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Abstract
Artificial intelligence (AI) is a branch of computer science that develops intelligent 
machines. In recent years, medicine has been contemplated with this recent 
modality to aid in the diagnosis of diseases in several specialties, including 
gastroenterology and gastrointestinal endoscopy. This new technology has 
superior ability to perform tasks mimicking human behavior and can identify 
possible pathological alterations, such as pre-malignant lesions and dysplasia, 
precursor lesions of colorectal cancer (CRC), and support medical decision-
making. CRC is among the three most prevalent cancer types, and the second 
most common cause of cancer-related deaths worldwide; in addition, it is a 
leading cause of death in patients with inflammatory bowel disease (IBD). 
Patients with IBD tend to have greater inflammatory cell activity in the intestinal 
mucosa, which can favor cell proliferation and CRC development. AI can 
contribute to the detection of pre-neoplastic lesions in patients at risk of CRC 
development, such as those with extensive IBD or when additional CRC risk 
factors, such as smoking, are present. In fact, AI systems could improve all aspects 
of care related to both the detection of pre-malignant and malignant lesions and 
the screening of patients with IBD. In this review, we aimed to show the benefits 
and innovations of AI in the screening of CRC in patients with IBD. The 
promising applications of AI have the potential to revolutionize clinical practice 
and gastrointestinal endoscopy, especially in at-risk patients, such as those with 
IBD.

Key Words: Artificial intelligence; Colorectal cancer; Ulcerative colitis; Crohn’s disease; 
Inflammatory bowel disease
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Core Tip: Artificial intelligence (AI) is a promising technology in various areas of medicine. Recently, AI-
assisted endoscopy has emerged with rapid dissemination and has favored the identification of complic-
ations in patients with inflammatory bowel disease (IBD), such as colorectal cancer (CRC). In this review, 
we discuss the benefits and innovations of AI for CRC screening in patients with IBD. The promising 
applications of AI have the potential to revolutionize clinical practice and gastrointestinal endoscopy.

Citation: Marques KF, Marques AF, Lopes MA, Beraldo RF, Lima TB, Sassaki LY. Artificial intelligence in 
colorectal cancer screening in patients with inflammatory bowel disease. Artif Intell Gastrointest Endosc 2022; 
3(1): 1-8
URL: https://www.wjgnet.com/2689-7164/full/v3/i1/1.htm
DOI: https://dx.doi.org/10.37126/aige.v3.i1.1

INTRODUCTION
Artificial intelligence (AI) is a branch of computer science that seeks to develop programmed machines 
to perform tasks that mimic rational human behavior through algorithms. AI can help in the prevention, 
diagnosis, and treatment of many diseases[1] and can be applied to diverse medical specialties, such as 
radiology, pathology, ophthalmology, dermatology, gastroenterology and gastrointestinal endoscopy
[2].

Inflammatory bowel disease (IBD) is an immune-mediated condition encompassing Crohn's disease, 
ulcerative colitis, and indeterminate colitis and can lead to the development of complications 
compromising the patients’ quality of life[3]. Colorectal cancer (CRC) is one of the leading causes of 
death in patients with IBD, with a mortality rate of 10%-15%[4]. Patients with IBD tend to have greater 
action of inflammatory cells in the intestinal mucosa, favoring cell proliferation and CRC development
[5]. In this scenario, AI can contribute to the detection of pre-neoplastic lesions in patients at risk of CRC 
development, such as those with extensive disease and in the presence of other CRC risk factors, such as 
smoking. Given the growing importance and application of AI in gastroenterology and gastrointestinal 
endoscopy, the aim of the present study was to review the role of AI in IBD, particularly in CRC 
screening in these patients.

An electronic search of the literature was performed using MEDLINE (PubMed) from 2010 to 
December 2021. Only articles published in English language were included. Keywords used in the 
search were artificial intelligence, inflammatory bowel disease, ulcerative colitis, Crohn's disease, 
colorectal cancer.

AI AND MACHINE LEARNING
AI is the ability that allows machines to imitate intelligent human behavior[6]. “Machine learning” is an 
aspect of AI in which computer algorithms apply statistical learning models based on data imputation
[7]. For example, supervised classification algorithms can recognize the presence or absence of polyps 
during colonoscopy. The concept of “deep learning” has recently emerged in machine learning, in 
which a deep neural network is used, inspired by the brain of mammals, presenting several layers of 
interconnected artificial neurons[8]. First-layer neurons transmit data and reference values to the next 
neuron layer, forming a complex algorithmic network. This process can mimic, for example, the visual 
cortex receiving pre-synaptic signals from the retina, and the mapping of parts of an image and 
extraction of their characteristics, which allows for real-time classification of images, along with 
detection and characterization of lesions in endoscopic procedures. Studies have already shown the 
benefits of this technology in colonoscopy, such as reducing the time to remove the device, improving 
the ability to predict histological diagnosis during the examination, and reducing the time needed to 
establish the diagnosis of the lesion[9]. A brief schematic describing AI, machine learning, and deep 
learning is shown in Figure 1.

AI IN GASTROINTESTINAL ENDOSCOPY
In the field of gastrointestinal endoscopy, AI technology contributes to the diagnosis and treatment of 
different types of intestinal lesions, from benign polyps to CRC[10]. One of the features of AI in 
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Figure 1  A summarized schematic depicting the relationship between artificial intelligence, machine learning, and deep learning.

endoscopic examinations is the identification and characterization of gastrointestinal polyps, which can 
detect and grade dysplasia. Currently, computer-aided diagnosis (CADe) technology is available in 
some endoscopy centers and has been gaining popularity in the scientific community. The CADe system 
assesses four pillars of quality in endoscopic examinations: Visible surface area on the monitor, colon 
distension (allowing greater surface visibility), conditions of preparation, and clarity of the current 
vision. Through this assessment, it generates scores that can be compared with those of specialist 
endoscopists[11].

Using the CADe system, it is possible to identify and automatically distinguish benign and malignant 
polyps that are transmitted on the monitor, which can be visually underestimated by the endoscopist, 
resulting in a higher rate of detection and characterization of the adenoma in question. Another 
advantage of in AI examinations is the reduction of unnecessary polypectomies of non-neoplastic 
polyps[11]. This is possible through the so-called optical biopsy, which allows the visualization and 
histological verification of the polyp in real time, preventing biopsies of low-risk hyperplastic lesions 
and reducing costs with histological examinations and complications related to the procedure. 
However, despite the existence of this new approach, some health professionals and patients have been 
against not forwarding the material for histological analysis[12].

Currently, it is known that several AI algorithms have been developed to work in real time during 
colonoscopy, alerting the endoscopist about the presence of polyps through the emission of sound or 
visual signals. Karnes et al[13] developed an adenoma detection model using images from 8641 colono-
scopies. To improve the efficiency of image classification, convolutional neural networks have been 
developed (deep learning). Its accuracy has reached 96.4% at a maximum rate of 170 images per second. 
Through AI, the endoscopist aids in the detection of polyps, serving as a second pair of eyes, more 
sophisticated, and with greater sensitivity through the use of high-precision machines[14]. Repici et al
[15] performed a multicenter randomized trial using the CADe system. In this study, the adenoma 
detection rate in the CADe group was higher than that in the control group (54.8% vs 40.4%; P < 0.001).

Ishiyama et al[16] comments on the challenges encountered when using CADe. This method is known 
to be more effective in detecting lesions in the right colon because the distal part of the colon, especially 
the sigmoid colon, may have some blind spots, reducing the efficiency of the CADe system. The sigmoid 
colon is not fixed; instead, it presents sharp angulation points, such as the sigmoid-descending junction, 
which result in blind spots that increase the risk of missing lesions, especially small polyps. On the other 
hand, the transverse and descending colon have more superficial folds, allowing lesions to be more 
easily detected. To improve the effectiveness of CADe, techniques such as cap-assisted colonoscopy and 
ultra-wide vision colonoscopy are needed to enhance the visualization of the aforementioned mucosal 
areas.

Another study evaluated the use of a commercially available AI system (GI-Genius; Medtronic)[17]. 
High-definition white light colonoscopies of 840 patients were analyzed and 2684 histologically proven 
polyps were detected. In total, 1.5 million video images of the polyps were manually recorded from 
different angles, and the ability of the AI to virtually identify these lesions was assessed. In most cases, 
the AI reaction time in polyp detection was faster than that of the endoscopists, anticipating the 
diagnosis of the lesion[17].

