primary objective was merely to avoid weariness and to boost energy. In such instances, frequent usage may not be defined as dependency or addiction but rather as a desire to increase productivity [78]. This is consistent with "drug instrumentation" hypotheses, according to which a substance is used for a specific, planned aim[6,79]. Long-term use of kratom may result in adaptation, where outright addiction was reported under certain circumstances [76]. It has been suggested that a considerable percentage of kratom usage happens as a substitution for more hazardous drugs, particularly opioids in individuals who already have a history of substance misuse. In these circumstances kratom use is considered harm reduction rather than drug abuse[6,80].

Apart from its misuse potential, kratom poses a slew of additional dangers to patients, mostly as a result of its status as an unregulated supplement. Nothing can be done to assure the veridicality, pureness, grade, and safety of commercially accessible kratom formulations in the absence of governmental control[81]. As a result, it is impossible to determine exactly what is contained in commercially available kratom formulations. Furthermore, the quantity of mitragynine can vary significantly[22]. There have been reports that kratom products can be enhanced in potency by intentionally raising the quantity of 7-hydroxymitragynine[82]. Additionally, many cases of purposeful adulteration of kratom have been observed, including the insertion of synthetic drugs such as phenylethylamine or Odesmethyltramadol, both resulting in patient fatalities[83,84]. Additional dangers include purposeful or accidental product contamination. Laboratory and epidemiological evidence in 2018 specified that kratom was the cause of salmonella infestation[85]. In addition, there have been instances of kratom products being sold that were later shown to have dangerous heavy metal impurities[12].

ADVERSE EFFECTS OF KRATOM USAGE

Kratom side effects, particularly for regular heavy kratom users, were agitation (18.6%), followed by tachycardia (16.9%), sleepiness (13.6%), and disorientation (8.1%)[86]. Seizures occurred in 6.1% of patients, hallucinations in 4.8%, and coma in 2.3%. Other symptoms include weight loss, frequent

urination, insomnia, fatigue, constipation, dry mouth, nausea, and hyperpigmentation of the cheeks[43, 44]. Withdrawal symptoms due to the sole usage of kratom are too mild to be detected even for heavy users[44]. Apart from the initial adverse effects of kratom consumption, persistent and high-dose use results in various major side effects such as respiratory depression[66]. Injury to the liver, heart, lungs, kidneys, and neurological system are more significant and life-threatening adverse effects[87].

Concurrent use of kratom and other drugs has been associated with the development of focal and generalized tonic-clonic seizures, possibly as a result of the inhibitory effect of the active components of kratom on cytochrome P450 enzymes and P-glycoprotein [88]. Death was reported in 91 (59.9%) of 152 kratom-positive persons as documented by the unintentional drug overdose reporting system of the United States[89]. Co-administration of kratom and other medicines has the potential to enhance toxicity. A combination of mitragynine and morphine has been found to improve analgesia and delay the development of morphine tolerance in rats[90]. It has been reported that kratom extracts may alleviate symptoms of ethanol withdrawal by lowering alcohol consumption[91].

Muscle relaxation is a common physiological consequence of opiate usage and is frequently noted in kratom users[92]. Mitragynine and other kratom alkaloids may operate similarly to other opiates on the neuromuscular junction[92]. Mitragynine may also cause mild tremors and stiff fingers and toes[93]. This might be explained by the way stimulant and depressive effects are classified at low and high dosages, respectively. Seizures have been observed following kratom usage[92]. Intriguingly, seizures associated with kratom usage doubled in Thailand between 2005 and 2011[16].

A more recent study revealed that kratom caused hepatotoxicity in patients[94]. In addition, kratommediated liver damage, stomach pain, jaundice, pruritus, and dark urine were often reported as presenting signs and symptoms^[95]. Autopsy results of kratom-related fatalities showed the presence of edema in the brain and lungs, as well as congestion in several organs[96].

A variety of organ systems can be affected due to kratom usage, which include kidney injury [97], cardiotoxicity and arrhythmia[98,99], thyroid injury and hypothyroidism[100], lung injury/acute respiratory distress syndrome[101,102], neonatal abstinence syndrome[103-107], and hepatic injury[108-111]. Amongst these, hepatic injury such as cholestatic hepatitis pattern similar to other drug-related injuries is frequently reported[112]. A number of neurological problems associated with kratom toxicity, including acute brain damage and coma, were documented[112].

Toxicity of kratom is dose-dependent, especially when kratom powder dosages surpass 8 g[86]. An overdose fatality from kratom alone is not common, although it has been reported in the United States and Southeast Asia[113]. This is in line with pharmacologic research and epidemiological investigations of kratom in Southeast Asia. Unlike morphine-like opioids, kratom does not cause life-threatening respiratory depression and is not linked to the personal and societal impairment that morphine-like opioids are linked to [3,8,113].

CONCLUSION

Kratom exerts its pharmacological effects in a dose-dependent manner, where it acts as a stimulant at low doses and a depressant at high doses. Regular usage of kratom can lead to dependency. The cellular mechanisms of kratom are complex and not well understood. The major alkaloid of the kratom leaves, mitragynine, and its minor alkaloid, 7-hydroxymitragynine, are likely responsible for the pharmacological effects of kratom. As the data have shown so far, deaths due to the sole use of kratom are rare. Typically, the combination use of kratom with other illicit drugs are the main causes of death. Given the valuable therapeutic properties of kratom, total banning of kratom will be a great loss to the pharmaceutical industry. Instead controlled usage should be practiced especially in the event of kratom misuse for recreational purposes. Considering both benefits and risks of kratom usage, one can wisely choose to use it for good.

FOOTNOTES

Author contributions: Basheer M and Khudhair Jasim R prepared the content of the manuscript; Gam LH wrote and edited the manuscript.

Supported by Ministry of Higher Education Malaysia for the Fundamental Research Grant Scheme, No. FRGS/1/2020/STG02/USM/01/1.

Conflict-of-interest statement: All the authors report having no relevant conflicts of interest for this article.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-

commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Malaysia

ORCID number: Gam Lay Harn 0000-0002-9274-4394.

S-Editor: Fan JR L-Editor: Filipodia P-Editor: Fan JR

REFERENCES

- Grundmann O. Patterns of Kratom use and health impact in the US-Results from an online survey. Drug Alcohol Depend 1 2017; 176: 63-70 [PMID: 28521200 DOI: 10.1016/j.drugalcdep.2017.03.007]
- Brown PN, Lund JA, Murch SJ. A botanical, phytochemical and ethnomedicinal review of the genus Mitragyna korth: Implications for products sold as kratom. J Ethnopharmacol 2017; 202: 302-325 [PMID: 28330725 DOI: 10.1016/j.jep.2017.03.020]
- 3 Singh D, Narayanan S, Vicknasingam B, Corazza O, Santacroce R, Roman-Urrestarazu A. Changing trends in the use of kratom (Mitragyna speciosa) in Southeast Asia. Hum Psychopharmacol 2017; 32 [PMID: 28544011 DOI: 10.1002/hup.25821
- Panjaitan RGP, Liridah L. Liver organ impairment due to the consumption of kratom leaves (mitragyna speciosa korth.). 4 Pharmacogn J 2021; 13: 179-84 [DOI: 10.5530/pj.2021.13.25]
- 5 Suwanlert S. A study of kratom eaters in Thailand. Bull Narc 1975; 27: 21-27 [PMID: 1041694]
- Hassan Z, Muzaimi M, Navaratnam V, Yusoff NH, Suhaimi FW, Vadivelu R, Vicknasingam BK, Amato D, von Hörsten 6 S, Ismail NI, Jayabalan N, Hazim AI, Mansor SM, Müller CP. From Kratom to mitragynine and its derivatives: physiological and behavioural effects related to use, abuse, and addiction. Neurosci Biobehav Rev 2013; 37: 138-151 [PMID: 23206666 DOI: 10.1016/j.neubiorev.2012.11.012]
- Watanabe K, Yano S, Horie S, Yamamoto LT. Inhibitory effect of mitragynine, an alkaloid with analgesic effect from 7 Thai medicinal plant Mitragyna speciosa, on electrically stimulated contraction of isolated guinea-pig ileum through the opioid receptor. Life Sci 1997; 60: 933-942 [PMID: 9061050 DOI: 10.1016/s0024-3205(97)00023-4]
- Veltri C, Grundmann O. Current perspectives on the impact of Kratom use. Subst Abuse Rehabil 2019; 10: 23-31 [PMID: 31308789 DOI: 10.2147/SAR.S164261]
- 9 Griffin OH 3rd, Daniels JA, Gardner EA. Do You Get What You Paid For? J Psychoactive Drugs 2016; 48: 330-335 [PMID: 27669103 DOI: 10.1080/02791072.2016.1229876]
- Anwar M, Law R, Schier J. Notes from the Field: Kratom (Mitragyna speciosa) Exposures Reported to Poison Centers -10 United States, 2010-2015. MMWR Morb Mortal Wkly Rep 2016; 65: 748-749 [PMID: 27466822 DOI: 10.15585/mmwr.mm6529a4]
- 11 Hassan R, Othman N, Mansor SM, Müller CP, Hassan Z. Proteomic analysis reveals brain Rab35 as a potential biomarker of mitragynine withdrawal in rats. Brain Res Bull 2021; 172: 139-150 [PMID: 33901587 DOI: 10.1016/j.brainresbull.2021.04.018]
- 12 Kuehn B. Kratom-Related Deaths. JAMA 2019; 321: 1966 [PMID: 31135856 DOI: 10.1001/jama.2019.6339]
- Griffin OH, Webb ME. The Scheduling of Kratom and Selective Use of Data. J Psychoactive Drugs 2018; 50: 114-120 13 [PMID: 28937941 DOI: 10.1080/02791072.2017.1371363]
- Singh D, Damodaran T, Prozialeck WC, Grundmann O, Karunakaran T, Vicknasingam B. Constipation prevalence and 14 fatigue severity in regular kratom (Mitragyna speciosa Korth.) users. J Subst Use 2019; 24: 233-239 [DOI: 10.1080/14659891.2018.1546340]
- 15 Singh D, Narayanan S, Vicknasingam B. Traditional and non-traditional uses of Mitragynine (Kratom): A survey of the literature. Brain Res Bull 2016; 126: 41-46 [PMID: 27178014 DOI: 10.1016/j.brainresbull.2016.05.004]
- Cinosi E, Martinotti G, Simonato P, Singh D, Demetrovics Z, Roman-Urrestarazu A, Bersani FS, Vicknasingam B, 16 Piazzon G, Li JH, Yu WJ, Kapitány-Fövény M, Farkas J, Di Giannantonio M, Corazza O. Following "the Roots" of Kratom (Mitragyna speciosa): The Evolution of an Enhancer from a Traditional Use to Increase Work and Productivity in Southeast Asia to a Recreational Psychoactive Drug in Western Countries. Biomed Res Int 2015; 2015: 968786 [PMID: 26640804 DOI: 10.1155/2015/968786]
- 17 Ya K, Tangamornsuksan W, Scholfield CN, Methaneethorn J, Lohitnavy M. Pharmacokinetics of mitragynine, a major analgesic alkaloid in kratom (Mitragyna speciosa): A systematic review. Asian J Psychiatr 2019; 43: 73-82 [PMID: 31100603 DOI: 10.1016/j.ajp.2019.05.016]
- Suhaimi FW, Yusoff NH, Hassan R, Mansor SM, Navaratnam V, Müller CP, Hassan Z. Neurobiology of Kratom and its main alkaloid mitragynine. Brain Res Bull 2016; 126: 29-40 [PMID: 27018165 DOI: 10.1016/j.brainresbull.2016.03.015]
- 19 Takayama H. Chemistry and pharmacology of analgesic indole alkaloids from the rubiaceous plant, Mitragyna speciosa. Chem Pharm Bull (Tokyo) 2004; 52: 916-928 [PMID: 15304982 DOI: 10.1248/cpb.52.916]
- 20 Feng LY, Battulga A, Han E, Chung H, Li JH. New psychoactive substances of natural origin: A brief review. J Food Drug Anal 2017; 25: 461-471 [PMID: 28911631 DOI: 10.1016/j.jfda.2017.04.001]
- Eastlack SC, Cornett EM, Kaye AD. Kratom-Pharmacology, Clinical Implications, and Outlook: A Comprehensive 21 Review. Pain Ther 2020; 9: 55-69 [PMID: 31994019 DOI: 10.1007/s40122-020-00151-x]
- Kikura-Hanajiri R, Kawamura M, Maruyama T, Kitajima M, Takayama H, Goda Y. Simultaneous analysis of 22 mitragynine, 7-hydroxymitragynine, and other alkaloids in the psychotropic plant "kratom" (Mitragyna speciosa) by LC-

ESI-MS. Forensic Toxicol 2009; 27: 67-74

- Chittrakarn S, Penjamras P, Keawpradub N. Quantitative analysis of mitragynine, codeine, caffeine, chlorpheniramine 23 and phenylephrine in a kratom (Mitragyna speciosa Korth.) cocktail using high-performance liquid chromatography. Forensic Sci Int 2012; 217: 81-86 [PMID: 22018854 DOI: 10.1016/j.forsciint.2011.10.027]
- 24 Prozialeck WC, Jivan JK, Andurkar SV. Pharmacology of kratom: an emerging botanical agent with stimulant, analgesic and opioid-like effects. J Am Osteopath Assoc 2012; 112: 792-799 [PMID: 23212430]
- 25 Yamamoto LT, Horie S, Takayama H, Aimi N, Sakai S, Yano S, Shan J, Pang PK, Ponglux D, Watanabe K. Opioid receptor agonistic characteristics of mitragynine pseudoindoxyl in comparison with mitragynine derived from Thai medicinal plant Mitragyna speciosa. Gen Pharmacol 1999; 33: 73-81 [PMID: 10428019 DOI: 10.1016/s0306-3623(98)00265-1]
- 26 Matsumoto K, Horie S, Ishikawa H, Takayama H, Aimi N, Ponglux D, Watanabe K. Antinociceptive effect of 7hydroxymitragynine in mice: Discovery of an orally active opioid analgesic from the Thai medicinal herb Mitragyna speciosa. Life Sci 2004; 74: 2143-2155 [PMID: 14969718 DOI: 10.1016/j.lfs.2003.09.054]
- Hemby SE, McIntosh S, Leon F, Cutler SJ, McCurdy CR. Abuse liability and therapeutic potential of the Mitragyna 27 speciosa (kratom) alkaloids mitragynine and 7-hydroxymitragynine. Addict Biol 2019; 24: 874-885 [PMID: 29949228 DOI: 10.1111/adb.12639]
- Sabetghadam A, Navaratnam V, Mansor SM. Dose-response relationship, acute toxicity, and therapeutic index between 28 the alkaloid extract of mitragyna speciosa and its main active compound mitragynine in mice. Drug Dev Res 2013; 74: 23-30 [DOI: 10.1002/ddr.21052]
- 29 Matsumoto K, Hatori Y, Murayama T, Tashima K, Wongseripipatana S, Misawa K, Kitajima M, Takayama H, Horie S. Involvement of mu-opioid receptors in antinociception and inhibition of gastrointestinal transit induced by 7hydroxymitragynine, isolated from Thai herbal medicine Mitragyna speciosa. Eur J Pharmacol 2006; 549: 63-70 [PMID: 16978601 DOI: 10.1016/j.ejphar.2006.08.013]
- Matsumoto K, Horie S, Takayama H, Ishikawa H, Aimi N, Ponglux D, Murayama T, Watanabe K. Antinociception, 30 tolerance and withdrawal symptoms induced by 7-hydroxymitragynine, an alkaloid from the Thai medicinal herb Mitragyna speciosa. Life Sci 2005; 78: 2-7 [PMID: 16169018 DOI: 10.1016/j.lfs.2004.10.086]
- 31 Kruegel AC, Gassaway MM, Kapoor A, Váradi A, Majumdar S, Filizola M, Javitch JA, Sames D. Synthetic and Receptor Signaling Explorations of the Mitragyna Alkaloids: Mitragynine as an Atypical Molecular Framework for Opioid Receptor Modulators. J Am Chem Soc 2016; 138: 6754-6764 [PMID: 27192616 DOI: 10.1021/jacs.6b00360]
- Raffa RB, Pergolizzi JV, Taylor R, Ossipov MH; NEMA Research Group. Nature's first "atypical opioids": Kratom and 32 mitragynines. J Clin Pharm Ther 2018; 43: 437-441 [PMID: 29520812 DOI: 10.1111/jcpt.12676]
- 33 Wisler JW, Xiao K, Thomsen AR, Lefkowitz RJ. Recent developments in biased agonism. Curr Opin Cell Biol 2014; 27: 18-24 [PMID: 24680426 DOI: 10.1016/j.ceb.2013.10.008]
- Bohn LM, Lefkowitz RJ, Caron MG. Differential mechanisms of morphine antinociceptive tolerance revealed in 34 (beta)arrestin-2 knock-out mice. J Neurosci 2002; 22: 10494-10500 [PMID: 12451149 DOI: 10.1523/JNEUROSCI.22-23-10494.2002
- Rachal KM, Bohn LM. The role of beta-arrestin2 in the severity of antinociceptive tolerance and physical dependence 35 induced by different opioid pain therapeutics. Neuropharmacology 2011; 60: 58-65 [PMID: 20713067 DOI: 10.1016/j.neuropharm.2010.08.003
- Suetsugi M, Mizuki Y, Ushijima I, Yamada M, Imaizumi J. Anxiolytic effects of low-dose clomipramine in highly 36 anxious healthy volunteers assessed by frontal midline theta activity. Prog Neuropsychopharmacol Biol Psychiatry 1998; 22: 97-112 [PMID: 9533169 DOI: 10.1016/s0278-5846(97)00182-6]
- Matsumoto K, Mizowaki M, Suchitra T, Murakami Y, Takayama H, Sakai S, Aimi N, Watanabe H. Central 37 antinociceptive effects of mitragynine in mice: contribution of descending noradrenergic and serotonergic systems. Eur J Pharmacol 1996; 317: 75-81 [PMID: 8982722 DOI: 10.1016/s0014-2999(96)00714-5]
- Giovannitti JA Jr, Thoms SM, Crawford JJ. Alpha-2 adrenergic receptor agonists: a review of current clinical 38 applications. Anesth Prog 2015; 62: 31-39 [PMID: 25849473 DOI: 10.2344/0003-3006-62.1.31]
- 39 Ismail I, Wahab S, Sidi H, Das S, Lin LJ, Razali R. Kratom and Future Treatment for the Opioid Addiction and Chronic Pain: Periculo Beneficium? Curr Drug Targets 2019; 20: 166-172 [PMID: 28443503 DOI: 10.2174/1389450118666170425154120]
- 40 Philipp AA, Wissenbach DK, Zoerntlein SW, Klein ON, Kanogsunthornrat J, Maurer HH. Studies on the metabolism of mitragynine, the main alkaloid of the herbal drug Kratom, in rat and human urine using liquid chromatography-linear ion trap mass spectrometry. J Mass Spectrom 2009; 44: 1249-1261 [PMID: 19536806 DOI: 10.1002/jms.1607]
- 41 Shaik Mossadeq WM, Sulaiman MR, Tengku Mohamad TA, Chiong HS, Zakaria ZA, Jabit ML, Baharuldin MT, Israf DA. Anti-inflammatory and antinociceptive effects of Mitragyna speciosa Korth methanolic extract. Med Princ Pract 2009; 18: 378-384 [PMID: 19648761 DOI: 10.1159/000226292]
- Utar Z, Majid MI, Adenan MI, Jamil MF, Lan TM. Mitragynine inhibits the COX-2 mRNA expression and prostaglandin 42 E2 production induced by lipopolysaccharide in RAW264.7 macrophage cells. J Ethnopharmacol 2011; 136: 75-82 [PMID: 21513785 DOI: 10.1016/j.jep.2011.04.011]
- Rosenbaum CD, Carreiro SP, Babu KM. Here today, gone tomorrow...and back again? J Med Toxicol 2012; 8: 15-32 43 [PMID: 22271566 DOI: 10.1007/s13181-011-0202-2]
- 44 Warner ML, Kaufman NC, Grundmann O. The pharmacology and toxicology of kratom: from traditional herb to drug of abuse. Int J Legal Med 2016; 130: 127-138 [PMID: 26511390 DOI: 10.1007/s00414-015-1279-y]
- 45 Kruegel AC, Grundmann O. The medicinal chemistry and neuropharmacology of kratom: A preliminary discussion of a promising medicinal plant and analysis of its potential for abuse. Neuropharmacology 2018; 134: 108-120 [PMID: 28830758 DOI: 10.1016/j.neuropharm.2017.08.026]
- Henningfield JE, Grundmann O, Babin JK, Fant RV, Wang DW, Cone EJ. Risk of death associated with kratom use 46 compared to opioids. Prev Med 2019; 128: 105851 [PMID: 31647958 DOI: 10.1016/j.ypmed.2019.105851]
- 47 Babu KM, McCurdy CR, Boyer EW. Opioid receptors and legal highs: Salvia divinorum and Kratom. Clin Toxicol

(Phila) 2008; 46: 146-152 [PMID: 18259963 DOI: 10.1080/15563650701241795]

