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Abstract
Co-stimulatory molecules are key mediators in the regulation of immune 
responses and knowledge of its different families, structure, and functions has 
improved in recent decades. Understanding the role of co-stimulatory molecules 
in pathological processes has allowed the development of strategies to modulate 
cellular functions. Currently, modulation of co-stimulatory and co-inhibitory 
molecules has been applied in clinical applications as therapeutic targets in 
diseases and promising results have been achieved.

Key Words: Co-stimulatory molecules; Immune modulation; Monoclonal antibodies; 
Biological therapy; Autoimmune diseases; Oncological diseases

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Several reviews of co-stimulatory molecules have been published, however, 
this review summarizes the historical aspects, the cellular and molecular mechanisms 
of the different families of costimulatory molecules implied in processes of health and 
disease. All of this knowledge has been applied to develop different drugs targeting 
costimulatory molecules in different diseases like cancer and autoimmune diseases.
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INTRODUCTION
Regulation of the immune response is a crucial process in the initiation and control of 
inflammatory phenomena. Various mechanisms capable of regulating T cell activation 
have been described. Co-stimulatory molecules were initially described as accessory 
signals present in antigen-presenting cells (APCs) that interacted with T cells during 
the immunological synapse[1]. They comprise a diversity of glycoproteins expressed 
in the membrane of APCs, and they interact with other glycoproteins that function as 
their receptors on T cells, modulating in a positive or negative way the activation, 
proliferation, differentiation, and function of T cells[2]. In recent decades, advances in 
the knowledge of co-stimulatory molecules and the development of biological drugs 
allowed a therapeutical targeting of co-stimulatory molecules in distinct diseases[3].

A BRIEF HISTORY OF CO-STIMULATORY MOLECULES
A two-signal model of T cell activation was first proposed in the second half of the 
1960s. The two signals were antigen recognition by an antigen receptor and the 
interaction with co-stimulatory molecules. Although the mechanisms were not known, 
the model proposed that in the absence of a second signal or "co-stimulation," the T 
cell would enter a state of paralysis or inactivation[4,5]. By the second half of the 1980s, 
a series of investigations had experimentally demonstrated the existence of co-
stimulatory molecules and their participation in T cell activation[6-9]. The findings 
resulted in the description of a diversity of molecules and the investigation of their 
function in different disease models, which led to therapeutic applications. One 
example is the 2018 Nobel Prize in Physiology and Medicine, awarded to Tsuku Honjo 
and James P Alisson, for their contributions to the discovery of cytotoxic T lym-
phocyte–associated antigen (CTLA)-4 and programmed death (PD)-1 protein and the 
development of methods of molecular blockade for the treatment of oncological 
diseases[10-12].

OVERVIEW OF ANTIGEN PRESENTATION AND INVOLVEMENT OF CO-
STIMULATORY MOLECULES
APCs are part of the innate immune system and act as an interface between antigen 
recognition and the adaptive response of T cells during antigen presentation[3]. 
Activation of T cells requires the appropriate activation and integration of three 
signals. The first signal is the antigen, which is presented in the context of the major 
histocompatibility complex, and its recognition by the T cell receptor (TCR). The first 
signal is not sufficient to activate T cells. Activation continues with a second signal that 
involves the participation of surface molecules expressed on dendritic cells that 
interact with their respective receptors on the T cell. The third signal involves the 
production of cytokines, which not only favor the activation state but also promote the 
polarization of T cells into their various helper/cytotoxic subpopulations[3,13] 
(Figure 1). In that dynamic microenvironment, the spatiotemporal expression of 
various co-stimulatory molecules on dendritic cells and T cells, as part of the second 
signal, is the key to regulating T cell activation, inhibition, survival, and polarization.

Activating and inhibitory signals
Co-stimulatory molecules are transmembrane glycoproteins that induce activation or 
inhibition cascades that enhance or diminish TCR signaling[14,15]. Stimulatory, or 
activating signals (co-stimulation by CD28 or CD40), lead to the production of growth 
factors, cell expansion, and survival. Inhibitory signals (co-inhibition by PD1 or CTL-4) 
attenuate TCR-induced signals, resulting in decreased cell activation, inhibition of 
growth factor production, inhibition of cell cycle progression, and in some cases, 
promotion of cell death[14].

https://creativecommons.org/Licenses/by-nc/4.0/
https://creativecommons.org/Licenses/by-nc/4.0/
https://creativecommons.org/Licenses/by-nc/4.0/
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Figure 1 Overview of antigen presentation and the three-signal model. The three-signal model proposes: (1) Antigen presentation to the T cell receptor 
by the major histocompatibility complex; (2) Interaction of co-stimulatory molecules with their receptors; and (3) Cytokine production and recognition by the cytokine 
receptors of T cells. DAMPs: Damage-associated molecular patterns; PAMPS; Pathogen-associated molecular patterns; PD1: Programmed death-1; PDL1: 
Programmed death ligand 1; PRR: Pattern recognition receptor.

Figure 2 Therapeutical manipulation of co-stimulatory molecules. Biological drugs have been developed to target co-stimulatory molecules and promote 
or inhibit their functions in distinct diseases. For example, the fusion protein abatacept blocks CD80/CD86 to prevent interaction with CD28; mAb iscalimab blocks 
CD40, ipilimumab blocks cytotoxic T lymphocyte antigen-4, and pembrolizumab blocks programmed death-1 (PD-1). These strategies have been implemented to 
modulate co-stimulatory molecule functions in immune and cancer cells. MHC: Major histocompatibility complex; TCR: T cell receptor.

Families of co-stimulatory molecules
Co-stimulatory molecules are divided into two main families by their molecular 
structure. The first (Table 1) is the immunoglobulin superfamily which includes 
CD226, the CD2/signaling lymphocytic activation molecule family, T cell immuno-
globulin and mucin (TIM) family, butyrophilin (BTN) family, and leukocyte-associated 
immunoglobulin-like receptor (LAIR) family. Because of its historical relevance, the 
most studied is the B7 family, which includes CD80, CD86, and its receptor CD28. The 
second (Table 2) is the tumor necrosis factor superfamily (TNFR SF), which includes 
three subfamilies, the divergent type (OX-40, CD27, glucocorticoid-induced TNFR-
related protein), the S-type (CD267), and the conventional type [FAS, herpes virus 
entry mediator, receptor activator of nuclear factor kappa-B (RANK), and CD40]. 
CD40 and its ligand CD40L are the most investigated co-stimulation molecules of the 
TNFR SF[3].
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Table 1 Immunoglobulin super family co-stimulatory molecules

IgSF co-
stimulatory 
molecules

Function Cells expressing the receptor Ligand Cells expressing the ligand

CD28 Activation Constitutive in T cells CD80, CD86 CD80: Inducible in dendritic cells, 
monocytes, B and T cells. CD86: Constitutive 
in dendritic cells, monocytes, B and T cells

ICOS (CD278) Activation Inducible in T, B, and NK cells ICOSL Constitutive in macrophages, dendritic cells, 
B and T cells

CTLA-4 (CD152) Inhibition Inducible in T cells CD80, CD86 CD80: Inducible in dendritic cells, 
monocytes, B and T cells. CD86: Constitutive 
in dendritic cells, monocytes, B and T cells