AI can also be applied in the exams of video capsule endoscopy to facilitate visualization of lesions, 
reducing not only examination time but also labor and allowing for a thorough review of these images, 



Marques KF et al. AI in CRC screening in IBD

AIGE https://www.wjgnet.com 4 February 28, 2022 Volume 3 Issue 1

improving the detection of neoplastic lesions and reducing human error[7].
The advantages of using AI compared to traditional endoscopy are mainly related to the reduction of 

costs and risks inherent to the endoscopic procedure, such as unnecessary polypectomies and 
histological analyses of lesions that lack potential for malignancy, in addition to shorter examination 
times. Furthermore, several studies have already demonstrated the benefits of using AI in all fields of 
digestive endoscopy. In the esophagus, AI can be applied in the diagnosis of Barrett's esophagus and in 
the diagnosis, prognosis, and evaluation of response to treatment of esophageal tumors[18]. In the 
stomach, AI can help in the detection of gastric cancer, as well as in the prognosis of patients 
undergoing chemotherapy[18]. In the lower gastrointestinal tract, its main indication has been in the 
detection of pre-neoplastic lesions and, more recently, in IBD[18].

AI IN PATIENTS WITH IBD 
The application of AI has been gaining strong influence in the field of IBD in recent years. Indeed, AI 
has been used to assess the genomic environment, build predictive models for the risk of developing 
IBD, and increase the accuracy of disease diagnosis[19]. Also, with this new technology it is possible to 
analyze endoscopic images and identify patterns of disease severity, allowing a better classification 
compared to disease severity assessed purely by endoscopy[19].

Maeda et al[20] reported a patient with IBD who benefited from the use of high-definition endoscopy 
devices with AI. Two dysplastic lesions were demarcated in the sigmoid colon, and further histological 
analysis confirmed the presence of atypical tubular glands with low-grade dysplasia[20].

Endocytoscopy is a new high-magnification endoscopic method designed for improved vivo 
assessment of lesions found in the gastrointestinal tract[21]. Maeda et al[20] applied endocytoscopy to 
analyze histological inflammation in patients with ulcerative colitis. With this tool, an AI model was 
developed to recognize persistent histological inflammation with a specificity of 97% and sensitivity of 
74%[20]. Mossotto et al[22] presented a model that used histological and endoscopic data to differentiate 
pediatric IBD between ulcerative colitis and Crohn's disease. The accuracy of this method was 82.7%, 
and the presence of ileal disease was the most important factor in the classification of the disease[22].

In the future, the application of AI could revolutionize the entire management of patients with IBD, 
from predicting the risk of developing the disease to choosing the best therapeutic strategy for each 
patient. AI can help to create prediction models of disease development risk, based on data such as the 
presence of genetic and environmental risk factors, as well as characteristics of the intestinal microbiota 
and the immune response of each individual. Regarding the diagnosis of IBD, AI can assist with 
algorithms based on the presence of genetic mutations, presence of signs and symptoms, results of 
biochemical and serological exams, fecal biomarkers, endoscopic and histological characteristics, and 
presence of changes in radiological exams, in addition to facilitating the differentiation between 
ulcerative colitis and Crohn's disease. With regard to treatment, the application of AI can help in 
choosing the best therapeutic strategy for each disease phenotype. In addition, it can help in deciding 
the most suitable drug for each patient based on the severity and extent of their disease, presence of 
disease complications, presence of poor prognosis risk factors, and taking into consideration the drugs’ 
mechanism of action together with the inflammatory and genetic profile of each patient.

Application of AI in CRC screening in patients with IBD
Colorectal cancer (CRC) stands out for being among the three most prevalent cancers and the second 
most common cause of cancer deaths worldwide[23]. Examinations such as colonoscopy are able to 
detect and remove pre-neoplastic lesions and, thus, prevent the development of CRC in some patients
[9]. Detection of adenomas during colonoscopy is dependent on the examining endoscopist, with 
studies reporting a variation of 7%-53% among different physicians[9]. The marked difference in this 
rate has been attributed to the endoscopist's previous experience, the resection technique used and the 
adequate surveillance of suspicious lesions [24]. Failure to detect neoplastic lesions can be associated 
with the development of CRC in the interval between two colonoscopies[9]. AI has emerged in the field 
of gastrointestinal endoscopy to increase the detection rates of pre-neoplastic lesions.

In sporadic CRC, tumor progression begins with the mutation of antigen-presenting cells (APC) and 
the accumulation of β-catenin to induce hyperplastic epithelium, followed by K-ras mutation and 
adenoma formation, and finally culminating in CRC with the p53 gene mutation[25]. The pathogenesis 
of CRC in IBD has not been fully elucidated, but intestinal inflammation associated with the presence of 
cytokines and free radicals is believed to be a conducive environment for the development of low- and 
high-grade dysplasia and, consequently, cancer[25]. Despite having genetic alterations similar to 
sporadic CRC, neoplastic lesions seem to occur in a shorter time in patients with IBD and in a different 
sequence, with p53 mutated early and APC and GSK3β mutations occurring later[26].

CRC in patients with IBD is preceded by unequivocal neoplastic epithelial changes, which are 
considered dysplasia[27]. Studies have shown an increased risk of dysplasia and CRC of up to 19 times 
more than that in the population without IBD[1] Riddell et al[28] developed a dysplasia classification 
system including low-grade dysplasia, and high-grade dysplasia. When the distinction between 
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dysplastic and non-dysplastic atypia or associated inflammatory changes is not made by the 
pathologist, the sample will be classified as undefined for dysplasia[27]. The primary objective of 
endoscopic surveillance is the early discovery of dysplasia.

According to the ECCO-ESGAR guidelines (2019)[29], ileocolonoscopic examination for CRC 
screening should be performed 8 years after the onset of symptoms in patients with IBD. Thus, it is 
possible to reassess the extent of the disease and exclude possible dysplasia. It should also be routinely 
performed in patients with perianal Crohn's disease to assess the extent of disease, i.e., severity of 
luminal inflammation, and to exclude complications such as strictures and cancer[29]. Regarding 
endoscopic surveillance, high-risk patients (presence of intestinal stenosis or presence of dysplasia 
detected within the last 5 years, concomitant primary sclerosing cholangitis, and extensive colitis with 
severe active inflammation) should undergo annual colonoscopy surveillance[29].

Patients with intermediate risk factors (extensive colitis with mild or moderate active inflammation, 
post-inflammatory polyps, or a family history of CRC in a first-degree relative diagnosed at age 50 or 
older) should undergo surveillance scheduled for 2-3 years[29]. Patients without intermediate or high-
risk features should undergo surveillance colonoscopy scheduled for 5 years[29]. It is also important to 
mention that patients with colonic stenosis detected within 5 years should be considered at high risk of 
CRC and should receive surveillance colonoscopy annually[29].

The SCENIC Consensus[30], which is the international consensus on surveillance and management of 
dysplasia in IBD, has developed screening recommendations for CRC and follow-up after removal of 
endoscopically resectable dysplastic polypoid lesions. Surveillance colonoscopy is recommended 
instead of colectomy in these cases, and the consensus also recommends the use of high-definition 
equipment because it provides image signals with higher pixel density[30]. This was reinforced by the 
study by Subramanian et al[31], in which examinations performed with high-definition equipment 
detected twice as much as dysplasia compared with standard-definition colonoscopies. If surveillance is 
performed with standard-definition colonoscopy, chromoendoscopy, which consists of applying dye 
throughout the colon that provides contrast enhancement to improve visualization of the epithelial 
surface, is recommended over white light colonoscopy[30]. In contrast, screening for endoscopically 
invisible dysplasia (confirmed by a pathologist), referral to an endoscopist experienced in surveillance 
of IBD using chromoendoscopy with high-definition colonoscopy has been suggested[30]. Figure 2 
illustrates the indications of CRC screening in patients with IBD and the recommended methods to 
perform the surveillance colonoscopy.

Despite the advent of high-definition colonoscopes and chromoendoscopy, the development of the 
integration of AI-assisted detection systems into conventional colonoscopy began due to the high 
mortality attributed to neoplasia in patients with IBD[1]. Studies have shown machines capable of 
assisting in the differentiation of neoplasms associated with colitis, sporadic colorectal adenomas, and 
non-neoplastic lesions[1]. In view of the increased risk of developing CRC, automated real-time polyp 
detection systems can significantly reduce missed diagnosis rates and help endoscopists detect polyps 
in real time[10]. With the intention of improving adenoma detection rates, computer algorithms can 
accurately detect and localize the presence of premalignant lesions[32] through a Convolutional Neural 
Network; that is, a type of particular multilayer artificial neural network that is highly efficient for 
image classification and can detect changes in the colonic mucosa[10].

Although patients with IBD, especially those with extensive colitis, are at higher risk of developing 
CRC than the general population, there is little evidence of AI application in CRC surveillance or 
improved models that favor the detection of risk in patients with IBD. Most of the studies that analyzed 
the detection of polyps excluded patients with IBD[19]. Future studies are necessary to validate these 
findings in independent cohorts and to determine whether the application of these models will improve 
the detection of precancerous lesions and the disease prognosis in patients with IBD.