- Harun N, Hassan Z, Navaratnam V, Mansor SM, Shoaib M. Discriminative stimulus properties of mitragynine (kratom) 48 in rats. Psychopharmacology (Berl) 2015; 232: 2227-2238 [PMID: 25616583 DOI: 10.1007/s00213-015-3866-5]
- 49 Matsumoto K, Yamamoto LT, Watanabe K, Yano S, Shan J, Pang PK, Ponglux D, Takayama H, Horie S. Inhibitory effect of mitragynine, an analgesic alkaloid from Thai herbal medicine, on neurogenic contraction of the vas deferens. Life Sci 2005; 78: 187-194 [PMID: 16107269 DOI: 10.1016/j.lfs.2005.04.042]
- Tsuchiya S, Miyashita S, Yamamoto M, Horie S, Sakai S, Aimi N, Takayama H, Watanabe K. Effect of mitragynine, 50 derived from Thai folk medicine, on gastric acid secretion through opioid receptor in anesthetized rats. Eur J Pharmacol 2002; 443: 185-188 [PMID: 12044808 DOI: 10.1016/s0014-2999(02)01588-1]
- 51 Neerman MF, Frost RE, Deking J. A drug fatality involving Kratom. J Forensic Sci 2013; 58 Suppl 1: S278-S279 [PMID: 23082895 DOI: 10.1111/1556-4029.12009]
- Maruyama T, Kawamura M, Kikura-Hanajiri R, Takayama H, Goda Y. The botanical origin of kratom (Mitragyna 52 speciosa; Rubiaceae) available as abused drugs in the Japanese markets. J Nat Med 2009; 63: 340-344 [PMID: 19294483 DOI: 10.1007/s11418-009-0325-9]
- 53 Scott TM, Yeakel JK, Logan BK. Identification of mitragynine and O-desmethyltramadol in Kratom and legal high products sold online. Drug Test Anal 2014; 6: 959-963 [PMID: 24962931 DOI: 10.1002/dta.1673]
- Meireles V, Rosado T, Barroso M, Soares S, Gonçalves J, Luís Â, Caramelo D, Simão AY, Fernández N, Duarte AP, 54 Gallardo E. Mitragyna speciosa: Clinical, Toxicological Aspects and Analysis in Biological and Non-Biological Samples. Medicines (Basel) 2019; 6 [PMID: 30836609 DOI: 10.3390/medicines6010035]
- 55 Kong WM, Chik Z, Ramachandra M, Subramaniam U, Aziddin RE, Mohamed Z. Evaluation of the effects of Mitragyna speciosa alkaloid extract on cytochrome P450 enzymes using a high throughput assay. Molecules 2011; 16: 7344-7356 [PMID: 21876481 DOI: 10.3390/molecules16097344]
- 56 Hanapi NA, Ismail S, Mansor SM. Inhibitory effect of mitragynine on human cytochrome P450 enzyme activities. Pharmacognosy Res 2013; 5: 241-246 [PMID: 24174816 DOI: 10.4103/0974-8490.118806]
- Trakulsrichai S, Sathirakul K, Auparakkitanon S, Krongvorakul J, Sueajai J, Noumjad N. Pharmacokinetic study of 57 mitragynine in Kratom abuse users. Clin Toxicol 2015; 52: 396
- 58 Manda VK, Avula B, Ali Z, Khan IA, Walker LA, Khan SI. Evaluation of in vitro absorption, distribution, metabolism, and excretion (ADME) properties of mitragynine, 7-hydroxymitragynine, and mitraphylline. Planta Med 2014; 80: 568-576 [PMID: 24841968 DOI: 10.1055/s-0034-1368444]
- 59 Kruegel AC, Uprety R, Grinnell SG, Langreck C, Pekarskaya EA, Le Rouzic V, Ansonoff M, Gassaway MM, Pintar JE, Pasternak GW, Javitch JA, Majumdar S, Sames D. 7-Hydroxymitragynine Is an Active Metabolite of Mitragynine and a Key Mediator of Its Analgesic Effects. ACS Cent Sci 2019; 5: 992-1001 [PMID: 31263758 DOI: 10.1021/acscentsci.9b00141]
- Kamble SH, Sharma A, King TI, León F, McCurdy CR, Avery BA. Metabolite profiling and identification of enzymes 60 responsible for the metabolism of mitragynine, the major alkaloid of Mitragyna speciosa (kratom). Xenobiotica 2019; 49: 1279-1288 [PMID: 30547698 DOI: 10.1080/00498254.2018.1552819]
- Yusof SR, Mohd Uzid M, Teh EH, Hanapi NA, Mohideen M, Mohamad Arshad AS, Mordi MN, Loryan I, Hammarlund-61 Udenaes M. Rate and extent of mitragynine and 7-hydroxymitragynine blood-brain barrier transport and their intra-brain distribution: the missing link in pharmacodynamic studies. Addict Biol 2019; 24: 935-945 [PMID: 30088322 DOI: 10.1111/adb.12661]
- Singh D, Narayanan S, Grundmann O, Chear NJY, Murugaiyah V, Hamid SBS. Long-term effects of kratom (mitragyna 62 speciosa) use. Malaysian J Med Heal Sci 2020; 16: 64-72
- Avery BA, Boddu SP, Sharma A, Furr EB, Leon F, Cutler SJ, McCurdy CR. Comparative Pharmacokinetics of 63 Mitragynine after Oral Administration of Mitragyna speciosa (Kratom) Leaf Extracts in Rats. Planta Med 2019; 85: 340-346 [PMID: 30452072 DOI: 10.1055/a-0770-3683]
- Ramanathan S, Parthasarathy S, Murugaiyah V, Magosso E, Tan SC, Mansor SM. Understanding the physicochemical 64 properties of mitragynine, a principal alkaloid of Mitragyna speciosa, for preclinical evaluation. Molecules 2015; 20: 4915-4927 [PMID: 25793541 DOI: 10.3390/molecules20034915]
- Jagabalan JDY, Murugaiyah V, Zainal H, Mansor SM, Ramanathan S. Intestinal permeability of mitragynine in rats 65 using in situ absorption model. J Asian Nat Prod Res 2019; 21: 351-363 [PMID: 29667422 DOI: 10.1080/10286020.2018.1461088
- Demick DS, Lee TT, Summers AT, El-Mallakh RS. Kratom: A growing substance of abuse in the United States. Ann Clin 66 Psychiatry 2020; 32: 275-280 [PMID: 32722734 DOI: 10.12788/acp.0012]
- Hughes RL. Fatal combination of mitragynine and quetiapine a case report with discussion of a potential herb-drug 67 interaction. Forensic Sci Med Pathol 2019; 15: 110-113 [PMID: 30498933 DOI: 10.1007/s12024-018-0049-9]
- Boyer EW, Babu KM, Adkins JE, McCurdy CR, Halpern JH. Self-treatment of opioid withdrawal using kratom 68 (Mitragynia speciosa korth). Addiction 2008; 103: 1048-1050 [PMID: 18482427 DOI: 10.1111/j.1360-0443.2008.02209.x]
- Nelsen JL, Lapoint J, Hodgman MJ, Aldous KM. Seizure and coma following Kratom (Mitragynina speciosa Korth) 69 exposure. J Med Toxicol 2010; 6: 424-426 [PMID: 20411370 DOI: 10.1007/s13181-010-0079-5]
- Tatum WO, Hasan TF, Coonan EE, Smelick CP. Recurrent seizures from chronic kratom use, an atypical herbal opioid. 70 *Epilepsy Behav Case Rep* 2018; **10**: 18-20 [PMID: 30062086 DOI: 10.1016/j.ebcr.2018.04.002]
- Anwar R, Ismail S, Mansor SM. In vitro effect of mitragynine on activity of drug metabolizing enzymes, n-demethylase 71 and glutathione s-transferase in streptozotocin-induced diabetic rats. Pharmacologyonline 2012; 1: 68-75
- 72 Azizi J, Ismail S, Mordi MN, Ramanathan S, Said MI, Mansor SM. In vitro and in vivo effects of three different Mitragyna speciosa korth leaf extracts on phase II drug metabolizing enzymes--glutathione transferases (GSTs). Molecules 2010; 15: 432-441 [PMID: 20110902 DOI: 10.3390/molecules15010432]
- 73 Azizi J, Ismail S, Mansor SM. Mitragyna speciosa Korth leaves extracts induced the CYP450 catalyzed aminopyrine-Ndemethylase (APND) and UDP-glucuronosyl transferase (UGT) activities in male Sprague-Dawley rat livers. Drug

Metabol Drug Interact 2013; 28: 95-105 [PMID: 23435185 DOI: 10.1515/dmdi-2012-0039]

- 74 Lim EL, Seah TC, Koe XF, Wahab HA, Adenan MI, Jamil MF, Majid MI, Tan ML. In vitro evaluation of cytochrome P450 induction and the inhibition potential of mitragynine, a stimulant alkaloid. Toxicol In Vitro 2013; 27: 812-824 [PMID: 23274770 DOI: 10.1016/j.tiv.2012.12.014]
- 75 Lynch T, Price A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician 2007; 76: 391-396 [PMID: 17708140]
- 76 Singh D, Müller CP, Vicknasingam BK. Kratom (Mitragyna speciosa) dependence, withdrawal symptoms and craving in regular users. Drug Alcohol Depend 2014; 139: 132-137 [PMID: 24698080 DOI: 10.1016/j.drugalcdep.2014.03.017]
- Yusoff NH, Suhaimi FW, Vadivelu RK, Hassan Z, Rümler A, Rotter A, Amato D, Dringenberg HC, Mansor SM, 77 Navaratnam V, Müller CP. Abuse potential and adverse cognitive effects of mitragynine (kratom). Addict Biol 2016; 21: 98-110 [PMID: 25262913 DOI: 10.1111/adb.12185]
- Singh D, Narayanan S, Müller CP, Swogger MT, Chear NJY, Dzulkapli EB, Yusoff NSM, Ramachandram DS, León F, 78 McCurdy CR, Vicknasingam B. Motives for using Kratom (Mitragyna speciosa Korth.) among regular users in Malaysia. J Ethnopharmacol 2019; 233: 34-40 [PMID: 30594604 DOI: 10.1016/j.jep.2018.12.038]
- 79 Müller CP, Schumann G. Drugs as instruments: a new framework for non-addictive psychoactive drug use. Behav Brain Sci 2011; 34: 293-310 [PMID: 22074962 DOI: 10.1017/S0140525X11000057]
- 80 Swogger MT, Walsh Z. Kratom use and mental health: A systematic review. Drug Alcohol Depend 2018; 183: 134-140 [PMID: 29248691 DOI: 10.1016/j.drugalcdep.2017.10.012]
- Hanna J. Bogus Kratom Market Exposed. Vernal Equinox 2003; 12: 26-29 81
- Lydecker AG, Sharma A, McCurdy CR, Avery BA, Babu KM, Boyer EW. Suspected Adulteration of Commercial 82 Kratom Products with 7-Hydroxymitragynine. J Med Toxicol 2016; 12: 341-349 [PMID: 27752985 DOI: 10.1007/s13181-016-0588-y]
- Nacca N, Schult RF, Li L, Spink DC, Ginsberg G, Navarette K, Marraffa J. Kratom Adulterated with Phenylethylamine 83 and Associated Intracerebral Hemorrhage: Linking Toxicologists and Public Health Officials to Identify Dangerous Adulterants. J Med Toxicol 2020; 16: 71-74 [PMID: 31713176 DOI: 10.1007/s13181-019-00741-y]
- Arndt T, Claussen U, Güssregen B, Schröfel S, Stürzer B, Werle A, Wolf G. Kratom alkaloids and O-desmethyltramadol 84 in urine of a "Krypton" herbal mixture consumer. Forensic Sci Int 2011; 208: 47-52 [PMID: 21112167 DOI: 10.1016/j.forsciint.2010.10.025]
- 85 Dixon RB, Waggoner D, Davis M, Rembold K, Dasgupta A. Contamination of Some Kratom Products with Salmonella. Ann Clin Lab Sci 2019; 49: 675-677 [PMID: 31611214]
- 86 Eggleston W, Stoppacher R, Suen K, Marraffa JM, Nelson LS. Kratom Use and Toxicities in the United States. Pharmacotherapy 2019; 39: 775-777 [PMID: 31099038 DOI: 10.1002/phar.2280]
- 87 Fluyau D, Revadigar N. Biochemical Benefits, Diagnosis, and Clinical Risks Evaluation of Kratom. Front Psychiatry 2017; 8: 62 [PMID: 28484399 DOI: 10.3389/fpsyt.2017.00062]
- 88 Coonan E, Tatum W. Kratom: The safe legal high? Epilepsy Behav 2021; 117: 107882 [PMID: 33690067 DOI: 10.1016/j.yebeh.2021.107882
- 89 Harris CL. Notes from the Field. Historian 2019; 81: 393-397
- 90 Fakurazi S, Rahman SA, Hidayat MT, Ithnin H, Moklas MA, Arulselvan P. The combination of mitragynine and morphine prevents the development of morphine tolerance in mice. *Molecules* 2013; 18: 666-681 [PMID: 23292329 DOI: 10.3390/molecules18010666
- Cheaha D, Keawpradub N, Sawangjaroen K, Phukpattaranont P, Kumarnsit E. Effects of an alkaloid-rich extract from 91 Mitragyna speciosa leaves and fluoxetine on sleep profiles, EEG spectral frequency and ethanol withdrawal symptoms in rats. Phytomedicine 2015; 22: 1000-1008 [PMID: 26407942 DOI: 10.1016/j.phymed.2015.07.008]
- 92 Kerrigan S, Basiliere S. Kratom: A systematic review of toxicological issues. WIREs Forensic Sci 2022; 4: 1-29
- 93 Grewal KS. The Effect of Mitragynine on Man. Br J Med Psychol 1932; 12: 41-58
- Aldyab M, Ells PF, Bui R, Chapman TD, Lee H. Kratom-Induced Cholestatic Liver Injury Mimicking Anti-Mitochondrial 94 Antibody-Negative Primary Biliary Cholangitis: A Case Report and Review of Literature. Gastroenterology Res 2019; 12: 211-215 [PMID: 31523332 DOI: 10.14740/gr1204]
- 95 Schimmel J, Dart RC. Kratom (Mitragyna Speciosa) Liver Injury: A Comprehensive Review. Drugs 2020; 80: 263-283 [PMID: 31919755 DOI: 10.1007/s40265-019-01242-6]
- Kronstrand R, Roman M, Thelander G, Eriksson A. Unintentional fatal intoxications with mitragynine and O-96 desmethyltramadol from the herbal blend Krypton. J Anal Toxicol 2011; 35: 242-247 [PMID: 21513619 DOI: 10.1093/anatox/35.4.242]
- 97 Ilmie MU, Jaafar H, Mansor SM, Abdullah JM. Subchronic toxicity study of standardized methanolic extract of Mitragyna speciosa Korth in Sprague-Dawley Rats. Front Neurosci 2015; 9: 189 [PMID: 26136645 DOI: 10.3389/fnins.2015.00189]
- Lu J, Wei H, Wu J, Jamil MF, Tan ML, Adenan MI, Wong P, Shim W. Evaluation of the cardiotoxicity of mitragynine 98 and its analogues using human induced pluripotent stem cell-derived cardiomyocytes. PLoS One 2014; 9: e115648 [PMID: 25535742 DOI: 10.1371/journal.pone.0115648]
- 99 Abdullah HMA, Haq I, Lamfers R. Cardiac arrest in a young healthy male patient secondary to kratom ingestion: is this 'legal high' substance more dangerous than initially thought ? BMJ Case Rep 2019; 12 [PMID: 31326902 DOI: 10.1136/bcr-2019-229778]
- Sheleg SV, Collins GB. A coincidence of addiction to "Kratom" and severe primary hypothyroidism. J Addict Med 2011; 100 5: 300-301 [PMID: 21817918 DOI: 10.1097/ADM.0b013e318221fbfa]
- Pathak V, Hahn C, Cabellon M, Aris R. Adult respiratory distress syndrome secondary to the use of herbal drug kratom. 101 Am J Respir Crit Care Med 2014; 6492
- Jaliawala HA, Abdo T, Carlile P V. Kratom; A potential cause of acute respiratory distress syndrome. Am J Respir Crit 102 Care Med 2018; 197
- 103 Murthy P, Clark D. An unusual cause for neonatal abstinence syndrome. Paediatr Child Health 2019; 24: 12-14 [PMID:

30792593 DOI: 10.1093/pch/pxy084]

- 104 Eldridge WB, Foster C, Wyble L. Neonatal Abstinence Syndrome Due to Maternal Kratom Use. Pediatrics 2018; 142 [PMID: 30404789 DOI: 10.1542/peds.2018-1839]
- 105 Smid MC, Charles JE, Gordon AJ, Wright TE. Use of Kratom, an Opioid-like Traditional Herb, in Pregnancy. Obstet Gynecol 2018; 132: 926-928 [PMID: 30204686 DOI: 10.1097/AOG.00000000002871]
- 106 Mackay L, Abrahams R. Kratom NAS Case Study 2. Can Fam Physician 2018; 64: 121-122
- 107 Davidson L, Rawat M, Stojanovski S, Chandrasekharan P. Natural drugs, not so natural effects: Neonatal abstinence syndrome secondary to 'kratom'. J Neonatal Perinatal Med 2019; 12: 109-112 [PMID: 30149482 DOI: 10.3233/NPM-1863]
- 108 Dorman C, Wong M, Khan A. Cholestatic hepatitis from prolonged kratom use: a case report. Hepatology 2015; 61: 1086-1087 [PMID: 25418457 DOI: 10.1002/hep.27612]
- 109 Kapp FG, Maurer HH, Auwärter V, Winkelmann M, Hermanns-Clausen M. Intrahepatic cholestasis following abuse of powdered kratom (Mitragyna speciosa). J Med Toxicol 2011; 7: 227-231 [PMID: 21528385 DOI: 10.1007/s13181-011-0155-5]
- Osborne CS, Overstreet AN, Rockey DC, Schreiner AD. Drug-Induced Liver Injury Caused by Kratom Use as an 110 Alternative Pain Treatment Amid an Ongoing Opioid Epidemic. J Investig Med High Impact Case Rep 2019; 7: 2324709619826167 [PMID: 30791718 DOI: 10.1177/2324709619826167]
- 111 Waters M, Oxner A, Krajden S, Sultanian R. Acute Liver Injury Associated with Khat Use in a 24-Year-Old Male. Case Reports Hepatol 2018; 2018: 2816907 [PMID: 30584482 DOI: 10.1155/2018/2816907]
- 112 Antony A, Lee TP. Herb-Induced Liver Injury With Cholestasis and Renal Injury Secondary to Short-Term Use of Kratom (Mitragyna speciosa). Am J Ther 2019; 26: e546-e547 [PMID: 29927773 DOI: 10.1097/MJT.00000000000802]
- 113 Prozialeck WC, Avery BA, Boyer EW, Grundmann O, Henningfield JE, Kruegel AC, McMahon LR, McCurdy CR, Swogger MT, Veltri CA, Singh D. Kratom policy: The challenge of balancing therapeutic potential with public safety. Int J Drug Policy 2019; 70: 70-77 [PMID: 31103778 DOI: 10.1016/j.drugpo.2019.05.003]

WJP

World Journal of Pharmacology

Submit a Manuscript: https://www.f6publishing.com

World J Pharmacol 2022 November 28; 11(3): 27-47

DOI: 10.5497/wjp.v11.i3.27

Basic Study

ISSN 2220-3192 (online)

ORIGINAL ARTICLE

Antidepressant-like potential of silymarin and silymarin-sertraline combination in mice: Highlighting effects on behaviour, oxidative stress, and neuroinflammation

Adejoke Yetunde Onaolapo, Hameed Sulaiman, Anthony Tope Olofinnade, Olakunle James Onaolapo

Specialty type: Behavioral sciences Technology, Oyo State 234, Nigeria Provenance and peer review:

Unsolicited article; Externally peer reviewed

Peer-review model: Single blind

Peer-review report's scientific quality classification

Grade A (Excellent): 0 Grade B (Very good): B Grade C (Good): C Grade D (Fair): 0 Grade E (Poor): 0

P-Reviewer: Kaur M, United States; Wang MZ, China A-Editor: Nath L, India

Received: April 18, 2022 Peer-review started: April 18, 2022 First decision: May 31, 2022 Revised: June 5, 2022 Accepted: October 19, 2022 Article in press: October 19, 2022 Published online: November 28, 2022

Adejoke Yetunde Onaolapo, Department of Anatomy, Ladoke Akintola University of

Hameed Sulaiman, Anthony Tope Olofinnade, Olakunle James Onaolapo, Department of Pharmacology, Ladoke Akintola University of Technology, Oyo State 234, Nigeria

Corresponding author: Olakunle James Onaolapo, MBBS, MSc, PhD, Reader (Associate Professor), Department of Pharmacology, Ladoke Akintola University of Technology, College of Health Sciences, P.M.B 4000, Ogbomosho 234, Oyo, Nigeria. olakunleonaolapo@yahoo.co.uk

Abstract

BACKGROUND

Currently, there is increasing advocacy for the use of diet, dietary supplements, and herbal remedies in depression management.

AIM

To determine the antidepressant effects of standardized silymarin (SILY) extract either as a sole agent or as an adjunct in depression therapy.

METHODS

Adult mice were assigned into three main groups based on the neurobehavioural models; and each main group had ten treatment groups of 10 mice each. Treatment groups were: Vehicle control group, oral sertraline (SERT) group, two groups fed SILY)-supplemented diet (SILY at 140 and 280 mg/kg of feed, respectively), dexamethasone (DEX; i.p.) group, DEX/SERT group, two groups of DEX/SILY (SILY at 140 and 280 mg/kg of feed, respectively), and another two groups of (SERT/DEX/SILY) (SILY at 140 and 280 mg/kg of feed, respectively, plus i.p. DEX plus SERT). Duration of the study was 7 wk, and treatments were administered daily.