PD-1 (CD279) Inhibition Inducible in T, and B cells, macrophages PD-L1, PD-
L2

PD-L1: Constitutive in dendritic cells, B and 
T cells. PD-L2: Inducible in dendritic cells 
and monocytes

PD-1H (VISTA) Inhibition Monocytes, neutrophils, T cells Unknown Unknown

BTLA (CD272) Inhibition B and T cells HVEM, 
UL144

Monocytes, B and T cells

B71 (CD80), B72 
(CD86)

Activation/Inhibition CD80: Inducible in dendritic cells, 
monocytes, B and T cells. CD86: Constitutive 
in dendritic cells, monocytes, B and T cells

CD28, 
CTLA-4

CD28: Constitutive in T cells. CTLA-4: 
Inducible in T cells

B7H1 (CD274, 
PDL1)

Inhibition Constitutive in dendritic cells, monocytes, B 
and T cells

PD-1, B71 PD-1: Inducible in macrophages, B and T 
cells. CD80: Inducible in dendritic cells, 
monocytes, B and T cells

BTLA: B- and T lymphocyte attenuator; CTLA: Cytotoxic T lymphocyte antigen; HVEM: Herpes virus entry mediator; ICOS: Inducible T cell co-stimulator; 
ICOSL: Inducible T cell co-stimulator ligand; PD-1: Programmed death-1; PD-L: Programmed death ligand; PD-1H: Programmed death-1 homolog; VISTA: 
V domain Ig suppressor of T cell activation.

Co-stimulatory molecules and their study in human disease
The involvement of co-stimulatory molecules in clinical conditions has been explored. 
Mutations in ICOSL, CD40, or C267 have been associated with immunodeficiencies; 
increased expression of CD86, CD28, CD27, and CD70 has been reported in 
autoimmune diseases and allergies[16-23]. Some of the most interesting findings are 
summarized in Tables 3 and 4.

Therapeutic application of co-stimulatory or co-inhibitory molecules
Numerous scientific studies have shown the involvement of co-stimulatory molecules 
in the regulation of the inflammatory process[3]. Subsequently, both experimental 
trials in various disease models and preclinical trials have demonstrated promising 
results achieved by the therapeutic manipulation of these molecules[24,25]. The 
preclinical results support their application at the clinical level either by inhibiting the 
function of activating co-stimulatory molecules to promote tolerogenic functions or by 
inhibiting inhibitory co-stimulatory molecules to promote pro-inflammatory functions.

Blockade of the co-inhibitory molecules PD1 and CTLA-4 by the monoclonal 
antibodies pembrolizumab, ipilimumab, and nivolumab is a therapeutic indication in 
cancer treatment, particularly melanoma. On the other hand, therapeutic approaches 
for autoimmune diseases have exploited the blockade of the co-stimulatory molecules 
CD80/CD86 by abatacept or CD40 by iscalimab. In both cases, co-stimulatory 
molecule-targeted therapies have shown promising results[26-32] (Figure 2 and 
Table 5).

CONCLUSION
Challenging limitations need to be overcome before these therapeutical tools are 
approved for clinical use[33]. Nevertheless, understanding the function and the 
possibility of therapeutic manipulation of co-stimulatory molecules represents a 
milestone for immunology and pharmacology. The knowledge gained from the study 
of co-stimulatory molecules has allowed a deeper understanding of the 
pathophysiology of many diseases. The therapeutic use of these molecules has been 
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Table 2 Tumor necrosis factor receptor super family co-stimulatory molecules

TNFR SF co-
stimulatory 
molecules

Function Cells expressing the receptor Ligand Cells expressing the ligand

OX40 (CD134) Activation Activated and regulatory T cells OX40L T cells, macrophages, endothelial 
cells, vascular smooth muscle cells, 
dendritic cells, tumor cells

CD27 (TNFR SF7) Activation T and B cells, NK cells CD70 NK, T and B cells

GITR (CD357) Activation T cells GITRL T cells

CD30 (TNFR SF8) Activation T and B cells CD30L T cells

HVEM (CD270) Activation Monocytes, T and B cells LIGHT, BTLA, 
CD160, LTα3, 
HSV1gD

Monocytes and APCs

FAS (CD95) Activation NK and T cells FASL Dendritic cells, NK, T cells, 
neutrophils

CD40 (TNFR SF5) Activation All B-cell lineages except plasma cells, 
macrophages, activated monocytes, follicular 
dendritic cells, interdigitating dendritic cells, 
endothelial cells, fibroblasts

CD40L Activated CD4+ T cells, some CD8+ 
T cells, γδ T cells, basophils, 
platelets monocytes and mast cells

RANK (CD265) Activation Osteoclast and dendritic cells RANKL Osteoblasts, T cells

TACI (CD267) Inhibition B and plasma cells BAFF, APRIL Stromal cells, dendritic cells, and 
macrophages

APCs: Antigen-presenting cells; APRIL: A proliferation-inducing ligand; BAFF: B-cell activating factor; BTLA: B- and T lymphocyte attenuator; FASL: FAS 
ligand; GITR: Glucocorticoid-induced TNFR-related protein; HSV1gD: Herpes simplex virus-1 glycoprotein D; HVEM: Herpes virus entry mediator; 
LIGHT: TNFR14; LT3: Lymphotoxin-alpha 3; RANK: Receptor activator of nuclear factor kappa; TACI: Transmembrane activator and calcium-modulator 
and cyclophilin ligand interactor; TNFR SF: Tumor necrosis factor superfamily.

Table 3 Immunoglobulin super family co-stimulatory molecules studied in various diseases

Molecule Disease Alteration Ref.

CD86 Rheumathoid arthritis Increased expression in B cells [16]

ICOSL Combined immunodeficiency Mutation [17]

CTLA-4 Mycosis fungoides Increased expression in T cells [18]

CD28 Tuberculosis Decreased expression in CD8+ and CD4+ T cells [19]

CD28 Graves’ disease Increased expression in T cells [20]

CTLA: Cytotoxic T lymphocyte antigen; ICOSL: Inducible T cell co-stimulator ligand.

Table 4 Tumor necrosis factor superfamily co-stimulatory molecules studied in various diseases

Molecule Disease Alteration Ref.

CD27 Lupus erythematosus Increased expression in plasmablasts [21]

CD70 Lupus erythematosus Increased expression in plasmablasts [21]

CD40 Hyper IgM Syndrome Mutations [22]

CD30 Vernal Keratoconjunctivitis Increased expression in T cells [23]

CD267 Common variable immunodeficiency Mutations [24]

well exploited in autoimmune diseases and oncology, where they serve as effective 
adjuvants to conventional therapy. However, we should not exclude the potential that 
these molecules have in many other contexts. They will undoubtedly continue to be an 
area of great interest for research and drug development.
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Table 5 Co-stimulatory molecule manipulation in various diseases

Disease Therapeutic 
target Manipulation Outcome Ref.

