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Abstract
Autism is one of the pervasive neurodevelopmental disorders usually associated 
with many medical comorbidities. Gastrointestinal (GI) disorders are pervasive in 
children, with a 46%-84% prevalence rate. Children with Autism have an 
increased frequency of diarrhea, nausea and/or vomiting, gastroesophageal 
reflux and/or disease, abdominal pain, chronic flatulence due to various factors as 
food allergies, gastrointestinal dysmotility, irritable bowel syndrome (IBS), and 
inflammatory bowel diseases (IBD). These GI disorders have a significant negative 
impact on both the child and his/her family. Artificial intelligence (AI) could help 
diagnose and manage Autism by improving children's communication, social, 
and emotional skills for a long time. AI is an effective method to enhance early 
detection of GI disorders, including GI bleeding, gastroesophageal reflux disease, 
Coeliac disease, food allergies, IBS, IBD, and rectal polyps. AI can also help 
personalize the diet for children with Autism by microbiome modification. It can 
help to provide modified gluten without initiating an immune response. 
However, AI has many obstacles in treating digestive diseases, especially in 
children with Autism. We need to do more studies and adopt specific algorithms 
for children with Autism. In this article, we will highlight the role of AI in helping 
children with gastrointestinal disorders, with particular emphasis on children 
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with Autism.
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Core Tip: Autism is a prevalent childhood neurodevelopmental condition. Gastrointestinal (GI) disorders 
are pervasive in children, with a 46%-84% prevalence rate. The presence of GI can negatively impair 
children's management and education. Artificial intelligence (AI) could help diagnose and manage autism 
by improving children's communication, social, and emotional skills for a long time. AI is an effective 
method to enhance early detection and management of GI disorders, including GI bleeding, gastroeso-
phageal reflux disease, Coeliac disease, food allergies, irritable bowel syndrome, inflammatory bowel 
diseases, and rectal polyps. However, we still have some obstacles to increasing the benefit of AI in 
medicine, particularly in children with autism.

Citation: Al-Biltagi M, Saeed NK, Qaraghuli S. Gastrointestinal disorders in children with autism: Could artificial 
intelligence help? Artif Intell Gastroenterol 2022; 3(1): 1-12
URL: https://www.wjgnet.com/2644-3236/full/v3/i1/1.htm
DOI: https://dx.doi.org/10.35712/aig.v3.i1.1

INTRODUCTION
Since its description for the first time by Leo Kanner in 1943, the rate of autism has been on the rise and 
steadily increasing[1]. Autism is a neurodevelopmental condition. Autism, Asperger's disorder, 
pervasive developmental disorder-not otherwise specified, form the autism spectrum disorders (ASD). 
At the same time, autism spectrum disorders, together with Rett's disorder, childhood disintegrative 
disorder, and the overactive disorder accompanied with mental retardation and stereotyped 
movements, are a part of the pervasive developmental disorders[2]. The prevalence of autism varies 
from one country to another depending on the racial differences and the diagnostic facilities available, 
with an average of 1% worldwide. The autism incidence in the United States of America may reach up 
to 1/110, increasing to 1/64 in the United Kingdom[3]. In other parts of the world, the prevalence of 
autism may be underestimated. For example, in Bahrain, the prevalence of autism is 1/1000, with 
possible underestimation because of missed diagnosis and no official recording in some cases. Autism is 
also 4-5 times more common in boys than girls. Autism shows a wide range of prevalence according to 
the race, being more common in non-Hispanic white children, less in Hispanic and African 
American/black children, with wide variability in Asian/Pacific Residents[4].

The genesis of autism is still unclear. Nevertheless, we can assert that autism development is due to 
the complex interaction of several genetic, biological, advanced parental age, environmental, immuno-
logical, and psychosocial factors[5]. Recently, genetic studies discovered a wide variety of genetic 
mutations in most patients. These mutations do not necessarily follow the same pattern with a wide 
range of variability. However, these mutations can ultimately induce brain changes and inflammation
[6]. This neuroinflammation can also occur in utero through defective placenta augmented by the 
immaturity of the blood-brain barrier of the fetus and the newly delivered baby. This neuroinflam-
mation can be triggered either as a part of the maternal immune response to infection during pregnancy, 
premature delivery, as a part of postnatal encephalitis, or exposure to a toxic environment[1]. We still 
need to have more knowledge to understand the different causes and their effects on patients with 
autism.

The clinical presentation of autism is heterogeneous, formed mainly from a constellation of social, 
cognitive, motor, and perceptual symptoms, which usually appear before three years of age. Children 
with autism have a diverse range of behaviors, communications, interactions, and learning ways from 
most other children. The abnormal social communication and interaction skills are manifested by poor 
eye contact, a stern facial expression such as happiness or sadness, lack of interest with others, and lack 
of interest in playing or interacting with others. They also have restricted interests manifested by 
playing with the same toys the same way every time, getting upset with changing routine or minor 
changes, and focusing on certain parts of the toys or the body with obsessive interest. Additionally, they 
have repetitive or stereotyped behaviors such as constantly repeating words or phrases (i.e., echolalia), 
flapping hands, body rocking, or spinning self in circles). They also suffer from delayed language, 
movement, and cognitive or learning skills[7,8].

https://www.wjgnet.com/2644-3236/full/v3/i1/1.htm
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MEDICAL COMORBIDITIES
Besides the classic manifestations of autism, the affected patients may suffer the presence of many other 
medical comorbidities that are more common in people with ASD than in the general population. The 
presence of these comorbidities is one of the reasons for the significant increase of early mortality in 
patients with ASD, with death rates 3-10 times higher than the general population. These comorbidities 
may increase the risk of death in patients with autism and could affect their quality of life, impair 
proper diagnosis, interfere with their compromised learning capacity, and impair their ability to retain 
the acquired learning skills. Early recognition of these comorbidities helps improve the quality of life for 
both children and their families[9]. These comorbidities may include but are not limited to genetic, 
inborn errors of metabolism, congenital anomalies of the nervous system, neurologic disorders such as 
epilepsy and neuroinflammation, gastrointestinal (GI) disorders, and allergic disorders[10]. However, 
diagnosis of these comorbidities is not easily accessible due to communication impairments, occasional 
ambiguity of the symptoms, changes of the symptoms over time, and mimicking some of the classic 
symptoms of autism. A lack of available diagnostic instruments to screen these disorders further 
augments these difficulties[11].

GASTROINTESTINAL DISORDERS IN CHILDREN WITH AUTISM
Children with autism have a high prevalence of GI disorders occurring in 46%-84% of them. The 
interaction between autism and gastrointestinal disorders is shown in Figure 1. Unfortunately, many of 
these children cannot effectively communicate their symptoms or discomfort to their doctors. Chronic 
constipation occurs in about 50%. They have a restricted diet with low fibers, abnormal bowel training, 
increased intestinal transit time, and a high incidence of hypothyroidism, increasing the frequency of 
constipation. Diarrhea is three times more common in children with autism than the control due to 
increased prevalence of food sensitivities, gut dysbiosis, immune dysfunction, and the increased 
infection rate due to increased incidence of pica and abnormal child behavior[12,13]. They have also 
increased frequency of nausea and/or vomiting, gastroesophageal reflux and/or disease, and chronic 
flatulence due to various factors such as food allergies gastrointestinal dysmotility[14]. Abdominal pain 
is also frequent in children with autism which results from simple, functional disorders such as irritable 
bowel syndrome, or organic causes such as food allergies, food intolerance, parasitic infestations due to 
pica, colitis, ulcers, or inflammatory bowel diseases[15].

Food allergies occur in about one-quarter of children with autism compared to 5%-8% in the general 
Pediatric population[9,16]. The link between autism and Celiac diseases (CD) is debatable. However, 
some high-quality studies proved this link even in the absence of GI symptoms[17]. Given that children 
with autism are more prone to suffer from atopy & food allergies, possible non-coeliac gluten sensitivity 
(NCGS) or wheat sensitivity in those children needs to be considered, especially when irritable bowel 
syndrome symptoms are present[18]. Physicians should consider the possibility of NCGS in some 
patients with ASD, especially those presenting with atopic diseases, migraines, and mood and anxiety 
disorders. Therefore, investigating CD and non-coeliac gluten sensitivity even in the absence of typical 
GI symptoms could yield good results for children with autism[19].

Children with ASD are more liable to have various feeding disorders; behavioral, sensory-based, or 
medically related feeding problems. The behavioral feeding disorders may include aversive eating 
behaviors (such as food refusal, frequent choking or gagging, the expulsion of the food without a 
medical reason), and frequent Pica habits. The sensory-based feeding problems include restrictive or 
selective eating and textural refusal of specific foods, usually involving larger textures. The medically-
related feeding disorder may affect oesophageal and swallowing disorders and motor delays[20]. 
Almost two-thirds of children with autism eat less than 20 types of foods and accept fewer foods from 
the primary food groups than typically developing children[21]. This high prevalence of feeding 
problems in ASD may be related to their propensity to concentrate on details, their fear of novelty, their 
way of perseveration, and impulsivity. The associated sensory impairments and the deficits in social 
compliance of children with autism augment their feeding disorders. These feeding behaviors could also 
be aggravated by specific biological food intolerance and parental anxiety, reinforcing negative feeding 
patterns[22]. These feeding disorders have tremendous effects on both children and their families. They 
may increase the risk of child abuse and the occurrence of specific nutritional deficiencies, but Weight 
and height are usually not affected. They also increase parental anxiety and stress, ending with child 
abuse[23].

IMPORTANCE AND DIFFICULTIES IN DIAGNOSING GI DISORDERS IN CHILDREN WITH 
AUTISM
It is essential to check for the presence of gastrointestinal disorders in children with autism, as they can 
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Figure 1  The interaction between autism and gastrointestinal disorders.

cause deterioration of autistic behaviors. For example, Abdominal pain related to especially reflux 
esophagitis and disaccharide malabsorption can cause irritation and discomfort to children with autism, 
which may contribute to the aggravation of their behavioral problems. It also could interfere with their 
learning abilities[24]. Meanwhile, gastrointestinal pain can cause behaviors that might be misdiagnosed 
as a behavior problem instead of a medical issue. For example, posturing, self-Injury, and/or outbursts 
without apparent cause could result from gastroesophageal reflux or esophagitis. The symptoms of GI 
dysfunction could induce sleep disturbances, which further aggravate the autistic manifestations[25].

Primary lactase deficiency that does not cause intestinal inflammation or injury is common in 
children with autism and may contribute to abdominal discomfort, pain, and observed aberrant 
behavior. Clinicians should screen for constipation and diarrhea or underwear soiling in children with 
autism who have prominent rigid–compulsive symptoms. If the GI disorder is recognized and medical 
treatment is effective, the behavioral problem may improve. When abdominal pain or discomfort is not 
alleviated, failure of psychotropic medications is more likely to occur. At the same time, these 
medications may even aggravate the problem if they have adverse gastrointestinal effects[9,26].

There is much evidence that modulation of the gut microbiota may be a manageable strategy for 
developing innovative therapies for complex CNS disorders, including autism[27]. The strong positive 
correlation of the gastrointestinal symptoms with the severity of autism indicates that children more 
severely affected by autism are likely to have severe gastrointestinal symptoms. Healthcare profes-
sionals should consider the possibility of gastrointestinal dysfunction in children with ASD, especially 
in those presenting with strange posturing or movements, sleep disorders, food intolerances, and 
aggressive or self-injurious behaviors[28]. The symptoms of GI dysfunction are associated with sleep 
disorders and food intolerance. Thus, it is essential to consider such association when evaluating and 
treating these comorbidities.

WHY IS IT DIFFICULT TO DIAGNOSE GI DISORDERS IN CHILDREN WITH AUTISM?
It is not always easy to detect GI manifestations in ASD. Children with autism have impaired 
communication skills, and many of them are nonverbal and cannot adequately express their pain, 
discomfort, or complaint through speech. Even those who can communicate verbally cannot adequately 
describe their symptoms. In addition, the symptoms of GI disorders may be missed as one of the classic 
symptoms and behavior commonly observed in children with autism. For example, toe-walking may be 
one of the typical stereotyped motor manifestations of autism to reduce feet overstimulation. It could 
also occur due to abdominal pain or loaded rectum or bladder. At the same time, GI disorders may 
present in atypical ways[29]. For example, suppose the child has abdominal pain or discomfort. In that 
case, he/she may touch his/her abdomen in a stereotyped way so that it can be easily missed with other 
stereotyped behaviors.

Moreover, GI disorders may present with non-GI manifestations. For example, sleep problems could 
be the manifestations of chronic GI disorders. It can be missed as being attributed to autism. The rate of 
sheep disorders increases from 30% of children with autism without GI disorders to reach 50% in the 
presence of GI disorders[30]. Children with autism may have hypersensitivity to various stimuli. On the 
other hand, they could occasionally have pain hyposensitivity with a high-pain threshold, affecting their 
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symptoms[31]. Unfortunately, no clinical practice guidelines exist to diagnose the presence of GI 
disorders in patients with ASD.

ROLE OF ARTIFICIAL INTELLIGENCE IN CHILDREN WITH AUTISM
Artificial intelligence (AI) enables a computer or computer-operated robot to perform tasks that humans 
usually do because they require human intelligence and judgment. The extensive application of artificial 
intelligence in various areas of life, including health, has begun to bear fruit. Whether we acknowledge 
it or not, artificial intelligence is inevitable and has a significant role in almost every aspect of our lives. 
The most important feature of AI is its ability to learn from its interaction, with the interaction-learning-
interaction cycle. So, through pre-programmed flexible adaptation, AI can accurately interpret supplied 
external data, use these data to learn, and reuse the achieved learning to reach specific goals and duties. 
Machine learning is a part of AI and computer science that focuses on using data and algorithms to 
imitate how humans learn and gradually improve accuracy (Figure 2).

Deep learning, together with supervised and unsupervised learning, is a sub-class of machine 
learning that combines certain approaches that use specific algorithms to process and interpret data 
quicker, simpler, and more precisely[32]. In supervised learning, AI uses a computer algorithm to 
analyze predefined data to train and learn and then accurately names the new, hidden data. In 
unsupervised learning, the computer learns from massive, unlabelled led data and recognizes 
similarities and commonalities. Personalized medicine is an example of unsupervised medicine. The 
computers analyze the medical history, the result of the neck ultrasound or other radiology procedure, 
and the laboratory results for a patient with thyroid cancer to provide new perceptions for the treatment 
and the prognosis[33]. Medical sciences have greatly benefited from artificial intelligence, whether in 
diagnosing diseases, inventing appropriate medicines and treatments, or improving communication 
between doctors and patients[34]. There is much promise that AI will help improve healthcare services 
in many ways, including patient diagnosis, patient outcome, and drug invention, and assist the 
physician assistant and provide a better and more patient-tailored experience. This hope is driven by 
some of the emerging successful AI applications in healthcare[35].

It was a dream that AI could help diagnose and manage autism by improving children's 
communication, social, and emotional skills for a long time. However, this dream starts to convert into 
reality despite not being the norm yet. Diagnosis of autism is subjective. Consequently, it becomes a real 
challenge in many situations. Parents and physicians may miss children with mild symptoms, while the 
more severe cases can simulate many other developmental disorders. Diagnosis of autism can be 
achieved using machine learning to provide a rapid, simple, and easy technique to provide for autism 
early diagnosis[36]. Machine learning can also help in improving the efficacy of behavioral health 
screening. The addition of machine learning techniques to complement the conventional methods in 
diagnosing autism helps fasten the diagnosis and reduce its cost[37]. An example of machine learning 
recognizes abnormal behavior using video monitor and artificial intelligence analysis of the body 
movement and behavior in children to detect early children with autism. Alcañiz Raya et al[38] used 
machine-learning techniques to detect stereotyped and repetitive behaviors biomarkers, characteristics 
for autism. They used a depth sensor camera to track the body movements of the examined children. 
Consecutively, they exposed the children to different visual, auditory, and olfactory stimuli. They found 
that children with ASD had more significant body movements than typically developed children, 
especially in the head, trunk, and feet and for visual, followed by visual-auditive, and lastly for visual-
auditive-olfactory stimuli.

An exciting study by Rahman et al[39] aimed to study the ability of machine learning to predict the 
risk of autism during the neonatal period. They combined the machine learning techniques with 
electronic medical records using parental sociodemographic information and medical histories and the 
prescribed medications data to create features to train various machine learning algorithms. They 
succeeded in capturing early-life features that increase the risk of ASD. They were also able to uncover 
previously unknown features linked with increased ASD risk. An additional exciting study used fetal 
ultrasound features by a computer program to predict the child's autism from the first day after birth. 
The fetal features included the baby's head and stomach size, thighs length, and the time of acquiring a 
vertex presentation in preparation for delivery. The program also used the peri-labor data such as heart 
rate and body temperature and followed the children up to 6 years. Then the program can 
independently recognize the associations between different fetal characteristics and outcomes[40]. 
Artificial intelligence can obtain data on a large scale from all over the world, then re-study it and 
extract data used to increase the accuracy of autism diagnosis. Many applications are used in diagnosing 
autism. Artificial intelligence can use the data collected by these applications and process it, so we get 
accurate results that represent helpful diagnostic tools for their application in different parts of the 
world. It is also possible to determine the criteria of autism for each race according to its culture and 
customs. One of the widely used applications to diagnose autism worldwide was created by Dr. Fadi 
Fayez and Dr. Reza Shahamiri (Nelson Marlborough Institute of Technology, New Zealand). It uses ten 
questions for the four age groups, from toddlerhood, childhood, and adolescence to adulthood. They 
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Figure 2  Machine learning and Artificial intelligence in Autism.

used 70% of the data to identify the presence of autism and 30% to ensure that AI has appropriately 
learned the autistic features[41].

AI is promising in treating children with autism, despite currently being costly. Robots can train and 
interact with the advantage of showing different facial expressions, proper social interaction, and 
response to different social cues with unlimited patience and the ability to repeat the cues in the same 
manner, unlimited times without variation. Some robots can show social expression by changing their 
eye color, raising their arms, or changing their voice tone[42]. Some children with autism have a better 
response to the robot than a human therapist. Some robots can incorporate data about individual 
children using video, audio, and measurements of vital signs such as heart rate and temperature and 
presence or absence of skin sweat to personalize their response to the child's behaviors[43]. Despite 
being promising and effective, robotic intervention needs more wide-scale research, especially cost-
effectiveness.

ROLE OF AI IN DIAGNOSIS OF GI DISORDERS
Diagnostic and therapeutic endoscopies have provided significant help in managing Pediatric 
gastrointestinal disorders for decades. Endoscopy with small bowel sampling is the gold standard to 
diagnose coeliac disease. Endoscopy also provides excellent assistance in diagnosing various GI diseases 
such as gastro-oesophageal reflux disease, eosinophilic oesophagitis, and inflammatory bowel disease. It 
is also used to stop GI bleeding, insert a gastrostomy tube, dilate a stricture, and remove a polyp. The 
recent marvelous endoscopic field achievements helped us reach previously non-reachable areas of the 
mid-small intestine using the wireless capsule video-endoscopy[44]. There was a broad jump in the 
endoscopic industry from the white light to the blue light endoscopy and recently endocytoscopy and 
endomicroscopy. These recent modalities helped visualize the mucosal structure at the cellular level 
with adequate histopathology determination. It helps gather a vast amount of data that needs many 
hours of interpretation by a highly experienced physician[45]. AI helps process these vast amounts of 
data and allows rapid and precious interpretation.

Gastroesophageal reflux disease (GERD) is a principal reason for abnormal behaviors in children with 
autism. Upper gastrointestinal endoscopy is one of the preferred modalities to diagnose and detect 
complications of GERD, including Barret esophagitis, by evaluating the oesophageal mucosa. It also can 
rule out other possible causes of the child's symptoms, such as eosinophilic esophagitis[46]. AI helps 
improve the mucosal images' quality and detect their exact anatomical location. Changes in the 
oesophageal mucosa such as Micro-erosions, Changes in intrapapillary capillary loops, and increased 
vascularity are landmarks for GERD detected by narrow-band imaging with the help of AI model using 
convolutional neural networks (CNNs)[47].

Meanwhile, Takiyama et al[48] used CNNs to precisely recognize the anatomical location of 
esophagogastroduodenoscopy images. Pace et al[49] developed an artificial neural networks (ANN) 
model that can predict the presence of GERD without the need for invasive diagnostic techniques in 
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patients with GERD symptoms. We hope that AI will help classify patients with GERD provide person-
alized therapeutic approaches[50]. However, the ability of ANN to expect GERD diagnosis depending 
on the symptoms still requires more verifications in different clinical settings. Considering that patients 
with autism may have other ways of expressing GER- or GERD-related symptoms, they may need 
specific and additional protocols to be applied with AI.

Coeliac disease is a common but underdiagnosed autoimmune disorder affecting 1/100 people 
worldwide with a relatively higher incidence in children with autism. The presence of villous atrophic 
histology in duodenal mucosal biopsy samples obtained by endoscopy is the gold standard for 
diagnosis. Endoscopy can also detect unsuspected cases of coeliac disease by meticulous analysis of the 
small bowel mucosa and identification of subtle findings of villous atrophy. However, it needs multiple 
biopsies not to miss the lesion as it is patchy[51]. New endoscopic techniques such as the modified 
immersion technique under traditional white-light or narrow-band imaging significantly improve the 
visual confirmation of coeliac disease during endoscopy[52,53]. Video capsule endoscopy is reasonably 
well-tolerated and safe in children. It can identify mucosal lesions in the bowel, especially in the small 
intestine, with the risk of radiation or sedation[54]. Video capsule imaging could also help identify the 
coeliac disease[55]. Augmentation techniques using AI can help augment the obtained original mucosal 
images to avoid the effects of conditions that could affect the quality of images, such as the rotation of 
the endoscope or the effects of distant viewpoint from the mucosal wall changes. However, a patency 
capsule test should be done before video capsule endoscopy, especially in infants and young children
[56]. Recent AI modalities using deep learning techniques such as convolutional neural network (CNN), 
Bayesian inference, or support vector machines are innovative computer technology that can aid 
computerized coeliac disease diagnosis[57]. Foers et al[58] used machine learning methods to classify 
intestinal T-cell receptor repertoires to detect patients with coeliac disease irrespective of their dietary 
gluten status.

Pediatric colonoscopy needs a high experience not to miss lesions and detect colonic lesions as early 
as possible. The significant progress in developing computerized vision during gastrointestinal 
endoscopy allowed the gathering and annotation of high-quality video information. The addition of AI 
to real-time endoscopy significantly improves the automated detection of colonic or rectal polyps, such 
as in juvenile polyp or familial adenomatous polyposis. As mentioned before, children with autism have 
an increased risk to develop inflammatory bowel disease (IBD). This increased risk is due to 
multifactorial pathogenesis, including an overactive immune system and disturbances of the brain-gut-
microbiota axis[59]. A massive flow of data about IBD is currently available using electronic medical 
records, genetic analysis, and imaging modalities. Analysis, interpretation, and integration of these data 
with the help of AI can aid to build models that can predict the risk of IBD and increase its detection 
accuracy[60].

Ozawa et al[61] succeeded to develop a neural network trained on colonoscopy images from patients 
with ulcerative colitis. With the help of a computer-assisted system, this network was able to identify 
the normal mucosa, mucosal healing states, mucosa on remission, and mucosa in severe degrees of 
inflammation with high sensitivity and specificity. These findings will help the physicians personalize 
the treatment according to the patients' conditions. In children, Mossotto et al[62] classified Crohn's and 
ulcerative colitis activity at diagnosis, using machine learning with integrating both endoscopic and 
histologic imaging. They were able to subtype the patients using this model with an accuracy reaching 
80%, which significantly improves the diagnostic accuracy and permits a good option for targeted 
therapy. Dhaliwal et al[63] developed an algorithm using Random Forest Supervised and Unsupervised 
Machine learning in children to identify features that could help discriminate between ulcerative colitis 
and colonic Crohn's disease. They have a correct classification in 98% and 95% of children with 
ulcerative colitis and colonic Crohn disease, respectively.

Video capsule endoscopy is a safe, non-invasive procedure that can help diagnose IBD, especially for the 
patchy intestinal lesion of Crohn's disease. Nemeth et al[64] examined the accuracy and safety of video 
capsule endoscopy in 154 children and adolescents with suspected or established Crohn's disease. They 
found that video capsule endoscopy was safe and able to confirm the diagnosis of Crohn's disease with 
a significant impact on clinical management. However, interpretation of images obtained, and diagnosis 
based on Video capsule endoscopy is reader-dependant. As a result of the human concentration limitation, 
the lesion miss rate in capsule endoscopy ranges between 0.5% to 19% depending on the nature of the 
lesion[65]. AI can improve the accuracy of capsule endoscopy diagnosis by identifying distinct lesions 
and areas of interest with ease. However, there are many limitations to providing reliable classifications 
due to insufficient accuracy[66]. A convolutional neural network is used to analyze the large number of 
images obtained by capsule endoscopy to overcome these limitations. The convolutional neural network 
can differentiate normal intestinal mucosa, ulcers, erosion, polyps, and even worms with high accuracy 
reaching up to 96%[67,68].

Li et al[69] developed an AI system to automatically distinguish colorectal cancer early signs during 
colonoscopy with high sensitivity and specificity. Aguilar et al[70] found that transabdominal 
ultrasound augmented with a preceding AI model allows precise, fast, and non-invasive diagnosis of 
Buried bumper syndrome, complicating percutaneous endoscopic gastrostomy in children. Urban et al
[71] successfully identified and removed rectal polyp using a deep neural network with a real-time 
accuracy rate of 96.4%. They used convolutional neural networks with an ordinary desktop machine 
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with a contemporary graphics processing unit. They concluded that their trained model could identify 
and locate polyps in real-time with high accuracy. However, caution should be taken when using 
convolutional neural networks as we cannot generalize the results of these studies to other situations, 
and we do not know the exact effect of using convolutional neural networks on the endoscopists 
inspection behavior with overreliance on the technology. In addition, the direct and the indirect cost of 
these technologies and their acceptance to be a part of the diagnostic tools by the physician should also 
be considered[72].

ROLE OF AI IN MANAGING GI DISORDERS IN CHILDREN WITH AUTISM
Children with autism have a three-fold increase in the risk of gastrointestinal disorders than the 
typically developed children. However, the rate of parental reporting of these disorders is less in 
children with autism than in the typically developed ones. The wide varieties of GI manifestations in 
children with autism are related to the general heterogeneity of autism disorder and the underlying 
neurobiological mechanisms and disturbances of the neurotransmitters in both brain and gut[73]. Some 
GI symptoms are evident as diarrhea and constipation, while the others may vague and challenging to 
be recognized and can be missed as behavioral changes. Artificial intelligence can help detect and 
classify autism early, even in young infants.

Meanwhile, AI can help detect and classify gastrointestinal disorders in children. Regrettably, 
according to the best of our knowledge, there are no currently available specific AI models to detect 
gastrointestinal disorders in children with autism. AI models designed to detect GI disorders in patients 
with autism should consider the differences in the symptomatology from the typically developed 
children and should design algorithms to detect these disorders.

Fascinating use of AI in children with autism is the use of 'SMART TOILET' to monitor bowel health 
and to help to detect irritable bowel syndrome and inflammatory bowel disease. An artificial 
intelligence tool with a camera and microcomputer are attached to the traditional toilet to help evaluate 
patients' stool, including form, defecation time, urination, and the presence or absence of blood[74]. 
This' SMART TOILET' will significantly help manage toilet disorders, common in children with autism, 
as they cannot correctly report their bowel habits, dysfunction, or defecatory disorders. The use of 
microbiota transfer therapy (MTT) showed significant potential in alleviating the symptoms associated 
with GI complications and reducing the severity of behavioral symptoms in children with autism[75]. 
Children with autism who had MTT also showed changes in their plasma metabolite profile to be nearly 
similar to the typically developing peers[76]. Qureshi et al[77] examined the differences in gut microbial 
metabolites between children with autism and GI disorders vs the typically developing children without 
GI disorders and determined the effects of gut MTT on the fecal metabolites of the group with autism. 
They used machine learning to create 5-metabolite fecal models for classification, which showed 
significant changes before and after MTT. The developed multivariate metabolite models showed the 
potential of fecal metabolite panels to effectively categorize children with autism from the typically 
developed. Similar machine learning models can diagnose children with autism using their gut 
microbiome data compared to subjects with and without autism.

About 10% of children with autism are on a special diet. Despite no diet specific for autism, children 
with autism are frequently put on a gluten-free, casein-free diet. However, children should not start a 
special diet except when it is evidence-based. Dietary management can help alleviate many of the 
functional gastrointestinal symptoms in patients with irritable bowel syndrome, which is relatively 
common in children with autism. One of these dietary managements is restoring the imbalance in gut 
microbiota. Karakan et al[78] studied the efficacy of artificial intelligence-based personalized 
modification of the dietary microbiome in patients with IBS. They designed an AI-based diet to optimize 
a personalized nutritional strategy using an algorithm about the individual gut microbiome features. 
According to the IBS index score, they developed the algorithm to design the diet. The algorithm 
assessing an IBS index score used the microbiome composition to design the optimized diets based on 
the microbiome modification to match the observed with the healthy scores.

Gluten sensitivity is common in children with autism. AI can help produce allergen-free gluten in 
plants with high gluten content, such as wheat and corn. This new gluten retains its unique beneficial 
quality regarding texture, taste, and nutritional value without the ability to stimulate the autoimmune 
response and cascade of gluten sensitivity or coeliac disease. Another way to overcome coeliac disease 
and gluten sensitivity is to create an oral enzyme able to degrade the ingested gluten. The proposed 
enzyme should be stable and active in both stomach and duodenum, rapidly neutralize the gluten-
peptides that can activate T-cell, and be safe to be ingested by humans. Many enzymes, including 
cysteine proteases, prolyl endopeptidases, and subtilisin's, could split the non-digestible gluten peptides 
in vivo and vitro. AI can help develop new techniques like enteric coating to protect the enzyme or 
genetic modification, increasing its production and enhancing its stability in the GI tract[79].
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LIMITATION FOR THE USE OF ARTIFICIAL INTELLIGENCE
Artificial intelligence has many obstacles in treating digestive diseases, especially in children with 
autism. Among these obstacles are the ethical aspects and the confidence of the medical staff in the 
mechanisms of artificial intelligence. The development of artificial intelligence also requires a robust 
infrastructure with enhanced patient confidentiality controls. Also, committees must be established to 
control the work of artificial intelligence to avoid the inappropriate and unethical use of artificial 
intelligence. Another significant limitation is the difference in symptoms of GI disorders in children 
with autism than the typically developed children. Children with autism may need a minimum level of 
communication abilities and cognitive function to use AI-directed models. When building an algorithm, 
it should be tailored to children with autism.

CONCLUSION
Autism is a neurodevelopmental condition with multiple comorbidities. Besides the classic manifest-
ations of autism, the affected patients may suffer the presence of many other medical comorbidities that 
are more common in people with ASD than in the general population. Children with autism have a high 
prevalence of GI disorders occurring in 46%-84% of them with a bilateral mutual pathway between 
autism and GI disorders. Children with autism have an increased frequency of diarrhea, nausea and/or 
vomiting, gastroesophageal reflux and/or disease, abdominal pain, chronic flatulence due to various 
factors as food allergies, gastrointestinal dysmotility, IBS, and IBD. AI could help diagnose and manage 
autism by improving children's communication, social, and emotional skills for a long time. AI is an 
effective method to enhance early detection of GI disorders, including GI bleeding, gastroesophageal 
reflux disease, Coeliac disease, food allergies, IBS, IBD, and rectal polyps. AI can also help personalize 
the diet for children with autism by microbiome modification. AI can help to provide modified gluten 
without the ability to initiate an immune response. However, AI has many obstacles in treating 
digestive diseases, especially in children with autism. There is a need to do more studies and adapt 
specific algorithms for children with autism.
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Abstract
Artificial Intelligence (AI) is a type of intelligence that comes from machines or 
computer systems that mimics human cognitive function. Recently, AI has been 
utilized in medicine and helped clinicians make clinical decisions. In gastroen-
terology, AI has assisted colon polyp detection, optical biopsy, and diagnosis of 
Helicobacter pylori infection. AI also has a broad role in the clinical prediction and 
management of gastrointestinal bleeding. Machine learning can determine the 
clinical risk of upper and lower gastrointestinal bleeding. AI can assist the 
management of gastrointestinal bleeding by identifying high-risk patients who 
might need urgent endoscopic treatment or blood transfusion, determining 
bleeding stigmata during endoscopy, and predicting recurrence of gastrointestinal 
bleeding. The present review will discuss the role of AI in the clinical prediction 
and management of gastrointestinal bleeding, primarily on how it could assist 
gastroenterologists in their clinical decision-making compared to conventional 
methods. This review will also discuss challenges in implementing AI in routine 
practice.

Key Words: Gastrointestinal bleeding; Artificial intelligence; Machine learning; Artificial 
neural networks; Clinical decision making
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Core Tip: Gastrointestinal bleeding is a common problem in the emergency department. Quick and 
appropriate clinical decision is needed in the management of gastrointestinal bleeding. Artificial 
intelligence, namely machine learning and deep learning, can utilize electronic health record data to 
provide insights which might help clinicians, especially gastroenterologists, in the management of 
gastrointestinal bleeding. The present review will discuss the roles of artificial intelligence in clinical 
prediction and management of gastrointestinal bleeding, and compare them to conventional methods. This 
review will also discuss challenges in the implementation of artificial intelligence in routine practice.

Citation: Maulahela H, Annisa NG. Current advancements in application of artificial intelligence in clinical 
decision-making by gastroenterologists in gastrointestinal bleeding. Artif Intell Gastroenterol 2022; 3(1): 13-20
URL: https://www.wjgnet.com/2644-3236/full/v3/i1/13.htm
DOI: https://dx.doi.org/10.35712/aig.v3.i1.13

INTRODUCTION
Artificial intelligence (AI) simulates human intelligence processes and cognitive function using 
machines or computer systems. Several terminologies need to be understood before talking about AI. 
Machine learning (ML) is a technique of AI in which a computer or a system can learn to improve its 
function using experience and data without explicit instruction. There are several machine learning 
methods, for example, CNN (convolutional neural network), that can perform image analysis. ANN 
(artificial neural network) consists of a hidden-layered connection between input and output. 
Meanwhile, deep learning is a class of machine learning which extracts higher-level information 
progressively using multiple layers of neural networks[1]. AI has transformed information technology 
by making it possible to analyse large-scale data within a short time[2].

Recently, AI has been utilized in medicine. AI has a broad role in medicine, from guiding treatment 
decisions using electronic health record data to assisting in performing surgeries and intelligent 
prostheses for people with disabilities[3]. In gastroenterology, AI has assisted in diagnosing and treating 
gastrointestinal (GI) diseases. AI also has roles in small intestinal endoscopy and endoscopic ultrasound, 
especially in evaluating and diagnosing lesions[4].

This review aims to discuss the roles of AI in GI bleeding, especially in clinical decision-making for 
gastroenterologists. More specifically, this review will discuss the advancements in the application of AI 
in clinical prediction and management of upper and lower GI bleeding and its limitations and future 
challenges.

ARTIFICIAL INTELLIGENCE IN CLINICAL PREDICTION OF UPPER GASTROINTESTINAL 
BLEEDING
Several scoring systems or risk models have been developed to predict the clinical risk of GI bleeding. In 
patients using antithrombotic medications, these risk models include HAS-BLED (hypertension, 
abnormal kidney and liver function, stroke, bleeding, labile international normalized ratio, elder age, 
and drug or alcohol use), ATRIA (anticoagulation and risk factors in atrial fibrillation), ORBIT 
(Outcomes Registry for Better Informed Treatment of Atrial Fibrillation), and HEMORR2HAGES 
(hepatic or kidney disease, ethanol abuse, malignancy, older age, reduced platelet count or function, 
rebleeding, hypertension, anemia, genetic factors, excessive fall risk, and stroke)[5-7]. Among these 
models, HAS-BLED has the best performance to predict major bleeding events[8].

Compared to the previous risk models, the prediction model using machine learning is hypothesized 
to have better performance since it can utilize more extensive and updated data sets. Herrin et al[9] 
tested three machine learning algorithms: Regularized Cox regression (RegCox), random survival 
forests, and extreme gradient boosting (XGBoost) on adult patients who were prescribed antithrombotic 
drugs (vitamin K antagonists, direct oral anticoagulants (DOACs), and/or thienopyridine antiplatelet 
agents) to predict the probability of GI bleeding at 6 and 12 mo. The data were obtained from medical 
and pharmacy claims data of 300000 patients. They also compared the performance of the machine 
learning algorithms to the HAS-BLED risk model.

In that study, all machine learning algorithms performed superiorly to HAS-BLED score in predicting 
GI bleeding at 6 and 12 mo. HAS-BLED score achieved an area under the curve (AUC) of 0.61 [95% 
confidence interval (CI): 0.59-0.62] for 6-mo GI bleeding risk and AUC of 0.60 (95%CI: 0.59-0.61) for 12-
mo GI bleeding risk. Meanwhile, RegCox, the most superior algorithm from the three machine learning 
algorithms, had an AUC of 0.68 (95%CI: 0.66-0.70) for 6-mo GI bleeding risk and AUC of 0.67 (95%CI: 
0.65-0.69) for 12-mo GI bleeding risk. HAS-BLED and the three machine learning algorithms obtained a 
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similar sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). 
However, all of them had an AUC less than 0.70, which is the conventional threshold for acceptable 
performance[9].

HAS-BLED score was derived to predict major bleeding events from patients treated with warfarin
[10]. However, recently, antiplatelet agents and DOACs are more commonly used. Even though clinical 
extrapolation to calculate the risk of GI bleeding in patients taking antithrombotics is common, there are 
still concerns regarding the accuracy of HAS-BLED in predicting bleeding events in patients taking 
other types of anticoagulants or antiplatelets. Capodanno et al[11] found that HAS-BLED score could not 
predict major bleeding events in patients undergoing PCI (percutaneous coronary intervention) without 
artrial fibrillation who were discharged with dual antiplatelets. Although not specifically developed to 
predict GI bleeding events, several scoring systems have been developed for predicting bleeding events 
in patients taking dual antiplatelet therapy, such as CRUSADE, ACUITY, and PRECISE-DAPT. 
However, each scoring system has different accuracies in predicting short-term and long-term bleeding 
complications. For example, CRUSADE and ACUITY are better in predicting short-term complications, 
while PRECISE-DAPT is better in predicting long-term bleeding events[12].

Machine learning algorithms that utilize real-time data, such as RegCox, should better predict GI 
bleeding than the scoring systems mentioned above. Moreover, machine learning algorithms can 
provide time-to-event outcomes that can be used in the prediction of both short-term and long-term GI 
bleeding events. Herrin et al[9] used data sets from insurance claims and could not provide actual 
clinical values, which might contribute to low AUCs in their study. Data sets from electronic health 
record data that contain laboratory values and endoscopic reports might result in a better accuracy for 
clinical prediction of GI bleeding.

In patients presenting with upper GI bleeding, especially in the emergency department, it is 
important to stratify a patient’s risk and predict mortality outcomes and the need for transfusion and 
other hemostatic interventions. Scoring systems such as the Glasgow-Blatchford score (GBS), Rockall 
score, and AIMS65 predict pre-endoscopic risk in patients with acute upper GI bleeding based on 
clinical, hemodynamic, and initial laboratory variables. Shung et al[13] conducted a systematic review 
that included 14 studies with 30 assessments of ML models. The median AUC for mortality, 
interventions, or rebleeding outcomes for ML models was 0.84. AUCs were higher in studies using 
ANNs than other models. They found that ML performed better than clinical risk scores for mortality in 
upper GI bleeding.

Recently, Shung et al[14] validated a machine learning model for upper GI bleeding that predicted 
composite outcomes of the need for hospital-based interventions (red blood cell transfusion, endoscopic 
hemostatic intervention, or surgery) and 30-d all-cause mortality. The chosen ML model was the 
XGBoost model. Different from previous studies, this study did not collect data from insurance records 
but through medical data that was directly entered by a nurse, physician, or medical student.

The ML model obtained an AUC of 0.91 (95%CI: 0.90-0.93) in the internal validation group, and an 
AUC of 0.90 (95%CI: 0.87-0.93) in the external validation group. The model performed better than GBS 
(AUC = 0.87, 95%CI: 0.84-0.91; P = 0.004), admission Rockall (AUC = 0.65, 95%CI: 0.60-0.71; P < 0.001), 
and AIMS65 (AUC = 0.64, 95%CI: 0.59-0.69; P < 0.001)[14].

ML models could perform better than scoring systems in risk stratification in patients with upper GI 
bleeding because they could extract patterns from raw data and increase accuracy with additional data 
and experience. Moreover, ML models could analyze more complex and heterogeneous data.

ARTIFICIAL INTELLIGENCE IN CLINICAL PREDICTION OF LOWER INTESTINAL BLE-
EDING
AI also has roles in the clinical prediction of lower intestinal bleeding. In 2017, Loftus et al[15] conducted 
a study that compared ANN and a regression-based model to predict the severity of lower GI bleeding 
and the need for surgical intervention.

Loftus et al[15] performed the analysis retrospectively on 147 adult patients who underwent 
endoscopy, angiography, or surgery for acute lower intestinal bleeding. The regression-based model 
used was the Strate prediction rule. The ANN for prediction of severe bleeding incorporated six 
variables present on admission: Systolic blood pressure; hemoglobin; outpatient prescription of aspirin 
325 mg daily; Charlson comorbidity index; base deficit ≥ 5 mEq/L; and international normalized ratio ≥ 
1.5. Meanwhile, the ANN for prediction of the need for surgery combined three predictors from severe 
bleeding ANN with two additional variables, hemoglobin nadir and the occurrence of a 20% decrease in 
haematocrit[15].

The Strate risk factors in the study correlated significantly with severe bleeding (r = 0.29, P < 0.001). 
However, the Strate model was less accurate in predicting severe lower intestinal bleeding than the 
ANN [area under the receiver operating characteristic curve (AUROC) 0.66 (95%CI: 0.57-0.75) vs 0.98 
(95%CI: 0.95-1.00)]. The ANN for predicting the need for surgical intervention also had good 
performance with an AUROC of 0.95 (95%CI: 0.90-1.00). ANN could perform better than the regression-
based model because this program could incorporate intricate associations among variables into an 
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algorithm, similar to nonlinear statistical processing[15].
Ayaru et al[16] analyzed non-endoscopic variables from patients with acute lower GI bleeding in the 

emergency department for internal and external validation of the gradient boosting (GB) model. GB is a 
supervised machine learning algorithm used in regression and classification tasks with multiple simple 
learning algorithms used jointly to obtain better predictive performance. Their study compared GB 
model with BLEED classification, Strate prediction rule, and conventional multiple logistic regression in 
predicting severe bleeding, the need for therapeutic intervention, and recurrent bleeding in patients 
with acute lower GI bleeding.

Ayaru et al[16] found that the GB model performed better than other scoring systems with an 
accuracy of 88% for recurrent bleeding and therapeutic intervention and 78% for the need for 
therapeutic intervention. Meanwhile, conventional multiple logistic regression had an accuracy of 74% 
in predicting recurrent bleeding and the need for therapeutic intervention and an accuracy of 62% in 
predicting severe bleeding. BLEED classification and Strate prediction rule also performed more poorly 
than the GB model.

In their study, the GB model could provide variables contributing to the risk of severe acute lower GI 
bleeding and the contribution percentage. The variables and their contribution are platelet count 
(13.4%), activated partial thromboplastin time (13.0%), haematocrit (12.4%), urea (10.9%), creatinine 
(9.7%), prothrombin time (8.9%), diastolic blood pressure (6.8%), heart rate (4.1%), systolic blood 
pressure (3.9%), and alcohol abuse (3.9%)[16].

Both studies by Loftus et al[15] and Ayaru et al[16] found that AI performed better than scoring 
systems in predicting lower GI bleeding. Even though they used different algorithms, ANN and GB 
model both could perform better than other regression-based models and scoring systems. Moreover, 
the algorithms could provide variables contributing to the risk of bleeding and the need for therapeutic 
intervention. However, both studies were limited by their retrospective design. More prospective 
studies need to be conducted to determine the accuracy of ML models in lower GI bleeding prediction. 
More studies, including different AI algorithms, also need to be conducted to determine the better 
algorithm for predicting GI bleeding.

ARTIFICIAL INTELLIGENCE IN MANAGEMENT OF UPPER AND LOWER GASTRO-
INTESTINAL BLEEDING
AI has a broad role in the management of GI bleeding, starting from patient’s admission, during 
endoscopy, to patient’s care post-endoscopy or surgery. In patient admission and during pre-
endoscopy, AI, especially machine learning, can be used in the risk stratification of patients with GI 
bleeding. Machine learning can also be used to determine whether the patient needs urgent endoscopy, 
blood transfusion, or surgical intervention, or if the patient can be safely observed and discharged from 
the emergency room[17].

Early identification of patients with high-risk GI bleeding is important and can reduce mortality and 
morbidity. To identify low-risk patients, a GBS score of 0 or 1 can be used to determine whether the 
patient can be safely discharged from the emergency room (sensitivity 98.6%, specificity 34.6%). 
However, GBS and other scoring systems such as Rockall and AIMS65 still perform poorly in predicting 
high-risk patients needing endoscopic treatment or surgical intervention[18].

Shung et al[19] developed multiple natural language processing (NLP)-based approaches to identify 
patients with acute GI bleeding in the emergency room. They used electronic health record-based 
phenotyping algorithms and compared the performance with the Systematized Nomenclature of 
Medicine, a standard method to identify patients’ conditions. They found that the NLP-based approach 
performed better than the Systematized Nomenclature of Medicine [PPV 85% (95%CI: 83%-87%) vs 69% 
(95%CI: 66%-72%); P < 0.001] in identifying patients with acute GI bleeding.

Seo et al[20] developed four machine learning algorithms to predict adverse events and hemodynamic 
instability in patients with initially stable non-variceal upper GI bleeding. The four machine learning 
algorithms were logistic regression with regularization, random forest classifier (RF), GB classifier, and 
voting classifier (VC). The adverse events analyzed included hypotension, mortality, and rebleeding 
within 7 d. The algorithms were compared with the standard scoring system GBS and Rockall scores. 
Among the machine learning algorithms, the RF model showed the best performance in predicting 
mortality (AUC: RF 0.917 vs GBS 0.710), while the VC model had the highest accuracies in predicting 
hypotension (AUC: VC 0.757 vs GBS 0.668) and rebleeding within 7 d (AUC: VC 0.733 vs GBS 0.694).

In the intensive care unit (ICU), Deshmukh et al[21] developed a machine learning model to calculate 
mortality risk in patients admitted with GI bleeding. They compared the model with the APACHE IVa 
risk score and found that the model performed better in classifying low-risk patients [AUC: 0.85 (95%CI: 
0.80-0.90) vs 0.80 (95%CI: 0.73-0.86)]. The model achieved a sensitivity of 100% and specificity of 27%, 
compared with APACHE IVa risk score with a sensitivity of 100% and specificity of 4%.

Levi et al[22] also developed a machine learning algorithm to predict the need for blood transfusion in 
ICU patients with GI bleeding. Existing scoring systems such as GBS and Rockall score focus on 
predicting mortality and the need for intervention. They do not assist in determining the level of 



Maulahela H et al. AI in gastrointestinal bleeding

AIG https://www.wjgnet.com 17 February 28, 2022 Volume 3 Issue 1

monitoring needed for hospitalized patients. Moreover, these scoring systems were validated only for 
upper GI bleeding. Levi et al[22] trained the algorithm on different data sets: MIMIC-III (Medical 
Information Mart for Intensive Care-III); eICU-CRD (eICU Collaborative Research Database v.2.0); or 
both. All models performed well with an AUROC > 0.80. A similar study by Shung et al[23] also found 
that a long short-term memory model, a type of Recurrent Neural Network, performed better than a 
regression-based model (AUROC: 0.65 vs 0.56; P < 0.001) in determining high-risk GI bleeding patients 
requiring red blood cell transfusion in the ICU.

In patients with acute lower GI bleeding, Das et al[24] constructed ANN and multiple logistic 
regression models to predict the outcomes of intervention for control of hemorrhage, recurrent bleeding, 
and death. The models classify patients with lower GI bleeding as high-risk and low-risk patients. The 
study found that ANN was significantly better than BLEED (accuracy for predicting death 87% vs 21%; 
for recurrent bleeding 89% vs 41%; and for intervention 96% vs 46%) in internal validation. ANN was 
also better than multiple logistic regression models in predicting the three outcomes in the external 
validation (for death 97% vs 70%; for recurrent bleeding 93% vs 73%; and for intervention 94% vs 70%).

Shung et al[23], Seo et al[20], Deshmukh et al[21], and Das et al[24] showed that machine learning 
models could be used in risk stratification for patients with acute upper and lower GI bleeding. More 
advanced interventions, such as endoscopic or surgical intervention, could be considered in high-risk 
patients. Therefore, AI could help emergency physicians and gastroenterologists decide patients who 
might need urgent endoscopic or surgical intervention and help prepare the necessary interventions 
earlier. Meanwhile, Levi et al[22] showed that AI could help determine which patients need tighter 
monitoring. Many patients with GI bleeding admitted to ICU stop bleeding and do not require further 
intervention. In hospitals with limited ICU capacities, AI might help determine patients with GI 
bleeding who may or may not require ICU-level care.

All studies mentioned above used electronic health record data to train the models, making the 
results readily applicable for the hospital setting. These studies used different machine learning models. 
Interestingly, Seo et al[20] found that different models had different accuracies in determining the risk of 
different outcomes. Choosing the appropriate machine learning algorithm or model is essential to 
achieve the highest accuracy. However, there are still not many studies that compare the accuracies 
between different machine learning models.

During endoscopy, AI might help identify endoscopic characteristics of hemorrhage, such as 
determining the Forrest classification of peptic ulcer, which will help determine the management 
needed for the patient. Yen et al[25] compared the performance of deep learning with expert and novice 
endoscopists. They retrieved endoscopic still images of 1694 patients with peptic ulcer bleeding. Four 
deep learning models were pre-trained with ImageNet. In the end, the Mobile Net V2 model was chosen 
with the most optimum performance and compared with expert and novice endoscopists. For the 3-class 
categories, the sensitivity and specificity were 94.83% and 92.36%, respectively. Meanwhile, for the 4-
class categories, the sensitivity and specificity were 95.40% and 92.70%, respectively. The deep learning 
model also had a higher interobserver agreement with expert endoscopists compared to novice 
endoscopists.

Gastric ulcer is a common medical condition, with a yearly incidence of more than 5 in 1000 adults. 
However, gastric ulcer also has a risk to develop into gastric cancer. The malignancy rate in endoscop-
ically diagnosed gastric ulcers ranges from 2.4% to 21%. Therefore, early detection of malignant ulcers is 
important for further treatment and a better prognosis. Several studies have developed AI algorithms to 
differentiate between malignant and benign gastric ulcers. For example, Klang et al[26] developed a 
CNN model with an AUC of 0.91 (95%CI: 0.85-0.96) with a sensitivity of 92% and specificity of 75%. 
Similar studies were also conducted by Namikawa et al[27], Yoon et al[28], and Wu et al[29] using the 
CNN model to differentiate gastric ulcers and early gastric cancers with satisfying performances.

AI also aids in the diagnosis of Helicobacter pylori (H. pylori) infection. Itoh et al[30] developed a CNN 
model to diagnose H. pylori infection, using 149 training images and 30 test images from upper GI 
endoscopy images. The sensitivity of CNN for detection of H. pylori infection was 86.7%, while the 
specificity was 86.7%, with an AUC of 0.956. Mohan et al[31] conducted a systematic review consisting 
of five studies using CNN for detection of H. pylori infection. Images used for the diagnosis were from a 
combination of white-light, blue laser imaging, and linked color imaging. The pooled accuracy of AI for 
detecting H. pylori infection was 87.1% (95%CI: 81.8-91.1) with a sensitivity of 86.3% and specificity of 
87.1%. Meanwhile, endoscopists achieved an accuracy of 82.9% (95%CI: 76.7-87.7), with a sensitivity of 
79.6% and specificity of 83.8%.

AI also aids the detection of small bowel bleeding using wireless capsule endoscopy. Le Berre et al[32] 
reviewed 12 studies using various AI classifiers such as color spectrum transformation, MLP (multilayer 
perceptron network), SVM (support vector machine, a type of machine learning model), joint diagonal-
ization, PCA (principal component analysis), and CNN. The sensitivity from various studies ranged 
from 87.8% to 100%, while the specificity ranged from 85.8% to 99.9%. The highest accuracy of 99.6% 
was obtained in a study by Xiao et al[33] using deep CNN and 10000 images (8200 training and 1800 test 
images).