RESULTS

SILY (alone) increased body weight, open field locomotor activity, rearing, and grooming; it also enhanced spatial working memory while decreasing anxietyrelated behaviours and behavioural despair. SILY also improved antioxidant status while decreasing lipid peroxidation, acetylcholinesterase activity, and

inflammatory markers. Neuronal integrity of the cerebral cortex and hippocampus was preserved. Overall, when administered alone or with SERT, SILY counteracted DEX-induced behavioural and biochemical changes while preserving neuromorphological integrity.

CONCLUSION

In conclusion, SILY is beneficial in mitigating DEX-induced central nervous system and other related changes in mice.

Key Words: Behavioural despair; Depression; Mental Health; Neurobehaviour; Neuromorphology

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Depression is a neuropsychiatric disorder that has in recent times become a leading cause of disability and a major contributor to global disease burden and suicide. In recent times there has been increasing advocacy for the use of dietary supplements and herbal remedies in depression management. While antidepressant effects of extracts of silybum marianum seeds have been reported, there is a dearth of scientific information on the possible effect of its standardized silymarin extract either as a sole agent or as an adjunct in depression therapy.

Citation: Onaolapo AY, Sulaiman H, Olofinnade AT, Onaolapo OJ. Antidepressant-like potential of silymarin and silymarin-sertraline combination in mice: Highlighting effects on behaviour, oxidative stress, and neuroinflammation. World J Pharmacol 2022; 11(3): 27-47 URL: https://www.wjgnet.com/2220-3192/full/v11/i3/27.htm DOI: https://dx.doi.org/10.5497/wjp.v11.i3.27

INTRODUCTION

Depression is a neuropsychiatric disorder that has in recent times become a leading cause of disability and a major contributor to global disease burden and suicide[1]. It is characterised by the presence of anhedonia and/or evidence of alterations in mood including irritability, sadness, or emptiness[2-6]. In the last decade or more, the global prevalence of depression has continued to rise[1,7], with depression accounting for approximately 12% of hospital admissions, 50% of mental health consultations, and 4% of suicides [6,8,9]. In addition to a high socioeconomic burden and significant morbidity/mortality, depression has been ranked as the single largest contributor to global disability and suicide deaths[3,5, 10-13]. Scientific evidence[14,15] of the critical role of serotonin in the pathogenesis of depression was instrumental to the development of some of the current antidepressant drugs (fluoxetine and sertraline [SERT]) that selectively inhibit the reuptake of serotonin at serotonin transporters, and thereby increase serotonin concentration within the synaptic cleft[15,16]. While significant strides have been made in developing newer drugs for the management of depression, the obvious advantages of more tolerable, less toxic, and more affordable treatment options continue to spur researchers to do more.

In recent times, the impact of diet, dietary supplements, and herbal remedies in the maintenance of mental health, as well as the aetiology, progression, and management of mental illness is becoming important areas of research [17-19]. Specifically, the search for modifiable factors in depression has led to the study of the possible associations between the development of depressive illness and dietary patterns. A number of studies have been successful in demonstrating the value of diet and/or dietary supplements including selenium, zinc, and vitamins B, C, and K in the prevention, pathogenesis, or outcome of depression[20-25]. The antidepressant effects of extracts of parts of plants such as the Silybum marianum seed have also been reported^[26].

Silymarin (SILY) is a polyphenolic antioxidant complex which is derived from the fruit and seeds of the 'milk-thistle' plant known as Silybum marianum. While this ancient medicinal plant has been used for centuries for hepatoprotection (or the management of hepatic disorders), the production of standardised fractions of the plant has allowed for a widespread research of its medicinal potential [27-29]. The antifibrotic, antioxidative, immunomodulatory, anti-inflammatory, and antinociceptive properties of SILY have been documented [30-33], and at pharmacological doses, it has been reported to be non-toxic [30, 34]. A number of studies have also reported the neuroprotective effects of SILY in different animal models[26-28,35-37]. While there have been suggestions of the possible antidepressant effects of Silybum marianum extracts, there is a dearth of scientific information on the possible antidepressant effects of standardised formulations of SILY used alone or as an adjunct. Therefore, this study evaluated the effects of dietary supplementation with SILY, alone or in combination with SERT, on body weight, food intake, neurobehaviour, oxidative stress parameters, inflammatory markers, and acetylcholinesterase

levels in a dexamethasone (DEX) model of depression in mice.

MATERIALS AND METHODS

Drugs and chemicals

SILY (Silybon-70[®] Micronova Pharmaceutical Industries Ltd, Lagos Nigeria), SERT capsules (Zoloft[®] 50 mg, Pfizer Inc. Lagos, Nigeria), and DEX phosphate injection (4 mg/mL, Vixa Pharmaceutical Co. Ltd, Lagos, Nigeria) were obtained commercially. Assay kits for lipid peroxidation (malondialdehyde [MDA] assay kit), glutathione peroxidase (GPx), reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (Biovision Inc. Milpitas, CA, United States) were obtained and refrigerated until used. All other chemicals were of analytical grade.

Animals

Adult male Swiss mice (Empire Breeders, Osogbo, Osun State, Nigeria) weighing between 18-25 g each were used for this study. Mice were housed singly in cages located in temperature-controlled quarters (22 °C-25 °C) with lights on at 7.00 a.m. daily. Animal diet was commercially sourced (TOP[®] feeds) standard rodent chow (29% protein, 13% fat, and 58% carbohydrate). Mice had access to food and water *ad libitum*, except during the behavioural tests. All procedures were conducted in accordance with the approved protocols of the Ladoke Akintola University of Technology and within the provisions for animal care and use prescribed in the scientific procedures on living animals European Council Directive (EU2010/63).

Feed

Animals were fed commercially available rodent diet [(standard diet (SD)] sourced from Top Feeds Ltd, Ibadan Nigeria). SILY was incorporated into standard rodent diet at 140 and 280 mg/kg of feed, respectively.

Experimental method

Adult male mice were randomly assigned into three main groups (1-3) based on the neurobehavioural models. Group 1 animals were exposed to the elevated plus maze and tail-suspension paradigm, group 2 were exposed to the Y-maze and forced-swim paradigm, while mice in group 3 were exposed to the open-field arena and radial arm maze. Animals in the main groups were subsequently assigned into ten treatment groups of 10 mice each. Treatment groups were: Vehicle control group [fed standard diet (SD) and given intraperitoneal (*i.p.*) saline plus oral saline], SERT group (fed SD and given *i.p.* saline plus oral SERT), two groups fed SILY-supplemented diet (at 140 and 280 mg/kg of feed, respectively; SILY 140 and SILY 280) and given *i.p.* saline plus oral saline, DEX group (fed SD and given *i.p.* DEX plus oral saline), DEX/SERT group (fed SD and given *i.p.* DEX plus oral SERT), two groups (DEX/SILY) fed SILY-supplemented diet (at 140 and 280 mg/kg of feed, respectively) and given *i.p.* DEX plus oral saline (DEX/SILY 140 and DEX/SILY 280), and another two groups fed SILY-supplemented diet (at 140 and 280 mg/kg of feed, respectively) and given *i.p.* DEX plus oral SERT (SERT/DEX/SILY 140 and SERT/DEX/SILY 2800). SERT was administered at 5 mg/kg[38], while DEX was administered at 4 mg/kg[39-41]. Total duration of the study was 7 wk, and all treatments were administered daily. Mice in all groups were weighed weekly (7.00 am, before feeding) and food intake was measured as previously described[42-44] using a weighing balance (Mettler Toledo Type BD6000, Greifensee, Switzerland). Food changes occurred daily at 8.00 am. Food hoppers that contained pre-weighed quantities of food were provided daily to the mice; a thin plastic sheet was placed beneath the cages to catch food spillage. Total food consumption was then measured as the difference between the preweighed standard chow and the weight of chow in hopper daily. Crumbs in the plastic sheets were weighed and accounted for in the measurement of total food consumed during the 24-h period [42]. At the end of the experimental period, animals were exposed to the respective paradigms. Twenty-four hours after the last behavioural test, animals in the open field and radial arm maze group were euthanised by cervical dislocation. Blood was taken for assessment of oxidative stress parameters and inflammatory markers (tumor necrosis factor (TNF)- α and interleukin-10). The hippocampus and cerebral cortex were excised and either homogenised for the assessment of inflammatory markers, antioxidant status, and acetylcholinesterase activity or processed for general histological examination.

Assessment of body weight and food intake

Body weight of animals in all groups were measured weekly using an electronic weighing balance (Mettler Toledo Type BD6000, Switzerland) while the amount of food consumed was measured daily. Relative change in body weight or food intake was calculated for each animal using the equation below following which results for all animals where computed to find the statistical mean.

Zaishideng® WJP | https://www.wjgnet.com

Behavioural tests

Mice were transported in their home cages to the behavioural testing laboratory and allowed to acclimatise (10 min) before exposure to paradigms. Each animal was placed in the apparatus following which behaviours were recorded. On completion of the tests, each mouse was removed from the maze and returned to the respective home cages. The interior surfaces of the mazes were then cleaned with 70% ethanol and wiped dry to remove traces of conspecific odour. Behavioural parameters were then scored manually by independent observers who were blind to the groupings.

Anxiety model: Elevated plus maze

The elevated plus-maze (EPM) is a plus-shaped apparatus with four arms placed at right angles to each other. The EPM used in the study and the procedure are as previously described[42,45,46].

Open field

Ten minutes of locomotion, rearing, and grooming were observed in the open field and scored as previously described[47,48].

Tail suspension test

The tail suspension test (a measure of behavioural despair) was carried out according to the method described by Steru et al[49], Młyniec and Nowak[50], and Onaolapo et al[51]. Mice were securely fastened (using a medical adhesive tape) by the tip of their tail to a flat platform and suspended for 6 min approximately 30 cm below the platform. The total time of immobility was measured during the 6min period of the testing session. Immobility, which was defined as the period the animal hung passively without limb movement, was scored[40].

Forced swim test

The forced swim test is a measure of behavioural despair in mice. The test was carried out according to the method described by Porsolt *et al*[52], Kroczka *et al*[53], and Onaolapo *et al*[51]. Mice were dropped individually into glass cylinders which had a height of 25 cm and diameter of 10 cm, were filled with 10 cm of water (water level was marked to ensure uniformity), and maintained at a temperature of 23-25 °C. The dimensions of the glass cylinder ensured that the mouse was unable to touch the bottom of the cylinders either with their feet or their tails, during the test. The height also prevented mice from escaping from the cylinder. Animals were then returned (they were dried with paper towels to prevent hypothermia) to their home cages after 15 min in water. They were reintroduced into the cylinders 24 h later. Mice were exposed to the forced swim paradigm for 6 min. The total duration of immobility was measured during the last 4 min of the forced swim test. The mouse was considered immobile when it had remained floating passively in the water.

Memory tests

The Y- and radial arm mazes were used to assess and score spatial working memory as previously described [54,55]. The Y-maze has three arms (41 cm long and 15 cm high, 5 cm wide at an angle of 120°), while the radial arm maze apparatus has 8 arms measuring 33 cm long spaced equidistantly from each other.

Blood collection

Blood collected from each mouse via cardiac puncture was used for the estimation of lipid peroxidation, GSH, SOD, and GPx. Samples were collected into unheparinised bottles and processed as previously described[56,57].

Brain homogenization

Within 24 h of the completion of the behavioural tests, animals in all groups were euthanised by cervical dislocation post-anaesthesia with diethyl ether. Homogenates of the hippocampus and cerebral cortex were prepared in ice-cold phosphate buffered saline, using a Teflon-glass homogeniser. The homogenate was centrifuged at 5000 rpm at 4 °C for 15 mi. The supernatant obtained was then used for estimation of lipid peroxidation levels and antioxidant status.

Biochemical assays

Estimation of MDA content (lipid peroxidation): Lipid peroxidation level was measured as MDA content as previously described^[58]. Change in colour was measured at 532 nm. The MDA kit used had a detection range of 7.813-500 ng/mL and a sensitivity < 4.688 ng/mL. The intra-assay coefficient of variability was < 7%, and the inter-assay coefficient of variability was < 9%.

Antioxidant activity

SOD activity was determined using a commercially available assay kit. Colour changes were measured at an absorbance of 560 nm as described previously [29,58]. The activity of SOD is expressed in

units/mL.

Levels of GSH were determined following the instructions of the manufacturer. A yellow-coloured complex which can be measured at an absorbance of 412 nm is formed by GSH form when it reacts with Ellmans reagent (DTNB). Levels of GSH are expressed in nmol/mL.

GPx is an enzyme that catalyses the reduction of hydroperoxides, such as hydrogen peroxide. GPx activity was determined as previously described [29]. The activity of GPx is expressed in units/mL.

Tumour necrosis factor-α and interleukin-10

Tumour necrosis factor-α and interleukin (IL)-10 were measured using enzyme-linked immunosorbent assay (ELISA) techniques with commercially available kits (Enzo Life Sciences Inc. NY, United States) designed to measure the 'total' (bound and unbound) amount of the respective cytokines.

Acetylcholinesterase activity

Brain acetylcholinesterase activity (Biovision, United States) was determined using commercially available assay kits following the instructions of the manufacturer.

Tissue histology

Sections of the cerebral cortex and hippocampus were fixed in 10% formal saline for 24 h, processed for paraffin wax embedding, dehydration, clearing, and infiltration, sectioned, and then mounted following which they were processed for general histological staining using haematoxylin and eosin as previously described[40].

Statistical analysis

Data were analysed using Chris Rorden's analysis of variance (ANOVA) for windows, version 0.98. Data analyses were done by ANOVA, and post-hoc test (Tukey HSD) was used for within and between group comparisons. Results are expressed as the mean \pm SEM. *P* < 0.05 was taken as the accepted level of significant difference from control or standards.

RESULTS

Effect of silymarin on body weight

Figure 1 shows the effect of SILY on the change in body weight. There was a significant [F (9, 90) = 48.1, 100]P < 0.001] decrease in body weight in the groups administered with SERT, DEX, DEX/SERT, and DEX/SILY 140, while an increase in body weight was observed in groups administered with SILY 140 and SILY 280, DEX/SILY 280, and those administered with i.p. DEX, oral SERT, DEX/SERT/SILY 140, and DEX/SERT/SILY 280 compared to the vehicle control. Compared to SERT alone, there was a significant increase in body weight with SILY 280. While compared to DEX, body weight increased significantly with DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280. Compared with the group administered with DEX/SERT, body weight increased significantly with DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280. Overall, the results showed that SILY administered alone increased body weight compared to the vehicle control or SERT. SILY when administered alone (at 280 mg/kg) reversed DEX-induced changes in body weight. When co-administered with SERT, SILY at both concentrations reversed the changes in body weight induced by DEX.

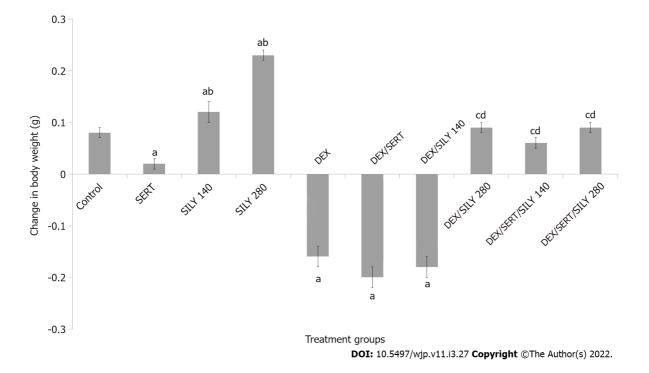

Effect of silymarin on food intake

Figure 2 shows the effect of SILY on the change in food intake. There was a significant [F (9, 90) = 513, P < 0.001] decrease in food intake with DEX, DEX/SERT, DEX/SILY 140, and DEX/SILY 280, while an increase in food intake was observed with DEX/SERT/SILY 140 and DEX/SERT/SILY 280, compared to the vehicle control. Compared to SERT alone, there was no significant difference in food intake in any of the SILY alone groups. While compared to DEX, food intake increased significantly with DEX/SERT/SILY 140 and DEX/SERT/SILY 280. Compared with the group administered with DEX/SERT, food intake increased significantly with DEX/SERT/SILY 140 and DEX/SERT/SILY 280. Overall, the results showed that SILY administered alone did not significantly alter food intake compared to the vehicle control, SERT, or DEX, although co-administration of SILY with SERT was associated with an increase in food intake compared to the vehicle control, DEX, or DEX with SERT.

Effect of silymarin on locomotor and rearing activity

Figure 3 shows the effect of SILY on locomotor activity (upper panel) and rearing (lower panel). There was a significant [F(9, 90) = 26.5, P < 0.001] increase in locomotor activity with SILY 140, DEX/SILY 140, and DEX/SILY 280, and a decrease in locomotor activity with DEX compared to the vehicle control. Compared to SERT alone, there was a significant increase in locomotor activity with SILY 140. While compared to DEX, locomotor activity increased significantly with DEX/SERT, DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280. Compared with the group

Figure 1 Effect of silymarin on change in body weight. Each bar represents the mean ± SEM, ^a*P* < 0.05 *vs* control, ^b*P* < 0.05 *vs* SERT, ^c*P* < 0.05 *vs* DEX, ^d*P* < 0.05 *vs* DEX/SERT. Sertraline; DEX: Dexamethasone; SILY: Silymarin. Number of mice per treatment group = 10.

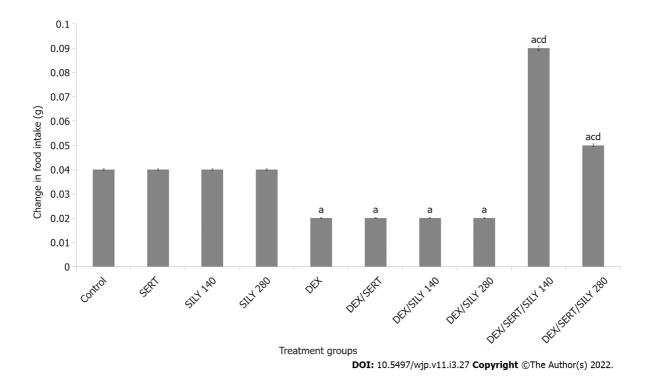


Figure 2 Effect of silymarin on changes in food intake. Each bar represents the mean \pm SEM, ^aP < 0.05 vs control, ^bP < 0.05 vs SERT, ^cP < 0.05 vs DEX, ^dP < 0.05 vs DEX/SERT. SERT: Sertraline; DEX: Dexamethasone; SILY: Silymarin. Number of mice per treatment group = 10.

administered with DEX/SERT, locomotor activity increased significantly with DEX/SILY 280 mg. Overall, the results showed that SILY (administered alone) concentration-dependently increased locomotor activity compared to the vehicle control and SERT. SILY alone or co-administered with SERT also mitigated the decrease in locomotor activity induced by DEX.

Rearing activity decreased significantly [F(9, 90) = 6.20, P < 0.001] with DEX and increased with DEX/SILY 140 and DEX/SILY 280, compared to the vehicle control. Compared to SERT alone, there was a significant increase in rearing activity with SILY 140. While compared to DEX, rearing activity

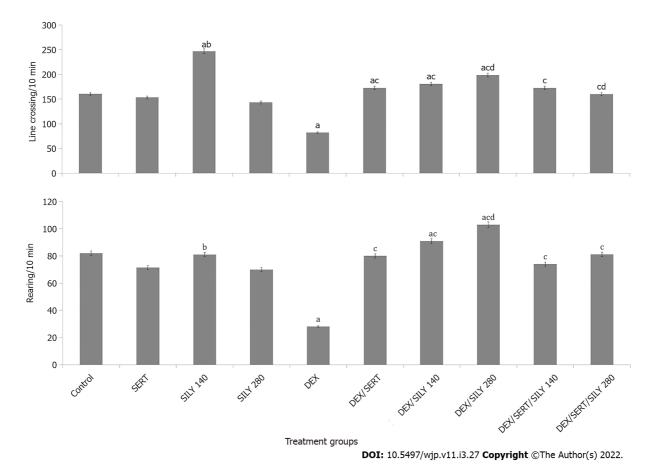


Figure 3 Effect of silymarin on locomotor activity (upper panel) and rearing activity (lower panel). Each bar represents the mean \pm SEM, ^aP < 0.05 vs control, ^bP < 0.05 vs SERT, ^cP < 0.05 vs DEX, ^dP < 0.05 vs DEX/SERT. SERT: Sertraline; DEX: Dexamethasone; SILY: Silymarin. Number of mice per treatment group = 10.

increased significantly with DEX/SERT, DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280. Compared to DEX/SERT, the rearing activity increased significantly with DEX/SILY 280. Overall, the results showed that SILY alone or co-administered with SERT also mitigated the decrease in rearing activity induced by DEX.