Brain metastases 
melanoma

PD-1 and CTLA-
4

Blockade with mAbs (nivolumab + 
ipilimumab)

55% of treated patients reduced tumor size. 21% showed full 
response

[27]

Melanoma PD-1 Blockade with mAbs (pembrolizumab 
or nivolumab)

19% of treated patient reduced tumor size [28]

Melanoma PD-1 Blockade with mAbs 
(pembrolizumab)

33% of treated patient reduce size tumor [29]

Rheumatoid 
arthritis

CD80/CD86 Blockade with soluble receptor 
(abatacept)

Reduction in the disease index [30]

Psoriatic arthritis CD80/CD86 Blockade with soluble receptor 
(abatacept)

Musculoskeletal clinical improving [31]

Sjögren syndrome CD40 Blockade with recombinant antibody 
(CFZ533 or iscalimab)

Reduction in the disease index [32]

Kidney graft CD40 Blockade with recombinant antibody 
(CFZ533 or iscalimab)

Transplant success rate similar to tacrolimus treatment, but with a 
lower probability of adverse effects and infections

[33]

CTLA: Cytotoxic T lymphocyte antigen; PD-1: Programmed death-1.
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Abstract
To control the pandemic, efficient vaccines must be applied to the population, 
including patients with autoimmune diseases. Therefore, one can expect that 
coronavirus disease 2019 (COVID-19) vaccines may influence the underlying 
autoimmune processes in these patients. Additionally, it is essential to understand 
whether COVID-19 vaccines would be effective, safe, and provide long-lasting 
immunological protection and memory. However, the currently available and 
approved COVID-19 vaccines turned out to be safe, effective, and reliable in 
patients with autoimmune inflammatory and rheumatic diseases. Furthermore, 
most patients said they felt safer after getting vaccinations for COVID-19 and 
reported enhanced overall quality of life and psychological wellbeing. In general, 
the COVID-19 vaccines have been highly tolerated by autoimmune patients. Such 
findings might comfort patients who are reluctant to use COVID-19 vaccines and 
assist doctors in guiding their patients into receiving vaccinations more easily and 
quickly.

Key Words: SARS-CoV-2; COVID-19; Immune response; COVID-19 vaccine; Immune 
memory; Autoimmunity; Autoimmune diseases; Relapse
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Core Tip: Coronavirus disease 2019 (COVID-19) vaccines have created concerns about their efficacy and 
safety, notably in autoimmune patients. Which vaccine adverse events are related to the underlying 
autoimmunity is unclear. Additional data is needed to evaluate the immunological impact of COVID-19 
vaccines in terms of effectiveness and immune-driven adverse effects that might provoke a disease flare in 
individuals with a history of autoimmune-related symptoms. However, the risk of autoimmune disease 
flare after vaccination was considered low, while the immune responses after vaccination showed great 
immunogenicity for these patients. In addition, vaccination will considerably decrease related morbidity 
and mortality from COVID-19 in autoimmune patients.

Citation: Velikova T. Vaccines and autoimmunity during the COVID-19 pandemic. World J Immunol 2022; 12(2): 
9-14
URL: https://www.wjgnet.com/2219-2824/full/v12/i2/9.htm
DOI: https://dx.doi.org/10.5411/wji.v12.i2.9

INTRODUCTION
We still do not know all the mechanisms involved in the immune system - severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) interaction during coronavirus disease 2019 (COVID-19) 
infection. However, it was demonstrated that the virus possesses a tremendous ability to inhibit the 
immune mechanisms, both innate and adaptive[1]. Nevertheless, there are still controversial data on 
which immunity is better - naturally acquired or vaccine[3].

There are concerns regarding people living with autoimmune diseases as well. In patients with 
autoimmune diseases, the body’s immune system is overactive and destroys its own cells through 
various mechanisms, including autoantibodies and immune cells[4,5]; therefore, one can expect that 
COVID-19 vaccines may influence the autoimmune processes in these patients. Additionally, it is 
essential to understand whether COVID-19 vaccines would be effective and safe in patients with 
autoimmune diseases and whether vaccines will provide long-lasting immunological protection and 
memory[6]. However, in order  to take control of the pandemic, the medical community has stressed 
that efficient vaccines must be applied to the population. This approach includes vaccinating patients 
with autoimmune diseases.

CAN THE COVID-19 VACCINES CAUSE AUTOIMMUNITY?
Data showed that the immune hyperactivation and cytokine-excessive release in patients with COVID-
19 resulted in multi-organ failure and death[7]. In line with this, patients with already activated immune 
system could be more prone to severe SARS-CoV-2; however, this was not proven for patients with 
autoimmune diseases. The main concerns are severe outcomes for patients on immunosuppressive 
therapy or developing severe clinical complications[8]. Indeed, it was shown that SARS-CoV-2 could 
induce a robust immune response in immunocompromised patients[9,10].

On the other hand, COVID-19 vaccines have also created concerns about their efficacy and safety, 
notably in autoimmune patients. We recently published a paper addressing the known pros and cons of 
vaccinating patients with autoimmune disorders, stressing the absence of data on the advantages and 
disadvantages of newly discovered COVID-19 in patients with autoinflammatory and rheumatic 
diseases[11]. Various pathways that contribute to the increase in acute autoimmune responses have 
been suggested[12]. For example, molecular mimicry, i.e., antibodies against SARS-CoV-2 spike 
glycoproteins, has the theoretical potential to trigger autoimmunity, as Vojdani and Kharrazian[13] 
recently demonstrated. Talotta[14] further suggested that an injectable nucleic acid vaccination might 
put young women in danger of undesired, unexpected immunological side effects, especially those 
already susceptible to autoimmune or auto-inflammatory disease. However, even in the autoimmune 
population, serious adverse events are rare[15,16].

Akinosoglou et al[7] further hypothesize that immunization with COVID-19 is not the cause for de 
novo immune-mediated adverse events. In contrast, the immunological reaction might lead to dysregu-
lation of the pre-existing underlying pathways. This might result from the polyclonal expansion of the B 
cells leading to the development of immunological features of autoimmunity. It should be noted that 
autoimmune disorders can be provoked in genetically sensitive individuals through various 
autoimmune mechanisms, including epitope spreading and bystander activation[17]. Which vaccine 
adverse events are related to the underlying autoimmunity is unclear. An unsolved issue remains 
whether to provide a second dosage after such reactions in patients with rheumatic diseases. Additional 
data is needed to evaluate the immunological impact of COVID-19 vaccines in terms of effectiveness 
and immune-driven adverse effects that might provoke a disease flare in individuals with a history of 

https://www.wjgnet.com/2219-2824/full/v12/i2/9.htm
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autoimmune-related symptoms[7].

COVID-19 VACCINES AND PATIENTS WITH AUTOIMMUNE DISEASES
As demonstrated previously, elderly populations with chronic disorders such as diabetes, asthma, and 
cardiovascular disease are especially susceptible to severe SARS-CoV-2[18]. The same concerns were 
raised regarding patients with autoimmune inflammatory rheumatic diseases (AIIRDs)[19,20]. 
However, recent studies demonstrated that patients receiving immunosuppressive therapy for AIIRDs 
produced sufficient and protective immune response after SARS-CoV-2 mRNA vaccination without 
experiencing severe side effects or flares[21].