After management in the hospital, AI can be used in identifying the risk of recurrent bleeding in 
patients with GI bleeding. Wong et al[34] developed a machine learning model to predict recurrent 
bleeding. The model was built based on six parameters (age, baseline haemoglobin, presence of gastric 
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ulcer, GI diseases, malignancies, and infections). The model identified patients with recurrent ulcer 
bleeding within 1 year with an AUROC of 0.775 and overall accuracy of 84.3%.

CONCLUSIONS AND FUTURE CHALLENGES
As discussed above, AI, especially machine learning and deep learning, has broad roles in clinical 
prediction and management of GI bleeding by utilizing data that could help clinicians in their decision-
making. Even though AI can utilize a large set of electronic health record data, they might not be able to 
utilize several important data such as patient’s behavior or endoscopic images, which might not be 
stated in electronic health records or stored in different servers[35].

Since machine learning outcomes depend on the data set, the outcome might not be replicable in 
other centers. For example, factors that influence the risk of GI bleeding might be different in different 
centers with different data sets using the same AI algorithm. The data set used for the algorithm 
training could influence the algorithm's performance. Hence, it is crucial to have a high-quality data set 
that is well-integrated with the AI system before establishing an AI system[35]. Once established, the 
integrated electronic health record and AI algorithm system could be copied to be used by different 
centers.

Adopting AI also has several barriers, especially in developing countries, such as insufficient techno-
logical infrastructure and difficulty integrating AI in the routine workflow. Adequate data warehouses, 
secure analytic platforms, and informatics and machine learning experts must be employed. Some 
clinicians might be reluctant to substitute clinical judgment with computational analysis. It is important 
to ensure the healthcare providers’ trust before implementing the tool. A contingency plan concerning 
patients’ safety should be established if the algorithm makes an error. Legal framework regarding 
clinical decision-making by AI and its responsibility is currently unavailable[35,36].

An issue related to the safety of AI is the “black-box” algorithms. Black box AI is any AI system 
whose inputs and operations are not visible to its users. Many machine learning models are considered 
a black box, and it is difficult to understand how the algorithm arrived at its conclusion, even for those 
who trained it. Clinicians who use the algorithm might not realize whether a clinical decision suggested 
by an AI model is wrong because they do not know how the model arrived at the conclusion. Moreover, 
AI is still prone to biases. A diagnosis or prognostic algorithm trained with data from mostly Caucasian 
patients, for example, might not be as accurate for Black or Asian patients. An algorithm developed in 
high resource settings might not recommend accurate or fair treatment in settings with more limited 
resources[37].

The black box algorithms also raise legal concerns. It is still unclear if it could be considered medical 
malpractice when a clinician gives a wrong treatment recommended by a black-box algorithm because 
they could not review the basis of recommendation. Lawsuits might also be brought to the hospitals that 
implement the AI algorithm or even to the technology companies that develop the algorithm[37]. 
Currently, it is recommended to use AI to support a clinical decision that has been already made instead 
of using AI to create a new clinical decision.

Another ethical concern regarding the use of AI in medicine is patients’ privacy. Personal health 
condition is one of the most legally protected forms of data. Meanwhile, AI is usually provided by start-
ups or private technological companies. Previous cases of data breaches or technological companies 
monetizing their customers' personal information are concerns that need to be addressed. Companies 
need to provide technical safeguards to maintain data privacy to prevent breaches. Patients should be 
informed of data uses, and patients should give their consent before their data is used[38].

To prevent misuse of patients’ medical information, legal frameworks need to be updated to suit the 
rapid improvement of AI. Health Insurance Portability and Accountability Act (HIPAA) privacy rule is 
the United States national standard for protecting individual medical records and other individual 
health information. An example of a loophole in the regulation is if a genetic company sells their data to 
pharmaceutical or insurance firms, the HIPAA privacy rule could not apply because DNA information 
is not legally counted as healthcare[39]. Therefore, regulations concerning patients’ privacy and safety 
need to be revisited and updated to catch up with the improvement of technology. Strict legal penalties 
should be implemented for those who break the regulations.
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Abstract
Since its implementation almost two decades ago, the urgency allocation policy 
has improved the survival of patients on the waiting list for liver transplantation 
worldwide. The Model for End-Stage Liver Disease score is widely used to predict 
waiting list mortality. Due to some limitations related to its use, there is an active 
investigation to develop other prognostic scores. Liver allocation (LA) entails 
complex decision-making, and grafts are occasionally not directed to the 
recipients who are more likely to survive. Prognostic scores have, thus far, failed 
to predict post-operatory survival. Furthermore, the increasing use of marginal 
donors is associated with worse outcomes. Adequate donor-recipient pairing 
could help avoid retransplantation or futile procedures and reduce postoperative 
complications, mortality, hospitalization time, and costs. Artificial intelligence has 
applications in several medical fields. Machine learning algorithms (MLAs) use 
large amounts of data to detect unforeseen patterns and complex interactions 
between variables. Artificial neural networks and decision trees were the most 
common forms of MLA tested on LA. Some researchers have shown them to be 
superior for predicting waiting list mortality and graft failure than conventional 
statistical methods. These promising techniques are increasingly being considered 
for implementation.

Key Words: Liver transplantation; Liver cirrhosis; Artificial intelligence; Prognosis; 
Survival; Machine learning
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Core Tip: This review discusses the ethical aspects and current advancements in liver allocation (LA). It 
summarizes the concept of artificial intelligence and focuses on the latest developments of machine 
learning algorithms as applied to predicting waiting list mortality and LA. To date, only a few research 
groups have published works on this field; they also wrote reviews on the subject. Our minireview offers a 
thorough and impartial view of the topic, and we hope this will alert other potential researchers to this 
promising field.

Citation: Mucenic M, de Mello Brandão AB, Marroni CA. Artificial intelligence and human liver allocation: 
Potential benefits and ethical implications. Artif Intell Gastroenterol 2022; 3(1): 21-27
URL: https://www.wjgnet.com/2644-3236/full/v3/i1/21.htm
DOI: https://dx.doi.org/10.35712/aig.v3.i1.21

INTRODUCTION
Liver transplantation (LT) is the treatment of choice for patients with terminal liver disease[1]. LT is 
increasingly performed worldwide; however, organ scarcity remains a significant challenge for 
transplant teams[2], placing greater weight on the need for efficient liver allocation (LA). Therefore, 
correct organ allocation is of paramount importance.

An optimal allocation system for LT should balance considerations of equity (equal opportunity to 
receive the graft), need (to reduce waiting list mortality), utility (maximizing the overall life-years 
gained), and benefit (optimizing outcomes from each organ transplanted)[3].

Urgency criteria are based on need, prioritizing grafts to the most critically ill patients. Survival 
without LT is estimated through prognostic models, such as the model for end-stage liver disease 
(MELD). MELD is a validated score derived solely from laboratory test results (total bilirubin, serum 
creatinine, and prothrombin time). MELD is simple and accurate, and it predicts the 3-mo mortality of 
candidates with an area under the receiver operating characteristic curve (AUROC) of 0.83[4]. Since 
2002, the MELD score was adopted by the United Network for Organ Sharing (UNOS) to rank 
waitlisted patients in order of urgency in the United States (US). Several countries followed this organ 
allocation system (sickest first)[5]. While post-transplant survival for the sickest is lesser than that of 
patients with better physiological reserves, they are the ones who benefit the most from LT. Patients 
with a MELD score of 31-34 had a relative life expectancy 43 times higher than those who remained on 
the list, and patients with a MELD score of 35-40 were 128 times more likely to survive[6]. MELD was 
further refined after studies showed adding serum sodium concentration to the formula (MELD-Na) 
improves risk stratification. This system replaced MELD for LA in some countries, such as the USA, 
Canada, and Brazil[5,7-9]. Godfrey et al[10] advised of a possible loss of predictive accuracy of the 
MELD score over time, reaching an AUROC of only 0.70 in 2015. This may be due to changes in the 
epidemiology and treatment of liver diseases and increasing age and comorbidities. Despite several 
valid concerns about the model, it remains the most widely used.

Urgency allocation models have no value in predicting survival after LT[11,12]. Additionally, the 
donor pool has been expanded in the last two decades. Although the use of marginal livers (e.g., older 
donors, steatotic livers, and donation after cardiac death) has been necessary in this regard, it increases 
the risk of graft failure and postoperative complications, adding further complexity to the matter of 
allocation[13,14]. Living donor liver transplantation is another strategy to expand the donor pool; 
however, it poses an inherent risk to healthy donors. Its proportion to the total number of LT is small[3].

The MELD score does not reflect mortality risk in compensated patients with hepatocellular 
carcinoma (HCC). Exception points are granted to candidates with HCC, one of the leading LT 
indications worldwide. Currently, the prioritization of HCC candidates varies from one country to 
another, and there is no international consensus on the matter[15]. Due to the excessive advantage 
conferred by these exception points, there have been some changes in global allocation policies[16-18]. 
Notwithstanding these revisions, HCC candidates still have increased transplant rates, decreased risk of 
delisting, and worse post-transplant prognosis[15].

Outcomes after LT depend on both the preoperative condition of the recipient and donor “quality”. 
Utility criteria have been sought to offer grafts to recipients with greater chances of survival, estimating 
the outcome based on donor and recipient characteristics[3,16]. While this would decrease the odds for 
older and sicker patients to receive an organ, the overall post-transplant survival could improve. Better 
selection avoids retransplantation or futile procedures and reduces postoperative morbidity, hospital-
ization time, and costs. The survival benefit is quantifiable by estimating waiting list survival and post-
transplant outcomes. A benefit-based system could balance urgency and utility in allocation decisions. 
For a benefit-based allocation to be successful, transplant teams would need an accurate model to 
predict post-transplant survival.

https://www.wjgnet.com/2644-3236/full/v3/i1/21.htm
https://dx.doi.org/10.35712/aig.v3.i1.21
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Although the concept of applying donor-related variables to an algorithm had been used before, Feng 
et al[19] devised the term “donor risk index” (DRI), wherein they identified seven donor characteristics 
that predicted graft failure. Other researchers further investigated this interesting concept, adding cold 
ischemia time and organ origin (national or regional). However, DRI has not been widely adopted 
owing to the following main reasons cited by surgical teams: the inaccuracy to predict survival, 
exclusion of other relevant risk factors, and difficulty of explaining its concept to the recipients[20].

Since neither candidate nor donor factors are predictive of survival following transplantation, scores 
that include both variables have been described over the previous years. Halldorson et al[21] proposed 
adding donor age to the MELD score, creating the D-MELD, demonstrating a survival disadvantage 
when combining higher donor age with higher MELD recipients. Schaubel et al[22] proposed the 
balance of risk (BAR) score, which included donor, recipient, and procurement surgery variables. For an 
estimated 5-year survival, the c-statistic reached an AUROC of 0.63. Rana et al[23] developed a complex 
score named survival outcomes following liver transplantation (SOFT), containing > 100 variables. It 
reached an AUROC of 0.70 to predict 3-mo survival after LT. In 2018, the United Kingdom introduced 
allocation rules based on benefit. Each graft is offered nationally to the recipient predicted to have the 
greatest survival benefit from that specific graft. LA is based on the transplant benefit score (TBS), 
calculated by 21 and 7 receptor and donor criteria, respectively. TBS reflects the difference in days 
between expected 5-year post-operatory survival and expected 5-year waiting list survival. The model 
reduced deaths on the waiting list and maximized post-operatory life-years[24].

The external validity of these scores is limited by several factors, such as ethnicity, regional 
differences in the allocation and transplantation procedures, and changes in practice over time. Since the 
scores are based on logistic regression (LR) models, they depend upon the assumption of independence 
of each variable and are limited when facing nonlinear variable interactions. Complex donor-related 
models are considered difficult to implement, and their accuracy can be limited by the large number of 
variables that impact survival and possible undetected confounding factors. They have not been 
validated by other researchers or found wide acceptance to date. Moreover, they were not designed for 
an ideal donor-recipient matching[23,25].

Therefore, transplant teams are faced with a complex decision-making process when having to 
choose recipients for LA. Objective criteria would exempt the medical staff from difficult decisions and 
assess whether patients are excessively sick to be transplanted[3,7,26]. “Artificial intelligence” (AI) or 
machine learning algorithms (MLAs) are under increasingly active investigation for this use[27].

AI
AI is a general term used to describe any application wherein computer systems perform tasks normally 
associated with human intelligence. It can be a substitute for human subjectivity and limitations[28]. AI 
encompasses simple automated tasks and increasingly complex fields, such as machine learning, deep 
learning, and artificial neural networks (ANNs).

In classical programming, the computer is supplied with an algorithm and a dataset to provide an 
output. Machine learning, in contrast, supplies the computer with data and associated outputs, which it 
uses to create an algorithm that describes the relationship between the two. These MLAs can detect 
patterns and improve their analysis over time with further data[29]. MLAs can analyze any number of 
variables and are not driven (or limited) by hypothesis. This method detects nonlinear patterns within 
large datasets wherein multiple interactions between variables can occur. MLA can accommodate 
numerous interdependent variables and improve as more cases are increasingly analyzed[30,31].

Typically, MLA applied to healthcare fall into the category of supervised learning techniques. These 
algorithms learn the associations between input and labeled outcome data. The following are the basic 
steps of supervised ML: (1) Acquire a dataset and split it into separate training, validation, and test 
datasets; (2) use training and validation datasets to create a model that analyzes the association between 
data and outcomes; and (3) evaluate the model via the test dataset to determine how well it predicts 
outcomes. There are other techniques used, such as unsupervised learning, wherein data are not labeled 
to find out previously unknown patterns. Semi-supervised learning is particularly useful for datasets 
that contain both labeled and unlabeled data. Reinforcement learning uses the consequences of their 
actions to learn to determine the optimal behavior for a given context[29,32].

The decision tree (DT) is a supervised learning technique primarily used for classification tasks 
(categorical variables). It consists of a hierarchically organized structure of nodes that makes predictions 
by splitting (branching) the data. Each split can connect to a new root node or attach to a terminal or 
“leaf” node. A random forest (RF) is an ensemble method that produces multiple DTs[29].

One of the advantages of DTs for healthcare applications is their interpretability. However, each node 
is determined in isolation without considering the possible impact of future splits. This can fail to 
capture the dataset’s underlying characteristics. This disadvantage stimulated the development of 
optimal classification trees (OCTs). This type of DT is formed entirely in a single step, allowing each 
split to be determined with full knowledge of all other splits[33].



Mucenic M et al. AI and liver allocation

AIG https://www.wjgnet.com 24 February 28, 2022 Volume 3 Issue 1

ANN is an MLA inspired by biological neural networks. Each ANN contains nodes (analogous to cell 
bodies) that communicate with other nodes via connections (analogous to axons and dendrites), with 
multiple layers (an input layer, an output layer, and a hidden layer between them) of connected 
mathematical functions. ANNs can capture complex nonlinear relationships in data, allowing for 
sophisticated supervised and unsupervised learning tasks[28,29,32].

Support vector machine (SVM) is another type of MLA. This method organizes data by variable 
classes in a nonlinear modality, subsequently separating by a hyperplane and forming multidimen-
sional planes in space using these data. It can be used for classification or regression problems[34].

AI APPLIED FOR THE PREDICTION OF MORTALITY IN THE WAITING LIST
MLA has shown promising results for predicting 3-mo mortality on the waiting list. The simulation 
model was based on OCTs. OCTs were fed with > 1.6 million observations and trained, validated, and 
tested. The result showed a slightly superior AUROC than MELD-Na for predicting death or unsuit-
ability for LT (0.859 vs 0.841). The authors argue that this system would save at least 418 more lives 
annually in the US[35]. An interesting point in this simulation model compared with MELD was the 
increased allocation of livers to non-HCC patients and a decreased number of waitlist deaths and 
removals for both HCC and non-HCC patients. Their results await further validation.

Cucchetti et al[36] applied an ANN model to predict the 3-mo mortality of patients awaiting LT in the 
pre-MELD era. The analysis included only laboratory values (liver biochemical and function tests, 
creatinine, and hemogram). The participants were randomly divided into training and testing groups in 
a proportion of 75%-25%. After each of the 10 training sessions, ANN was tested on the remaining 
individuals who were not selected for training. The most accurate ANN system was tested in a 
retrospective cohort in another LT center. The performance of ANN in predicting the 3-mo mortality 
was superior to that of MELD (AUROC, 0.98 vs 0.86). Results were similar for the external validation 
cohort (0.96 and 0.86, respectively).

AI APPLIED FOR LA
Hundreds of variables contribute to multiple decisions made in an organ transplant. For each record, 
the UNOS database collects > 400 parameters. AI can theoretically improve the outcomes of allocation 
strategies[30,31]. An optimal outcome would be a decreased number of retransplant procedures, 
excellent graft and overall survival, and decreasing rate of waiting list mortality.

In a large multicenter Spanish study, Briceño et al[37] applied 57 variables (26, 19, 6, and 6 from the 
recipient, donor, retrieval procedure, and transplant procedure, respectively) for each donor-recipient 
pair to predict 3-mo graft survival. A total of 1003 liver transplants were analyzed. This sample had 
been previously described in a pilot study by the same group of researchers[38]. The following were the 
two models of ANN used: a positive-survival (PS) model to predict the 3-mo graft survival rate after LT 
and a negative-survival (NS) model to predict the 3-mo graft failure rate. These ANN models are MLAs 
that simulate a biological neural system. In this study, 90% of the data was used for training and 10% for 
testing, which was repeated ten times to allow all patterns to participate in both phases. Subsequently, 
the model that correctly classified the most D-R pairs was chosen. PS methodology was slightly superior 
to common statistical methods (multiple regression, MR) to predict graft survival (90.8% vs 87.7%). NS 
methodology performed worse for predicting graft loss; however, it was far superior to MR (71.4% vs 
3.4%). Finally, the AUROC curves were compared with previously reported scores (MELD, D-MELD, 
DRI, P-SOFT, SOFT, and BAR). In the PS model, ANN had an AUROC of 0.81, significantly higher than 
that of other conventional statistical methods (which varied from 0.42 to 0.68). In the NS model, NN had 
an AUROC of 0.82, which was also significantly higher than that of the other scores (which varied from 
0.42 to 0.61). Of the previously reported scores, BAR showed the best AUROC results.

Ayllón et al[30] applied D-R pairing with ANN on 858 cases in a large-volume LT center (King’s 
College Hospital). They used the same PS and NS models described by Briceño et al[37], with some 
differences in the included variables. AUROCs for PS (0.94) and NS (0.94) 3 mo after LT were 
significantly more accurate than that of BAR, which is the second-best score (AUROC, 0.84). 
Furthermore, the researchers performed a 12-mo analysis, and when ANN was used to predict graft 
survival and loss (0.78 and 0.82, respectively), their results were better than that of the best prediction 
achieved by other scores (BAR, 0.71).

Lau et al[39] applied ML techniques in an Australian single-center study with 180 LTs. A bootstrap 
sample containing approximately 63% of the cases was used for the training set, and the remaining data 
were used for testing. This process was repeated 1000 times. RF classifiers and ANN were used on the 
overall top 15 ranked characteristics to determine the performance as measured by AUROC values. 
Graft failure (NS) within 30 d was the primary outcome, and NS at 3 mo postoperatively was the 
secondary outcome. The results were subsequently compared with those of DRI and SOFT scores. The 
AUROC for the 30-d NS was 0.818 with RF and 0.835 with NN compared with 0.64 and 0.68 with SOFT 
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Table 1 Overview of original works on artificial intelligence applied to liver allocation

Ref. Sample size and location AI model(s) Outcomes 
analyzed Results Comments

Briceño et al
[37], 2014

1003 LT recipients 
(multicenter in Spain)

ANN with PS and 
NS model with D-R 
pairing

3-mo Graft survival 
(PS); 3-mo Graft 
failure (NS)

AUROC 0.81 (PS); 
AUROC 0.82 (NS)

Superior to BAR score (0.68 for 
PS, 0.61 for NS). Other conven-
tional statistics fared worse

Ayllón et al
[30], 2018

858 LT recipients (single-
center in England)

ANN (PS and NS) 
with D-R pairing

3-mo Graft survival 
(PS); 3-mo Graft 
failure (NS)

AUROC 0.90 (PS); 
AUROC 0.90 (NS)

Superior to BAR score (AUROC 
0.71). Same model above on a 
different population (external 
validation)

Lau et al[39], 
2017

180 LT recipients (single-
center in Australia)

ANN and RF 30-d and 3-mo Graft 
failure (NS)

30-d prediction: 
AUROC 0.82 (RF) 
AUROC 0.835 (ANN)

Superior to SOFT and DRI scores

Guijo-Rubio 
et al[40], 2021

20456 LT recipients (5-yr 
survival) to 37646 LT 
recipients (3-mo survival) 
UNOS database

ANN, RF, DT, 
SVM, MLP

3-mo, 1 yr, 2 yr, 5 yr 
survival

AUROC up to 0.618 (3-
mo), 0.614 (1-yr), 0.611 
(2-yr), 0.644 (5-yr)

No superiority compared to 
conventional statistics (LR was 
slightly superior)

AI: Artificial intelligence; ANN: Artificial neural network; AUROC: Area under the receiver operating characteristic curve; BAR: Balance of risk; DRI: 
Donor risk index; DT: Decision tree; D-R: Donor-receptor; MLP: Multilayer perceptron; NS: Negative-survival; LT: Liver transplantation; LR: Logistic 
regression; PS: Positive-survival; SOFT: Survival outcomes following liver transplantation; SVM: Support vector machines; RF: Random forest; UNOS: 
United network of organ sharing.

and DRI scores, respectively. The AUROC decreased to 0.715 with RF and 0.56 with NN to predict the 3-
mo NS (including 90 cases in the analysis).

Contrastingly, MLA did not prove to be superior to LR for predicting survival after adult LT using 
donor-recipient matching in a large database[40]. Four different survival endpoints were analyzed using 
the UNOS database, including 3-mo and 1-, 2-, and 5-year survivals, varying from 37646 transplants in 
the 3-mo analysis to 20456 transplants in the 5-year analysis. A total of 28 variables were considered, 
including recipient, donor, and matching variables. Several types of MLA were used, including ANN, 
RF, DT, and SVM. The researchers suggested that this lack of accuracy of MLA could be ascribed to 
database limitations. The highest AUROCs were obtained with LR, followed by RF.

Table 1 summarizes the original works on AI applied to LA that were discussed above.
A systematic review of AI for predicting post-transplant survival was performed by Wingfield et al

[34] Nine publications were included, and articles were considered of good quality overall. ANN and 
LR were the most common types of MLA and conventional statistical methods, respectively. MLAs 
were similar or superior to conventional statistics.

CONCLUSION
Although prioritization criteria have successfully reduced mortality in the waiting list, there is room for 
refinement in mortality prediction and a growing need for improving LA guidelines. Conventional 
statistical methods have, thus far, failed to provide a useful and widely applicable allocation score. AI 
can bring meaningful insights to this field. Paradoxically, MLA could help improve the ethics of LA, 
increasing waitlist and post-transplant survival, preferably with quality-adjusted life-years gained. The 
results obtained, thus far, are promising; however, we must consider the limitations of AI in medicine. 
First, its accuracy depends upon the availability of accurate, organized, and thorough datasets. In this 
regard, the algorithms also depend upon the data used to feed them, and regional particularities can 
limit their validation. Further, the clinical relevance of the results must be properly evaluated by experts 
in the field. Moreover, it can be challenging for the lay population to understand and accept LA 
decisions based on AI analysis. Finally, the health providers must make the final decision, at least while 
the concepts of ethics and justice rest upon the human mind.
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Abstract
Colorectal cancer is one of the most common neoplasia with an high risk to 
metastatic spread. Improving medical and surgical treatment is moving along 
with improving the precision of diagnosis and patient's assessment, the latter two 
aided more and more with the use of artificial intelligence (AI). The management 
of colorectal liver metastasis is multidisciplinary, and surgery is the main option. 
After the diagnosis, a surgical assessment of the patient is fundamental. Reaching 
a R0 resection with a proper remnant liver volume can be done using new 
techniques involving also artificial intelligence. Considering the recent application 
of artificial intelligence as a valid substitute for liver biopsy in chronic liver 
diseases, several authors tried to apply similar techniques to pre-operative 
imaging of liver metastasis. Radiomics showed good results in identifying 
structural changes in a unhealthy liver and in evaluating the prognosis after a 
liver resection. Recently deep learning has been successfully applied in estimating 
the remnant liver volume before surgery. Moreover AI techniques can help 
surgeons to perform an early diagnosis of neoplastic relapse or a better differen-
tiation between a colorectal metastasis and a benign lesion. AI could be applied 
also in the histopathological diagnostic tool. Although AI implementation is still 
partially automatized, it appears faster and more precise than the usual diagnostic 
tools and, in the short future, could become the new gold standard in liver 
surgery.
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Core Tip: Colon cancer is one of the most frequent cancers that unfortunately has a high risk of metastatic 
spread especially to the liver. The treatment of liver metastases is multidisciplinary, but surgery remains 
undoubtedly the main act. The results in the treatment of liver metastases have improved significantly over 
the years, but we continue to seek further paths of improvement. A new path, to which we currently 
entrust many hopes, is that of artificial intelligence, which could bring revolutionary solutions both in the 
diagnosis of liver metastases, and as a useful guide for surgical techniques. The purpose of this article is to 
summarize the latest news reported in the literature and possible research developments on this topic.
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INTRODUCTION
Nowadays, colorectal cancer is one of the most common neoplasia in Western countries and among the 
main causes of death for oncologic diseases[1,2]. Between 30% and 50% of patients with colorectal 
cancer will develop liver metastasis during their life and surgical resection remains a fundamental 
treatment[1,2]. The improvement of surgical techniques, along with the use of newer and better schemes 
of chemotherapy, will increase the chances of a longer disease free survival for these patients[3]. 
Meanwhile, artificial intelligence (AI) is infiltrating healthcare exponentially and it has already been 
applied to several fields related to gastroenterology and hepatology[4,5].

HEPATOBILIARY SURGERY FOR COLORECTAL METASTASIS
The treatment of colorectal metastasis is generally multidisciplinary, involving many professional 
figures and multiples pathways[1,2]. Discussing other therapies, such as chemotherapy or radiotherapy, 
is beyond the scope of this article.

Surgical treatment always goes with hepatic resection[1]. All metastatic patients need to undergo 
several pre-operative exams for a better definition of the disease and its extent: a thoraco-abdominal 
contrast-enhanced CT scan and/or a contrast-enhanced MRI[1,6]. The use of routine PET/CT scan 
remains controversial[1,7]. The main goals during the assessment are evaluating the extent of the 
hepatic disease and searching for any extra hepatic localization of disease, the latter one is an exclusion 
criteria for any kind of hepatic resection[1,8].

Once surgery is considered, the assessment becomes more operative: new main goals are estimating 
how complex is performing a R0 resection and evaluating the liver remnant volume[1]. Clearly, a R0 
resection should be achieved to increase the disease free survival and the overall survival, but the well-
known 1cm border of healthy tissue is now reconsidered due to the increasing effectiveness of 
chemotherapy and the complexity of the resection[1,9,10]. At the same time, the size of the remnant liver 
must be evaluated with a three dimensional CT volumetry and it should be more than 20% in a healthy 
liver, more than 30% in post- systemic chemotherapy liver and more than 40% in a cirrhotic liver[1,11]. 
In case of an insufficient liver remnant volume, a portal vein embolization can be considered to increase 
the size to the residual liver[1,12], while, in case of bilateral lesions with a majority of them in one lobe, a 
two-stage hepatectomy with or without contralateral limited resections can be done[1,13]. Finally, a 
mini invasive approach should be considered if the surgeon is experienced in these techniques, 
considering the well-known advantages of mini invasive approaches[14].

RADIOMICS AND ARTIFICIAL INTELLIGENCE APPLIED TO MEDICAL IMAGING
The recent advent of artificial intelligence has changed the paradigm in the field of medical imaging 
interpretation together with radiomics. Artificial intelligence is a discipline that aims at mimicking the 
function of human brain in solving complex problems using computers. Machine learning and deep 
learning are branches of AI in which machines are thought how to learn from data using analytical 
models and algorithms. While machine learning methods usually require less computation on the 
computer side and more human intervention, deep learning may involve a huge amount of information 
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(from which stems the adjective “deep”) and thus requires high performance computers, but less or no 
human intervention.

Radiomics is a tool for extensive extraction of quantitative features from medical imaging[4] and can 
be applied to ultrasound (US), magnetic resonance imaging (MRI), positron emission tomography (PET) 
and computed tomography (CT). The science of radiomics has taken advantage of machine learning 
with great benefit for medicine in general. The large amount of information provided by radiomics 
together with the improvements in AI have given raise to new methods of reading and interpreting 
medical images. Experts in different domains have now the opportunity to make less challenging the 
hard task of interpreting images thanks to this machine-aided approach. As shown in Figure 1 the 
workflow of conventional radiomics and AI applied to medical imaging is split in image acquisition, 
preprocessing, segmentation, features extraction and selection, model construction and training, model 
testing and evaluation. In conventional radiomics, one of the main prerequisites during the phase of 
image acquisition and preprocessing is a certain degree of standardization of the processes, in order to 
obtain a database with images that have comparable characteristics. Images segmentation consists in 
locating lesions manually or with the aid of a computer, in order to identify the region of interest o 
volumes of interests. Feature extraction and selection is a crucial step in machine learning paradigms in 
order to obtain a subset of quantitative parameters that are given as inputs to train the analytical model. 
In case of radiomics, these can be shape-based features (e.g. size, shape, location), histogram features (or 
others first-order features like standard deviation and variance), textual features (e.g. tumor hetero-
geneity) and other higher order features extracted with wavelet transforms or Laplacian filters. In the 
phase of model construction, it is important to choose the analytical engine that gives the best results in 
term of performance in relation to the selected features. To do so, several models can be chosen and then 
tested such as linear regression, support vector machines, decision tree, random forest, K-Means. The 
evaluation of the models and the assessment of their performance is inferred from indicators and 
methods such as the receiver operating characteristic, nomograms and the decision curve analysis.

Whereas conventional radiomics is still a widely used approach in medical image analysis, in recent 
years, deep learning has been introduced in the clinical practice thanks to its promising results[7]. This 
technique can reach high levels of performance while not requiring manual human intervention in the 
phases of image segmentation and features extraction (Figure 2). In this paradigm, features are in fact 
automatically selected by a neural network to maximize the performance of the algorithm (called 
“backpropagation algorithm”). However, a larger amount of data (e.g. of number of medical images) is 
commonly needed to train the neural network models using backpropagation. Among the most popular 
techniques are multilayer perceptron networks, convolutional neural network, long short-term memory 
recurrent neural networks. Such as in conventional radiomics, different deep learning techniques can be 
applied to the input data in order to obtain the best performance.

ARTIFICIAL INTELLIGENCE APPLIED TO LIVER SURGERY
Recently, artificial intelligence was applied to various fields in medicine, including general surgery and 
hepatology[4,5], as seen in Table 1. Decharatanachart et al[4] published a meta-analysis on AI supported 
imaging and standard liver biopsy. They showed a similar prediction rate for liver cirrhosis without the 
risk of complications of a biopsy and without the usual interpretation bias of ultrasonography. 
Meanwhile, Christou et al[5] focused more on the possibility of integrating diagnosis and management 
in several gastroenterological diseases, such as inflammatory bowel disease (IBD), Helicobacter pylori 
infection and gastric cancer, and several hepatic diseases, such as HCV infection and cirrhosis[5]. On 
one hand, they described how the use of machine learning and CAD can increase sensibility and 
specificity of a standard endoscopic or radiologic exam; on the other hand they describe the limitations 
of AI[5].

One the of the main application of AI in liver surgery is in the pre-operative imaging. Park et al[15] 
described the use of radiomics and deep learning in liver diseases. Radiomics appears to be an effective 
way to analyse the structural changes of an unhealthy liver, comparable to the standard techniques like 
biopsies[15,16]. Furthermore, radiomics is already in use for determining the prognosis after surgical 
resection or radiofrequency[17] for hepatocellular carcinoma, especially related to micro vascular 
invasion[15,18]. Deep learning finds its best application in liver segmentation, where it is fundamental 
in estimating the liver remnant volume and the fat ratio in post chemotherapy liver[15,19,20]. Fang et al
[21] focused on the implementation of deep learning in CT-guided biopsy to obtain a better localization 
of the lesion. In addition they presented a basic algorithm that could offer good results. At the same 
time, Winkel et al[22] compared manual segmentation and automatic segmentation with the use of deep 
learning showing a similar efficacy of the automatic segmentation with a faster elaboration of the 
images.

Focusing on focal liver lesions, Zhou et al[23] illustrated a 5 categories classification based on dynamic 
contrast-enhanced CT scan with a deep learning software: applying this classification, the radiologist 
would be able to make a diagnosis between a carcinoma and a benign lesion without biopsy[23,24]. 
They reported the application of deep learning to a contrast-enhanced ultrasonography (CEUS) to better 
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Table 1 Main implementation of artificial intelligence in hepatology and liver surgery

Ref. Type of paper Main topic AI implementation

Decharatanachart et al[4], 2021 Meta-analysis Chronic liver diseases Diagnosis and staging of liver fibrosis without biopsy

Christou et al[5], 2021 Review IBD, GI bleeding and chronic 
liver diseases

Increasing accuracy of gold standard diagnostic exams

Park et al[15], 2020 Review Liver diseases Staging of liver disease and prognosis after liver 
resection or chemotherapy

Wang et al[16], 2012 Survey Liver imaging Diagnosis of structural changes in healthy liver

Shan et al[19], 2019 Research article Liver imaging (CT) Prediction of early recurrence after HCC resection/RF

Hu et al[18], 2019 Research article Liver imaging (US) Evaluating microvascular invasion in HCC

Iranmanesh et al[19], 2014 Research article Liver imaging (CT) Evaluating portal pressure without invasive methods

Wang et al[23], 2019 Research article Liver imaging (CT/MRI) Using liver segmentation to an automatized liver 
biometry

Fang et al[21], 2020 Research article Liver imaging Using liver segmentation to more accurate localization 
of a hepatic lesion

Winkel et al[22], 2020 Comparative study Liver imaging Comparing a fully automated liver segmentation to a 
manual one

Zhou et al[23], 2019 Review Liver imaging Detecting hepatic lesions, characterized them and 
evaluate a response after treatment

Yasaka et al[24], 2018 Retrospective study Liver imaging (CT) Differentiation between benign and malignant hepatic 
lesions

Guo et al[25], 2018 Research article Liver imaging (US) Differentiation between benign and malignant hepatic 
lesions

Schmauch et al[26], 2019 Research article Liver imaging (US) Differentiation between benign and malignant hepatic 
lesions

Tiyarattanachai et al[27], 2021 Retrospective study Liver imaging (US) Detect and diagnose hepatic lesions

Perez et al[28], 2020 Review HCC Improving diagnosis and evaluation after ancillary 
treatments

Vivanti et al[29], 2017 Research article Liver neoplasia Evaluating post chemotherapy response

Li et al[30], 2015 Research article Liver imaging (CT) Differentiation between benign and malignant hepatic 
lesions

Hamm et al[31], 2019 Research article Liver imaging (MRI) Differentiation between benign and malignant hepatic 
lesions

Zhang et al[32], 2018 Research article HCC Differentiation between healthy and tumoral tissue in 
patient's liver

Preis et al[33], 2011 Research article Liver imaging (PET) Differentiation between benign and malignant hepatic 
lesions

Chen et al[34], 2020 Review Liver surgery Implementation in pre and post operative care

Nakayama et al[35], 2017 Retrospective study Liver surgery Use of 3D modeling to improve hepatice resection

Zhang et al[36], 2018 Prospective study Liver surgery Diagnosis and treatment of perihilar CCC

Vorontsov et al[37], 2019 Retrospective study Liver surgery Improving CRM identification and segmentation

Chartrand et al[39], 2017 Comparative study Liver imaging Improving liver segmentation and volumetry

Cancian et al[40], 2021 Research article. Liver pathology Better assessment pf tumor microenvironment

AI: Artificial intelligence; CCC: Cholangiocarcinoma; CRM: Colo-rectal metastases; CT: Computed tomography; GI: Gastrointestinal; HCC: Hepatocellular 
carcinoma; IBD: inflammatory bowel disease; MRI: Magnetic resonance imaging; PET: Positron emission tomography; US: Ultrasound.

distinguish between a benign and malignant lesion of the liver, showing again a better performance 
using AI techniques compared to the conventional technique[23,25]. Schmauch et al[26] presented a 
glimpse of future implementations of the standard ultrasonography where the use of a deep learning 
technique could drastically improve the diagnostic value of a widespread imaging such as US. Similarly, 
Tiyarattanachai et al[27] implemented a deep learning software for the US reporting a better outcome 
both in prevention and diagnosis of a focal liver lesion. Closely related to our main topic, Perez et al[28] 
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Figure 1 Workflow of conventional radiomics with machine learning.

Figure 2 Deep learning techniques applied to radiomics.

proposed a review on the management of hepatocellular carcinoma using AI for diagnosis, treatment 
and prognosis. Combining the US deep learning software[26] and the contrast-enhanced CT scan deep 
learning software[24,29,30], the clinician can reach a diagnosis on a focal liver lesion without the use of 
liver biopsy; in case of more doubts, a deep learning MRI software[31,32] and a deep learning PET 
software[33] are under external verification, but they appears promising.

Another main application of AI in liver surgery is the pre-operative patient assessment. The second 
part of the paper of Perez et al[28] described how the combined effort of US, CT, MRI scan and deep 
learning software increase the precision of the hepatic resection and the early recognition of a relapse. 
Beside the use of AI in the diagnosis, Chen et al[34] described the intra-operative advantages of using 3D 
rendering of the patient’s liver to study and apply the best approach for a liver resection and, at the 
same time, to keep the same 3D model during the operation for a more intuitive way to reach the 
aforementioned R0 resection[34-36].

About colorectal liver metastasis, Voronstov et al[37] proposed a CT-based deep learning software to 
automatize and improve the recognition of metastasis rather than benign focal liver lesions. Detection 
performance of the software was still lower for lesion smaller than 10 mm, but it became more precise 
for lesions between 10 and 20 mm[37]. Manual liver segmentation was still more accurate for lesions 
smaller than 10mm, but it reached the same value for lesions greater than 10 mm and it was more 
efficient in lesions greater than 20 mm; the same results appeared considering lesion-volume estimation
[37]. The authors also stated that all software calculations for an automatized or semi-automatized 
recognition and evaluation of metastasis is a significantly faster procedure than the usual manual one, 
as expected[37-39].

Within the same sphere, Cancian et al[40] focused on the analysis of the tumor microenvironment 
using a deep learning technique to evaluate the morphology of tumor associated macrophages. The 
same group recently described how different macrophages’ morphologies are associated with different 
outcomes and therapeutic responses in colorectal liver metastasis[41], so they developed a pipeline 
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Figure 3 Main implementation of artificial intelligence in diagnosis and treatment of colo-rectal liver metastases.

using a CAD tool to process faster the histopathological slides. Although the pipeline is still under 
verification for a fully automatic application, a combined use of a manual and automatic approach 
showed a better and faster identification of macrophages' morphologies[40,41]. In Figure 3 are shown in 
a schematic manner the main tools of AI in diagnosis and treatment of colo-rectal liver metastases.

CONCLUSION
Artificial intelligence and deep learning offer new hopes in diagnosis and therapy of the liver 
metastasis. Therefore new promising research directions open up in this field, that must be confirmed 
with larger studies in the future.
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Abstract
Despite several advances in the oncological management of colorectal cancer 
(CRC), there still remains a lacuna in the treatment strategy, which differs from 
center to center and on the philosophy of the treating clinician that is not without 
bias. Personalized treatment is essential for the treatment of CRC to achieve better 
long-term outcomes and to reduce morbidity. Surgery has an important role to 
play in the treatment. Surgical treatment of CRC is decided based on clinical 
parameters and investigations and hence likely to have judgmental errors. 
Artificial intelligence has been reported to be useful in the surveillance, diagnosis, 
treatment, and follow-up with accuracy in several malignancies. However, it is 
still evolving and yet to be established in surgical decision making in CRC. It is 
not only useful preoperatively but also intraoperatively. Artificial intelligence 
helps to rectify the human surgical decision when clinical data and radiological 
and laboratory parameters are fed into the computer and may guide correct 
surgical treatment.

Key Words: Artificial Intelligence; Colorectal cancer; Clinical implications; Treatment 
strategy; Surgical treatment
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Core Tip: Treatment decision making in colorectal cancer significantly affects the 
outcome, which is a multidisciplinary team approach and is not without bias. Surgery 
plays a significant role in the treatment. Whether artificial intelligence may improve the 
outcome of surgery in colorectal cancer is not known. The present review focuses on its 
current role in surgical decision making and future impact.
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INTRODUCTION
Mr. Alan Turing in 1950 hypothesized that a machine can also think like a human being in his book 
entitled “Computing Machinery and Intelligence”[1]. The term “artificial intelligence (AI)” was later 
coined by John McCarthy in a summer workshop[1,2]. AI has evolved from simple tasks to more 
complex tasks similar to a human brain[1].

AI has proven its worth in various day-to-day life and human requirements, including health care 
(health tracking devices)[3], automobiles (autopilot)[4], banking and finances (chatbots, robotraders)[5], 
surveillance (CCTV cameras), social media, entertainment, education, space exploration, industries 
(aluminum, dairy)[6-8], and disaster management[9,10]. One recent example is the efficient production 
of facemasks during the coronavirus disease 2019 pandemic[11] (Table 1). Its potential has been 
exploited in various fields of medicine, including online appointment scheduling, online check-in at 
hospitals, digitization of medical records, follow-up and immunization reminder, drug dosage 
algorithm, and adverse effect warnings during the prescription of multidrug combinations. Besides this, 
its application in the field of oncology is immense. AI is assisting in generating new approaches for 
cancer detection, screening of healthy subjects, diagnosis, classification of cancers using genomics, 
tumor microenvironment analysis, prognostication, follow-up, and new drug discovery[12-15].

Colorectal cancer (CRC) is one of the most common types of gastrointestinal (GI) tract malignancy 
and is the fourth most leading cause of cancer death globally[16,17]. AI has been used to facilitate 
screening, diagnosis (colonoscopy, advanced endoscopic modalities, imaging), genetic testing, and 
treatment (chemotherapy, radiotherapy, robotic assisted surgery)[18]. New research and developments 
are required for better patient management to improve the outcome.

In the past decade, several developments have taken place in the management of CRC, e.g., revised 
anatomy of the rectum and concept of total mesorectal excision by Heald et al[19], concept of complete 
mesocolic excision and central vascular ligation by Hohenberger[20] for colon cancer, imaging and 
staging techniques, introduction of staplers[21], newer chemotherapeutic agents and biologicals, 
radiation therapy, and mode of surgery (laparoscopic and robotic surgery)[22,23] have significantly 
improved the outcome and sphincter preservation. However, there still remain numerous challenging 
issues like accurate preoperative diagnosis, staging, individualized and personalized treatment 
planning, and intraoperative challenges to minimize complications and improve the surgical outcome. 
Newer tools of AI have been used in various fields of medicine, including drug development, health 
monitoring, managing medical data, disease diagnostics, digital consultations, personalized treatment, 
analysis of health plans, and medical and surgical treatment[24] and is quickly finding a role in surgery 
and surgical decision making.

Two common fields of the AI used in medicine are: virtual and physical[25]. Virtual field is 
commonly used in medical imaging, clinical diagnosis, treatment, and drug research and development. 
Surgical and nursing robots are the part of physical fields. Because of ongoing innovations in AI, it is 
being used widely in medicine, both for diagnosis and management of tumors. AI has played a 
significant role in CRC at various stages and is reported to have improved the 5-year survival. The 
subsection of AI used in medicine is deep learning, which is responsible for widespread application of 
AI[26]. This method encompasses all the concepts of AI and is based on artificial neural networks 
(ANN), which is inspired by the neurons in a biological brain. Deep learning involves application of 
training a specific task on a larger data set, extracting information from them, and using them for future 
predictions about these tasks through flexible adaptation to the new data. Recently, deep learning has 
been used to predict cardiovascular risk based on retinal images[27], classification of skin lesions[28], 
mammogram-based breast cancer detection[29], and esophageal carcinoma[30]. However, application of 
AI in surgery is challenging, as unlike the use of static images, surgery includes dynamic procedural 
data like the patient clinical parameters, different devices used, and knowledge of clinical guidelines 
and from the experiences[31]. The uses and applications of various branches of AI in medicine as well as 
other fields are shown in Table 1.

In 2007, IBM began development of Deep QA technology (Watson). In 2017, Artery’s medical imaging 
platform was the first Food and Drug Administration approved cloud-based deep learning application 
in healthcare for cardiac disorders, which was faster in giving results as compared to the profes-
sionals(15 s vs 30 s)[32]. The Food and Drug Administration-approved “GI genius” in the year 2019 is 
the first device based on machine learning to aid clinicians in detecting polyps or tumors during 
colonoscopy.

https://www.wjgnet.com/2644-3236/full/v3/i2/36.htm
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Table 1 Subfields of artificial intelligence and its application in day-to-day human life

S. 
No Fields of AI Description 

1 Machine learning Pattern identification and analysis where machine can help to improve based on past experiences provided 
from the given data set

2 Deep learning Consists of multilayered neural networks called artificial neural network, which enables the computer to learn 
and make decisions on its own

3 Natural language processing Ability of the computer to extract data from human language and make decisions

4 Computer vision Potential to obtain information from a series of images or videos

5 Mixed-integer linear 
programming model[11]

It is helpful in finding the locational, supply, production, distribution, collection, quarantine, recycling, reuse, 
and disposal decisions within a multiperiod multiechelon multiproduct supply chain

6 Covering tour approach[9] Optimizing the distribution and allocation of resources among individuals. It is useful at the time of crisis

7 Mixed-integer linear mathem-
atical model[6]

This model optimizes economic, social, and environmental objectives simultaneously

8 Neural network with runner root 
algorithm[8]

Minimizing risk and maximizing return in industrial production

9 Meta-heuristic algorithms[7] A comprehensive framework to predict the demand for dairy products

10 Hybrid shapley value and 
multimoora method[10]

An intelligent performance evaluation system for different supply chains in industries 

AI: Artificial intelligence; S. No: Serial number.

This paper reviews the current status of AI in CRC surgical decision making and its future implic-
ations.

USES OF AI IN GASTROINTESTINAL DISORDERS AND COLORECTAL CANCER
AI is progressively being used in the understanding of GI diseases[33-35]. Imaging such as X-ray, 
computed tomography scanning, magnetic resonance imaging, or endoscopic imaging is being used for 
diagnosis[36-39]. The application of AI has led to early detection of intestinal malignancies or 
premalignant lesions, and inflammatory or other non-malignant diseases or lesions[40].

With IBM Watson for oncology (WFO), AI has found its increasing role in oncology therapy. It has 
been used in several malignancies like breast carcinoma, lung carcinoma, gastric cancer, colon and rectal 
cancer, etc. Initially, Memorial Sloan Kettering Cancer Center (New York, United States) started the use 
of WFO machine learning. WFO uses natural language processing and clinical data from multiple 
resources (treatment guidelines, expert opinions, literature, and medical records) to formulate treatment 
recommendations[41]. A recent meta-analysis[42] had shown the highest concordance between WFO 
and Mass Detection Tool in breast carcinoma and the lowest in stomach carcinoma. The Manipal 
Comprehensive Cancer Centre (Bangalore, India) has implemented WFO for treatment in 250 CRC 
patients[43]. There was a concordance in 92.7% of rectal and 81.0% of colon cancer patients between 
WFO and Mass Detection Tool recommendations[43].

AI IN COLORECTAL CANCER
AI is used in the diagnosis and treatment of colorectal polyps and cancer. In colorectal cancer, it helps in 
diagnosis, staging (lymph node or liver metastasis), preoperative treatment planning, response to 
treatment assessment, intraoperative assistance, postoperative prognostic information, etc[44-46].

AI in preoperative surgical decision making: staging and planning
After diagnosis of CRC is made, the most important consideration is staging to determine a further plan 
of management, whether upfront surgery, neoadjuvant treatment, or palliative treatment.

In locally advanced rectal cancer, preoperative chemoradiotherapy is known to reduce the local 
recurrence. However, selection of patients is essential to avoid unnecessary complications due to 
overtreatment. Therefore, there is a need for a system that can differentiate between T2 and T3 rectal 
cancers. Kim et al[47] used convolutional neural network models to distinguish T2 from T3 lesions from 
magnetic resonance imaging with an accuracy of 94%. Similarly, Wu et al[48] also used convolutional 
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neural network to stage rectal cancers.
In addition to its role in preoperative imaging, AI provides faster interpretation compared to 

radiologists (20 s vs 600 s) in the detection of lymph node metastasis in rectal cancer[49]. Preoperatively, 
positron emission tomography/computed tomography is commonly used in the case of indeterminate 
lesions on contrast-enhanced computed tomography to potentially find curable M1 disease (National 
Comprehensive Cancer Network guidelines version 3.2021). Recently, application of AI has improved 
the sensitivity and specificity of detection of pulmonary nodules[50]. AI can also be used to reconstruct 
the area of interest from two-dimensional data obtained from imaging and endoscopic findings to 
generate a three-dimensional structure for better delineation of the tumor in relation to the surrounding 
vital structures, which may be useful in preoperative surgical planning[51]. This is extremely useful in 
determining which patient will require a pelvic exenteration or which patient will require a lateral 
pelvic lymph node dissection. This is also useful to safeguard the important surrounding structures 
during surgery to reduce the postoperative morbidity and mortality related to it.

In colon cancer, clinical evidence of bulky nodal disease or T4b lesion entails neoadjuvant therapy 
(National Comprehensive Cancer Network guidelines version 3.2021). It is also recommended that the 
presence of nodal involvement in T1 cancer requires colectomy and lymphadenectomy. Kudo et al[52] 
applied machine learning ANN in 3134 patients with T1 CRC based on the patient’s data on age, 
gender, tumor size, location, morphology, lymphatic and vascular invasion, and histologic grade to 
predict nodal involvement. ANN model was significantly better in lymph node metastasis detection 
compared to guidelines (area under the curve: 0.83 vs area under the curve: 0.73, P value = 0.005). 
Therefore, these patients can be subjected to upfront surgery and lymphadenectomy instead of 
endoscopic treatment. A meta-analysis by Bedrikovetski et al[53] using 17 studies (12 used radiomics 
models and 5 used deep learning models) concluded that AI was more efficient than radiologists in 
predicting lymph node metastasis. Similarly, AI was found to be better in detecting metastatic nodes as 
compared to conventional positron emission tomography/computed tomography imaging[54].

AI in intraoperative surgical decision making
Execution of a surgery depends upon the operating skill and ability of decision making. In 1978, Dr. 
Spencer[55], a cardiovascular surgeon, mentioned that “a skilfully performed operation is about 75% 
decision making and 25% dexterity.” The decision making can be both technical or non-technical, which 
impacts patient outcome. Studies of surgical errors have shown that over half of the adverse events are 
due to cognitive errors[56]. But surgical training is more focused on skill training rather than decision 
making as it is a challenging task to train[57]. Decision-making skills may vary with experience of 
operating surgeons[58]. Thus, improving the quality of surgical decision making could help to improve 
the outcome of surgery.

Decision making is a three-step process, i.e. assessment of the situation, action-taking, and re-
evaluation of the action’s consequences. AI has been used as a decision making aid in a variety of fields, 
both in medicine and in surgery[59,60]. AI can help surgeons to assess a given situation (e.g., retrieving 
better data about a clinical situation), the types of actions taken (e.g., through decision suggestion), and 
the process of re-evaluating the impact of the decision taken. Therefore, it can be achieved in three 
different ways: (1) Retrieving data and experience from similar clinical scenarios and to supplement 
sensory input during minimal access surgery, which are not available compared to open surgery; (2) 
Intraoperative pathology assessment, tumor margin mapping, tumor classification, and tissue identi-
fication; and (3) Suggestion of steps of surgery.

Identification of surrounding structures: Harangi et al[61] used an ANN model to distinguish ureter 
from uterine artery during laparoscopic hysterectomy with 94.2% accuracy. Similarly, Quellec et al[62] 
applied a system of retrieving related videos of retinal surgery, and subsequent steps were followed 
during surgery to minimize the risk of injury. AI made it possible to define dissection planes in the 
robotic gastrectomy and to identify the recurrent laryngeal nerve during thyroidectomy[63,64]. Various 
studies have shown improved detection of vital structures during laparoscopic cholecystectomy to 
prevent bile duct injury using AI (Madani et al[65], Mascagni et al[66], Tokuyasu et al[67]). Table 2 
highlights the studies where AI was used for identification of vital structures.