CONCLUSIONS AND FUTURE PERSPECTIVES
The use of AI can promote numerous benefits in medicine, especially in the field of digestive 
endoscopy. Early detection of pre-neoplastic lesions allows for immediate intervention and prevention 
of progression to more severe phenotypes, such as CRC. The benefits for patients with IBD go beyond 
CRC screening and include the identification and characterization of inflammation, recurrence pattern, 
mucosal healing, and recognition of a worrisome lesions. Future studies related to AI are expected to 
add clinical information, such as prediction of disease complications as well as models to predict the 
best drugs for each patient according to their inflammatory profile and response to previous treatments. 
Moreover, AI can help in the IBD diagnosis using combinations of symptoms and biomarkers, in 
addition to genetic and microbiota data, and can also help differentiating Crohn’s disease from 
ulcerative colitis. Despite advances in this area, AI technology was not designed to replace human 
intelligence but rather to improve the detection of lesions. To this end, the combination of the expertise 
of endoscopists with AI is essential for its successful application in clinical practice. Another limitation 
worth mentioning is that currently the use of AI is not widely available; it is, however, expected to be 
applied in the future for colonoscopy and optical biopsy or endocytoscopy. It is also expected that there 
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Figure 2 Risk factors for colorectal cancer (CRC) development in patients with inflammatory bowel disease and recommended methods 
of CRC screening. IBD: Inflammatory bowel disease.

will be greater accessibility and availability of AI, not only for patients with IBD, but also for the general 
population.
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Abstract
In recent years there have been major developments in the field of artificial 
intelligence. The different areas of medicine have taken advantage of this tool to 
make various diagnostic and therapeutic methods more effective, safe, and user-
friendly. In this way, artificial intelligence has been an increasingly present reality 
in medicine. In the field of Gastroenterology, the main application has been in the 
detection and characterization of colonic polyps, but an increasing number of 
studies have been published on the application of deep learning systems in other 
pathologies of the gastrointestinal tract. Evidence of the application of artificial 
intelligence in the assessment of biliary tract is still scarce. Some studies support 
the usefulness of these systems in the investigation and treatment of choledocho-
lithiasis, demonstrating that they have the potential to be integrated into clinical 
practice and endoscopic procedures, such as endoscopic retrograde cholangiopan-
creatography. Its application in cholangioscopy for the investigation of 
undetermined biliary strictures also seems to be promising. Assessing the bile 
duct through endoscopic ultrasound can be challenging, especially for less 
experienced operators, thus becoming an area of potential interest for artificial 
intelligence. In this review, we summarize the state of the art of artificial 
intelligence in the endoscopic diagnosis and treatment of biliary diseases.

Key Words: Deep learning; Artificial Neural Networks; Bile duct; Choledocholithiasis; 
Biliary strictures
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Core Tip: In recent times, artificial intelligence has played an increasing role in Gastroenterology. There 
have been numerous studies that show the potential of this technology in clinical practice. Despite this, 
evidence of the application of these systems in the investigation and treatment of biliary diseases is still 
scarce. The complexity and challenge that may underlie these processes make this symbiosis very 
promising. We reviewed the state of the art regarding the application of artificial intelligence in biliary 
pathology.

Citation: Correia FP, Lourenço LC. Artificial intelligence in the endoscopic approach of biliary tract diseases: A 
current review. Artif Intell Gastrointest Endosc 2022; 3(2): 9-15
URL: https://www.wjgnet.com/2689-7164/full/v3/i2/9.htm
DOI: https://dx.doi.org/10.37126/aige.v3.i2.9

INTRODUCTION
The concept of artificial intelligence (AI) began to be explored in 1950, by Alan Turing, when he 
proposed to think about the question: ‘Can machines think?’[1]. This concept was defined as the ability 
of a computer to achieve human performance in cognitive tasks[2]. AI systems have evolved over the 
years, with increasingly complex algorithms and increasingly similar performance to the human brain. 
From this evolution came machine learning and, later, deep learning, two subfields of artificial 
intelligence. Machine learning identifies and learns patterns and applies them to information in similar 
future scenarios. Deep learning, currently one of the most used systems, is based on an artificial neural 
network capable of learning and making decisions by itself, like a human brain[3].

In recent years, several AI systems have been developed for application in several areas of medicine. 
They are used in the most diverse functions, such as to help assess medical scans, pathology slides, skin 
lesions, retinal images, electrocardiograms, endoscopy, faces, and vital signs[4]. Gastroenterology, a 
versatile medical specialty with a wide area of knowledge and an important intervention component, 
has been one of the areas where AI has been applied more frequently. Some of the application in 
Gastroenterology are the investigation of dysplasia in areas of Barrett's esophagus, the diagnosis of 
gastroesophageal reflux disease, the differentiation of acute and chronic pancreatitis, the detection and 
classification of colorectal polyps, the characterization of colic inflammatory activity in patients with 
inflammatory bowel disease, among others[3,5].

Despite the many studies on the application of AI in Gastroenterology, the evidence of the use of this 
technology in the diagnosis and treatment of biliary tract diseases is still scarce. In this review, we 
conduct research, across multiple platforms and with no time limit, on the application of AI in the 
diagnosis and treatment of biliary pathology.

ARTIFICIAL INTELLIGENCE AND COMMON BILE DUCT STONES
Gallstones are a very prevalent pathology in the Western population, often asymptomatic, however in 
some cases complicating with choledocholithiasis, cholangitis or acute pancreatitis. The diagnosis of 
choledocholithiasis is not always immediate and linear and may involve several diagnostic methods, 
from less invasive tests such as abdominal ultrasound, computed tomography (CT) and magnetic 
resonance cholangiopancreatography to more invasive methods such as endoscopic ultrasound (EUS). 
Until a few years ago, endoscopic retrograde choangiopancreatography (ERCP) was the first-line 
method in the diagnosis and treatment of common bile duct (CBD) stones. Since this is an invasive 
procedure with associated risks of complications (for example, post-ERCP pancreatitis, bleeding, and 
perforation), ERCP is no longer used for an exclusively diagnosis purposes, maintaining an important 
therapeutic role in patients with a high likelihood or confirmed choledocholithiasis[6].

The importance of correctly selecting patients with an indication for ERCP has led to the development 
of several models to predict the presence of stones in the CBD. Currently, it is known that models based 
on Artificial Neural Networks (ANNs) are more suitable than logistic regression models (used in 
predictive models for dichotomous outcomes) in the evaluation of biological systems. As such, these 
models have also been proven to be the most effective at predicting the likelihood of CBD stones and 
thus discriminating patients who will benefit from ERCP[7]. In addition to ANN models based on 
clinical data, artificial intelligence systems are currently being developed to facilitate the detection of 
gallstones in imaging exams (CT and abdominal ultrasound)[8,9] and, in this way, contribute to a more 
careful selection of patients for ERCP.

One of the most important steps for the success of ERCP is the cannulation of the major papilla. 
Several studies report failure in selective biliary cannulation in up to 20% of cases, even when 
performed by experienced endoscopists[10]. The European Society of Gastrointestinal Endoscopy has 
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defined criteria for difficult biliary cannulation (at least one of the following): (1) More than five contacts 
with the papilla whilst attempting to cannulate; (2) time to cannulation greater than five minutes; or (3) 
more than one unintentional pancreatic cannulation. In these cases, longer manipulation of the papilla 
and multiple attempts at cannulation increase the risk of post-ERCP pancreatitis[11]. Recently, Kim et al
[12] developed an artificial intelligence system that predict the location of the ampulla of Vater (AOV) 
and its difficulty to cannulate. In this model, the identification of the papilla is not based on a bounding 
box, but on a pixel-wise soft mask, which is a density map where each pixel has a probability of 
belonging to an AOV (Figure 1). In a fivefold cross-validation study, the model detected the ampulla 
with mean intersection-over-union 64.1%, precision 76.2%, recall 78.4%, and centroid distance 0.021. 
These results demonstrate a comparable performance with the human expert in recognizing the range of 
AOV and to pinpoint the location of AOV, although expert achieve a better deletion of unnecessary 
parts (precision 91.7% vs 78.9%).

Regarding the prediction of cannulation difficulty, the results were not as consistent: High 
performance for estimating easy cases for selective cannulation with the average precision and recall of 
0.802 and 0.719, respectively, but low recall of 0.611 in the selection of difficult cases. The study showed, 
however, a good performance in predicting the need for additional cannulation techniques during the 
performance of ERCP.

After cannulation, there are several factors associated to more complex procedure and a lower 
probability of complete clearance of gallstones, including a more acute distal CBD angulation and a 
shorter length of the distal CBD arm[13]. With the aim to predict the technical difficulty of retrieving 
CBD stones and help the endoscopist to select the best therapeutic approach and accessories during the 
ERCP, Huang et al[14] developed a system based in deep convolutional neural networks, named 
intelligent difficulty scoring and assistance system (DSAS). This system was evaluated in a retrospective 
study where 1954 cholangiograms were used - 1381 images for training and 573 images for validation 
(internal and external). The system showed good accuracy, sensitivity, and specificity (91.45%, 94.57% 
and 81.13%, respectively) in detecting common bile duct stones, in addition to good results in image 
segmentation of the stone, common bile duct and duodenoscope - mean Intersection over Union was 
68.35%, 86.42% and 95.85%, respectively. In the assessment of technical difficulty scoring of CBD stone 
extraction during ERCP, the DSAS was consistent with expert's endoscopists. This system provides a 
score value, with scores ≥ 2 being associated with greater difficulty in achieving complete CBD clearance 
(stone clearance rate - score < 2: 86%; score ≥ 2: 36%) and more frequently associated with the use of 
endoscopic papillary-balloon dilation.