Since AIIRD patients are usually not included in phase III clinical trials of vaccines, immunological 
response to COVID-19 vaccination in AIIRD patients under the immunosuppression treatment remains 
unknown. Although the COVID-19 vaccine efficacy was demonstrated between 60%-95% with 
acceptable safety, uncertainty in AIIRD patients for the COVID-19 vaccines, especially the novel RNA 
and viral vector vaccines, led to hesitancy in both physicians and patients[22,23]. However, the 
currently available and approved COVID-19 vaccines turned out to be safe, effective, and reliable in 
patients with AIIRD. Furthermore, unless contraindicated for medical conditions, such as previous 
allergy/anaphylaxis to the COVID-19 vaccine or its ingredients, any patient with AIIRD should receive 
one of the available COVID-19 vaccines.

Patients have to continue immunosuppressive therapy for their underlying AIIRD, which may 
include biological and selective synthetic disease-modifying anti-rheumatic medications. Korean 
College of Rheumatology issued guidelines recommending limiting corticosteroids to the lowest 
possible dosage without exacerbating AIIRD. Methotrexate may be deferred for 1-2 wk following each 
injection to increase vaccine response. The duration of rituximab and abatacept infusions may also be 
adjusted[21]. The overall vaccine benefits exceed possible vaccine dangers, as the study showed. 
Additionally, the risk of disease flare of AIIRD after vaccination is low. However, the currently accepted 
surrogate markers for the immune response after vaccination (i.e., antibodies against SARS-CoV-2 and 
activated T cells) showed great immunogenicity of the vaccines in these patients[21].

Another concern that must be discussed is assessing vaccine effectiveness in the IV phase, a.k.a. the 
real-world studies. Clinical studies investigating high-risk for infection people, i.e., healthcare workers, 
showed that the absolute risk of testing positive for SARS-CoV-2 after vaccination with mRNA vaccine 
in a cohort of healthcare workers was 0.97%-1.19%[24]. One must consider that the healthcare staff was 
younger and more susceptible to SARS-CoV-2 than the clinical trial participants. As stated above, 
hesitancy in autoimmune patients may have arisen because these individuals were mainly omitted from 
vaccination studies of COVID-19. Boekel et al[18] have already shown that more than one-third of 
autoimmune patients are reluctant to get vaccinations against COVID-19. The primary concerns are the 
anticipated side effects and the lack of long-term studies.

Additionally, there are currently very little data on the safety of COVID-19 vaccines in patients with 
autoimmune disorders, and no research available can compare the impact of different types of vaccin-
ations between patients and healthy controls. For example, worldwide vaccination recommendations for 
COVID-19 for autoimmune illness patients is based on experts’ opinion[25]. In their previous study, 
Boekel et al[26] presented the results from a survey that evaluated the adverse events following COVID-
19 vaccinations in systemic AIIRD patients and healthy control (Netherlands Trial Register, trial ID 
NL8513 and NCT04498286). Of all participants, 1780 patients and 660 controls filled out the 
questionnaire, whereas 46% and 41% of patients received ChAdOx1 nCoV-19 (AstraZeneca) and 
BNT162b2 (Pfizer/BioNTech), respectively. Thirteen percent of patients were vaccinated with Moderna. 
Half of the patients and controls reported at least one mild adverse event, and about 20% of all 
participants had moderate adverse events. Severe adverse events remained below 1%, with no serious 
adverse events. Complaints of joints and bones were stated more frequently by patients with AIIRD 
than controls (10% vs 1%, respectively). Fortunately, only 2% of patients reported flare or deterioration 
of the disease up to 2 mo after COVID-19 vaccination[26].

The results from the survey show that, regardless of the kind of vaccine, adverse effects of 
immunization with COVID-19 in patients with autoimmune disorders are equivalent to controls. The 
adverse effects included also predicted local or systemic hyperreactivity responses, which were largely 
self-limiting. The incidence of individuals who reported adverse events in the clinical trials was lower 
than the number stated[15], similar to the national study of COVID-19 adverse events in the United 
Kingdom general population[27]. In conclusion, the survey demonstrated that the vaccines against 
COVID-19 do not tend to induce autoimmunity flares, as shown in previous limited studies that 
evaluated mRNA vaccines’ impact on patients with autoimmune diseases[20,28].

Known pathophysiological effects mRNA may be both immunostimulatory and immunosuppressive 
to the innate immune system as COVID-19 vaccines are the first to be widely applied, and prospective, 
monitored studies of the long-run effects of COVID-19 vaccines on their activities require robust 
conclusions[11]. Nevertheless, most participants said they felt safer after getting vaccinations for 
COVID-19, and 20% of individuals with autoimmune disorders reported enhanced overall quality of life 
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Figure 1 Many features and characteristics of severe acute respiratory syndrome coronavirus-2 are associated with the development of 
autoantibodies and autoimmune phenomena. In some patients, autoimmune disease is developed after coronavirus disease 2019 (COVID-19). On the other 
hand, COVID-19 vaccines proved their efficacy, effectiveness and safety in patients with autoimmune diseases. SARS-CoV-2: Severe acute respiratory syndrome 
coronavirus-2; COVID-19: Coronavirus disease 2019.

and psychological wellbeing[26]. If we compare these adverse effects associated with the application of 
COVID-19 vaccines with autoimmune complications during SARS-CoV-2 infection[29], the benefits of 
vaccines significantly outweigh the side effects of vaccination. This comparison is presented in Figure 1.

CONCLUSION
In general, the COVID-19 vaccines have been highly tolerated by autoimmune patients. Such findings 
might comfort patients who are reluctant to use COVID-19 vaccines and assist doctors in guiding their 
patients in vaccination timely. Therefore, the therapy and management of COVID-19 should be given 
priority to reduce the catastrophic effect of COVID-19 in autoimmune patients, and SARS-CoV-2 
immunization is one of the most effective protection against infection. Additionally, significant research 
with the acquisition of new data is required to assess the safety and efficiency of COVID-19 vaccines in 
immunocompromised patients. In addition, medical practitioners should counsel their immunocom-
promised patients to support SARS-CoV-2 vaccinations, as this might considerably decrease related 
morbidity and mortality from COVID-19.
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Abstract
Free radicals (reactive oxygen species, superoxides and hydroxyl radicals) lead to 
the development of oxidative stress because of imbalance in the amount of antiox-
idants. Continued development of oxidative stress leads to chronic diseases in 
humans. The instability in the antioxidant activities and accumulation of oxidative 
stress due to free radicals may occur in diseases like inflammatory bowel disease 
(IBD). Antioxidants are substances that inhibit or delay the mechanism of 
oxidation of molecules mediated by free radicals and also transform into lesser-
active derivatives. Probiotics are defined as live microorganisms that show 
beneficial effects on inflamed intestine and balance the inflammatory immune 
responses in the gut. Probiotic strains have been reported to scavenge hydroxyl 
radicals and superoxide anions that are abundantly produced during oxidative 
stress. The most widely studied probiotic strains are Streptococcus, Bifidobacterium 
and Lactobacillus. Probiotics cultured in broth have shown some amount of 
antioxidant activities. Fermented milk and soy milk, which possess starter 
microorganisms (probiotics), tends to increase the antioxidant activities many-
fold. This review aims to discuss the in vivo and in vitro antioxidant activities of 
specific probiotics with various assays with respect to IBD.