In CRC surgery, AI can be used to detect nearby vital structures (nerve plexus, presacral venous 
plexus, ureter, bladder, urethra, prostate, seminal vesicles), lymph node metastasis (lateral pelvic nodes, 
nodes near the root of inferior mesenteric artery), determination of the margin of resection, vascularity, 
and adequacy of anastomosis.

Augmented reality augments surgeons’ intraoperative vision by providing a semi-transparent 
overlay of preoperative imaging on the area of interest[68]. It has been used in several GI surgical 
procedures like laparoscopic splenectomy[69] and pancreaticoduodenectomy[70]. Augmented reality 
can be applied to CRC surgeries to identify and preserve the nearby vital structures.

Deciding the level of resection: In CRC surgery, determination of margin status is important to decide 
the level of resection and consideration for the feasibility of an anastomosis or the creation of a stoma. 
Margin status can be obtained with “optical biopsy” (in vivo diagnostic imaging), which can avoid time-
consuming resection and frozen section analysis. Fluorescence-guided surgery is evolving, and it has 



Ghosh NK et al. AI in CRC surgery

AIG https://www.wjgnet.com 40 April 28, 2022 Volume 3 Issue 2

Table 2 Studies having found the role of artificial intelligence in identification of vital structures in surgery

S. No Primary aim AI method used Ref.

1 Recognition of ureter and uterine artery Convolutional neural network Harangi et al[61], 2017 

2 Recognition of surgical steps of retinal surgery Content-based video retrieval system Quellec et al[62], 2011

3 To define safe dissection plane in robot assisted gastrectomy Deep learning model based on U-net Kumazu et al[63], 2021

4 Recurrent laryngeal nerve detection during thyroidectomy Deep learning computer vision algorithm Gong et al[64], 2021

AI: Artificial intelligence; S. No: Serial number.

shown promising results in determination of liver or peritoneal metastasis, anastomotic perfusion, 
detection of sentinel nodes, ureter, and nerves, and intraoperative detection of primary and recurrent 
lesions during colorectal cancer surgery[71]. Such a concept can be extrapolated on to AI for more 
efficient performance. Modalities used for intraoperative optical biopsy are confocal laser endomic-
roscopy, hyperspectral imaging, optical coherence tomography, and contrast-enhanced ultrasono-
graphy. There are several studies where these modalities have been used to distinguish abnormal 
epithelium from normal with the help of AI (Table 3). Using hyperspectral imaging, Jansen-Winkeln et 
al[72] reported 94% accuracy in distinguishing carcinoma from adenoma and healthy mucosa using 
ANN on post-resection of colonic lesions during surgery. A couple of experimental studies have shown 
that laparoscopic hyperspectral imaging can be used to distinguish malignant tissue in CRC from 
normal tissue. These modalities can be used to help in surgical decision making in CRC as revisional 
surgery can be done intraoperatively rather than waiting for frozen sections or final histology avoiding 
another surgery[73,74]. AI has been effective in differentiating glioblastoma, parathyroid gland, and 
malignant lesions of the colon from adjacent normal tissues[75-77].

Deciding the site of anastomosis: Studies have shown the incidence of colocolic and colorectal 
anastomosis leak to be 3.3% and 8.6%, respectively[78] and has adverse clinical outcomes and economic 
burden[79]. It can lead to anastomotic site stricture, recurrence of malignancy, and poor evacuatory 
function. The literature has shown poor predictive value of surgeons’ perceptions of possible 
anastomotic site leaks that led to investigating other methods like the use of indocyanine green[80]. The 
robotic platform provides an inbuilt near infrared camera for assessment of vascularity at the resection 
margin and to reduce anastomotic site leakage[81]. A study by Mazaki et al[82], where auto-artificial 
intelligence was used to develop a predictive model for anastomotic leakage, showed that triple-row 
staplers can decrease the leak rate. There is an ongoing study by Taha et al[83] known as the PANIC 
study (The Prediction of Anastomotic Insufficiency risk after Colorectal surgery), which utilizes 
machine learning principles to formulate an algorithm for prediction of anastomotic leak following 
colonic (PANIC-C) or colorectal (PANIC-R) anastomosis. The results of the study are expected to be 
available by December 2022.

Helping in operative step suggestion: Operative step suggestion in CRC is at a developmental stage. In 
the literature, AI has been used in cataract surgery and spinal cord surgery with satisfactory results. 
Tian et al[84] developed VeBIRD (Video-Based Intelligent Recognition and Decision system) to track and 
classify the cataract grade on videos of phacoemulsification surgeries. It helped to decide the amount of 
ultrasonic energy needed to emulsify a cataract based on the grade. Therefore, a less experienced 
surgeon can perform the procedure with as much efficiency as that of an experienced surgeon. Somato-
sensory evoked potential is used during spinal cord surgeries to detect spinal cord injury. A decrease in 
somatosensory evoked potential value needs to be confirmed with awakening the patient and checking 
spinal cord function and this decrease in somatosensory evoked potential can be due to the effect of 
anesthesia. Fan et al[85] applied support vector regression and multi-support vector regression to 
distinguish spinal cord injury from anesthetic effect. Similarly, in CRC surgery such methods can help 
to find the area of interest to formulate standardized resection and differentiate intraoperative 
lymphorrhea from ureter or bladder injury using AI.

Colorectal cancer surgery requires accurate and judicious preoperative decisions to optimize the 
outcome of surgery (personalized treatment). The decision can be augmented by the use of AI, which is 
expected to be precise and without errors. It can assist in imaging, tissue diagnosis, and staging before 
surgery. It can be used preoperatively to choose patients for neoadjuvant therapy and those requiring 
upfront surgeries. Intraoperatively, it helps in the identification of tumor tissue (to determine the 
margin of resection), metastatic lymph nodes (for the extent of lymphadenectomy), and important 
surrounding structures. Its assistance is also useful in assessing the adequate vascularity at the 
anastomotic site that can decrease the postoperative anastomotic leak and thereby reduce the morbidity 
and mortality.



Ghosh NK et al. AI in CRC surgery

AIG https://www.wjgnet.com 41 April 28, 2022 Volume 3 Issue 2

Table 3 Studies of artificial intelligence differentiating normal epithelium from abnormal or malignant cells

S. 
No Modality used Primary aim of study AI method used Ref.

1 CEUS To differentiate glioblastoma from normal tissue Support vector machines Ritschel et al[75], 2015

2 OCT To distinguish parathyroid tissue from thyroid, 
lymph node, and adipose tissue

Texture feature analysis and back propagation 
artificial neural network

Hou et al[76], 2017

3 CLE Normal colonic mucosa from malignant lesion Fractal analysis and neural network modelling Ştefănescu et al[77], 
2016

4 Hyperspectral 
imaging

Differentiation of colonic carcinoma from adenoma 
and healthy mucosa

Artificial neural network Jansen-Winkeln et al
[72], 2021

AI: Artificial intelligence; CEUS: Contrast-enhanced ultrasonography; OCT: Optical coherence tomography; CLE: Confocal laser endomicroscopy; S. No: 
Serial number.

Like the application of AI in several domains of medicine and health, it may play a significant role in 
surgical decision making, enhancing the outcome, in addition to diagnosis (imaging, endoscopy, tissue 
diagnosis).

FUTURE IMPLICATIONS
The future is promising, where AI is likely to play a significant role in reducing the bias of the Mass 
Detection Tool in deciding the treatment strategy and reducing the diagnosis and planning time with 
uniformity and with no or minimum error. The day is not far when the surgical world may be able to 
find a personalized surgical treatment for each and every patient of CRC, with improved intraoperative 
technical execution and reduced complications. The overall time taken in the management of CRC will 
be reduced, the treatment will be standardized, and the outcome will be maximized.

CONCLUSION
The role of AI in CRC is currently limited to preoperative staging and assessment of surgical resection 
margins and anastomotic sites. Its application to surgical decision making is still evolving, and the 
literature is very limited. However, the future is promising.
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Abstract
Non-alcoholic fatty liver disease (NAFLD) and chronic viral hepatitis are among 
the most significant causes of liver-related mortality worldwide. It is critical to 
develop reliable methods of predicting progression to fibrosis, cirrhosis, and 
decompensated liver disease. Current screening methods such as biopsy and 
transient elastography are limited by invasiveness and observer variation in 
analysis of data. Artificial intelligence (AI) provides a unique opportunity to more 
accurately diagnose NAFLD and viral hepatitis, and to identify patients at high 
risk for disease progression. We conducted a literature review of existing evidence 
for AI in NAFLD and viral hepatitis. Thirteen articles on AI in NAFLD and 14 on 
viral hepatitis were included in our analysis. We found that machine learning 
algorithms were comparable in accuracy to current methods for diagnosis and 
fibrosis prediction (MELD-Na score, liver biopsy, FIB-4 score, and biomarkers). 
They also reliably predicted hepatitis C treatment failure and hepatic enceph-
alopathy, for which there are currently no established prediction tools. These 
studies show that AI could be a helpful adjunct to existing techniques for diag-
nosing, monitoring, and treating both NAFLD and viral hepatitis.

Key Words: Non-alcoholic fatty liver disease; Non-alcoholic steatohepatitis; Fatty liver; 
Artificial intelligences; Steatosis; Fibrosis; Machine learning
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Core Tip: Non-alcoholic fatty liver disease (NAFLD) exists on a spectrum from simple hepatocyte steatosis 
to non-alcoholic steatohepatitis (NASH) with ballooning and fibrosis. Given the lack of efficient screening 
methods and high rate of asymptomatic disease, it is challenging to identify patients with NAFLD in its 
various stages. Although liver biopsy remains the gold standard for diagnosing NASH, it is an invasive, 
costly, and painful procedure. Conventional imaging modalities including ultrasound, computed 
tomography, magnetic resonance imaging and transient elastography are limited by inter- and intra-
observer variability depending on the stage of fibrosis. Similarly, despite recent progress in the prevention 
and treatment of viral hepatitis, predicting sustained virological response and disease progression remains 
challenging. Artificial intelligence (AI) is an exciting and increasingly pertinent field in medicine as 
clinicians incorporate augmenting technology into their daily practice. This review summarizes recent 
literature on the application of AI in NAFLD and viral hepatitis. Specifically, the review will assess the 
performance of AI as a non-invasive method for the diagnosis and staging of liver fibrosis and steatosis, as 
well as for the detection and treatment of chronic viral hepatitis. It will also aim to highlight the potential 
for AI based methods on their ability to develop therapeutic targets.

Citation: Gunasekharan A, Jiang J, Nickerson A, Jalil S, Mumtaz K. Application of artificial intelligence in non-
alcoholic fatty liver disease and viral hepatitis. Artif Intell Gastroenterol 2022; 3(2): 46-53
URL: https://www.wjgnet.com/2644-3236/full/v3/i2/46.htm
DOI: https://dx.doi.org/10.35712/aig.v3.i2.46

INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) exists on a spectrum from simple hepatocyte steatosis to 
inflammation, ballooning and fibrosis. Given the lack of efficient screening methods and high rate of 
asymptomatic disease, it is challenging to identify patients with various stages of NAFLD[1,2]. Non-
alcoholic steatohepatitis (NASH) patients with significant fibrosis are at increased risk for cirrhosis and 
progressive liver failure, which has led NASH to become one of the leading causes of liver 
transplantation in the United States[3]. NASH affects approximately 3% to 6% of the US population, and 
this number continues to increase. It affects approximately 25% of the population worldwide[4].

Although liver biopsy remains the gold standard for diagnosing NASH, it is an invasive, costly, and 
painful procedure. Therefore, serial liver biopsies for surveillance are not always feasible. Conventional 
imaging modalities including ultrasound, computed tomography (CT), magnetic resonance imaging 
(MRI) and transient elastography are limited by inter- and intra-observer variability depending on the 
stage of fibrosis[1,2]. Similarly, despite recent progress in the prevention and treatment of viral hepatitis, 
predicting sustained virological response (SVR) and disease progression remains challenging.

Artificial intelligence (AI) is an exciting and increasingly pertinent field in medicine as clinicians 
incorporate augmenting technology into their daily practice. AI is the concept of teaching a computer to 
simulate the cognitive abilities of the human brain. Machine learning (ML) entails allowing the 
computer to simulate the human brain independently. It can either be supervised (through specific 
feedback from humans) or unsupervised, in which case there is no guidance provided and the computer 
is able to independently synthesize and analyze the output[1]. AI is increasingly applied to the 
diagnosis and prediction of various diseases. Researchers are developing machine learning (ML) 
algorithms to predict risk and outcomes using multiple demographic, clinical, biochemical, and imaging 
parameters for diagnosis and prognosis related to liver fibrosis and steatosis, including NAFLD and 
viral hepatitis[1].

Current methods of assessing liver fibrosis progression and mortality in both NAFLD and viral 
hepatitis have many limitations. These include the intra- and inter-observer variability in staging 
fibrosis, the inability to place fibrosis along a continuum, and the lack of identifiable markers for disease 
progression[1,2]. These limitations and the ability of ML models to overcome them will be discussed 
further in this review. This review will also highlight how ML models have the potential to present 
opportunities for drug discovery and prediction of therapeutic and toxic effects of drugs. Machine 
learning models based on AI provide promising features that could not only enhance screening for 
NAFLD, but also help with fibrosis staging in patients with NASH and viral hepatitis.

This review summarizes recent literature on the application of AI in NAFLD and viral hepatitis. The 
main objective is to assess the performance of AI as a non-invasive method for the diagnosis and staging 
of liver fibrosis and steatosis, as well as the detection and treatment of chronic viral hepatitis.
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METHODS
A review of current literature in the areas of AI in NAFLD and viral hepatitis was conducted using two 
separate searches on PubMed. First, we used the search terms “non-alcoholic fatty liver disease”, 
“NAFLD”, and “deep learning” in combination with “artificial intelligence”, “histology”, “omics” and 
“radiology.” The second search was conducted using the search terms “viral hepatitis” in combination 
with “hepatitis A”, “hepatitis B”, “hepatitis C”, “hepatitis E”, “machine learning”, “artificial 
intelligence”, “histology” and “radiology”.

Most articles on NASH and NAFLD published between 2018 and 2021 were included in this review. 
Articles were excluded if they did not offer comparisons between AI modalities and existing methods 
for screening or prediction (MELD score, elastography, etc.). Twenty-seven articles were included in our 
review, 13 on NAFLD and 14 on chronic viral hepatitis. For studies on viral hepatitis, described machine 
learning algorithms fell into one of three categories: Predicting prevalence, screening for complications 
(including fibrosis, hepatocellular carcinoma, decompensated cirrhosis, and death), and predicting 
response to treatment.

USE OF AI FOR DIAGNOSING VIRAL HEPATITIS AND NAFLD/NASH
It is estimated that half of patients infected with hepatitis C worldwide are unaware of their diagnosis 
and only 17% have undergone liver fibrosis staging[5]. This rate is even lower for hepatitis B, for which 
only 10.5% of infected patients are aware of their status. In March 2020, the USPSTF recommended 
hepatitis C screening for all adults over 18; however, there are currently no population-based screening 
recommendations for hepatitis A and B. Primary care offices do not routinely test for hepatitis B. 
Machine learning has been used both to determine regional prevalence of chronic hepatitis and to 
identify undiagnosed cases.

Zheng et al[6] compared two algorithms (Elman neural network and autoregressive integrated 
moving average, or ARIMA) designed to predict incidence of hepatitis B in Guangxi, China. ARIMA is a 
type of model that can capture the randomness of data and is often used for infectious disease 
prediction. Predictions were compared to the reported cases of hepatitis B cases from the Health 
Commission of Guangxi, China. The neural network was the more predictive model, with a root-mean-
square error (RMSE) of 0.89 and mean absolute error (MAE) of 0.70, while the ARIMA had an RSME of 
0.94 and an MAE of 0.81.

A 2020 study by Doyle et al[7] aimed to predict chronic hepatitis C (HCV) positive status by using 
patient claims data to develop four algorithms, all with a predictive accuracy of over 95%. Algorithms 
included logistic regression, gradient boosted trees, a stacked ensemble, and random forests. The 
stacked ensemble performed the best, with a precision of 97% at recall levels > 50%. Key predictors of 
HCV infection included nonsteroidal anti-inflammatory drug use, opioids, healthcare utilization, 
patient age and osteoarthritis or glomerulonephritis treatment. We were unable to find any study to 
date using AI to screen for NAFLD/NASH.

USE OF AI TO ASSESS FIBROSIS IN VIRAL HEPATITIS AND NAFLD/NASH 
Existing histologic models not only rely on scoring of fibrosis by a pathologist but are also unable to 
place fibrosis along a continuum. Artificial intelligence enables the placement of fibrosis along a 
continuum, identifies risk factors for progression of fibrosis, allows enhanced scoring of fibrosis stages, 
leading to better selection of patients for clinical trials This also allows for identification of therapeutic 
targets[2].

Lu et al[8] developed a light gradient-boosting machine model to predict liver fibrosis and cirrhosis in 
treatment-naive chronic hepatitis B patients at four centers in China. The model, named Fibro Box, 
outperformed transient elastography, APRI, and FIB-4, with area under the curve (AUC) 0.88 in external 
validation sets for significant fibrosis and 0.87 for cirrhosis. Input variables included fibroscan results, 
platelets, alanine aminotransferase (ALT), Prothrombin time (PT), and splenic vein diameter.

A 2013 study by Zheng et al[9], used an artificial neural network (ANN) to predict 3-month mortality 
of individuals with acute-on-chronic liver failure due to hepatitis B (HBV-ACLF). Patient characteristics 
included in this model were age, PT, serum sodium, total bilirubin, E antigen positivity status and 
hemoglobin. The ANN predicted mortality more accurately than MELD-based scoring systems, with 
area under the curve receiver operating characteristic (AUCROC) 0.765 in the validation cohort 
compared to 0.599 for MELD.

Similarly, Huo et al[10] developed ANNs to predict 28- and 90-d mortality in HBV-ACLF. Data were 
retrospectively reviewed from 684 patients admitted for ALF at 8 hospitals in various Chinese provinces 
with 423 cases in the training cohort and 261 in the validation cohort. In the training cohorts, the neural 
network had a significantly higher accuracy than MELD, MELD-Na, CLIF-ACLF, and Child-Pugh score, 
with AUC 0.948 and 0.913 for 28- and 90-d mortality, respectively. In the validation cohort, the model 
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performed significantly better than MELD and insignificantly better than other scoring systems, with 
AUC 0.748 and 0.754 for 28- and 90-d mortality. Significant mortality predictors included age, presence 
of HE, sodium, PT, gamma-glutamyl transpeptidase (GGT), e antigen, alkaline phosphatase, and 
bilirubin.

In another study, Wang et al[11] used deep learning radiomics of elastography (DLRE) to assess 
stages of liver fibrosis in patients with chronic hepatitis B. DLRE was compared to 2D shear wave 
elastography and biomarkers (AST: Platelet ratio, fibrosis index), with liver biopsy as the reference 
standard. 1990 images from 398 patients were used to develop the models. AUCROCs for DLRE were 
0.97 for cirrhosis, 0.98 for advanced fibrosis, and 0.85 for significant fibrosis; this performed better than 
other methods except for elastography in severe fibrosis.

Like viral hepatitis, there are several studies establishing the role of AI in assessing fibrosis in 
NAFLD/NASH. In one study by Forlano et al[2], liver biopsy specimens were annotated by two expert 
pathologists using the clinical research network (CRN) score as a measurable scale of degree of steatosis, 
inflammation, ballooning and fibrosis. The machine learning model was built using 100 patients with 
NAFLD in the derivation group and 146 patients in the validation group. There was good concordance 
when the machine learning model was compared to the scoring of the expert histopathologist on the 
liver biopsy specimens; the interclass correlation coefficients were 0.97 (95%CI, 0.95-0.99; P value < 
0.001) for steatosis, 0.96 (95%CI, 0.9-0.98; P value < 0.001) for inflammation, 0.94 (95%CI, 0.87-0.98; P 
value < 0.001 for ballooning, and 0.92 for fibrosis (95%CI, 0.88-0.96; P value < 0.001). A subgroup 
analysis showed that quantitative analysis performed better than the CRN score in differentiating 
between the various stages of NAFLD. Another CNN model developed by Qu et al[12], showed that a 
convolutional neural network (CNN) model had an area under the curve (AUC) of 63% for all four 
subsets of the NAFLD scoring, while the AUC’s were 90.48% for steatosis, 81.06% for ballooning, 70.18% 
for inflammation and 83.85% for fibrosis. These studies underscore the utility of ML models in 
illustrating the heterogeneity of liver pathology in NAFLD[9,26].

In another study by Taylor-Weiner et al[13], a CNN model was developed that allowed for 
assessment of fibrosis along a continuum, which is not possible with pathologist scoring alone. The 
CRN and Ishak scores were applied to each pixel within a given image, allowing for evaluation of 
heterogeneity in fibrosis as well. In addition, the CNN served as a prediction model allowing for identi-
fication of features associated with disease progression. The model’s predictions correlated significantly 
with the pathologist scoring in all three studies, the STELLAR-3, STELLAR-4, and ATLAS, whose 
participants were used to build and validate the ML model - steatosis, ρ = 0.60; P value < 0.001; lobular 
inflammation, ρ = 0.35; P value < 0.001; and HB, ρ = 0.41; P value < 0.001. The model’s level of 
agreement with pathologist scoring was within the range of agreement between individual pathologists. 
The weighted Cohen’s kappa was 0.801 for NASH CRN and 0.817 for the Ishak classifications.

Another study by Gawrieh et al[14] built a ML model using support vector machines (SVM) to better 
characterize architectural patterns in fibrosis. This ML model was built to differentiate between six 
different patterns of fibrosis and had a strong correlation with the pathologist’s semi-quantitative scores 
for fibrosis, with a coefficient of determination of automated CPA ranging between 0.60 to 0.86 when 
compared with the pathologist score. The model was built using a trichrome-stained liver biopsy 
specimen which was marked with 987 annotations for different fibrosis types. As noted in the study, the 
model’s AUROCs were 78.6% for detection of periportal fibrosis, 83.3% for pericellular fibrosis, 86.4% 
for portal fibrosis, and > 90% for detection of normal fibrosis, bridging fibrosis and presence of 
nodules/cirrhosis.

AI USING METABOLOMICS FOR NAFLD/NASH
There is an increasing number of studies focusing on metabolomics that allow for non-invasive identi-
fication of targets associated with development and progression of NAFLD. These biomarkers may 
differentiate between patients with and without cirrhosis, and between a healthy liver and NAFLD or 
NASH[3,15,16]. Several direct and indirect blood-based biomarkers currently exist to assess fibrosis. 
These have been incorporated to form scoring systems such as NAFLD fibrosis score (NFS), Fibrosis-4 
(FIB-4), AST to platelet ratio index (APRI), BARD Score, FibroSURE and Enhanced liver fibrosis score
[3]. ML allows for analysis of many multi-omics and clinical variables to screen for NASH and NAFLD 
and to build models for disease progression.

An eXtreme Gradient Boosting Model (XG Boost) was developed using the NIDDK database by 
Docherty et al[16], which contains a large real-world patient population. This model used confirmed 
NASH and non-NASH patients within this subset. The unique feature of this study is that it used 
several demographic variables and clinical biomarkers run through recursive feature elimination in 
combination with confirmed histologic cases to build an efficient model with a high specificity. When a 
greater number of markers were used in predicting patients with NASH, the AUROC was 0.82, 
sensitivity 81%, and precision 81%.

In a study of adults of European ancestry by Atabaski-Pasdar et al[15], patients with type 2 diabetes 
and others with high-risk features for the development of NASH were assessed for liver fat content 
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using MRI. Several multi-omics and clinical data, including laboratory markers, were entered into the 
least absolute shrinkage and selection operator to select the most relevant features, which then 
underwent random forest analysis for the development of the algorithm. The model developed using 
this method produced a cross-validated AUROC of 0.84 (95%CI 0.82, 0.86; P value < 0.001) and outper-
formed existing prediction tools for NAFLD. However, unlike other studies, the model was built in 
comparison to MRI fat content, which is not reflective of the continuum of NAFLD, and thus cannot be 
used to monitor disease progression.

Another study based in China by Ma et al[17] identified BMI, triglycerides, GGT, the serum ALT and 
uric acid as the most common features contributing to NAFLD when a Bayesian network model was 
used. The model had an accuracy of 83%, specificity of 0.878, sensitivity of 0.675, and F-measure score of 
0.655. The F-measure score is an indicator of whether there can be a balance between precision and 
recall of these variables, and it was higher than for logistic regression models in machine learning.

AI IN IMAGE INTERPRETATION FOR NAFLD/NASH
Like markers discussed previously, many studies have combined machine learning with imaging 
modalities to more effectively assess liver fat content and to better define fibrosis scores. This would 
allow for more accurate monitoring of patients for disease progression and their selection for clinical 
trials.

Current modalities for estimation of liver fat content include conventional ultrasound (US), which is 
limited by variable accuracy, operator dependency, and its qualitative nature. The measurement of 
proton density fat fraction (PDFF) by MRI is proving to be an effective method for quantification of 
hepatic steatosis, but it is expensive and there is variability in results due to dependence on calibration. 
In a study by Han et al[18], one-dimensional CNN was applied to ultrasound radiofrequency signals for 
the diagnosis of NAFLD and quantitation of hepatic fat content with an AUC of 0.98 (95%CI: 0.94, 1.00). 
In diagnosing NAFLD, the model had an accuracy of 96%, sensitivity of 97%, and specificity of 94%, 
PPV of 97% and NPV of 94%. The ML model also correlated with MRI-PDFF with a Pearson correlation 
coefficient of 0.85 (P value < 0.001). The same method was applied to animal models in a study by 
Nguyen et al[19] and it showed that CNN outperformed quantitative ultrasound in differentiating 
between NAFLD and normal liver. Further support for ML comes from a recent study by Das et al[20] 
on pediatric patients which used an ensemble model comprising SVM, Neural Net and XG Boost that 
had an AUC of 0.92 (95%CI, 0.91-0.94) when tested in an external validation cohort.

Nonenhanced CT also remains superior to histopathologic quantification of liver fat content like MRI-
PDFF, but it is also more commonly performed in clinical practice for other reasons when compared to 
MRI. It currently uses a manual region-of-interest (ROI) for estimation of liver fat content. A study by 
Graffy et al[21] developed a deep-learning based automated liver segmentation tool and applied it to 
estimate liver fat content using three-dimensional CNN, without having to depend on manual ROI. The 
pearson correlation coefficient was 0.93. This allows for large population level estimation of liver fat 
content to determine the prevalence of NAFLD. It would also determine normal liver fat content based 
on a large sample. Used in combination with other non-invasive modalities such as serum biomarkers, it 
could help identify patients who will need closer monitoring for NAFLD progression to cirrhosis. In a 
similar study by Hou et al[22], the automated liver attenuation ROI-based measurement model had a 
pearson coefficient of 0.94 when compared with manual ROI.

In addition to differentiating healthy liver from NAFLD, ML models have also been used to reduce 
variability in detecting fibrosis, specifically F2 fibrosis, which is a limiting feature of shear wave 
elastography. A study by Brattain et al[23] combined the use of shear wave elastography with CNN to 
better assess F2 fibrosis. This approach not only assessed image quality, but also selected ROI, unlike the 
previous studies. This ML model detected F2 fibrosis with AUC of 0.89 compared to AUC of 0.74 when 
image quality and ROI were not incorporated into a ML model. This demonstrates the importance of 
ML models once again in selecting patients for clinical trials, and in assessing response to treatment.

AI IN VIRAL HEPATITIS TREATMENT
The rate of SVR for hepatitis C with modern direct acting antiviral (DAA) regimens is estimated to be 
over 90%; however, variability remains in treatment length and efficacy. Patients with prior DAA 
exposure, cirrhosis, and other risk factors may require a longer treatment course[18,24]. Machine 
learning has been applied to predicting treatment response and duration based on patient-specific 
factors.

Haga et al[24] applied nine machine learning algorithms to identify the optimized combination of 
HCV genotypic variants that predict SVR after DAA therapy. HCV genomes were sequenced from the 
serum of 173 patients (including 64 without SVR). The support vector machine algorithm was found to 
be the most predictive, with a validation accuracy of 0.95. Feldman et al[25] used data from 60 million 
beneficiaries of a managed care plan (including 3943 cases of hepatitis C who received sofos-
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Figure 1 Framework of artificial intelligence based dynamic of non-alcoholic fatty liver disease/viral hepatitis diagnosis, progression and 
outcomes.

buvir/ledipasvir), to identify demographic and medical factors that may predict a prolonged course of 
DAA. Machine learning algorithms included extreme gradient boosting (XG Boost), random forest and 
support vector machine, with XG Boost being the optimal predictive model at an AUC of 0.745. Patient 
age, comorbidity burden, and type 2 diabetes status were significant predictors. Wei et al[26] developed 
an ANN and logistic regression model to predict fibrosis reversal after 78 wk of hepatitis B treatment. 
Significant predictors included AST and ALT, platelets, WBC, gender, and Fibroscan results. The ANN 
outperformed the logistic regression model, with an AUC of 0.81 vs 0.75.

The only approved treatment for NAFLD is weight reduction. We were unable to find AI based 
algorithms and predictive models for NAFLD due to lack of pharmacologic management options.

DISCUSSION
Among the algorithms described, more complex models performed better, with machine learning 
consistently outperforming more basic logistic regression models. The highest-performing models 
incorporated both demographic and radiologic/serologic variables. AI models also predicted complic-
ations more accurately than biomarkers and scoring systems like MELD and FIB-4. These models could 
be used to predict the incidence and prevalence of viral hepatitis in regions without robust, widespread 
screening programs. Additionally, they could be helpful in the initiation of treatment and predicting 
response to antivirals for individual patients, for which no gold standard currently exists.

Limitations of the current AI models are notably due to the lack of large scale, randomized controlled 
trials. Further research is necessary to demonstrate the utility of AI. With further advancements, ML 
models could potentially be incorporated into all aspects of a patient’s care, from screening the general 
population for NAFLD or NASH, to monitoring disease progression and treatment response in clinical 
trials by enhancing classification of steatosis, ballooning, inflammation, and fibrosis. In this regard, 
more population-based studies are needed to study the applications of ML models in screening. 
Additionally, large scale, randomized controlled trials are needed to study serologic and histologic 
markers for disease progression. Further studies are also warranted to explore the potential of ML 
algorithms to provide target-specific medications, yielding efficacious pharmacotherapy in a disease 
such as NASH where good treatment options are lacking at this time. Though AI is promising in terms 
of its potential to develop therapeutic targets, we were unable to find any studies to date describing the 
use of AI in drug discovery.
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Future directions also include using AI to actively improve outcomes with viral hepatitis by 
increasing adherence to DAAs or identifying individuals at risk for contracting viral hepatitis. Machine 
learning models could also help identify barriers to accessing treatment.

CONCLUSION
Machine learning models focus on various aspects of liver disease, including demographics, 
biochemical labs, histologic assessment and patterns, identification of non-invasive biomarkers, and 
liver imaging techniques (Figure 1). Overall, the studies outlined above are promising in their reliance 
on non-invasive methods as opposed to conventional liver biopsy to study the stages of fibrosis, as well 
as their ability to place fibrosis along a continuum and identify markers for disease progression. This 
could reduce healthcare costs by allowing better selection of patients in whom a liver biopsy is 
performed. It would also benefit patients by decreasing the number of them who undergo this invasive 
procedure. AI can also improve efficiency of pathologist and sonographer scoring of samples when 
added to existing methods. This will allow for a better understanding of the pathophysiology of 
diseases like NAFLD, which would not only allow for appropriate screening for disease progression, 
but also improve the ability to develop therapeutic targets.
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Abstract
Pancreatic diseases have a substantial burden on society which is predicted to 
increase further over the next decades. Endoscopic ultrasonography (EUS) 
remains the best available diagnostic method to assess the pancreas, however, 
there remains room for improvement. Artificial intelligence (AI) approaches have 
been adopted to assess pancreatic diseases for over a decade, but this metho-
dology has recently reached a new era with the innovative machine learning 
algorithms which can process, recognize, and label endosonographic images. Our 
review provides a targeted summary of AI in EUS for pancreatic diseases. 
Included studies cover a wide spectrum of pancreatic diseases from pancreatic 
cystic lesions to pancreatic masses and diagnosis of pancreatic cancer, chronic 
pancreatitis, and autoimmune pancreatitis. For these, AI models seemed highly 
successful, although the results should be evaluated carefully as the tasks, 
datasets and models were greatly heterogenous. In addition to use in diagnostics, 
AI was also tested as a procedural real-time assistant for EUS-guided biopsy as 
well as recognition of standard pancreatic stations and labeling anatomical 
landmarks during routine examination. Studies thus far have suggested that the 
adoption of AI in pancreatic EUS is highly promising and further opportunities 
should be explored in the field.
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cancer; Autoimmune pancreatitis; Pancreatic cystic lesions
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Core Tip: Several reviews in the literature have discussed the use of artificial intelligence in pancreatic 
disease. However, this is the first review that focuses on the application of artificial intelligence (AI) 
specifically to endoscopic ultrasonography (EUS) of the pancreas, including pancreatic cystic lesions, 
pancreatic cancer, chronic pancreatitis, and autoimmune pancreatitis, where it appears to enhance EUS 
diagnosis. AI may also offer real-time assistance during procedures to direct biopsy towards the highest 
yield areas as well augment EUS training.

Citation: Simsek C, Lee LS. Machine learning in endoscopic ultrasonography and the pancreas: The new frontier? 
Artif Intell Gastroenterol 2022; 3(2): 54-65
URL: https://www.wjgnet.com/2644-3236/full/v3/i2/54.htm
DOI: https://dx.doi.org/10.35712/aig.v3.i2.54

INTRODUCTION
Pancreatic diseases create a substantial burden on society. Pancreatic cancer is the third leading cause of 
cancer-related death in the United States, and its death count is expected to rise to 460000 by 2040, 
becoming the second leading cause of cancer related death in 2040[1-3]. Chronic pancreatitis is another 
cause of the burden with significant morbidity from chronic pain, diabetes mellitus, and even pancreatic 
cancer[4,5]. Additionally, pancreatic cystic lesions are reported to be detected up to 20% of abdominal 
imaging studies[6]. Endoscopic ultrasonography (EUS) has surpassed magnetic resonance imaging 
(MRI), computed tomography (CT) and transabdominal ultrasonography in the diagnosis of pancreatic 
diseases; however, there remains room for improvement in the diagnostic sensitivity of EUS[7]. In this 
regard, utilization of artificial intelligence (AI) with EUS has emerged as a promising strategy (Figure 1). 
Although EUS has better performance than the alternative radiology imaging methods, it is also more 
operator dependent. The endosonographer’s experience and skills can significantly alter the diagnostic 
or therapeutic outcomes of an EUS procedure. AI may decrease this operator dependency as it can assist 
the endosonographer in several tasks that include, but are not limited, to identifying anatomical 
landmarks, detecting lesions, interpreting sonographic findings, and guiding obtaining optimal tissue 
biopsy with higher diagnostic yield. Because AI algorithms use higher resolution EUS imaging data, 
they might distinguish patterns and identify details from the images which may not be recognizable 
with human detection alone currently. Finally, AI research with EUS is more convenient because 
imaging data used to train the AI models often have readily available definitive histologic diagnoses.

Targeted summary of AI and research 
AI is an umbrella term for the computerized performance of complex tasks that normally require 
human intelligence, such as visual perception, learning, pattern recognition and decision-making[8] 
(Figure 2). Current medical applications using AI have made significant progress due to advancements 
in computer technology, data science, and the digitalization of health care. From the development of 
more complex machine learning algorithms, AI has progressed rapidly to its current front-line role in 
image-based diagnosis, speech recognition, robotic surgery, drug discovery and patient monitoring[9]. 
However, the progress of AI in medicine has just begun and has yet to realize its full potential.

Machine learning (ML) is a field of artificial intelligence in which algorithms learn and improve from 
interactions with the data, obviating the need for explicit programming. Deep learning (DL) is a subfield 
of ML inspired by the organization and working principle of the human brain and is made up of 
individual neurons which form multilayered artificial neural networks (ANN). These networks are 
comprised of input and output layers each of which can execute simple tasks and sequentially interact 
with one another to produce a conclusion. Among ANNs, Multi-Layered Perceptron are earlier models 
that are simpler with fewer layers and can only use linear functions[10]. Convolutional neural networks 
(CNN) include more layers that can also operate in a non-linear fashion allowing more complex tasks 
such as image classification and have been the most popular DL algorithm. CNNs were inspired by the 
human visual cortex and designed to process grid pattern data such as images. They have serial neural 
network layers to recognize and extract features from the input data, learn the patterns of features, and 
perform hierarchical organization through the layers to search for the intended output (Figure 3)[11]. 
Most commonly used CNN algorithms are AlexNet, ResNet, U-Net, which all work using the same 
principle, and the technical details are beyond the scope of this review[12]. Another type of ANN is 
recurrent neural network (RNN), which also contains a multi-layered structure. In addition, each 
neuron in this network has its own internal memory, which taken altogether constitutes a collective 
memory of the network. This neural network can remember previous input data and use it to process 
subsequent inputs. Therefore, these algorithms are beneficial in processing sequential data such as 
before and after an intervention or time series data. An example of RNN is the long short-term memory 
model[13].

https://www.wjgnet.com/2644-3236/full/v3/i2/54.htm
https://dx.doi.org/10.35712/aig.v3.i2.54
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Figure 1 Potential benefit of artificial intelligence in pancreatic endoscopic ultrasonography. Current state of the pancreatic endoscopic 
ultrasonography (EUS) demonstrates that the procedure yields high resolution pancreatic imaging data, it is operator dependent, and allows acquisition of fine-needle 
aspiration (FNA) and fine-needle biopsy (FNB). Potentials with artificial intelligence (AI) implementation are utilizing of this higher resolution imaging data for training 
the algorithms with the readily available histologic ground truth from the FNA and FNB, as well as providing procedural assistance to address operator dependency.

Figure 2 Overview of machine learning domains. Traditional machine learning algorithms rely on being trained by annotated and processed datasets to 
perform simpler tasks such as classification and regression. Deep learning algorithms are more autonomous, generally do not require annotation and processing of 
data for training and can perform more complicated tasks such as image detection and speech recognition. Reinforcement learning algorithms are self-teaching 
systems that can perform actions and learn by trial and error to achieve the best outcome; they perform most complex tasks such as game playing and learning to 
walk. CNN: Convolutional neural networks; MLP: Multi-layered perceptron; RNN: Recurrent neural networks.

Machine learning can perform two different types of tasks: Supervised and unsupervised. Supervised 
algorithms aim to reach a previously defined targeted outcome and are used for classification and 
prediction tasks. Labeled input data is presented to the algorithm and the model is trained with direct 
feedbacks to predict corresponding outputs. The spectrum of supervised approaches includes statistical 
methods such as logistic regression, linear regression, decision trees as well as support vector machines 
and random forest. Unsupervised algorithms do not have a predefined target and are used for clustering 
and dimensionality reduction. Unsupervised models are currently used for disease subtype and 
biomarker discovery studies[14,15]. Supervised learning has been more commonly used in EUS 
research; therefore, several important nuances will be summarized to better understand the presented 
literature. To train supervised learning algorithms, the dataset should be pre-annotated for the targeted 
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Figure 3  Design overview of deep neural network model including input, output, and multiple hidden feature-detecting layers.

outcome, which may be a diagnosis, class, or feature. The algorithm aims to optimize its feature 
detection ability to match the presented inputs to this annotated targeted output, which is defined as 
“ground truth”. This optimization, or training, task requires large datasets, therefore, learning 
algorithms are data hungry. However, such datasets are not commonly available, which necessitates 
data augmentation techniques be used to expand the dataset by inserting slightly changed copies of 
previously collected data or by creating new synthetic data with computerized approaches.

During training of the algorithm, available data is split into three sets: Training, validation, and test. 
Training and validation sets are used to develop and fine-tune the model, whereas the test set is used to 
assess the performance of the final model product. Of note, this validation is different from its conven-
tional use in medicine and seeks to optimize parameters of the model during the training phase. Two of 
the most common validation approaches in medical AI research are cross-validation and hold-out 
validation. Cross-validation occurs when the dataset is randomly resampled and split repetitively – the 
number of repetitions is designated with k- into training and test sets. Each training and test set is then 
used to develop a new model, and k repetitions yield new k models. In contrast, hold-out validation is a 
constant single split of a training set and an independent test set to develop one final model which is 
simpler to perform but brings an increased risk of sampling error. Another important concept in 
machine learning is overfitting, which is defined as a falsely superior performance of the model caused 
by learning irrelevant features of the dataset or ‘noise’ as well as the intended signals. Therefore, a 
separate test set is important to accurately assess the model’s performance.

There are several nuances in the performance assessment of a machine learning model. Sensitivity (
recall), specificity, positive predictive value (precision), negative predictive value and area under the rule 
operator characteristic (AUC) curve are commonly used for assessing the performance of classification. 
The area under the precision-recall curve (AUPRC) is used instead of the AUC when observations are not 
equally distributed for two groups. The Dice coefficient (F1 score) is the harmonic mean of precision and 
recall. It is commonly used to assess the labeling performance of an image recognition model. In a 
model where a ground truth area X is labeled by an image recognition model as area Y, Dice coefficient 
equals the overlap of X and Y areas divided by the total of X and Y areas, multiplied by two. Another 
similar metric is the Jaccard index, or intersection over union (IoU), defined as the ratio of overlap and 
union of two areas: the algorithm labeled area and the ground truth area. Both Jaccard index and Dice 
coefficient’s values range from 0 to 1 signifying 0% to 100% accuracy of labeling with 1 being the highest 
level of accuracy for both.

While AI has been utilized to investigate numerous gastrointestinal diseases, the study of pancreatic 
diseases using AI and EUS is limited[5]. In this review, we provide a targeted overview of AI with a 
summary of the current literature on the use of AI in EUS for the diagnosis of pancreatic diseases.

METHODS
A nonsystematic search of the current literature was performed for 2015 and 2021 in the MEDLINE, 
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PubMed, Google Scholar, Scopus, Web of Science and Embase databases with the following terms: 
Machine learning, deep learning, artificial intelligence, EUS, endosonography, endoscopic ultrasound, 
pancreas, pancreatic disease, pancreatitis, and pancreatic cancer. Review articles were manually 
screened for any additional studies of interest. Congress abstracts, reviews, correspondences, editorials, 
and book chapters were excluded. Two authors reviewed all the studies after the initial search and 
confirmed the appropriateness of each study for inclusion. Our literature search yielded fifteen studies 
with modern machine learning algorithms (Table 1). Of note, five of the fifteen studies were published 
in 2021 with only two prospective clinical trials from the same group.

APPLICATIONS OF AI IN PANCREATIC EUS
The application of AI was divided into sonographic image recognition, procedural assistance, and 
training. Endosonographic images contain cues that may not be recognizable by human visual 
perception. In this context, deep learning algorithms are promising tools to recognize the patterns from 
these cues. As such, several important diagnostic challenges in pancreatic diseases with EUS have been 
addressed, including the classification and risk stratification of pancreatic cysts and the diagnosis of 
autoimmune pancreatitis (AIP) and pancreatic ductal adenocarcinoma (PDAC).

Pancreatic cystic neoplasms
Pancreatic cysts are increasingly detected in patients undergoing abdominal cross-sectional imaging 
with up to 20% detection rate on MRI[6,16,17]. Since pancreatic cysts carry a risk of malignancy, this risk 
should be stratified to guide clinical management. However, in most cases, imaging results are not 
sufficient for the classification of pancreatic cysts, especially for small lesions[18]. Additionally, 
assessing the risk of malignant progression remains challenging with current imaging modalities, 
clinical criteria, cyst fluid analysis or their combinations[18,19]. In this context, ML may help classify 
pancreatic cysts.

Several studies have investigated the utility of EUS ML models in pancreatic cysts, focusing on 
malignancy risk assessment and classification. Two studies by Kuwahara et al[23] and Nguon et al[21] 
used still images of EUS examinations with data augmentation, while Springer et al[20] and Kurita et al
[22] applied multimodality approaches that included cyst fluid analyses and clinical data[20-23].

The 2019 study by Kuwahara et al[23] assessed the accuracy of ML to predict malignant intraductal 
papillary mucinous neoplasms (IPMN). This single-center study included 50 IPMN patients who 
underwent surgical resection. Therefore, all diagnoses were made from histopathological examination 
of surgical specimens. A total of 3970 still images were collected from 50 EUS examinations, and the 
CNN was fed over 500000 images using data augmentation. Ten-fold cross-validation was performed 
for training. For each case, the output of the CNN model was given as a predictive continuous value 
ranging from 0 to 1 for benign and malignant assigned probabilities, respectively. When the final 
model’s predictive values were compared with the surgical diagnoses, predictive values for the benign 
cases were significantly lower than values for the malignant cases (0.104 vs 0.808, respectively). The 
optimal cutoff for the predictive value was determined using the Youden Index. This cutoff value (0.49) 
generated an AUC of 98% for the diagnosis of malignancy. The accuracy of the final model (94%) was 
significantly higher than that of human preoperative diagnosis which incorporated contrast enhanced 
EUS examination findings of mural nodule size, diameter main pancreatic duct, cyst size, and growth 
rate (56%). Multivariate analysis showed that the AI predictive value was the only significant factor for 
diagnosing malignant IPMN. ML outperformed currently used criteria, including serum CA 19-9, 
presence of mural nodule, and type of IPMN. This study demonstrated the promise of EUS ML 
algorithms in predicting malignant IPMNs. However, further prospective studies with larger sample 
sizes that do not rely solely on internal validation are necessary.

Kurita et al[22] used a multimodality approach to differentiate benign from malignant cysts. This 
single center study used 85 patients with pancreatic cystic lesions and final diagnosis from surgical 
pathology or combination of cyst fluid analysis, radiology imaging, and clinical follow-up. The input 
data consisted of sex, cyst fluid protein markers, cytologic diagnosis and EUS imaging features of the 
cyst. A Multi-layered Perceptron was used as the ML model. The final model achieved 95.7% sensitivity, 
91.9% specificity, and 0.97 AUC for classifying lesions as benign or malignant, which was the primary 
endpoint. The model showed 92.9% accuracy which was significantly higher than carcinoembryonic 
antigen (CEA) (71.8%) and cytology (85.9%) alone[22]. An external data set was not available to test the 
algorithm. In addition, it is unclear why the algorithm did not mention inclusion of known high-risk 
features including enhancing nodule, solid mass, and dilated main pancreatic duct.

Another large multicenter study used a ML based approach called CompCyst to guide the 
management of pancreatic cystic lesions and relied heavily on molecular analysis of cyst fluid in 
addition to clinical and radiologic imaging features. The study population consisted of 862 patients 
recruited from 16 centers who underwent surgical resection with final diagnosis based on histologic 
analysis. DNA from cyst fluid were extracted and evaluated for four types of molecular abnormalities 
including mutations, loss of heterozygosity, aneuploidy as well as protein markers CEA and vascular 
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Table 1 Summary of included machine learning studies on endoscopic ultrasonography in pancreatic disease

Field Ref. Study population used 
for training (n) Task Machine learning 

method
Performance (in test 
population if available)

Kuwahara 
et al[23], 
2019

Benign IPMN (27); 
Malignant IPMN (23)

Differentiate benign from 
malignant IPMN

Convolutional 
neural network 

AUC = 0.98

Springer et 
al[20], 2019

Mucinous cystic neoplasms 
(153); Serous Cystic 
Neoplasms (148); IPMN 
(447); Malignant cysts (114)

Guide clinical management by 
classify into three risk groups: No 
risk of malignancyLow risk of 
progression. High-risk of 
progression or malignant

Not available First group: 100% specificity, 
46% sensitivity. Second group: 
54% specificity, 91% sensitivity. 
Third group: 30% specificity, 
99% sensitivity.

Kurita et al
[22], 2019

Mucinous cystic neoplasms 
(23); Serous Cystic 
Neoplasms (15); IPMN (30); 
Other cyst types (17)

Differentiate benign from 
malignant cyst

Multi-layered 
perceptron

AUC = 0.96, sensitivity: 95%, 
specificity: 91.9% 

Pancreatic 
Cysts

Nguon et al
[21], 2021

Mucinous cystic neoplasms 
(59); Serous Cystic 
Neoplasms (49)

Differentiate mucinous cystic 
neoplasm and serous cystadenoma

Convolutional 
neural network 

AUC = 0.88

Saftouiu et 
al[27], 2008

PDAC (32); Normal 
pancreas (22); Chronic 
pancreatitis (11); Pancreatic 
neuroendocrine tumor (3)

Differentiate benign from 
malignant masses

Multi-layered 
perceptron

AUC = 0.96

Saftoiu et al
[28], 2012

PDAC (211); Chronic 
pancreatitis (47)

Differentiate cancer from benign 
masses

Multi-layered 
perceptron

AUC = 0.94

Ozkan et al
[30], 2016

PDAC (202); Normal 
pancreas (130)

Differentiate cancer from normal 
pancreas

Multi-layered 
perceptron

Accuracy: 87.5%, sensitivity: 
83.3%, and specicity: 93.3%

Udristou et 
al[31], 2021

PDAC (30); Chronic pancre-
atitis (20); Pancreatic 
neuroendocrine tumor (15)

Diagnose focal pancreatic mass Convolutional 
neural network and 
long short-term 
memory 

Mean AUC = 0.98 (Includes 
PDAC, CP and PNET)

Pancreatic 
Cancer 

Tonozuka et 
al[32], 2021

PDAC (76); Chronic pancre-
atitis (34); Control (29)

Differentiate pancreatic cancer 
from chronic pancreatitis and 
normal pancreas

Convolutional 
neural network and 
pseudo-colored 
heatmap

AUC = 0.94

Zhu et al
[34], 2015

AIP (81); Chronic pancre-
atitis (100) 

Differentiate AIP from chronic 
pancreatitis

Support Vector 
Machine 

Accuracy: 89.3%, sensitivity: 
84.1%, and specicity: 92.5%

Autoimmune 
pancreatitis 

Marya et al
[36], 2021 

AIP (146); PDAC (292); 
Chronic pancreatitis (72); 
Normal pancreas (73)

Differentiate of AIP from PDAC Convolutional 
neural network and 
pseudo-colored 
heatmap

AUC for AIP from all other = 
0.92

Iwasa et al
[38], 2021

Pancreatic mass (100) Segmentation of pancreatic masses Convolutional 
neural network 

Intersection over unit = 0.77Procedural 
assistance 

Zhang et al
[40], 2020 

EUS videos (339) Recognition of stations, and 
segmentation of anatomical 
landmarks

Convolutional 
neural network 

Accuracy for classification of 
stations (average) = 0.824, Dice 
coefficient for segmentation of 
pancreas (average) = 0.715

AUC: Area under the rule operator characteristic; AIP: Autoimmune pancreatitis; CP: Chronic pancreatitis; EUS: Endoscopic ultrasonography; IPMN: 
Intraductal papillary mucinous neoplasms; PDAC: Pancreatic ductal adenocarcinoma; PNET: Primitive neuroectodermal tumors.

endothelial growth factor-A (VEGF-A). Then the CompCyst test was used to classify cysts into one of 
the three following groups using a combination of molecular and imaging features. The first group was 
defined as cysts without any malignant potential which would not need surveillance. VHL and GNAS 
were used in this step and achieved 100% specificity and 46% sensitivity. The second group was cysts 
with small risk of malignant progression which would require surveillance. Multiple gene mutations 
and solid component in imaging was used in this step yielding 91% sensitivity and 54% specificity in the 
test cohort. The third group included cysts with high likelihood of malignant progression or malignancy 
which should be resected. VEGF-A protein expression was used in this step with 99% sensitivity and 
30% specificity. The system was compared to standard of care and demonstrated significantly higher 
accuracy (69% vs 56%, respectively)[20]. This study used a separate validation set and a comprehensive 
model that incorporated clinical and radiologic findings, however, the wide-ranging molecular analysis 
is not readily available for routine clinical use.
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A recent 2021 study focused on differentiating mucinous cystic neoplasms from serous cystadenomas 
using a total of 109 cases from two centers[21]. Final diagnoses were determined by endosonographers 
with over 5 years of experience. Additional cyst fluid or histopathologic examinations were available for 
only 44% of patients. A total of 221 still images were obtained followed by data augmentation, but the 
final number of input images was not provided in the study. The ResNet framework was used as the 
CNN model. Three hold-out validations were performed with 10 cases for testing, and the remaining 
cases used for training. The result of the study showed 82.75% accuracy and 0.88 AUC to correctly 
classify mucinous cystic neoplasms and serous cystadenomas from the still EUS images. A pseudo-
colored decision map [gradient weighted class activation mapping (GradCAM)] was used to visualize 
the decision-making process. Presentation of the pseudo-colored decision map is an important asset 
because it highlights and color codes (red for higher impact and blue for lower impact) the areas in the 
image which affected the algorithm’s final decision; therefore, this allows clinicians to better 
comprehend the decision-making process by the model. However, this study has several limitations. 
First, the most commonly encountered cyst, IPMN, was not included in the dataset that decreases the 
generalizability of the model. Second, ground truth was endosonographers’ expert opinion and only 
44% of patients had cyst fluid or histologic confirmation of diagnosis. Despite various limitations, the 
studies presented demonstrate the feasibility of image recognition ML models to perform classification 
tasks for pancreatic cysts and guide clinical management.