ARTIFICIAL INTELLIGENCE AND INDETERMINATE BILIARY STRICTURES
Indeterminate biliary strictures still represent a diagnostic challenge nowadays. Despite the wide differ-
ential diagnosis, including benign and malignant causes, the main concern remains the exclusion of a 
potential malignant cause[15,16]. The methods initially used in the investigation of these strictures, 
which include imaging, laboratory evaluation and ERCP, although having a high specificity, they have a 
low sensitivity. Thus, it is difficult to definitively rule out a malignant pathology, which compromises 
the subsequent approach to the patient[16]. A meta-analysis confirmed the low sensitivity of both 
cytology (45%) and intraductal biopsies (48.1%) guided by ERCP, in the diagnosis of biliary strictures. 
Even combining both techniques, the sensitivity is suboptimal[17].

Cholangioscopy has emerged in recent years as a valuable tool in the characterization of these lesions, 
allowing direct visualization of the stricture and guided biopsies. A recent meta-analysis confirmed the 
high sensitivity (94%), specificity (95%) and accuracy (94%) of the cholangioscopy in the visual 
interpretation of biliary malignancies[18]. There are some features suggesting a malignant pathology, 
namely irregular and tortuous vessels, masses, papillary projections, or infiltrative lesions. Currently, 
there is no widely accepted system for the visual diagnosis of the stricture, which leads to some non-
negligible degree of interobserver variability[19,20].

To overcome that problem, Saraiva et al[21] developed a convolutional neural network-based 
algorithm with the aim of automatically detecting and differentiating between benign and malignant 
strictures during cholangioscopy. To train and validate this system, they used 11855 images - 9695 for 
malignant strictures and 2160 for benign findings (benign biliary strictures or normal segments of the 
biliary tract). In a 5-fold cross validation study, the sensitivity, specificity, accuracy, and AUC in differ-
entiating malignant from benign lesions was 94.7%, 92.1%, 94.9%, and 0.988 respectively, with a 
processing speed of 7 ms per frame. Due to its potential for use in real-time, this system may be useful 
in choosing the area to be biopsied, to obtain a better histological sample. Ghandour et al[22] also 
developed an artificial intelligence system that detects features suggestive of malignancy in cholan-
gioscopy images with a sensitivity of 81%, specificity of 91%, positive predictive value of 93%, negative 
predictive value of 77% and AUC of 0.86. Ribeiro et al[23] created a system for automatic detection of 
papillary projections in cholangioscopic images, which, like the previous ones, showed very promising 
results. Although these studies show very promising results regarding the application of artificial 
intelligence in cholangioscopy, only isolated images were used, and they need to be validated using full 
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Figure 1 Detection of the location of ampulla of Vater using an artificial intelligence system. The top image shows the process of obtaining the 
heat map (in the middle image, the ampulla of Vater is outlined and the centroid identified, and, from that, a pixel-wise soft mask label is created). In the figures 
below, the artificial intelligence system is being applied to identify the AOV. The white bounding boxes correspond to the ground truth and the green ones and the 
heat map are created by the AI system. The results reveal an adequate performance of the model even when the IoU is around 30%[12]. Citation: Kim T, Kim J, Choi 
H, Kim E, Keum B, Jeen Y, Lee H, Chun H, Han S, Kim D, Kwon S, Choo J, Lee J. Artificial intelligence-assisted analysis of endoscopic retrograde cholangio-
pancreatography image for identifying ampulla and difficulty of selective cannulation. Scientific Reports 2021; 11: 8381. Copyright © The Authors2021. Published by 
Springer Nature.

videos in real time and in clinical practice.

ARTIFICIAL INTELLIGENCE AND ENDOSCOPIC ULTRASOUND - BILIARY DUCT
The intimate location of the distal stomach, proximal duodenum and biliary tract makes EUS a great 
diagnostic method for biliary tract conditions. The relevance of EUS has increased in recent decades, 
including its application in investigation of hepatobiliary diseases. EUS has shown an excellent 
performance in the diagnosis of several biliary pathologies, namely choledocholithiasis, microlithiasis, 
biliary strictures, biliary obstruction, or cholangiocarcinoma[24,25]. EUS-guided interventions have also 
grown in the last years, being an option, in experienced centers, for drainage of biliary obstruction when 
ERCP fails, as well as in acute cholecystitis, biliary leaks and bilomas[26,27].

EUS is a challenging advanced endoscopic technique with a long learning curve[28]. As such, the 
development of systems that facilitate the interpretation of ultrasound endoscopy findings appears to be 
essential for the wide adoption of EUS. Yao et al[29] developed a deep learning-based system, BP 
MASTER, which, in real-time, recognizes the stations (the fundus of stomach; body of stomach and 
antrum; duodenal bulb; and descending duodenum) where the transducer is located and provide the 
corresponding operation instructions, delineates the bile duct, and gives an estimate of its diameter 
(Figure 2). To train the model, the authors used 10681 images in the bile duct station recognition and 
2529 images in the bile duct annotation. For model validation, 2425 images and 515 video clips were 
used for internal validation and 799 images for external validation. This system showed an accuracy of 
93.3% for station recognition in image validation set and 90.1% in video validation set and a Dice of 0.77 
in the bile duct segmentation. The results obtained with this system were comparable to those of expert 
endoscopists. Furthermore, in a crossover study, this system showed an improvement in trainees' 
accuracy from 60.8% to 76.3%.



Correia FP et al. AI and biliary diseases

AIGE https://www.wjgnet.com 13 April 28, 2022 Volume 3 Issue 2

Figure 2 Application of the BP MASTER to endoscopic ultrasound. In the upper image, there is an image of station 2 (gastric antrum). In the image 
below, the artificial intelligence system has been applied to identify the station in which the endoscopic ultrasound is located and to identify and delineate the bile duct
[29]. Citation: Yao L, Zhang J, Liu J, Zhu L, Ding X, Chen D, Wu H, Lu Z, Zhou W, Zhang L, Xu B, Hu S, Zheng B, Yang Y, Yu H. A deep learning-based system for 
bile duct annotation and station recognition in linear endoscopic ultrasound. EBioMedicine 2021; 65: 103238. Copyright © The Authors2021. Published by Elsevier 
B.V.

Another application of ultrasound endoscopy is the evaluation of polypoid lesions of the gallbladder. 
Recently, an artificial intelligence system applied to EUS was developed[30] that allows the distinction 
between gallstones and polypoid lesions with an accuracy of 95.7% and the differentiation of neoplastic 
and non-neoplastic polyps with an accuracy of 89.8%. At this last point, the accuracy of the EUS-AI was 
between mid-level and expert EUS endoscopists.

Despite being promising systems, with the potential to reduce endoscopic procedures with greater 
risks and even surgeries, further studies are needed to validate the results obtained.

CONCLUSION
The diagnostic and therapeutic complexity associated with bile tract diseases makes this an attractive 
area for the development of AI systems.

In choledocholithiasis, AI systems have proved to be useful both in diagnosis, allowing a more 
careful selection of patients with indication for ERCP; as well as treatment, assisting the endoscopist in 
the critical steps of the procedure (e.g., cannulation). The application of AI in cholangioscopy showed 
interest in the possibility of a more objective characterization of indeterminate biliary strictures and of 
directing biopsies to areas where the findings are more suspicious. Endoscopic ultrasound, an 
intervention area with a long learning curve, could benefit from the introduction of this technology, 
especially for less experienced endoscopists.

Despite this, there are still few studies focused on biliary condition, and most of them are 
retrospective, with small samples and high risk of bias. In the future, it is essential to continue to invest 
in the development of systems that optimize the diagnosis and facilitate the treatment of biliary 
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pathologies.
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Abstract
Artificial intelligence (AI)-based tools have ushered in a new era of innovation in 
the field of gastrointestinal (GI) endoscopy. Despite vast improvements in 
endoscopic techniques and equipment, diagnostic endoscopy remains heavily 
operator-dependent, in particular, colonoscopy and endoscopic ultrasound (EUS). 
Recent reports have shown that as much as 25% of colonic adenomas may be 
missed at colonoscopy. This can result in an increased incidence of interval colon 
cancer. Similarly, EUS has been shown to have high inter-observer variability, 
overlap in diagnoses with a relatively low specificity for pancreatic lesions. Our 
understanding of Machine-learning (ML) techniques in AI have evolved over the 
last decade and its application in AI–based tools for endoscopic detection and 
diagnosis is being actively investigated at several centers. ML is an aspect of AI 
that is based on neural networks, and is widely used for image classification, 
object detection, and semantic segmentation which are key functional aspects of 
AI-related computer aided diagnostic systems. In this review, current status and 
limitations of ML, specifically for adenoma detection and endosonographic 
diagnosis of pancreatic lesions, will be summarized from existing literature. This 
will help to better understand its role as viewed through the prism of real world 
application in the field of GI endoscopy.