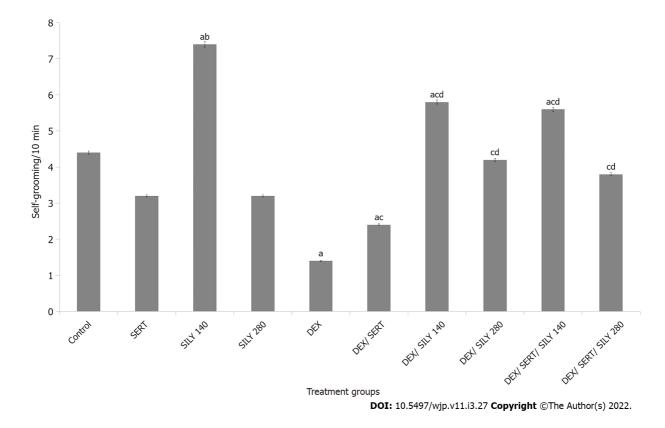

Effect of silymarin on grooming behaviour

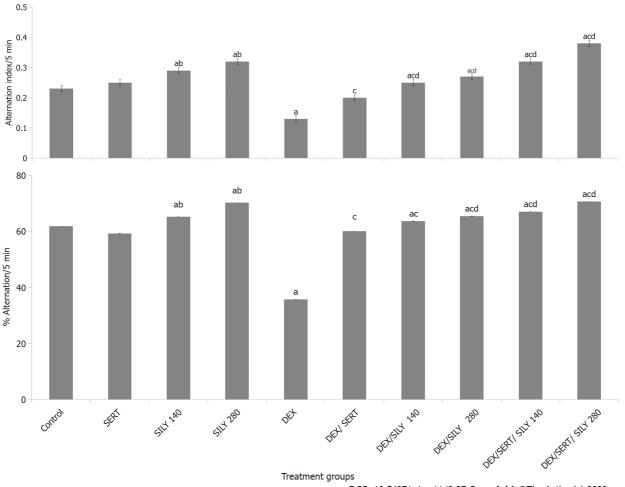
Figure 4 shows the effect of SILY on self-grooming behaviour. There was a significant [F (9, 90) = 5.24, P < 0.001] increase in self-grooming with SILY, DEX/SILY, and DEX/SERT/SILY 140, while a decrease in self-grooming was observed with DEX and DEX/SERT compared to the vehicle control. Compared to SERT alone, there was a significant increase in self-grooming with SILY 140. While compared to DEX, self-grooming behaviour increased significantly with DEX/SERT, DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280. Compared with the group administered with DEX/SERT, self-grooming increased significantly with DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280. Overall, the results showed that SILY administered alone concentration-dependently increased self-grooming behaviour compared to the vehicle control and SERT. SILY alone or co-administered with SERT also mitigated the decrease in self-grooming behaviour induced by DEX.

Effect of silymarin on spatial working memory in the Y- and radial arm mazes

Figure 5 shows the effect of SILY on radial arm (upper panel) and Y- (lower panel) maze spatial working memory tasks. There was a significant [*F* (9, 90) = 9.20, *P* < 0.001] increase in working memory with SILY 140, SILY 280, DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280, while a decrease in memory was observed with DEX compared to the vehicle control. Compared to SERT alone, there was a significant increase in working memory with SILY 140 and SILY 280. While compared to DEX, working memory increased significantly with DEX/SERT, DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280. Compared with the group administered with DEX/SERT, working memory increased significantly with DEX/SILY 140, DEX/SILY 280, DEX/SERT, working memory increased significantly with DEX/SILY 140, DEX/SILY 140, and DEX/SERT/SILY 280. Overall, the results showed that SILY administered alone increased spatial working memory scores in the radial arm maze, compared to the

Figure 4 Effect of silymarin on self-grooming. Each bar represents the mean \pm SEM, °*P* < 0.05 vs control, ^b*P* < 0.05 vs SERT, °*P* < 0.05 vs DEX, ^d*P* < 0.05 vs DEX,

vehicle control and SERT. SILY alone or co-administered with SERT also counteracted the decrease in spatial working memory score induced by DEX.

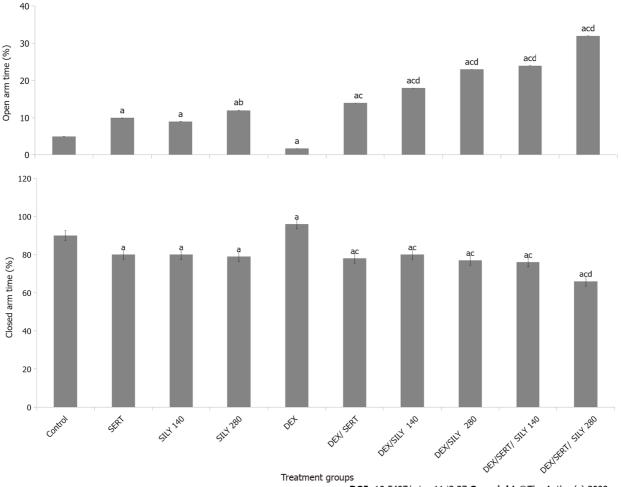

Y maze spatial working memory increased significantly [F(9, 90) = 16.04, P < 0.001] with SILY 140, SILY 280, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280, and decreased with DEX compared to the vehicle control. Compared to SERT alone, there was no significant difference in working memory in any of the groups fed SILY alone. While compared to DEX, working memory increased significantly with DEX/SERT, DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280. Compared to DEX/SERT, working memory increased significantly with DEX/SILY 140, DEX/SILY 140, DEX/SILY 140, DEX/SILY 140, DEX/SILY 140, DEX/SILY 140, and DEX/SILY 140, DEX/SILY 280. Compared to DEX/SERT/SILY 140, and DEX/SERT/SILY 280. Overall, the results showed that SILY administered alone improved spatial working memory scores in the Y-maze compared to the vehicle control. SILY alone or co-administered with SERT also counteracted the decrease in spatial working memory induced by DEX.

Effect of silymarin on anxiety-related behaviours

Figure 6 shows the effect of SILY on the time spent in the open (upper panel) and closed (lower panel) arms of the elevated plus maze. There was a significant [F (9, 90) = 15.11, P < 0.001] increase in open arm time with SERT, SILY 140, SILY 280, DEX/SERT, DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280, while a decrease was observed with DEX compared to the vehicle control. Compared to SERT alone, there was a significant increase in open arm time with SILY 280. While compared to DEX, open arm time increased significantly with DEX/SERT, DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280. Compared with the group administered with DEX/SERT, open arm time increased significantly with DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 280, DEX/SERT/SILY 280. Overall, the results showed that SILY administered alone increased the time spent in the open arm of the EPM compared to the vehicle control. SILY alone or co-administered with SERT also mitigated the decrease in open arm time induced by DEX.

Time spent in the closed decreased significantly [F(9, 90) = 8.21, P < 0.001] with SERT, SILY 140, SILY 280, DEX/SERT, DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280, and increased with DEX compared to the vehicle control. Compared to SERT alone, there was no significant difference in closed arm time in any of the groups fed SILY alone. While compared to DEX, closed arm time decreased significantly with DEX/SERT, DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 280, and DEX/SERT/SILY 280. Compared with DEX/SERT, the time spent in the closed arm decreased significantly with DEX/SERT, DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280. Compared with DEX/SERT, the time spent in the closed arm decreased significantly with DEX/SERT/SILY 280. Overall, the results showed that SILY administered alone decreased time spent in the closed arm compared to the vehicle control. SILY alone or co-administered

DOI: 10.5497/wjp.v11.i3.27 Copyright ©The Author(s) 2022.


Figure 5 Effect of silymarin on radial arm maze (upper panel) and Y-maze (lower panel) spatial working memory. Each bar represents the mean \pm SEM, $^{\circ}P < 0.05$ vs control, $^{b}P < 0.05$ vs SERT, $^{\circ}P < 0.05$ vs DEX, $^{d}P < 0.05$ vs DEX/SERT. SERT: Sertraline; DEX: Dexamethasone; SILY: Silymarin. Number of mice per treatment group = 10.

with SERT also decreased time spent in the closed arm compared to DEX.

Effect of silymarin on behavioural despair

Figure 7 shows the effect of SILY on immobility time in the tail suspension (upper panel) and forced swim (lower panel) tests. There was a significant [F(9, 90) = 26.9, P < 0.001] decrease in immobility time with SILY 140, SILY 280, DEX/SERT, and DEX/SERT/SILY 140, and DEX/SERT/SILY 280 while an increase was observed with SERT, DEX, DEX/SILY 140, and DEX/SILY 280 compared to the vehicle control. Compared to SERT alone, there was a significant decrease in immobility time with SILY 140 and SILY 280. While compared to DEX, the immobility time decreased significantly with DEX/SERT, DEX/SILY 140, and DEX/SERT/SILY 280. Compared with the group administered with DEX/SERT, the immobility time decreased significantly with EX/SILY 140, DEX/SILY 280, DEX/SERT, the immobility time decreased significantly with EX/SILY 140, DEX/SILY 280, DEX/SERT, the immobility time decreased significantly with EX/SILY 140, DEX/SILY 280, DEX/SERT, the immobility time decreased significantly with EX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 280. Overall, the results showed that SILY administered alone decreased immobility time compared to the vehicle control and SERT. SILY alone or co-administered with SERT also mitigated the increase in immobility time induced by DEX.

Immobility time in the forced swim test decreased significantly [F (9, 90) = 24.0, p < 0.001] with SERT, SILY 140, SILY 280, DEX/SERT, DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280, and increased with DEX, compared to the vehicle control. Compared to SERT alone, there was a significant decrease in immobility time with SILY 140. While compared to DEX, the immobility time decreased significantly with DEX/SERT, DEX/SILY 140, and DEX/SERT/SILY. Compared to DEX/SERT, the immobility time decreased significantly with DEX/SERT, DEX/SILY 140, and DEX/SERT/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280. Overall, the results showed that SILY administered alone decreased immobility time compared to the vehicle control and SERT. SILY alone or co-administered with SERT also mitigated the increase in immobility time induced by DEX.

Onaolapo AY et al. Antidepressant-like potential of silymarin/silymarin-sertraline combination

DOI: 10.5497/wjp.v11.i3.27 Copyright ©The Author(s) 2022.

Figure 6 Effect of silymarin on time spent in the open-arm (upper panel) and closed arm (lower panel) of the elevated plus maze. Each bar represents the mean \pm SEM, ^aP < 0.05 vs control, ^bP < 0.05 vs SERT, ^cP < 0.05 vs DEX, ^dP < 0.05 vs DEX/SERT. SERT: Sertraline; DEX: Dexamethasone; SILY: Silymarin. Number of mice per treatment group = 10.

Effect of silymarin on serum lipid peroxidation and antioxidant status

Table 1 shows the effect of SILY on serum lipid peroxidation and antioxidant status. SOD [*F* (9, 90) = 13.11, *P* < 0.001], increased significantly with SILY 140, SILY 280, and DEX/SILY 280, while a decrease was observed with DEX, DEX/SERT, DEX/SERT/SILY 140, and DEX/SERT/SILY 280, compared to the vehicle control. Compared to SERT alone, there was a significant increase with SILY 140 and SILY 280. While compared to DEX, there was an increase with DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280, and decrease with DEX/SERT. Compared to DEX/SERT, there was an increase in SOD activity with DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280. Catalase [*F* (9, 90) = 25.32, *P* < 0.001] increased significantly with SILY 140, SILY 280, and DEX/SERT/SILY 280, while a decrease was observed with DEX, DEX/SERT, and DEX/SERT/SILY 140, Compared to the vehicle control. Compared to SERT alone, there was a significant increase with SILY 140, DEX/SERT/SILY 280, and DEX/SERT/SILY 280, while a decrease was observed with DEX, DEX/SERT, and DEX/SERT/SILY 140, compared to the vehicle control. Compared to SERT alone, there was a significant increase with SILY 140 and SILY 280. While compared to DEX, there was an increase with DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, DEX/SILY 280. Compared to DEX/SERT/SILY 280. CEX/SERT, there was an increase in catalase activity with DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SILY 140, DEX/SILY 280. CEX/SERT/SILY 140, and DEX/SERT/SILY 280. CEX/SERT/SILY 140, and DEX/SERT/SILY 280. DEX/SERT/SILY 140, and DEX/SERT/SILY 280. CEX/SERT/SILY 140, and DEX/SERT/SILY 280.

GSH [*F* (9, 90) = 9.23, *P* < 0.001] increased significantly with SILY 140 and SILY 280, DEX/SILY 280, and DEX/SERT/SILY 280, while a decrease was observed with DEX and DEX/SERT 140 compared to the vehicle control. Compared to SERT alone, there was a significant increase with SILY 140 and SILY 280. While compared to DEX, there was an increase with DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280. Compared to DEX/SERT, there was an increase in GSH levels with DEX/SILY 140, DEX/SILY 280.

GPx activity [F (9, 90) = 10.32, P < 0.001] increased significantly with SILY 140 and SILY 280 and decreased with DEX and DEX/SERT compared to the vehicle control. Compared to SERT alone, there was a significant increase with SILY 140 and SILY 280. While compared to DEX, there was an increase with DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280. Compared to DEX/SERT, there was an increase in GPx levels with DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 280, D

Table 1 Serum antioxidant status and lipid peroxidation level					
Group	SOD (U/mL)	CAT (U/mL)	GSH nmol/mL	GPx IU/L	MDA µmol/L
Control	0.92 ± 0.02	23.12 ± 0.21	0.73 ± 0.10	11.68 ± 1.10	6.42 ± 0.02
SERT	0.93 ± 0.02	21.11 ± 0.20	0.70 ± 0.11	10.60 ± 2.01	5.40 ± 0.02
SILY 140	1.54 ± 0.11 ^{a,b}	28.72 ± 0.23 ^{a,b}	$0.82 \pm 0.05^{a,b}$	$24.54 \pm 0.34^{a,b}$	3.38 ± 0.04^{a}
SILY 280	$1.98 \pm 0.02^{a,b}$	$31.76 \pm 0.22^{a,b}$	$1.12 \pm 0.05^{a,b}$	$30.20 \pm 0.78^{a,b}$	$2.33 \pm 0.03^{a,b}$
DEX	0.78 ± 0.03^{a}	12.78 ± 0.22^{a}	0.30 ± 0.05^{a}	6.65 ± 1.10^{a}	14.40 ± 0.06^{a}
DEX/SERT	$0.67 \pm 0.01^{a,c}$	13.67 ± 0.20^{a}	$0.35 \pm 0.01^{a,c}$	$6.92 \pm 1.00^{\circ}$	14.57 ± 0.16^{a}
DEX/SILY 140	$0.98 \pm 0.01^{c,d}$	$22.16 \pm 0.10^{c,d}$	$0.56 \pm 0.04^{a,c}$	$11.40 \pm 1.23^{c,d}$	$9.65 \pm 0.05^{a,c,d}$
DEX/SILY 280	$1.00 \pm 0.12^{a,c,d}$	$27.20 \pm 0.22^{a,c,d}$	$0.78 \pm 0.03^{a,c,d}$	$12.45 \pm 1.30^{c,d}$	$5.57 \pm 0.01^{a,c,d}$
DEX/SERT/SILY 140	$0.82\pm0.02^{\text{a,c,d}}$	$19.70 \pm 0.10^{a,c,d}$	$0.75 \pm 0.01^{c,d}$	$10.12 \pm 1.01^{c,d}$	$4.98 \pm 0.05^{a,c,d}$
DEX/SERT/SILY 280	$0.98\pm0.02^{\text{a,c,d}}$	$21.21 \pm 0.20^{c,d}$	$0.88 \pm 0.03^{a,c,d}$	$11.32 \pm 0.76^{c,d}$	$4.82 \pm 0.02^{a,c,d}$

Values are expressed as the mean ± SEM.

 $^{a}P < 0.05 vs$ control.

^bP < 0.05 vs SERT.

```
^{c}P < 0.05 vs DEX.
```

^d*P* < 0.05 *vs* DEX/SERT. SOD: Superoxide dismutase; GPx: Glutathione peroxidase; MDA: Malondialdehyde; SERT: Sertraline; DEX: Dexamethasone; SILY: Silymarin. Number of mice per treatment.

140, and DEX/SERT/SILY 280.

Overall, the results showed that SILY administered alone or co-administered with SERT had a mixed response with regards to antioxidant status.

Lipid peroxidation measured as MDA levels decreased significantly [F (9, 90) = 6.19, P < 0.001] with SILY 140, SILY 280, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280, while an increase was observed with DEX, DEX/SERT, and DEX/SILY 140 compared to the vehicle control. Compared to SERT alone, there was a significant decrease in MDA levels with SILY 140 and SILY 280. While compared to DEX, there was a decrease with DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280. Compared with the group administered with DEX/SERT, there was a decrease in MDA levels with DEX/SERT, there was a decrease in MDA levels with DEX/SERT, there was a decrease in MDA levels with DEX/SERT, there was a decrease in MDA levels with DEX/SILY 140, DEX/SILY 280. Overall, the results showed that SILY administered alone or co-administered with SERT decreased lipid peroxidation levels.

Effect of silymarin on brain levels of inflammatory markers, acetylcholinesterase activity, lipid peroxidation, and antioxidant status

Table 2 shows the effect of SILY on brain (hippocampus and cerebral cortex) levels of inflammatory markers (TNF-α and IL-10), acetylcholinesterase activity, lipid peroxidation, and antioxidant status. Brain (hippocampus and cerebral cortex) levels of TNF-α [*F* (9, 90) = 65.12, *P* < 0.001] decreased significantly with SERT, SILY 140, SILY 280, DEX, DEX/SERT, DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280, compared to the vehicle control. Compared to SERT alone, there was a significant increase with SILY 140 and SILY 280. While compared to DEX, there was an increase in brain (hippocampus and cerebral cortex) levels of TNF-α with DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280. Compared with the group administered with DEX/SERT, there was an increase in brain levels of TNF-α with DEX/SILY 140, DEX/SILY 280, DEX/SERT, SILY 140, and DEX/SERT/SILY 280. Compared with the group administered with DEX/SERT, there was an increase in brain levels of TNF-α with DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280. Compared with the group administered with DEX/SERT, there was an increase in brain levels of TNF-α with DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280. Overall, the results showed that SILY administered alone decreased TNF-α levels, and when given alone or co-administered with SERT, it mitigated DEX-induced alterations in TNF-α levels.

Brain (hippocampus and cerebral cortex) levels of IL-10 [F (9, 90) = 22.36, P < 0.001] decreased significantly with SERT, DEX, DEX/SERT, DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280, compared to the vehicle control. Compared to SERT alone, there was a significant increase with SILY 140 and SILY 280. While compared to DEX, there was an increase in brain levels of IL-10 with DEX/SILY and DEX/SERT/SILY at 140 and 280 mg/kg of feed, respectively. Compared with the group administered with DEX/SERT, there was an increase in brain levels of IL-10 with DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280. Overall, the results showed that SILY increased IL-10 Levels; alone or co-administered with SERT, it mitigated DEX-induced alteration in IL-10 Levels.

Onaolapo AY et al. Antidepressant-like potential of silymarin/silymarin-sertraline combination

Table 2 Brain levels of inflammatory markers, acetylcholinesterase activity, lipid peroxidation, and antioxidant status							
Group	TNF-α ng/g/protein	IL-10 pg/mg/protein	ACHe nmol/mg	MDA nmol/g/protein	GSH nmol/mg/protein	GPx mU/mg/protein	
Control	38.78 ± 0.20	23.89 ± 0.20	32.10 ± 1.30	7.95 ± 0.50	0.75 ± 0.10	18.68 ± 1.10	
SERT	24.12 ± 0.10^{a}	19.20 ± 0.16^{a}	28.19 ± 1.03 ^a	8.01 ± 0.51	0.73 ± 0.11	17.60 ± 1.01	
SILY 140	34.18 ± 0.10^{a}	23.65 ± 0.20	24.22 ± 1.15 ^{a,b}	6.91 ± 0.70^{a}	$0.92 \pm 0.05^{a,b}$	$34.54 \pm 0.44^{a,b}$	
SILY 280	33.11 ± 0.20^{a}	23.80 ± 0.30	20.18 ± 1.15 ^{a,b}	$5.83 \pm 0.63^{a,b}$	$1.23 \pm 0.05^{a,b}$	$46.20 \pm 0.54^{a,b}$	
DEX	18.78 ± 0.13^{a}	9.07 ± 0.10^{a}	52.10 ± 1.25^{a}	18.20 ± 0.56^{a}	0.30 ± 0.05^{a}	10.15 ± 0.80^{a}	
DEX/SERT	$19.40 \pm 0.10^{a,c}$	8.21 ± 0.19^{a}	42.30 ± 1.11 ^{a,c}	$18.25 \pm 0.76^{a,c}$	0.32 ± 0.02^{a}	$9.89 \pm 0.80^{\circ}$	
DEX/SILY 140	$25.22 \pm 0.11^{c,d}$	$15.22 \pm 0.20^{c,d}$	$33.22 \pm 1.24^{c,d}$	$7.60 \pm 0.80^{c,d}$	$0.64 \pm 0.03^{a,c}$	$12.40 \pm 0.83^{a,c,d}$	
DEX/SILY 280	$29.00 \pm 0.12^{a,c,d}$	$19.21 \pm 0.23^{c,d}$	30.17 ± 1.13 ^{a,c,d}	$6.57 \pm 0.63^{a,c,d}$	$0.88 \pm 0.03^{c,d}$	$14.35 \pm 0.07^{a,c,d}$	
DEX/SERT/SILY 140	$23.23 \pm 0.10^{a,c,d}$	14.10 ± 0.12 ^{a,c,d}	28.12 ± 1.21 ^{c,d}	$6.38 \pm 0.61^{a,c,d}$	$0.78 \pm 0.01^{a,c,d}$	$13.42 \pm 0.71^{a,c,d}$	
DEX/SERT/SILY 280	$25.12 \pm 0.10^{a,c,d}$	16.19 ± 0.15 ^{a,c,d}	$24.20 \pm 1.10^{a,c,d}$	$6.32 \pm 0.50^{a,c,d}$	0.88 ± 0.03 ^{a,c,d}	$15.42 \pm 0.89^{a,c,d}$	

Values are expressed as the mean ± SEM.

 $^{a}P < 0.05 vs$ control.

 $^{b}P < 0.05 vs$ SERT.

 $^{c}P < 0.05 vs$ DEX.