Pancreatic cancer
PDAC is currently the fourth leading cause of cancer-related mortality in Western countries and is 
predicted to become the second by 2030[24]. Most cases are diagnosed at later stages with 5-year 
survival rates less than 10%. A promising strategy is earlier diagnosis to combat this disease[25]. For 
this, EUS with FNA has superseded the cross-sectional imaging modalities such as CT and MRI, 
especially in the earlier diagnosis of PDAC[26]. However, EUS is operator dependent, and EUS 
diagnosis of PDAC is more challenging in patients with baseline abnormal pancreatic imaging (e.g., 
chronic pancreatitis) who also carry a higher risk. Within this context, ML has been used to improve the 
diagnostic performance of EUS for pancreatic masses. Four studies used histologically confirmed PDAC 
cases with normal pancreas as control. Additional control groups were used in different studies to 
reflect clinical scenarios including chronic pancreatitis and neuroendocrine tumors. EUS images served 
as inputs for the algorithms. Additional EUS diagnostic technology, such as elastography, digital 
characteristics, contrast-enhancement, and Doppler imaging were also used. Regarding ML methods, 
Support-Vector-Machines were used in earlier studies to select the best combination of digital imaging 
features. In later studies the preferred methods were neural networks with different complexity levels 
depending on the year of the study. Although the models and populations varied, all studies achieved 
over 80% specificity and 0.94 AUC, demonstrating the feasibility of ML in this area.

In an early 2008 study by Saftoiu et al[27], ML for EUS elastography images was evaluated to 
discriminate pancreatic tumors from ‘pseudotumoral’ chronic pancreatitis. The prospective study 
enrolled 68 patients including PDAC, pancreatic neuroendocrine tumor, chronic pancreatitis, and 
normal pancreas. Final diagnoses were confirmed with additional pathology, imaging findings, and 6-
mo follow-up of patients. From each patient, EUS elastography images were converted to vector data. 
As the sample size was small, 10-fold cross-validation was performed. The vector data was then 
analyzed with simple three and four layered ANNs. This ML algorithm yielded an AUC of 0.93 to 
classify malignant tumors from normal and pseudotumoral pancreatitis. This study was followed by a 
larger prospective blinded study in 2012 with 258 patients enrolled from 13 European centers. The 
population consisted of 211 PDAC confirmed by pathology diagnosis and 47 chronic pancreatitis 
patients diagnosed by clinical, imaging and EUS criteria (at least four of the following: hyperechoic foci, 
hyperechoic strands, lobularity, calcifications, hyperechoic duct wall, dilated main pancreatic duct, 
irregular main pancreatic duct, dilated side branches, and cysts). EUS elastography images of the 
regions of interests were converted to vector data and then analyzed with similar ANNs. One hundred 
training iterations were performed with the model to increase the statistical power of the results. The 
mean performance of one hundred models to correctly classify PDAC from chronic pancreatitis showed 
0.94 (0.91-0.97) AUC with 85.6% sensitivity and 82.9% specificity compared with 0.85 AUC for hue 
histogram analysis[28]. These two studies present an excellent example for the roadmap of ML research 
with an initial proof-of-concept study followed by a larger prospective study. Of note, less complex 
neural networks were used with fewer layers. Multi-layered Perceptron only accepts numeric data as 
the input unlike newer CNN algorithms that can directly process the image itself. Therefore, the 
performance of ML in these studies can be improved.

An early study in 2013 used analysis of digital image characteristics as input to the ML model[29]. 
The study population consisted of 262 PDAC patients diagnosed by cytology with 126 chronic pancre-
atitis controls diagnosed by standard EUS criteria and over 2-year follow up. Regions of interests were 
manually selected by blinded endosonographers. Then 105 digital imaging characteristics of these 
images were extracted with dedicated software. The final combination of 16 characteristics yielded a 
strong discriminative performance with 94.2% accuracy, 96% sensitivity and 93% specificity.
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Another older study evaluated the use of ML to classify PDAC from normal pancreas[30]. This 
retrospective study in 2016 included 202 PDAC patients and 130 patients with normal pancreas as 
controls. The regions of interests from EUS images were annotated by endosonographers. Then digital 
characteristics of the images (wavelet decomposition energy, boundary fractal, gray level cooccurrence 
matrix, standard statistical) were extracted. Among 112 digital characteristics, 20 were identified as 
more effective for classification, and therefore served as the input for the ML algorithm. A three-layered 
Multi-layered Perceptron model was used as the neural network, which is a less-complex approach 
accepting numerical data such as the digital characteristics of EUS images and does not require extra 
image processing. As such, because the images themselves are not being used, important information 
may not be included in the model. The final model yielded 83% sensitivity, 93% specificity and 87% 
accuracy for differentiating PDAC from normal pancreas. This model also only compared PDAC images 
to normal pancreatic tissue and not to other commonly encountered differential diagnoses such as 
chronic pancreatitis, which limits its adoptability to clinical use.

A recent study in 2021 evaluated the performance of ML to classify focal solid lesions. The study 
population consisted of 30 patients with PDAC, 20 patients with pseudo tumors in chronic pancreatitis, 
and 15 patients with pancreatic neuroendocrine tumors[31]. The final diagnoses were confirmed with 
histologic evaluations of fine-needle specimens and clinical follow-ups. From each EUS examination, 5 
sets of images were extracted including grayscale images, color Doppler, contrast-enhanced imaging, 
and elastography. A total of 1300 collected images was increased to 3360 with data augmentation. 
Regarding the ML method, a CNN algorithm was combined with a Long Short-Term Memory model. 
Long Short-Term Memory model is a supervised ML model that has additional feedback learning 
functions and allows the use of sequential pre- and post-contrast appearance from the same EUS 
images. Cross-validation was performed for each dataset with 80% of images used as training and 20% 
as test sets. The final combined model’s overall specificity was 96.4%, and sensitivity was 98.6% for 
classifying the pancreatic masses. For PDAC cases, the algorithm yielded 96.7% specificity, 98.1% 
sensitivity, 97.6% accuracy, and 0.97 AUC. When compared to previous studies, Udristoiu et al[31] used 
a more complex, combined ML approach with CNN and Long Short-Term Memory allowing inclusion 
of temporal data with contrast-enhanced imaging.

Tonozuka et al[32] also evaluated their own ML algorithm for its performance in classifying 
pancreatic masses. The 139 total patients included 76 with PDAC, 34 with chronic pancreatitis and 29 
normal controls. PDAC was diagnosed using histology from EUS-fine needle biopsy or surgery, and 
chronic pancreatitis was diagnosed using the Rosemont criteria. All patients were followed for over 6 
mo. Ten still images of lesions were chosen from each EUS examination, and the input dataset was 
increased to over 80000 after data augmentation. From 1390 still images, 920 were used for training and 
cross-validation, while the remaining 470 images were used for testing. A CNN algorithm with seven 
layers was used. In addition to the CNN model, a pseudo-colored feature mapping was used to 
highlight the areas in the image with greater impact on the final model, which makes the decision-
making process more comprehensible to the endosonographer. In the test dataset, the model yielded 
84.1% specificity, 92.4% sensitivity and 0.94 AUC.

Autoimmune pancreatitis
AIP is an increasingly recognized entity that may be challenging to diagnose. Accurate diagnosis is 
particularly important as the differential often includes PDAC with its different prognostic and 
management implications. Many diagnostic algorithms have been developed that include clinical, 
serologic, imaging, and histopathologic criteria, but their performance remains limited. While EUS with 
biopsy is the most effective diagnostic tool, its diagnostic yield also is suboptimal[33]. Image processing 
may enhance our ability to diagnose AIP by extracting data and learning from the cues in sonographic 
images. Two studies have studied the utility of ML in differentiating AIP from other diagnoses, 
including chronic pancreatitis and PDAC. The studies by Zhu et al[34] and Marya et al[35] used different 
ML approaches, but both achieved over 80% sensitivity and specificity for diagnosing AIP only from 
EUS images[34,35].

The earlier 2015 retrospective study by Zhu et al[34] studied a ML algorithm to differentiate AIP from 
chronic pancreatitis using an EUS image dataset of 81 AIP and 100 chronic pancreatitis cases. AIP 
diagnoses were based on HISORt criteria. Chronic pancreatitis was diagnosed by standard EUS criteria. 
Experienced endosonographers selected regions of interest in EUS images, and 115 digital parameters 
were extracted from each image. Then, a supervised Support Vector Machine algorithm was used to 
select the best combination of these digital parameters for discriminating AIP from chronic pancreatitis. 
The final combination of digital parameters yielded 90.6% accuracy, 84.1% sensitivity and 94.0% 
specificity.

A recent study examined the additive performance of ML with EUS to distinguish AIP from PDAC as 
well as chronic pancreatitis and normal pancreas. The study included 583 patients (146 AIP, 292 PDAC, 
72 chronic pancreatitis, and 74 normal) with all available videos and still images of the pancreatic and 
peripancreatic regions included in the analysis regardless of whether they included regions of interest
[36]. A total of 1174461 still images were extracted from the images and videos. Since all portions of EUS 
videos were included, there was a risk of oversimplification of diagnosis from certain aspects of the 
examination, such as presence of metastasis, which were removed from the dataset. The classification 
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was performed with two datasets: the first one included still images obtained from both EUS videos and 
captured images, while the second dataset only included EUS videos. The CNN algorithm was trained 
for both datasets. Pseudo-colored feature mapping was also used to visualize decision making. For 
comparison, seven independent EUS experts evaluated each case using videos. In the final analysis, ML 
showed 87% specificity, 90% sensitivity and 0.9 AUC for distinguishing AIP from PDAC in the image-
only dataset. In the video-only dataset, the metrics were 90%, 93% and 0.96 for specificity, sensitivity, 
and AUC, respectively. The ML model was superior to expert endosonographers, who had 82.4% 
specificity and 53.8% sensitivity in differentiating AIP from PDAC. ML also had high sensitivity (99%) 
and specificity (98%) for distinguishing AIP from normal pancreas. It had inferior performance in 
separating AIP from chronic pancreatitis (94% sensitivity, 71% specificity, 0.89 AUC). The heatmap 
analysis yielded interesting results, which may help guide endosonographers, showing that visualizing 
a hyperechoic plane between the parenchyma and duct or vessel was highly predictive of AIP while 
post acoustic enhancement deep to a dilated pancreatic duct or vessel was consistent with PDAC. 
Regarding AI technology, these two studies differ with respect to their approach of utilizing ML with 
EUS data. Zhu et al[34] used an older ML algorithm, support vector machine, which is a supervised 
algorithm that classifies two numeric data points. As such, EUS images are converted into numerical 
data by extracting digital parametric features, and then the ML model is trained with these features. On 
the other hand, Marya et al[35] used a CNN algorithm, ResNet, with 50 layers that can work directly on 
the EUS images itself.

Procedural assistance and training
EUS is the leading modality for assessing and obtaining tissue from the pancreas with approximately 
90% specificity and sensitivity for solid masses[36]. However, interobserver reliability remains an issue 
in EUS as accuracy relies on the endosonographers’ skills and experience and carries the risk of false-
negative results. Pancreatic EUS also has a steep learning curve. ML approaches have been developed to 
potentially augment the diagnostic performance of EUS and biopsy as well as aid in training.

Iwasa et al[38] tested ML to augment contrast enhanced EUS by dividing the sonographic image into 
regions with similar appearance and then differentiating regions of interest, also called automatic 
segmentation. For this study, videos from 100 contrast enhanced EUS examinations of solid pancreatic 
masses with histologic diagnosis were used. Each video was transformed into 900 still images as input 
for a U-Net CNN algorithm. The borders of the lesions were manually annotated by two endosono-
graphers and served as the ground truth. IoU was used as the performance output of the algorithm with 
median IoU for all cases being 0.77, which is greater than the acceptable 0.5 threshold value[37]. The 
EUS videos were also classified into different categories to understand the effect of respiratory 
movements and visibility of boundaries of the lesions by the endosonographers. IoU significantly 
improved to 0.91 in cases with the most visible boundaries and decreased to 0.13 for cases with the least 
visible boundaries[39]. On the other hand, respiratory movements did not change the performance of 
the algorithm. This proof-of-concept study suggests that ML can provide real-time assistance in the 
detection of pancreatic lesions. The classification of exams with respect to the ease of detecting the 
border of lesions is an important aspect of this study because it demonstrated that ML can also be 
affected by the quality of the EUS examination and the sonographic characteristics of the lesion, 
reflected in this case by how well the border was visible.

A case report suggested that a ML model may help target areas to biopsy within pancreatic masses 
that have the highest diagnostic yield by avoiding areas of necrosis. A CNN algorithm was used to label 
and highlight the more cellular region in a 6.5 cm solid pancreatic mass, which was predicted to have 
the highest probability of yielding a diagnosis by discriminating it from neighboring necrotic or inflam-
matory regions. EUS-fine needle aspiration was performed and yielded a positive diagnosis for PDAC. 
The technical details, training dataset and methods, validation and model characteristics were not 
presented in the report[39]. This is a novel idea that may provide valuable intra-procedural assistance, 
however, needs further evaluation.

ML may aid EUS training by guiding the steps of routine diagnostic EUS evaluation of the pancreas. 
A novel AI system aimed to assist recognition of fundamental stations and identification of pancreatic 
and vascular anatomical landmarks. This was performed in four steps: Identifying images, filtering 
suitable images, recognizing pancreas stations, and segmenting anatomical landmarks and monitoring 
for loss of visualization of the pancreas. Two expert endosonographers decided on the criteria for 
suitable images and annotated video clips that served as ground truth. A ResNet model was used as the 
CNN algorithm. A separate set of prospective EUS examinations were used as a test set. Three different 
endosonographers classified each image for comparison with the AI model. The final model was tested 
using an external test set and demonstrated an accuracy of 82.4% to identify six anatomical stations 
(abdominal aorta, pancreatic body, pancreatic tail, confluence, pancreatic head from stomach, or 
pancreatic head from descending duodenum), and a Dice of 0.715 to label pancreas and vessels. 
Comparison of the AI model with the three expert endosonographers yielded strong interobserver 
agreement with kappa values of 0.846, 0.853 and 0.826[40]. The results of this study demonstrated that a 
ML model may aid in recognizing stations and anatomic landmarks in sonographic images. This has the 
potential to assist procedural navigation during EUS examination and improve cognitive aspects of EUS 
skills. However, the impact of such real-time procedural assistance on the endosonographer’s 
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performance was not assessed in this study and warrants further evaluation.

CONCLUSION
In this review, we summarize the current literature regarding the use of ML in EUS for diagnosing 
pancreatic diseases. Our review defined two main areas for AI in the field: visual recognition-classi-
fication and procedural assistance and training. AI has been more utilized in transabdominal ultrasono-
graphy for detecting liver fibrosis and in CT scans for lesion classification, which have been extensively 
reviewed elsewhere[41-45]. ML appears to have great potential in assisting EUS examination of the 
pancreas as sonographic imaging contains vital visual information that the human eye cannot 
distinguish. The diagnostic accuracy of EUS imaging is highly operator dependent and requires both 
technical and cognitive skills. Acquisition of these skills currently requires dedicated training with 
proctorship and procedural experience, which remains limited, apart from dedicated advanced 
endoscopy fellowship programs. These issues in training limit the widespread adoption of EUS, which 
is the leading tool for diagnosing pancreatic disorders, including PDAC. AI may assist in the 
development of cognitive skills and augmentation of procedural efficiency in relatively less experienced 
endosonographers.

Further opportunities should be explored with AI and pancreatic EUS. However, several limitations 
exist in the field. First, the number of EUS procedures and the prevalence of pancreatic diseases are 
lower, which makes it more difficult to train data-hungry machine learning algorithms. Second, 
annotation of EUS data is more challenging compared to other imaging modalities as the number of 
experts endosonographers is relatively limited. Third, EUS examinations with histopathologic or 
cytologic diagnosis is harder to obtain for certain pancreatic diseases and have issues with sensitivity, 
which further limits the number of studies for AI training. However, these limitations may be overcome 
with multi-center collaborations and prospective data collection, which will hopefully lead to improved 
image recognition, procedural assistance, and training for pancreatic EUS.
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Abstract
Recent years have witnessed increasing numbers of artificial intelligence (AI) 
based applications and devices being tested and approved for medical care. 
Diabetes is arguably the most common chronic disorder worldwide and AI is now 
being used for making an early diagnosis, to predict and diagnose early complic-
ations, increase adherence to therapy, and even motivate patients to manage 
diabetes and maintain glycemic control. However, these AI applications have 
largely been tested in non-critically ill patients and aid in managing chronic 
problems. Intensive care units (ICUs) have a dynamic environment generating 
huge data, which AI can extract and organize simultaneously, thus analysing 
many variables for diagnostic and/or therapeutic purposes in order to predict 
outcomes of interest. Even non-diabetic ICU patients are at risk of developing 
hypo or hyperglycemia, complicating their ICU course and affecting outcomes. In 
addition, to maintain glycemic control frequent blood sampling and insulin dose 
adjustments are required, increasing nursing workload and chances of error. AI 
has the potential to improve glycemic control while reducing the nursing 
workload and errors. Continuous glucose monitoring (CGM) devices, which are 
Food and Drug Administration (FDA) approved for use in non-critically ill 
patients, are now being recommended for use in specific ICU populations with 
increased accuracy. AI based devices including artificial pancreas and CGM 
regulated insulin infusion system have shown promise as comprehensive 
glycemic control solutions in critically ill patients. Even though many of these AI 
applications have shown potential, these devices need to be tested in larger 
number of ICU patients, have wider availability, show favorable cost-benefit ratio 
and be amenable for easy integration into the existing healthcare systems, before 
they become acceptable to ICU physicians for routine use.

Key Words: Artificial intelligence; Blood glucose; Critical care; Diabetes mellitus; 
Intensive care unit; Machine learning
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Core Tip: Increasing number of applications and devices based on artificial intelligence are being tested 
and approved for medical care. These devices have the potential to change the way we presently manage 
chronic diseases like diabetes. Moreover, their application in data rich and dynamic intensive care unit 
environment may have great implications in detecting hypo or hyperglycemia and reducing glycemic 
variability, while improving safety and accuracy and reducing nursing workload. Devices like artificial 
pancreas and continuous glucose monitoring regulated insulin infusion systems have shown promise as 
comprehensive glucose control solutions and may change the future of care for critically ill diabetic 
patients.

Citation: Juneja D, Gupta A, Singh O. Artificial intelligence in critically ill diabetic patients: current status and 
future prospects. Artif Intell Gastroenterol 2022; 3(2): 66-79
URL: https://www.wjgnet.com/2644-3236/full/v3/i2/66.htm
DOI: https://dx.doi.org/10.35712/aig.v3.i2.66

INTRODUCTION
As per the International Diabetes Federation 2021 estimates, about 537 million people are living with 
diabetes signifying a 10% prevalence rate worldwide with an estimated 6.7 million deaths in 2021. This 
number will rise exponentially in the coming years which will place a heavy burden on the already 
stressed healthcare system[1]. These patients are at increased risk of developing complications like 
sepsis, diabetes keto-acidosis and other complications necessitating intensive care unit (ICU) admission. 
In addition, critically ill diabetic patients are at an increased risk of developing nosocomial infections, 
having a longer ICU stay and increased ICU mortality[2-4].

All components of diabetes care including prevention and management of hyperglycemia and 
hypoglycemia, are essential to improve outcomes. In critically ill patients, these complications may be 
multifactorial and may also occur in non-diabetic patients, complicating their disease course. In addition 
to hyper- and hypoglycemia, glycemic variability (GV) and time in target range (TITR) are recently 
recognized components of dysglycemia which may affect patient outcomes[5-7]. However, the exact 
target for blood glucose (BG) control in ICU is not well established. Moreover, targeting tight glucose 
control necessitates frequent blood sampling and adjustment of insulin dose, increasing the work-load 
on ICU staff. In addition, targeting tight glucose control has not shown to have any mortality benefit but 
is associated with five-fold increased risk of hypoglycemia[8].

It has been difficult to establish a safe blood sugar level but as per American Diabetes Association 
(ADA) a BG level below 180 mg/dL is acceptable[9]. The surviving sepsis guidelines further recom-
mend a target BG levels between 140-180 mg/dL in patients with sepsis[10].

Artificial intelligence (AI) is a rapidly evolving science which is gradually changing the landscape of 
many industries including healthcare. As ICUs have a dynamic environment which generates a huge 
amount of data, AI has a tremendous scope and now is increasingly being used in advanced mechanical 
ventilation, weaning from ventilation, predicting development of sepsis, antibiotic dosing and 
radiological assessment and monitoring[11-15]. In this review, we will be discussing the current applic-
ations and potential role AI may have in managing critically ill diabetic patients.

ARTIFICIAL INTELLIGENCE
There is no standard definition of AI but as per the Encyclopaedia Britannica, AI refers to “a system 
endowed with the intellectual processes characteristic of humans, such as the ability to reason, discover 
meaning, generalize, or learn from past experience”[16]. Basically, AI based systems should be able to 
perform tasks comparable to human intelligence.

AI has great potential and has been used in the field of medicine for discovery of new drug 
molecules, diagnostics, radiology and imaging, molecular biology, bioinformatics and therapeutics. AI 
has the ability to analyze and scrutinize massive amounts of data and help understand disease patterns. 
The human brain can store a limited amount of information at any one time and may be unable to 
analyze and visualize patterns embedded in vast quantities of data[17]. In contrast computers have a 
large storage capacity and can discern even small associations within the data. However, computer 
programming has limitations as they are able to follow only certain specific patterns, as per the 
programming instructions. AI in contrast differs from traditional computer programming as it learns 
from exposure to various experiences and inputs, assimilates the data and can improve on its own 
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intelligence and modify the output behavior.
AI consists of a wide spectrum of complex algorithms and is broadly divided into machine learning 

(ML), deep learning, and cognitive computing. In ML, AI systems are trained with large repository of 
data and algorithms to enable them to follow a format to examine relationships and learn from them. 
Deep learning based systems develop insights by conducting complex interventions on the available 
data while cognitive AI systems are the most complex and try and match the human intelligence by 
understanding, reasoning, interacting, and learning from the data. Such systems are able to process and 
interpret exponential amounts of data (both structured and unstructured) and thus help in proposing 
any valid connections or hypothesis[18].

The AI functioning can be broken down in a systematic way and the processes involved can be 
divided into 3 main functions which occur in succession, which are knowledge discovery followed by 
learning and finally reasoning.

Knowledge discovery/ retrieval
The discovery of knowledge is the essence of AI. It works by creating algorithms for acquiring relevant 
and potential information from databases and is referred to as knowledge discovery in databases 
(KDD). For KDD to be effective it should have an in-depth knowledge of the area of interest as it will 
evaluate and interpret patterns and models to decide what data constitutes knowledge and what does 
not. KDD, hence plays a pivotal role in identifying information which is useful and valid.

Learning
Once the KDD process is complete the next step is learning from the knowledge or information 
acquired. Systems are allowed to automatically learn without human intervention or assistance. It 
usually consists of an inductive component which could be a simple process or could consist of a 
convolutional neural network (CNN). The various techniques used are artificial neural networks 
(ANNs), support vector machines (SVMs), random forest (RF), evolutionary algorithms, deep learning, 
Naive Bayes (NB), decision trees, and regression algorithms.

Certain types of AI algorithms are more commonly employed in healthcare settings than others. 
SVMs are used to predict clearly defined outcomes and adherence to medications. ANNs are algorithms 
which have been inspired by neuronal organization of animal brains, and have been employed to 
analyze data from computed tomography images, mammograms etc., to predict complications and 
outcomes. Logistic regression, is a ML algorithm which has been used to predict and classify probability 
of an event using predictor variables. Using data from electronic records or patient’s medical history, RF 
algorithms have been used to predict risk of disease, and NB are the most advanced ML algorithms 
which have been used recently to predict development of disease in specific patient populations[19].

Reasoning
Reasoning is the final step in the AI process and involves the use of logical techniques to come to a 
conclusion from the available data. The primary objective of reasoning is to perform tasks at the level of 
a human intelligence and in a specialized manner with the final objective to generate inferences in the 
most precise manner.

AI algorithms
AI is a rapidly evolving technology with increasing number of subsets being introduced regularly, each 
having their own advantages and limitations. For prediction and management of diabetes, commonly 
used AI algorithms include linear regression (LR), classification/decision trees (DTs), RF, SVMs, ANNs, 
and NB.

LR is a regression model which analyses the data and predicts a continuous output, finding solution 
following a linear curve. DTs are predictive models which predict outcome from the given data, but can 
find solution using both linear and non-linear curves. DTs also fare better than LR models for 
categorical independent variables. RF is a variation of DT, supporting both linear and non-linear 
solutions, but is better at handling of missing values and outliers. It is more favorable than DTs as it is 
more robust, accurate and provides a more generalized solution.

SVMs are supervised learning algorithms which are recently gaining popularity for their applications 
in healthcare settings. Even though they are mostly used for classification problems in ML, they can also 
be applied for regression problems. They also support linear and non-linear solutions and are better 
than LR in handling outliers and analyzing data with large number of features.

ANN is an advanced technology based on the brain and the nerves and programmed to mimic the 
biological neural system. ANNs can also find non-linear solutions and are sub-classified as convolu-
tional (feedforward networks) and recurrent (feedback loop) neural networks. ANNs have better 
accuracy but require larger training data as compared to LR.

As compared to LR, DT and RF, which are discriminative models, NB is a generative model which 
works well even with small data sets. This supervised learning algorithm is based on Bayes theorem 
and can provide solutions to classification problems. It is easy, fast and performs well in case of 
categorial data. However, it is a bad estimator and its probability outputs are not reliable.
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ROLE OF AI IN MANAGEMENT OF DIABETES MELLITUS
Medical management forms only a small part of the entire spectrum of diabetes care, as diabetes 
mellitus (DM) is mainly a life-style disorder. Apart from medications, education on self-management 
(meal schedules, calorie counting, exercising, routine BG monitoring) and continuous medical care is 
paramount not only to prevent acute complications but also to minimize the risk of long-term complic-
ations like nephropathy, retinopathy, diabetic foot, cardiovascular disease, or stroke. As a result, 
diabetes care is complex and various medical and life-style related factors need to be taken into account 
to optimize management.

The use of AI in DM is not new and a number of studies have shown the role of AI applications in the 
care of diabetic patients[20-24]. A number of complex AI systems, and their clinical applications have 
been described (Table 1). Deep-learning based AI algorithms may help in early diagnosis of diabetic 
retinopathy using retinal photographs with a reported sensitivity and specificity of more than 90%[25]. 
IDx-DR is the first such AI-based device approved by US-FDA for screening of diabetic patients for 
retinopathy[26]. As it does not require a clinician to interpret the results, this automated system can help 
the non-eye specialists to recognize early signs of retinopathy and send the patients to eye-specialists 
only if indicated, thereby simplifying the process and achieving higher patient satisfaction[27].

Dreamed Advisor pro assimilates data regarding the glucose levels, insulin dose and carbohydrate 
intake and using AI-based MD-Logic algorithms it then makes recommendations for insulin dose 
adjustments. These recommendations have been shown to be similar to those given by experienced 
physicians in the real-world settings validating the use of such devices in day-to-day clinical practice[23,
28]. Several real-time Continuous Glucose Monitoring (CGM) devices like Medtronic Guardian Connect 
and Dexcom G6 CGM systems, are commercially available which can act as self-monitoring tools for 
diabetic patients (Table 1). These devices can provide real-time glucose values which can be displayed 
on the patient’s mobile phones and can raise an alarm if the BG levels go beyond the predefined range. 
These devices can further be connected to insulin pumps and hence aid in insulin dose adjustments. 
However, these devices require repeated calibrations with the capillary blood glucose levels, to be 
measured by finger pricks. Use of these glucose sensors for more than 70% of the time, has shown to 
improve the HbA1c by 0.4 to 0.6% and reduce the incidence of hypoglycemic episodes[29]. Presently, 
these devices and applications have not been validated in ICU patients but can be further modified and 
tested to be applied in the management of critically ill patients.

AI IN DIABETES MANAGEMENT IN ICU
Hyperglycemia is a common phenomenon in the ICU irrespective of the reason for admission and may 
occur even in the absence of pre-existing DM. The pathophysiology of hyperglycemia in ICU is 
multifactorial and can occur secondary to release of stress hormones (corticosteroids and 
catecholamines), proinflammatory mediators, administration of exogenous drugs (corticosteroids, 
vasopressors, ascorbic acid), parenteral solutions containing dextrose, stress hyperglycemia and use of 
commercial dietary feeds or supplements[30]. Irrespective of cause, hyperglycemia is associated with an 
increase in ICU stay, hospitalization costs, morbidity, and mortality[4,31].

Apart from hyperglycemia, hypoglycemia and GV have also been shown to be associated with 
increase in mortality in critically ill patients[5,6]. Use of variable insulin protocols which are not 
clinically validated and inaccurate blood sugar measurements are responsible for this GV seen in the 
ICUs. In addition, insulin sensitivity in critically ill patients follows a very erratic course and is plagued 
with frequent changes which could be secondary to the underlying illness, dietary changes or 
medications.

TITR has been recognized as another domain of dysglycemia in critically ill patients[7]. It may be 
defined as the total time spent in the target range and is expressed as the percentage of time. Data 
suggests that critically ill patients having more than 70% TITR, have significantly higher survival rates
[32]. However, the exact cut-offs for TITR remain unclear with different studies suggesting TITR 
ranging from 50-80% for improving outcomes[33,34].

In spite of several widely accepted applications for out-patient and long-term management of DM, AI 
applications in management of critically ill patients are limited. The possible applications of AI in 
critically ill diabetes patients are given in Table 2[35].

Blood glucose monitoring and prediction
Blood glucose management requires frequent sampling and insulin dose adjustments. Capillary BG 
monitoring still remains the most commonly employed method, even in critically ill patients. However, 
its accuracy may be affected in patients with subcutaneous oedema, shock, and hypoxemia, which 
commonly affect ICU patients. Hence, using arterial blood is preferred but it requires repeated arterial 
punctures or presence of an invasive arterial line. The characteristics of an ideal method to monitor BG 
is given in the Table 3.
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Table 1 Clinical uses of artificial intelligence in management of diabetes

AI applications Examples of AI devices Clinical uses

Retinal screening IDx-DR device Screening and diagnosis of diabetic retinopathy

Clinical diagnosis Advisor Pro Detection and monitoring of diabetes and its associated complications. Fine-
tuning insulin dose

Patient self-
management tools

Medtronic Guardian Connect System, Dexcom G6 
CGM systems; Mobile applications

Improve blood glucose control, activity and dietary tracking

Risk stratification AI using random forest and; gradient boosting 
techniques

Prediction of new-onset diabetes; Prediction of subpopulations at risk for 
complications, non-compliance to therapy and hospitalization

AI: Artificial intelligence.

Table 2 Possible critical care applications of artificial intelligence in diabetes management

Blood glucose monitoring and prediction

Detection of adverse glycemic events

Blood glucose control strategies

Insulin bolus calculators and advisory systems

Risk and patient stratification

Table 3 Characteristics of an ideal tool to monitor blood glucose in intensive care unit

Ease to use

Minimal burden on staff

Automated data entry

High rate of adherence 

Allow for minimal sampling

Comfortable to use for the patient

Use of a proven algorithm to calculate insulin dosage

Quickly correct hyperglycemia

Consistently maintain glucose within the predetermined optimal range 

Ensure minimal glycemic variability

Prevent episodes of hypoglycemia

Provide easy interface with other patient measurements and data

Easy to integrate into existing hospital systems 

Avoid the need for repeated data entry

Maintain results in a comprehensive, standardized database to facilitate multi-center comparison

Continuous glucose monitoring
Continuous Glucose Monitoring has been employed in the management of DM for more than a decade. 
Several CGM devices have been developed and are presently commercially available and approved for 
in-hospital use (Table 4). They can be broadly classified as transdermal (non-invasive), subcutaneous 
(minimally invasive) and intra-vascular (invasive) devices. Subcutaneous and transdermal devices are 
not considered ideal in critically ill patients because the presence of subcutaneous oedema, hypoxemia, 
and shock may affect their accuracy. Hence, intravascular devices may be preferable in these patients. 
However, the continuous subcutaneous flash glucose monitoring (FGM) system (FreeStyle Libre) has 
been recently tried in critically ill patients and has shown to have high test-retest reliability and 
acceptable accuracy[36-38].
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Table 4 Continuous glucose monitoring devices

Type of device Name of device Comments

Intravenous GlucoClear by Edwards Lifesciences; (Irvine, CA) Approved in Europe

Intravenous Glysure System by Glysure (Abingdon, UK) Approved in Europe

Intravenous Eirus by Maquet Getinge Group (Rastatt, Germany) Approved in Europe

Intravenous OptiScanner 5000 by OptiScan; (Hayward, CA) Approved in EuropeFDA-approved for use in US hospitals

Intravenous GlucoScout (International Biomedical, Austin, TX) FDA-approved for use in US hospitals

Intravenous Dexcom G FDA-approved and CEA approved

Intravenous Guardian™ Connect system by Medtronic (San Diego, CA) FDA-approved for use in US hospitals

Subcutaneous Freestyle Libre by Abbott Diabetes Care US FDA approved

FDA: Food and Drug Administration; CEA: Carcinoembryonic antigen.

A recently published meta-analysis reported that the use of CGM was associated with significantly 
reduced HbA1c values and reduced risk of severe hypoglycaemia[39]. In addition, use of FGM was 
associated with significant reduction in episodes of mild hypoglycemia and was associated with 
increased treatment satisfaction in patients with type-I diabetes. Hence, it is suggested that real time 
monitoring with CGM or FGM has the potential to achieve better control in short-time fluctuations in 
BG levels, improve glycemic control and may also reduce healthcare costs[40]. Although several studies 
have been conducted testing these devices in critically ill patients, their impact on reducing length of 
stay in ICU or overall patient outcomes remains unknown[41].

While these devices may not benefit all ICU patients, they may be particularly useful in specific 
patient populations like those on intravenous insulin or corticosteroids, patients with end stage renal or 
liver disease, neurosurgery or traumatic brain injury patients and post-transplant patients[42-44]. 
However, these devices need to be further tested in larger patient cohorts before they find mainstream 
application.

Detection of adverse glycemic events
Detection of adverse events in the form of both hypoglycemia and hyperglycemia using AI technologies 
have been studied by various research groups mainly in type 1 and type 2 diabetes patients[35]. The 
studies used either CGM devices or self-monitoring of blood glucose monitors to detect the individual 
events. The results were based on the sensitivity and specificity of the modalities used. For example the 
DCBPN algorithm used by Zhang et al[45] provided an accuracy of 88.5% in predicting the BG levels. In 
the study by Otto et al[46], identification of episodes of hypoglycemia, hyperglycemia, severe 
hypoglycemia, and severe hyperglycemia were 120%, 46%, 123%, and 76% more likely after pattern 
identification as compared to periods when no pattern was identified. Another study by Nguyen et al
[47] used electrocardiographic (ECG) parameters to detect episodes of hyperglycemia with a reported 
sensitivity and specificity of 70.59% and 65.38%, respectively. The results suggested that ECG signal and 
ANN patterns could be used to detect adverse hyperglycemic events in diabetic patients. Overall, AI has 
a potential role to predict adverse events and thus help modify treatment protocols so as to rectify them.

Blood glucose control strategies
There are various AI methodologies, fuzzy logic (FL), ANN, RF, which have been used for sugar 
control. Out of these FL is the most commonly used methodology as it mimics the management 
strategies by actual diabetes caregivers. Various studies have been performed using the FL methodology 
for BG control, mainly in type 1 diabetic patients[48,49]. The results have shown better control of 
nocturnal glucose levels with a low risk of hypoglycaemia as compared to standard insulin pump 
treatment.

Now, more complex methodologies are being proposed for BG control such as complimentary AI 
algorithms to support traditional AI controllers. The latest technology is the development of neural 
networks for regulation of BG[50,51].

From the above data it is evident that AI may potentially help to control BG but similar research in 
critically ill patients is limited. The LOGIC-1 trial was a single centre randomized control trial (RCT) 
which compared LOGIC-Insulin computerized algorithm to expert nurses in BG control for critically ill 
patients[52]. LOGIC-Insulin improved the efficacy of tight glucose control without increasing the risk of 
hypoglycemia. Encouraged by the results, a larger multi-center RCT, the LOGIC-2 trial, was conducted 
comparing software guided glucose control to nurse directed orders. This trial also showed better 
control of BG without an increase in hypoglycemia[53].
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Hence, research shows that algorithmic based approach may be beneficial to control BG levels. Even 
the ability to anticipate excursions in sugar levels could provide early warnings regarding ineffective 
treatments. Newer CGM could lead to prediction of future glucose levels but reliability may be affected 
due various physiological and technical factors. Pappada et al[54] studied a neural network model for 
predicting glucose levels in a surgical critical care setting and found CGM to be useful in this patient 
population. However, further research and studies may be required in real time to test their validity in 
other critically ill patients.

Artificial pancreas
For BG control one of the most extensively researched modality is the artificial pancreas (AP) which 
consists of a glucose sensor, a closed-loop control algorithm, and an insulin infusion device. The glucose 
sensor estimates the BG level which in turn is fed to the control unit with the closed loop algorithm. This 
is turn directs the infusion device to inject the programmed amount of insulin. Thus, it has been 
developed to mimic the Islet cells of the pancreas which secrete insulin based on the BG levels.  The 
majority of algorithms used by AP have been derived from control engineering theory and include 
proportional-integral-derivative (PID), model-predictive control, adaptive control, and FL control[55,
56]. However, the major limiting factor is a reliable glucose sensor and hence, now AI is being used to 
develop better models of AP.

At present, AP are of two types viz a viz single hormone (insulin only) and dual hormone (insulin 
and glucagon) systems. Overall, AP has been shown to be safe and effective in controlling BG, reducing 
episodes of hypoglycemia and hyperglycemia, and increase the proportion of TITR. Weisman et al[57] 
conducted a meta-analysis which showed that AP improves the TITR by 12.59% (equivalent to 172 
minutes per day) compared to conventional treatment. Furthermore, this analysis showed that dual-
hormone AP systems were associated with greater improvements, especially with respect to 
hypoglycemic events as compared to single hormone systems. The average time spent in hypoglycemia 
was reduced by 35 minutes/day. These benefits were more pronounced at night time.

In critically ill patients, use of AP to control BG has shown to reduce the frequency for sampling, 
reduce the nursing workload, achieve stable glycemic control with reduced episodes of hypo or 
hyperglycemia, and cause less GV[58-62]. In addition, its use has been associated with significant 
reduction in postoperative infectious complications in patients undergoing major surgeries[62]. 
However, use of AP was unable to achieve any significant improvement in mean glucose concentration, 
improve clinical outcome or show a favorable cost-benefit ratio.

Insulin bolus calculators and advisory systems
Insulin dependent patients routinely require calculation of insulin dosages based on their consumption 
of carbohydrates. The bolus doses are based on multiple factors like previous insulin dose, BG 
measurements, approximate calorie count etc. This may be a challenging task and could lead to errors in 
judgement and calculation, eventually leading to adverse glycemic events. Various applications are 
being developed to simplify this daunting task. Various research groups have used the case-based 
reasoning methodology for these calculations which has proved to be a safe decision tool. Some studies 
have also shown that complimenting this system to an AP leads to an improvement in glycemic control
[62,63]. Since the cause of hyperglycemia in ICU is multifactorial, probably a combination of an AP with 
case-based methodology may be of help as glucose excursions could be treated in a more standardized 
way with better control.

MD-Logic controller, developed on the FL systems, have shown to provide superior glycemic control 
with fewer nocturnal hypoglycemic episodes as compared to insulin pump treatment[49]. However, it 
still needs to be validated in ICU patients.

Software based algorithms for insulin dosing
Software based algorithms have been developed to determine insulin dosage depending on the BG 
levels. These programs, although more complicated than the paper-based protocols, can reduce errors 
and improve adherence. The simplest of these are based on PID models. Devices based on this model 
titrate insulin administration based on the previous BG values and predicting the changes in glucose 
value for a given insulin dose using a dynamic multiplier response to insulin sensitivity. The 
advantages of this model include the need for minimal patient related information for initiation and its 
ability to provide real-time dose adjustments. However, this model necessitates multiple blood 
sampling, which may be up to 18 times per day for BG measurements[64,65].

A more complex modification of software is Glucose Regulation for Intensive Care Patients which not 
only takes into account the BG values and insulin infusion rates but also includes the change in these 
values over time. This may increase its effectiveness and may potentially reduce overtreatment and 
hence, hypoglycemic episodes[66,67].

The most recent algorithms are classified as model predictive controls, which not only include insulin 
sensitivity and dextrose administration but also include several patient-specific parameters like their 
age and diabetes status. Based on these factors, these algorithms try to predict the patient’s response to 
hyperglycemia and insulin therapy and adjust the insulin dose accordingly. As the number of 
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parameters required to be entered at the time of initiation are more, the devices based on these 
algorithms are more complicated and time consuming but they have advantages of increased accuracy, 
significantly reduced need for repeated blood sampling and may offer a more individualized insulin 
therapy[68-70].

CGM regulated insulin infusion system
Newer technologies like CGM which have been validated in non-critically ill patients are now 
increasingly been used with increased accuracy in ICU patients. Integration of these CGM devices with 
automated insulin suspension with AI algorithms (Basal-IQ™ technology) have been approved by US-
FDA. Use of these predictive low-glucose suspend (PLGS) algorithms offer clinical advantage over the 
more conventional threshold suspend systems which stop insulin only when the predefined threshold 
of glucose is breached. Glucose values are obtained by the integrated CGM device (Dexcom G6™) and 
the Basal-IQ™ has the ability to predict when the glucose value is going to drop below the predefined 
level and it stops the insulin infusion[71]. Control-IQ is a more advanced hybrid closed-loop system 
which also uses activity and sleep settings to adjust the insulin requirements. Basal-IQ™ and Control-
IQ™ algorithms can predict hypoglycemic events up to 30 minutes in advance and hence, can titrate the 
insulin dose accordingly.

Integration of CGM with an automated insulin suspension has shown to reduce the frequency and 
duration of hypoglycaemia with a reported relative risk reduction of 45%[72]. This effect has been 
shown to exist across different age groups, and is persistent over multiple weeks with real-world use. A 
large randomized crossover trial comparing the PLGS with sensor-augmented insulin pump showed 
31% reduction in time spent in hypoglycemia (< 70 mg/dL) with no increase in incidence of rebound 
hyperglycemia[73]. It may be suggested that, use of this technology may be feasible and effective for 
patients with difficult to control DM and those at higher risk for developing hypoglycemia[72].

Risk and patient stratification
Diabetes is a chronic disease associated with many complications. Even though most of the complic-
ations develop over a period of time, diabetic patients are also prone to develop acute life-threatening 
complications like nosocomial infections, acute kidney injury and even cardiovascular complications. AI 
using deep-learning techniques have been able to produce algorithms which are able to predict long-
term micro-angiopathic complications like diabetic retinopathy, diabetic foot, diabetic neuropathy and 
diabetic nephropathy, with reasonable accuracy[74-77]. Role of AI in predicting the development of 
macro-angiopathic complications like acute myocardial infarction has also been assessed but there is a 
dearth of data regarding its role in predicting other acute complications, especially in critically ill 
patients[78].

AI has been used effectively to determine patients at risk for developing sepsis and life-threatening 
nosocomial infections like catheter related blood stream infections and Clostridium difficile infections and 
also to predict which ward patients may deteriorate and require ICU admission. However, such models 
currently do not exist specifically for diabetes patients[13,79-81].

A few studies have also used AI in predicting mortality in critically ill diabetes patients. In their 
study, Ye et al[82] using the MIMIC-III database, reported that AI using CNN was highly accurate in 
predicting mortality in critically ill diabetes patients with an area under the curve (AUC) of 0.97. Using 
the same MIMIC-III database, Anand et al[83] developed simple predictive tools with AI, to predict 
mortality in critically ill diabetics. Their models could achieve AUCs of 0.787 and 0.785 to predict 
mortality. However, these models need to be compared to more widely used and validated models for 
mortality prediction in ICU patients like acute physiology and chronic health evaluation and sequential 
organ failure and assessment scores.

Coronavirus disease critical care
The recent pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has put an 
unprecedented strain on the healthcare with enhanced need for infection control and patient isolation. 
Separate coronavirus disease 2019 (COVID-19) ICUs had to be developed with negative pressure 
chambers with treating staff wearing personal protection equipment at all times. Diabetes is one of the 
most common comorbidities among COVID-19 patients. Diabetic patients developing COVID-19 are at 
higher risk for requiring ICU admission and have poorer outcomes. The need for personal protection 
and risk of transmission of infection has put immense pressure on already limited clinical workforce. In 
such a scenario, labour intensive work like frequent BG monitoring and insulin dose adjustments may 
get seriously hampered. AI may be especially helpful by reducing the burden on the healthcare workers 
(HCWs) and reducing their risk of exposure.

Computerized algorithms, automated closed loop systems and remote monitoring may all be used 
effectively to manage critically ill COVID-19 patients. CGM devices are capable of continuous BG 
tracking enabling real-time monitoring of BG levels while reducing the need for bedside monitoring, 
thereby reducing the risk of exposure for the HCWs. The efficacy and safety of CGM in managing 
critically ill COVID-19 patients has been tested and verified and it has been reported to reduce the need 
for bedside BG testing by up to 71%. In addition, the efficacy of CGM devices was not significantly 
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affected by presence of fever, hypoxemia, need for vasopressors, acidosis or with use of corticosteroid or 
parenteral nutrition[84-86]. Based on this, US-FDA has allowed the use of CGM in COVID-19 ICUs to 
reduce the exposure of HCWs[87].

AI based devices have the potential to improve patient care and outcomes by providing a better 
glucose control without increasing the nursing workload and avoiding risk of transmission of infection. 
Hence, it is recommended to prefer CGM to reduce the need for frequent nurse contact for patients with 
active COVID-19 infection[88]. Moreover, AI has also been instrumental in achieving glycemic control in 
COVID-19 patient on extracorporeal membrane oxygenation support by using AP[89].

STRENGTHS OF AI
AI-based devices have the potential to improve glycemic control, reduce GV, increase the TITR, and 
reduce episodes of hyper and hypoglycemia, thus providing comprehensive diabetes care. AI may 
allow us to achieve a better and more individualized glycemic control taking into account specific 
patient requirements as per their calorie intake, exercise and underlying comorbidities. In addition, AI 
may be better suited to care for patients at risk for adverse effects and those with changing needs, like 
those in critical care areas. It may enable HCWs to monitor their patients remotely with reduced need 
for close contact thereby, reducing their workload and exposure to infective patients. By reducing the 
need for frequent blood sampling and providing close glucose monitoring and insulin dose titration, AI-
based algorithms may increase patient safety and satisfaction.

LIMITATIONS OF AI
Healthcare applications of AI are rapidly increasing. However, it still has several limitations affecting its 
widespread applicability (Table 5). Even though many AI applications have found acceptability in out-
patients and ward patients with diabetes, data regarding its safety and accuracy in critically ill patients 
remains limited. As AI application is largely data-driven, involving collection of sensitive personal data, 
it may have privacy issues leading to medico-legal problems. Lack of regulations, recommendations and 
guidelines pertaining to use of AI further limit its applicability. These safety, liability and reliability 
issues prevent widespread use of AI in critical care practice. In addition, challenges of integrating AI 
into existing healthcare infrastructure and user acceptance also persist.

FUTURE DIRECTIONS
The future of healthcare development is in AI. Its large-scale applicability requires widespread 
availability, low cost and ease of use. In addition, AI needs to be adapted gradually in the existing 
healthcare system and HCWs need to be trained not only to better utilize AI but also to be aware of how 
to avoid any medico-legal issues arising from its application. Changes in the laws and regulations are 
also required to safeguard patient’s interest and avoid any violation of patient’s privacy. With techno-
logical improvements in AI, the dosing algorithms for insulin delivery may become individualized for 
closed-loop control of glycemia. Larger studies, evaluating their efficacy and safety, especially in 
critically ill patients, along with standardization of AI algorithms and techniques need to be done to 
improve the acceptability of AI.

CONCLUSION
Many currently available devices and techniques which have proven their role in management of non-
critically ill patients, may soon be available for ICU patients, with improved accuracy. CGM is already 
being recommended for use in critically ill COVID-19 patients and soon may be available for use in all 
critically ill patients. Its integration with automated insulin suspension holds greater promise. Use of AP 
may also provide a comprehensive glycemic control option. AI has the potential of reducing the 
workload of HCWs, provide better glycemic control and prevent related complications, however, larger 
RCTs may be required before we implement these techniques in our day-to-day critical care. Even 
though presently AI might not be in its prime for managing critically ill diabetic patients, it is the future 
of healthcare.
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Table 5 Limitations of artificial intelligence

Factors

Human factors Inhibition, lack of experience 

Technical factors Cost, availability and implementation

Data limitation Lack of data in ICU patients, lack of large scale randomized trials

Design limitation Devices tried in certain patient populations may not be applicable in ICU patients

Ethical Lack of guidelines

ICU: Intensive care unit.
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Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is an important public 
health concern. Early diagnosis of NAFLD and potential progression to 
nonalcoholic steatohepatitis (NASH), could reduce the further advance of the 
disease, and improve patient outcomes. Aiming to support patient diagnostic and 
predict specific outcomes, the interest in artificial intelligence (AI) methods in 
hepatology has dramatically increased, especially with the application of less-
invasive biomarkers. In this review, our objective was twofold: Firstly, we 
presented the most frequent blood biomarkers in NAFLD and NASH and 
secondly, we reviewed recent literature regarding the use of machine learning 
(ML) methods to predict NAFLD and NASH in large cohorts. Strikingly, these 
studies provide insights into ML application in NAFLD patients' prognostics and 
ranked blood biomarkers are able to provide a recognizable signature allowing 
cost-effective NAFLD prediction and also differentiating NASH patients. Future 
studies should consider the limitations in the current literature and expand the 
application of these algorithms in different populations, fortifying an already 
promising tool in medical science.
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Core Tip: The ability of machine learning approaches to process multiple variables, map linear and 
nonlinear interactions, ranking the most important features, in addition to the capability of building 
accurate prediction models, sets a future direction to its application in complex diseases such as 
nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Future studies should consider the 
limitations in the current literature and expand the application of these algorithms in different populations, 
fortifying an already promising tool in medical science.
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INTRODUCTION
Nonalcoholic fatty liver disease (NAFLD) affects an expressive part of the population worldwide and is 
a major cause of liver-disease related morbidity[1]. The most common cause of death in NAFLD patients 
is related to cardiovascular diseases, which is partially explained by the presence of metabolic 
comorbidities, such as obesity, type 2 diabetes, dyslipidemia, and hypertension[2]. Recently, there was 
concordance that the term NAFLD cannot represent the multisystemic metabolic disruption associated 
with the disease, resulting in the novel term MAFLD - metabolic associated fatty liver disease. 
Moreover, MAFLD considers the hepatic manifestation of a multimodal disease that is heterogeneous in 
its causes, symptoms, progression, and outcomes[3]. Nevertheless, the progression of liver fibrosis could 
lead to Nonalcoholic steatohepatitis (NASH), a condition characterized by histological lobular inflam-
mation and hepatocyte ballooning[2]. Hence, detecting possible elements related to a worse prognosis in 
these conditions in the early stages of the disease could improve the treatment and its efficiency. 
Considering the significance of advanced fibrosis in NAFLD patients, differentiating NASH from 
steatosis is vital, reinforcing the need for cost-effective methods for risk stratification in this population
[4]. Although liver biopsy is widely considered the gold standard in liver diseases investigation, it is 
also invasive, expensive, and prone to sampling error. In this context, the use of non-invasive bio-
markers gains considerable importance[5].

The interest in artificial intelligence (AI) methods in different medical specialties, including 
hepatology, has dramatically increased during the last decade[6]. Advances in technology and data 
acquisition have simplified the collection and storage of large data sets with long time series, leading to 
increasingly varied fields of application, including biomedical areas. In this context, large-volume data 
mining evaluations had been showing promising results in recent clinical studies using machine 
learning methods[7-9]. More specifically, supervised machine learning (SML), can automatically detect 
patterns in existing training data and then use the detected patterns to predict future data[6]. Rather 
than considering differences between groups (as traditional statistical comparisons do), SML methods 
address individual differences, classifying individuals in ways that contribute to the clinical decision-
making process.