Key Words: Artificial intelligence; Artificial; Machine; Colonoscopy; Polyp; Endo-
sonography; Pancreas
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Core Tip: The influence of artificial intelligence (AI) based applications in our everyday practice as 
endoscopists has been steadily increasing. One of the areas where it has shown promise is in image 
discrimination and diagnosis, which has many applications in endoscopy. The increasing application and 
rapid advancement of technology in this area necessitates an understanding of the basics and scope of AI 
in gastroenterology. In this review, a brief technical basis of AI in image discrimination has been 
described, followed by an update on the role of AI in the prevention of colorectal cancer and the 
evaluation of specific pancreatic lesions using endoscopic ultrasound.

Citation: Rao B H, Trieu JA, Nair P, Gressel G, Venu M, Venu RP. Artificial intelligence in endoscopy: More than 
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INTRODUCTION
Artificial intelligence (AI) has directly impacted the field of endoscopy by nurturing questions directed 
at the status quo and eventually opened up new paradigms that redefined the boundaries of our 
abilities as an endoscopist. AI is a broad term that encompasses the development and application of 
algorithms that can perform tasks that generally necessitate human intelligence[1]. Machine learning 
(ML), on the other hand, is a subset of AI which refers to a specific algorithm, capable of analyzing 
features in a dataset, based on raw data, in order to deliver a classification output[2,3]. One of the areas 
where ML has shown a lot of promise is in image discrimination and diagnosis, which has many applic-
ations in the field of gastro-intestinal (GI) endoscopy. The advent of advanced imaging techniques such 
as high-definition white light endoscopy (HD-WLE) and pre-processing techniques like optical chromo-
endoscopy, have paved the way for AI to make a significant impact in diagnostic endoscopy. Currently, 
AI in GI endoscopy is witnessing a paradigm shift, from mere ‘identification’ to a more composite and 
clinically relevant ‘interpretation’ of the images[4]. This paradigm shift, in combination with rapid 
improvement in computing power, has enabled ML algorithms to occupy a central role in the world of 
endoscopy.

Machine learning has already demonstrated remarkable success in several areas of medicine, such as 
radiology and pathology[5-9]. More importantly, there has been a deluge of published literature on the 
utility and potential of ML within the domain of endoscopy in the past decade[10-18]. Deep learning has 
strengthened the reality that the use of ML in endoscopy is an eventuality that is here to stay[19]. 
However, we are still in the early stages of understanding its full potential in image differentiation and 
classification of endoscopic lesions, with many unanswered questions leading to poor acceptance of 
these technologies.

The relative novelty of ML in the field of endoscopy, coupled with the frequent use of technical 
terminology around machine learning, has been a major factor that has affected its widespread 
acceptance among clinicians. Moreover, understanding the progress made in this area and adopting this 
new tool for clinical practice necessitates a working knowledge of the technical basis and a familiarity of 
the terminology used. In this review, the common terminology as well as a brief technical basis of image 
interpretation by AI-based applications will be described. This will be followed by an update on the role 
of AI in the prevention of colorectal cancer (CRC) and the evaluation of specific pancreatic lesions using 
EUS.

TECHNICAL BASIS AND COMMON TERMINOLOGY USED
ML in healthcare is a convergence of two diverse and complex areas, namely data science engineering 
and medicine, each with its unique expertise and jargon, which often results in a relationship that is 
fraught with misinterpretation and ambiguity. This fosters a disconnect that can be one of the major 
barriers of progress in this field. In this section, we define the relevant terminology and, in the process, 
also briefly describe the technical basis of the use of ML in endoscopy.

AI and ML
‘Artificial intelligence’ is a popular term that is commonly used interchangeably with ‘machine 
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learning’. In essence however, AI encompasses a broader field that includes path finding, logic repres-
entation and reasoning[4]. While ML is used to accomplish specific tasks, AI attempts to provide a more 
generic path for autonomous learning. The field of ML involves the use of existing data to build 
mathematical models that can predict expected outcomes on new data. There are two broad subtypes of 
ML models, namely, supervised and unsupervised learning. Supervised learning is achieved on a model 
with labelled data points (e.g.: Benign vs malignant), following which, the algorithm attempts to predict 
the labels upon a test set of unseen datapoints. On the other hand, unsupervised learning is used only to 
find the underlying structure, or a pattern within an unlabelled dataset; in other words, there is access 
to data but the outcome is not labelled (malignant or benign). Common examples of ML algorithms 
include deep neural networks (deep learning), support vector machines (SVM), gradient boosted trees 
and K-nearest neighbours.

Feature extraction
Before the generation of a predictive model, the data needs to be transformed into a numerical repres-
entation that can be fed to the ML algorithms. This process is called feature extraction and generally 
requires the input of medical experts in the field. Alternatively, modern ML techniques have automated 
this process and enabled extraction of features automatically from vision, language and sound datasets.

Deep learning
Deep learning (DL) is a type of ML algorithm originally known as Artificial Neural Networks (ANN’s). 
ANN’s are loosely inspired by the biological process found in a brain. They are comprised of mathem-
atical neurons which “fire” if they are activated, and each neuron is connected to other neurons with 
“weights”. This connection of neurons and weights makes up what is known as “layers” in the neural 
network. Deep learning is when you have many layers (10’s to 100’s) connected, with millions of 
neurons and weights all interconnected. Deep learning models are very promising because they achieve 
extremely high rates of success in the fields of computer vision, natural language processing, machine 
translation, and speech recognition. This success is possible because of the enormous amount of data 
available, modern computing architectures and improved optimization algorithms. The attractiveness of 
deep learning is that it requires little expert domain knowledge in the form of feature extraction. The 
algorithm learns directly from the raw data (pixels, sound waves, text) and will automatically learn the 
correct “weights” which produce the most accurate results.

It has been shown that the lower layers of a deep learning model learn more abstract concepts such as 
“edges, shapes, lines” and the higher layers of the network learn more specific representations such as 
“nose, hair, eyes”.

Computer aided detection and computer aided diagnosis
ML algorithms that are applied to assist in the interpretation of medical images/videos are referred to as 
computer-aided detection (CADe) and computer-aided diagnosis (CADx). Distinction between CADe 
and CADx algorithms is important as the former is mainly used to ‘detect’ pathology, while the latter is 
able to ‘classify’ the pathology. For example, CADe will be used to identify a colonic polyp in a study, 
while CADx will enable characterization of the polyp as adenomatous or non-adenomatous. This has 
profound implications in the management of patients undergoing colonoscopy. Therefore, it 
necessitates a high degree of accuracy, reliability and external validity. Apart from this, ML algorithms 
can also be applied to guide interventions and is usually referred to as ‘image-guided interventions’; 
like the use of ML to guide the necessity and site of biopsy using EUS imaging.

ROLE OF AI IN SCREENING COLONOSCOPY FOR CRC
CRC is a leading cause of death with a rising incidence especially in younger age-groups, both in 
western countries as well as many Asian countries in the recent past[20,21]. Most CRC develops from 
pre-existing adenomas which are pre-cancerous lesions[22]. Resection of adenomas during a screening 
colonoscopy has been shown to be instrumental in lowering the risk of CRC[23]. Thus, adenoma 
detection rate (ADR) in particular, apart from withdrawal time, clean colon and caecal intubation rate, is 
considered to be a vital quality indicator of CRC screening programs. For every 1% increase in adenoma 
detection rate, there is an associated 3% decrease in interval incidence of colon cancer[23]. Non-visual-
ization is a major factor that can lower ADR in most cases. This can mainly be attributed to polyps 
hidden in poorly accessible areas like the left colon, or behind mucosal folds. Besides hidden polyps, 
those that are technically in the visual field may still be missed if they are subtle, diminutive, transiently 
visible, partially obscured by debris, or seen on the edge of the screen[24]. High quality bowel 
preparation, strict adherence to globally accepted standards for withdrawal time, meticulous mucosal 
inspection techniques and the use of endoscopes with wider viewing angles can, to a certain extent, 
address these issues[25]. However, even with the currently performed, careful colonoscopy, rates of 
missed adenomas can be as high as 26% for adenomatous polyps less than 5 mm in size[26]. Even in the 
case of advanced adenomas, adenoma missed rates (AMR) has been reported to be as high as 5.4%[27]. 
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An intutitive approach to this problem would be to employ measures that can supplement our capacity 
for visualisation. To that end, recent studies using full-spectrum colonoscopy (FUSE), which provides 
330 angle of view, have been described to access previously hidden areas during a colonoscopy. 
However, results have been sub-optimal with a persistent AMR ranging between 7% to 20.5%[28,29]. 
Another option explored was the use of second observers (nurse observers/trainees). However, even 
this approach was not effective in bridging the gap and reducing AMR during screening colonoscopy
[30-32]. This indicates that extending the field of vision or supplementing the limits of visualization with 
additional human eyes, may not fully overcome the inherent deficiencies of human attention and visual-
ization, especially in the context of subtle colonic lesions.