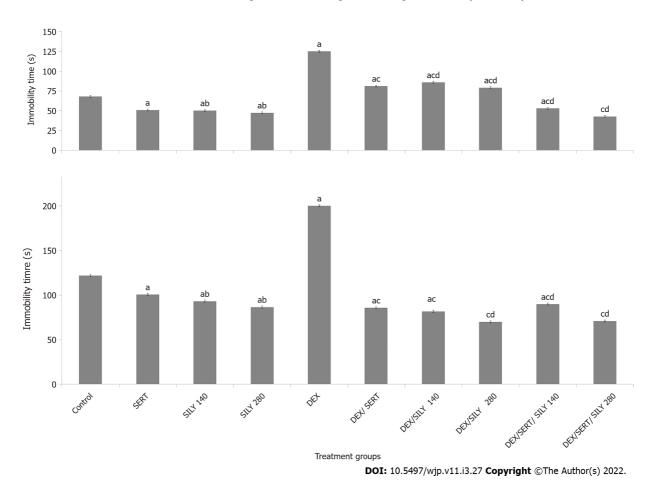
^dP < 0.05 vs DEX/SERT. GPx: Glutathione peroxidase; MDA: Malondialdehyde; SERT: Sertraline; DEX: Dexamethasone; SILY: Silymarin. Number of mice per treatment.

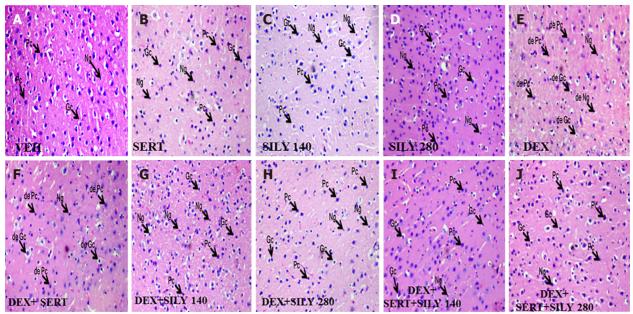
> Brain (hippocampus and cerebral cortex) acetylcholinesterase activity decreased significantly [F(9, 1)90) = 10.21, P < 0.001] with SERT, SILY 140, SILY 280, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280, and increased acetylcholinesterase activity with DEX and DEX/SERT compared to the vehicle control. Compared to SERT alone, there was a significant decrease in brain acetylcholinesterase activity with SILY 140 and SILY 280. While compared to DEX, a significant decrease in brain acetylcholinesterase activity was observed with DEX/SERT, DEX/SILY 140, DEX/SILY 280, DEX/ SERT/SILY 140, and DEX/SERT/SILY 280. Compared with the group administered with DEX/SERT, there was a decrease in brain acetylcholinesterase activity with DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280. Overall, the results showed that SILY decreased acetylcholinesterase activity; alone or co-administered with SERT, it mitigated DEX-induced alteration in acetylcholinesterase activity.

> Brain (hippocampus and cerebral cortex) MDA levels decreased significantly [F (9, 90) = 10.21, P < 0.001] with SILY 140, SILY 280, DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/ SERT/SILY 280, and increased with DEX and DEX/SERT compared to the vehicle control. Compared to SERT alone, there was a significant decrease with SILY 140 and SILY 280. While compared to DEX, there was a decrease in brain MDA levels with DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280. Compared with the group administered with DEX/SERT, there was a decrease in MDA levels with DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280. Overall, the results showed that SILY decreased MDA levels; alone or co-administered with SERT, it mitigated DEX-induced alteration in MDA levels.

> Brain (hippocampus and cerebral cortex) levels of GSH [F (9, 90) = 5.12, P < 0.001] increased significantly with SILY 140, SILY 280, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280 and decreased with DEX, DEX/SERT, and DEX/SILY 140 compared to the vehicle control. Compared to SERT alone, there was a significant increase with SILY 140 and SILY 280. While compared to DEX, there was an increase with DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280. Compared with the group administered with DEX/SERT, there was an increase in GSH with DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280.

> GPx activity [F (9, 90) = 6.27, P < 0.001] increased significantly with SILY 140 and SILY 280 and decreased with DEX, DEX/SERT, DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280, compared to the vehicle control. Compared to SERT alone, there was a significant increase with SILY 140 and SILY 280. While compared to DEX, there was a decrease with DEX/SERT and an increase with DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280. Compared with the group administered with DEX/SERT, there was an increase in GPx with DEX/SILY 140, DEX/SILY 280, DEX/SERT/SILY 140, and DEX/SERT/SILY 280. Overall, the results showed that SILY increased GPx and GSH activity; alone or co-administered with SERT, it mitigated DEX-induced alterations in GPx and GSH activity.




Figure 7 Effect of silymarin on immobility time in the tail suspension (upper panel) and forced swim (lower panel) tests. Each bar represents the mean ± SEM, ^aP < 0.05 vs control, ^bP < 0.05 vs SERT, ^cP < 0.05 vs DEX, ^dP < 0.05 vs DEX/SERT. Sertraline; DEX: Dexamethasone; SILY: Silymarin. Number of mice per treatment group = 10.

Effect of silymarin on cerebral cortex and hippocampal morphology

Figure 8 shows representative photomicrographs of haematoxylin and eosin stained sections of the mouse cerebral cortex. Examination of the cerebral cortex sections of mice in the vehicle control group revealed characteristic architecture of the mouse cerebral cortex showing multipolar shaped pyramidal cells with rounded vesicular nuclei, granule cells visible as circular shaped neurons with large open-face nuclei, prominent nucleoli, and scanty cytoplasm and small round-vesicular shaped glial neurons interspersed within a pink-staining neuropil. These features are in keeping with normal cerebral cortex histology. Examination of the cerebral cortex sections of the SERT, SILY 140, and SILY 280 revealed features that were in keeping with normal histology. In the group administered with DEX, there was evidence of normal pyramidal cells with deeply stained nuclei, interspersed between degenerating pyramidal cells with pale edges, shrunken and pale staining nuclei. There was also evidence of degenerating granule cells with pale staining pyknotic nuclei. These features are in keeping with neuronal injury.

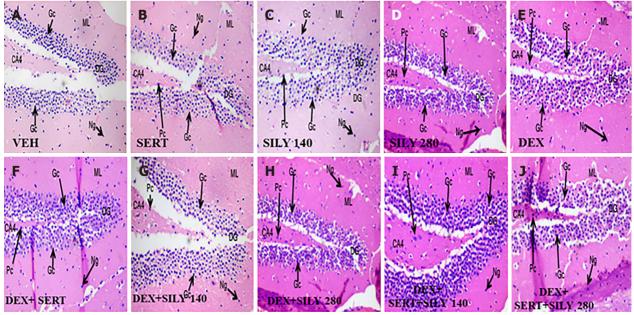

Examination of sections from groups administered with DEX/SERT, DEX/SILY 140, and DEX/SILY 280 revealed presence of normal looking cells and few degenerating pyramidal/granule cells. The features are in keeping with varying degrees of protection against the development of DEX-induced neuronal injury. In the groups administered with DEX/SERT/SILY 140 and DEX/SERT/SILY 280, the features were in keeping with normal cerebral cortex histology.

Figure 9 shows representative photomicrographs of haematoxylin and eosin stained sections of the dentate gyrus of the mouse hippocampus. Examination of the dentate gyrus region of the hippocampus in the vehicle control group revealed characteristic architecture of the mouse hippocampus with a few large multipolar pyramidal cells of the cornus ammonis 4 region projecting into the concavity of the dentate gyrus. Also observed were well-compacted small granule cells with vesicular nuclei in the ascending and descending arms of the dentate gyrus. Also obvious were astrocytes and microglia, neuronal processes, and nerve cells scattered throughout the molecular layer, that is, lying between the compact zones of the cornus ammonis and dentate gyrus regions. All features are in keeping with normal hippocampal dentate gyrus histology. Examination of the hippocampal dentate gyrus sections of groups fed SERT, SILY 140, and SILY 280 revealed features that were also in keeping with normal

DOI: 10.5497/wjp.v11.i3.27 Copyright ©The Author(s) 2022.

Figure 8 Effect of silymarin on histomorphology of the cerebral cortex. Photomicrographs show pyramidal cells, granule cells, and neuroglia. A: Vehicle; B: Sertraline C: Silymarin at 140mg/kg of food; D: Silymarin at 280 mg/kg of food; E: Dexamethasone, F: Dexamethasone and sertraline G: Dexamethasone and silymarin at 140; H: Dexamethasone and silymarin at 280; I: Dexamethasone, sertraline and silymarin at 140; J: Dexamethasone, sertraline and silymarin at 280. de-Pc: Degenerating pyramidal cells; de- Gc: Degenerating granule cells; de-Ng: Degenerating neuroglia; Gc: Granule cells; Pc: Pyramidal cells; Ng: Neuroglia. Number of mice per treatment group = 5.

DOI: 10.5497/wjp.v11.i3.27 Copyright ©The Author(s) 2022.

Figure 9 Effect of silymarin on histomorphology of the dentate gyrus of the hippocampus. Photomicrographs show small pyramidal cells, small granule cells within the dentate gyrus proper, and neuroglia scattered within the molecular layer. A: Vehicle; B: Sertraline; C: Silymarin at 140mg/kg of food; D: Silymarin at 280 mg/kg of food E: Dexamethasone; F: Dexamethasone and sertraline; G: Dexamethasone and silymarin at 140; H: Dexamethasone and silymarin at 280; I: Dexamethasone, sertraline and silymarin at 140; J: Dexamethasone, sertraline and silymarin at 280. Gc: Granule cells; Pc: Pyramidal cells; Ng: Neuroglia; ML: Molecular layer. Number of mice per treatment group = 5.

> histology. In the group administered with DEX, there were a few normal small pyramidal neurons interspersed between few degenerating pyramidal cells with pale edges, and there was also a paucity of cells in the molecular layer and loss of compactness of the granule cells in the dentate gyrus. Also observed were a few degenerating granule cells with pale staining nuclei; the features are in keeping with some neuronal injury.

Examination of sections from groups administered with DEX/SERT, DEX/SILY 140, and DEX/SILY 280 revealed presence of normal looking cells and few degenerating granule cells features, which are in keeping with varying degrees of protection against the development of DEX-induced neuronal injury. In the groups administered with DEX/SERT/SILY 140 and DEX/ SERT/SILY 280, the features are in keeping with normal dentate gyrus histology.

DISCUSSION

This study examined the antidepressant-like effects of SILY and SILY/SERT combination in mice to ascertain the role of SILY either alone or as an adjunct to SERT in mitigating DEX-induced behavioural and morphological changes in mice. The results showed that SILY administered alone increased body weight without altering food intake, increased open field locomotor activity, rearing, and grooming, enhanced spatial working memory, and decreased both anxiety-related behaviours and behavioural despair (immobility time in the forced swim and tail suspension tests). This was accompanied by an improvement in antioxidant status, and a decrease in lipid peroxidation, acetylcholinesterase activity, and inflammatory markers. Also, when administered alone or co-administered with SERT, SILY mitigated DEX-induced behavioural, biochemical, and morphological changes in relation to the cerebral cortex and hippocampus.

The impact of body weight and food intake on health, wellbeing, and disease has been reported [59, 60]. In this study, administration of DEX was associated with significant weight loss and decreased food intake. While depression is generally associated with excessive weight gain, which has been linked to bingeing on food, according to the Diagnostic and Statistical Manual of Mental Disorders, both weight gain and weight loss are symptoms of depression at all ages[2,61]. Similarly, the choice of DEX as a model of depression is centred on its ability to cause dose-dependent weight changes [62,63]. At doses similar to those used in this study, DEX had been associated with weight loss[63], corroborating the results of this study. The results of a study by Poggioli et al[64] revealed that chronic administration of DEX was associated with decreased weight gain, which was attributed to its ability to accelerate fatty acid oxidation, and decrease brown adipose tissue thermogenesis and the activity of uncoupling protein-1 mRNA[64]. Weight loss could also be attributed to decreased feed intake which could be secondary to early satiety. The administration of SERT to healthy mice caused a decrease in weight gain without impacting feed intake when compared to mice in the vehicle control group, while increased weight loss was observed in the group of animals administered with SERT with DEX. While there is a dearth of scientific information on the impact of SERT in healthy subjects, it is, however, generally believed that selective serotonin re-uptake inhibitors like SERT are associated with weight gain. The results of a few studies have linked weight gain mainly to long-term use of SERT[65,66]; however, some clinical studies have reported reduced weight gain or weight loss following acute use of SERT in persons with depression[67]. The results of a preclinical study that examined the effect of SERT on body weight parameters in monkeys administered with SERT over an 18 mo period using a placebo-controlled, longitudinal, randomized study design showed that while the body weight and body fat composition of the placebo group increased, a decrease in body weight and fat composition was observed in the SERT treatment group[68]. In the groups of mice fed SILY alone, an increase in weight with no change in food intake was observed compared to mice in the vehicle control group. Also, in mice fed SILY with DEX, a reversal of DEX-induced weight loss was observed. Information from the current literature reveals that the vast majority of studies evaluating the effects of SILY on body weight have administered it in a background of disease or disorder[28,32,69-71]. The results of these studies have shown that administration of SILY could be associated with either weight loss or weight gain[28,32,69-71] depending on the disease model used. This would suggest that the effects of SILY on body weight are mainly modulatory or adaptogenic, having the ability to return the body back to baseline. The administration of SILY with SERT was also associated with a reversal of weight loss due to DEX-induced depressive symptoms, suggesting that compared to SERT, SILY could be beneficial in modulating the effects of SERT on body weight. However, the co-administration of SERT with SILY also in a background of DEX was associated with increased food intake compared to either SILY or SERT.

In this study, neurobehavioural tests revealed that administration of DEX was associated with a decrease in horizontal locomotion, rearing, and grooming behaviour, which is consistent with the observations of Falade *et al*^[40]. The chronic unpredictable stress model was also associated with similar neurobehavioural changes[55]. The decrease in locomotor activity, rearing, and grooming is reflective of a central nervous system depressant response to DEX administration. Treatment with SERT was associated with a mitigation of the central depressant effect induced by DEX, although when administered to healthy mice, SERT did not significantly alter horizontal locomotion, rearing, or grooming, which is similar to the response observed by Pereira-Figueiredo et al[72]. In healthy mice fed a SILY diet, a central excitatory response was observed at 140 mg/kg. SILY alone or co-administered with SERT reduced the changes in locomotor activity, rearing, and grooming observed in mice administered with DEX alone. The concentration-dependent increase in locomotor activity, rearing, and grooming that occurred in healthy and DEX-treated mice could be linked to its ability to increase brain

levels of serotonin, dopamine, and norepinephrine, neurotransmitters that modulate central excitatory response in the brain [73-76]. Also, the co-administration of SILY with SERT was associated with a significant decrease in line crossing and an increase in grooming, with no significant difference in rearing behaviour compared with mice administered with SERT alone, suggesting that SILY could amplify the effects of SERT.

The neuroprotective effects of SILY have been reported [28,29,77-79] with a number of studies reporting its ability to reverse cognitive deficits and anxiety-related behaviours^[79]. In this study, DEX was associated with spatial working memory deficits (Y-maze and radial arm maze) and anxiogenic response in the elevated plus maze paradigm. In past times, cognitive deficits were not considered an important part of depression symptomatology, so little or no attention was paid to cognitive disorders associated with depression. However, in the light of recent knowledge, researchers now know that cognitive symptoms could significantly impact general functioning and quality of life, and risk of recurrence of depression in these individuals[80]. The results of this study demonstrated that while SERT administration was associated with anxiolysis when administered alone or to DEX-treated mice, it showed no nootropic ability in healthy mice. Although it counteracted DEX-induced spatial memory deficits, the results observed with SERT in healthy mice corroborate the report of a study by Siepmann et al^[81] that showed that in healthy humans, SERT was not associated with cognitive deficits or improvements in cognition. Although SERT reversed memory deficits in DEX-treated mice, studies in humans have reported that a selective serotonin reuptake inhibitor such as SERT was associated with memory loss and anxiety in persons with depression[82]. In groups fed SILY-supplemented diet alone, memory enhancing and anxiolytic effects were observed in both healthy and DEX-treated mice. This effect is similar to that observed by Yön et al[79] in diabetic rats. A number of other studies have also reported the ability of SILY to reverse cognitive deficits following scopolamine-induced amnesia[83] or mild traumatic brain injury[84], and these beneficial effects have been linked to its ability to decrease oxidative stress, inflammatory markers, and brain glutamate level, as well as increase antioxidant status and brain-derived neurotrophic factor in rodents[83,84]. Although compared to SERT, the administration of SILY to DEX-treated mice was associated within reversal of memory deficits suggesting that as a sole or replacement therapy it could provide some benefits, large clinical studies are required to confirm these in humans. When co-administered with SERT, memory and anxiolytic effects improved significantly compared to DEX-treated group administered with SERT, and these suggest that SILY could also be beneficial as an adjunct with SERT in depression management.

In this study, administration of SERT or a SILY-supplemented diet was associated with a decrease in immobility time in the behavioural despair paradigm in healthy animals, while DEX caused increased immobility time compared to healthy controls. Several studies have reported that chronic administration of DEX in humans and experimental animals was associated with the development of mood disorders including psychosis and depression [40,85,86]. The ability of DEX to increase immobility time has also been reported by other studies [40,87,88]. However, there is an increasing need for animal models of depression other than the currently available models of behavioural despair (forced swim test and tail suspension test). Animal models such as the one employed in this study supports the glucocorticoid hypothesis of depression[89] and would be valuable in the testing of novel drugs for the management of depression. In this study, chronic DEX administration was associated with weight loss, decreased food intake, locomotor retardation, cognitive deficits, anxiety, and behavioural despair, and a number of these symptoms and signs are necessary for the diagnosis of depression in humans. The mitigation of a number of features by SERT (a conventional antidepressant) supports the face and predictive validity for its possible use as a preliminary method for studying novel pharmacologic agents with possible antidepressant effects. A limitation of this study is our inability to assess plasma or brain glucocorticoid levels. SILY supplementation alone or co-administered with SERT in this study was associated with the reversal of DEX-induced behavioural despair. The antidepressant effects of SILY have been reported especially in studies that used acute restraint stress^[76], the chronic unpredictable stress model of depression[90] or posttraumatic stress disorder[91]. In both behavioural despair paradigms, the antidepressant effects of SERT increased significantly with SILY at a concentration of 280 mg/kg of feed, although it decreased at 140 mg/kg of feed, suggesting that high concentrations of SILY could elicit an additive beneficial effect.

The antidepressant, memory enhancing, and anxiolytic effects of SILY have been attributed to its ability to decrease oxidative stress, improve antioxidant status, and increase antiinflammatory markers [76,90]. In this study, dietary SILY supplementation was associated with a mitigation of DEX-induced changes in brain oxidative stress, antioxidant status, and inflammatory markers. It also counteracted DEX-induced increase in acetylcholinesterase activity which could also be responsible for the memory enhancing effects of SILY. When SILY was co-administered with SERT, we observed significant improvements in the oxidant antioxidant balance, and an antiinflammatory response over the effects observed with SERT alone, also reinforcing our opinion that SILY when examined in a rodent model of depression exhibited both adjunctive and sole therapeutic benefits.

Structural and morphological changes have been reported in humans with depression[92,93]. In this study, the administration of DEX resulted in neuronal injury in the cerebral cortex and hippocampal dentate gyrus, two regions of the brain which have been implicated in depression [92-94]. In this study, SERT and SILY-supplemented diet at both concentrations mitigated the structural changes induced by

DEX. The co-administration of SERT with SILY showed marked mitigation of these changes, suggesting that SILY was not only beneficial when administered alone, but it also possibly accentuated the effects of SERT. While our knowledge of the structural and morphological changes in depression and how they impact pathogenesis and treatment are still evolving, it is important to realise that the use of supplements such as SILY that have validated adaptogenic, antioxidant, antiinflammatory, cognitive enhancing, anxiolytic, and neuroprotective effects could be valuable in depression management, although clinical studies and trials would be necessary to verify its usability in humans.

CONCLUSION

The ability of SILY to modulate behaviour, oxidative stress, and neuroinflammation makes it a possible monotherapeutic agent or an adjunct in the management of DEX-induced depression. In this era when clinical management of depression has continued to be challenging, the discovery and application of such an agent are likely to be of benefit in at least a certain subset of patients. The value of an agent such as SILY is likely to rest in the fact that it can employ mechanisms of action that go beyond neurotransmitter modulation.

ARTICLE HIGHLIGHTS

Research background

Depression is a neuropsychiatric disorder that has in recent times become a leading cause of disability and a major contributor to global disease burden and suicide.

Research motivation

There is increasing advocacy for the use of herbal supplements in depression management.

Research objectives

To determine the effect of silymarin dietary supplements alone or in combination with sertraline in a mouse model of depression.

Research methods

Preclinical study.

Research results

Silymarin mitigated dexamethasone-induced central nervous system changes in mice.

Research conclusions

Silymarin could have a place in the management of depression in humans.

Research perspectives

Further studies should be performed to examine the possible effects of silymarin in humans with depression.

FOOTNOTES

Author contributions: Onaolapo AY and Onaolapo OJ conceived and designed the work that led to the submission; Sulaiman H and Olofinnade AT were responsible for the collection and collation of the data; Onaolapo AY and Onaolapo OJ were involved in the analysis of the data, interpretation of the results, and drafting of manuscript; all authors approved the final version of the manuscript.

Institutional animal care and use committee statement: All procedures were conducted in accordance with the approved protocols of the Ladoke Akintola University of Technology and within the provisions for animal care and use prescribed in the scientific procedures on living animals European Council Directive (EU2010/63).

Conflict-of-interest statement: All authors of this paper declare that there is no conflict of interest related to the content of this manuscript.