The commonly late diagnosis of liver disorders contributes to suboptimal treatment and poor results. 
More specifically, as the prevalence of NAFLD is an important public health concern, early diagnosis of 
NAFLD and potential progression to NASH, could reduce the further advance of the disease, and 
improve patient outcomes. Using SML methods allows for collecting patient data and identifying their 
profile regarding the risk of developing comorbidities associated with liver damage, such as the 
development of metabolic syndrome or even predicting the patient's prognosis. Several recent reviews 
highlighted the application of artificial intelligence in hepatology, while broadly discussing how 
different approaches present potential applications in several areas of hepatology[10-12]. However, 
specific discussion of machine learning approaches using cost-effective biomarkers could help to guide 
future studies towards the improvement of NAFLD diagnosis. Therefore, the objective of this mini-
review is to discuss the application of SML approaches using biomarkers for the diagnosis of NAFLD 
and the prediction of NASH presence.

https://www.wjgnet.com/2644-3236/full/v3/i3/80.htm
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BLOOD BIOMARKERS IN NAFLD
Biomarkers are a "defined characteristic that is measured as an indicator of normal biological processes, 
pathogenic processes or responses to an exposure or intervention”. This includes a plethora of possible 
assessments commonly investigated in NAFLD, such as blood profile, imaging (histo-
logical/radiographic) exams, specific anthropometric characteristics (body composition), and also phase 
angle derived from bioimpedance[13]. Noteworthy, blood biomarkers are a less invasive approach from 
a biological point of view and could complement imaging techniques to improve disease monitoring. In 
clinical settings, liver biopsy is the diagnostic gold standard for NAFLD, allowing the assessment of 
lipid content, inflammation, hepatocellular ballooning, and fibrotic alterations, which can also 
determine NASH diagnostics[14]. However, non-invasive techniques provide limited inflammation and 
hepatocellular ballooning determination, making objective biomarker panels for the assessment and 
monitoring of NAFLD or NASH a current challenge[14,15].

Nevertheless, abnormal liver function is often initially identified by nonspecific hepatocellular 
damage through elevations in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in 
addition to alkaline phosphatase and gamma-glutamyl transferase (GGT)[16]. However, ALT and AST 
can present normal levels while GGT can present a 1.5 - fold elevation, and this response does not reflect 
hepatic inflammation, fibrosis, or patient metabolic risks[17,18]. Recently, cytokeratin (CK)-18 gained 
attention as a more specific approach for hepatocyte apoptosis since CK-18 is a major intermediate 
filament protein cleaved by caspases creating fragments during the apoptotic processes[19]. Assays of 
CK-18 fragments provide moderate accuracy due to high variability between cut-offs and respective 
diagnostic accuracy among studies[19]. More specifically, M30 measures caspase-cleaved CK18 
produced during apoptosis, and M65 measures the total levels of (both cleaved and intact) CK18[20]. 
The CK-18 fragments could independently predict NAFLD severity and detect the presence of NASH 
with a specificity close to 90%[21,22]. In a large and heterogeneous cohort, the blood concentration of 
CK-18 fragments of patients with NAFLD was higher when compared with healthy volunteers and 
correlated to several biomarkers of liver damage and steatosis[22]. Moreover, several "biomarker 
panels" to grade NAFLD patients’ steatosis and fibrosis through specific scores comprise different 
biomarker combinations, summarized in Table 1. Notably, the FibroTest, Fibrometer, Hepascore, and 
Enhanced Liver Fibrosis scores are patented and commercially available panels. Nevertheless, most of the 
biomarker panels for the diagnosis of NAFLD and NASH, lack validation in specific cohorts, such as 
bariatric patients and patients with varying ethnicities[23,24]. Further, recent evidence reinforces that a 
combination of different commonly assessed blood-based biomarkers in addition to direct fibrogenesis 
markers can provide higher diagnostic accuracy in detecting advanced fibrosis when compared to 
current protocols. The study of Vilar-Gomez et al[25], reviewed the diagnostic accuracy of several blood-
based biomarkers, suggesting an algorithm to diagnose NAFLD patients at risk of fibrosis development. 
Additionally, the European guidelines recommend the combination of different tests to assess NAFLD, 
stating that the Fibrometer is a non-invasive alternative to liver biopsy, albeit the guidelines are not clear 
regarding which specific version of the FibroMeter is preferred[26]. Also, the commercially available 
biomarker panels and other complementary methods are not accessible for most health services, 
justifying the search for alternative approaches[25].

The validation study by Wu et al[27] compared different panels of biomarkers in 417 NAFLD patients 
(156 with advanced fibrosis), showing that when predicting liver fibrosis scores Fibrosis-4 (FIB-4), 
NAFLD Fibrosis Score (NFS), AST to Platelet Ratio Index (APRI) and BARD score (BARD), it is possible 
to obtain a prediction of moderate fibrosis based on the receptor operator area under the curve 
(AUROC; 0.724, 0.671 and 0.609, respectively). The authors argued that FIB-4 and NFS performed better 
compared to both APRI and BARD scores, which resulted in high false-positive rates. Importantly, this 
study evaluated NAFLD patients based on the new definition of MAFLD, highlighting that the invest-
igated biomarker panels provided poor performance in this setting[27]. In conclusion, the fact that the 
aforementioned biomarkers come from different types of procedures makes it hard for human experts 
to jointly analyze all this information, which motivates the use of machine learning techniques. These 
models can work with different types of data and discovering the relationship between them to obtain a 
better prediction.

ARTIFICIAL INTELLIGENCE APPLICATION IN NAFLD
Briefly, AI is an umbrella term, referring to a structured utilization of software and algorithms that 
analyze a wide range of data, ultimately simulating human cognition and intelligence[6]. Machine 
learning (ML) is one of the subdisciplines of AI, focusing on learning from data and associating specific 
patterns with different outcomes. An important advantage of ML techniques is that they allow the 
modeling of complex problems that depend on multiple input variables, justifying the application of ML 
methods to potentially fill several gaps in the study of complex diseases, such as NAFLD[6]. This is 
especially important in the case of NAFLD, which is closely related to metabolic disturbances associated 
with obesity and metabolic syndrome[28]. Given its complexity, NAFLD presents in different forms, 
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Table 1 Blood biomarker panels for nonalcoholic fatty liver disease and nonalcoholic steatohepatitis

Blood biomarker panels for steatosis

Panel Patient Anthropometry Blood biomarkers

FLI - BMI, Waist circumference GGT and TG 

HSI Presence of DM BMI AST:ASL

Steatotest Sex BMI ALT, GGT, TG, A2M, ApoA1, haptoglobin, 
bilirubin,cholesterol, and glucose

LAP Sex Waist circumference TG

ION Sex Waist to hip ratio ALT, TG

NAFLD LFS Presence of DM and MS - AST:ALT, Insulin

Blood biomarker panels for fibrosis

Panel Patient Anthropometry Blood biomarkers

APRI - - Platelet count, AST

FIB-4 Age - Platelet count, AST, ALT

FibroTest Age, sex BMI GGT, A2M, ApoA1, haptoglobin, and total bilirubin

Fibrometer Age Body weight Platelet count, AST, ALT, glucose, ferritin 

ELF - - Hyaluronic acid, PIIINP and TIMP-1

Hepascore Age, sex - GGT, Hyaluronic acid, PIIINP and TIMP-1

BARD Presence of DM BMI AST:ALT

NFS Age, sex, Presence of DM - Platelet count, AST:ALT, Albumin

A2M: Alpha-2-macroglobulin; ALT: alanine aminotransferase; ApoA1: Apolipoprotein A1; AST: Aspartate aminotransferase; BMI: body mass index; DM: 
Diabetes mellitus; GGT: gamma-glutamyl transpeptidase; MS: Metabolic syndrome; NAFLD: Nonalcoholic fatty liver disease; PIIINP: Amino-terminal 
propeptide of type III procollagen; TG: Triglycerides; TIMP1: tissue inhibitor of matrix metalloproteinases-1.

from simple asymptomatic lipid accumulation to symptomatic non-alcoholic steatohepatitis (NASH) 
characterized by several factors, including steatosis, hepatocellular ballooning, lobular inflammation, 
and often fibrosis[28]. Machine learning methods are becoming increasingly popular, which has also 
motivated an increase in the complexity of these models. Particularly, deep learning (DL) models, like 
convolutional neural networks (CNN), showed promising results in hepatology, especially with high-
resolution data such as images and spectrograms[29]. Likewise, CNN models encompass several layers 
that involve operations like convolution, pooling, and nonlinear activations, making their decisions 
difficult to understand. Therefore, they represent black-box models, as opposed to interpretable (white-
box) techniques, such as regression/decision trees and Bayesian networks[30,31]. Hence, ML could 
identify patients at risk and guide clinical treatments, whilst considering that the clinical manifestations 
of NAFLD appear in advanced disease status and the availability and cost of screening methods for the 
clinicians. Also, ML can help to rank and categorize specific biomarkers and help to elaborate specific 
"disease signatures", contributing not only to clinical diagnostics, but also provide mechanistic insights 
for the study of the disease and the development of specific treatments.

MACHINE LEARNING APPROACHES USING BLOOD BIOMARKERS IN HEPATOLOGY
As stated above, the interest in using AI approaches to support clinical decision-making processes in 
hepatology has increased, albeit current literature is still scarce. Table 2 summarizes the specific studies 
addressing NAFLD and NASH classification. Initially, the study of Sowa et al[32] showed no differences 
in the investigated biomarkers (ALT, AST, and apoptotic signaling) between patients with a fibrosis 
score of 1 or 2. However, combining these parameters using random forests (RF) reached 79% accuracy 
in fibrosis prediction with a sensitivity of more than 60% and specificity of 77%. Moreover, RF identified 
the cell death markers M30 and M65 as more important for the decision than the classic liver 
parameters. Similarly, Yip et al[33] built a model to predict steatosis in a study including 922 individuals 
with assessment for NAFLD. The four models developed presented good diagnostic precision for 
steatosis (AUROC was 0.87-0.9), albeit the authors claimed that the “NAFLD ridge score” offered the 
best balance between efficacy and simplicity. This model included six parameters (serum triglycerides, 
alanine aminotransferase, high-density lipoprotein cholesterol, hemoglobin A1c, white cell count, and 
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Table 2 Machine learning studies in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis patients

Ref. Patients Investigated biomarker Model with best 
performance Results

Sowa et al
[32], 2013

126 patients Alanine aminotransferase; Aspartate aminotransferase; M30; M60; Hyaluronic 
acid

Randon forest 79% Accuracy in 
fibrosis prediction; 
60% sensitivity; 77% 
specificity

Yip et al
[33], 2017

922 patients Alanine aminotransferase; High-density lipoprotein cholesterol; Triglycerides; 
HbA1c; White blood cells; Hypertension

Ridge score 88% Accuracy in 
steatosis prediction; 
92% sensitivity; 90% 
specificity

Ma et al
[34], 2018

10.508 patients; 
2522 NAFLD 
patients

Age; Sex; Body mass index; Alanine aminotransferase; Aspartate aminotrans-
ferase; Alkaline phosphatase; Gamma-glutamyl transpeptidase; Triglycerides; 
Blood urea nitrogen; Bilirubin; Cholesterol; Creatinine; Fasting glucose; Uric 
acid

Bayesian network 
model

83% Accuracy in 
NAFLD prediction; 
68% sensitivity; 94% 
specificity

Canbay et 
al[35], 
2019

164 patients; 122 
(validation)

Age; HbA1c; Gamma-glutamyl transpeptidase; M30; Adiponectin Logistic 
regression

70% Accuracy in 
separate NAFLD and 
NASH

Liu et al
[36], 2021

15.315 
patients5878 with 
NAFLD 

Body mass index; Waist circumference; Waist-to-height ratio; Alanine 
aminotransferase; Fasting blood glucose; Gamma-glutamyl transpeptidase; 
Very-low-density lipoprotein cholesterol; Low-density lipoprotein cholesterol; 
High-density lipoprotein cholesterol; Systolic blood pressure; Alkaline 
phosphatase; Diastolic blood pressure

XGBoost model 79% Accuracy in 
NAFLD prediction; 
61% sensitivity; 90% 
specificity

Pei et al
[37], 2021

3.419 patients; 
845 with fat liver 
diseases

Age; Height; Hemoglobin; Aspartate aminotransferase; Glucose; Uric acid; 
Low-density lipoprotein; Alpha-fetoprotein; Triglycerides; High-density 
lipoprotein; Carcinoembryonic antigen

XGBoost model 94% accuracy of 
prediction; 90% 
sensitivity; 95% 
specificity

NAFLD: Nonalcoholic fatty liver disease; XGBoost: Extreme gradient boosting.

the presence of hypertension) that are routinely available for individuals undergoing medical checkups, 
and it does not require anthropometric measures, which are not always available. Although there is 
evident feasibility of the NAFLD ridge score to screen individuals, it still needs additional validation in 
other ethnicities. The study of Ma et al[34], investigated the predictive power for NAFLD of eleven 
machine learning techniques, demonstrating that the Bayesian network model had the best 
performance, revealing that the five most discriminating features (based on information gain scores) to 
be weight, TG, ALT, GGT, and serum uric acid levels. Thus, in practice, users could focus on these 
features. Furthermore, Canbay et al[35] compared different scores for the non-invasive detection of 
NASH. Briefly, using an ensemble feature selection approach for biomarker selection, the authors built a 
logistic regression model and validated in an independent study cohort of 122 patients. The logistic 
regression model generated from age, GGT, hemoglobin A1c, M30, and adiponectin had a strong 
correlation with the non-alcoholic steatohepatitis activity score and demonstrated reasonable 
performance to discriminate between NAFL and NASH. Likewise, Liu et al[36] performed a retro-
spective cross-sectional study on 15315 Chinese subjects, where 5878 patients presented NAFLD. The 
biomarker ranking indicated the body mass index as the most valuable indicator to predict NAFLD, 
followed by waist circumference, triglycerides, waist-to-height ratio, and alanine aminotransferase. 
Notably, among seven machine learning models, the extreme gradient boosting (XGBoost) model 
demonstrated the best prediction ability. Similarly, the XGBoost also presented the highest AUC (0.93), 
accuracy (0.94), and sensitivity value (0.90) in the study of Pei et al[37], comparing different models for 
predicting fatty liver Disease risk in 3419 participants, of which 845 had diagnostic confirmation. 
Importantly, regarding the biomarkers, uric acid, body mass index, and triglycerides were the most 
decisive risk factors for the ML models, whilst high-density lipoprotein and hemoglobin also counted as 
important risk factors for prediction. Strikingly, these studies provide insights into ML application in a 
complex context such as NAFLD patients' prognostics. Notably, while there are investigations using AI 
techniques and common biomarkers to predict NAFLD and NASH, approaches using AI and novel 
proposed biomarkers are scarce. For instance, a recent meta-analysis showed that CK-18 is the only 
marker for NASH presenting external validation, with an AUROC of 0.82[38]. Conversely, a large study 
conducted by the multicenter NASH Clinical Research Network demonstrated that the addition of 
routinely available clinical-laboratory parameters to CK-18 measurement did not significantly improve 
its diagnostic performance[22]. However, it remains unknown whether the use of AI techniques 
combining different biomarkers in a large and diverse cohort could provide different results. Taken 
together, the data suggests that ranked blood biomarkers can provide a recognizable signature allowing 
cost-effective NAFLD prediction and also differentiating NASH patients.



Carteri RB et al. ML and blood biomarkers

AIG https://www.wjgnet.com 85 June 28, 2022 Volume 3 Issue 3

CURRENT CHALLENGES IN SML APPROACHES IN HEPATOLOGY
The term "AI-Chasm" describes the gap between developing and testing an algorithm and the definitive 
application of the algorithm in clinical practice[39]. Unequivocally, the AI application in medical 
sciences is auspicious, and current literature is shading light on a plethora of potential applications; 
however, many challenges for SML approaches using biomarkers in hepatology still await scrutiny.

Firstly, the collection, curation, and preprocessing of patient data is a major concern, since SML 
methods are data-driven[10]. Notably, the cited studies in this mini-review provide relatively small data 
from specific populations which could lead to sampling bias whilst limiting the generalization of the 
obtained results. Further, data collection should be standardized and precise, but should also be 
monitored for privacy and data security breaches. Secondly, as recently discussed by Quinn et al[40], 
one of the main aspects of concern in future studies is the understanding that transdisciplinary 
approaches require cooperation to build a conceptually appropriate framework while also focusing on 
evaluating the performance of SML algorithms in terms of clinical endpoints and not just predictive 
accuracy. In addition to these technical challenges, there is also an increasing demand for transparency 
concerning the predictions of these models, especially in areas that have no computing background. For 
instance, healthcare professionals and other stakeholders that can benefit from these solutions are still 
reluctant to the idea of employing these methods, evidencing the necessity of educational programs 
aimed to explicit information about the involved decision processes. Nevertheless, the field of 
explainable AI has emerged to address these issues, with the purpose of creating ML techniques that 
produce explainable models while maintaining a high level of learning performance, enabling humans 
to understand and trust the predictions to support their decisions[41].

CONCLUSION
Recent advances in the field of biosciences applying machine learning algorithms resulted in promising 
results for the diagnosis of disease and biomarker study. The main idea is that SML could overcome the 
limitations of common statistical techniques. For instance, SML identifies data patterns for classification, 
considering multiple features at once, allowing the ranking and selection of the available blood 
biomarkers related to disease pathogenesis for the prediction of NAFLD or NASH, minimizing potential 
errors between the predicted values and the real data. Although the cited studies provide promising 
results, there are specific limitations that future studies should reduce. For example, most of the studies 
involved the Chinese population, and these algorithms still need additional validation in heterogeneous 
populations. The strong association between NAFLD and metabolic syndrome, obesity, and alcohol 
consumption may be a confounding factor in previous studies, and the application of these methods in 
diabetic patients with and without NAFLD could shed light on the influence of specific treatments on 
the performance of these ML methods. Nevertheless, the ability of ML approaches to process multiple 
variables, map linear and nonlinear interactions, and rank the most important features, in addition to 
the capability of building accurate prediction models, sets a future direction to its application in 
complex diseases, including NAFLD and NASH. Future studies should consider the limitations in the 
current literature and expand the application of these algorithms in different populations, fortifying an 
already promising tool in medical science.
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Abstract
While cholangiocarcinoma represents only about 3% of all gastrointestinal 
tumors, it has a dismal survival rate, usually because it is diagnosed at a late 
stage. The utilization of Artificial Intelligence (AI) in medicine in general, and in 
gastroenterology has made gigantic steps. However, the application of AI for 
biliary disease, in particular for cholangiocarcinoma, has been sub-optimal. The 
use of AI in combination with clinical data, cross-sectional imaging (computed 
tomography, magnetic resonance imaging) and endoscopy (endoscopic 
ultrasound and cholangioscopy) has the potential to significantly improve early 
diagnosis and the choice of optimal therapeutic options, leading to a trans-
formation in the prognosis of this feared disease. In this review we summarize the 
current knowledge on the use of AI for the diagnosis and management of cholan-
giocarcinoma and point to future directions in the field.
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Core Tip: Artificial intelligence (AI) aided by multiple imaging modalities is accurate and effective for 
diagnosis and characterization of biliary masses. The advancement and incorporation of imaging into 
artificial intelligence will help to decrease delay in diagnosis of cholangiocarcinoma and potentially 
decrease mortality. This review examines studies showing that AI can assist in real-time diagnosis of 
cholangiocarcinoma and predict outcomes of treatment. Current data suggests that AI will soon become an 
indispensable part of the armamentarium for the management of cholangiocarcinoma and other biliary 
diseases.

Citation: Brenner AR, Laoveeravat P, Carey PJ, Joiner D, Mardini SH, Jovani M. Artificial intelligence using 
advanced imaging techniques and cholangiocarcinoma: Recent advances and future direction. Artif Intell 
Gastroenterol 2022; 3(3): 88-95
URL: https://www.wjgnet.com/2644-3236/full/v3/i3/88.htm
DOI: https://dx.doi.org/10.35712/aig.v3.i3.88

INTRODUCTION
The concept of AI is best explained as a computer program that possesses the ability to perform 
functions such as data analysis, learning, and problem solving. Medical artificial intelligence involves 
the development of AI programs to assist in diagnosis and prognosis, therapeutic decision making, drug 
development, as well as development and data mining from the electronic medical records (EMR)[1-3]. 
In fact, artificial intelligence is utilized in almost every field of medicine[4-8], including radiology[9], 
gastroenterology[10], ophthalmology[11], cardiology[12], and surgery[13].

There are many different types of AI. The foundation of the most used form, Artificial Neural 
Networks (ANN), takes inspiration from the human nervous system[1,3]. The neurons of ANNs are 
individual computer processors that interconnect and possess the capability of processing and 
analyzing large amounts of data[1]. ANNs are composed of links of multiple layers of these ‘neurons’, 
an input layer linked to multiple hidden layers, which are in turn linked to an output layer[3]. All the 
layers in an ANN communicate in a feed forward manner with the ability to ‘learn’ by repeatedly 
adjusting their links[2]. Thus, one of the attractive qualities of ANNs is in their analytical and pattern 
recognition ability. One of the first applications of ANNs in medicine was to aid in the diagnosis of 
myocardial infarction[14]. Since that time, ANNs have been widely used1. Support Vector Machines 
(SVM) is another type of machine learning which uses data analysis algorithms for classification and 
regression analysis[15]. SVMs are widely used in drug development and cancer detection[16,17].

Convolutional neural networks (CNN) are a type of deep learning network, a network that 
incorporates three or more layers, that is commonly employed in medicine, in particular because of its 
easy applicability to imaging[18]. Convolutional neural networks are multi-layer analyses which work 
by taking an image (e.g. from CT, MRI, US) and extracting layers or features at each step of the process. 
These features are then characterized further by complex mathematical equations to break them down 
and compare them to similar images, leading to pattern recognition[18]. CNNs also can place weight on 
the value of a specific feature, thus allowing for the presence or absence of a given variable to haven a 
greater influence on the overall outcome.

The application of AI has grown at a rapid pace in all fields of medicine, and gastroenterology is no 
exception[19]. AI has been utilized in gastroenterology to identify esophageal neoplasms[20,21], 
diagnosis of Helicobacter pylori[22], predict gastric bleeding in patients on anti-thrombotics[23], predict 
the length of hospitalization for acute pancreatitis[24], differentiate between chronic pancreatitis and 
pancreatic cancer[25], stratify the need for ERCP[26], and characterization of colonic polyps[27]. These 
and many other ongoing developments will significantly impact the future of both diagnostic and 
therapeutic gastroenterology. One area of that has been somewhat neglected in the application of AI in 
gastroenterology is that of biliary disease, in particular cholangiocarcinoma. In this paper, we will 
review the current knowledge of the application of artificial intelligence in cholangiocarcinoma and 
point to the future directions in the field.

CHOLANGIOCARCINOMA
Cholangiocarcinoma (CCA) is a malignant neoplasm that can arise from anywhere along the biliary tree, 
including within the liver parenchyma, and is classified as distal, perihilar or intrahepatic[28]. Risk 
factors for CCA usually include long-term inflammatory states, like those associated with primary 
sclerosing cholangitis (PSC) and helminthic infection, or the continued presence of choledocholithiasis, 
but the majority for cases are idiopathic[29]. Cholangiocarcinoma accounts for about 3% of all 
gastrointestinal tumors and 10%-15% of hepatobiliary tumors[30]. Although rare, CCA has a very poor 
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prognosis, with 5-year survival rates following surgery rarely exceeding 35%[21]. Additionally, CCA 
incidence and mortality rates are increasing worldwide[31,32]. CCA is usually detected late in the 
disease stage and found incidentally due to poor screening methods for early detection[32]. Early 
diagnosis is relatively rare, limiting the possibility of curative surgery to < 30% of patients[33]. 
Furthermore, even among these, about 20%-50% of patients deemed candidates for resection via 
preoperative evaluation are found to have unresectable disease burden during surgery[34,35].

Given the importance of assessing disease burden, staging and location in determining a patient’s 
treatment plan, it is imperative to have proper preoperative imaging in CCA[36]. While pathological 
examination remains the gold standard of diagnosis, grading and staging for CCA, advancements in 
imaging and detection of biomarkers have paved the way for further preoperative predictability of 
malignancy type and responsiveness to therapies. These advancements have allowed for the 
incorporation of AI into the sphere of cholangiocarcinoma for a more accurate and personalized 
management of the disease[37,38].

ARTICLE IDENTIFICATION PROCESS
The article search process was conducted in Medline and Embase[JM1]. Initial search was using 
different combinations of keywords such as “cholangiocarcinoma”, “biliary disease”, “cholangioscopy”, 
“artificial intelligence”, “artificial neural networks” and “convolutional neural networks”. Abstracts of 
major conferences, such as Digestive Disease Week and United European Gastroenterology Week were 
also reviewed. Finally, a comprehensive search on clinicaltrial.gov was also conducted using the same 
keywords to search for active clinical trials involving cholangiocarcinoma and artificial intelligence.

ARTIFICIAL INTELLIGENCE IN BILIARY DISEASES AND CHOLANGIOCARCINOMA
Artificial intelligence has been employed to advance the classification and detection of cholangiocar-
cinoma by aiding in creating a histopathologic database[39] and characterizing bile acid assays to better 
predict malignancy[40]. The use of AI to optimize the predictive value of multivariable models, and in 
improving the diagnostic yield of cross-sectional imaging and endoscopy has been rapidly expanding. 
Table 1 summarizes currently available studies.

Use of artificial intelligence in aiding the predictive abilities of multivariable models
Artificial Intelligence models have been successfully used to improve the predictive abilities of 
multivariable models both in the pre-interventional diagnostic phase, as well as in post-operative or 
post-procedural outcomes in CCA patients. Many of these studies has utilized the area under the curve 
(AUC), the ability of a test to diagnose a differentiate a disease state from non-disease state, to assess the 
added benefit of the incorporation of AI in improving the effectiveness of multivariable models.

In the preoperative phase, multiple studies have used AI/radiographic model to predict lymph node 
metastasis (LNM) in CCA. One study developed and validated a radiographic model for LNM detection 
in intrahepatic cholangiocarcinoma (ICC) based on computed tomography (CT) imaging features 
combined with CA19-9 values[41]. In this study, an acceptable calibration and discrimination was 
observed in the primary study cohort (AUC 0.8462) and in a validation cohort (AUC 0.8921)[41]. 
Another study developed support vector machine model utilizing magnetic resonance imaging (MRI) 
imaging to preoperatively evaluate for LNM in ICC. This study found that an SVM model combining 
CA19-9 levels and select MRI features resulted in better predictive capabilities compared to a model 
based on imaging features alone (AUC of 0.842 vs 0.788, P = 0.0219)[42].

One retrospective study was able to use pre-operative MRI combined with post-operative immuno-
histochemical results to predict early recurrence of ICC after partial hepatectomy[43]. The model that 
combined AI with pathology and imaging features had a higher AUC (0.949 vs 0.889, P = 0.247) 
compared to the model that included only the pathology and imaging features, as well as better 
sensitivity (0.938 vs 0.875), and specificity (0.839 vs 0.774)[43]. In another study, inclusion of AI 
improved the ability of a multivariable model to predict early occlusion of bilateral plastic stents placed 
in patients with inoperable ICC[44]. In this study, the ANN built with the multivariable model was 
compared to a multivariable logistic regression model alone that included age, sex, stent diameter, 
cancer stage, and presence of liver metastasis[44]. Overall, 288 patients were analyzed, and the ANN 
model outperformed the logistic regression model (AUC 0.9647 vs 0.8763, P = 0.021)[44]. Artificial 
intelligence has also been used to identify which serum biomarkers can have higher diagnostic power 
for CCA[45]. An ANN model analyzed eight biochemical markers of CCA in 85 subjects with CCA and 
in 82 controls[45]. Alkaline phosphatase and CCA-associated carbohydrate antigen had a higher 
predictive value for the distinguishing CCA patients from controls[45]. Finally, in a recent study, Müller 
et al[46] developed an ANN utilizing known risk factors for ICC to predict survival in ICC patients. 
Using 293 patients, the ANN trained model achieved a higher AUC in predicting the 1 year survival 
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Table 1 Summary of studies assessing computed tomography, magnetic resonance, and endoscopic ultrasound using artificial 
intelligence-based approach for pancreatic cancer

Ref. Year Type of 
AI

Imaging 
modality

Training 
(#) Testing (#) AUC Sensitivity (%) Specificity (%)

Matake et al[47], 
2006

2006 ANN CT 120 - 
patients

120 - 
patients

0.934 81.9 94.4

Ji et al[48], 2019 2019 ANN CT 177 - 
patients

70 - patients 0.961 72 76.2

Logeswaran[49], 
2009 

2009 MLP MRI 120 - images 593 - 
images

N/A N/A

0.9 (LMN) 85.8 (LMN) 81.8 (LMN)Yang et al[37], 2020 2020 ANN MRI 80 - patients 20 - patients

0.8 (differen-
tiation)

73.2 (differen-
tiation)

68.8 (differen-
tiation)

Ghandour et al[51], 
2021

2021 CNN Cholangioscopy 254 - 
patients

95 - patients 0.86 0.81 0.91

Robles-Medrana et 
al[38], 2021 

2021 ML Cholangioscopy 1714 – 
images

198 - 
images

N/A 92 N/A

Pereira et al[50], 
2022 

2022 CNN Cholangioscopy 5180 - 
images

1295 - 
images

1 99.3 99.4

Pattanpairoj et al
[45], 2015 

2015 ANN Multivariate 85 - patients 22 - patients N/A 98.71 96.94

Shao et al[44], 2018 2018 ANN Multivariate 231 - 
patients

57 - patients 0.9544 N/A N/A

Ji et al[41], 2019 2019 N/A Multivariate 103 - 
patients

52 - patients 0.8462 86.8 76.3

Xu et al[42], 2019 2019 SVM Multivariate 106 - 
patients

42 - patients 0.842 89.36 57.63

Zhao et al[43], 2019 2019 N/A Multivariate 92 - patients 33 - patients 0.949 0.938 0.839

Müller et al[46], 
2021 

2021 ANN Multivariate 233 - 
patients

60 - patients 0.89 N/A N/A

ANN: Artificial neural network; MLP: Multi-layer perceptron; CNN: Convolutional neural network; ML: Machine learning; SVM: Support vector machine; 
CT: Computed tomography; MRI: Magnetic resonance imaging; N/A: Not applicable.

rates compared to one of the most commonly used scoring system, the Fudan score (0.89 vs 0.77, P = 
0.24). In all of these studies, the addition of AI to commonly used multivariable models significantly 
improved their predictive abilities, improving therefore the diagnostic and post-procedural manage-
ment of patient with suspected or diagnosed cholangiocarcinoma.

Use of AI in aiding cross-sectional imaging performance
Artificial Intelligence has been used to aid in the interpretation of cross-sectional imaging for nearly two 
decades. In a 2006 study, an artificial neural network applied to contrast-enhanced computed 
tomography (CE-CT) images helped differentiate four types of hepatic masses (intrahepatic peripheral 
cholangiocarcinoma, hepatocellular carcinoma, hemangioma, and metastatic lesions) from one-another
[47]. The study then employed radiologists to evaluate CT scans with and without the assistance of 
ANN. There was marked improvement in diagnosis the hepatic masses with assistance from ANN 
compared to traditional radiologic evaluation (AUC 0.934 vs 0.888, P = 0.02, respectively)[47]. Another 
CT-based study was designed to predict survival outcomes and LNM in biliary tract cancers, and CT 
images were taken from 177 subjects who had previously undergone surgery[48]. An ANN based on CT 
characteristics was then built to classify the subjects into high risk or low risk for lymph node metastasis
[48]. Patients who were classified as high risk based on the ANN model had a significantly lower 
survival rate compared to those classified as low risk [hazard ratio (HR) 3.37, 95%CI: 1.92, 5.91], 
underlying the importance of AI in improving prediction of disease course after treatment[48].

Artificial intelligence has also been used with MRI to improve its diagnostic/predictive power in 
several studies. One such study investigated the ability for an MRI based AI model to predict LNM in 
extrahepatic cholangiocarcinoma[37]. This was a proof-of-concept study to display the viability of a pre-
operative prediction of both LMN and degree of differentiation, which could influence treatment 
approach. Images from 100 subjects with CCA were analyzed for the degree of CCA differentiation and 
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lymph node metastasis. The AI model had an AUC of 0.9 (95%CI: 0.66, 1.0) for predicting LMN while 
the AUC for degree of differentiation was 0.80 (95%CI: 0.58, 0.97)[37]. In another study, an ANN model 
based on MRCP images was able to distinguish between patients with CCA from those without CCA
[49]. A total of 309 images were processed, 248 of which were normal and 61 were taken from patient 
with CCA. The ANN model achieved an accuracy of 94% for distinguishing between them. 
Furthermore, ANN achieved an accuracy of 88% in distinguishing between images of CCA and images 
of other common biliary diseases, such as cholecystitis, choledocholithiasis, PSC, and cholangitis[49].

Use of AI in aiding endoscopic evaluation of biliary diseases/cholangiocarcinoma
Artificial intelligence has also more recently been used to aid in endoscopic diagnosis of cholangiocar-
cinoma or other biliary diseases, even though most studies are currently in abstract form only. A study 
by Pereira et al[50] developed a CNN that differentiates biliary strictures as benign or malignant based 
on images from digital single operator cholangioscopy. After an evaluation of 6475 images from 85 
patients with indeterminate biliary strictures, the authors found a sensitivity of 99.3%, specificity of 
99.4%, and AUC of 1.00 for a correct diagnosis. In another study, currently available only as an abstract, 
the authors developed a CNN to detect abnormal biliary features via cholangioscopy images[51]. They 
defined abnormal features as presence of papillary mass, tortuous vessels, or ulcerations. Over 1000000 
images were from 528 patients were evaluated for the study. The CNN showed an AUC of 0.86 (95%CI: 
0.80, 0.92), sensitivity of 0.81 (95%CI: 0.0.72, 0.91), and specificity of 0.91 (95%CI: 0.86, 0.97)[51].  In 
another recent study, the utility of AI to perform real-time diagnosis of biliary strictures during cholan-
gioscopy was assessed. This model was built using 23 cholangioscopy videos and was then tested on 
known cases (20 live cholangioscopy and 20 videos of cholangioscopy) of malignant biliary strictures. It 
accurately predicted malignancy in every case[38]. These initial results suggests that introduction of AI 
into standard clinical practice could potentially decrease time to diagnosis of indeterminate biliary 
strictures and allow for better diagnostic accuracy.

Endoscopic ultrasound (EUS) in combination with AI has been used in the assessment of pancreatic 
disease and may be beneficial in assisting in real-time differentiation between pancreatic masses and 
other solid masses during endoscopy[52]. However, there has been limited use of AI during EUS 
evaluations for cholangiocarcinoma. One recent study developed an AI system to recognize standard 
stations of EUS for biliary duct evaluation. In this study, AI had comparable accuracy to that of expert 
endosonographers, and significantly improved the learning curve of trainees[53].

CHOLEDOCHOLITHIASIS
Artificial intelligence has also been useful for the study of possible risk factors for CCA, such as 
choledocholithiasis. Several studies have demonstrated that AI can be used to risk-stratify patients with 
possible choledocolithiasis and therefore aid in the decision-making of the need for ERCP[54,55]. One 
study showed that a machine learning model using pre-ERCP imaging, including US and CT, in 
addition to select demographic features and laboratory findings can achieve a sensitivity of 97.7% and 
specificity of 100% in identifying choledocholithiasis[55]. Another study found that an AI model outper-
formed ASGE guidelines for proper indication for an ERCP (AUC 0.79 vs 0.59, respectively)[54]. In 
addition, the use of AI would avoid the need for ERCP in 36% of cases who would have undergone the 
procedure according to the ASGE guidelines[54]. Once more, the addition of AI can help providers 
achieve an individualized management program for patients in daily clinical practice.

CONCLUSION
The diagnosis and staging of cholangiocarcinoma is challenging, leading to potential major non-curative 
surgeries and/or dismal survival rate because of late diagnosis and inadequate prediction of metastases 
or recurrence using standard diagnostic methods. The introduction of AI technologies to traditional 
cross-sectional imaging and endoscopy, can create a major shift in the diagnosis and management of 
CCA. As mentioned above, many studies have already incorporated AI with significant improvement 
over traditional clinical data. While most of these studies are retrospective in nature, and therefore 
provide relatively poor quality data, they are very encouraging.

In addition, new studies are currently ongoing in which AI technologies are used to diagnose and 
risk-stratify patients with cholangiocarcinoma. The Synergy-AI clinical trial for example, is a non-
interventional prospective observational study currently enrolling participants with cholangiocar-
cinoma, along with other malignancies. This trial is employing an Application Programming Interface to 
help match participants with personalized treatment protocols based on CT imaging, biomarkers, and 
laboratory results. In this setting, AI is expected to identify both the most cost effective, appropriate, and 
personalized treatment approach to each individual’s malignancy[56]. Considering that most hospitals 
have incorporated electronic medical records (EMR) for their patients, it is easy to see how AI can be 
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used to select different patient variables (biochemical, histological or cross-sectional imaging) and use 
them to help develop personalized management strategies which optimize outcomes. Combining 
biomarkers, genetic sequencing, and imaging through AI models could lead to new approaches to the 
diagnosis and treatment of cholangiocarcinoma, including decreasing the need for unnecessary invasive 
endoscopic procedures for procurement of biopsies, as well as help develop a more targeted approach 
for therapy[57]. While more research and fine tuning of current AI systems is needed before reaching 
this stage, the future of AI in the management of cholangiocarcinoma seems clearly within reach.
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Abstract
Artificial intelligence (AI) evolved many years ago, but it gained much advance-
ment in recent years for its use in the medical domain. AI with its different 
subsidiaries, i.e. deep learning and machine learning, examine a large amount of 
data and performs an essential part in decision-making in addition to conquering 
the limitations related to human evaluation. Deep learning tries to imitate the 
functioning of the human brain. It utilizes much more data and intricate 
algorithms. Machine learning is AI based on automated learning. It utilizes earlier 
given data and uses algorithms to arrange and identify models. Globally, hepato-
cellular carcinoma is a major cause of illness and fatality. Although with 
substantial progress in the whole treatment strategy for hepatocellular carcinoma, 
managing it is still a major issue. AI in the area of gastroenterology, especially in 
hepatology, is particularly useful for various investigations of hepatocellular 
carcinoma because it is a commonly found tumor, and has specific radiological 
features that enable diagnostic procedures without the requirement of the 
histological study. However, interpreting and analyzing the resulting images is 
not always easy due to change of images throughout the disease process. Further, 
the prognostic process and response to the treatment process could be influenced 
by numerous components. Currently, AI is utilized in order to diagnose, curative 
and prediction goals. Future investigations are essential to prevent likely bias, 
which might subsequently influence the analysis of images and therefore restrict 
the consent and utilization of such models in medical practices. Moreover, experts 
are required to realize the real utility of such approaches, along with their 
associated potencies and constraints.

Key Words: Hepatocellular carcinoma; Artificial intelligence; Deep learning; Machine 
learning; Support vector machines; Artificial neural networks
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Core Tip: Globally, hepatocellular carcinoma is a major cause of illness and fatality. Although substantial 
progress has been made in the treatment strategy for hepatocellular carcinoma, managing it is still a major 
issue. Artificial intelligence in the area of gastroenterology, especially in hepatology, is particularly useful 
for various investigations of hepatocellular carcinoma because it is a commonly found tumor and has 
specific radiological features that enable diagnostic procedures without the requirement of histological 
study. Artificial intelligence is utilized to diagnose, curative and prediction goals.

Citation: Mokhria RK, Singh J. Role of artificial intelligence in the diagnosis and treatment of hepatocellular 
carcinoma. Artif Intell Gastroenterol 2022; 3(4): 96-104
URL: https://www.wjgnet.com/2644-3236/full/v3/i4/96.htm
DOI: https://dx.doi.org/10.35712/aig.v3.i4.96

INTRODUCTION
Hepatocellular carcinoma (HCC) is a malignancy of the liver that is very lethal. It is the most commonly 
found primary adult liver malignancy. Worldwide it is the third most common cause of cancer-related 
death[1]. According to the American Cancer Society, 42810 new liver and intrahepatic cholangiocar-
cinoma cases were detected in 2020, of which 30160 died[2]. Surgery (liver transplantation and 
resection) is the backbone of HCC treatment and is the only possible treatment option. Delamination or 
removal is an alternative treatment for small tumors. In addition, intra-arterial treatment and 
chemotherapy can control the disease to some extent[1]. In addition, HCC has certain radiological 
features that do not require histological examination for diagnosis. Therefore, the analysis and 
interpretation of diagnostic imaging procedures are not always easy as it changes during the disease 
course. The same applies to diagnosis/prognosis and treatment response, as they are influenced by 
numerous factors.

Artificial intelligence (AI) is the computer simulation of the human intelligence process. The concept 
of AI emerged in the 1950s[3], but only a few years ago it made real progress. It has been used in a 
variety of industries, i.e. image and natural language processing. In the field of medicine, AI is becoming 
increasingly significant. The utilization of AI is rapidly expanding and is increasingly useful in 
understanding gastrointestinal diseases[4-6]. The phrase “artificial intelligence” refers to a group of 
computer programs that attempt to mimic human brain capabilities, i.e. learning and problem-solving.

AI has evolved into a separate discipline called machine learning (ML). ML examines data to develop 
algorithms that can recognize distinct behavior forms and confirm predictive models. ML focuses on 
developing mathematical models that assist machines in making predictions or judgments without 
being explicitly programmed. Various ML techniques, for instance, support vector machines (SVM), 
artificial neural networks (ANNs), classification, and regression trees, seem to be employed in various 
investigations in the medical discipline[7]. Deep learning (DL) has emerged as an emerging paradigm of 
ML for developing multilayered neural network algorithms, and approaches like convolutional neural 
network (CNN), an ANN multilayer, have been widely accepted and used in radiological image 
analysis[8,9].

In a nutshell, ML is a core branch of AI, and DL is used to implement it. The use of ML and DL to 
forecast the risk of gastric cancer has been successful[10]. Figure 1 shows the correlation between AI, 
ML, and DL.

There are limitations in using AI in various areas of medicine. Looking back on many studies and 
applications of irrelevant databases having biases can influence the truthfulness of AI. Therefore, it is 
essential to design a bias-free, proposed, well-designed multicenter collaborative study, and various 
important aspects, such as economics, medical professional regulation, and ethical reviews, should not 
be ignored. Various terms associated with AI in this minireview are given in Table 1.

USE OF AI IN HCC DIAGNOSIS
The utility of AI can enhance diagnostic procedures in the area of liver cancer. CNN in the form of 
multilayered ANN is interlinked, and whole input data passes through every layer before being 
transformed to give output data. It is a more advanced version of DL that has its own learning capacity. 
Ultrasound (US) tests, abdominal computed tomography (CT), magnetic resonance imaging (MRI) of 
the abdomen, positron emission tomography (PET), and histology can benefit from CNN.

https://www.wjgnet.com/2644-3236/full/v3/i4/96.htm
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Table 1 Various terminology associated with artificial intelligence

Term Definition 

AI The utilization of computers and associated techniques to mimic the sharp attitude and critical approach of humans

ML It is a branch of AI and computer science that concerns the usage of data and algorithms to mimic the means that human beings ascertain 
and step by step upgrading its precision

ANN It is a computational model in accordance with the structure and functions of biological neural networks. ANNs employ a nonlinear 
function to a loaded sum of inputs and model relations among them

CNN It is a deep learning neural network intended to process structured arrays of data, i.e. radiological images

Deep 
learning 

A branch of ML that tries to mimic the human brain and has the ability to gather data and do predictions with remarkable precision

AUC AUC is an approach applied in ML to assess many used models to find out which have the higher performance

Accuracy AI and ML technology employ algorithms to analyze data and perform predictions on the basis of such data. Although studies report that 
AI programs may regularly achieve accuracy levels of at least 95% and AI programs cannot verify the veracity of the data being examined, 
the overall accuracy is typically lower yet still higher than 80%

C-index (c-
statistic) 

It is an algorithm performance metric that takes values between 0 and 1 and explains how well the model fits the data

AI: Artificial intelligence; ANN: Artificial neural networks; AUC: Area under the curve; CNN: Convolutional neural network; ML: Machine learning.

Figure 1  Relationship between artificial intelligence, machine learning, and deep learning.

Ultrasound of the abdomen
HCC develops in cirrhotic livers most of the time but not always. Clinical practice recommendations 
advocate routine abdominal US in hepatic cirrhosis patients. This approach is used for detecting lesions 
that occupy space. US is the primary machine for detecting hepatic disease and fresh lesions. Though, 
analysis of images is not straightforward and can be subject to interobserver variations.

To review the fundamental disorder, Bharti et al[11] established an ANN model that discriminated 
various phases of hepatic infection by analyzing US images: normal liver, chronic liver disease, 
cirrhosis, and HCC. Further, this model’s accuracy was found to be 96.6%[11]. An algorithm to analyze 
US images was developed by Liu et al[12]. Liu et al[12] preferred the liver capsule to detect the existence 
of cirrhosis, even at an early stage when radiological findings are not clearly visible. By investigating the 
morphology of the liver capsule, Liu et al[12] predicted the presence or absence of cirrhosis with an area 
under the curve (AUC) of 0.968.

The human output is defined when it comes to identifying liver lesions from US images. Schmauch et 
al[13] developed a DL approach that could reveal and label benign and malignant space-occupying liver 
lesions. This system requires acceptance. It has the potential to improve the diagnostic yield of US and 
inform clinicians about potentially malignant lesions[13].
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To improve the ability of contrast-enhanced US (C-US) for the detection of cancer-related character-
istics, the use of AI has been utilized. Guo et al[14] confirmed how applying DL to the behavior of liver 
lesions observed on C-US in three phases (arterial, portal, and late) improved the accuracy, sensitivity, 
and specificity of the investigation undertaken.

Abdominal CT scan with intravenous contrast
When an US reveals a fresh liver lesion, further imaging procedures, primarily dynamic contrast-
enhanced CT or MRI, are used to get an accurate diagnosis. In dynamic CT or MRI scans, the 
radiological behavior of liver lesions can be used to characterize the lesion. If CT scans of liver nodules 
reveal unclear behavior, then lesion biopsy is prescribed as per the recommendation of the European 
Association for the Study of the Liver guidelines[15]. As suggested by the American Association for the 
Study of Liver Diseases guidelines[16], there is the possibility of non-detection of a malignant lesion 
involved during the procedure or during close follow-up. A study was performed on 178 patients with 
cirrhosis and liver nodules by Mokrane et al[17], and they were unable to differentiate between 
neoplastic and non-neoplastic lesions in these patients, hence requiring a biopsy. On doing a biopsy, 
77% of the lesions were malignant. By applying DL techniques, the AUC for classifying nodules as HCC 
or non-HCC was 0.70. By analyzing the output of three-layered ANN, Yasaka et al[18] with the help of 
contrast-enhanced CT classified liver masses into five groups: A (cholangiocarcinoma, hepatocholan-
giocarcinoma, or metastasis); B (other malignant tumors, i.e. cholangiocarcinoma, hepatocholangiocar-
cinoma, or metastasis); C (ambiguous masses, dysplastic nodules, or early HCC, and benign masses 
other than cysts or haemangiomas); D (haemangiomas); and E (cysts).

Assessing tumor load could be beneficial for detecting tumor relapse in follow-up CT scans. Vivanti 
et al[19] proposed an automated detecting procedure for recurrence on the basis of early manifestation 
of the tumor, its CT behavior, baseline tumor load/mass quantification, and follow-up. With an 
accuracy of 86%, this approach demonstrated a higher proportion of true positives in detecting tumor 
relapse.

The usefulness of liver segmentation in assessing lesions in the liver and managing good treatment is 
critical. Li et al[20] developed a CNN that could cause the segmentation of liver tumors on the basis of 
CT images having an accuracy of 82.67% ± 1.43%, which is better than existing approaches, allowing for 
more appropriate treatment planning.

Abdominal MRI
The use of CNN in MRI has also been investigated. Hamm et al[21] prepared and verified a CNN-based 
DL approach that identified MRI liver lesions with 92% accuracy, 92% sensitivity, and 98% specificity 
with a mean computation time of 5.6 milliseconds.

Further research has used more MRI sequences, risk components, and clinical information of the 
patient to create an automated classification method that classifies hepatic lesions as adenoma, cyst, 
haemangioma, HCC, and metastasis, having sensitivity/specificity of 0.80/0.78, 0.93/0.93, 0.84/0.82, 
0.73/0.56, and 0.62/0.77 respectively[22].

PET
Preis et al[23] used a neural network to study hepatic intake of fluorodeosyglucose 18F along with data 
from the patient and clinical details to assess the results of 18F-FDG PET/CT (Fluorine 18 fluorodeosy-
glucose positron emission tomography/computed tomography).  Preis et al[23] obtained higher 
sensitivity and specificity to find malignancy of the liver, which remained unrevealed visibly. This 
method can help the radiologist in the analysis of PET.

Histology
Even for experienced pathologists, determining the histopathological categorization of a liver lesion and 
distinction of tumor strain is critical to planning the treatment and prognosis assessment of the disease. 
Kiani et al[24] were concerned with the histopathological distinction between HCC and cholangiocar-
cinoma and employed AI to assist pathologists.

Others reported how a deep CNN can perform an automatic identification of HCC and discriminate 
normal tissue from malignant tissue as well as identify key biological predictors, utilizing previous 
histopathological images of HCC[25].

USE OF AI FOR TREATING HCC
The specific biological variance among HCC patients hampers evidence-based clinical assessment 
among all patients. Hence, for optimizing treatment techniques and measuring the results, powerful 
standardized risk classification tools are required. AI has the potential to play a significant role in the 
treatment of HCC in this area. The majority of studies about the applicability of AI in HCC treatment 
are focused on analyzing specific tumor attributes, i.e. radiological, histological, or genetic traits, or 
combining clinical data to estimate treatment response. Therefore, patients will be able to be better 
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selected for certain treatment alternatives.

Use of radiomics 
The examination and remedy measure of HCC is generally performed with imaging facilities i.e. C-US, 
CT, and MRI following investigation of assured tumor characteristics, i.e. vascularization or behavior 
after the addition of a contrasting substance[26]. These attributes are amenable to biases after analysis 
by radiologists, along with the absence of high-resolution dimensional images. Recently an advanced 
technology has emerged in the area of radiology and cancer which is known as radiomics[27]. This 
technology extracts a large amount of significant data from the radiological images and links this data 
with the related biological system. The study of complete data with AI software can give effective and 
accurate reports for proper diagnosis and prognosis[27,28]. Figure 2 shows various stages of radiomics 
where AI can play a role.

Assessment of surgical resection
The early reappearance of the tumor following operative removal is due to an unsatisfactory prognostic 
process. The recognition of clinical cases before surgical operation with more risk of relapse is essential 
to escape irrelevant treatment. Various computer models help to analyze specific tumor markers/ 
features and assist in the prognosis of the risk of relapse before operative procedures. These models also 
help in the assessment of survival after surgical removal.

Vascular microinvasion (VMI) is a self-sufficient prognostic component of relapse. VMI is linked with 
poor outcomes following tumor excision[29]. The accessibility of data regarding VMI preoperatively can 
be of high use. The radiological approach presently used in medical practice does not give a fair 
diagnosis.

Several studies explain radiomic signatures that presume the status of VMI preoperatively on the 
basis of contrast-enhanced CT[30,31] or MRI[32]. These techniques include exposure to radiation, are 
hard to execute, and are expensive. In a recent study, Dong et al[33] used grayscale US images based on 
radiomic algorithms to proceed with radiomic signatures in the prediction of VMI. By using radiomic 
techniques, Ji et al[34] developed prognostic models for relapse after excision surgery for assessing 
contrast-enhanced CT images and had a C-index value of 0.633-0.699. These models could be utilized for 
providing an individualized risk stratification for managing HCC individually.

ML techniques help in assessing survival after surgical resection as observed in many studies[35-37]. 
Recently, more advanced DL models helped in assessing survival after surgical resection on the basis of 
digitalized histological images of tumors.