Key Words: Oxidative stress; Inflammatory bowel disease; Probiotics; Therapy; Anti-
oxidative activity
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Core tip: Inflammatory bowel diseases (IBDs) are degenerative diseases that cause chronic inflammation in 
the intestine. The most prevalent therapy for IBD is conventional antibiotic therapy. Keeping the adverse 
effects of antibiotics in mind, researchers have shown that Streptococcus, Lactobacillus and Bifidobac-
terium are some of the most efficient antioxidative agents with respect to in vitro and in vivo activities. 
Probiotics individually or in combination play an important role in regulating superoxide dismutase 
activity, which is always dysregulated due to oxidative stress caused in IBD. The mechanism of antiox-
idation of probiotics using NRf2-antioxidative response element pathway, nuclear factor-B and protein 
kinase C pathway may be activated to contribute to the reduction of oxidative-stress-induced IBD. The 
review focuses on the antioxidative activities of the specific bacterial strains as therapeutic molecules in 
IBD. Multiple combinations of probiotic strains have still not been adequately studied. We are currently 
researching the antioxidative effect of Streptococcus thermophilus, Lactobacillus acidophilus and 
Bifidobacterium bifidumin combination.

Citation: Biswas S, Ray Banerjee E. Probiotic treatment of inflammatory bowel disease: Its extent and intensity. 
World J Immunol 2022; 12(2): 15-24
URL: https://www.wjgnet.com/2219-2824/full/v12/i2/15.htm
DOI: https://dx.doi.org/10.5411/wji.v12.i2.15

INTRODUCTION
Inflammatory bowel disease (IBD) is an umbrella term used to describe chronic inflammation in the 
human digestive tract. IBDs are characterized by diarrhea, rectal bleeding, abdominal pain, fatigue and 
weight loss. IBDs are prevalent in western countries, although they are on the rising track in the Asian 
countries, which mimics the prevalence in American and European countries. When the burden of IBD 
is compared between eastern and western countries, the prevalence of IBD in India, which is one of the 
eastern countries, is found to be the highest. The imbalance in pro-oxidants and antioxidants in the gut 
leads to inflammation. Despite having antibiotic medication, the prevalence of IBD is still high 
worldwide. Thus, there is a need to investigate small molecule therapeutic approaches to stop the 
increase in the number of cases of IBD. In humans, reactive oxygen species (ROS) function as regulators 
and mediators to ensure correct cell functioning[1,2]. Overproduction of ROS can easily induce damage 
to proteins, nucleic acids or lipids through free radical reactions. Therefore, in the event of excess ROS 
production, protective antioxidant mechanisms are required to prevent oxidative stress[1,2]. ROS 
include superoxides, nitric oxides (NO), hydroxyl radicals, singlet oxygen and hydrogen peroxide (H2O2

) that contributes to cellular damage, leading to inflammation. IBD is known for the occurrence of 
oxidative stress. Ulcerative colitis (UC), which is one type of IBD, leads to the increased generation of 
highly toxic ROS that exceeds the capacity of the limited intestinal antioxidative defense system[3,4]. 
Oxidative stress in IBD is the key factor for progression of inflammation and is identified by the 
increased production of ROS, decreased antioxidant molecules and enzymes (beta-carotene, vitamin C 
and vitamin E) and enhanced lipid peroxidation in the intestine[5].

In the inflammatory processes, intestinal cells of inflamed tissue in response to chemical agents or 
pathogens, produce high levels of ROS and superoxide anions[6]. Exposure to antigens for a short 
period of time does not cause any harm because of the adequate first-line defense system producing 
antioxidative enzymes for protection[6]. However, in chronic intestinal inflammation, there is persistent 
high ROS production. This process damages the intestinal epithelial barrier, enhances inflammation and 
injures the intestinal epithelium[6]. Lipid peroxidation is another process that involves a source of 
secondary free radicals, which directly interact with other biomolecules. The lipid peroxidation depends 
on the number of double bonds; therefore, polyunsaturated fatty acids are the most susceptible to 
oxidation. Lipid peroxidation occurs on polyunsaturated fatty acids located on the cell membrane[7]. 
Superoxide anion radicals, H2O2 and hydroxyl radicals secreted by neutrophils and other phagocytes, 
causes cell membrane to be impaired, eventually leading to cell death by lipid peroxidation[6]. 
Enhanced free radicals in the gut can exert peroxidation of membrane phospholipids of intestinal 
epithelial cells, resulting in the release of toxic products like malondialdehyde (MDA) that can cause 
damage and cellular stress. MDA is the key breakdown product of lipid peroxides, which is present in 
the plasma of IBD patients[6]. Increased level of MDA in plasma of Crohn’s disease (CD) patients is 
considered to be anoxidative stress marker[6]. Decreased superoxide dismutase (SOD)-2 expression is 
one of the identification markers in colitis-induced mice.

The current preferred therapies for IBD include 5-aminosalicylate, steroids, corticosteroids and 
azathioprine[8]. The limitations of IBD therapy include the clinical adverse effects of antibiotics, 
corticosteroids and immunomodulators, which revolves around nausea, vomiting, stomach pain, 
diarrhea, headaches, respiratory infections, acne, weight gain, insomnia, dizziness, muscle or joint 
cramps and pathological side effects, causing some pathogenic bacteria to become resistant in IBD. 
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Surgery is generally costly and unaffordable to many people in remote areas. Also it can cause harm to 
many organs. Thus, the literature reviews have confirmed the apparent need for improvised treatment 
using small molecules, like probiotics[9]. Nowadays, 60%–80% of the world population relies on 
alternative medication to cure IBD. Probiotics are preferably of human origin: they have to be safe for 
the host, genetically stable and capable of surviving throughout the gastrointestinal tract. Probiotics are 
generally applicable for viable cells, whereas, postbiotics are soluble factors (either secreted by live 
bacteria or released after bacterial cell lysis), which are beneficial to human hosts. Probiotics have 
recently been emerged as one of the powerful novel therapeutic small molecules against IBD. They have 
been shown to have a positive effect on oxidative stress by promoting the potency of the antioxidative 
defense system, and in turn may lower the risk of several inflammatory disorders such as IBD. Various 
known probiotics play an important role in antioxidative activity. Probiotics could be a possible 
intervention for reducing ROS and lipid peroxidation and thereby increasing SOD activity. Our goal 
was to review on the in vivo and in vitro antioxidative activities of probiotics. Antioxidative activities of 
probiotics like Streptococcus, Bifidobacterium and Lactobacilli against oxidative stress in IBD are the main 
focus of the review.

MECHANISM OF OXIDATIVE REACTION INSIDE A CELL
Oxidative stress occurs due to an imbalance between free radical production and antioxidant defense, 
resulting in hydroxylation of DNA, denaturation of proteins, peroxidation of lipid, and apoptosis, 
ultimately compromising cell viability[10]. An excess of oxidative stress can lead to the oxidation of 
lipids and proteins, which is associated with changes in their structure and function. H2O2 is formed by 
dismutation of superoxides or direct reduction of oxygen. H2O2 can penetrate most of the cell 
membranes and react with iron in the cell to form hydroxyl radicals. Therefore, hydrogen peroxides are 
more cytotoxic than superoxide anion radicals. The oxidative modification of lipids, proteins, nucleic 
acids and carbohydrates is induced and mediated by both free radicals and nonradical activities of 
reactive species[7,11]. Superoxides are unreactive molecules but undergo dismutation or enzymatic 
catalysis to form H2O2[7,11]. Hydroxyl radicals are thought to initiate ROS and remove hydrogen atoms. 
This form of radical is extremely reactive and attack most cellular components[7,11] (Figure 1).