Data sharing statement: The data is presently unavailable in the public domain because the authors do not have permission to share data yet. Data would be made available only on request.

ARRIVE guidelines statement: The authors have read the ARRIVE guidelines, and the manuscript was prepared and revised according to the ARRIVE guidelines.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is noncommercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Nigeria

ORCID number: Adejoke Yetunde Onaolapo 0000-0001-7126-7050; Anthony Tope Olofinnade 0000-0002-9492-9958; Olakunle James Onaolapo 0000-0003-2142-6046.

S-Editor: Ma YJ L-Editor: Wang TQ P-Editor: Ma YI

REFERENCES

- World Health Organization. Depression Factsheet, 2020 Newsroom, Fact sheets, 2020. Available from: 1 https://www.who.int/news-room/fact-sheets
- 2 American Psychiatric Association. American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Arlington, 2013
- 3 Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M, Mohr DC, Schatzberg AF. Major depressive disorder. Nat Rev Dis Primers 2016; 2: 16065 [PMID: 27629598 DOI: 10.1038/nrdp.2016.65]
- Friedrich MJ. Depression Is the Leading Cause of Disability Around the World. JAMA 2017; 317: 1517 [PMID: 28418490 DOI: 10.1001/jama.2017.3826]
- Nagaratnam N, Cheuk G. Mood Disorders (Major Depression, Bipolar Disorder). Geriatric Diseases: Evaluation and Management, Cham: Springer International Publishing: Imprint: Springer, 2020
- Wang Q, Timberlake MA 2nd, Prall K, Dwivedi Y. The recent progress in animal models of depression. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77: 99-109 [PMID: 28396255 DOI: 10.1016/j.pnpbp.2017.04.008]
- GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, 7 prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1545-1602 [PMID: 27733282 DOI: 10.1016/S0140-6736(16)31678-6]
- 8 Kuo DC, Tran M, Shah AA, Matorin A. Depression and the Suicidal Patient. Emerg Med Clin North Am 2015; 33: 765-778 [PMID: 26493522 DOI: 10.1016/j.emc.2015.07.005]
- 9 World Health Organization. Depression and other common mental disorders: global health estimates 2017. Available from: https://apps.who.int/iris/handle/10665/254610
- 10 Vigo D, Thornicroft G, Atun R. Estimating the true global burden of mental illness. Lancet Psychiatry 2016; 3: 171-178 [PMID: 26851330 DOI: 10.1016/S2215-0366(15)00505-2]
- 11 Sugawara N, Yasui-Furukori N, Tsuchimine S, Kaneda A, Tsuruga K, Iwane K, Okubo N, Takahashi I, Kaneko S. No association between dietary patterns and depressive symptoms among a community-dwelling population in Japan. Ann Gen Psychiatry 2012; 11: 24 [PMID: 23006931 DOI: 10.1186/1744-859X-11-24]
- 12 Cleare A, Pariante CM, Young AH, Anderson IM, Christmas D, Cowen PJ, Dickens C, Ferrier IN, Geddes J, Gilbody S, Haddad PM, Katona C, Lewis G, Malizia A, McAllister-Williams RH, Ramchandani P, Scott J, Taylor D, Uher R; Members of the Consensus Meeting. Evidence-based guidelines for treating depressive disorders with antidepressants: A revision of the 2008 British Association for Psychopharmacology guidelines. J Psychopharmacol 2015; 29: 459-525 [PMID: 25969470 DOI: 10.1177/0269881115581093]
- 13 Durisko Z, Mulsant BH, Andrews PW. An adaptationist perspective on the etiology of depression. J Affect Disord 2015; 172: 315-323 [PMID: 25451432 DOI: 10.1016/j.jad.2014.09.032]
- 14 Shaw DM, Camps FE, Eccleston EG. 5-Hydroxytryptamine in the hind-brain of depressive suicides. Br J Psychiatry 1967; 113: 1407-1411 [PMID: 6078496 DOI: 10.1192/bjp.113.505.1407]
- Hillhouse TM, Porter JH. A brief history of the development of antidepressant drugs: from monoamines to glutamate. Exp 15 Clin Psychopharmacol 2015; 23: 1-21 [PMID: 25643025 DOI: 10.1037/a0038550]
- Papakostas GI. Tolerability of modern antidepressants. J Clin Psychiatry 2008; 69 Suppl E1: 8-13 [PMID: 18494538] 16
- Steel Z, Marnane C, Iranpour C, Chey T, Jackson JW, Patel V, Silove D. The global prevalence of common mental 17 disorders: a systematic review and meta-analysis 1980-2013. Int J Epidemiol 2014; 43: 476-493 [PMID: 24648481 DOI: 10.1093/ije/dyu038]
- 18 Patel V, Chisholm D, Parikh R, Charlson FJ, Degenhardt L, Dua T, Ferrari AJ, Hyman S, Laxminarayan R, Levin C, Lund C, Medina Mora ME, Petersen I, Scott J, Shidhaye R, Vijayakumar L, Thornicroft G, Whiteford H; DCP MNS Author Group. Addressing the burden of mental, neurological, and substance use disorders: key messages from Disease Control Priorities, 3rd edition. Lancet 2016; 387: 1672-1685 [PMID: 26454360 DOI: 10.1016/S0140-6736(15)00390-6]
- 19 Yeung KS, Hernandez M, Mao JJ, Haviland I, Gubili J. Herbal medicine for depression and anxiety: A systematic review with assessment of potential psycho-oncologic relevance. Phytother Res 2018; 32: 865-891 [PMID: 29464801 DOI:

10.1002/ptr.60331

- 20 Woo J, Lynn H, Lau WY, Leung J, Lau E, Wong SY, Kwok T. Nutrient intake and psychological health in an elderly Chinese population. Int J Geriatr Psychiatry 2006; 21: 1036-1043 [PMID: 16955432 DOI: 10.1002/gps.1603]
- Gilbody S, Lightfoot T, Sheldon T. Is low folate a risk factor for depression? J Epidemiol Community Health 2007; 61: 21 631-637 [PMID: 17568057 DOI: 10.1136/jech.2006.05038]
- 22 Murakami K, Mizoue T, Sasaki S, Ohta M, Sato M, Matsushita Y, Mishima N. Dietary intake of folate, other B vitamins, and omega-3 polyunsaturated fatty acids in relation to depressive symptoms in Japanese adults. Nutrition 2008; 24: 140-147 [PMID: 18061404 DOI: 10.1016/j.nut.2007.10.013]
- Lim SY, Kim EJ, Kim A, Lee HJ, Choi HJ, Yang SJ. Nutritional Factors Affecting Mental Health. Clin Nutr Res 2016; 5: 23 143-152 [PMID: 27482518 DOI: 10.7762/cnr.2016.5.3.143]
- 24 Styczeń K, Sowa-Kućma M, Siwek M, Dudek D, Reczyński W, Szewczyk B, Misztak P, Topór-Mądry R, Opoka W, Nowak G. The serum zinc concentration as a potential biological marker in patients with major depressive disorder. Metab Brain Dis 2017; 32: 97-103 [PMID: 27502410 DOI: 10.1007/s11011-016-9888-9]
- Karimi G Evaluation of antidepressant effect of ethanolic and aqueous extracts of Silybum marianum L. Seed in mice. J 25 Med Plants 2007: 6: 38-43
- 26 Khosravi M. Hosseinzadeh M. Golzar M. Maidzadeh R. Sotoudeh G Comparison between Macro & Micro Nutrient Intake in Depressed Patients with Healthy People. Journal of Nutrition and Food Security 2019; 4(2): 83-92 [DOI: 10.18502/jnfs.v4i2.769]
- Kren V, Walterová D. Silybin and silymarin--new effects and applications. Biomed Pap Med Fac Univ Palacky Olomouc 27 Czech Repub 2005; 149: 29-41 [PMID: 16170386]
- Onaolapo AY, Abdusalam SZ, Onaolapo OJ. Silymarin attenuates aspartame-induced variation in mouse behaviour, 28 cerebrocortical morphology and oxidative stress markers. Pathophysiology 2017; 24: 51-62 [PMID: 28254270 DOI: 10.1016/j.pathophys.2017.01.002]
- 29 Onaolapo OJ, Adekola MA, Azeez TO, Salami K, Onaolapo AY. l-Methionine and silymarin: A comparison of prophylactic protective capabilities in acetaminophen-induced injuries of the liver, kidney and cerebral cortex. Biomed Pharmacother 2017; 85: 323-333 [PMID: 27889232 DOI: 10.1016/j.biopha.2016.11.033]
- Karimi G, Vahabzadeh M, Lari P, Rashedinia M, Moshiri M. "Silymarin", a promising pharmacological agent for 30 treatment of diseases. Iran J Basic Med Sci 2011; 14: 308-317 [PMID: 23492971]
- 31 Toklu HZ, Tunali Akbay T, Velioglu-Ogunc A, Ercan F, Gedik N, Keyer-Uysal M, Sener G. Silymarin, the antioxidant component of Silybum marianum, prevents sepsis-induced acute lung and brain injury. J Surg Res 2008; 145: 214-222 [PMID: 17950327 DOI: 10.1016/j.jss.2007.03.072]
- Vargas-Mendoza N, Madrigal-Santillán E, Morales-González A, Esquivel-Soto J, Esquivel-Chirino C, García-Luna Y 32 González-Rubio M, Gayosso-de-Lucio JA, Morales-González JA. Hepatoprotective effect of silymarin. World J Hepatol 2014; 6: 144-149 [PMID: 24672644 DOI: 10.4254/wjh.v6.i3.144]
- 33 Hassani FV, Rezaee R, Sazegara H, Hashemzaei M, Shirani K, Karimi G. Effects of silymarin on neuropathic pain and formalin-induced nociception in mice. Iran J Basic Med Sci 2015; 18: 715-720 [PMID: 26351564]
- 34 Wu JW, Lin LC, Tsai TH. Drug-drug interactions of silymarin on the perspective of pharmacokinetics. J Ethnopharmacol 2009; 121: 185-193 [PMID: 19041708 DOI: 10.1016/j.jep.2008.10.036]
- Nencini C, Giorgi G, Micheli L. Protective effect of silymarin on oxidative stress in rat brain. Phytomedicine 2007; 14: 35 129-135 [PMID: 16638633 DOI: 10.1016/j.phymed.2006.02.005]
- Galhardi F, Mesquita K, Monserrat JM, Barros DM. Effect of silymarin on biochemical parameters of oxidative stress in 36 aged and young rat brain. Food Chem Toxicol 2009; 47: 2655-2660 [PMID: 19647779 DOI: 10.1016/j.fct.2009.07.030]
- 37 Baluchnejadmojarad T, Roghani M, Mafakheri M. Neuroprotective effect of silymarin in 6-hydroxydopamine hemiparkinsonian rat: involvement of estrogen receptors and oxidative stress. Neurosci Lett 2010; 480: 206-210 [PMID: 20600617 DOI: 10.1016/j.neulet.2010.06.038]
- Onaolapo OJ, Paul TB, Onaolapo AY. Comparative effects of sertraline, haloperidol or olanzapine treatments on 38 ketamine-induced changes in mouse behaviours. Metab Brain Dis 2017; 32: 1475-1489 [PMID: 28508340]
- Skupio U, Tertil M, Sikora M, Golda S, Wawrzczak-Bargiela A, Przewlocki R. Behavioral and molecular alterations in mice resulting from chronic treatment with dexamethasone: relevance to depression. Neuroscience 2015; 286: 141-150 [PMID: 25433240 DOI: 10.1016/j.neuroscience.2014.11.035]
- 40 Falade J, Onaolapo AY, Onaolapo OJ. Evaluation of the Behavioural, Antioxidative and Histomorphological Effects of Folic Acid-supplemented Diet in Dexamethasone-induced Depression in Mice. Cent Nerv Syst Agents Med Chem 2021; 21: 73-81 [PMID: 33459248 DOI: 10.2174/1871524921666210114125355]
- 41 Onaolapo OJ, Onaolapo AY, Akinola OR, Anisulowo TO. Dexamethasone regimens alter spatial memory and anxiety levels in mice. Behav Brain Sci 2014; 4: 159-167 [DOI: 10.4236/jbbs.2014.44019]
- Onaolapo AY, Onaolapo OJ, Nwoha PU. Alterations in behaviour, cerebral cortical morphology and cerebral oxidative 42 stress markers following aspartame ingestion. J Chem Neuroanat 2016; 78: 42-56 [PMID: 27565676 DOI: 10.1016/j.jchemneu.2016.08.006
- Onaolapo AY, Odetunde I, Akintola AS, Ogundeji MO, Ajao A, Obelawo AY, Onaolapo OJ. Dietary composition 43 modulates impact of food-added monosodium glutamate on behaviour, metabolic status and cerebral cortical morphology in mice. Biomed Pharmacother 2019; 109: 417-428 [PMID: 30399577]
- Olofinnade AT, Onaolapo TM, Oladimeji S, Fatoki AM, Balogun CI, Onaolapo AY, Onaolapo OJ. An Evaluation of the 44 Effects of Pyridoxal Phosphate in Chlorpromazineinduced Parkinsonism using Mice. Cent Nerv Syst Agents Med Chem 2020; 20: 13-25 [PMID: 31987026 DOI: 10.2174/1871524920666200120142508]
- Onaolapo OJ, Onaolapo AY, Omololu TA, Oludimu AT, Segun-Busari T, Omoleke T. Exogenous Testosterone, Aging, and Changes in Behavioral Response of Gonadally Intact Male Mice. J Exp Neurosci 2016; 10: 59-70 [PMID: 27158222]
- 46 Olofinnade AT, Onaolapo AY, Onaolapo OJ. Concentration-dependent Effects of Dietary L-Ascorbic Acid Fortification in the Brains of Healthy Mice. Cent Nerv Syst Agents Med Chem 2021; 21: 104-113 [PMID: 33719957 DOI: 10.2174/1871524921666210315130023

- Onaolapo AY, Onaolapo OJ, Blessing IC, Hameed S, Raimot R. Low-dose L-methionine-associated Changes in 47 Behavioural Indices in Young Rats. International Journal of Neuroscience and Behavioural Science 2016; 4: 11-19 [DOI: 10.13189/ijnbs.2016.040102]
- 48 Olofinnade AT, Onaolapo AY, Onaolapo OJ, Olowe OA. Hazelnut Modulates Neurobehaviour and Ameliorates Ageinginduced Oxidative Stress, and Caspase-3-Mediated Apoptosis in Mice. Curr Aging Sci 2021; 14: 154-162 [PMID: 33371863 DOI: 10.2174/1874609813666201228112349]
- 49 Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 1985; 85: 367-370 [PMID: 3923523 DOI: 10.1007/BF00428203]
- 50 Mlyniec K, Nowak G. Zinc deficiency induces behavioral alterations in the tail suspension test in mice. Effect of antidepressants. Pharmacol Rep 2012; 64: 249-255 [PMID: 22661173 DOI: 10.1016/s1734-1140(12)70762-4]
- 51 Onaolapo AY, Olawore OI, Yusuf FO, Adeyemo AM, Adewole IO, Onaolapo OJ. Oral monosodium glutamate administration differentially affects novelty induced behaviours, behavioural despair and place preference in male and female mice. Current Psychoopharmacology 2019; 8: 130-145 [DOI: 10.2174/2211556008666181213160527]
- Porsolt RD, Anton G, Blavet N, Jalfre M. Behavioural despair in rats: a new model sensitive to antidepressant treatments. 52 Eur J Pharmacol 1978; 47: 379-391 [PMID: 204499 DOI: 10.1016/0014-2999(78)90118-8]
- 53 Kroczka B, Zieba A, Dudek D, Pilc A, Nowak G. Zinc exhibits an antidepressant-like effect in the forced swimming test in mice. Pol J Pharmacol 2000; 52: 403-406 [PMID: 11334234]
- 54 Onaolapo OJ, Onaolapo AY, Awe, EO, Jibunor N, Oyeleke B, Ogedengbe AJ. Oral artesunate-amodiaquine combination causes anxiolysis and impaired cognition in healthy Swiss mice. IOSR Journal of Pharmacy and Biological Sciences 2013; 7:97-102
- Onaolapo AY, Onaolapo OJ, Nwoha PU. Aspartame and the hippocampus: Revealing a bi-directional, dose/time-55 dependent behavioural and morphological shift in mice. Neurobiol Learn Mem 2017; 139: 76-88 [PMID: 28049023]
- Mollica A, Stefanucci S, Macedonio G, Locatelli M, Onaolapo OJ, Onaolapo AY, Adegoke J, Olaniyan M. Novellino E 56 Capparis spinosa L: In vivo and in vitro evaluation of the anti-diabetic and anti-hyperlipidaemic activity. Journal of Functional Foods 2017; 35: 32-42
- 57 Mollica A, Zengin G, Stefanucci A, Ferrante C, Menghini L, Orlando G, Brunetti L, Locatelli M, Dimmito MP, Novellino E, Wakeel OK, Ogundeji MO, Onaolapo AY, Onaolapo OJ. Nutraceutical potential of Corylus avellana daily supplements for obesity and related dysmetabolism. Journal of Functional Foods 2018; 47: 562-574
- 58 **Onaolapo** AY, Onaolapo O, J Nevirapine mitigates monosodium glutamate induced neurotoxicity and oxidative stress changes in prepubertal mice. Ann Med Res 2018; 25: 518-524 [DOI: 10.5455/annalsmedres.2018.06.118]
- 59 Murphy JM, Horton NJ, Burke JD Jr, Monson RR, Laird NM, Lesage A, Sobol AM. Obesity and weight gain in relation to depression: findings from the Stirling County Study. Int J Obes (Lond) 2009; 33: 335-341 [PMID: 19139752 DOI: 10.1038/iio.2008.273
- Roberts CK, Lee MM, Katiraie M, Krell SL, Angadi SS, Chronley MK, Oh CS, Ribas V, Harris RA, Hevener AL, 60 Croymans DM. Strength fitness and body weight status on markers of cardiometabolic health. Med Sci Sports Exerc 2015; 47: 1211-1218 [PMID: 25251047 DOI: 10.1249/MSS.000000000000526]
- 61 Felton J, Cole DA, Tilghman-Osborne C, Maxwell MA. The relation of weight change to depressive symptoms in adolescence. Dev Psychopathol 2010; 22: 205-216 [PMID: 20102656 DOI: 10.1017/S0954579409990356]
- 62 Sarcev T, Secen N, Sabo A, Povazan D. Influence of dexamethasone on appetite and body weight in lung cancer patients. Med Pregl 2008; 61: 571-575 [PMID: 19368274 DOI: 10.2298/mpns0812571s]
- Amar MI, Adam Shama IY, Enaia AA, Hind AEO, Hager AM. Effects of Various Levels of Oral Doses Dexamethasone 63 (Al-nagma) Abused as Cosmetic by Sudanese Women on Wistar Rats. Journal of Medical Sciences 2013; 13: 432-438
- Poggioli R, Ueta CB, Drigo RA, Castillo M, Fonseca TL, Bianco AC. Dexamethasone reduces energy expenditure and 64 increases susceptibility to diet-induced obesity in mice. Obesity (Silver Spring) 2013; 21: E415-E420 [PMID: 23408649 DOI: 10.1002/oby.20338]
- 65 Beyazyüz M, Albayrak Y, Eğilmez OB, Albayrak N, Beyazyüz E. Relationship between SSRIs and Metabolic Syndrome Abnormalities in Patients with Generalized Anxiety Disorder: A Prospective Study. Psychiatry Investig 2013; 10: 148-154 [PMID: 23798963 DOI: 10.4306/pi.2013.10.2.148]
- Arterburn D, Sofer T, Boudreau DM, Bogart A, Westbrook EO, Theis MK, Simon G, Haneuse S. Long-Term Weight Change after Initiating Second-Generation Antidepressants. J Clin Med 2016; 5 [PMID: 27089374 DOI: 10.3390/jcm5040048]
- 67 Rachdi C, Damak R, Fekih Romdhane F, Ouertani H, Cheour M. Impact of sertraline on weight, waist circumference and glycemic control: A prospective clinical trial on depressive diabetic type 2 patients. Prim Care Diabetes 2019; 13: 57-62 [PMID: 30287230 DOI: 10.1016/j.pcd.2018.09.003]
- 68 Silverstein-Metzler MG, Shively CA, Clarkson TB, Appt SE, Carr JJ, Kritchevsky SB, Jones SR, Register TC. Sertraline inhibits increases in body fat and carbohydrate dysregulation in adult female cynomolgus monkeys. Psychoneuroendocrinology 2016; 68: 29-38 [PMID: 26939086 DOI: 10.1016/j.psyneuen.2016.02.012]
- 69 Feng B, Meng R, Huang B, Shen S, Bi Y, Zhu D. Silymarin alleviates hepatic oxidative stress and protects against metabolic disorders in high-fat diet-fed mice. Free Radic Res 2016; 50: 314-327 [PMID: 26758315 DOI: 10.3109/10715762.2015.1116689]
- Guo Y, Wang S, Wang Y, Zhu T. Silymarin improved diet-induced liver damage and insulin resistance by decreasing 70 inflammation in mice. *Pharm Biol* 2016; 54: 2995-3000 [PMID: 27387273 DOI: 10.1080/13880209.2016.1199042]
- Chen Y, Chen L, Yang T. Silymarin nanoliposomes attenuate renal injury on diabetic nephropathy rats via co-suppressing 71 TGF-β/Smad and JAK2/STAT3/SOCS1 pathway. Life Sci 2021; 271: 119197 [PMID: 33577847 DOI: 10.1016/j.lfs.2021.119197
- Pereira-Figueiredo I, Sancho C, Carro J, Castellano O, López DE. The effects of sertraline administration from 72 adolescence to adulthood on physiological and emotional development in prenatally stressed rats of both sexes. Front Behav Neurosci 2014; 8: 260 [PMID: 25147514 DOI: 10.3389/fnbeh.2014.00260]
- Fishman RH, Feigenbaum JJ, Yanai J, Klawans HL. The relative importance of dopamine and norepinephrine in mediating

locomotor activity. Prog Neurobiol 1983; 20: 55-88 [PMID: 6141594 DOI: 10.1016/0301-0082(83)90010-2]