Assessment of transcatheter arterial chemoembolization
According to Barcelona Clinical Liver Cancer (BCLC) classification, transcatheter arterial chemoembol-
ization (TACE) exists as the preferred option for the treatment of intermediary B stage HCC[38]. The 
right choice of patients who can get benefit from this treatment is critical in order to minimize 
superfluous investigations that can lead to unfavorable side effects and waste healthcare resources. 
Studies based on AI approaches have been created as a trial to infer the feedback of TACE treatment and 
facilitate the proper selection of patients. The majority of the studies rely on image analysis, but some 
studies have also utilized genomic signatures. Morshid et al[39] developed an automatic ML algorithm 
that predicted TACE response using a mixture of quantitative CT image attributes and pretreatment 
patient clinical data. They obtained a prediction accuracy rate of 74.2% while working on combining the 
Barcelona Clinic Liver Cancer stage and quantitative image characteristics instead of applying the 
Barcelona Clinic Liver Cancer stage alone. Peng et al[40] used CT scans from 789 patients from three 
separate hospitals to verify a DL model for predicting TACE response. They were able to predict 
complete responses with an accuracy of 84% and an AUC of 0.97. Liu et al[41] developed and verified a 
DL radiomics-based C-US approach as a result of a quantitative assessment of C-US cine recordings. 
They demonstrated a high level of reproducibility and an AUC of 0.93 (95% confidence interval: 0.80-
0.98) for predicting TACE reaction.

Further research has combined MRI and clinical data with ML approaches to predict TACE response. 
Abajian et al[42] worked on 36 patients who had an MRI prior to TACE. They built a response prediction 
model with 78.0% accuracy, 62.5% sensitivity, and 82% specificity.

The efficacy of TACE has also been tested by a post-treatment survival analysis of patients. 
Mähringer-Kunz et al[43] designed an ANN with every variable of main traditional prediction scores to 
produce a survival prediction model following TACE (ART[44], ABCR[45], and SNACOR[46]). With an 
AUC of 0.77, 78% sensitivity, and 81% specificity, they expected a 1-year survival rate that was better 
than the conventional scores.

Although radiomics have been used in the majority of investigations estimating the usage of AI to 
examine TACE. Some have also looked at genetic analysis to predict TACE response. Ziv et al[47] 
analyzed genetic mutations by applying SVM algorithms to look for tumor responses following TACE. 
However, this study involved a small number of cases.
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Figure 2  Stages of radiomics wherever artificial intelligence can play a role.

Radiofrequency ablation evaluation
Radiofrequency ablation has also been studied as a treatment for HCC in its early stages[38]. Liang et al
[48] used SVM to create a prognostic model of HCC relapse. They investigated 83 HCC cases that had 
undergone radiofrequency ablation and secured an AUC of 0.69, 67% sensitivity, and 86% specificity. 
From this data, they could recognize patients with a greater chance of relapse.

HCC OVERALL SURVIVAL PREDICTION
Apart from the use of any therapy, AI approaches have been used to predict the overall survival of HCC 
patients. The observations by Dong et al[49] were based on current information on the relationship 
between anomalies in DNA methylation and HCC[50-52]. They employed ML techniques (SVM) for the 
evaluation of DNA methylation data from 377 HCC samples and created three risk groups to expect 
complete survival and achieved a mean 10-fold cross-validation score of 0.95.

FUTURE PERSPECTIVES
To illustrate the effectiveness of AI for medical assistance, further research is required that compares the 
output of medical staff with AI assistance vs experts lacking AI assistance. These studies should target 
elements linked to curing and prognosis (for instance, identifying ambiguous hepatic wounds, the 
existence of vascular invasion, and the reaction to percutaneous treatments) to analyze liver masses and 
explore HCC. Additional significant points are the utilization of AI for interpretation of HCC behavior 
in cirrhotic and non-cirrhotic patients, in the differential diagnosis of primary and metastatic liver 
lesions[53], and particularly in the clinical detection of cholangiocarcinoma, which is difficult to differ-
entiate from HCC with existing approaches and has distinct treatment methods from HCC. Simultan-
eously, healthcare providers must be trained for the integration of AI into everyday practice in the area 
of liver cancer.

SIGNIFICANCE OF THE STUDY
AI has guided the detection of HCC (on the basis of premalignant variations, imaging, and biomarkers) 
as a result of its capability to examine huge datasets and combine data effectively. The perspective of AI 
techniques is immense in every stage in the handling of HCC, e.g., from early diagnosis to treatment 
options and prognostic and therapeutic response prognosis. These methods could promote accurate and 
personalized medicine to assist clinical practice and better utilize healthcare resources. Numerous 
datasets (radiological images or pathologic data) could be utilized individually or in conjunction for 
accuracy better than that of conventional statistical means. Moreover, AI-based approaches can also 
assist in lowering interobserver variance while studying images and leads to standardization.

INNOVATIVE CONTRIBUTIONS OF THE STUDY
The outcomes from many studies endorse the consolidation of the ML models with clinical/pathologic 
data and created clinical scores or biomarkers. Biomarkers detected by the incorporation of several ‘-
omics’ datasets lead to the recognition of a biochemical tumor signature, which revolutionizes HCC 
detection in the near future.

CONCLUSION
One of the most significant advancements in recent years has been the utilization of AI technologies in 
medicine. It will almost certainly grow in popularity as a result of its utility in processing and analyzing 



Mokhria RK et al. AI-diagnosis and treatment of HCC

AIG https://www.wjgnet.com 102 October 28, 2022 Volume 3 Issue 4

massive amounts of available data. However, we should be attentive that there are some limitations that 
may reduce its acceptability and application in the medical field. Medical professionals need to 
understand the genuine value of AI and recognize the necessity for it to coexist with the essential 
requirement for human assessment. Regardless of the significant advancements, it is critical to ensure 
that medical protocols remain completely transparent.
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Abstract
BACKGROUND 
About 25% of the general population in Japan are reported to have nonalcoholic 
fatty liver disease (NAFLD). NAFLD and nonalcoholic steatohepatitis carry a risk 
of progressing further to hepatocellular carcinoma. The primary treatment for 
NAFLD is dietary therapy. Dietary counseling plays an essential role in dietary 
therapy. Although artificial intelligence (AI)-based nutrition management 
software applications have been developed and put into practical use in recent 
years, the majority focus on weight loss or muscle strengthening, and no software 
has been developed for patient use in clinical practice.

AIM 
To examine whether effective dietary counseling is possible using AI-based 
nutrition management software.

METHODS 
NAFLD patients who had been assessed using an AI-based nutrition management 
software application (Calomeal) that automatically analyzed images of meals 
photographed by patients and agreed to receive dietary counseling were given 
dietary counseling. Blood biochemistry tests were performed before (baseline) 
and 6 mo after (6M follow-up) dietary counseling. After the dietary counseling, 
the patients were asked to complete a questionnaire survey.

RESULTS 
A total of 29 patients diagnosed with NAFLD between August 2020 and March 
2022 were included. There were significant decreases in liver enzyme and trigly-
ceride levels at the 6M follow-up compared to baseline. The food analysis 
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capability of the AI used by Calomeal in this study was 75.1%. Patient satisfaction with the AI-
based dietary counselling was high.

CONCLUSION 
AI-based nutrition management appeared to raise awareness of dietary habits among NAFLD 
patients. However, it did not directly alleviate the burden of registered dietitians, and impro-
vements are much anticipated.

Key Words: Artificial intelligence; Dietary counselling; Nonalcoholic fatty liver disease; Nonalcoholic 
steatohepatitis; Nutrition management software applications

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Use of artificial intelligence (AI)-based nutrition management software (Calomeal) appeared to 
raise awareness of nonalcoholic fatty liver disease patients’ dietary habits, and they showed significant 
decreases in liver enzyme and triglyceride levels at the 6-mo follow-up compared to baseline. The food 
analysis capability of the AI package used in this study was 75.1%, and patient satisfaction with the AI-
based dietary counselling was high. However, due to the limitations of the food analysis capabilities of AI, 
it did not directly alleviate the burden of registered dietitians, and improvements in the analytical 
capabilities of AI are much anticipated.

Citation: Kusano Y, Funada K, Yamaguchi M, Sugawara M, Tamano M. Dietary counseling based on artificial 
intelligence for patients with nonalcoholic fatty liver disease. Artif Intell Gastroenterol 2022; 3(4): 105-116
URL: https://www.wjgnet.com/2644-3236/full/v3/i4/105.htm
DOI: https://dx.doi.org/10.35712/aig.v3.i4.105

INTRODUCTION
About 25% of the general population in Japan are reported to have nonalcoholic fatty liver disease 
(NAFLD), and this figure is expected to increase to 39.3% by 2030[1]. NAFLD includes nonalcoholic 
fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH). NAFL and NASH carry a risk of 
progressing further to hepatocellular carcinoma. Although the risk of developing liver cancer from 
NAFL is low (0.44 per 1000 persons per year), the risk increases with the progression of liver pathology 
(5.29 per 1000 persons per year in patients with NASH and 0.45 to 22.6 per 1000 persons per year in 
patients with liver cirrhosis)[2,3].

The primary treatment for NAFLD is dietary therapy. Dietary counseling plays an essential role in 
dietary therapy. In dietary counseling, patients self-report all the food items that they consumed over 
the previous 1 wk, and during the interview, registered dietitians calculate the caloric and nutritive 
values of the food items. Limitations exist with patients’ memory certainty and the listening and 
calculation skills of the dietitians in the field. In recent years, pictures taken with digital cameras have 
been used in combination with interviews. Neither of these is very efficient, because dietary counseling 
begins when patients come in for their consultation, and the caloric and nutrient intakes are calculated 
based on patients’ recalled food items consumed in the past.

Artificial intelligence (AI)-based image analysis has penetrated deeply in our daily lives, and the field 
of medicine is no exception. In gastroenterology, it is used to diagnose colon polyps, Helicobacter pylori 
infection, and stomach cancer[4-8]. Although AI-based nutrition management software applications 
have been developed and put into practical use in recent years, the majority focus on weight loss or 
muscle strengthening, and no software has been developed for patient use in clinical practice.

Thus, the present study examined whether effective dietary counseling is possible using food intake 
data of NAFLD patients that had been automatically analyzed with an AI-based nutrition management 
software application.

MATERIALS AND METHODS
Patients
This prospective study was conducted in compliance with the ethics guidelines of the 2008 Declaration 
of Helsinki. Approval was obtained from the Biomedical Ethics Committee of the authors’ affiliated 
hospital (No. 2014). Written informed consent was obtained from all patients.

https://www.wjgnet.com/2644-3236/full/v3/i4/105.htm
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Patients clinically diagnosed with NAFLD between August 2020 and March 2022 were included as 
subjects. NAFLD was diagnosed when fatty liver was observed in patients with an alcohol consumption 
equivalent to ≤ 30 g of ethanol per day in men and ≤ 20 g of ethanol per day in women[9]. Fatty liver 
was diagnosed when the following three criteria were confirmed on abdominal ultrasound examination: 
(1) Increased hepatic echogenicity; (2) positive liver-kidney contrast; and (3) deep ultrasound atten-
uation in the liver. Patients with chronic hepatitis B, chronic hepatitis C, autoimmune hepatitis, and 
primary biliary cholangitis were excluded. Patients with non-compensated liver cirrhosis and those with 
concomitant hepatocellular carcinoma were also excluded.

Dietary counseling using AI
“Calomeal” is a software application developed by Life Log Technology, Inc. (Tokyo, Japan) that can 
easily record and manage one’s daily meals and physical activity. It has been available in Japan since 
December 2015. The "Calomeal" software is commercially available, and anyone can purchase it. When a 
user takes a picture of a meal using devices such as smartphones, the cloud-based AI calculates the 
nutritive values of the food in the photograph, and the results are sent to the user’s device (Figure 1). 
The AI of Calomeal was compiled using machine learning of food image data collected from major 
restaurant chains, food manufacturers, and everyday home-cooked meals. It can identify approximately 
18000 food images. In addition to total caloric intake, Calomeal simultaneously calculates the nutritive 
values of proteins, lipids, carbohydrates, glucides, dietary fiber, and salt content.

This study used a customized version of Calomeal that was developed in cooperation with Life Log 
Technology. The following three areas were customized: (1) Changing the device from a smartphone to 
an iPad Mini; (2) simplifying food selection and offering more detailed options on consumed quantities; 
and (3) redirecting the AI analysis results to the study’s dedicated personal computer and not to the 
patients’ devices.

More specifically, since some NAFLD patients were older, iPad Minis were used as the device instead 
of smartphones because iPad Minis have larger display screens (Figure 2). When patients took pictures 
of a food item, the AI suggested the name of three possible food choices. The patients then selected from 
the three choices the food item that they consumed. When none of the offered three choices matched, 
“no suitable choice” was selected. Next, the patients chose the quantity of food that they consumed from 
the list of options. Eight options were available. Setting 100% as the normal serving size, the options 
were as follows: 200%, 150%, 100%, 66% (about two-thirds), 50%, 33% (about one-third), 10% (about one 
bite), and 0% (although a picture was taken, no food was consumed). AI calculated the nutritive values 
once these tasks were completed. The analysis results were forwarded to the study’s dedicated personal 
computer managed by the authors (Figure 3). Breakfast, lunch, dinner, or snacks were automatically 
determined based on the time when the foods were photographed.

After photographing one week’s worth of pictures of meals, the patients came in for their dietary 
counseling session. By the time of the patients’ visits, the AI had prepared a list of a patient’s one week’s 
worth of photographed foods (Figure 4) and bar charts showing the amounts of caloric, protein, lipid, 
carbohydrate, glucide, dietary fiber, and salt intakes (Figure 5). Registered dietitians participating in this 
study conducted dietary counseling while presenting the abovementioned data.

The photographed food images for which the patients could not find a suitable choice at the time of 
taking the picture were examined by the registered dietitians before the patients’ visits, and after 
checking the photographed images, the registered dietitians entered the correct item name.

Principle of Calomeal
Around dozens of pieces of photograph data for one food (or one product) are prepared for machine 
learning. These photographs are learned by deep neural network, and foods (or a product) are analyzed 
by the pattern of the color and form.

The nutrient of common foods was calculated based on "standard table of food composition" 
announced by Japanese Ministry of Education, Culture, Sports, Science and Technology by dietitian of 
Life Log Technology company. The nutrient of foods of major restaurant chains and food manufacturers 
was calculated using the data published in the home page of each company. When the nutrient was not 
announced in home page of the company, the dietitian calculated the nutrient from announced raw 
materials.

Effects of dietary counseling using Calomeal
Of all the patients enrolled in the study, patients who agreed to receive dietary counseling were given 
dietary counseling using Calomeal. Blood biochemistry tests were performed before (baseline) and 6 mo 
after (6M follow-up) dietary counseling. Aspartate aminotransferase (AST), alanine aminotransferase 
(ALT), γ-glutamyltransferase (GGT), total cholesterol (T-cho), and triglyceride (TG) levels were 
compared between the baseline and 6M follow-up.

Body weight of all patients was compared between the baseline and 6M follow-up.

Analysis capability of AI
As noted earlier, the AI used in the present study was capable of analyzing approximately 18000 meal 
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Figure 1 The concept of Calomeal. When users take a photograph of their meals with their smartphones, the artificial intelligence on the Calomeal server 
calculates the nutritive value of the food included in the photograph, and the results are sent to the user’s device.

Figure 2 Display on the iPad Mini. Instead of using a smartphone as the device, an iPad Mini, which has a larger screen, is used. When a patient photographs 
a food item, the artificial intelligence suggests the names of three possible food choices. The patient selects the food that he or she ate from one of the three choices. 
If none of the three choices matches, the patient chooses “no suitable choice.” Next, the patient selects the quantity of food consumed from the list of options. Eight 
options are available. Setting 100% as the normal serving size, the choices are as follows: 200%, 150%, 100%, 66% (about two-thirds), 50%, 33% (about one-third), 
10% (about one bite), and 0% (picture was taken but no food was consumed). Breakfast, lunch, dinner, or snacks are automatically determined based on the time 
that the foods were photographed.

items. However, since most of these items were collected from menus of major restaurant chains and 
food manufacturers, its ability to identify everyday home-cooked meals was unknown. The AI’s ability 
to analyze food images was evaluated by calculating the percentage (%) of unidentified foods (i.e., foods 
for which the results of the AI’s automated analysis did not match the foods actually consumed by the 
patients, thereby categorized under “no suitable choice”) among all food items.

In addition, the time spent by registered dietitians before the patient visits in entering the correct food 
names of the unidentified “no suitable choice” food items was also measured.

Acceptance of Calomeal
After the dietary counseling, subjects in the Calomeal Group were asked to complete a questionnaire 
survey consisting of the following questions:

Question 1: Were you glad that you were given an AI-based dietary counseling session? (Yes or No).
Question 2: Did you find the dietary counseling rewarding? (Yes or No).
Question 3: Have you become more conscious of improving your dietary lifestyle? (Yes or No).
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Figure 3 Calomeal concepts that were customized in this study. The food images photographed with an iPad Mini are analyzed by the artificial 
intelligence on the Calomeal server. The following information is sent to the dedicated personal computer at the authors’ hospital: ID, basic information of patients, 
captured food images, food lists of last one week, calculation of nutritive value, and bar charts of the nutritive value. Registered dietitians conduct dietary counseling 
based on these data.

Question 4: Would you like to receive another AI-based dietary counseling session? (Yes or No).

Statistical analysis
Continuous data, such as those from the blood biochemistry tests, are shown as the mean ± standard 
deviation. The paired Wilcoxon test was used to test the difference in each parameter between the start 
of observation (baseline) and after 6 mo (6M follow-up). P < 0.05 was considered significant.

RESULTS
There were 29 patients who agreed and received dietary counseling using Calomeal. The operation of 
Calomeal using iPads was accepted by all 29 patients. Table 1 shows the patients’ characteristics. The 
patients had been taking all of these medications before starting this study, and no new drugs were 
initiated after the start of the observation in this study.

Effects of dietary counseling
Table 2 shows the AST, ALT, GGT, hemoglobin A1c (HbA1c), T-cho, and TG levels and body weight at 
baseline and 6M follow-up. AST, ALT, GGT, and TG levels were significantly lower (P = 0.0088, 0.0133, 
0.0494, and 0.0246, respectively) at the 6M follow-up compared to the levels at baseline. Body weight 
was significantly lower (P = 0.0472) at the 6M follow-up compared to that at baseline.

Analysis capability of AI
Table 3 shows the total number of food items photographed in 1 wk of all patients in the Calomeal 
Group, the number of food items categorized under “no suitable choice”, and the food analysis 
capability of the AI. The mean number of total photographed food items was 62.6 (20 to 104), the mean 
number of food items categorized under “no suitable choice” was 15.0 (1 to 32), and the mean analysis 
capability was 75.1% (51.5 to 98.6%). Before dietary counseling sessions, registered dietitians spent on 
average 25.9 min (4.5 to 67.0 min) identifying the food items categorized under “no suitable choice.”

Acceptance of Calomeal
Table 4 shows the findings of the responses to the questionnaire survey. When the patients were asked 
“Were you glad that you were given an AI-based dietary counseling session?” in Question 1, all 29 
patients said “Yes.” When the patients were asked “Did you find the dietary counseling rewarding?” in 
Question 2, 15 of the 29 patients responded “Yes.” When the patients were asked “Have you become 
more conscious of improving your dietary lifestyle after the dietary counseling session?” in Question 3, 
all 29 patients responded “Yes.” When the patients were asked “Would you like to receive another AI-
based dietary counseling session?” in Question 4, four of the 29 patients responded “No.”
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Table 1 Patients' characteristics (n = 29)

Male/Female 16/13

Age (yr) 56.4 ± 14.3

Body weight (kg) 74.1 ± 13.1

BMI (kg/m2) 28.4 ± 5.2

Metabolic diseases

Diabetes mellitus (Yes/No) 10/19

Dyslipidemia (Yes/No) 14/15

Concomitant drugs

SGLT2 inhibitor 2

DPP-4 inhibitor 3

Thiazolidinedione

GLP-1 agonist 1

Statin 7

Bezafibrate

Pemafibrate

EPA and DHA preparation 1

AST (U/L) 50.2 ± 33.4

ALT (U/L) 53.8 ± 39.0

GGT (U/L) 80.3 ± 84.3

T-B (mg/dL) 1.3 ± 0.9

Alb (mg/dL) 4.2 ± 0.6

eGFR (mL/min) 71.1 ± 11.5

HbA1c (%) 6.4 ± 0.8

T-cho (mg/dL) 191.3 ± 35.0

TG (mg/dL) 126.5 ± 57.8

WBC (103/μL) 5.6 ± 1.5

Hb (g/dL) 14.5 ± 1.7

Plts (104/μL) 17.7 ± 7.4

AST: Aspartate aminotransferase; ALT: Alanine aminotransferase; GGT: γ-Glutamyltransferase; T-Bil: Total bilirubin; Alb: Albumin; eGFR: Estimated 
glomerular filtration rate; HbA1c: Glycated hemoglobin A1c; T-chol: Total cholesterol; TG: Triglycerides; WBC: White blood cells; Hb: Hemoglobin; Plts: 
Platelets.

DISCUSSION
AI helps diagnose NAFLD through its use in diagnostic imaging procedures such as ultrasound, 
computed tomography, and magnetic resonance imaging and pathological diagnostic procedures[10-
12]. However, there have been no reports of using AI in nutritional therapies and dietary counseling for 
NAFLD. Thus, the authors focused on this aspect and planned the present study.

There is a long history of using AI in food analysis. In 1983, Chen et al[13] reported that the caloric 
intake of foods could be calculated using a small wearable computer that can be attached to clothing like 
a tin badge. This small computer called the eButton is being used for the healthy transformation of 
homemade foods[14,15]. When the eButton is used solely for identifying foods, the sensitivity is 85.0% 
and the specificity is 85.8%. Since the small eButton can be worn by attaching it to clothing, privacy is 
maintained[13]; however, its widespread use by the general public may be difficult because it is a 
purpose-built computer.

In Japan, there are five types of nutrition management software applications that can be downloaded 
on smartphones. Although there may be some differences in their analysis capability, all of them are 
very easy to use[16]. Of these software applications, Oka et al[17] used Asken for dietary counseling of 



Kusano Y et al. AI-based dietary counseling for NAFLD

AIG https://www.wjgnet.com 111 October 28, 2022 Volume 3 Issue 4

Table 2 Changes of blood biochemistry parameters and body weight

Baseline 6M Follow-up P value

AST (U/L) 50.2 ± 33.4 34.7 ± 14.7 0.0088

ALT (U/L) 53.8 ± 39.0 35.3 ± 16.8 0.0113

GGT (U/L) 80.3 ± 84.3 66.3 ± 82.9 0.0494

HbA1c (%) 6.4 ± 0.8 6.2 ± 0.6 0.27832

T-cho (mg/dL) 191.3 ± 35.0 189 ± 34.3 0.2109

TG (mg/dL) 126.5 ± 57.8 104.1 ± 60.6 0.0426

Body weight (kg) 74.0 ± 13.1 71.2 ± 12.3 0.0472

AST: Aspartate aminotransferase; ALT: Alanine aminotransferase; GGT: γ-Glutamyltransferase; HbA1c: Glycated hemoglobin A1c; T-chol: Total 
cholesterol; TG: Triglycerides.

Figure 4 Analysis results of the photographed food images. A list is created based on the results of the artificial intelligence calculation using food names 
and intakes (%) selected by patients. Energy, protein, lipid, carbohydrate, salt, glucide, and dietary fiber content of each meal over 1 wk are shown.

type 2 diabetes mellitus patients and reported its benefit. Of these five software applications, the present 
study focused on Calomeal. The main reason for choosing Calomeal was its ease of operation.

In the present study, significant decreases in AST, ALT, GGT, and TG levels and body weight were 
observed at the 6M follow-up compared to the levels at baseline. However, there is an important 
limitation of this study. The present study did not compare dietary counseling using conventional 
methods with dietary counseling using Calomeal. The reason was that, in contrary to the authors’ 
expectations, fewer patients gave consent for dietary counseling after being diagnosed with NAFLD 
during the study period. Thus, it cannot be asserted that this study’s dietary counseling using Calomeal 
is superior to conventional methods. This issue needs to be addressed in future research.

The food analysis capability of the AI used by Calomeal in this study was 75.1%. The food analysis 
capability using Life Log Technology’s own data was reported to be 85.7%, which showed a discrepancy 
with the present study’s findings. One possible reason may be the small percentage of data for everyday 
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Table 3 Number of photographed food items, analysis rate, and time for confirmation

Case All foods No of candidates Analysis rate (%) Time for confirmation (min)

1 57 13 77.2 25.0 

2 31 2 93.5 4.5 

3 90 31 65.6 67.0 

4 40 7 82.5 20.5 

5 74 20 73.0 31.0 

6 69 1 98.6 6.0 

7 24 3 87.5 9.5 

8 20 9 55.0 12.0 

9 47 9 80.9 28.5 

10 87 29 66.7 35.5 

11 26 12 53.8 14.0 

12 35 8 77.1 10.0 

13 85 25 70.6 36.5 

14 95 8 91.6 8.5 

15 53 15 71.7 20.0 

16 84 32 61.9 39.5 

17 77 13 83.1 14.0 

18 51 7 86.3 13.0 

19 33 16 51.5 20.0 

20 103 9 91.3 19.5 

21 32 6 81.3 5.5 

22 68 25 63.2 32.5 

23 88 30 65.9 50.0 

24 41 18 56.1 66.0 

25 74 22 70.3 36.0 

26 104 16 84.6 34.0 

27 84 22 73.8 47.5 

28 83 13 84.3 25.5 

29 61 13 78.7 20.5 

Average 62.6 15.0 75.1 25.9 

Table 4 Questionnaire results

Question Yes No

1 29 0

2 15 14

3 29 0

4 25 29

home-cooked meals, since the food items registered in Calomeal’s AI consisted primarily of major 
restaurant chain menus, food manufacturers’ items, and convenience store products. In the present 
study, NAFLD patients, especially elderly patients, often consumed unique homemade dishes whose 
food names were difficult to identify just by looking at the pictures.
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Figure 5 Bar charts of nutritive values for 1 wk. A: Daily energy intake; B: Daily protein intake; C: Daily lipid intake; D: Daily carbohydrate intake; E: Daily 
salt intake; F: Daily glucide intake; G: Daily dietary fiber intake. The bar charts show the daily energy, protein, lipid, carbohydrate, salt, glucide, and dietary fiber 
intakes for 1 wk.

In other words, there were various daily diets, especially the cooking methods of family diets cannot 
be unified. These made food illegible and energy intake difficult to calculate. This can lead to significant 
error in the study.

Assuming that a patient eats four dish items per meal, three meals a day, this means that 4 × 3 × 7 = 
84 items should have been photographed in 1 wk. However, as shown in Table 2, there was a large 
difference among patients, some with very few photographed food items (20 items) and some who had 
photographed many food items (104 items). The following reasons were given: (1) Patients could not 
take pictures while they were dining out because they were conscious of their surroundings; (2) patients 
could not bring the iPads to work; and (3) Japanese “teishoku” set lunches often plate various dishes on 
one plate, and some patients took pictures of the whole plate as one photograph. In the case of (3), the 
AI could not analyze multiple food items at once. This issue was reported to Life Log Technology as 
feedback, and the Calomeal software at the time of writing this paper had already taken this into 
account.

In the present study, the names of all food images that patients selected as “no suitable choice” on the 
screen were examined and entered individually by the registered dietitians. This procedure, which on 
average took 25.9 min (4.5 to 67.0 min), was conducted before the dietary counseling sessions. Since the 
duration of one dietary counseling session was 30 min, this means that preparation required about the 
same amount of time. However, when meeting the patient face-to-face, a list of food items pho-



Kusano Y et al. AI-based dietary counseling for NAFLD

AIG https://www.wjgnet.com 114 October 28, 2022 Volume 3 Issue 4

tographed by the patient over the previous 1 wk and bar charts of various nutrients were already 
prepared. Thus, it is possible that more productive dietary counseling was offered within the allocated 
30-min session.

The questionnaire results showed that all of the respondents said that they were glad to have 
undergone dietary counseling using Calomeal. Similarly, they all responded that they had become 
aware of their dietary habits. On the other hand, 15 of 29 patients found the content of the dietary 
counseling rewarding. The majority of patients in the Calomeal Group in this study had a good 
command of their smartphones, and these patients had free access to the internet. Perhaps there was a 
lack of originality in the hospital-based dietary counseling, since nutritional information, to some extent, 
is available when one searches the internet. When the patients were asked whether they would like to 
receive dietary counseling again using Calomeal, four patients responded “No.” During outpatient 
follow-up interviews, all four patients commented that they “did not want to bring the devices out of 
their homes or to work.” This issue could be resolved by changing the device to a smartphone.

CONCLUSION
When an AI-based nutrition management software application automatically analyzed images of meals 
photographed by NAFLD patients, there were significant decreases in AST, ALT, GGT, and TG levels 
after 6 mo (6M follow-up). Thus, this method appeared to raise awareness of dietary habits of NAFLD 
patients. On the other hand, due to the limitations of the food analysis capabilities of AI, it did not 
directly alleviate the burden of registered dietitians, and improvements in the analytical capabilities of 
AI are much anticipated.

ARTICLE HIGHLIGHTS
Research background
Approximately 27000 people a year die from liver cancer in Japan. Liver cancer from non-viral liver 
disease increases while cancerogenesis from viral liver decreases. In the non-viral liver disease, 
nonalcoholic fatty liver disease (NAFLD) increases in particular. Therefore, carcinogenesis restraint 
from NAFLD is urgent business to reduce liver cancer death. Diet therapy is the first choice for the 
treatment of NAFLD and nutrition education for this purpose becomes extremely important.

Research motivation
The authors paid attention to the nutrition education using the artificial intelligence and led to the idea 
of this study using the application software called the "Calomeal". The authors have the patients 
understand the importance of the diet by performing the nutrition education using the artificial 
intelligence for the NAFLD patients and want to help inhibit the cancerogenesis from NAFLD. A study 
on optimization of the nutrition education using the artificial intelligence (AI) for NAFLD is the attempt 
that leads the world and thinks with pioneer positioning of the future health promotion medical care.

Research objectives
Patients clinically diagnosed with NAFLD between August 2020 and March 2022 were included as 
subjects. "Calomeal" as a software application developed by Life Log Technology, Inc. (Tokyo, Japan) 
was used for the nutrition education. Blood biochemistry tests were performed before (baseline) and 6 
mo after (6M follow-up) dietary counseling. After the dietary counseling, the patients were asked to 
complete a questionnaire survey.

Research methods
There were significant decreases in liver enzyme and triglyceride levels at the 6M follow-up compared 
to baseline. The food analysis capability of the AI used by Calomeal in this study was 75.1%. Patient 
satisfaction with the AI-based dietary counselling was high.

Research results
The authors have the patients understand the importance of the diet because the NAFLD patients 
receive a nutrition education using the artificial intelligence, and the purpose of this study is to carry a 
help of the cancerogenesis restraint.

Research conclusions
When an AI-based nutrition management software application automatically analyzed images of meals 
photographed by NAFLD patients, liver function was improved significantly. On the other hand, due to 
the limitations of the food analysis capabilities of AI, improvements in the analytical capabilities of AI 
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are much anticipated.

Research perspectives
The direction of future research is nutrition education using more advanced artificial intelligence to 
inhibit the carcinogenesis from NAFLD.
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Abstract
Artificial intelligence (AI) is a complex concept, broadly defined in medicine as 
the development of computer systems to perform tasks that require human 
intelligence. It has the capacity to revolutionize medicine by increasing efficiency, 
expediting data and image analysis and identifying patterns, trends and associ-
ations in large datasets. Within gastroenterology, recent research efforts have 
focused on using AI in esophagogastroduodenoscopy, wireless capsule 
endoscopy (WCE) and colonoscopy to assist in diagnosis, disease monitoring, 
lesion detection and therapeutic intervention. The main objective of this narrative 
review is to provide a comprehensive overview of the research being performed 
within gastroenterology on AI in esophagogastroduodenoscopy, WCE and 
colonoscopy.

Key Words: Artificial intelligence; Colonoscopy; Computer-aided detection; Deep learn-
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Core Tip: Artificial intelligence (AI) is a complex concept that has the capacity to 
revolutionize medicine. Within gastroenterology, recent research efforts have focused 
on using AI in esophagogastroduodenoscopy, wireless capsule endoscopy (WCE) and 
colonoscopy to assist in diagnosis, disease monitoring, lesion detection and therapeutic 
intervention. This narrative review provides a comprehensive overview of the research 
being performed within gastroenterology on AI in esophagogastroduodenoscopy, WCE 
and colonoscopy.
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INTRODUCTION
Artificial intelligence (AI) is a complex concept, broadly defined in medicine as the development of 
computer systems to perform tasks that require human intelligence[1]. Since its inception in the 1950s, 
the field of AI has grown considerably (Figure 1)[2]. Often AI is accompanied by the terms machine 
learning (ML) and deep learning (DL), techniques used within the field of AI to develop systems that 
can learn and adapt without explicit instructions. Machine learning uses self-learning algorithms that 
derive knowledge from data to predict outcomes[1]. There are two main categories within ML: 
Supervised and unsupervised learning. In supervised learning, the AI is trained on a dataset in which 
human intervention has previously assigned a hierarchy of features which allows the algorithm to 
understand differences between data inputs and classify or predict outcomes[3]. In unsupervised 
learning, the system is provided a dataset that has not been categorized by human intervention. The 
algorithm then analyzes the data with the goal of identifying labels or patterns[3].

Deep learning is a subfield of ML that utilizes artificial neural networks (ANN) to analyze data. In 
DL, the system is able to analyze raw data and determine features that distinguish between data inputs. 
ANN systems are composed of interconnected nodes in a layered structure similar to how neurons are 
organized in the human brain. The weight of the connections between each node influences how the 
system can recognize, classify, and describe objects within data[3,4]. ANNs with multiple layers of 
nodes are classified as deep neural networks which form the backbone of deep learning.

Artificial intelligence has the capacity to revolutionize medicine. It can be used to increase efficiency 
by aiding in appointment scheduling, reviewing insurance eligibility, or tracking patient history. AI can 
also expedite data and image analysis and detect patterns, trends and associations[5]. Within gastroen-
terology, AI’s prominence stems from its utility in image analysis[5,6]. Many gastrointestinal diseases 
rely on endoscopic evaluation for diagnosis, disease monitoring, lesion detection and therapeutic 
intervention. However, endoscopic evaluation is heavily operator dependent and thus subject to 
operator bias and human error. As such, recent efforts have focused on using AI in esophagogastroduo-
denoscopy, wireless capsule endoscopy (WCE) and colonoscopy to mitigate these issues, serving as an 
additional objective observer of the intestinal tract. The main objective of this narrative review is to 
provide a comprehensive overview of the research being performed within gastroenterology on 
artificial intelligence in esophagogastroduodenoscopy, WCE and colonoscopy. While other narrative 
reviews have been published regarding the use of artificial intelligence in esophagogastroduoden-
oscopy, WCE and colonoscopy, this narrative review goes a step further by providing a granular and 
more technical assessment of the literature. As such, this narrative review is intended for medical 
providers and researchers who are familiar with the use of artificial intelligence in esophagogastroduo-
denoscopy, WCE and colonoscopy and are interested in obtaining an in-depth review in a specific area.

LITERATURE REVIEW
Electronic databases Embase, Ovid Medicine, and PubMed were searched from inception to September 
2022 using multiple search queries. Combinations of the terms “artificial intelligence”, “AI”, “computer 
aided”, “computer aided detection”, “CADe”, “convolutional neural network”, “deep learning”, 
“DCNN”, “machine learning”, “colonoscopy”, “endoscopy”, “wireless capsule endoscopy”, “capsule 
endoscopy”, “WCE”, “esophageal cancer”, esophageal adenocarcinoma”, “esophageal squamous cell 
carcinoma”, “gastric cancer”, “gastric neoplasia”, “gastric lesions”, “Barrett’s esophagus”, “celiac 
disease”, “Helicobacter pylori”, “Helicobacter pylori infection”, “H pylori”, “H pylori infection”, 
“gastric ulcers”, “duodenal ulcers”, “inflammatory bowel disease”, “IBD”, “ulcerative colitis”, “Crohn’s 
disease”, “parasitic infections”, “hookworms”, “bleeding”, “gastrointestinal bleeding”, “vascular 
lesions”, “angioectasias”, “polyp”, “polyp detection”, “tumor”, “gastrointestinal tumor”, “small bowel 
tumor”, “bowel preparation”, “Boston bowel preparation scale”, “BBPS”, “adenoma”, “adenoma 
detection”, “adenoma detection rate”, “sessile serrated lesion”, and “sessile serrated lesion rate” were 
used. We subsequently narrowed the results to clinical trials in human published within the last 10 
years.

https://www.wjgnet.com/2644-3236/full/v3/i5/117.htm
https://dx.doi.org/10.35712/aig.v3.i5.117
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Figure 1 Timeline of the development and use of artificial intelligence in medicine. AI: Artificial intelligence; DL: Deep learning; FDA: U.S. Food and 
Drug Administration; CAD: Computer-aided diagnosis. Reprinted with permission from Elsevier Science & Technology Journals[2].

ESOPHAGOGASTRODUODENOSCOPY
Barrett’s esophagus and esophageal adenocarcinoma
Barrett’s esophagus (BE) is a premalignant condition associated with esophageal adenocarcinoma (EAC)
[7-9]. It is caused by chronic inflammation and tissue injury of the lower esophagus as a result of gastric 
reflux[7-9]. Early detection and diagnosis can prevent the progression of BE to EAC[7-9]. Patients with 
BE should undergo routine surveillance endoscopies to monitor for progression. However, even with 
surveillance, dysplastic changes can be easily missed[7]. To improve the detection of dysplastic changes 
in BE, researchers have focused on developing AI systems to assist with the identification of dysplasia 
and early neoplasia during endoscopic evaluation.

Since 2016, a group of researchers from the Netherlands have developed numerous AI systems to 
identify neoplastic lesions in BE[10-16]. Their first publication detailed their experience using a support 
vector machine (SVM), a ML method, to identify early neoplastic lesions from white light endoscopy 
(WLE) images[10]. Their SVM achieved a sensitivity and specificity of 83% with respect to per-image 
detection and sensitivity of 86% and specificity of 87% with respect to per-patient detection[10]. In their 
next study, the group trialed several different feature extraction and ML methods using volumetric laser 
endomicroscopy (VLE) images[11]. They received the best results with the feature extraction module 
“layering and signal decay statistics”, achieving high sensitivity (90%) and specificity (93%) with area 
under the curve (AUC) 0.95 for neoplastic lesion detection[11]. Following this, they conducted a second 
studying again using ML in VLE to identify neoplastic lesions in BE, however, they used a multiframe 
analysis approach, including frames neighboring the region of interest in the analysis[12]. With this 
approach, they found that multiframe analysis resulted in a significantly higher median AUC when 
compared to single frame analysis (0.91 vs 0.83; P < 0.001)[12]. Continuing to use ML methods, the 
group published their finding from the ARGOS project – a consortium of three international tertiary 
referral centers for Barrett’s neoplasia[13]. In this study, de Groof et al[13] created a computer-aided 
detection (CADe) system that used SVM to classify images. The group tested the CADe with 60 images 
– 40 images from patients with a neoplastic lesion, 20 images from patients with non-dysplastic Barrett’s 
esophagus. The CADe achieved an AUC of 0.92 and a sensitivity, specificity and accuracy of 95%, 85% 
and 92% respectively for detecting neoplastic lesions[13].

Following their successes creating ML systems for neoplastic lesion detection, the group of 
researchers from the Netherlands shifted their focus to DL methods. In their first foray into DL, they 
developed a hybrid CADe system using architecture from ResNet and U-Net models. The CADe was 
trained with 494364 labeled endoscopic images and subsequently refined with a data set comprised of 
1247 WLE images. It was finally tested on a set of 297 images (129 images with early neoplasia, 168 with 
non-dysplastic BE) where the hybrid CADe system attained a sensitivity of 87.6%, specificity of 88.6% 
and accuracy of 88.2% for identifying early neoplasia[14]. The system was also tested in two external 
validation sets where it achieved similar results. A secondary outcome of the study was to see if within 
the images classified as having neoplasia if the CADe could delineate the neoplasia and recommend a 
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site for biopsy. The ground truth was determined by expert endoscopists. In two external data sets 
(external validation data set 4 and 5), the CADe identified the optimal biopsy site in 97.2% of cases and 
91.9% of cases respectively[14]. Using a similar hybrid CADe, the group performed a pilot study testing 
the CADe during live endoscopic procedures[15]. Overall, the CADe achieved a sensitivity of 75.8%, 
specificity of 86.5% and accuracy of 84% in per-image analyses[15]. Their most recent study again used 
their hybrid ResNet and U-Net CADe to identify neoplastic lesions in narrow-band imaging (NBI)[16]. 
With respect to NBI images, the CADe was found to have sensitivity of 88% (95%CI 86%-94%), 
specificity of 78% (95%CI 72%-84%), and accuracy of 84% (95%CI 81%-88%) for identifying BE neoplasia
[16]. In per frame and per video analyses, the CADe achieved sensitivities of 75% and 85%, specificities 
of 90% and 83% and accuracies of 85% and 83% respectively[16].

Outside of this group from the Netherlands, several other researchers have created DL systems for 
the detection of BE neoplasia[17-21]. Hong et al[17] created a CNN that could distinguish between 
intestinal metaplasia, gastric metaplasia and neoplasia from images obtained by endomicroscopy in 
patients with Barrett’s esophagus with accuracy of 80.8%. Ebigbo et al[18] created a DL-CADe capable of 
detecting BE neoplasia with sensitivity 83.7%, specificity of 100.0% and accuracy of 89.9%. Two other 
groups achieved similar results to Ebigbo et al[18]: Hashimoto et al’s CNN detected early neoplasia with 
sensitivity of 96.4%, specificity of 94.2%, and accuracy of 95.4% and Hussein et al’s CNN detected early 
neoplasia with sensitivity 91%, specificity 79%, area under the receiver operating characteristic 
(AUROC) of 93%[19,20]. An overview of these studies is provided in Table 1.

In addition to neoplasia detection, some groups started to use AI to grade BE and predict submucosal 
invasion of lesions. Ali et al[22] recently published the results from a pilot study using a DL system to 
quantitatively assess BE area (BEA), circumference and maximal length (C&M). They tested their DL 
system on 3D printed phantom esophagus models with different BE patterns and 194 videos from 131 
patients with BE. In the phantom esophagus models, the DL system achieved an accuracy of 98.4% for 
BEA and 97.2% for C&M[22]. In the patient videos, the DL system differed from expert endoscopists by 
8% and 7% for C&M respectively[22]. Ebigbo et al[23], building upon their earlier success using a DL 
CADe to detect neoplasia, performed a pilot study using a 101-layer CNN to differentiate T1a (mucosal) 
and T1b (submucosal) BE related cancers. Using 230 WLE images obtained from three tertiary care 
centers in Germany, their CNN was capable of discerning T1a lesions from T1b lesions with sensitivity, 
specificity and accuracy of 77%, 64% and 71% respectively, comparable to the expert endoscopists 
enrolled in the study[23].

Despite BE’s potential progression to EAC if left unmanaged, few studies have explicitly looked at 
using AI to detect EAC. Ghatwary et al[24] tested several DL models on 100 WLE images (50 featuring 
EAC, 50 featuring normal mucosa) to determine which was best at identifying EAC. They found that the 
Single-Shot Multibox Detector (SSD) method achieved the best results, attaining a sensitivity of 96% and 
specificity of 92%[24]. In 2021, Iwagami et al[25] focused on developing an AI system to identify 
esophagogastric junctional adenocarcinomas. They used SSD for their CNN, achieving a sensitivity, 
specificity and accuracy of 94%, 42% and 66% for detecting esophagogastric junctional adenocar-
cinomas. Their CNN performed similarly to endoscopists enrolled in the study (sensitivity 88%, 
specificity 43%, accuracy 66%)[25].

Esophageal squamous cell carcinoma
Esophageal squamous cell carcinoma (ESCC) is the most common histologic type of esophageal cancer 
in the world[26]. While certain imaging modalities such as Lugol’s chromoendoscopy and confocal 
microendoscopy are effective at improving the accuracy, sensitivity and specificity of targeted biopsies, 
they are expensive and not universally available[27]. In recent years, efforts have focused on developing 
AI systems to support lower cost imaging modalities in order to improve their ability to detect ESCC.

Shin et al[27] and Quang et al[28] created ML algorithms which they tested on high-resolution 
microendoscope images, obtaining comparable sensitivities for the detection of ESCC (98% and 95% 
respectively). Following these studies, several groups created DL systems to detect ESCC[29-38]. In Cai 
et al’s study, their deep neural network-CADe was tested on 187 images obtained from WLE. The 
system obtained good sensitivity (97.8%), specificity (85.4%) and accuracy (91.4%) for identifying ESCC
[29]. Similar findings occurred in three separate studies that used deep convolutional neural networks 
(DCNNs) to detect ESCC in WLE[30-32]. Using NBI, Guo et al[33] created a CADe that achieved high 
sensitivity (98.0%), specificity (95.0%) and an AUC of 0.99 for detecting ESCC in still images. Similar 
results were obtained in Li et al’s study[35]. For detecting ESCC in NBI video clips, Fukuda et al[34] 
obtained different results, finding similar sensitivity (91%) to Guo et al[33] however substantially lower 
specificity (51%). Three studies compared a DL-CADe with WLE to DL-CADe with NBI for the 
detection of ESCC[32,35,36]. The results from these three studies were quite discordant and as such a 
statement regarding whether a DL-CADe with WLE or DL-CADe with NBI is better for the detection of 
ESCC cannot be made at this time.

Interestingly, several studies used DL algorithms to assess ESCC invasion depth[39,40]. Everson et al
[39] and Zhao et al[40] created CNNs to detect intrapapillary capillary loops, a feature of ESCC that 
correlates with invasion depth, in images obtained from magnification endoscopy with NBI. They 
achieved similar findings with Everson et al’s CNN achieving an accuracy of 93.7% and Zhao et al’s 
achieving an accuracy of 89.2%[39,40]. Using DL, two groups created DCNNs to directly detect ESCC 
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Table 1 Overview of findings from studies evaluating the detection accuracy of computer-aided detection for Barrett’s esophagus-
related neoplasia

Ref. Country Study 
design

AI 
Classifier Lesions Training 

dataset Test dataset Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%) AUROC

Swager et al
[11], 2017

Netherlands Retrospective ML2 
methods

NPL - 60 VLE images 90 93 - 0.95

van der 
Sommen et al
[10], 2016

Netherlands Retrospective SVM NPL - 100 WLE 
images

83 83 - -

Hong et al
[17], 2017

South Korea Retrospective CNN NPL, 
IM, GM

236 endomic-
roscopy images

26 endomic-
roscopy images

- - 80.77 -

de Groof et al
[13], 2019

Netherlands, 
Germany, 
Belgium

Prospective SVM NPL - 60 WLE images 95 85 91.7 0.92

Ebigbo et al
[21], 2019

Germany, 
Brazil

Retrospective CNN EAC Augsburg dataset: 148 WLE 
images and NBI; MICCAI dataset: 
100 WLE images

97; 94a; 92 88; 80a; 100 - -

Ghatwary et 
al[24], 2019

England, 
Egypt

Retrospective Multiple 
CNNs

EAC Images from 21 
patients

Images from 9 
patients

96 92 - -

de Groof et al
[14], 2020

Netherlands, 
France, 
Sweden, 
Germany, 
Belgium, 
Australia

Ambispective CNN NPL Dataset 1: 
494364 images; 
Dataset 2:1; 247 
images; Dataset 
3: 297 images

Dataset 3: 297 
images; Dataset 
4: 80 images; 
Dataset 5: 80 
images

90b 87.5b 88.8b -

de Groof et al
[15], 2020

Netherlands, 
Belgium

Prospective CNN NPL 495611 images 20 patients; 144 
WLE images

75.8 86.5 84 -

Ebigbo et al
[18], 2020

Germany, 
Brazil

Prospective CNN EAC 129 images 62 images 83.7 100 89.9 -

Hashimoto et 
al[19], 2020

United 
States

Retrospective CNN NPL 1374 images 458 images 96.4 94.2 95.4 -

Struyvenberg 
et al[12], 2020

Netherlands Prospective ML2 
methods

NPL - 3060 VLE 
frames

- - - 0.91

Iwagami et al
[25], 2021

Japan Retrospective CNN EJC 3443 images 232 images 94 42 66 -

Struyvenberg 
et al[16], 2021

Netherlands, 
Sweden, 
Belgium

Retrospective CNN NPL 495611 images 157 NBI zoom 
videos; 30021 
frames

851; 75 831; 90 831; 85 -

Hussein et al
[20], 2022

England, 
Spain, 
Belgium, 
Austria

Prospective CNN DPL 148936 frames 264 iscan-1 
images

91 79 - 0.93

aSensitivity and specificity reported by white light endoscopy images from the Augsburg dataset, narrow band images from the Augsburg dataset, and from 
the MICCAI dataset respectively.
bResults found from convolutional neural network analyzing dataset 4.
1Sensitivity, specificity and accuracy obtained from per-video analysis and from per-frame analysis respectively.
2Multiple machine learning (ML) methods tested. Results from best performing ML method reported.
AI: Artificial intelligence; AUROC: Area under the receiver operating characteristic; CNN: Convolutional neural network; DPL: Dysplasia; EAC: Esophageal 
adenocarcinoma; EJC: Esophagogastric junctional adenocarcinoma; GM: Gastric metaplasia; IM: Intestinal metaplasia; ML: Machine learning; NBI: Narrow 
band images; NPL: Neoplasia; SVM: Support vector machine; VLE: Volumetric laser endomicroscopy; WLE: White light endoscopy.

invasion depth[41-43]. One group from Osaka International Cancer Institute conducted two studies 
using SSD to create their DCNNs[41,42]. The DCNNs were made to classify images as EP-SM1 or EP-
SM2-3 as this distinction in ESCC bares clinical significance. The studies (Nakagawa et al[41] and 
Shimamoto et al[42]) attained similar accuracies and specificities, however had substantially different 
sensitivities (90.1% vs 50% and 71%)[41,42]. The third study, Tokai et al[43], used SSD as well for their 
DCNN and also programed the DCNN to classify images as EP-SM1 or EP-SM2-3. Their observed 
sensitivity, specificity and accuracy were lower than those found by Nakagawa et al[41] (84.1%, 73.3% 
and 80.9% respectively).
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Gastric cancer
Gastric cancer is the third leading cause of cancer-related mortality in the world[44,45]. Early detection 
of precancerous lesions or early gastric cancer with endoscopy can prevent progression to advanced 
disease[46]. However, a substantial number of upper gastrointestinal cancers are missed placing 
patients at risk for interval development[45]. To mitigate this risk, AI systems are being develop to assist 
with lesion detection.

In 2013, Miyaki et al[47] used a bag-of-features framework with densely sampled scale-invariant 
feature transform descriptors to classify still images obtained from magnifying endoscopy with flexible 
spectral imaging color enhancement as having or not having gastric cancer. Their system, a rudimentary 
version of ML, obtained good sensitivity (84.8%), specificity (87.0%) and accuracy (85.9%) for identifying 
gastric cancer[47]. Using SVM, Kanesaka et al[48] found higher sensitivity (96.7%), specificity (95%) and 
accuracy (96.3%).

Following these successes, several groups began using CNNs for the identification of gastric cancer
[44-46,49-59]. In 2018, Hirasawa et al[44] published one of the first papers to use a CNN (SSD) to detect 
gastric cancer. In a test set of 2296 images, the CNN had a sensitivity of 92.2% for identifying gastric 
cancer lesions[44]. In a larger study, Tang et al[49] created a DCNN to detect gastric cancer in a test set 
of 9417 images and 26 endoscopy videos. With respect to their test set, the DCNN performed well, 
achieving a sensitivity of 95.5% (95%CI 94.8%–96.1%), specificity of 81.7% (95%CI 80.7%–82.8%), 
accuracy of 87.8% (95%CI 87.1%–88.5%) and AUC 0.94[49]. The DCNN continued to perform well in 
external validation sets, achieving sensitivity of 85.9%-92.1%, specificity of 84.4%-90.3%, accuracy of 
85.1%-91.2% and AUC 0.89-0.93[49]. Compared to expert endoscopists, the DCNN attained higher 
sensitivity, specificity and accuracy. In the video set, the DCNN achieved a sensitivity of 88.5% (95%CI 
71.0%-96.0%)[49]. Several studies using DCNN to detect gastric cancer in endoscopy images obtained 
similar sensitivities, specificities and accuracies to Tang et al[49]. While one study reported a sensitivity 
of 58.4% for detecting gastric cancer, the sensitivity for the study’s 67 endoscopists was 31.9%[55].