MECHANISM OF ANTIOXIDANT MOLECULES
To neutralize the damaging effect of oxidative stress, we need supplements that possess some antiox-
idative activities. Antioxidants are proteins or enzymes in nature. Antioxidants inhibit cellular damage 
mainly through their radical scavenging properties[12]. The principle micronutrients that can scavenge 
free radicals are vitamin E, Vitamin C and beta-carotene. Humans cannot produce these antioxidant 
micronutrients. So, they must be supplied through the diet[7]. SOD catalyzes the breakdown of 
superoxide anions into oxygen and H2O2 using Zn/Cu, Fe/Mn and Ni as cofactors[10,13]. Only a few 
species of Lactobacillus, Lactobacilluscasei, Lactobacillusparaplantarum, Lactobacillusbucneri and Lactobacil-
lussakei exhibit SOD activity. Catalases are the common enzymes found in all living organisms, which 
are frequently used by cells to catalyze the decomposition of H2O2to water and less reactive gaseous 
oxygen[10].

The nicotinamide adenine dinucleotide phosphate (NADP) oxidase/NADP peroxidase enzyme 
system prevents oxygen accumulation in bacterial cells by formation of H2O2 followed by water. This 
maintains an intracellular redox balance[10,14]. Antioxidants work by scavenging free radicals, 
preventing production of free radicals and improving levels of endogenous antioxidants. Scavenging 
antioxidants remove active species rapidly, before they react with biologically essential molecules in the 
body. This antioxidants function by scavenging active free radicals before they attack biologically 
essential molecules by donating hydrogen atoms to give stable compounds.

PROBIOTICS AS ANTIOXIDANT SMALL MOLECULES
When the antioxidant capacity of damaged mucosa is compromised, various natural substances can act 
as antioxidant molecules to inhibit ROS generation, cell damages and improve the activity of antiox-
idative enzymes in cells. A food can be considered as functional, when it is demonstrated to provide 
nutritional effects for health and well-being and reduction of the risk of disease. Ingredients that make 
foods functional are: dietary fibers, vitamins, minerals, antioxidants and essential fatty acids. One of the 
novel approaches as therapy against oxidative stress are the development of probiotics[16,17]. Probiotics 
are the functional foods that possess antioxidant properties[7,15]. Several studies have highlighted that 
the ability of probiotics are to enhance antioxidant properties. For probiotics growth, milk can be used 
as a substrate for starter microorganisms. Naturally, milk has its own antioxidant activities due to the 
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Figure 1 Illustration of the role of oxidative stress and inflammation in the pathophysiology of inflammatory bowel diseases. Inflammation 
enhances the oxidative stress by stimulating inducible nitric oxide synthase and myeloperoxidase from inflammatory cells. Simultaneously, oxidative stress involves in 
the secretion of the inflammatory cytokines, like nuclear factor-B and other cytokines developing IBDs. IBD: Inflammatory bowel disease; iNOS: Inducible nitric oxide 
synthase; MPO: Myeloperoxidase.

presence of bioactive compounds of whey proteins, caseins, lactoferrin, urate, ascorbate, alpha-
tocopherol, beta-carotene as well as enzymes like SOD, catalase and glutathione peroxidase. Fermented 
milk with probiotic microorganisms has further improved antioxidant potential[18]. Furthermore, the 
fermentation of soyabean extract using probiotic cultures of lactic acid bacteria possesses superoxide 
radical scavenging and reducing activities. Soybeans contain SOD, which possesses the superoxide 
anion scavenging effect. Soymilk obtained from soybean is also expected to possess SOD. The fermented 
soymilk has an increased superoxide-anion-scavenging effect due to the production of secretory 
byproducts in the presence of lactic acid bacteria[19].

MODES OF ANTIOXIDATIVE ACTIONS OF PROBIOTICS
Probiotics can directly act to neutralize oxidants by the production of antioxidant enzymes. The 
antioxidant mechanism of probiotics could be assigned to ROS scavenging, chelation of metal ions, 
enzyme inhibition and their reducing ability. Probiotics have an antioxidant effect by scavenging of 
oxidants or by prevention of generation of free radicals in the intestine. Probiotics can upregulate the 
intracellular activity of SOD, catalase and glutathione peroxidase to protect the cells from intracellular 
damage. Pro-oxidative metal ions are capable of initiating decomposition of H2O2 into radicals and 
triggering lipid peroxidation. Certain chelators are normally detected in probiotics, stating the chelating 
capacity of probiotics[8,18]. According to reviews, Lactobacillus rhamnosus and Lactobacillus paracasei have 
significantly inhibited the production of hydrogen peroxide, whereas, L. casei also possess high 
antioxidant activity via chelating Fe2+[10,21]. Different in vitro and in vivo studies have reported that 
probiotic bacteria can protect against oxidative stress through regulation of the Nrf2 (Nuclear factor 
erythroid 2-related factor 2)–Keap1–antioxidant response element (ARE) pathway, protein kinase C 
(PKC) pathway and nuclear factor (NF)-B pathway[7,10,22].

The Nrf2–Keap1–ARE system transmits signal into the nucleus. Under normal conditions, Keap1 is 
associated with Nrf2. However, in ROS infiltration in cells, the bond between Keap1 and Nrf2 is cleaved 
and Nrf2 eventually enters the nucleus and binds to ARE and enhances the production of the antiox-
idative enzymesproduction[7,10,23]. ROS activates NF-B, entailing expression of inflammatory 
cytokines. NF-B responds to oxidative stress. Thus, the probiotic formulations (Lactobacillussp., Bifidobac-
teriumsp. and Streptococcussp.) are able to inhibit NF-B activation in colonicepithelial cells[10,24] (Figures 
2 and 3). PKCs are the family of protein kinases that are the target for redox modifications. Adminis-
tration of L. plantarumimproved the oxidative stress in a rat model of obstructive jaundice by 
strengthening the expression and activity of the PKCpathway[10,24,25].

IN VITRO AND IN VIVO ANTIOXIDATIVE ACTIVITY
Not all the probiotics have antioxidant activity due to high strain heterogeneity. Bacillus proteolyticus 
shows the highest 1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical scavenging activity[26]. 
Zeng et al[26] reported that Bacillus amyloliquefaciens could significantly increase the antioxidative 
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Figure 2 Cellular antioxidative regulations of probiotics. Antioxidative effect of probiotic on cellular receptor and regulation of cellular cascade is 
portrayed. SOD: Superoxide dismutase; CAT: Catalase; ARE: Antioxidant response element.