In this context, the recent innovation of AI plays a pivotal role in CADe and CADx systems for polyp 
detection and characterization respectively. They have been pegged as a potentially disruptive 
technology that can herald a new era in CRC prevention strategies. The success and practical utility of 
these systems hinges on a low false positive rate and low latency time defined as the time from the first 
appearance of the polyp to detection in real time[33]. In other words, these systems have to show high 
accuracy, fidelity, consistency and enable real-time detection (low latency time) of polyps that are 
otherwise missed[34]. In this section, we will summarise the current status of ML systems in this area 
and discuss the future of this technology in the CRC prevention programs.

Evolution of AI in polyp detection
Initial application of AI in gastroenterology was limited to ‘edge detection’ by identifying sharp changes 
in image brightness and ‘region growing’ by a group of pixels of similar properties. This was essentially 
useful in lesions when edges were undetectable in standard endoscopic images[35]. The first polyp 
detection software CoLD (colorectal lesions detector), was developed in 2003 with an accuracy of 93%
[36]. With the advancement of endoscopic imaging quality, subsequent DNN systems could make use of 
additional features like color, temporal factors and texture of the polyps with a high level of precision
[37]. Subsequently, novel deep learning techniques were applied that could take advantage of image 
processing and vast datasets, to enable complex functions like polyp classification leading to a shift in 
our approach. Since, then, multiple systems have been developed that have shown improved results 
and accuracy[16,17,38,39]. Moreover, robust image databases and the use of video-based algorithms 
have provided an effective training as well as testing platform. This has led to an array of CADe and 
CADx systems that have become commercially available in the last 5 years[16,38,40].

Real time use of CADe systems for polyp detection
CADe systems have been well-validated in real-time colonoscopic examinations. They have 
demonstrated high accuracy for polyp detection, especially for polyps less than 5mm and those between 
5-9 mm. These systems have enabled the identification of lesions that are subtle, obscured by debris, 
poorly visualised due to specular reflections or lesions at the edge of the screen[41]. Different CADe 
techniques have demonstrated promising results in polyp detection, especially when combining 
different DL methodologies. Not surprisingly, larger datasets appear to improve overall measures of 
performance[17]. Among these, a CADe system developed by Wang et al[34] was the first one to be 
validated in a large multi-centric trial. The system was developed on a large dataset of over 1200 
patients and was independently validated on two separate datasets, including over 27000 images and 
nearly 200 colonoscopy videos, generating 100% specificity and a latency of 76.8 ms. Patients were then 
randomized to undergo routine diagnostic colonoscopy (n = 536) or real-time CADe assisted 
colonoscopy (n = 522). The CADe system significantly increased ADR (29.1% vs 20.3%; P < 0.001), mean 
number of adenomas per patient (0.53 vs 0.31; P < 0.001), and overall polyp detection rate (45% vs 29%, P 
< 0.001). Not only did the CADe system increase polyp and adenoma detection rates, it identified 
significantly more flat and sessile polyps, as well as diminutive polyps. There were however, a few false 
positives in this study (0.075 per colonoscopy) which were attributed to air bubbles, mucosal inflam-
mation and retained fecal matter. The same study group then performed another study of their CADe 
system to assess its efficacy in reducing AMR among patients undergoing screening colonoscopy. In this 
study tandem colonoscopies were performed for each participant by the same blinded endoscopist, 
wherein, patients were randomly assigned to groups that received either CADe assisted colonoscopy or 
routine colonoscopy first, followed immediately by the other procedure. They found that AMR was 
significantly lower with CADe assisted colonoscopy (13.89%) than with routine colonoscopy (40%)[24].

Real-time CADe during screening colonoscopy, tested on several hours of colonoscopy videos, were 
also found to have a high accuracy of almost 97%[15,38]. In a study by authors Urban et al[15], deep 
neural networks (DNN) to detect polyps was developed using a diverse and representative set of 8641 
hand labeled images from screening colonoscopies collected from over 2000 patients. This was tested on 
20 colonoscopy videos. Gold standards were developed with the help of experts who were asked to 
identify all polyps in de-identified videos. They found that their CADe system had an accuracy of 96.5% 
and can detect and localize polyps well within real-time constraints. In a recent publication, Repici et al
[42] evaluated the AI system developed by Medtronic based on a convolutional neural network, called 
GI-GeniusTM (Figure 1). In this randomized, controlled study, GI-GeniusTM detected significantly more 
adenomas with an adenoma detection rate of 54.8%, irrespective of withdrawal time[31] (Figure 2). 
Adenomas detected per colonoscopy were also higher in the GI-GeniusTM group (mean 1.07 ± 1.54) than 
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Figure 1 Gastrointestinal GeniusTM Intelligent endoscopy module by Medtronic. ©2020 Medtronic. All rights reserved. Used with the permission of 
Medtronic.

Figure 2 The green boxes indicate examples of challenging polyps detected by Gastrointestinal GeniusTM Intelligent endoscopy module 
by Medtronic, including diminutive polyps, flat polyps, or polyps obscured by light reflection. ©2020 Medtronic. All rights reserved. Used with the 
permission of Medtronic.

in the control group (mean 0.71 ± 1.20) (incidence rate ratio 1.46; 95%CI, 1.15-1.86). This improved ADR 
was mainly seen in polyps < 5 mm and polyps with 5-9 mm diameter. These findings indicate that 
CADe systems are clearly an effective strategy to increase ADR and could prove to be indispensable in 
the future[42]. The imperative question however, is not whether it can merely ‘detect’ what was missed 
by the human eye, but whether it can provide additional information by identifying patterns that are 
otherwise invisible to the human eye?

The leap from polyp detection to histological characterization
The leap from merely detecting a polyp to accurate histological characterization has opened up a new 
paradigm of screening colonoscopy for CRC prevention. Two alternate strategies have been proposed 
for the management of diminutive polyps that may have far-reaching consequences in clinical practice 
and healthcare economics. These two approaches are ‘Resect and discard’ and ‘leave-in-situ’ strategies
[43,44]. The advanced imaging capabilities achieved through CADx make the above choices a welcome 
reality. Thus, when an adenomatous dimunitive polyp is diagnosed by a CADx system, ‘resect and 
discard’ approach can be safely undertaken. At the same time, a non-neoplastic diminutive polyp found 
on colonoscopy can be safely managed with ‘leave-in-situ strategy. These alternate strategies have 
important advantages like cost reduction, avoiding adverse events related to polypectomy with its 
resultant shorter procedure time[45]. Both these strategies are highly dependent on advanced imaging 
systems that provides a precise, real-time identification of the polyp. However, both strategies have not 
found good penetration outside of expert centres as current imaging systems do not meet the 
appropriate thresholds for accuracy[44,46]. CADx systems could be the answer in these situations by 
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improving the diagnostic accuracy of existing imaging systems[47].
Initial experience with CADx systems showed that they were able to discriminate adenomatous from 

hyperplastic polyps when using magnification chromoendoscopy or magnification narrow-band 
imaging (NBI)[18,48,49]. However, these used traditional AI techniques which limited its real-time 
application as it required manual segmentation of polyp margins and captured images that required 
magnification technologies that were not widely available. With the development of DNN techniques, 
newer CADx systems addressed these issues and have shown a lot of promise in preliminary real-time 
polyp classification. In a prospective single-operator trial of 41 patients, diagnostic accuracy of 93.2% 
was shown for a real-time CADx system on 118 colorectal lesions evaluated with magnifying NBI before 
resection. Among the subset of patients with diminutive polyps, exceeding the Preservation and 
Incorporation of Valuable Endoscopic Innovations (PIVI) initiative threshold of ≥ 90% for the “resect 
and discard” strategy, 92.7% showed concordance between the CADx diagnosis and the pathological 
findings[50]. This highlights the massive impact that CADx systems can potentially have in reducing 
costs associated with CRC screening programs.

Advanced imaging techniques such as NBI have come into routine use and supplemented our ability 
to better characterize colonic polyps. Moreover, emerging techniques of incorporating NBI images, with 
and without magnification, to create datasets for CADx systems, especially with larger image and video 
banks, have yielded highly sensitive systems with high negative predictive values[16,48,51]. The level of 
performance of these CADx systems in conjunction with NBI imaging have been shown to meet the 
minimum threshold for a ‘diagnose and leave-in-situ’ strategy (90% NPV) as proposed by the American 
Society for Gastrointestinal Endoscopy PIVI initiative[43]. In a very interesting study by Jin et al[14], 
CADx improved the overall accuracy of optical polyp diagnosis from 82.5% to 88.5% (P < 0.05). In 
particular, CADx assistance was most beneficial to novices with limited training in using enhanced 
imaging techniques for polyp characterization, where accuracy jumped from 73.8% to 85.6% which was 
comparable to the endoscopy experts. This finding has significant implications on the feasibility of 
implementation of CADx systems in routine practice.