Recently, several groups from China and Japan have published studies using CNNs with magnified 
endoscopy with NBI (ME-NBI) in an effort to improve early gastric cancer detection[56-59]. Using a 22-
layer CNN, Horiuchi et al[56] achieved a sensitivity, specificity and accuracy of 95.4%, 71.0% and 85.3% 
respectively for identifying early gastric cancer from a set of 258 ME-NBI images (151 gastric cancer, 107 
gastritis). The same group published a similar study the following year however using ME-NBI videos 
instead of still images[57]. They obtained similar results: sensitivity of 87.4% (95%CI 78.8%-92.8%), 
specificity of 82.8% (95%CI 73.5%-89.3%) and accuracy of 85.1% (955 CI 79.0%-89.6%)[57]. Hu et al[58] 
and Ueyama et al[59] in their studies using CNN to identify gastric cancer in ME-NBI achieved similar 
sensitivities, specificities and accuracies as Horiuchi et al[56]. An overview of these studies is provided 
in Table 2.

Of increasing interest to researchers within this field is predicting invasion depth of gastric cancer 
using AI. Few studies have used CNNs to predict invasion depth[60-63]. Yoon et al[60] created a CNN 
to predict gastric cancer lesion depth from standard endoscopy images. The CNN achieved good 
sensitivity (79.2%) and specificity (77.8%) for differentiating T1a (mucosal) from T1b (submucosal) 
gastric cancers (AUC 0.851)[60]. Also using standard endoscopy images, Zhu et al[61] attained similar 
results. They trained their CNN to identify P0 (restricted to the mucosa or < 0.5 mm within the 
muscularis mucosae) vs P1 (≥ 0.5 mm deep into the muscularis mucosae) lesions. The CNN achieved a 
sensitivity of 76.6%, specificity of 95.6%, accuracy of 89.2% and AUROC 0.94 (95%CI 0.90-0.97). Cho et al
[62] using DenseNet-161 as their CNN and Nagao et al[62] using ResNet50 as their CNN obtained 
comparable results to Zhu et al[61] for predicting gastric cancer invasion depth from endoscopy images.

Gastric ulcers
Within recent years, numerous studies have been published regarding the use of AI to assist with the 
detection and classification of gastric lesions. Few of these studies explicitly used AI systems to detect 
duodenal and gastric ulcers, however they report data pertaining to ulcer detection.

Using YOLOv5, a deep learning object detection model, Ku et al[64] created a CADe system capable 
of detecting multiple gastric lesions with good precision (98%) and sensitivity (89%). Also using YOLO 
for their DCNN, Yuan et al[53] achieved an overall system accuracy of 85.7% for gastric lesion identi-
fication. With respect to peptic ulcer detection, their system achieved an accuracy of 95.4% (93.5%-
97.2%), sensitivity of 86.2% (77.5%–94.8%) and specificity of 96.8% (95.1%–98.4%)[53]. Guo et al[54] used 
ResNet50 to construct their CADe designed to detect gastric lesions. Their CADe achieved lower 
sensitivity 71.4% (95%CI 69.5–73.2%) and specificity 70.9% (95%CI 70.3–71.4%) than Yuan et al’s DCNN
[53], however Guo et al[54] combined erosions and ulcers into one category for analysis. With their 
primary outcome being classifying gastric cancers and ulcers, Namikawa et al[52] developed a CNN 
capable of identifying gastric ulcers with high sensitivity (93.3%; 95%CI 87.3%−97.1%) and specificity 
(99.0%; 95%CI 94.6%-100%).

Helicobacter pylori infection
As a risk factor for future development of gastric cancer, early detection and eradication of Helicobacter 
pylori (H. pylori) in infected individuals is important. Endoscopic evaluation for H. pylori is highly 
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Table 2 Overview of findings from studies evaluating the detection accuracy of computer-aided detection for gastric cancer

Ref. Country Study 
design

AI 
classifier Lesions Training 

dataset
Test 
dataset

Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%) AUROC

Miyaki et al
[47], 2013 

Japan Prospectivea SVM Gastric cancer 493 FICE-
derived 
magnifying 
endoscopic 
images

92 FICE-
derived 
magnifying 
endoscopic 
images

84.8 97 85.9 -

Kanesaka 
et al[48], 
2018

Japan, 
Taiwan

Retrospective SVM EGC 126 M-NBI 
images

81 M-NBI 
images

96.7 95 96.3 -

Wu et al
[50], 2019

China Retrospective CNN EGC 9151 images 200 images 94 91 92.5 -

Cho et al
[51], 2019

South 
Korea

Ambispective CNN Advanced gastric 
cancer, EGC, high 
grade dysplasia, 
low grade 
dysplasia, non-
neoplasm

4205 WLE 
images

812 WLE 
images; 200 
WLE images

- - 86.6b; 76.4 0.877b

Tang et al
[49], 2020

China Retrospective CNN EGC 35823 WLE 
images

Internal: 9417 
WLE images; 
External: 
1514 WLE 
images1

95.51; 85.9-
92.1

81.71; 84.4-
90.3

87.81; 85.1-
91.2

0.941; 
0.887-
0.925

Namikawa 
et al[52], 
2020

Japan Retrospective CNN Gastric cancer 18410 
images

1459 images 99 93.3 99 -

Horiuchi et 
al[56], 2020

Japan Retrospective CNN EGC 2570 M-NBI 
images

258 M-NBI 
images

95.4 71 85.3 0.852

Horiuchi et 
al[57], 2020

Japan Retrospective CNN EGC 2570 M-NBI 
images

174 videos 87.4 82.8 85.1 0.8684

Guo et al
[54], 2021

China Retrospective CNN Gastric cancer, 
erosions/ulcers, 
polyps, varices

293162 WLE 
images

33959 WLE 
images

67.52; 85.1 70.92; 90.3 - -

Ikenoyama 
et al[55], 
2021

Japan Retrospective CNN EGC 13584 WLE 
and NBI 
images

2940 WLE 
and NBI 
images

58.4 87.3 - -

Hu et al
[58], 2021

China Retrospective CNN EGC M-NBI 
images from 
170 patients

Internal: M-
NBI from 73 
patients 
External: M-
NBI images 
from 52 
patients

79.23; 78.2 74.53; 74.1 773; 76.3 0.8083; 
0.813

Ueyama et 
al[59], 2021

Japan Retrospective CNN EGC 5574 M-NBI 
images

2300 M-NBI 98 100 98.7 -

Yuan et al
[53], 2022

China Retrospective CNN EGC, advanced 
gastric cancer, 
submucosal tumor, 
polyp, peptic ulcer, 
erosion, and 
lesion-free gastric 
mucosa

29809 WLE 
images

1579 WLE 
images

59.24; 100 99.34; 98.1 93.54; 98.4 -

aPresumed prospective based on manuscript.
bAccuracy of convolutional neural network (CNN) for detecting the five different lesions and detecting gastric cancer respectively. Area under the receiver 
operating characteristic (AUROC) pertains to detecting gastric cancer.
1The external dataset was comprised of images from 3 external sites. Sensitivity, specificity, accuracy and AUROC for the internal dataset and external 
dataset respectively.
2Sensitivity and specificity of CNN for detecting gastric cancers in a dataset comprised of images without annotations and for detecting gastric cancers in a 
dataset comprised of annotated images respectively.
3Sensitivity, specificity, accuracy and AUROC for the internal dataset and external dataset respectively.
4Sensitivity, specificity and accuracy for detecting early gastric cancer and for detecting advanced gastric cancer respectively.
“Internal” and “External” refer to internal and external datasets respectively.
CNN: Convolutional neural network; AUROC: Area under the receiver operating characteristic; EGC: Early gastric cancer; FICE: Flexible spectral imaging 
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color enhancement; M-NBI: Magnifying endoscopy with narrow band imaging; NBI: Narrow band imaging; SVM: Support vector machine; WLE: White 
light endoscopy.

operator dependent[65]. Pairing artificial intelligence with endoscopy for the detection of H. pylori could 
possibly reduce false results.

Shichijo et al[66] used GoogLeNet, a DCNN consisting of 22 layers, to evaluate 11481 images obtained 
from 397 patients (72 H. pylori positive, 325 negative) for the presence or absence of H. pylori infection. 
GoogLeNet attained a sensitivity of 81.9% (95%CI 71.1%-90.0%), specificity of 83.4% (95%CI 78.9%-
87.3%) and accuracy of 83.1% (95%CI 79.1%-86.7%) with AUROC 0.89 for detecting H. Pylori infection
[66]. When compared to endoscopists enrolled in the study, the sensitivity, specificity and accuracy 
attained by GoogLeNet was comparable to those attained by the endoscopists[66]. This same group 
published a second study in 2019 again using GoogLeNet for their DCNN[67]. However, a different 
optimization technique was used to prepare GoogLeNet. The DCNN was tasked with classifying images 
as H. pylori positive, negative or eradicated. In a set of 23699 images, the DCNN attained an accuracy of 
80% for H. pylori negative, 84% for H. pylori eradicated, and 48% for H. pylori positive[67]. Also using 
GoogLeNet, Itoh et al[68] obtained similar results to Shichijo et al’s 2017 study with respect to sensitivity 
(86.7%) and specificity (86.7%)[66]. Using ResNet-50 as their architectural unit for their DCNN, Zheng et 
al[69] were successful in classifying images as H. pylori positive or negative, achieving a sensitivity, 
specificity, accuracy and AUC of 81.4% (95%CI 79.8%–82.9%), 90.1% (95%CI 88.4%–91.7%), 84.5% 
(95%CI 83.3%–85.7%) and 0.93 (95%CI 0.92–0.94) respectively.

Taking a different approach, Yasuda et al[70] used linked color imaging (LCI) with SVM to identify H. 
pylori infection. The LCI images were classified into high-hue and low-hue images based on redness and 
classified by SVM as H. pylori positive or negative. This method attained a sensitivity, specificity and 
accuracy of 90.4%, 85.7% and 87.6% respectively[70]. Combining LCI with a deep learning CADe 
system, Nakashima et al[71] achieved a sensitivity, specificity and accuracy of 92.5%, 80.0%, 84.2% for 
identifying H. pylori negative images, 62.5%, 92.5%, 82.5% for H pylori positive images, 65%, 86.2%, 
79.2% for H. pylori post-eradication images respectively.

Celiac disease
While immunological tests can support the diagnosis of celiac disease, definitive diagnosis requires 
histological assessment of duodenal biopsies[72]. As such being able to identify changes in the duodenal 
mucosa consistent with celiac disease is important. However, these changes can be subtle and difficult 
to appreciate. Few studies have been published using a CADe system to detect or diagnose celiac 
disease.

In 2016, Gadermayr et al[73] created a system that combined expert knowledge acquisition with 
feature extraction to classify duodenal images obtained from 290 children as Marsh-0 (normal mucosa) 
or Marsh-3 (villous atrophy). Expert knowledge acquisition was achieved by having one of three study 
endoscopists assign a Marsh grade of 0 or 3 to an image. Feature extraction was accomplished using one 
of three methods: (1) multi-resolution local binary patterns; (2) multi-fractal spectrum; and (3) improved 
Fisher vectors. From expert knowledge acquisition and feature extraction, their classification algorithm 
identified images as Marsh-0 or Marsh-3. With optimal settings, the classification algorithm achieved an 
accuracy of 95.6%-99.6%[73]. In 2016, Wimmer et al[74] used CNN to detect celiac disease in a set of 1661 
images (986 images of normal mucosa, 675 images of celiac disease) with varying convolutional blocks. 
Their CNN achieved the best overall classification rate (90.3%) with 4 convolutional blocks[74]. Taking 
their CNN a step further, they combined the CNN with 4 convolutional blocks with SVM which 
increased overall classification rate by 6.7%[74]. While interesting, Gadermayr et al’s method requires 
human intervention and the paper’s methodology is quite complicated[73], largely in part to the 
extensive number of systems tested. Wimmer et al[74] provided a simpler method that attained a good 
overall classification rate.

WIRELESS CAPSULE ENDOSCOPY
Celiac disease
Few studies have assessed the utility of AI in the detection of celiac disease using WCE. In 2017, Zhou et 
al[75] trained GoogLeNet, a DCNN, to identify celiac disease using clips obtained during WCE. Their 
DCCN achieved a sensitivity and specificity of 100% for identifying patients with celiac disease from 10 
WCE videos (5 from patients with celiac disease, 5 from healthy controls)[75]. Similarly, Wang et al[76] 
used DL to diagnose celiac disease from WCE videos, however their CNN utilized a block-wise channel 
squeeze and excitations attenuation module, a newer architectural unit thought to better mimic human 
visual perception[76]. Their system attained an accuracy of 95.9%, sensitivity of 97.2% and specificity of 
95.6% for diagnosing celiac disease.
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Inflammatory bowel disease
WCE is often used in patients with inflammatory bowel disease (IBD) to detect small bowel ulcers and 
erosions. While computed tomography enterography and MRI have been used to detect areas of disease 
activity and inflammation along the gastrointestinal tract in patients with IBD, these imaging modalities 
can miss early or small lesions. While WCE can directly visualize lesions, endoscopists reviewing the 
video may miss lesions or mistakenly identify imaging artifacts as lesions. AI systems could help reduce 
these errors. Several studies have been published using AI in WCE to detect intestinal changes 
consistent with Crohn’s disease[77-83].

To discriminate ulcers from normal mucosa in Crohn’s disease, Charisis et al[78] proposed combining 
bidimensional ensemble empirical mode decomposition and differential lacunarity to pre-process 
images followed by classification using several ML algorithms and a multilayer neural network. Using a 
dataset consisting of 87 ulcer and 87 normal mucosa images, their CADe achieved accuracy 89.0%-
95.4%, sensitivity 88.2%-98.8%, and specificity 84.2%-96.6%[78]. Subsequently, Charisis and Hadjileon-
tiadis published a paper in 2016 combining hybrid adaptive filtering and differential lacunarity (HAF-
DLac) to process images followed by SVM to detect Crohn’s disease related lesions in WCE[79]. In a set 
of 800 WCE images, the HAF-DLac system achieved a sensitivity, specificity and accuracy of 95.2%, 
92.4% and 93.8% respectively for detecting lesions[79]. Using a similar approach to Charisis et al[78], 
Kumar et al[80] used MPEG-7 edge, color and texture features to pre-process images followed by image 
classification using SVM to detect and classify lesions in patients with Crohn’s disease. Their system, 
tested against 533 images (212 normal mucosa, 321 images with lesions), obtained an accuracy of 93.0%-
93.8% for detecting lesions and an accuracy of 78.5% for classifying them based on severity.

With respect to deep learning, few groups have used deep learning algorithms in WCE to identify 
Crohn’s disease related lesions. Recently, Ferreira et al[82] used a DCNN to identify erosions and ulcers 
in patients with Crohn’s disease. Their DCNN achieved a sensitivity of 98.0%, specificity of 99.0%, 
accuracy of 98.8% and AUROC of 1.00. Interestingly, Klang et al[83] developed a DCNN to detect 
intestinal strictures. Overall, their DCNN achieved an accuracy of 93.5% ± 6.7% and AUC of 0.989 for 
detecting strictures.

Hookworm infections
Three studies have used artificial intelligence to detect hookworms using WCE. The first to publish on 
this topic was Wu et al[84] in 2016. Using SVM, they were able to create a system that achieved a 
specificity of 99.0% and accuracy of 98.4% for detecting hookworms in WCE[84]. However, the system’s 
sensitivity was 11.1%. He et al[85] created a DCNN using a novel deep hookworm detection framework 
that modeled the tubular appearance of hookworms. Their DCNN had an accuracy of 88.5% for 
identifying hookworm[85]. Gan et al[86] performed a similar study, finding an AUC of 0.97 (95%CI 
0.967-0.978), sensitivity of 92.2%, specificity of 91.1% and accuracy of 91.2% The concordant findings of 
these three studies suggest a possible utility of using AI to diagnose hookworm infections.

Intestinal bleeding
One of the most common reasons to perform WCE is to evaluate for gastrointestinal bleeding after prior 
endoscopic attempts have failed to localize a source. Since the implementation of WCE in clinical 
practice, many methods, notably AI, have been employed to improve the detection of gastrointestinal 
sources of bleeding.

Several studies have looked at using supervised learning to identify bleeding in WCE. In 2014, Sainju 
et al[87] used an ML algorithm to interpret color quantization images and determine if bleeding was 
present. One of their models achieved a sensitivity, specificity and accuracy of 96%, 90% and 93%, 
respectively[87]. Using SVM, Usman et al[88] achieved similar results - sensitivity, specificity and 
accuracy of 94%, 91% and 92% respectively.

More recently, several groups have created DCNNs to identify bleeding and sources of bleeding in 
WCE. In 2021, Ghosh et al[89] used a system comprised of two CNN systems (CNN-1, CNN-2) to 
classify WCE images as bleeding or non-bleeding and subsequently to identify sources of bleeding 
within the bleeding images. For classifying images as bleeding or non-bleeding, CNN-1 had a 
sensitivity, specificity, accuracy and AUC of 97.5%, 99.9%, 99.4% and 0.99[89]. For identifying sources of 
bleeding within the bleeding images, CNN-2 had an accuracy of 94.4% and intersection over union 
(IoU) of 90.7%[89].

In 2020, Tsuboi et al[90] published the first study to use DCNN to detect small bowel angioectasias 
from WCE images. In their test set which included 488 images of small bowel angioectasias and 10000 
images of normal small bowel mucosa, their DCNN achieved an AUC of 0.99 with sensitivity and 
specificity of 98.8% and 98.4%[90]. Similarly, in 2021 Ribeiro at al[91] developed a DCNN to identify 
vascular lesions, categorizing them by bleeding risk according to Saurin’s classification: P0 – no 
hemorrhagic potential, P1 – uncertain/intermediate hemorrhagic potential and red spots, and P2 – high 
hemorrhagic potential (angioectasias, varices). In their validation set, the DCNN had a sensitivity, 
specificity, accuracy and AUROC of 91.7%, 95.3%, 94.1% and 0.97 respectively for identifying P1 lesions
[91]. Regarding P2 lesions, the network had a sensitivity, specificity, accuracy and AUROC of 94.1%, 
95.1%, 94.8% and 0.98 respectively[91]. This group published a similar study in 2022 however now using 
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their DCNN to detect and differentiate mucosal erosions and ulcers based on bleeding potential[92]. 
Saurin’s classification was again used to classify lesions, additionally labeling P1 lesions as mucosal 
erosions or small ulcers and P2 lesions as large ulcers (> 2 cm)[92]. The DCNN achieved an overall 
sensitivity of 90.8% ± 4.7%, specificity of 97.1% ± 1.7%, and accuracy of 93.4% ± 3.3% in their test set of 
1226 images[92]. For the detection of mucosal erosions (P1), their DCNN achieved a sensitivity of 87.2%, 
specificity of 95.0% and accuracy of 93.3% with AUROC of 0.98 (95%CI 0.97-0.99)[92]. With respect to 
small ulcers (P1), their DCNN achieved a sensitivity of 86.4%, specificity of 96.9% and accuracy of 94.5% 
with AUROC of 0.99 (95%CI 0.97-1.00)[92]. Finally, with respect to large ulcers (P2), their DCNN 
achieved a sensitivity of 95.3%, specificity of 99.2% and AUROC of 1.00 (95%CI 0.98-1.00)[92]. A third 
study published by this group aimed to develop a DCNN to identify colonic lesions and luminal 
blood/hematic vestiges had similar findings. In their training set of 1801 images, the DCNN achieved 
an overall sensitivity, specificity and accuracy of 96.3%, 98.2%, and 97.6% respectively[93]. For detecting 
mucosal lesions, the DCNN achieved a sensitivity of 92.0%, specificity of 98.5% and AUROC of 0.99 
(95%CI 0.98-1.00)[93]. For luminal blood/hematic vestiges, the DCNN achieved a sensitivity of 99.5%, 
specificity of 99.8% and AUROC of 1.00 (95%CI 0.99-1.00)[93].

Polyp and tumor detection
Gastrointestinal tumors can be difficult to discern from normal mucosa and thus pose a higher degree of 
diagnostic difficulty compared to other lesions on traditional WCE[94]. As such, developing an AI 
system to aid with the detection of these easy to miss lesions could be beneficial.

Several groups have developed ML systems to aid with detection. Using SVM, Li et al[95] were able to 
develop a system capable of detecting small bowel tumors with sensitivity, specificity and accuracy of 
88.6%, 96.2% and 92.4%. Similarly, Liu et al[96] and Faghih Dinevari et al[97] used SVM to identify 
tumors in WCE, however they used different image pre-processing algorithms. Liu et al[96] used 
discrete curvelet transform to pre-process images prior to being classified by SVM. Their ML system 
achieved a sensitivity of 97.8% ± 0.5, specificity of 96.7% ± 0.4 and accuracy of 97.3% ± 0.5 for identifying 
small bowel tumors[96]. Faghih Dinevari et al[97] relied on discrete wavelet transform and singular 
value decomposition for image pre-processing prior to classification by SVM. Their system achieved a 
sensitivity of 94.0%, specificity of 93.0% and accuracy of 93.5% for identifying small bowel tumors[97]. 
Sundaram and Santhiyakumari built upon these methodologies, using a region of interest-based color 
histogram to enhance WCE images prior to being classified by two SVM algorithms: SVM1 and SVM2
[98]. SVM1 classified the WCE image as normal or abnormal. If SVM1 classified the image as abnormal, 
it was further classified by SVM2 as benign, malignant or normal[98]. The system attained an overall 
sensitivity of 96.0%, specificity of 95.4% and accuracy of 95.7% for small bowel tumor detection and 
classification[98].

With respect to DL methods, Blanes-Vidal et al[99] created a DCNN to autonomously detect and 
localize colorectal polyps. Their study included 255 patients who underwent WCE and standard 
colonoscopy for positive fecal immunochemical tests. Of the 255 patients, 131 had at least 1 polyp. The 
DCNN obtained a sensitivity of 97.1%, specificity of 93.3% and accuracy of 96.4% for detecting polyps in 
WCE[99]. Saraiva et al[100] and Mascarenhas et al[101] similarly used DCNNs to detect colonic polyps in 
WCE and obtained similar results to Blanes-Vidal et al[99-101]. Using an ANN, Constantinescu et al[102] 
created a DL system able to detect small bowel polyps with sensitivity of 93.6% and specificity of 91.4%. 
For gastric polyps and tumors, Xia et al[103] created a novel CNN – a region-based convolutional neural 
network (RCNN) – to evaluate magnetically controlled capsule endoscopy (MCE) images. Tested on 
201365 MCE images obtained from 100 patients, the RCNN detected gastric polyps with sensitivity of 
96.5%, specificity of 94.8%, accuracy of 94.9% and AUC of 0.898 (95%CI 0.84-0.96)[103]. For submucosal 
tumors, the RCNN achieved a sensitivity of 87.2%, specificity of 95.3%, accuracy of 95.2% and AUC of 
0.88 (95%CI 0.81-0.96)[103]. Taking a different approach, Yuan and Meng used a novel deep learning 
method – stacked sparse autoencoder image manifold constraint – to identify intestinal polyps on WCE, 
finding an accuracy of 98.00% for poly detection[104]. However, sensitivity, specificity and AUC 
analyses were not reported.

COLONOSCOPY
Bowel preparation assessment
Inadequate bowel preparation, present in 15% to 35% of colonoscopies, is associated with lower rates of 
cecal intubation, lower adenoma detection rate (ADR), and higher rates of procedure-related adverse 
events[105,106]. For patients with inadequate bowel preparation, the United States Multi-Society Task 
Force of Colorectal Cancer (MSTF) which represents the American College of Gastroenterology, the 
American Gastroenterological Association and the American Society for Gastrointestinal Endoscopy 
(ASGE), and the European Society of Gastrointestinal Endoscopy recommend repeating a colonoscopy 
within 1 year[105,107-109]. In addition, the MSTF and ASGE recommend that endoscopists document 
bowel preparation quality at time of colonoscopy[108,109].
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Despite these recommendations and variety of bowel preparation rating scales available, 
documentation of bowel preparation quality remains variable with studies reporting appropriate 
documentation in 20% to 88% of colonoscopies[110-112]. Few studies have been published regarding the 
use of DCNN to assist in the objective assessment of bowel preparation. The first group to do so, Zhou 
et al[113] in 2019, found that their DCNN (ENDOANGEL) was more accurate (93.3%) at grading the 
bowel preparation quality of still images than novice (< 1 year of experience performing colonoscopies; 
75.91%), senior (1-3 years of experience performing colonoscopies; 74.36%) and expert (> 3 years of 
experience performing colonoscopies; 55.11%) endoscopists. When tested on colonoscopy videos, 
ENDOANGEL remained accurate at grading bowel preparation quality (89.04%)[113].

Building upon their experience with ENDOANGEL, Zhou et al[114] created a new system using two 
DCNNs: DCNN1 filtered unqualified frames while DCNN2 classified images by Boston Bowel 
Preparation Scale (BBPS) scores. The BBPS is a validated rating scale for assessing bowel preparation 
quality[115]. Colonic segments are assigned scores on a scale from 0 to 3. Colonic segments unable to be 
evaluated due to the presence of solid, unremovable stool are assigned a score of 0 whereas colonic 
segments that are able to be easily evaluated and contain minimal to no stool are assigned a score of 3
[115]. Zhou et al’s DCNN2 classified images into two categories: well-prepared (BBPS score 2-3) and 
poorly prepared (BPPS score 0-1)[114]. There was no difference between the dual DCNN system and 
study endoscopists when calculating the unqualified image portion (28.35% vs 29.58%, P = 0.285) and e-
BBPS scores (7.81% vs 8.74%, P = 0.088). In addition, a strong inverse relationship between e-BBPS and 
ADR (ρ = -0.976, P = 0.022) was found.

Two other groups developed similar dual DCNN systems as Zhou et al[114] to calculate BBPS and 
obtained concordant findings[116,117]. Lee et al[116] tested their system on colonoscopy videos and 
found the system had an accuracy of 85.3% and AUC of 0.918 for detecting adequate bowel preparation. 
Using still images, Low et al’s system was able to accurately determine bowel preparation adequacy 
(98%) and subclassify by BBPS (91%)[117].

Using a different approach, Wang et al[118] used U-Net to create a DCNN to perform automatic 
segmentation of fecal matter from still images. Compared to images segmented by endoscopists, U-Net 
achieved an accuracy of 94.7%.

Inflammatory bowel disease
Colonoscopy is essential for the assessment of IBD as it allows for real-time evaluation of colonic inflam-
mation[119,120]. Despite there being endoscopic scoring systems available to quantify disease activity, 
assessment is operator-dependent resulting in high interobserver variability[119-121]. Recent efforts 
have focused on using artificial intelligence to objectively grade colonic inflammation[121,122].

Several studies have investigated using DCNNs to classify images obtained from patients with 
ulcerative colitis (UC) by endoscopic inflammation scoring systems. The most commonly used 
endoscopic scoring system in these studies is the Mayo Endoscopic Score (MES). Physicians assign 
scores on a scale from 0 to 3 based on the absence or presence of erythema, friability, erosions, ulceration 
and bleeding[123]. A score of 0 indicates normal or inactive mucosa whereas a score of 3 indicates 
severe disease activity[123]. In 2018, Ozawa et al[121] published the first study to use a DCNN to classify 
still images obtained from patients with UC into MES 0 vs MES 1-3 and MES 0-1 vs MES 2-3. Their 
DCNN had an AUROC of 0.86 (95%CI 0.84-0.87) and AUROC 0.98 (95%CI 0.97-0.98) when differen-
tiating MES 0 vs MES 1-3 and MES 0-1 vs MES 2-3 respectively[121]. Stidham et al[122] performed a 
similar study and found an AUROC of 0.966 (95%CI 0.967-0.972) for differentiating still images into 
MES 0-1 vs MES 2-3. Using a combined deep learning and machine learning system, Huang et al[124] 
were able to achieve an AUC of 0.938 with accuracy of 94.5% for identifying MES 0-1 vs MES 2-3 from 
still images. While the binary classification used in the aforementioned studies can differentiate 
remission/mucosal healing (MES 0-1) and active inflammation (MES 2-3), knowing exact MESs also has 
clinical significance[125,126]. Bhambhvani and Zamora created a DCNN to assign individual MESs to 
still images. The model achieved an AUC of 0.89, 0.86 and 0.96 for classifying images into MES 1, MES 2 
and MES 3 respectively and achieved an average specificity of 85.7%, average sensitivity of 72.4% and 
overall accuracy of 77.2%[127].

In order to simulate how MES is performed in practice, several groups developed systems using DL 
to predict MES from colonoscopy videos. Yao et al’s DCNN had good agreement with MES scoring 
performed by gastroenterologists in their internal video test set (k = 0. 84; 95%CI 0.75-0.92), however 
their DCCN did not perform as well in the external video test set (k = 0.59; 95%CI 0.46-0.71)[128]. 
Gottlieb et al[129] reported similar findings to Yao et al[128], finding that their DCNN had good 
agreement with MES scoring performed by gastroenterologists (quadratic weighted kappa of 0.844; 
95%CI 0.787–0.901). Gutierrez Becker et al[130] created a DL system designed to perform multiple binary 
tasks: discriminating MES < 1 vs MES ≥ 1, MES < 2 vs MES ≥ 2, and MES < 3 vs MES ≥ 3. For these tasks, 
their DL system attained an AUROC of 0.84, 0.85, and 0.85 respectively.

A group from Japan published several studies using AI on endoscopic images to predict histologic 
activity in patients with UC[131-134]. Their first study in 2016 used machine learning to predict 
persistent histologic inflammation[131]. Their system attained a sensitivity of 74% (95%CI 65%-81%), 
specificity of 97% (95%CI 95%-99%) and accuracy of 91% (95%CI 83%-95%) for predicting persistent 
histologic inflammation in still images[131]. Their following studies used a deep neural network labeled 
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DNUC (deep neural network for evaluation of UC) to identify endoscopic remission and histologic 
remission[132,134]. In still images, DNUC had a sensitivity of 93.3% (95%CI 92.2%–94.3%), specificity of 
87.8% (95%CI 87.0%–88.4%) and diagnostic accuracy of 90.1% (95%CI 89.2%–90.9%) for determining 
endoscopic remission[132]. With respect to histologic remission, DNUC had a sensitivity of 92.4% 
(95%CI 91.5%–93.2%), specificity of 93.5% (95%CI 92.6%–94.3%) and diagnostic accuracy of 90.1% 
(92.9%; 95%CI 92.1%–93.7%)[132]. In colonoscopy videos, DNUC showed a sensitivity of 81.5% (95%CI 
78.5%–83.9%) and specificity of 94.7% (95%CI 92.5%–96.4%) for endoscopic remission[134]. For 
histologic remission, DNUC had a sensitivity of 97.9% (95%CI 97.0%–98.5%) and specificity of 94.6% 
(95%CI 91.1%–96.9%) in colonoscopy videos[134].

To date, only one study has been published using an AI system to distinguish normal from inflamed 
colonic mucosa in Crohn’s disease[135]. The group paired a DCNN with a long short-term memory 
(LSTM), a type of neural network that uses previous findings to interpret its current input, and confocal 
laser endomicroscopy. Their DCNN-LSTM system attained an accuracy of 95.3% and AUC of 0.98 for 
differentiating normal from inflamed mucosa[135].

Polyp detection
Colorectal cancer is the third most common malignancy and second leading cause of cancer-related 
mortality in the world[136]. While colonoscopy is the gold standard for detection and treatment of 
premalignant and malignant lesions, a substantial number of adenomas are missed[137,138]. As such, 
efforts have focused on using AI to improve ADR and decrease adenoma miss rate (AMR).

At present, numerous pilot, validation and prospective studies[139-161], randomized controlled 
studies[162-174], and systematic reviews and meta-analyses[175-183] have been published regarding the 
use of AI for the detection of colonic polyps. Furthermore, there are commercially available AI systems 
for both polyp detection and interpretation. With respect to the systematic reviews and meta-analyses 
published on this topic, AI-assisted colonoscopy has consistently been shown to have higher ADR, 
polyp detection rate (PDR) and adenoma per colonoscopy (APC) compared to standard colonoscopy
[175-183]. Recently, several large, randomized controlled trials have been published supporting these 
findings. Shaukat et al[162] published their findings from their multicenter, randomized controlled trial 
comparing CADe colonoscopy to standard colonoscopy. Their study included 1359 patients: 677 
randomized to standard colonoscopy, 682 to CADe colonoscopy. They found an increase in ADR (47.8% 
vs 43.9%; P = 0.065) and APC (1.05 vs 0.83; P = 0.002) in the CADe colonoscopy group. However, they 
also found a decrease in the overall sessile serrated lesions per colonoscopy rate (0.20 vs 0.28; P = 0.042) 
and sessile serrated lesion detection rate (12.6% vs 16.0%; P = 0.092) in the CADe colonoscopy group
[162]. Brown et al[163] in their CADeT-CS Trial which was a multicenter, single-blind randomized 
tandem colonoscopy study comparing CADe colonoscopy to high-definition white light colonoscopy 
found similar increases in ADR (50.44% vs 43.64%; P = 0.3091) and APC (1.19 vs 0.90; P = 0.0323) in their 
patients who underwent CADe colonoscopy first[163]. Additionally, polyp miss rate (PMR) (20.70% vs 
33.71%; P = 0.0007), AMR (20.12% vs 31.25%; P = 0.0247), and sessile serrated lesion miss rate (7.14% vs 
42.11%; P = 0.0482) were lower in the CADe colonoscopy first group. In a similarly designed study to 
Brown et al[163], Kamba et al’s multicenter, randomized tandem colonoscopy study comparing CADe 
colonoscopy to standard colonoscopy found lower AMR (13.8% vs 26.7%; P < 0.0001), PMR (14.2% vs 
40.6%; P < 0.0001), and sessile serrated lesion miss rate (13.0% vs 38.5%’ P = 0.03) and higher ADR 
(64.5% vs 53.6%; P = 0.036) and PDR (69.8% vs 60.9%; P = 0.084) in patients who underwent CADe 
colonoscopy first[164]. Similar to Shaukat et al[162], the sessile serrated lesion detection rate was lower 
in the CADe colonoscopy first group compared to standard colonoscopy first (7.6% vs 8.1%; P = 0.866)
[164]. Similar increases in ADR, APC and PDR were appreciated in randomize controlled trials by Xu et 
al[172], Liu et al[173], Repici et al[170], Gong et al[166], Wang et al[167], and Su et al[169] as well[166-172].

The majority of AI-assisted colonoscopy studies focus on adenoma detection. While these studies 
report sessile serrated lesion rates, it is often a secondary outcome despite sessile serrated lesions being 
the precursors of 15%-30% of all colorectal cancers[184]. Few studies have created AI systems optimized 
for dedicating sessile serrated lesions. Recently, Yoon et al[184] used a generative adversarial network 
(GAN) to generate endoscopic images of sessile serrated lesions which were used to train their DCNN 
with the hope of improving sessile serrated lesion detection. In the validation set which was comprised 
of 1141 images of polyps and 1000 normal images, their best performing GAN-DCNN model, GAN-
aug2, achieved a sensitivity of 95.44% (95%CI 93.71%-97.17%), specificity of 90.10% (95%CI 88.38%-
91.77%), accuracy of 92.95% (95%CI 91.86%-94.04%) and AUROC of 0.96 (95%CI 0.9547-0.9709)[184]. In a 
type-separated polyp validation dataset, the GAN-aug2 achieved a sensitivity of 95.24%, 19.1% higher 
than the DCNN without augmentation[184]. Given the small number of sessile serrate lesions present in 
the initial set, Yoon et al[184] collected an additional 130 images depicting 133 sessile serrated lesions to 
create an additional validation set titled SSL temporal validation dataset[184]. The GAN-aug2 continued 
to outperform the DCNN without augmentation (sensitivity 93.98% vs 84.21%). Nemoto et al[185] 
created a DCNN to differentiate (1) tubular adenomas from serrated lesions; and (2) serrated lesions 
from hyperplastic polyps. In their 215-image training set, the DCNN was able to differentiate tubular 
adenomas from sessile serrated lesions with sensitivity of 72% (95%CI 62%-81%), specificity 89% (95%CI 
82%-94%), accuracy 82% (95%CI 77%-87%) and AUC 0.86 (95%CI 0.80-0.91). For differentiating sessile 
serrated lesions from hyperplastic polyps, the DCNN achieved a sensitivity of 17% (95%CI 7%-32%), 
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specificity 85% (95%CI 76%-92%), accuracy 63% (95%CI 54%-72%) and AUC 0.55 (95%CI 0.44-0.66)[185]. 
An overview of studies investigating the detection accuracy of CADe is provided in Table 3. An 
overview of studies investigating ADR and PDR using CADe is provided in Table 4.

FUTURE DIRECTIONS
Artificial intelligence is in its early stages for medicine, especially in gastroenterology and endoscopy. 
AI will help is in the areas of “augmentation” and “automation”. Augmentation like what is happening 
with polyp detection and interpretation. Automation by eliminating electronic paperwork, such as the 
use of natural language processing for procedure documentation. Artificial intelligence systems have 
repeatedly been shown to be effective at identifying gastrointestinal lesions with high sensitivity, 
specificity and accuracy. While lesion detection is important, this is only the beginning of AI’s utility in 
esophagogastroduodenoscopy, WCE and colonoscopy.

After refining their AI systems for lesion detection, several groups discussed in this narrative review 
were able to add additional functions to their AI systems. In BE, ESCC and gastric cancer, several AI 
systems were capable of predicting tumor invasion depth. Within IBD, AI systems were able to generate 
endoscopic disease severity scores. One group was able to train their CADe to recommend neoplasia 
biopsy sites in BE[14]. Additional efforts should be dedicated to developing these functions, testing 
them in real-time and having the AI system provide management recommendations when clinically 
appropriate.

Additional areas in need of future research are using AI systems to make histologic predictions, to 
assist with positioning of the endoscopic ultrasound (EUS) transducer and interpretation of EUS images, 
to detect biliary diseases and make therapeutic recommendations in endoscopic retrograde cholan-
giopancreatography (ERCP), and, in combination with endoscopic mechanical attachments, to improve 
colorectal cancer screening and surveillance. While endoscopists may perform optical biopsies of 
gastrointestinal lesions to predict histology and make real-time management decisions, these 
predictions are highly operator-dependent and often require expensive equipment that is not readily 
available. Thus, developing an AI system capable of performing objective optical biopsies, especially in 
WLE, would preserve the quality of histologic predictions, be cost effective, and avoid the risks 
associated with endoscopic biopsy and resection.

Similarly, EUS is highly operator-dependent, requiring endoscopists to place the transducer in 
specific positions to obtain adequate views of the hepatopancreatobiliary system. Research should focus 
on using AI systems to assist with appropriate transducer positioning and perform real-time EUS image 
analysis[186-194].

Presently, several clinical studies are actively recruiting patients to evaluate the utility of AI systems 
in ERCP. Of particular interest is the diagnosis and management of biliary diseases. Some groups are 
planning to use AI to classify bile duct lesions and provide biopsy site recommendations[195]. One 
group is planning to use an AI system in patients requiring biliary stents to assist with biliary stent 
choice and stent placement[196]. It will be interesting to see how AI performs in these tasks as successes 
could pave the way for future studies investigating the utility of AI systems to make real-time 
management recommendations.

While this narrative review focused on the use of AI in colonoscopy, of growing interest is the use of 
endoscopic mechanical attachments in colonoscopy to assist with polyp detection in colorectal cancer 
screening and surveillance. Independently, AI systems and endoscopic mechanical attachments are 
known to increase ADR and PDR. Few studies have investigated how combining AI with endoscopic 
mechanical attachments impacts ADR and PDR. Future research should examine the impact that 
combining these modalities has on ADR and PDR.

LIMITATIONS
While substantial advances have been made in AI, it is important to note that AI is not without 
limitations. In many of the studies discussed in this narrative review, the authors trained their AI 
systems using internally obtained images labeled by a single endoscopist. Thus, the AI is subject to the 
same operator biases and human error as the labeling endoscopist[1,197]. In addition, by using 
internally obtained data, several of these training sets may have inherent institutional or geographic 
biases resulting in AI systems that are biased and nongeneralizable[197]. As AI continues to progress, 
large datasets comprised of high-quality images should be created and used for training AI systems to 
reduce these biases[1].

With the implementation of AI in clinical practice, medical error accountability must also be 
addressed. While many of the AI systems discussed in this narrative review boast high detection 
accuracies, none are perfect. It is undeniable that errors in detection and diagnosis will arise when using 
these technologies. Regulatory bodies are needed to continually supervise these AI systems and oversee 
problems as they arise[198].
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Table 3 Overview of findings from studies evaluating the detection accuracy of computer-aided detection for colonic polyps

Ref. Country Study 
design Lesions Training 

dataset Test dataset Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%) AUROC

Komeda et 
al[139], 
2017

Japan Retrospective Adenomas 1200 images 10 images 80 60 70 -

Misawa et 
al[140], 
2018

Japan Retrospective Polyps 411 video clips 135 video clips 90 63.3 76.5 0.87

Wang et al
[149], 2018

China, United 
States

Retrospective Polyps 4495 images Dataset A: 27113 
images; Dataset C: 
138 video clips; 
Dataset D: 54 full-
length videos

Dataset A: 
94.38; Dataset 
C: 91.64

Dataset A: 
95.92; Dataset 
D: 95.4

- Dataset 
A: 0.984

Horiuchi et 
al[154], 
2019

Japan Prospective Diminutive 
polyps

- a 80 95.3 91.5 -

Hassan et 
al[141], 
2020

Italy, United 
States

Retrospective Polyps - 338 video clips 99.7 - - -

Guo et al
[142], 2021

Japan Retrospective Polyps 1991 images 100 video clips; 15 
full videos

87b 98.3b - -

Neumann 
et al[143], 
2021

Germany Retrospective
1

Polyps > 500 videos 240 polyps within 
full-length videos

100 0 - -

Li et al
[144], 2021

Singapore Retrospective Polyps 6038 images 2571 images 74.1 85.1 - -

Livovsky et 
al[151], 
2021

Israel Ambispective Polyps 3611 h of 
videos

1393 h of videos 97.1 0 - -

Pfeifer et al
[158], 2021

Germany, 
Italy, 
Netherlands

Retrospective Polyps 10467 images 45 videos 90 80 - 0.92

Ahmad et 
al[145], 
20222

England Prospective Polyps Dataset A: 
58849 frames; 
Dataset B: 
10993 videos 
and still 
images

Dataset C: 110985 
frames; Dataset D: 
8950 frames; 
Dataset E: 542484 
frames

Dataset C: 100, 
84.1; Dataset 
D&E: 98.9, 85.2

Dataset C: 
79.6; Dataset 
D&E: 79.3%

Hori et al
[146], 2022

Japan Prospective Polyps 1456 images 600 images 97 97.7 97.3 -

Pacal et al
[152], 2022

Turkey Retrospective Polyps Used images from 3 publicly 
available datasets (SUN, PICCOLO, 
Etis-Larib) to create training and 
test datasets

91.04 - - -

Yoon et al
[184], 2022

South Korea Retrospective SSL 4397 images Validation Set 
2106; SSL 
Temporal 
Validation set 133

95.44; 93.89 90.1 92.95 0.96

Nemoto et 
al[185], 
2022

Japan Retrospective TA, SSL 1849 images 400 images 72 89 82 0.86

Lux et al
[148], 2022

Germany Retrospective Polyps 506338 images 41 full-length 
videos

- - 95.3 -

aTested CADe in a cohort of 95 patients.
bPer-frame analysis from full-length video dataset.
1Presumed retrospective based on manuscript.
2Sensitivity is reported as per-polyp and per-frame respectively. Specificity is reported as per-frame.
AUROC: Area under the receiver operating characteristic; SSL: Sessile serrate lesion; TA: Tubular adenoma. All studies used a convolutional neural 
network to classify images.
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CONCLUSION
In this narrative review, we provide an objective overview of the AI-related research being performed 
within esophagogastroduodenoscopy, WCE and colonoscopy. We attempted to be comprehensive by 
using several electronic databases including Embase, Ovid Medicine, and PubMed. However, it is 
possible that some publications pertinent to our narrative review were missed.

Undoubtedly, AI within esophagogastroduodenoscopy, WCE and colonoscopy is rapidly evolving, 
moving from retrospectively tested supervised learning algorithms to large, multicenter clinical trials 
using completely autonomous systems within the span of 10 years. The systems developed by these 
researchers show promise for detecting lesions, diagnosing conditions, and monitoring diseases. In fact, 
two of the computer aided detection systems discussed in this narrative review designed to aid with 
colorectal polyp detection were approved by the United States Food and Drug Administration in 2021
[171,199]. Thus, the question is no longer if but when will AI become integrated with clinical practice. 
Medical providers at all levels of training should prepare to incorporate artificial intelligence systems 
into routine practice.

Table 4 Overview of findings from studies evaluating computer-aided detection for adenoma detection rate and polyp detection rate

Patients (n) PDR (%) ADR (%)
Ref. Country Study design

CADe SC CADe SC P value CADe SC P value

Wang et al
[168], 2019

China, United States Randomized 522 536 45.02 29.1 < 0.001 29.12 20.34 < 0.001

Becq et al[155], 
2020

United States, 
Turkey, Costa Rica

Prospective 50b 82 62 Not 
reported

- - -

Gong et al[166], 
2020

China Randomized 355 349 47 34 0.0016 16 8 0.001

Liu et al[171], 
2020

China, United States Randomized 393 397 47.07 33.25 < 0.001 29.01 20.91 0.009

Liu et al[173], 
2020

China Prospective 508 518 43.65 27.81 < 0.001 39.1 23.89 < 0.001

Repici et al
[170], 2020

Italy, Kuwait, 
United States, 
Germany

Randomized 341 344 - - - 54.8 40.4 < 0.001

Su et al[169], 
2020

China Randomized 308 315 38.3 25.4 0.001 28.9 16.5 < 0.001

Wang et al
[156], 2020

China, United States Prospective, 
Tandem1

184 185 65.59 55.14 0.099 42.39 35.68 0.186

Wang et al
[167], 2020

China, United States Randomized 484 478 52 37 < 0.0001 34 28 0.03

Kamba et al
[164], 2021

Japan Randomized, 
Tandem2

172 174 69.8 60.9 0.084 64.5 53.6 0.036

Luo et al[174], 
2021

China Randomized, 
Tandem1

72 78 38.7 34 < 0.001 - - -

Pfeifer et al
[158], 2021

Germany, Italy, 
Netherlands

Prospective, 
Tandem1

42b 50 38 0.023 36 26 0.044

Shaukat et al
[157], 2021

United States, 
England

Prospective 83 283 - - - 54.2 40.6 0.028

Shen et al[150], 
2021

China Ambispective 64 64 78.1 56.3 0.008 53.1 29.7 0.007

Xu et al[172], 
2021

China Randomized 1177 1175 38.8 36.2 0.183 - - -

Glissen Brown 
et al[163], 2022

China, United States Randomized, 
Tandem2

113 110 70.8 65.45 0.3923 50.44 43.64 0.3091

Ishiyama et al
[159], 2022

Japan, Norway Prospective 918 918 59 52.1 0.003 26.4 19.9 0.001

Lux et al[148], 
2022

Germany Retrospective 41 - - - - - 41.5 -
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Quan et al[153], 
2022

United States Prospective 300 300 - - - 43.7a; 66.7 37.8a; 
59.72

0.37a; 0.35

Repici et al
[165], 2022

Italy, Switzerland, 
United States, 
Germany

Randomized 330 330 - - - 53.3 44.5 0.017

Shaukat et al
[162], 2022

United States Randomized 682 677 64.4 61.2 0.242 47.8 43.9 0.065

Zippelius et al
[160], 2022

Germany, United 
States

Prospective 150b - - - 50.7 52 0.5

aQuan et al[153] reported results by indication, screening and surveillance respectively.
bThe same patients were used to compare CADe versus standard colonoscopy; Becq et al[155] recorded 50 colonoscopy videos that were analyzed by CADe 
and reviewed by endoscopists separately; Pfeifer et al[158] performed standard colonoscopy followed by CADe-assisted colonoscopy in all 42 patients; 
Zippelius et al[160] had their CADe analyze their patients while the endoscopists performed their colonoscopies.
1Performed analyses using data obtained from whole process.
2Performed analyses using data obtained from first pass.
ADR: Adenoma detection rate; CADe: Computer-aided detection; PDR: Polyp detection rate; SC: Standard colonoscopy. All studies used a convolutional 
neural network to classify images.
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Abstract
Recent research has provided a wealth of data supporting the application of 
artificial intelligence (AI)-based applications in routine pathology practice. 
Indeed, it is clear that these methods can significantly support an accurate and 
rapid diagnosis by eliminating errors, increasing reliability, and improving 
workflow. In addition, the effectiveness of AI in the pathological evaluation of 
prognostic parameters associated with behavior, course, and treatment in many 
types of tumors has also been noted. Regarding gastrointestinal system (GIS) 
cancers, the contribution of AI methods to pathological diagnosis has been invest-
igated in many studies. On the other hand, studies focusing on AI applications in 
evaluating parameters to determine tumor behavior are relatively few. For this 
purpose, the potential of AI models has been studied over a broad spectrum, from 
tumor subtyping to the identification of new digital biomarkers. The capacity of 
AI to infer genetic alterations of cancer tissues from digital slides has been 
demonstrated. Although current data suggest the merit of AI-based approaches in 
assessing tumor behavior in GIS cancers, a wide range of challenges still need to 
be solved, from laboratory infrastructure to improving the robustness of 
algorithms, before incorporating AI applications into real-life GIS pathology 
practice. This review aims to present data from AI applications in evaluating 
pathological parameters related to the behavior of GIS cancer with an overview of 
the opportunities and challenges encountered in implementing AI in pathology.

Key Words: Digital pathology; Colorectal cancer; Gastric cancer; Machine learning; Deep 
learning; Prognosis
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Core Tip: This review outlines the potential of artificial intelligence applications for evaluating 
pathological parameters related to the behavior of gastrointestinal cancers. The role of these methods in 
determining the behavior of esophageal cancers remains to be investigated. On the other hand, the results 
are promising, supporting that these models can assist in the determination of conventional pathological 
parameters and perform molecular subtyping in gastric and colorectal cancers. Furthermore, these applic-
ations encourage digital prognostic biomarker discovery by revealing predictions that are impossible when 
using traditional visual methods. However, further studies are needed to overcome the obstacles to 
implementing these applications into pathology practice.

Citation: Yavuz A, Alpsoy A, Gedik EO, Celik MY, Bassorgun CI, Unal B, Elpek GO. Artificial intelligence 
applications in predicting the behavior of gastrointestinal cancers in pathology. Artif Intell Gastroenterol 2022; 
3(5): 142-162
URL: https://www.wjgnet.com/2644-3236/full/v3/i5/142.htm
DOI: https://dx.doi.org/10.35712/aig.v3.i5.142

INTRODUCTION
Gastrointestinal (GIS) cancers, including tumors of the esophagus, stomach, colon, and rectum, are an 
important health problem worldwide. Although the incidence of esophageal cancer (EC) is relatively 
low, gastric cancer (GC) and colorectal cancer (CRC) are among the most common types of cancer (fifth 
and third, respectively)[1]. They are also responsible for a substantial proportion of cancer mortality, 
with GC being the third and CRC the second most common cause of cancer-related death[2]. Although 
various predictive and prognostic parameters are currently available, the mortality rates for patients 
with GIS cancer are, unfortunately, still very high[2]. It has been shown that rectifying this situation 
may depend on paving the way for more personalized treatment strategies that lead to a better 
prognosis and/or fewer treatment side effects[3,4]. Therefore, the meticulous and complete evaluation 
of patients to determine the appropriate treatment is critical.

In this context, in addition to providing a definitive diagnosis, the role of an accurate evaluation of 
pathological parameters related to the behavior and proper treatment of GIS tumors cannot be ignored. 
However, pathology, a morphology-based specialty, is susceptible to subjectivity regarding intraob-
server and interobserver variations, particularly in oncology. That is why, in recent years, the search for 
more objective criteria to eliminate bias, as well as to reduce the growing workload and to contribute 
time-saving, has allowed the improvement of image analysis-based digital pathology (DP), which has 
an important place in modern pathological applications[5,6].

In particular, significant advances in slide scanner technology, which can rapidly digitize all 
pathological slides at high resolution whole slide images (WSIs), has enabled not only the analysis of a 
wide range of morphological parameters but also the detection of biomarkers/genetic changes in many 
types of tumors[7-9]. The ability of computer-based analysis to detect prognostic and predictive markers 
from these images, depending on the fact that they are composed of number matrices containing a large 
amount of information that is not accessible to the human eye, has led to the adoption of artificial 
intelligence (AI) for DP[10,11]. Accordingly, the number of studies on AI applications associated with 
the diagnosis, follow-up, and treatment of many tumors has increased significantly over time. 
Regarding GIS, data from previous studies evaluating pathological prognostic parameters with various 
AI models suggest that using these methods may be beneficial. Unfortunately, these encouraging results 
have not overcome the wide range of challenges to be solved, from laboratory infrastructure to 
improving the robustness of algorithms, before incorporating AI applications into real-life pathology 
practice.