Figure 3 Modulation of antioxidation by probiotics. SOD: Superoxide dismutase; CAT: Catalase; ROS: Reactive oxygen species; PKC: Protein kinase C.

capacity of epithelial cells to reduce induced oxidative stress in pigs. Bacillus subtilis and L.casei can 
scavenge free radicals (in vitro) and reduce oxidative damage by improving lipid metabolism followed 
by reduction in lipid peroxidation. Streptococcus thermophilus (YIT 2001) showed the highest in vitro
antioxidative activity against lipid peroxidation[27]. Lactobacillus and S.thermophilus showed the highest 
TAALA (total antioxidant activity against linoleic acid oxidation) and TAAAA (total antioxidant activity 
against ascorbate auto-oxidation). The cell-free extracts and intact cells of Lactobacillus acidophilus 
(ATCC4356) demonstrated an increased inhibition of linoleic acid peroxidation from 38% to 48%. This 
indicates astrongantioxidativeactivity[14]. Bifidobacterium longum was also investigated for inhibition of 
lipid peroxidation activity.

In-vitro cell based antioxidative activity
Stress induced HT29 cells, i.e., H2O2-stimulated HT29 cells showed a reduced amount of intracellular 
SOD, catalase and increased ROS activity. The cultured cells were treated with probiotics for 24 h. The 
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supernatant of the cells was collected to study the presence of the antioxidative enzyme activity of SOD 
and catalase[28]. The Bifidobacterium bifidum treated cell line showed increased catalase activity. SOD 
and catalase production by B. bifidum can decrease oxidative stress. Moreover, in vitro studies have 
showed that strains like L. acidophilus and Lactobacillus delbrueckii displayed highest superoxide anion 
radical dismutation. L. plantarum showed increased ability to degrade chemically pure H2O2 and 
demonstrated the highest catalase activity[29]. SOD activity was found in Lactococcus, S. thermophilus 
and Bifidobacterium, with significantly higher activity in Lactococcus than in S. thermophilus[14]. SOD 
activity of cell-free extracts of the above-mentioned probiotics was studied by the amount of inhibition 
of reduction of nitrobluetetrazolium[14]. Greatest SOD activity was demonstrated by Lactococcus strains. 
Glutathione was analyzed in deproteinized bacterial cell-free extract using a commercial kit that showed 
that the Lactococcus group had the highest inhibitory effect[14]. However, S.thermophilus, Lactococcus 
lactis and Bifidobacterium animalis also contained relevant amounts of intracellular reduced and oxidized 
forms of glutathione. Total glutathione measurement was carried out in presence of glutathione 
reductase and NADP[14].

In vivo probiotic antioxidative activity
In an animal model of IBD, it was observed that L. acidophilus with dismutase-like activity was more 
effective than L. plantarum in suppressing the inflammatory process[29]. In vivo studies have also 
revealed that L.plantarum 0B and L. acidophilus has the highest catalase activity and highest dismutase-
like activity respectively. Male Wister rats were administered with probiotic formulation (mixture of 
B.animalis, L. acidophilus DSMZ 23033 and Lactobacillus brevis DSMZ 23034) after acclimatization of rats in 
cages. After 18 d of probiotics supplementation, blood plasma was collected to study the antioxidant 
status[14]. Reactive oxygen metabolite (ROM) concentration of plasma was evaluated as studied by d-
ROM test. Plasma total antioxidant activity (TAA) was spectrometric ally measured in the presence of 2-
binamine-di-3-ethylbenzothiazolin-6-sulfonic acid (ABTS) radical by evaluating the decoloration and 
reduction of radical cations of ABTS[14]. Plasma ROM concentration was inversely related to the dose of 
administered probiotics[14]. TAA was significantly related to the dose of administered probiotics. In 
another study, oral administration of Bifidobacterium breve yakult appeared to prevent transepidermal 
water loss and significantly suppress oxidation of lipids, proteins and H2O2 levels[31].

The antioxidant activity of buffalo milk fermented with B.bifidum and L.acidophilus was evaluated. 
Control groups included mice fed with standard dahi without probiotic enrichment and another with 
fermented milk. Catalase and SOD activity in blood was analyzed[27,31]. SOD activity in red blood cells 
increased exclusively after probiotic dahi administration. Dahi supplemented by L.casei NCDC19 and 
L.acidophilus NCDC14 inhibited lipid peroxidation and maintained the activity of glutathione 
peroxidase, SOD and catalaseinstreptozotocin-induced oxidative stress inrats[32,33]. Lactobacillus 
fermentum (Lf1) was studied to assess its antioxidative properties, and confirmed the enhanced 
expression of NRF2 and MDA inhibition in HT29 cells under stress[34]. In another study it was shown 
that S.thermophilus YIT2001 decreased the amount of lipid peroxide in colonic mucosa and improved the 
symptoms of DSS-induced colitis in mice[27].

QUANTIFIABLE PARAMETERS THAT INDICATE ANTIOXIDATIVE ACTIVITY
Scavenging activity of ROS is one of the antioxidative properties of probiotics. The Reactive Oxygen 
Species are used to include both oxygen centered radicals and nonradical derivatives of oxygen. There is 
the scavenging activity of probiotics occurs in conditions where there is abundance of ROS, hydroxyl 
radicals and H2O2.

DPPH RADICAL SCAVENGING ACTIVITY
To evaluate the antioxidative activity of probiotics, DPPH solution was mixed with methanol and 
probiotic sample and incubated at 37 degree Celsius for 30 min in the dark. The DPPH radical 
scavenging activitywascalculated by measuring the absorbance of the sample and blank at 517 nm.The 
radical scavenging activity was calculated as follows: [1-(A517 (sample)/A517 (blank)]× 100%. According to 
Das and Goyal, DPPH radical scavenging activity was higher in L. plantarum and L. acidophilus. 
Scavenging activity of Bacillus ranged from 46% to 190%. B. proteolyticus showed the highest DPPH 
radical scavenging activity, whereas, B. amyloliquefaciens had the weakest DPPH radical scavenging 
activity[36]. Probiotic strains such as S. thermophilus and L. delbrueckii can scavenge ROS, hydroxyl 
radicals and H2O2[37]. Cell-free supernatants of Lactobacillus exhibit strong DPPH radical scavenging 
activity[37]. Moreover, the crude peptides extracted from L. acidophilus, L. casei and L. paracaseihave 
radical scavenging activities for DPPH in vitro.
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LIPID PEROXIDATION INHIBITION 
To study the effectiveness of antioxidants, inhibition of lipid peroxidation is commonly studied. 
Bacterial strains (L. acidophilus and B. longum) and the intracellular cell-free extract indicated an 
inhibitory rate on linoleic acid peroxidation that ranged from 33% to 46%[38]. L. acidophilus and B. 
longum demonstrated a high antioxidative activity for inhibiting lipid peroxidation. Inhibitory rate of 
different strains of L. acidophilus ranged from 34.9% to 46.3%[37]. Cell-free supernatants of Lactobacillus 
show higher inhibitory effect than MRS broth cell culture. Intact cells or intracellular cell-free extracts of 
L. acidophilus and B. longum were investigated for their antioxidative effects, which demonstrated that 
inhibition of linoleic acid peroxidation ranged from 38% to 48%[34,39]. Levilactobacillus brevis exhibited 
greater radical scavenging activity and lipid peroxidation inhibitory activity than Pediococcus pentasaceus
[35]. Many studies related to lipid peroxidation have chosen linoleic acid as the source of unsaturated 
fatty acids. Unsaturated fatty acids such as linoleic acid, methyl linoleate and arachidonic acid are 
typically used. The protocol forlipid peroxidation assay using linoleic acid has been standardized to 
study the inhibition of linoleic acid peroxidation. Egg homogenate is generally not used for lipid 
peroxidation inhibition studies in the presence of probiotics. Thus, lipid peroxidation assay using egg 
homogenate can be used to investigate the inhibition of lipid peroxidation by probiotics.