Endocytoscopy
Endocytoscopy is another evolving technology that involves ultramagnification that can detect 
microscopic changes at the level of the nuclei (abnormal spindle shaped nucleus, loss of polarity)[52]. It 
is conceivable that innovation in endoscytoscopy with CADx systems may one day, replace conven-
tional histopathological examination through tissue acquisition, fixation, staining and microscopic 
examination. In a study of 791 consecutive patients who underwent colonoscopy with endocytoscopes, 
CADx was able to characterize diminutive rectosigmoid polyps in real time with an accuracy of 94% 
and an NPV of 96%, which supports the use of “diagnose and leave in situ strategy” for nonneoplastic 
polyps[11].

Limitations of AI in screening colonoscopy
Although automatic polyp detection has shown promising results, it is yet to live up to expectations. A 
number of factors can affect the performance of AI-based systems including camera motion, strong light 
reflection, poor focus, polyp morphology, presence of bubbles and retained fecal material. When it 
comes to CADx systems, accuracy of tissue characterisation can be affected by inadequate staining and 
surface cleaning and inability to obtain a cross sectional view[53]. Nevertheless, the advent of AI system 
through improved detection and histological characterisation could lead to increased ADR and reduce 
missed adenomas, leading to lowered incidence of interval CRC.

Future of AI in screening colonoscopy
CADx systems, once validated in real-time use for polyp characterization, could enable the 
implementation of ‘Resect and discard’ and ‘leave-in-situ’ startegies. These strategies have been shown 
to reduce the cost of care dramatically. In a study by Mori et al[54], the use of CADx system for polyp 
characterisation in order to implement ‘leave in situ’ strategy resulted in a significant cost saving of 
10.9%. In addition, these strategies could potentially reduce procedure time and reduce adverse events 
related to unnecessary polypectomies.

Recent findings have shown promising results with the use of video analysis and its potential 
advantages. Video-based algorithms have several advantages over image-based algorithms. Since a 
video is basically a series of images over time, it provides vital spatiotemporal information as in real life, 
that is not available in still images. When such spatiotemporal information is combined with CAD 
system, its performance can be significantly improved. This is especially true for colonic polyps since 
there is marked difference between the polyp and the surrounding mucosa which is easily picked up on 
a video analysis[55]. However, video-based algorithms need further validation in controlled settings.

Another aspect where AI could potentially improve colonoscopy performance, in general and 
screening colonoscopy in particular, is its role in quality control and monitoring[56,57]. These 
algorithms can potentially monitor endoscopic quality, by which it can indicate colonic surface missed 
during withdrawal, need for a slower speed of withdrawal, areas of poor bowel preparation 
necessitating adequate cleansing before moving on. Although this area has not been investigated 
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thoroughly, an argument can be made that this might have an equal, if not bigger, impact on clinical 
outcomes of CRC screening programs than a specific lesion detection tool for a specific pathology.

Several questions remain to be answered in order to fine-tune the role of AI in polyp detection. 
However, with the advent of advanced systems that combine multiple functions, the time seems 
appropriate to embrace this technology and troubleshoot issues along the way, rather than delay the 
adoption of AI in our daily practice in the hope of achieving perfection.

ROLE OF AI IN THE EVALUATION OF PANCREATIC DUCTAL ADENOCARCINOMA 
USING EUS
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis with a five-year survival rate of 
approximately 6%[58]. PDAC is also associated with significant morbidity and accounts for 3.9% 
Disability Adjusted Life Years(DALY) related to cancers. Moreover, future estimates indicate that the 
PDAC burden is likely to double within the next four decades[59]. The incidence of PDAC in the United 
States is increasing by 0.5% to 1.0% per year, and is expected to be the second-leading cause of cancer-
related mortality by 2030[60].

Most patients with PDAC are unresectable at the time of diagnosis owing to locally advanced (30%-
35%) or metastatic disease (50%-55%) at presentation[60]. Surgical resection is possible only in around 
20% of patients[61]. Despite curative resection, most of these patients will eventually have a recurrence, 
with a 5 year survival of around 25%[62]. However, cancers < 1 cm in size at the time of diagnosis, have 
been shown to have an excellent response following resection with a survival rate as high as 84.4%[63]. 
This highlights the paramount importance of screening and early detection for PDAC. Unfortunately, 
well-defined pre-malignant conditions and proper guidelines are lacking for pancreatic cancer, as 
compared to CRC. Moreover, current modalities of screening are inadequate and merit further 
evaluation before recommending routine clinical use.

Diagnosis of PDAC relies on accurate identification of the tumor by various imaging modalities, 
followed by a reliable method of tissue acquisition to confirm the histological characteristics of 
malignancy. Currently available modalities for imaging include transabdominal ultrasonography, 
computed tomography (CT), magnetic resonance imaging, EUS, and endoscopic retrograde cholan-
giopancreatography. Of these imaging modalities, EUS enables real-time observation of the pancreas 
with high spatial resolution, and the sensitivity of detection of PDAC using EUS has been reported to be 
as high as 94%[64]. Numerous studies indicate that EUS is a highly sensitive modality for the detection 
of pancreatic tumours and its application is especially useful for lesions less than 2 cm in size which 
may be missed on contrast enhanced CT studies[65]. Although the sensitivity for tumour detection is 
high, it is also important to note that it has a very high negative predictive value (NPV) in the backg-
round of a normal pancreas[66].

The major drawback of EUS is the fact that it is highly operator dependent and the learning curve to 
perfect the techniques of EUS imaging can be quite long. The American Society for Gastrointestinal 
Endoscopy recommends that a trainee should undergo at least two years of standard GI fellowship 
followed by one year of pancreatic EUS training prior to independently performing EUS[67]. ASGE also 
recommends that an endosonographer should perform a minimum of 150 supervised EUS procedures, 
including 75 pancreaticobiliary cases and 50 EUS-guided fine needle aspiration (EUS-FNA) procedures, 
to achieve competence in this area. In addition, specialised EUS training centres are usually inaccessible 
hampering the widespread application of standardised protocols for EUS screening of the pancreas[68].

Another major challenge that is faced by endosonographers is inability to correctly identify PDAC in 
patients with chronic pancreatitis (CP). Several studies have shown that the diagnostic yield of EUS and 
EUS-guided fine needle aspiration (FNA) are markedly decreased in the presence of CP[69,70]. This can 
be attributed to the fact that neoplastic lesions and inflammatory masses usually have a similar sono-
morphology with very subtle differentiating characteristics. Studies by Fritscher-Ravens et al[71] and 
Varadarajulu et al[70] found EUS sensitivity to range from 54% to 73.4% respectively, in patients with 
CP[70,71].

AI could potentially address both these issues. In this section, a brief account of the progress made by 
AI-based CAD systems in image differentiation among patients with chronic pancreatitis will be 
presented; followed by the recent developments in the field of AI assisted EUS training systems.

Evolution of AI in endosonography
Similar to screening colonoscopy, AI is being actively investigated in the early diagnosis of PDAC. 
However, its application in this area is still in its infancy with no commercially available CAD systems 
yet. Initial reports focus on integrating AI with EUS imaging to identify PDAC in the background of CP. 
Several sonographic features of CP such as calcification and the presence of pseudotumors with intense 
desmoplasia pose significant challenges to making an accurate diagnosis of PDAC in these patients[72]. 
The first report of the use of an AI based system for the diagnosis of PDAC was by Norton et al[73] in 
2001. In this study, 35 patients were included, of which 21 patients were histologically proven to have 
PDAC, while 14 patients had focal CP. Representative images with the region of interest were fed into a 
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CAD system which was then trained to identify subtle differences in the gray scale and overall 
brightness within the images. These features were then assessed to differentiate between PDAC and 
focal CP. This early CAD system was found to have an overall diagnostic sensitivity of nearly 89%. In an 
effort to reduce the chances of missed malignancy, the authors found that even when the sensitivity for 
malignancy was set to 100%, the overall diagnostic accuracy was still around 80%. This was remarkably 
close to the 85% accuracy that was observed among blinded, trained endosonographers[73]. Although 
the technology used in this study was primitive to say the least, it was the first study that demonstrated 
the feasibility of integrating AI into diagnostic studies using EUS, and formed the foundation to the 
studies that followed. Since then, many attempts at applying conventional CAD using ANNs or SVMs 
have been tested, both with traditional grayscale texture features on B-mode imaging as well as on 
elastography images. The Area under Receiver operating characteristic curve (AUROC) in these studies 
ranged from 0.8 to 0.94[74-78]. Though these studies showed promising results, the accuracy in the 
background of CP was still far from ideal.