- Bardo MT, Bowling SL, Pierce RC. Changes in locomotion and dopamine neurotransmission following amphetamine, 74 haloperidol, and exposure to novel environmental stimuli. Psychopharmacology (Berl) 1990; 101: 338-343 [PMID: 2163539 DOI: 10.1007/BF02244051]
- Slawińska U, Miazga K, Jordan LM. The role of serotonin in the control of locomotor movements and strategies for restoring locomotion after spinal cord injury. Acta Neurobiol Exp (Wars) 2014; 74: 172-187 [PMID: 24993627]
- Thakare VN, Dhakane VD, Patel BM. Potential antidepressant-like activity of silymarin in the acute restraint stress in 76 mice: Modulation of corticosterone and oxidative stress response in cerebral cortex and hippocampus. Pharmacol Rep 2016; 68: 1020-1027 [PMID: 27428764 DOI: 10.1016/j.pharep.2016.06.002]
- Borah A, Paul R, Choudhury S, Choudhury A, Bhuyan B, Das Talukdar A, Dutta Choudhury M, Mohanakumar KP. 77 Neuroprotective potential of silymarin against CNS disorders: insight into the pathways and molecular mechanisms of action. CNS Neurosci Ther 2013; 19: 847-853 [PMID: 24118806 DOI: 10.1111/cns.12175]
- 78 Devi KP, Malar DS, Braidy N, Nabavi SM, Nabavi SF. A Mini Review on the Chemistry and Neuroprotective Effects of Silymarin. Curr Drug Targets 2017; 18: 1529-1536 [PMID: 28025940 DOI: 10.2174/1389450117666161227125121]
- 79 Yön B, Belviranlı M, Okudan N. The effect of silymarin supplementation on cognitive impairment induced by diabetes in rats. J Basic Clin Physiol Pharmacol 2019; 30 [PMID: 31017870 DOI: 10.1515/jbcpp-2018-0109]
- 80 Perini G, Cotta Ramusino M, Sinforiani E, Bernini S, Petrachi R, Costa A. Cognitive impairment in depression: recent advances and novel treatments. Neuropsychiatr Dis Treat 2019; 15: 1249-1258 [PMID: 31190831 DOI: 10.2147/NDT.S199746]
- Siepmann M, Grossmann J, Mück-Weymann M, Kirch W. Effects of sertraline on autonomic and cognitive functions in 81 healthy volunteers. Psychopharmacology (Berl) 2003; 168: 293-298 [PMID: 12692706 DOI: 10.1007/s00213-003-1448-4.]
- 82 Sayyah M, Eslami K, AlaiShehni S, Kouti L. Cognitive Function before and during Treatment with Selective Serotonin Reuptake Inhibitors in Patients with Depression or Obsessive-Compulsive Disorder. Psychiatry J 2016; 2016: 5480391 [PMID: 27597949 DOI: 10.1155/2016/5480391]
- El-Marasy SA, Abd-Elsalam RM, Ahmed-Farid OA. Ameliorative Effect of Silymarin on Scopolamine-induced Dementia in Rats. Open Access Maced J Med Sci 2018; 6: 1215-1224 [PMID: 30087724 DOI: 10.3889/oamjms.2018.257]
- 84 Shokouhi G, Kosari-Nasab M, Salari AA. Silymarin sex-dependently improves cognitive functions and alters TNF-α, BDNF, and glutamate in the hippocampus of mice with mild traumatic brain injury. Life Sci 2020; 257: 118049 [PMID: 32634430 DOI: 10.1016/j.lfs.2020.118049]
- 85 Brown ES, Chandler PA. Mood and Cognitive Changes During Systemic Corticosteroid Therapy. Prim Care Companion J Clin Psychiatry 2001; 3: 17-21 [PMID: 15014624 DOI: 10.4088/pcc.v03n0104]
- Thibaut F. Corticosteroid-induced psychiatric disorders: genetic studies are needed. Eur Arch Psychiatry Clin Neurosci 86 2019; **269**: 623-625 [PMID: 31388744 DOI: 10.1007/s00406-019-01049-2]
- Mesripour A, Alhimma F, Hajhashemi V. The effect of vitamin B6 on dexamethasone-induced depression in mice model 87 of despair. Nutr Neurosci 2019; 22: 744-749 [PMID: 29478387 DOI: 10.1080/1028415X.2018.1442184]
- 88 Mesripour A, Rakhshankhah P. A Synbiotic Mixture Ameliorates Depressive Behavior Induced by Dexamethasone or Water Avoidance Stress in a Mouse Model. Turk J Pharm Sci 2021; 18: 21-27 [PMID: 33631927 DOI: 10.4274/tjps.galenos.2019.71300]
- 89 Shishkina, G. T., Dygalo, N.N The glucocorticoid hypothesis of depression: History and prospects. Russ J Genet Appl Res 2017; 7: 128-133 [DOI: 10.1134/S2079059717010142]
- Thakare VN, Patil RR, Oswal RJ, Dhakane VD, Aswar MK, Patel BM. Therapeutic potential of silymarin in chronic 90 unpredictable mild stress induced depressive-like behavior in mice. J Psychopharmacol 2018; 32: 223-235 [PMID: 29215318 DOI: 10.1177/0269881117742666]
- 91 El-Elimat T, Alzoubi KH, AbuAlSamen MM, Al Subeh ZY, Graf TN, Oberlies NH. Silymarin Prevents Memory Impairments, Anxiety, and Depressive-Like Symptoms in a Rat Model of Post-Traumatic Stress Disorder. Planta Med 2019; 85: 32-40 [PMID: 30153692 DOI: 10.1055/a-0710-5673]
- Miguel-Hidalgo JJ, Rajkowska G. Morphological brain changes in depression: can antidepressants reverse them? CNS 92 Drugs 2002; 16: 361-372 [PMID: 12027783 DOI: 10.2165/00023210-200216060-00001]
- Yao Z, Fu Y, Wu J, Zhang W, Yu Y, Zhang Z, Wu X, Wang Y, Hu B. Morphological changes in subregions of 93 hippocampus and amygdala in major depressive disorder patients. Brain Imaging Behav 2020; 14: 653-667 [PMID: 30519998 DOI: 10.1007/s11682-018-0003-1]
- 94 Li Y, Wang C, Teng C, Jiao K, Song X, Tan Y, Xiao C, Zhang N, Zhong Y. Hippocampus-driving progressive structural alterations in medication-naïve major depressive disorder. J Affect Disord 2019; 256: 148-155 [PMID: 31176187 DOI: 10.1016/j.jad.2019.05.053

Published by Baishideng Publishing Group Inc 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA Telephone: +1-925-3991568 E-mail: bpgoffice@wjgnet.com Help Desk: https://www.f6publishing.com/helpdesk https://www.wjgnet.com

World Journal of *Pharmacology*

World J Pharmacol 2022 December 27; 11(4): 48-55

Published by Baishideng Publishing Group Inc

World Journal of Pharmacology Pharmacology

Contents

Continuous Publication Volume 11 Number 4 December 27, 2022

MINIREVIEWS

Antibiotic residues in milk and milk products: A momentous challenge for the pharmaceutical industry 48 and medicine

Omairi R, Krayem M, Khaled S, Salla M, El Khatib S

Contents

Continuous Publication Volume 11 Number 4 December 27, 2022

ABOUT COVER

Editorial Board of World Journal of Pharmacology, Mohammad M Khan, BSc, MSc, PhD, Full Professor, Department of Biotechnology, Era's Lucknow Medical College and Hospital, and Faculty of science, Era University, Lucknow 226003, UP, India. mmkhan0@gmail.com

AIMS AND SCOPE

The primary aim of World Journal of Pharmacology (WJP, World J Pharmacol) is to provide scholars and readers from various fields of pharmacology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WIP mainly publishes articles reporting research results and findings obtained in the field of pharmacology and covering a wide range of topics including antineoplastic protocols, chelation therapy, chemoprevention, chemoradiotherapy, adjuvant chemotherapy, consolidation chemotherapy, drug administration routes, drug administration schedule, drug delivery systems, drug prescriptions, combination drug therapy, computer-assisted drug therapy, electrochemotherapy, enema, fluid therapy, home infusion therapy, hormone replacement therapy, inappropriate prescribing, induction chemotherapy, maintenance chemotherapy, opiate substitution treatment, orthomolecular therapy, photochemotherapy, pleurodesis, polypharmacy, premedication, prescription drug misuse, sclerotherapy, self-administration, self-medication, and thrombolytic therapy.

INDEXING/ABSTRACTING

The WJP is now abstracted and indexed in Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Yi-Xuan Cai; Production Department Director: Xiang Li; Editorial Office Director: Yun-Xiaojiao Wu.

NAME OF JOURNAL World Journal of Pharmacology	INSTRUCTIONS TO AUTHORS https://www.wjgnet.com/bpg/gerinfo/204
ISSN	GUIDELINES FOR ETHICS DOCUMENTS
ISSN 2220-3192 (online)	https://www.wjgnet.com/bpg/GerInfo/287
LAUNCH DATE	GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
February 9, 2012	https://www.wjgnet.com/bpg/gerinfo/240
FREQUENCY	PUBLICATION ETHICS
Continuous Publication	https://www.wjgnet.com/bpg/GerInfo/288
EDITORS-IN-CHIEF	PUBLICATION MISCONDUCT
Pharkphoom Panichayupakaranant, Ahmed M Kabel, Muhammad Shahzad	https://www.wjgnet.com/bpg/gerinfo/208
EDITORIAL BOARD MEMBERS	ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/2220-3192/editorialboard.htm	https://www.wignet.com/bpg/gerinfo/242
PUBLICATION DATE	STEPS FOR SUBMITTING MANUSCRIPTS
December 27, 2022	https://www.wignet.com/bpg/GerInfo/239
COPYRIGHT	ONLINE SUBMISSION
© 2022 Baishideng Publishing Group Inc	https://www.f6publishing.com

© 2022 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com

WJP

World Journal of Pharmacology

Submit a Manuscript: https://www.f6publishing.com

World J Pharmacol 2022 December 27; 11(4): 48-55

DOI: 10.5497/wjp.v11.i4.48

ISSN 2220-3192 (online)

MINIREVIEWS

Antibiotic residues in milk and milk products: A momentous challenge for the pharmaceutical industry and medicine

Rima Omairi, Maha Krayem, Sanaa Khaled, Mohamed Salla, Sami El Khatib

Specialty type: Pharmacology and pharmacy

Provenance and peer review: Unsolicited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report's scientific quality classification

Grade A (Excellent): 0 Grade B (Very good): 0 Grade C (Good): C, C, C Grade D (Fair): 0 Grade E (Poor): 0

P-Reviewer: Gupta L, Indonesia; Tang J, China; Zhao GJ, China

Received: July 16, 2022 Peer-review started: July 16, 2022 First decision: September 26, 2022 Revised: October 13, 2022 Accepted: December 13, 2022 Article in press: December 13, 2022 Published online: December 27, 2022

Rima Omairi, Food Sciences & Technology, Lebanese International University, Khiyara 1108, Lebanon

Maha Krayem, Mohamed Salla, Biological Sciences, Lebanese International University, Khiyara 1108, Lebanon

Sanaa Khaled, Chemical Sciences, Lebanese International University, Khiyara 1108, Lebanon

Sami El Khatib, Biomedical Sciences, Lebanese International University, Khiyara 1108, Lebanon

Corresponding author: Sami El Khatib, MSc, PhD, Academic Research, Associate Professor, Research Dean, Research Scientist, Researcher, Biomedical Sciences, Lebanese International University, Khiyara-West Bekaa, Khiyara 1108, Lebanon. sami.khatib@liu.edu.lb

Abstract

Dairy products are nutritious food items that contain various essential nutrients, however, it has been proven that residual antibiotics have contaminated such products. These residues can cause several side effects on human health. They increase antimicrobial resistance against several threatening microorganisms, as well as significant growth in allergenic reactions. Various methods, including heat treatments, have been applied to alleviate and reduce the effect of antibiotic residue level in milk and milk products. Changes in drug levels were not significantly remarkable, obliging researchers to find new approaches to prevent or reduce their risk and limit their complications on human health.

Key Words: Antibiotics residues; Milk products; Bacterial resistance; Antimicrobial drugs; Microorganisms; Health effects

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Little information is available regarding the use of antibiotics and their availability in dairy products as residues in Lebanon. Not a lot of care or caution is given to this sector, even though Lebanon's main income, especially in villages, is from cultivated mammals. This article mentions the availability of residual drugs in milk. It includes the different pathways of drugs upon consumption by the mammals, until excretion. As well as its side effect on human health, especially the cause of flora bacteria to become resistant to drugs.

Citation: Omairi R, Krayem M, Khaled S, Salla M, El Khatib S. Antibiotic residues in milk and milk products: A momentous challenge for the pharmaceutical industry and medicine. World J Pharmacol 2022; 11(4): 48-55 URL: https://www.wjgnet.com/2220-3192/full/v11/i4/48.htm DOI: https://dx.doi.org/10.5497/wjp.v11.i4.48

INTRODUCTION

Dairy products constitute a major category of human diet and are considered one of the more important sources of essential minerals needed for normal body function and growth[1]. The knowledge around the benefits of milk has been growing in the last decades paralleled with a considerable and continuous increase in consumption demand over the years^[2]. This necessitates more diligent practices in the production, processing and distribution of milk and dairy products. Understanding the effect of antibiotic use or abuse in protection of milk producing cattle and how this affects the end consumer remains critical to scientists. The notion of antibiotic resistance is gaining more international merit among microbiologists and hence should be addressed when it comes to dairy products and other foods. Mammals can be highly susceptible to many diseases and infections and several microorganisms that are naturally found in nature, could easily become part of their diets, leading to several diseases[3]. Antibiotics are currently used for treating infected animals, similar to humans, by administrating a prescribed dose, targeting certain known microorganisms[3]. Despite the crucial antimicrobial effect of fighting severe diseases, antibiotics still find their way from treated animal into the food products as residues[4]. These residues pose serious health alterations and problems for human health in addition to the aforementioned antibiotic resistance developed by microorganisms[4].

Institutional bodies are imposing stricter regulations by the day and even though many farmers follow a careful protocol in the use of antibiotics while following regulations, residual drugs cannot be totally prevented from passing down into consumers. Herein, we present a review on the significance and importance of testing for antibiotic residues and the challenges associated with the testing techniques. Heat treatment to reduce residual antibiotics concentrations in dairy can be a preliminary approach. Our review can provide important insight on potential effective practices to minimize the detrimental outcome of antibiotic abuse in Lebanon and other countries. Very little is known about such practices in developing and third world countries due to the lack of structured research and regulations. Heavy assessments and examinations should be carried out to ensure the safety of milk products distributed throughout these countries.

MILK AND ITS PRODUCTS

Milk is considered one of the most consumed nutritious food products in the market and along with dairy products remain essential for the human diet since they provide many minerals, vitamins, proteins and sugar, that are much needed for proper growth and development. This highly consumed product is extracted from mammals through their mammary glands, including cattle, goats and sheep [1]. Milk is mostly composed of water (87%), proteins (3%), lactose (4%-5%), fat (3%-4%), minerals (0.8%) and vitamins (0.1%)[5] along with lipids that are usually found in the form of fat globules and are considered carriers of fat-soluble vitamins, as well as flavor enhancers^[5].

The demand for milk and milk products is widely discussed in political, agricultural, and economic meetings including the EU Agricultural Outlook conference. The consensus is that dairy demand will drastically increase by 2030, given the fact that milk is an affordable source of proteins and nutrients that is commonly linked to healthier life styles^[2]. In one study targeting Middle Eastern and North African populations, associated higher milk consumption with increased population growth in which a 1.0% increase in population caused a 1.3% increase in consumption[6].

All dairy products share the first processing step of milk fermentation for 1-3 d at room temperature (15 °C-25 °C)[7]. These products could also be generally categorized into two groups; products considered new or those later discovered from practices in the industrial field of production and development known as "Modern Dairy Products", and products derived from ancient practices mostly used in small-scale societies and called "Traditional Dairy Products". Some of the modern products

include milk (total, skimmed, and semi-skimmed), butter, cream (fresh, double, and ice), and cheese (hard, semi-hard, soft, and fresh). Some traditional products, mainly carry Arabic names derived from different Arabic countries, including laban, labneh, ayran, kishk, and some different types of cheese such as akawieh, mish cheese, dominate cheese, and haloumi^[7].

Like humans, animals are highly susceptible to many different diseases. They could get sick due to exposure to different microorganisms if protective measures are not in place. Despite Lebanon's small size, it is known that there is a fair proportion of the population that relies on milk and dairy products as a source of income^[3]. Microbial infections and other diseases present major challenges to indigenous local farmers as well large industrial producers. Furthermore, mastitis is the most common fatal disease in dairy cattle which results from bacterial infection from the external environment, such as contaminations from non-sterile milking equipment, milking personnel, or dirty stalls^[8].

Mastitis is one of many other reasons why antimicrobial use has gained attention in dairy farms[9]. Hence, antimicrobials are introduced to cows when the animal is sick to assure the wellbeing of both the cattle and humans down the food chain[10].

ANTIBIOTICS

Antibiotic treatment in animals is generally used either to help and protect the animals' welfare, or in some cases, used for the farmers' benefit to increase the animals' weight beyond the normal[11]. In the case of the animal's wellbeing, antibiotics are used in one of two fashions; either prophylactically, through the injection of medications or vaccines to prevent any possible illness, especially severe ones, or therapeutically to aid in infighting a certain illness or organism that is considered a health threat[11].

Antibiotics used for animals should be limited as much as possible for obvious reasons including serious accumulation in higher consumers. They are regulated within certain "safe" levels to prevent side effects, such as the development of antibiotic resistance in animals. For this reason, certain parties should be involved to ensure the maintenance of the efficiency and safety use of veterinary antibiotics [11].

Different medicines with antimicrobial activity are used depending on their target bacteria and mode of action. Some happen to have similar characteristics and act on the same pathogens. Others are used over a wide range, effective on more than one microorganism^[12]. Penicillin is a commonly used drug for humans and several animals and is considered one of the first discovered and used drugs. It is a medication used against many types of microorganisms. Similar to penicillin, cephalosporins are a group of bactericidal molecules that also possess antibiotic properties[12]. Tetracycline is another common drug used for different purposes, mostly administrated when penicillin cannot be used[12]. Aminoglycoside is a drug used therapeutically and prophylactically; it works against Gram-negative bacterial infections[7]. Streptomycin is a common type of aminoglycoside used in dairy cows[12]. Moreover, potentiated sulphonamides are a combination of both antibiotics, sulphonamides, and trimethoprim, used for the treatment of different bacterial infections^[12].

Nonetheless, if not controlled, microorganisms can make their way to the human body through food, human-animal contact, or the environment. When bacteria are successfully targeted, antibiotics would then be discharged out of the animal's body. However, antibiotics are not completely released from the animal and a certain amount of these drugs remains concentrated in some tissues or products (such as milk) that will eventually be consumed by the human^[11].

Antibiotic abuse

Antibiotic misuse, also called antibiotic abuse, is the inappropriate use of antibiotics in levels higher than required. In many areas, there is no proper inspection for the use of drugs, especially in third world countries. For instance, many local farms in Lebanon within different villages are left with no auditing or oversight. Unlike other countries, farmers mostly do not need a prescription and are most likely not supervised by a vet upon antibiotic administration, making it more likely to either use drugs in overdosage or for the inappropriate target. This lack of knowledge regarding antibiotics' use and their mechanisms could cause negative consequences for both, animals and humans[13].

Other than AMR, residues could cause disorders of the intestinal flora, severe allergic reactions, and hypersensitivity[4].

Antibiotics absorption, distribution, and excretion

Upon authorized use of antimicrobials within the respected doses, and its administration to the animal, a major part of this drug is detoxified and excreted. Since antibiotics could easily transfer from the mammary gland to the milk, it is thus the main cause for residues presence in milk and its products[14]. Antibiotics progress through the animal's body after their introduction and are absorbed and distributed into different parts of the body. They are then eliminated by being metabolized to perform their normal function or secreted out of the body.

Several studies have been aimed at understanding the metabolism and retention of antibiotics in both animals and consumers. One study assessed the distribution of antibiotics after the intramammary

infusion of different antibiotics, and physical properties were examined instead of the molecular configuration of the antibiotics[15]. It was concluded that absorption of drugs is highly dependent on the lipid-solubility of the introduced drug and on the dissociation constant (pK_a). The pK_a determines the concentration of the undissociated form of the drug in milk, as well as the rate of the drug passage from milk to the blood. The degree of lipid-solubility is determined by comparing the lipid-to-water partition coefficient (Ko_{/w}). The higher the Ko_{/w}, the faster the drug is absorbed. When comparing both factors, it seemed that the rate of fusion from milk to drug was dependent on the degree of lipid-solubility of each drug, thus pK_a became the main factor affecting absorption of drug from the udder [16]. In addition, it also appeared that some antibiotics could bind to proteins which will eventually affect the rate of absorption of the drugs[15].