REDUCING ACTIVITY
Reducing power is based on the kinetics of reduction of Fe3+ to Fe2+ to prevent the oxidation reaction
[37]. Ferric-reducing antioxidant power allows estimation of the ability to reduce pro-oxidant metal 
ions. The fermented black soybean broths of B. subtilis have shown a potent reducing power as 
compared to positive controls i.e., -tocopherol and Butylated hydroxytoluene[39]. Cell-free supernatants 
of Lactobacillus strains showed significantly higher reducing power than MRS broth containing Lactoba-
cillus[38]. Ferric ion reducing antioxidant power assay was performed for the fermented milk with 
Lactobacillussp., S.thermophilus and Bifidobacteriumsp. in the presence of green tea supplementation[15]. 
Fermented milk with 15% green tea infusion (GTI) shows the highest anti-oxidative power as compared 
to 10% or 5% GTI[15].

SUPEROXIDE ANION SCAVENGING ACTIVITY
Superoxides are radicals with free electrons located on oxygen[16]. These radicals initiate lipid oxidation 
as the superoxides and H2O2 are precursors of singlet oxygen and hydroxyl radicals[17]. Assays can 
measure the ability to scavenge superoxide anion radicals. S. thermophilus containing fermented milk 
accounts for the highest superoxide anion scavenging effect as compared to L. acidophilus. Archibald and 
Fridovich showed that S. thermophilus was able to produce SOD, while L.acidophilus was not. Fermented 
soy milk with L. acidophilus+Bifidobacterium infantis, L. acidophilus+B. longum, S. thermophilus+B. infantis, 
or S. thermophilus+B. longum shows higher superoxide anion scavenging activity than reducing activity
[17]. The cell-free supernatant of L.plantarum and L.acidophilus showed a potent inhibitory superoxide 
radical scavenging activity with increasing concentration compared to ascorbic acid[40]. Xing et al[36] 
had studied an enhanced superoxide radical scavenging activity in co-fermentation conditions in milk 
(with B.infantis, L. plantarum, B. animalis and S. thermophilus). S. thermophilus exhibited only 58.34% 
activity, whereas co-fermentation increased the superoxide scavenging activity to 65%.

SCAVENGING OF HYDROGEN PEROXIDE ACTIVITY
H2O2 can be generated in biological system in oxidative stress conditions. Being a non-radical oxygen 
containing reactive agent, it can form hydroxyl radicals (the most highly oxygen radical known). 
Soymilk fermented with Bifidobacterium alone accumulated the largest amount of H2O2, whereas, 
fermented soymilk with Bifidobacterium and lactic acid bacteria simultaneously reduced H2O2[17].

HYDROXYL RADICAL SCAVENGING ACTIVITY
Among reactive oxygen species, hydroxyl radicals are the most reactive species. It can react with 
polyunsaturated fatty acid moieties of cell membrane phospholipids and causes damage to the cells. 
Venkatesan et al stated that different concentrations of probiotic species of Bifidobacterium and Lactoba-
cillus showed strongest radical scavenging activities. The hydroxyl radical scavenging activity of cell-
free supernatant of L.plantarum and L. acidophilus showed potent hydroxyl radical scavenging activity 
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when compared to positive control ascorbic acid. These two specific strains have shown a better DPPH 
and hydroxyl radical scavenging activity. The radical scavenging activity was calculated as follows: 
[A(sample)-A(control)/A(blank)-A(Control)]× 100%.Cell-free supernatants of various Lactobacillus 
strains (L. rhamnosus, L. casei, L. plantarum, L. reuteri, L. acidophilus, Lactobacillus fermenti and Lactobacillus 
parciminis) were studied through invitro cell-free hydroxyl radical assay. It was concluded that all the 
Lactobacillus strains showed a better scavenging than hydroxyl radical scavenging activities.

ASSESSING THE POTENCY OF PROBIOTICS AS ANTIOXIDANTS
Generally, antioxidants are molecules that interact with the free radicals generated in the cells and 
terminate the chain reaction before damage is done to the vital molecules. In recent years, researchers 
have witnessed a beneficial effect of probiotics, especially in regulating the oxidative stress in IBD[32]. 
Lactobacillus, Streptococcus and Bifidobacterium have been shown to have antioxidative activity that can 
easily scavenge oxidative stress inducing molecules inside a cell.

CONCLUSION
From this review, it can be concluded that, in IBD, high levels of oxidative stress induce intestinal tissue 
damage. Oxidative stress is defined as an imbalance between pro-oxidants and antioxidants, and is 
tightly associated with the exacerbation of IBD. This disturbs the cellular homeostasis by causing cell 
injury and increased permeability of the mucosal barrier. Probiotics are equipped with antioxidative 
defense mechanisms, not only to protect their own survival but also to confer protection to the host cell 
against oxidative stress during colitis. Probiotics are used to combat IBD by reducing ROS generation 
and lipid peroxidation and by increasing production of antioxidant enzymes (SOD, catalases and 
peroxidases)[40]. The most common strains studied, Bifidobacterium and Lactobacillus are reported to 
secrete SOD and antioxidant molecules that can alleviate oxidative stress in inflamed intestine[41]. 
Accumulation of probiotic strains in inflamed colon results in some protective effects like, metal-
chelating activities, antioxidant enzymes (SOD), eventually showing free-radical scavenging activities 
by restoring the gut microbiota during colitis. Different in vitro studies have suggested that combination 
of probiotics in fermented milk improve its antioxidative activity[40]. An enhanced superoxide radical 
scavenging activity of soy milk containing Bifidobacterium was observed. Multiple in vivo and in vitro 
studies have demonstrated that Lactobacillus, Streptococcus and Bifidobacterium possess outstanding 
antioxidant activities like DPPH, hydroxyl, superoxide radical scavenging and reducing activities. The 
important mechanism of antioxidant activities used by probiotics is to reduce oxidative stress, which 
includes, redox signaling of Nrf2 leading to increase in antioxidant enzyme levels and scavenging of 
Reactive Oxygen Species. Moreover, it can also be concluded that multiple probiotic strains in 
combination is much more effective than single probiotic strain with respect to antioxidative studies. 
Antioxidant probiotic strains can be selected and investigated as promising candidate against IBD. 
Thus, to develop a novel probiotic combination product with the potential for preventing the oxidative 
stress, there remains a need to search for particular probiotic strains that can be effective in mitigation of 
oxidative stress in IBD. The molecular mechanism of the reviewed probiotic strains (Streptococcus, 
Lactobacillus and Bifidobacterium) by which they regulate the oxidative stress based cellular cascade in 
IBD conditions needs to be investigated in detail and validate these antioxidative properties in specific 
in vivo models. Likewise, our novel combination probiotics (S. thermophilus, L. acidophilus and B. bifidum) 
are under investigation with respect to their antioxidative properties.
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