This review presented the applications of AI in the evaluation of pathological parameters related to 
the behavior of GIS cancer, along with a brief overview of the opportunities and challenges encountered 
in its implementation in pathology.

GENERAL VIEW OF AI IN PATHOLOGY LABORATORIES
In parallel with technological developments, the evolution of whole slide imaging (WSI) has provided 
remote diagnosis, consultation, and education[12-14]. In the recent past, it was suggested that the use of 
WSI is comparable to, or even better than, conventional microscopic examination for decision-making in 
pathology[15-17]. On the other hand, WSIs are also crucial in applying AI methods in pathological 
practice. They not only provide quick access to the archive without loss of image quality, but they can 
also render gigabit images, which are very difficult to process, suitable for processing by "tessellation"

https://www.wjgnet.com/2644-3236/full/v3/i5/142.htm
https://dx.doi.org/10.35712/aig.v3.i5.142
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[18]. This preprocessing is based on cutting a large image into nonoverlapping smaller patches called 
"tiles," making them amenable to computational analysis. It should be noted that although some 
pathological studies use selected images captured manually with a camera, WSI is currently 
recommended as a standard for AI applications, especially in tumors where heterogeneity is frequent, 
such as those of the GIS[19].

To achieve reliable results with WSIs, many steps, from preserving the structure of the tissue to the 
preparation of sections, must be carried out with care in the pathological laboratory. In particular, it is 
imperative to evaluate and check slides for artifacts (tears, floating contamination, thickness) that have 
the potential to adversely affect digitization and, thus, AI applications[20,21]. However, it should be 
noted that even with optimal protocols and slide scanner standardization, the importance of color 
normalization to ensure consistency in WSI databases should not be overlooked, as it can affect the 
robustness of deep learning (DL) models. Accordingly, histogram-matching color transfer and spectral 
matching methods can be applied[22-24]. However, as these methods depend on the expertise of 
pathologists and are impractical for manual adjustment, various algorithms have been proposed by 
researchers capable of performing this normalization. Although promising results have been obtained, 
there is a need for future studies on the performance of AI models using color normalization systems[25,
26].

The gradual evolution of traditional pathology into DP has led to the development of powerful and 
user-friendly WSI analysis software tools with the ability to manage substantial WSIs and metadata 
from different hardware manufacturers, as well as interactive drawing annotation capabilities to 
facilitate decision-making and reporting. Moreover, a significant proportion of them is freely available
[27-29]. In addition, the high costs of hardware required for high-performance computation in software 
development have become more affordable, leading to the implementation of DP in major medical 
centers[16,30-32]. Increasing the number of centers capable of using DP will allow for the generation of 
large and high-quality WSI databases, enabling the acquisition of large datasets and the design of 
algorithms for AI. However, the requirement of a significant investment is still an obstacle to overcome 
for the widespread application of these technologies[33]. In addition, the problem of proprietary 
datasets persists, limiting the repeatability of the proposed methodologies and hindering advancement 
in this field.

As mentioned above, the ability of AI to extract meaningful information from images that the naked 
human eye cannot discriminate makes it an attractive tool in the field of image processing and analysis 
in pathology. Therefore, contemporary AI models have evolved from expert systems to different types, 
such as machine learning (ML) and DL (Table 1). In brief, ML is a subtype of AI that provides a 
computer system to automatically learn and develop from datasets on its own and solve problems 
without explicit programming[34-36]. DL is a subeld of ML that employs sophisticated algorithmic 
structures inspired by the neural network of the human brain (artificial neural network, ANN) in which 
statistical models are established from input training data[37-39]. Therefore, DL requires large, 
annotated datasets to develop its algorithms. At present, the annotation of datasets is a complex task in 
model development[9,40]. In practice, the time-consuming and challenging nature of annotation, 
especially in systems where heterogeneous lesions are common, such as GIS, may affect the accuracy of 
the model being trained[41]. Another limitation is that the dataset obtained by a study group does not 
show the same performance when compared to external validation sets from other institutions. 
Recently, studies have been conducted to overcome the hindering properties of annotation[42-44]. It has 
also been suggested that the adoption of DP for diagnosis could indirectly facilitate the generation of 
valuable datasets for future algorithm development by enabling pathologists to describe areas of 
interest during evaluation and reporting[45].

It has often been emphasized that the validation of AI-based technologies requires an evidence-based 
approach[42,46]. This should also be considered in a laboratory-based medical specialty such as 
pathology. On the other hand, analyzing the performance of AI techniques to that of pathologists is a 
significant challenge regarding interobserver and interobserver heterogeneity. Currently, the problems 
related to establishing "ground truth" in AI methods should not be overlooked[40,47]. It should be noted 
that this requires repeated testing of the effectiveness and consistency of AI applications in many 
different patient populations. The relative lack of a validation cohort in developing AI-powered DP 
applications is also related to the possible drawbacks of sharing histopathological slides. Despite 
interobserver heterogeneity and variability in pathological assessment also demonstrating the 
uncertainty of "ground truth" in this regard, multi center assessments involving multiple pathologists 
and datasets may be the best way to overcome this obstacle.

Before the integration of AI into the pathology workflow, the need to validate its benefits and address 
ethical recommendations increases the importance of AI-based tools being transparent and 
interpretable, resulting in an increasing demand for more explainable AI models. In this respect, there is 
a dilemma about the application of AI. Because most algorithms developed use DL, ensemble methods 
called "black box" models to tackle multidimensional problems are very complex. However, more 
straightforward methods that are not complex are not powerful enough to achieve the expected results
[48]. For this reason, model interpretability, ethical concerns, and potential regulatory barriers should 
also be considered in newly developed AI tools to meet these expectations.
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Table 1 General features of machine learning methods in the development of artificial intelligence models in gastrointestinal pathology

AI models Strengths Weaknesses

ML, Traditional, 
Supervised

Data output can be produced from the previously labeled 
training set 

Labeling big data takes a considerable amount of time and can be 
challenging

Allows users to reflect domain knowledge features Feature extraction quality significantly affects the accuracy

ML, Traditional, 
Supervised

Users do not supervise the model or label any data Input data is unknown and not labeled

Patterns are detected automatically Precise information related to data sorting is not provided

Save time Interpretation is challenging

SVM Suitable for more efficient regression and classification 
analysis with high-dimensional data

Not suitable for large data sets. Requires more time for training; 
Low performance in overlapping  classes

No labeling is required for important information and 
features

Lack of interpretability due to black boxesCNN

The performance capacity in image recognition is high

FCN Provides computational speed A large amount of labeled data for training is required

The background noise is automatically eliminated The labeling cost is high

RNN Able to decide which information to remember from past 
experiences

The model is hard to train

A suitable deep learning model for sequential data The computational cost is high

MIL A detailed annotation is not required A large amount of training data is required

Suitable to be performed on large datasets The computational cost is high

GAN The potential to produce new realistic data that resembles 
the original data

The model is hard to train 

AI: Artificial intelligence; ML: Machine learning; SVM: Support Vector Machine; CNN: Convolutional neural networks; FCN: Fully convolutional neural 
networks; RNN: Recurrent neural networks; MIL: Multi-instance learning; GAN: Generative adversarial networks.

AI IN THE PATHOLOGICAL DETERMINATION OF PRENEOPLASTIC LESIONS IN GIS
Barrett’s esophagus
The majority of AI studies in EC consist of imaging studies. In pathology, there have been recent studies 
on the diagnosis of Barrett's esophagus (BE) and the evaluation of dysplasia in these lesions to predict 
the risk of EC[49,50]. A proposed attention-based deep NN framework for detecting BE and adenocar-
cinoma (ADC) was found to be reliable with a mean accuracy of 0.83[49]. Unlike existing methods based 
on the region of interest, this model is based on tissue-level annotations, suggesting that it may provide 
a new approach for applying DL in pathology. On the other hand, the fact that the study was performed 
in a single center and on a relatively small data set necessitates the development of the proposed model 
with further studies. Since trefoil factor 3 expression is the key finding of BE, a DL model (VGG16) using 
immunohistochemically stained sections showed significant adaptability, with an area under the curve 
(AUC) of 0.88[50]. Although the proposed approach reduced the pathologist workload by 57%, the 
underlying ML model still needs further optimization.

Colorectal polyp classification
In CRC, unlike GC, the classification of polyps is an important task to determine the risk of CRC and the 
future surveillance needs of patients[51]. In routine examinations, high-risk polyps are evaluated based 
on their histopathological features with considerable interobserver variability among pathologists[52,
53]. However, a precise diagnosis of high-risk polyps is required for efficient and early detection of 
cancer. In addition, the recommendation for endoscopic screening of these lesions for an early diagnosis 
of CRC, especially in elderly individuals, increases the workload of daily pathology practice[54].

Therefore, AI applications have been developed to classify high-risk colorectal polyps and/or 
adenomas with high-grade dysplasia. In studies on the classification of these lesions and the identi-
fication of CRC, datasets of three to six specific categories and five models were used[55-62] (Table 2). 
Although most studies showed good performance with generally high AUCs and accuracies, because of 
the following restrictions, the evidence level of each model needed to be improved. The number of 
patches and WSIs that make up the datasets are different. Accordingly, in some studies, the number of 
datasets may affect the reliability of the results. In various studies, the annotation process is not 
delineated in detail. In addition, the fact that each model has a different focus and characteristics makes 
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Table 2 AI-based applications in pathology for the determination of tumor behavior in colorectal carcinomas

Ref. Task Data sets Algorithm/Model Performance Comments

Xu et al[55] NL/ADC/MC/SC/PC/CCTA 717 patches AlexNet Accuracy: 97% The model provides 
the classifications of 
tumor subtypes

Korbar et al[56] NL/HP/SSP/TSA/TA/TVA-VA Training set: 458 
WSIs; Test set: 239 
WSıs

ResNET F1 Score: 88.8%; 
Accuracy: 93%; 
Precision: 89.7%; 
Recall: 88.3%

The model may reduce 
the workload of 
pathologists in the 
assessment of 
colorectal polyps

Haj-Hassan et al[57] NL/AD/ADC 30 patients, 
Multispectral 
image patches

CNN Accuracy: 99.2% CNN allows the classi-
fication of CRC tissue 
types using pre-
segmented regions of 
interest

Ponzio et al[58] NL/AD/ADC 27 WSIs VGG16 Accuracy: 96% TL considerably 
outperforms the CNN 
fully trained on CRC 
samples on the same 
test dataset

Sena et al[59] NL/HP/AD/ADC 393 images CNN Accuracy: 80% DL may provide a 
valuable tool to assist 
pathologists in the 
histological classi-
fication of CR tumors

Iizuka et al[60] NL/AD/ADC 4036 WSIs + 
500WSIs

CNN/RNN AUCs: 0.96-0.99 Integrating DL models 
in pathology workflow 
would be of high 
benefit for easing the 
workload of 
pathologists

Wei et al[61] NL//TA/TVA/VA/HP 1182 WSIs ResNet Accuracy: 93.5% 
(Internal test set); 
Accuracy: 87% 
(External test set)

This model may assist 
pathologists by 
improving the accuracy 
of CRC screening

Awan et al[62] NL/Low GR/High GR 139 images CNN Accuracy: 97% (two-
class), 91% (three-
class) 

The model provides 
the classifications of 
tumor subtypes based 
on the shape of glands

Sirinukunwattana et 
al[97]

Prediction of MSTs 510 WSIs 
(FOCUS), 431 
WSIs (TCGA), 265 
WSIs 
(GRAMPIAN 
cohort)

Inception V3 AUCs: 0.9 (FOCUS); 
0.94 (TCGA), 0.85 
(GRAMPIAN 
cohort)

RNA expression 
classifiers can predict 
from H-E stained 
images, opening the 
door to cheap and 
reliable biological 
stratification within 
routine workflows

Echle et al[98] MSI vs MSS 6406 WSIs 
(Training); 771 
WSIs (External 
validation)

ShuffleNet AUC: 0.92 
(Training); AUC: 
0.96 (External 
validation)

The model provides a 
low-cost evaluation of 
MSI without molecular 
testing

Kather et al[80] MSI vs MSS 60894 patches 
(TCGA-CRC-KR); 
93408 patches 
(TCGA-CRC-DX)

ResNet18 AUC: 0.84 (TCGA-
CRC-KR); AUC: 0.77 
(TCGA-CRC-DX)

This method may lead 
to improvements in 
molecular subtype 
screening workload in 
pathology

Kather et al[77] Prediction of molecular Als 426 patients 
(TCGA-CRC); 379 
patients (DACHS) 

ShuffleNet AUROC: 0.76 The algorithm predicts 
a wide range of 
molecular alterations 
from routine, H-E 
stained slides

Kruger et al[99] Prediction of MSTs 919 WSIs ResNet 34 AUCs: Mean: 0.87; 
CMS1: 0.85; CMS2: 
0.92, CMS3: 0.85; 
CMS4: 0.86

The MIL framework 
can identify morpho-
logical features 
indicative of different 
molecular subtypes

Accuracy: 0.84; The image-based Popovici et al[100] Prediction of MSTs 300 WSIs VGG-F
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Recall: 0.85; 
Precision: 0.84

classifier shows a 
significant prognostic 
value similar to the 
molecular counterparts

Cao et al[101] MSI vs MSS 429 patients 
(TCGA-COAD); 
785 patients 
(Asian-CRC)

EPLA AUC: 0.88 (TCGA-
COAD); AUC: 0.85 
(Asian-CRC)

This pathomics-based 
model provides MSI 
estimation directly 
from images without 
molecular testing

Bilal et al[102] Prediction of molecular Als 502 slides (TCGA-
CRC-DX); 47 
slides (PAIP)

ResNet18, ResNet34, 
HoVerNet

AUROCS: HM (0.81 
vs 0.71); MSI (0.86 vs 
0.74); CIN (0.83 vs 
0.73), BRAFmut 
(0.79 vs 0.66), 
TP53mut (0·vs 0.64), 
KRASmut (0.60), 
CIMP (0.79)

This algorithm is based 
on non-annotated 
images and uses only 
slide-level labels to 
predict the status of 
CRC pathways and 
mutations

Kwak et al[110] LNM prediction 164 patients CNN, U-Net AUROC: 67% PTS score is a potential 
prognostic parameter 
for LNM in CRC

Pai et al[111] LNM prediction 230 patients 
(training), (136 
testing)

CNN AUROC: 79% The model allows to 
identify and quantify a 
broad spectrum of 
histological features, 
including LNM in CRC

Kiehl et al[112] LNM prediction 3013 patients ResNET18 AUROC: 74.1% DL-based analysis may 
help predict the LNM 
of patients with CRC 
using routine HE-
stained slides

Weis et al[120] Tumor Budding (Pan-CK) 381 patients CNN Spatial clusters of 
tumor buds 
correlates to N 
status (P: 0.003)

The model is a feasible 
and valid assessment 
tool for tumor budding 
on WSIs and can 
predict prognosis

Kather et al[121] ADI, DEB, LYM, MUC, SM 86 slides 
(Training), 25 
slides (Testing); 
862 slide (TCGA-
COAD) 

VGG19 AUC: 98.7% HR: 
2.29 (OS); 1.92 (RFS); 
Deep stroma score 
HR: 1.99 (P: 0.002), 
Shorter OS

This model can assess 
the human TME and 
predict prognosis 
directly from 
histopathological 
images

Shapcott et al[122] TME (EC/IC/FC/MC) 853 patches, 142 
images (TCGA-
COAD)

CNN Accuracy: 76% 
(detection), 65% 
(classification)

The model provides 
the assessment of TME 
in CRC slides

Sirinukunwattana et 
al[123] 

a-4 tissues classes; b- prediction of 
DM

102 cases Spatially Constrained 
CNN

a-AUROC: 90.4-
99.9%; b-AUROC: 
58.6-63.8%

The algorithm provides 
a digital marker for 
estimating the risk of 
DM

Swiderska-Chadaj et 
al[124]

TME Detection of ICs 28 WSIs FCN/LSM/U-Net F1-score of 0.80; 
Sensitivity: 74%; 
Precision: 86%

DL approaches are 
reliable for automat-
ically detecting 
lymphocytes in IHC-
stained CRC tissue 
sections

Geessink et al[115] TSR 129 slides CNN HR: 2.48 (DSS); 2.05 
(DFS)

CNN defined TSR as 
an independent 
prognosticator

Zhao et al[125] TSR 499 patients 
(Discovery 
cohort); 315 
patients 
(Validation 
cohort:)

CNN TSR, independent 
prognostic 
parameter. HRs: 
2.48 (Discovery 
cohort); 2.08 
(Validation cohort)

CNN allows objective 
evaluation of TSR

Zhao et al[126] Mucus tumor ratio low vs mucus 
tumor ratio high

814 patients CNN  
HRs: 1.88 
(Discovery cohort); 
2.09 (Validation 
cohort)

The DL quantified 
mucus tumor ratio is 
an independent 
prognostic factor in 
CRC

The model extracts Bychkov et al[132] Prognosis LR vs HR 420 TMA VGG-16 HR: 2.3



Yavuz A et al. Artificial intelligence in gastrointestinal cancers

AIG https://www.wjgnet.com 148 December 28, 2022 Volume 3 Issue 5

more prognostic 
information from the 
tissue morphology 
than the experienced 
human observer

Skrede et al[133] Prognosis (CSS) 1122 patients 
(Validation 
cohort)

DoMorev1 HRs: 1.89 (uncertain 
vs good); 3.84 (poor 
vs good)

The digital marker has 
the potential to identify 
patients at LR and HR 
and provides the 
selection of treatment

Jiang et al[134] a-HRR vs LRR b-Poor vs good 
prognosis

101 patients 
(Traning); 67 
patients 
(Validation); 47 
(TCGA-COAD)

InceptionResNetV2 a-HRs: 8.98 
(training); 10.69 
(other 2 test groups); 
b-HRs: 10.687 
(training); 5.03 
(other 2 test groups)

The selected model 
offers an independent 
prognostic predictor 
which allows strati-
fication of stage III 
CRC into risk groups

NL: Normal; ADC: Adenocarcinoma; MC: Mucinous carcinoma; SC: Serrated carcinoma; PC: Papillary carcinoma; CCTA: Cribriform comedo-type 
adenocarcinoma; CRC: Colorectal cancer; HP: Hyperplastic polyp; SSP: Sessile serrated polyp; TSA: Traditional serrated adenoma; TA: Tubular adenoma; 
TVA: Tubulovillous adenoma; VA: Villous adenoma; AD: Adenoma; CNN: Convolutional neural networks; WSIs: Whole slide images; RNN: Recurrent 
neural networks; AUC: Area under the curve; GR: Grade; MSI: Microsatellite instable; MSS: Microsatellite stable; TCGA-CRC: Tumor Cancer Genome 
Atlas-Colorectal cancer; KR: Frozen tissues; DX: Formalin fixed paraffin embedded tissues; COAD: Colon adenocarcinoma; CRC: Colorectal carcinoma; 
EPLA: Ensemble patch likelihood aggregation; MST: Molecular subtype; CMS1: Tumor with MSI; CMS2: Tumors exhibiting epithelial gene expression, 
activated WNT and MYC signaling; CMS3: Tumors with metabolic disregulations; CMS4: Tumors that possess TGF-β; MIL: Multi instance learning; Als: 
Alterations; AUROC: Area under the receiver operating characteristics; PAIP: Pathology artificial intelligence platform; HM: Hypermutation; CIN: 
Chromosomally unstable; CIMP: CpG island methylator phenotype; CK: Cytokeratin; ML: Machine learning; ADI: Adipocyte; DEB: Debris; LYM; 
Lymphocytes; MUC: Mucus; SM: Smooth muscle; HR: Hazard ratio; OS: Overall survival; RFS: Recurrence free-survival; TME: Tumor microenvironment; 
ICs: Immune cells; FCN: Fully convolutional network; LSM: Liquid state machine; IHC: Immunohistochemistry; EC: Epithelial cell; FC: Fibroblast; MC: 
Miscellaneous; TSR: Tumor stroma ratio; LR: Low risk; HR: High risk; TMA: Tissue microarray; CSS: Cancer specific survival; HRR: High recurrence risk; 
LRR: Low recurrence risk; DM: Distant metastasis; LNM: Lymph node metastasis; PTS: The predictive value of the peritumoral stroma score.

their comparison across studies impossible. One of the most striking examples of these studies is Korbar 
et al[56], where a DL model (ResNet-152) trained with over 400 WSIs showed a high overall accuracy in 
subtyping polyps. In another study, Wei et al[61], who ensembled five layers of ResNet, could classify 
these lesions with WSIs from a single institution, even in external datasets with a performance 
comparable to that of histopathological evaluation. This data indicates that further manual annotations 
by various qualified GI pathologists may be required to decrease classification problems in future AI 
systems for colorectal polyp detection.

AI IN THE PATHOLOGICAL DETERMINATION OF TUMOR BEHAVIOR IN GIS
In this section relevant data on GC and CRC will be discussed. Unfortunately, no AI studies have 
identified the parameters that are important in determining tumor behavior and survival in EC. 
Similarly, studies of EC concerning molecular characterization have not been found. Therefore, in EC, a 
tumor with extremely high mortality, it is clear that additional pathology studies are necessary to reveal 
the effectiveness of AI applications in predicting tumor behavior.

TUMOR SUBTYPING
Gastric cancer
Although nearly all GC are ADC, the clinicopathological features and behaviors show considerable 
variation depending on the histopathological diversity of tumor cells[63,64]. In recent years, it has been 
reported that the survival of patients with GC at the same stage differs significantly among the different 
subtypes. Therefore, accurate histopathological classification is critical in determining their prognosis, 
monitoring, and treatment.

GC is often classified based on the ADC differentiation grade, including well-differentiated ADC and 
poorly differentiated ADC. The grading depends on the presence or absence of glandular structure 
formation. ADCs are divided into intestinal and diffuse subtypes based on the Lauren classification[65]. 
While the diffuse form comprises a poorly differentiated type and signet ring cell carcinoma (SRCC), the 
intestinal type exhibits glands with papillae, tubules, or solid regions. Diffuse-type carcinomas are 
commonly confused with other nonneoplastic diseases. Because they usually consist of solitary 
dispersed cells in a desmoplastic stroma and inflammation.
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In most of the reported studies, the adenocarcinoma differentiation grade is judged through manual 
identication by pathologists. Although there have been many studies on AI applications in the 
pathological diagnosis of GC in the recent past, there are few studies regarding tumor subclassification 
(Table 3). Yasuda et al[66] investigated the features and classification of GC tissues by using supervised 
ML algorithms. The results showed that this method reliably identifies morphological changes in 
tumors with different grades. Interestingly, PD-L1 expression levels have been found to serve as a 
morphological classification in hematoxylin and eosin (HE)-stained slides and correlate with histological 
grades. Therefore, quantitative analyses of tissue morphology may reveal molecular alterations in 
malignancies, and molecular analyses may aid in the pathological evaluation of cancer tissues. In 
another study, four different DL models were used to classify GC into diffuse ADC vs other ADC 
subtypes[67]. From biopsy WSIs, the trained model performed well at identifying both poorly differen-
tiated ADC and SRCC cells. The authors pointed out that while higher magnification can reduce the 
false positive rate in classification, applying an RNN model with a more comprehensive dataset yields 
good results even at low magnifications. Hybrid models such as StoHisNet have also distinguished 
tubular, mucinous, and papillary subtypes of GC. This model showed a higher performance for 
multiclassication of pathological images of GC than other CNN-based models[68]. Although the model 
performed well in the four classifications of gastric pathological images, the study group does not 
include SRCC and other types. Also, the inability of the supervised network in the study to use 
unlabeled data and the lack of information on which combination maximizes the performance of the 
model performance warrant further studies. More recently, Su et al[69] demonstrated that DL models 
constructed using a pre-trained ResNet-18 model based on ImageNet27 achieved tumor differentiation 
recognition or poorly differentiated ADC and well-differentiated ADC classes, respectively. Although 
these results suggest that AI may be useful in GC classification, the scarcity of data and the differences 
in classification parameters used in these studies make it difficult to come to any solid conclusions.

Recently, GC has also been classified by the Tumor Cancer Genome Atlas (TCGA) into four molecular 
subtypes that are also included in the latest World Health Organization classification: Epstein–Barr-
virus (EBV)-positive (9%), microsatellite unstable (MSI) (22%), genomically stable (GS) (19%) and 
chromosomally unstable (CIN) (50%)[70,71]. The clinical significance of this classification comes from 
the fact that various factors, such as the prognosis and treatment response, differ among these subtypes
[72,73]. In particular, among all subclasses of GC, tumors with MSI and positive EBV are associated with 
a better response to immunotherapy[72]. Consequently, recognizing these subtypes is crucial for 
categorizing patients who benefit from these treatments. Nevertheless, such classification requires the 
application of costly techniques, such as immunohistochemistry, and molecular testing, such as 
polymerase chain reaction, into pathological practice.

On the other hand, these two types have known characteristic histopathological findings. While EBV-
positive GCs show prominent infiltration of lymphocytes into the neoplastic epithelium and the stroma, 
MSI subtype shows significant lymphocytic infiltration, intestinal-type histology, and expanding 
growth characteristics[63,74,75]. Therefore, these morphological features could be used to make 
predictions about the molecular subtype. In recent years, it has been suggested that molecular findings 
can be detected with AI via WSIs from HE-stained sections produced for pathological assessment[76-
78]. Various models have been applied for molecular subtyping of GIS cancers. However, most of these 
studies have been conducted on CRCs (see below), whereas relatively few studies are available for GC 
(Table 3). For the detection of GC subtypes, Muti et al[79] demonstrated that DL could detect MSI and 
EBV positivity independently from each other in GC directly from HE-stained tissues in multi center 
pooled cohorts. They observed a high classification performance for the detection of MSI and EBV 
status. The relatively limited number of cases with positive findings and the fact that the ground truth 
methods for MSI were developed in CRC are presented as potential limitations of this study. On the 
other hand, their findings align with previous observations[69,80,81]. In addition, large-scale and 
multicenter validation broadens their work, which has considerable potential for integration into clinical 
procedures, suggesting that the application of DL could be a substitute for molecular techniques in the 
classification of GC. Furthermore, because these two subtypes share common morphological features 
and they are immunotherapy-sensitive tumors, Hinata et al[82] combined MSI and EBV in DL models 
and found they had a higher detection accuracy. This finding has been interpreted based on the 
possibility that these subtypes have similar distinctive pathological features, such as abundant stromal 
lymphocytic infiltration and intraepithelial lymphocytosis. On the other hand, the use of tissue 
microarray and manual labeling of tumor regions for TCGA presented as sources of bias compared to 
whole tissue slides, given the heterogeneity of tumor tissue. It was also emphasized that manual 
annotation by a pathologist might be a challenge to overcome by some weakly supervised methods (for 
example, attention-based deep multi instance learning) in the field of DL for the broad application of the 
proposed model.

Recently, a DL model called EBVNet that assists pathologists in predicting EBV from HE-stained 
slides has been introduced in GC[83]. The results suggested that human-machine fusion dramatically 
enhances the diagnostic ability of both EBVNet and the pathologist. However, this study has some 
limitations regarding its retrospective evaluation of training and validation. Additionally, the logistic 
regression model applied in the assessment is still an indirect way to interpret the model. More 
importantly, as in many DL models, the EBVNet decision-making procedure by the neural network is 
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Table 3 Artificial intelligence-based applications in pathology for the determination of tumor behavior in gastric cancer

Ref. Task Data sets Algorithm/Model Performance Comments

Yasuda et al[66] NC, GR1, GR2, GR3; 
PDL-1, 
ATF7IP/MCAF1

66 WSIs SV, ML, wndchrm AUCs: 0.98-0.99 The model allows grading 
emphasizing a correlation 
between molecular 
expression and tissue 
structures

Kanavati et al[67] NC, ADC-D, ADC-O 1-stage training: 1950 
WSIs, 2-stage training: 
874 WSIs 

CNN and RNN AUCs: 0.95-0.99 The tool can aid pathologists 
by potentially accelerating 
their diagnostic workflow

Fu et al[68] NC, TC, MC, PC Training 2938 WSIs, 
Testing 980 WSIs 

StoHisNet The accuracy: 94.69%, 
F1 score: 94.96%, 
Recall: 94.95%, 
Precision: 94.97%

The model has high 
performance in the multi-
classification on gastric 
images and shows strong 
generalization ability on 
other pathological datasets

Su et al[69] NC, WD, PD, MSS vs 
MSI

GR: Training 348 WSIs, 
Testing 88 WSIs MSS: 
Training 212 WSIs, 
Testing: 52 WSIs, MSI: 
Training 136 WSIs, 
Testing: 36 WSIs

ResNet-18 PD vs WD, F1 score: 
0.8615, PD vs WD vs 
NC, F1 score: 0.8977; 
MSI vs MSS accuracy: 
0.7727

The proposed system 
integrated the tumor GR and 
MSI status recognition 
problems into the same 
workow and was suitable 
for exploring the 
relationships between 
pathological features and 
molecular status

Muti et al[79] MSI vs MSS; EBV (+) vs 
EBV (-)

2823 patients with 
known MSI status; 2685 
patients with known 
EBV status

CNN, Shufflenet MSI vs MSS, AUROCs: 
0.723-0.863; EBV (+) vs 
EBV (-), AUROCs: 
0.672-0.859 

DL-based classifiers have the 
potential to provide faster 
decisions for pathologists 
and to offer therapeutic 
options tailored to the 
molecular profile of the 
individual patient

Kather et al[80] MSI vs MSS Training 81 patients 
+216 patients (TCGA-
STAD)

ResNet-18 AUC: 0.84 This system provides 
significant improvements in 
molecular alterations 
screening workflow

Kather et al[81] EBV (+) vs. EBV (-) Training 317 patients 
(TCGA-STAD)

CNN, VGG19 AUC: 0.80 This workflow enables a fast 
and low-cost method to 
identify EBV and enables 
pathologists to check the 
plausibility of computer-
based image classification ( 
the black box of DL) 

Hinata et al[82] EBV+MSI/dMMR vs 
EBV- non MSI/dMMR

UTokyo training cohort: 
326 patients; TCGA 
training cohort: 48 
patients

CNNs,VGG16, VGG19, 
ResNet50, 
EfficientNetB0

AUCs: 0.901–0.992 
(Utokyo cohort); 
AUCs: 0.809–0.931 
(TCGA cohort)

The model detects immuno-
therapy-sensitive GC 
subtypes from histological 
images at a lower cost and in 
a shorter time than the 
conventional methods

Zheng et al[83] EBV (+) vs EBV (-) EBV (+) 203 WSIs; EBV 
(-) 803 WSIs 

EBVNet AUROC: 0.969, 
Internal validation; 
AUROC: 0.941, 
External dataset 
AUROC: 0.895, TCGA 
dataset

The human-machine fusion 
signicantly improves the 
diagnostic performance of 
both the EBVNet and the 
pathologist, provides an 
approach for the 
identication of EBV(+) GC, 
and may help effectively 
select patients for immuno-
therapy

Flinner et al[87] EBV, MSI, GS, CIN Training 84 WSIs 
(TCGA-STAD); Testing: 
133 WSIs (TCGA-STAD)

CNN, DenseNet161 AUC: 0.76 for four 
classes

The simplied molecular 
TCGA and GC subclasses 
could be predicted by DL 
directly based on H-E 
staining

Jang et al[88] CDH1, ERBB2, KRAS, 
PIK3CA, TP53 
mutations

425 FF slides (TCGA-
STAD); 320 FT slides 
(TCGA-STAD)

CNN, Inception-v3 AUCs (FF-FT): CDH1 
(0.667-0.778), 
ERBB2(0.63-0.833), 
KRAS (0.657-0.838); 
PIK3CA (0.688-0.761), 
TP53 (0.572-0.775)

When trained with 
appropriate tissue data, DL 
could predict genetic 
mutations in H-E-stained 
tissue slides
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Huang et al[109] Metastatic LNs 983 WSIs ESCNN AUC: 0.9936 ESCNN improves the 
accuracy of pathologists in 
identifying metastatic LNs, 
micrometastases, and 
isolated tumor cells, allowing 
for shortening the review 
time

Hu et al[107] Metastatic LNs 222 patients RCNN, Xception and 
DenseNet-121

Accuracy 97.13%; PPV: 
93.53, NPV: 97.99%

The system can be 
implemented into clinical 
workflow to assist 
pathologists in preliminary 
screening for LN metastases 
in GC patients

Matsushima et al
[108]

Metastatic LNs 827 lymph nodes CNN AUROC: 0.9994 This DL-based diagnosis-aid 
system can assist pathologists 
in detecting LN metastasis in 
GC and reduce their 
workload

Wang et al[106] Metastatic LNs, T/LNM 9366 slides (7736 with 
metastasis)

Resnet-50 LNM (+) vs (-): 
Sensitivity 98.5%, 
Specicity 96.1%; 
T/LNM: HR: 2.05 
(univariate analysis); 
1.39 (multivariate 
analysis)

This system can assist 
pathologists in detecting LN 
metastasis in GC and reduce 
their workload. Besides, 
T/LNM is prognostic of OS 
in GC patients

Hong et al[116] dTSR (HE and CK7) Training 13 WSIs; 
Testing 358 WSIs

cGAN Kappa value: 0.623 
(dTSR and vTSR); 
AUROC: 0.907; OS (P: 
0.0024)

By diagnosing TSR in GC, 
this model predicts OS in the 
advanced stage of GC

Meier et al[127] TME + Ki-67 248 patients CNN HRs: Ki67&CD20: 
1.364, CD20&CD68: 
1.338; Ki67&CD68: 
1.473

In combination with a panel 
of IHC markers, this model 
predicts the prognosis of 
patients with GC

Huang et al[128] OS Training: 2261 pictures; 
Internal validation: 960 
pictures

GastroMIL HR: 2.414 (univariate 
analysis), 1.843 
(multivariate analysis)

The risk score computed by 
MIL-GC was proved to be 
the independent prognostic 
value of GC

Jiang et al[129] 5-YS, 5-YDFS 786 patients ML, SVM AUCs: 5-YS: 0.834; 5-
YDFS: 0.828

The classifier can accurately 
distinguishes GC patients 
with different OS and DFS 
and identifies a subgroup of 
patients with stage II and III 
disease who could benet 
from adjuvant chemotherapy

Jiang et al[130] Low SVM vs High SVM, 
5-YS, 5-YDFS

Training: 223 patients; 
Internal validation: 218 
patientsExternal 
validation: 227 patients

ML, SVM AUCs: 5-YS: 0.818; 5-
YDFS: 0.827

SVM signature distinguish 
GC patients with different 
OS and DFS and identifies a 
subgroup of patients with 
stage II and III disease who 
could benet from adjuvant 
chemotherapy

Wang et al[131] TME 172 patients CGSignature powered by 
AI

AUROCs: 0.960 ± 0.01 
(binary classification), 
0.771 ± 0.024 to 0.904 ± 
0.012 (ternary classi-
fication)

Digital grade cancer staging 
produced by CGSignature 
predicts the prognosis of GC 
and significantly 
outperforms the AJCC 8th 
edition Tumor Node 
Metastasis staging system

NC: Non cancer; GR: Grade; ATF7IP/MCAF1: Activating Transcription Factor 7 Interacting Protein; WSIs: Whole slide images; SV: Supervised; ML: 
Machine learning; wndchrm: weighted neighbor distances using a compound hierarchy of algorithms representing morphology; AUC: Area under the 
curve; ADC-D: Diffuse adenocarcinoma; ADC-O: Adenocarcinoma other; DL: Deep learning; CNN: Convolutional neural networks; RNN: Recurrent 
neural network; TC: Tubular carcinoma; MC: Mucinous carcinoma; PC: Papillary carcinoma; WD: Well differentiated; PD: Poorly differentiated; MSI: 
Microsatellite instable; MSS: Microsatellite stable EBV: Epstein-Barr virus; TCGA-STAD: Tumor Cancer Genome Atlas, Stomach adenocarcinoma dMMR: 
Deficient mismatch repair; GC: Gastric cancer; AUROC: Area under the receiver operating characteristics; GS: Genomically stable; CIN: Chromosomally 
unstable; LN: Lymph node; ESCNN: Enhanced streaming CNN; RCNN: Region based CNN; PPV: Positive predictive value; NPV: Negative predictive 
value; T/LNM: Tumor area-to-metastatic LN-area ratio; dTSR: Digital tumor-stroma ratio; HE: Hematoxylin and eosin; CK7: Cytokeratin 7; cGAN: 
Conditional generative adversarial network; vTSR: Visual tumor-stroma ratio; OS: Overall survival; TME: Tumor microenvironment; HR: Hazard ratio; 5-
YS: Five year survival; 5-YDFS: Five year disease free survival; SVM: Support vector machine; AI: Artificial intelligence.
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nontransparent (black boxes). Since various methods have been proposed to solve black boxes in DL in 
the recent past, additional studies applying these methods will contribute to the determination of the 
molecular subtypes of AI models of GC[84-86]. In a more recent study, Flinner et al[87], in their study 
emphasizing the error-proneness of the morphological and staining methods used to determine GC 
subtypes for subclassification, found that DL could be more effective in this regard. On the other hand, 
they also pointed out that image tiles labeled with false ground truth associated with GC heterogeneity 
may reduce the accuracy of DL but this can be overcome by first experimentally defining the test data.

Recently, the feasibility of a DL approach has also been evaluated in the classification of GC for 
mutations in the CDH1, ERBB2, KRAS, PIK3CA, and TP53 genes[88]. High AUCs observed in both 
frozen and formalin-fixed tissues highlight that DL-based classifiers could predict the mutational status 
of these tumors. Although these results are promising for the application of AI to subtyping GC, 
additional studies are necessary, with further refinement of these methods.

Colorectal cancer
Similar to GC, molecular subtyping of CRC is essential for targeted treatment against critical oncogenic 
signaling pathways. CRCs are divided by molecular consensus into four types (CMS): 1. CMS1: Tumors 
with MSI that have a good prognosis in non metastatic stages; CMS2: Tumors with intermediate 
prognosis exhibiting epithelial gene expression, activated WNT and MYC signaling; CMS3: Tumors 
with intermediate prognosis demonstrating metabolic dysregulations; CMS4: Tumors with a poor 
prognosis that possess transforming growth factor beta (TGF-β) activation[89-91]. The identification of 
CRC with MSI is paramount because this group is susceptible to immunomodulating therapies[92,93]. 
Although some findings, such as tissue architecture, growth pattern, cellular morphology, and distri-
butions of tumor stroma ratio (TSR) and tumor microenvironment (TME) provide some clues about the 
subclassification of these tumors, molecular stratification of patients necessitates RNA analyses that are 
expensive and difficult to standardize[94-96]. Accordingly, some studies have investigated the contri-
bution of AI to tumor subclassification from HE-stained tissue sections by DL models (Table 2). 
Sirinukunwattana et al[97] demonstrated that a CNN-based model could detect CMS subtypes. At the 
same time, they criticized the potential over fitting of the computational model to the training cohort as 
a limitation of the study. In a more recent study, Echle et al[98] developed a DL model in a large series of 
8836 cases of CRC to predict MSI tumors. In the international validation of the study group, the 
algorithm achieved a high performance [area under the receiver operating curve (AUROC) of 0.96][80]. 
Other investigators have also reported similar results, pointing out the potential use of DL models for 
detecting molecular subtypes of CRC[77,99-101]. In a retrospective study, a DL pipeline method was 
developed based on experimental setups similar to previous studies[102]. Three models were used to 
predict mutation density (low vs high), MSI, CIN, and GpG island methylator phenotype. The mutated 
and wild-type BRAF, TP53, and KRAS types were also investigated. This method showed higher 
AUROCs for the prediction of hypermutation, MSI, CIN, BRAF, and TP53 compared to previously 
reported data, suggesting that AI methods may provide the stratification of patients with CRC for 
targeted therapies. However, further large-scale validations with multicenter datasets are required 
before their implementation in pathological practice.

LYMPH NODE METASTASIS
Gastric cancer
Another important parameter that predicts GC behavior and treatment is lymph node metastasis (LNM)
[103]. However, identifying LNM is still a challenging and tedious task in pathological practice, making 
the implementation of AI an attractive tool to reduce the workload[104,105]. Although numerous 
studies have demonstrated that DL-based algorithms can detect metastatic lymph nodes in GC with a 
similar level of accuracy to human specialists, these algorithms have not yet been implemented into 
pathology practice[106-108] (Table 3). The failure to integrate these algorithms is related to the charac-
teristics of WSIs, the excessive effort required to apply the annotation, and the limited associated data. 
Recently, Huang et al[109] developed a weakly supervised end-to-end technique termed enhanced 
streaming CNN (ESCNN). Their results revealed that the routine pathological evaluation benefitted 
from the AI-assisted LN assessment workflow regarding review time, sensitivity, and consistency. On 
the other hand, AI-attributable false alarms that misled the pathologists on negative results led to a 
decrease in specificity from 94% to 84%, which needs more large-scale or multicenter studies to check 
the effectiveness of the workflow.

Colorectal cancer
Recent evidence indicates that features extracted by DL models from routine histologic slides can 
predict LNM in CRC[110-112] (Table 2). For example, Kwak et al[110] detected LNM by generating a 
score based on the ratio of peritumoral stroma to tumor tissue on a test set. In another study, the 
presence of LNM was detected with a model which segmented WSIs into areas such as tumor budding 
or poorly differentiated clusters[111]. More recently, Kiehl et al[112] performed an approach that uses 
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DL-based image analysis (slide-based artificial intelligence predictor) in association with patient data to 
estimate LNM in CRC patients. Their results indicated that LNM could be predicted in patients with 
CRC through AI applications from histological slides to a similar level to using a classifier containing 
clinical data.

THE TUMOR STROMA RATIO, TUMOR MICROENVIRONMENT AND TUMOR BUDDING
Gastric cancer
In recent years, it has been shown that the TSR in many organ tumors is an important clue to the course 
of the disease. In particular, stromal dominance has been observed to be an independent prognostic 
factor in many tumors, including GIS[113,114]. However, TSRs are not included in pathology report 
protocols because of the lack of a standard procedure among different methodologies and a low 
reproducibility related to the high interobserver variation[115]. Recently, a DL pipeline has been 
introduced to facilitate the automated assessment of TSR in GC[116]. Although this model has been 
shown to be effective in detecting survival according to the low and high TSR rates in advanced GC, it 
was emphasized that some limitations, such as the nonautomatic selection of hot spots and the use of a 
single test, should be eliminated. Therefore, there is a need for many studies on the use of AI applic-
ations in TSR determination of GC.

In a recent study, a DL model determined the tumor-to-metastatic lymph node-area ratio in 
metastatic lymph nodes in patients with GC[106]. Statistical analysis also revealed that this ratio is an 
independent prognostic factor warranting further investigation.

Colorectal cancer
In CRC, recent studies have demonstrated that lymphocytes and fibroblasts profoundly shape the TME 
and significantly impact tumor behavior[117-119]. In addition, it has been shown that CRC may have a 
poor prognosis due to tumor budding (1-5 cells in the invasive area)[120]. In the literature, seven studies 
of AI methods have been identified to determine these parameters in a more objective and time-saving 
manner (Table 2). However, many of them used different methods. Three models focused on the classi-
fication of the cell types, such as epithelial, inflammatory, fibroblast, lymphocytes, and others (mucus, 
smooth muscle, normal mucosa, stroma, and cancer epithelium)[121-123]. In an elegant study, a DL 
algorithm was proposed for estimating the risk of distant metastasis by analyzing the TME[123]. Cell 
detection and cell classification were evaluated in two CNNs used to build a cell network. In each 
tumor, a tissue phenotype signature was obtained by proportioning the area of tissue phenotypes to the 
total tissue area. Statistical analysis revealed that the connection frequency (CF) of the smooth muscle 
ratio, the CF of the inflammation ratio, and the appearance (AP) based on inflammation could 
independently estimate the development of distant metastasis. Distant metastasis-free survival analysis 
indicated that CF smooth muscle and AP inflammation ratios were potential prognosticators. Although 
the hazard ratios for CF of the smooth muscle ratio and AP inflammation were 2.11 and 0.39, 
respectively, the AUC values for distant metastasis prediction were 0.59 for the CF of the smooth muscle 
ratio and 0.64 for AP based on inflammation. As emphasized by the authors, specific immunohisto-
chemical staining can improve the prediction of distant metastases by increasing the informative value 
of histological slides. Another limitation of this study is the small number of metastatic cases. Another 
recent study was performed to detect CD3- and CD8-positive immune cells on WSIs of slides stained by 
immunohistochemistry in a multicenter cohort by four different methods[124]. U-Net obtained the 
highest performance and highest agreement with manual evaluation (0.72), which was higher than that 
of pathologists (K = 0.64), supporting that DL models are helpful for automatically detecting 
lymphocytes in immunohistochemically stained tissue sections.

In CRC, the automatic tumor budding evaluation on immunohistochemical pankeratin-stained slides 
revealed that the absolute number of buds per image was significantly correlated with manually 
segmented ground truth (R: 0.86)[120]. Interestingly, the number of spatial clusters of buds in hot spots 
was significantly correlated with the prognosis. In three studies, the impact of detecting the TSR or deep 
stroma score in CRC by DL algorithms was found to be an independent parameter to predict tumor 
behavior[115,121,125] (Table 2).

Recently, Zhao et al[126]  demonstrated that the ratio of the mucinous component in the tumor area 
(MTR) quantified by AI is an independent prognostic factor in CRC. On the other hand, the most 
invasive part of primary tumors was selected for evaluation. As noted by the authors, measuring the 
exact proportion and prognostic value of mucus in the entire tumor is still worthy of further invest-
igation.
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SURVIVAL OUTCOMES
Gastric cancer
Another continuing research topic is evaluating survival outcomes in GC with AI models[127-129] 
(Table 3). Recently, support vector machine (SVM), one of the popular algorithms in ML, has been 
applied to predict the survival of GC. Jiang et al[129] demonstrated that SVM could be useful in 
predicting the outcome and identifying patients with GC who might benefit from adjuvant therapy. In 
this study, the classier incorporated patient gender, carcinoembryonic antigen levels, LNM, and the 
protein expression level of eight features, composed of CD3 invasive margin (IM), CD3 center of the 
tumor (CT), CD8IM, CD45ROCT, CD57IM, CD66bIM, CD68CT, and CD34. There were significant 
variations between the high- and low-GC-SVM classifiers. Recently, Huang et al[128] designed  MIL-GC 
(a DL-based model) to predict overall survival (OS) in patients with GC. They observed C-indices of 
0.728 and 0.671 in the training and internal validation sets, respectively. The external validation likewise 
exhibited strong prognostic prediction performance (C-index = 0.657), confirming the resilience of the 
two models. Furthermore, univariate and multivariate Cox analyses demonstrated that the risk score 
derived by MIL-GC has independent prognostic significance, indicating the potential of AI approaches 
to predict GC behavior. Additionally, tumor progression includes complex interactions between 
malignant cells and their surrounding microenvironment (TME)[130]. TME targeting and 
reprogramming is, in fact, can be a potential strategy to achieve antitumor effects in many cancers. 
Several AI studies involving the TME have recently demonstrated that these methods can determine the 
prognosis of GIS cancers. Regarding GC, Wang et al[131], suggested a graph NN-based solution, 
CellGraph Signature powered AI, for the digital staging of TME and the exact prediction of patient 
survival by combining and converting multiplexed immunohistochemistry (mIHC) images as Cell-
Graphs. The survival prediction achieved outstanding model performance for both binary and ternary 
classifications. Furthermore, survival analysis revealed that this method outperforms the AJCC 8th 
edition Tumor Node Metastasis staging system in discriminating both binary and ternary classes with 
statistical significance (P value < 0.0001), implying the effectiveness and advantages of such an AI-
powered digital staging system in DP and precision oncology.

These data demonstrate that AI-based models allow prognosis prediction in GC. However, 
developing efficient models requires training on large sets reflecting scanning and staining protocols 
variability.

Colorectal cancer
Regarding prognostic evaluations from HE-stained slides by AI in CRC, some DL models have been 
developed for prognostication (Table 2). Bychkov et al[132] combined a CNN and a recurrent NN model 
to estimate the disease-specific five-year survival from tumor tissue microarray samples without tissue 
classification. The model classified patients into a low- or high-risk group (AUC of 0.69). This result was 
more significant than the AUC of the visual evaluation of the pathologist (AUC of 0.58) or the 
histological grade determined at the time of the original diagnosis (AUC of 0.57). However, an external 
dataset was not included. In another study by Skrede et al[133], diverse data from four different cohorts 
were used to develop an automatic prognostic marker to predict the outcome. The model included a 
CNN used to separate tumor tissue and two other CNN ensembles that identified individuals as having 
a favorable or poor survival. Patients were assigned as uncertain when the two CNN ensembles 
predicted different outcomes. In an external test group, the classifier was a strong predictor of survival. 
In addition, the output of the two CNN ensembles produced a strong predictive score related to patient 
outcome (AUC of 0.71).  A generalization of this approach has been recommended, as an external test 
cohort from more than one medical center demonstrated similar hazard ratios.

Jiang et al[134], to achieve a shorter computational time, developed a hybrid model by synergizing 
ML algorithms with DL (InceptionResNetV2 and gradient boosting decision machine classifier) to 
predict the survival of patients with stage III CRC. While the internal test sets constituted a Chinese 
cohort, external testing was performed on the TCGA cohort. They revealed that the model stratifies 
patients with stage III colon cancer into high- and low-risk recurrence and poor and favorable 
prognostic groups directly from tissue sections. These data suggest that the analysis of H-E-stained 
tissue samples by AI methods could serve as a digital prognostic biomarker in CRC. However, 
additional studies are warranted to support the evaluation of the performance of these methods in 
larger patient series.

OVERALL LIMITATIONS OF AI-BASED APPLICATIONS IN REAL-LIFE PRACTICE
In the literature, there are some frequently discussed topics considering the general challenges of AI 
such as identification of the clinical need, ethical considerations, funding, optimization of data-sets, 
annotation of the dataset, regulation, validation, and implementation[46].
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Recognizing the actual clinical need and defining a potential solution is the first stage in developing 
the AI application. However, there can be an imbalance between the benefits in daily pathological 
practice and the total cost of its implementation. As a result, the market for a particular AI tool may be 
too tiny and it may not be profitable.

Although patients can provide permission for data to be used for studies, constructing AI models 
may have issues if commercial use is not approved[135]. In order to develop a framework for global 
data sharing, patient consent should include the possibility of its commercial use for product 
development[40].

Training on huge datasets is necessary for developing AI systems with high performance in digital 
pathology. Changes related to differences in fixation, tissue thickness, and variations in staining and 
scanning protocols encountered in preanalytical and analytical phases may influence data accuracy[136,
137]. For example, it is difficult to convert a glass slide to WSI, and changing the hue of the slide could 
affect AI accuracy. Many AI algorithms have emerged for this purpose recently, including staining and 
color features[138,139]. In addition, a number of algorithms are presented to optimize WSI quality. 
These algorithms identify areas of the highest quality and exclude areas that are out of focus or affected 
by artifacts[140,141].

Concerning the implementation of AI, to enable users to shift the daily routine practice in the 
pathology laboratory, from glass slides to WSIs, the first step is to install an institutional IT 
infrastructure. In addition to these changes in infrastructure, pathology residency training might need to 
be adjusted in accordance with the availability of this new tool. Preventing residents from relying 
completely on AI while also allowing them to benefit from it as a helping instrument would require fine 
balancing and planning prior to its installation[142].

Similar to other clinical tests, quality assurance is crucial, hence it is urgently necessary to develop a 
plan for external quality assurance for applications. Furthermore, laboratory workers should also be 
familiar with the quality management system.

Although some algorithms and automated AI models are thought to perform better than pathologists, 
pathologists will always be required to audit technology and control mechanisms in AI implementation
[143].

CONCLUSION
In this review, we outlined the potential of AI applications for evaluating pathological parameters 
related to the behavior of GIS cancers. Current data suggest the merit of AI-based approaches in 
assessing tumor grading, subtyping, detection of metastasis, and prognosis in GC and CRC. In addition, 
these methods encourage biomarker discovery by revealing predictions that are impossible when using 
traditional visual methods. Regarding EC, there is still much room for improvement in developing AI 
models to predict the behavior of these tumors in pathology. On the other hand, the enormous potential 
of AI in improving workflows, eliminating simple errors, and increasing objectivity during pathological 
evaluations to determine the behavior of GIS cancers should motivate researchers to overcome the many 
remaining hurdles. In algorithm development, variations in imaging data, interobserver variability 
during interpretations, model transparency, and interpretability are significant challenges to be solved. 
A large number of studies with external validation and quality controls implemented on large datasets 
are essential in meeting the standards of these methods. Thereby, AI applications that are practical, 
interpretable, manageable, and cost-effective can play a crucial role in the development of pathological 
evaluations to be performed in the prognosis and treatment of GIS tumors.
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