Another study involved four lactating goats that were injected with radioactive-labeled antibiotics by intramammary infusions. After milk samples were collected, antibiotic concentrations were evaluated and collected from several dairy products; skim milk, whey, cream and casein were compared to whole milk, using either microbiological or radiochemical assay methods[15]. In the case of cream, concentrations were shown to be inversely proportional to the concentration of the drug in the product[17]. The percentage of drugs distributed in the different milk components differs depending on the type of antimicrobial used[16]. Whereas, when comparing residues within the same product, high concentrations showed lower residues with a percentage close to that of water in cream, while low concentrations of certain drugs displayed a higher level in the product[17]. The concentration of drugs in casein was highly dependent on the percentage of antibiotics consumed. In the case of skim milk, concentrations depended on the interaction of drugs with the proteins. Other studies showed that the concentration of drugs in casein is usually higher than in whey since proteins in casein are largely higher than in whey, thus antibiotics would concentrate with the proteins[17].

Yet, other studies showed that after intramammary injection of penicillin into one of the quarters of the cow, the antibiotic was detected in the other 3 quarters[18]. It could be concluded that the drug is capable of interstitial migration from one area to another. Moreover, a study was performed to analyze the absorption, distribution, and excretion of two drugs; penicillin G and dihydrostreptomycin, a type of aminoglycoside[18]. Six cows free of clinical mastitis were treated each by injecting 100000 units of penicillin G and 100 mg of dihydrostreptomycin into three quarters (1, 2, and 4). This treatment was repeated twice for each cow after a 2-wk rest. Results showed that in the case of two quarters treatments, penicillin G was found in untreated quarters after 8 h' rest[18]. There was also a diffusion of the drug into untreated quarters in the case of dihydrostreptomycin. Five cows out of six were found to have drug residues in untreated quarters[8,18]. Blood, milk, and urine samples were collected from each cow and results revealed the presence of both drugs in the three different samples; the highest level was detected in the blood, followed by the milk, and urine. This indicates that drug crossover from treated to untreated quarters is not only directly through the blood; there could be another pathway or mechanic for this distribution[8,18].

In the case of antibiotic excretion, the percentage of drugs released from the cow during milking clearly decreases as the time of administration is longer. Antibiotics are excreted partly which would still hold complications during manufacturing and later for human health after consumption. Depending on the type of antibiotics, 70%-80% of the drug is found in the first milking after administration[19]. That explains why first milking should be discarded when cattle are treated with antibiotics.

Bacterial resistance

The misuse and overuse of antimicrobial agents is the main reason for the increase in antimicrobial resistance (AMR). The concept has evolved quickly and is a big concern worldwide since it could impact health in general and for decades[20]. Bacteria have remarkable genetic flexibility that allows them to respond to any environmental threats. Constant exposure of the drug to certain microorganisms could lead to reduced effectiveness due to changes developed by the organism itself. A bacterium can acquire resistance by either modifying its DNA during cell replication referred to as mutation, or by inserting the organism's gene into its own, becoming part of the bacteria's genetic material thus becoming resistant to the drug. Therefore, upon introduction of the drug again, only non-resistant organisms are affected while resistant bacteria remain unaffected and preferentially proliferate. Each organism acquires resistance differently, depending on its type. For instance, the resistance mechanisms of β lactams differ depending on the type of bacteria. For Gram-negative, it is modified in a way to produce β-lactamases, while in Gram-positive bacteria, it is achieved by resistance by modifying its target site; the penicillin-binding proteins[20].

To provide a complete classification of antibiotic resistance, they can be categorized depending on their biochemical pathway related to the drug^[20]. Modifying the antibiotic molecule can be done by either producing enzymes that inactivate the drug, or by destroying the molecule itself, thus preventing the drug from interacting with its target. For example, aminoglycoside modifying enzymes can modify the hydroxyl or amino group of the aminoglycoside drug, reducing or eliminating the drug's activity. Another mechanism is preventing the reach of the antibiotic to its target, achieved by reducing the penetration of the antimicrobial compound[20]. The third mechanism includes the modification of the binding sites.

Drug identification

Milk should be tested, before collection and delivery to the truck, to ensure its safe use. It is imperative to test for antimicrobial residues before processing, to ensure its compliance to accepted doses[21]. If antibiotics tested exceed the maximum residue limit (MRL), then milk collected should be disposed, and not used for consumption or product manufacturing[14]. There are several techniques available for residual drug identification, yet liquid chromatography has demonstrated to be the most generally effective, definite and of maximum sensitivity. Milk samples are usually found to be rich in more than one type of antibiotic, thus tests are usually done to identify the type of each drug, and its concentration [21]. One group of researchers analyzed a set of milk samples to identify the presence of several antibiotics using the liquid chromatography technique. The antibiotics investigated were cloxacillin, dihydrostreptomycin, tetracycline, oxytetracycline, chlortetracycline, chloramphenicol, neomycin, novobiocin, bacitracin, erythromycin, oleandomycin, ampicillin, streptomycin, and oxacillin[21]. Different analytical grade reagents were used to extract each antibiotic present, such as hydrochloric acid, citric acid, ammonium chloride, and others. The solvents used were as follows: (1) Chloroformacetone-impregnation liquid (5:5:2); (2) ethanol-water-ammonia (8:1:1); (3) methanol-chloroform (9:1); (4) methanol-acetone (3:2); and (5) methanol-ammonium chloride (3%). The three adsorbents used to coat the thin layer plates were kieselguhr F254, silica gel 60, and cellulose. The organisms used for testing were Bacillus ceurus, Bacillus subtilis (B. subtili), Micrococcus flavus and Sarcina lutea. The approach involved 6 different plates of either a control or the mentioned microorganisms being targeted by each drug[21]. Table 1 represents the scheme followed to implement the chromatography technique.

Furthermore, Table 2 shows the *R_f* values of the antibiotics on different plates. This is indicative that the minimum concentrations of such antibiotic are still detected by liquid chromatography and can be identified using this method. Penicillin was not tested since its presence could be determined by using the *B. calidolactis* test. It was eliminated or removed from the samples by adding an enzyme; penicillinase, which would cause its degradation. Other techniques that could be used for the identification of antibiotic residues in the milk include paper chromatography, high-tension electrophoresis, gas chromatography, mass spectrometer and thin-layer chromatography. Some of these techniques were shown to be of little and inefficient use because of their need for highly concentrated solutions with antibiotics or only being efficient for certain drugs[21].

Yet another technique that could be used is known as the Screening Test for Antibiotic Resides (STAR) protocol. STAR protocol is a five-plate test (FPT), which involves agar diffusion for the identification of antibiotics in food. It is a qualitative screening test used to detect bacterial growth inhibitors. Five agar plates are used to detect antibiotics using sensitive known bacterial strains. The formation of inhibition zones would prove the presence of the antibacterial substance[22].

Near-infrared absorption (NIR) spectroscopy is also used for residue identification. Using a detector, this technique can analyze and record different wavelengths of each substance present in the solution. The intensity of each wavelength computed is equivalent to the concentration of the substance or drug. A study was conducted using the NIR technique for different types of antibiotics, it was proven to be fast and accurate, thus proving the method's great potential[23].

As a result, the chromatographic technique could be considered as the most efficient one in detecting the highest number of antibiotic residues because of its higher sensitivity and specificity and higher quantification capability (Sachi *et al*[14]).

Heat treatment

During processing, the milk is exposed to different thermal, chemical, or mechanical shocks. This includes boiling at high temperatures, the addition of acidic substances, and reduction in water activity, cooling or freezing, drying, or evaporation. These changes could alter the product's characteristics[24].

A study was performed to assess the effect of high temperature and pH on tetracycline and azithromycin concentrations. *B. subtilis* was used to test the presence of these drugs in 13 milk samples. The results showed that high concentrations of residues were present in the samples; high enough to inhibit the growth of *B. subtili* and to kill the microflora culture during milk fermentation. The effect of heat treatments on the degradation or reduction of residues varied amongst different temperature treatments and pH[25].

In the case of azithromycin, a significant decrease of the azithromycin constant κ was observed at 70 °C after 3 h incubation, followed by a higher reduction during 24 h incubation (Table 3). Similarly, a high decrease of constant κ was also observed at 100 °C after incubation[25]. On the other hand, a significant increase in the tetracycline constant κ was observed during incubations. Tetracycline constant κ showed a fast decline at 70 °C and 100 °C after 24 h incubation (Table 4). Results showed that the stability of both drugs, tetracycline, and azithromycin, is highly dependent on temperature[25]. Using *B. subtili* culture, no inhibition areas were observed, proving that azithromycin lost its antimicrobial activity after treatments of 70 °C and 100 °C for 24 h. In the case of tetracycline, the Inhibition zone was reduced but not inhibited upon the increase of temperature[25].

Zaishideng® WJP | https://www.wjgnet.com

Table 1 Chromatographic scheme					
Thin-layer plate Adsorbent Amount of sample applicated in µL		Solvent	Test organism		
1	Kieselguhr	30	А	B. cereus	
2	Silica gel	30	В	M. flavus	
3	Silica gel	30	С	S. lutea	
4	Silica gel	30	С	B. subtilis	
5	Silica gel	30	D	M. flavus	
6	Cellulose	10	Е	B. cereus	

B. cereus: Bacillus cereus; M. flavus: Micrococcus flavus; S. lutea: Sarcina lutea; B. subtilis: Bacillus subtilis.

Table 2 R_f values of antibiotics on the different plates

Antibiotic	Plate					
Anubiouc	1	2	3	4	5	6
Cloxacillin	-	-	0.70	0.70	-	0
Dihydrostreptomycin	-	-	-	-	-	0.40
Tetracycline	0.35	0	0	0	0	-
Oxytetracycline	0.20	0	0	0	0	-
Chlortetracycline	0.60	0	0	0	0	-
Chloramphenicol	0	0.70	0.65	0.65	0.80	-
Neomycin	-	-	-	-	-	0
Novobiocin	-	0.80	0.80	0.80	0.80	-
Bacitracin	-	0.45	-	-	-	-
Erythromycin	0.20	0.70	0.35	0.35	0.25	-
Oleandomycin	0.20	0.70	0.35	-	0.25	-
Ampicillin	0.35	-	0.50	-	-	-
Streptomycin	-	-	-	-	-	0.50
Oxacillin	0	-	0.60	0.60	-	-

CONCLUSION

Milk contains many important nutrients that are required daily. Milk components take part in the body's metabolism by providing essential amino acids, vitamins, minerals, and fatty acids. The presence of drug residues in dairy products is harmful and not acceptable to many individuals or food industries. The use of antibiotics should be controlled and handled under the control of specialists. Antibiotics are absorbed by animal tissues and later distributed into different fluids and tissues. A high concentration is later excreted after a few hours, but a significant amount would still be found concentrated in different parts, including milk and meat. Heating treatments do not cause significant residual reduction among all drugs. High temperatures are effective against azithromycin, where it causes a drastic reduction, while it is less effective against tetracycline. There are no techniques effective on all drugs and that significantly decrease antibiotic residue level. Antibiotic usage in animals cannot be completely banned since their absence could be harmful to both the animal and human health. More research should be conducted to identify new programs that could possibly reduce and control their usage or their concentration in milk and milk products.

Zaishideng® WJP | https://www.wjgnet.com

Omairi R et al. Antibiotic residues in milk and milk products

Table 3 Azithromycin degradation constant rate k values at different temperatures[10]					
Time in h	4 °C	37 °C	70 °C	100 °C	
1	1000 ± 8^{e}	50 ± 1^{a}	50 ± 2^{a}	200 ± 3^{a}	
3	333 ± 3^{d}	966 ± 9^{d}	4033 ± 22^{e}	3900 ± 18^{e}	
6	$250 \pm 2^{\circ}$	933 ± 8^{d}	2000 ± 15^{d}	2033 ± 16^{d}	
12	116 ± 2^{b}	516 ± 7 ^c	1025 ± 8^{c}	1000 ± 6^{c}	
24	62 ± 2^{a}	270 ± 4^{b}	537 ± 5 ^b	533 ± 4^{b}	

^aDifferent letters indicate statistically significant differences at *P* < 0.05 according to a Turkey's honest significant difference *post hoc test*. Values are mean ± standard error of triplicate samples.

^bDifferent letters indicate statistically significant differences at P < 0.05 according to a Turkey's honest significant difference post hoc test. Values are mean ± standard error of triplicate samples.

^oDifferent letters indicate statistically significant differences at P < 0.05 according to a Turkey's honest significant difference post hoc test. Values are mean ± standard error of triplicate samples.

^dDifferent letters indicate statistically significant differences at P < 0.05 according to a Turkey's honest significant difference post hoc test. Values are mean ± standard error of triplicate samples.

^eDifferent letters indicate statistically significant differences at *P* < 0.05 according to a Turkey's honest significant difference *post hoc test*. Values are mean ± standard error of triplicate samples.

Table 4 Tetracycline degradation constant rate k values at different temperatures[10]

Time in h	4 °C	37 °C	70 °C	100 °C
1	20 ± 4^{a}	50 ± 6^{a}	30 ± 6^{a}	60 ± 15^{a}
3	256 ± 32 ^e	$400 \pm 46^{\text{e}}$	630 ± 81^{e}	860 ± 61^e
6	163 ± 17^{cd}	290± 23 ^{cd}	360 ± 17^{cd}	510 ± 46^{d}
12	116 ± 26 ^c	225 ± 12 ^c	$300 \pm 26^{\circ}$	340 ± 32^{c}
24	50 ± 8^{b}	135 ± 20^{b}	160 ±18 ^b	160 ± 02^{b}

^aDifferent letters indicate statistically significant differences at P < 0.05 according to a Turkey's honest significant difference post hoc test. Values are mean ± standard deviation of triplicate samples.

^bDifferent letters indicate statistically significant differences at P < 0.05 according to a Turkey's honest significant difference *post hoc test*. Values are mean ± standard deviation of triplicate samples.

^oDifferent letters indicate statistically significant differences at P < 0.05 according to a Turkey's honest significant difference post hoc test. Values are mean ± standard deviation of triplicate samples.

^dDifferent letters indicate statistically significant differences at P < 0.05 according to a Turkey's honest significant difference *post hoc test*. Values are mean ± standard deviation of triplicate samples.

^eDifferent letters indicate statistically significant differences at *P* < 0.05 according to a Turkey's honest significant difference *post hoc test*. Values are mean ± standard deviation of triplicate samples.

FOOTNOTES

Author contributions: Omairi R, Krayem M, Khaled S, Salls M, and El Khatib S contributed equally to the writing and reviewing of this paper; all authors have read and approved the final manuscript.

Conflict-of-interest statement: The authors declare that they have no conflicts of interest to report.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is noncommercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Lebanon

ORCID number: Mohamed Salla 0000-0003-4744-0954; Sami El Khatib 0000-0003-3611-3288.

S-Editor: Chen YL L-Editor: Filipodia

REFERENCES

- 1 **Pereira RV**, Siler JD, Bicalho RC, Warnick LD. Multiresidue screening of milk withheld for sale at dairy farms in central New York State. *J Dairy Sci* 2014; **97**: 1513-1519 [PMID: 24440252 DOI: 10.3168/jds.2013-7421]
- 2 EU Agenda. EU agricultural outlook 2018-2030: Growing export demand for dairy products as world population expands. Dec, 2018. [cited 3 October 2021]. Available from: https://euagenda.eu/publications/eu-agricultural-outlook-for-marketsand-income-2018-2030
- 3 **Food and Agriculture Organization of the United Nations**. Recovery and rehabilitation of the dairy sector in Lebanon. [cited 3 October 2021]. Available from: https://www.fao.org/3/i5745e/i5745e.pdf
- 4 Nag SK. 5-Pesticides, veterinary residues and other contaminants in milk. In: Griffiths MV. Improving the Safety and Quality of Milk. Woodhead Publishing: 113-145 [DOI: 10.1533/9781845699420.2.113]
- 5 5 Pereira PC. Milk nutritional composition and its role in human health. Nutrition 2014; 30: 619-627 [PMID: 24800664 DOI: 10.1016/j.nut.2013.10.011]
- 6 Maitah M, Smutka L. Economic analysis of milk production and consumption in the Middle East and North Africa. 2012. [cited 3 October 2021]. Available from: https://www.researchgate.net/publication/270016280_Economic_analysis_of_milk _production_and_consumption_in_the_Middle_East_and_North_Africa [DOI: 10.11118/actaun201260040245]
- 7 El Kinany K, Mint Sidi Deoula M, Hatime Z, Boudouaya HA, Huybrechts I, El Asri A, Benider A, Ahallat M, Afqir S, Mellas N, Khouchani M, El Rhazi K. Consumption of modern and traditional Moroccan dairy products and colorectal cancer risk: a large case control study. *Eur J Nutr* 2020; **59**: 953-963 [PMID: 30929068 DOI: 10.1007/s00394-019-01954-1]
- 8 **Ruegg PL**. A 100-Year Review: Mastitis detection, management, and prevention. *J Dairy Sci* 2017; **100**: 10381-10397 [PMID: 29153171 DOI: 10.3168/jds.2017-13023]
- 9 Pyörälä S. Treatment of mastitis during lactation. Ir Vet J 2009; 62 Suppl 4: S40-S44 [PMID: 22081939 DOI: 10.1186/2046-0481-62-S4-S40]
- 10 **Gustafson RH**, Bowen RE. Antibiotic use in animal agriculture. *J Appl Microbiol* 1997; **83**: 531-541 [PMID: 9418018 DOI: 10.1046/j.1365-2672.1997.00280.x]
- 11 Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. *Clin Microbiol Rev* 2011; 24: 718-733 [PMID: 21976606 DOI: 10.1128/CMR.00002-11]
- 12 Croubels S, Daeseleire E. Veterinary drug residues in foods—ScienceDirect. March 27, 2014. [cited 3 October 2022]. Available from: https://www.sciencedirect.com/science/article/pii/B9780857090584500074 [DOI: 10.1533/9780857095794.2.148]
- 13 Chattopadhyay MK. Use of antibiotics as feed additives: a burning question. Front Microbiol 2014; 5: 334 [PMID: 25071747 DOI: 10.3389/fmicb.2014.00334]
- 14 Sachi S, Ferdous J, Sikder MH, Azizul Karim Hussani SM. Antibiotic residues in milk: Past, present, and future. J Adv Vet Anim Res 2019; 6: 315-332 [PMID: 31583228 DOI: 10.5455/javar.2019.f350]
- 15 Ziv G, Rasmussen F. Distribution of labeled antibiotics in different components of milk following intramammary and intramuscular administrations. J Dairy Sci 1975; 58: 938-946 [PMID: 49365 DOI: 10.3168/jds.S0022-0302(75)84660-1]
- 16 Ziv G, Sulman FG. Absorption of antibiotics by the bovine udder. J Dairy Sci 1975; 58: 1637-1644 [PMID: 1194466 DOI: 10.3168/jds.S0022-0302(75)84762-X]
- 17 Virto M, Santamarina-García G, Amores G, Hernández I. Antibiotics in Dairy Production: Where Is the Problem? Dairy 2022; 3: 541-564 [DOI: 10.3390/dairy3030039]
- 18 Rollins LD, Mercer HD, Carter GG, Kramer J. Absorption, distribution, and excretion of penicillin and dihydrostreptomycin in dairy cows following intramammary infusion. *J Dairy Sci* 1970; 53: 1407-1414 [PMID: 4097376 DOI: 10.3168/jds.S0022-0302(70)86408-6]
- 19 Anifantakis EM. Excretion rates of antibiotics in milk of sheep and their effect on yogurt production. J Dairy Sci 1982; 65: 426-429 [PMID: 6176606 DOI: 10.3168/jds.S0022-0302(82)82208-X]
- 20 Munita JM, Arias CA. Mechanisms of Antibiotic Resistance. *Microbiol Spectr* 2016; 4 [PMID: 27227291 DOI: 10.1128/microbiolspec.VMBF-0016-2015]
- 21 Bossuyt R, Van Renterghem R, Waes G. Identification of antibiotic residues in milk by thin-layer chromatography. J Chromatogr 1976; 124: 37-42 [PMID: 965456 DOI: 10.1016/s0021-9673(00)87834-6]
- 22 **Gaudin V**, Hedou C, Rault A, Verdon E. Validation of a Five Plate Test, the STAR protocol, for the screening of antibiotic residues in muscle from different animal species according to European Decision 2002/657/EC. *Food Addit Contam Part A Chem Anal Control Expo Risk Assess* 2010; **27**: 935-952 [PMID: 20432095 DOI: 10.1080/19440041003677483]
- 23 Luiz L da C, Bell MJV, Rocha RA da, Leal NL, Anjos V de C. Detection of Veterinary Antimicrobial Residues in Milk through Near-Infrared Absorption Spectroscopy. *J of Spectrosc* 2018; 2018: 6 [DOI: 10.1155/2018/5152832]
- 24 **Pawar N**, Chopde S, Deshmukh M. Antibiotic residues in milk: Impact during manufacturing of probiotics dairy products and health hazard. *J Food Process Technol* **3**: 149 [DOI: 10.4172/2157-7110.s1.009]
- 25 Kurjogi M, Issa Mohammad YH, Alghamdi S, Abdelrahman M, Satapute P, Jogaiah S. Detection and determination of stability of the antibiotic residues in cow's milk. *PLoS One* 2019; 14: e0223475 [PMID: 31600289 DOI: 10.1371/journal.pone.0223475]

Zaishideng® WJP | https://www.wjgnet.com

Published by Baishideng Publishing Group Inc 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA Telephone: +1-925-3991568 E-mail: bpgoffice@wjgnet.com Help Desk: https://www.f6publishing.com/helpdesk https://www.wjgnet.com