One of the promises of AI in the field of endoscopy, is the ability of the machine to make a diagnosis 
in real time imaging and assist the endoscopist in planning the next step in the management of the 
patient during the procedure itself. However, the multiple intricate post-processing steps that were 
needed in the studies that assessed the role of CAD system in EUS precluded their use during real time 
imaging. This was one of the main reasons for the technology remaining dormant for years after the 
initial proof of concept in 2001. However, encouraged by the benefits of CADe and CADx systems in 
screening colonoscopy, there has been renewed interest, in recent years, on the application of AI 
systems in EUS. A sudden surge of publications that have employed novel CAD systems for pancreatic 
lesions combining EUS elastography and contrast enhanced EUS studies has opened up new avenues 
for the role of AI based technology in this area.

AI and EUS elastography 
EUS elastography (EUS-E) can transform the tissue properties based on elastic coefficients, into visible 
images composed of color pixels. This can provide vital information regarding the pathological state of 
the tissue under study and has been shown to be useful in the evaluation of pancreatic lesions. In a 
seminal study by Săftoiu et al[79] real-time EUS-E avoided motion artifacts and color perception errors 
that arose from individual selection, manipulation bias and static image analysis. Following this, a large 
multicentric trial was conducted in Europe in which, 744 EUS-E images from 258 patients with 
pancreatic lesions were studied. A detailed analysis of the color hue histogram data from the dynamic 
sequence of EUS-E was performed using a novel neural network, in order to distinguish benign from 
malignant patterns. An overall sensitivity of 87.6%, specificity of 82.9%, and positive predictive value 
(PPV) of 96.3% indicated that the combination of EUS-E with AI based software, could be beneficial in 
the real-time evaluation of pancreatic lesions[80].

Role of AI in contrast EUS and fine needle biopsy
EUS guided fine needle biopsy (EUS-FNB) has enabled reliable tissue acquisition and accurate 
histological diagnosis in patients with PDAC. In fact, it is considered to be the cornerstone of 
management of pancreatic lesions < 3 cms[81]. Multiple studies have documented a high diagnostic 
accuracy of EUS-FNB for PDAC with a pooled sensitivity of 87% and specificity of 96%[82]. However, 
these results have been negatively impacted by the presence of chronic pancreatitis. Intense 
desmoplasia, fibrosis and calcifications seen among patients with CP can decrease diagnostic yield of 
EUS-FNB because of the higher tissue impedance, poor visibility and inaccessibility of the lesion due to 
various factors[69,83]. Moreover, Rapid On site examination of the cytology obtained from EUS-FNA 
which has been shown to be a major factor that impacts diagnostic yield, is not feasible in many centers
[84]. ML based algorithms have shown promise in this area by augmenting visual inspection of the 
histopathology slides. In a study by Inoue et al[85], an ML-based automated visual inspection system 
could reliably highlight areas of abnormal cellularity on the stained smears obtained after an EUS-FNB 
from solid pancreatic lesions.

Contrast harmonic EUS (C-EUS) uses the enhancement properties of the solid lesions and categorizes 
them into different patterns[86]. Multiple studies have shown C-EUS to have a pooled sensitivity of 
around 93% and specificity ranging between 80%-89% for pancreatic lesions[87-89]. Its ability to 
highlight areas of increased vascularity and to outline areas of reduced vascularity due to necrosis and 
fibrosis have been used during EUS-FNA, to increase the diagnostic yield[90-94].

In an elegant study by Saftiou and colleagues, a time intensity curve was made for patients with 
pancreatic lesions, using dynamic C-EUS examinations. Using a set of 7 features that were extracted 
from the data using a convolutional neural networks (CNN), sensitivity, specificity, NPV and PPV were 
94.6%, 94.4%, 89.4% and 97.2%,respectively, was reported[95]. Since then, multiple studies are 
underway that highlight a significant ancillary role played by AI-based systems in improving the 
diagnostic yield of EUS-FNB with C-EUS.

Future of AI in the field of endosonography
The immediate clinical application of the results of studies using AI based systems in the field of 
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endosonography are unfortunately limited, to say the least. This is in part due to the necessity of pre-
analysis image preparation and post-processing steps that preclude real-time application[96].

A major factor in the development of machine learning models for EUS is the sheer volume of 
labelled images required to improve accuracy. ImageNet is one of the most popular datasets used in 
machine learning models. This dataset contains as many as 14 million labelled images, which is used by 
a majority of image recognition software. This essentially means that it takes millions of labelled images 
to train a machine to accurately interpret an image or video. To add to the problem, the concept of, 
"Garbage in and garbage out", is another cause for concern. This means that if we feed the machine poor 
quality/poorly labelled images, the output will be inaccurate. So, apart from the quantity of labelled 
images, quality is equally, if not more important.

With regard to EUS, trained endosonographers are not widely available. The time and resources 
required to have trained endosonographers read, label and edit an adequate number of high quality 
videos is impractical to implement. This is why, there has been a recent change in the paradigm of ML 
in EUS. Instead of depending on endosonographers alone to edit videos, investigators have begun 
training the machine to detect stations which can result in shortened videos focussed on the regions of 
interest. This would significantly reduce the time and resources required to create a high quality dataset 
of EUS images.

In a study by Zhang and colleagues, a novel CNN was evaluated for the accurate recognition of the 
EUS station as well as segment the pancreas for more detailed evaluation. Compared with EUS experts, 
the models achieved 90.0% accuracy in classification, which is comparable with that of experts[97]. In 
2019, Kuwahara et al[98] evaluated the use of DL based CAD with CNN to achieve two objectives – 
accurately determine the station of the EUS probe as well as differentiate between malignant vs benign 
intraductal papillary mucinous neoplasms (IPMN) of the pancreas. The area under ROC curve for CAD 
systems to diagnose malignant IPMNs was found to be was as high as 0.98 (P < 0.001). The sensitivity, 
specificity, and accuracy was found to be 95.7%, 92.6%, and 94.0%, respectively; which was significantly 
higher as compared to expert endoscopists in the study.

In addition to accurate classification of lesions, AI based systems could potentially be beneficial by 
supplementing EUS training programs. This can eventually result in a uniform, high quality EUS 
examinations which are more amenable to the application of CAD systems that can identify and 
diagnose pancreatic lesions in real-time. In the study by Zhang et al[97], the developed CAD system was 
subsequently validated on trainees, where they found that diagnostic accuracy improved from 67.2% to 
a significant 78.4% for the evaluation of solid pancreatic lesions.

In the most recent study by Tonozuka et al[99], a complex CNN based DL method was employed for 
the detection of PDAC. They found improved performance of this automated system with AUROC of 
0.924 and 0.940 in the validation and test setting, respectively. However, there have been very few head-
to-head comparison studies that have compared the efficacy of CADe systems for the diagnosis of 
PDAC and its role in image differentiation merits further clarity.

There are several potential benefits likely to arise from the use of AI based CAD systems in the field 
of EUS. Firstly, AI can augment EUS expertise especially by shortening the learning curve. Although, 
there is very little data to support this statement, initial results are extremely encouraging and it would 
be reasonable to surmise a significant role played by AI-based automated systems in EUS training 
programs. Secondly, the recent innovations using CNN based DL algorithms have the potential to 
significantly augment the diagnostic accuracy of EUS and could, conceivably overcome the inherent 
deficiencies of human error, visualisation, inattention and fatigue. Finally, our rudimentary foray into 
this area, coupled with the encouraging results seen in the case of endocytoscopy-based CADx systems 
for colonic polyps; could pave the way for optical diagnosis of pancreatic lesions in the future. This 
could theoretically, expand the role of EUS in the context of solid pancreatic lesions, by enabling the 
accurate diagnosis of lesions which are poorly accessible, failed EUS-FNA (high tissue impedance, 
intervening vessels) or poor visualisation due to calcifications and fibrosis secondary to CP.

However, the current systems possess major drawbacks that hamper the uniform application of AI -
based CAD systems for EUS in clinical practice. One of the major drawbacks is the "black box 
phenomenon" where the basis of a decision taken by the machine is not clearly understood by the 
programmers and developers. This makes it difficult to course-correct the system in case of sub-optimal 
accuracy. Another important drawback is the fact that real-time video and the tactile understanding of 
the location of the scope, plays a major role in decisions with regard to EUS-FNA. These data inputs are 
currently not factored into the DL algorithms and could significantly hamper its clinical applicability.

CONCLUSION
The tremendous progress witnessed in the field of artificial intelligence and machine learning has 
enabled the development of novel and innovative algorithms that can perform specific functions in the 
field of endoscopy. Although AI based systems have shown immense promise in the prevention of CRC 
by detecting and characterising colonic polyps, the systematic incorporation of these systems in our 
everyday practice is still lacking. While it is intuitive to engage our efforts on the implementation of 
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these systems in our endoscopy practice, there needs to be a clear agreement and consensus as to the 
specific gaps that can be addressed by AI based systems. This could improve efficiency of 
implementation and efficacy, thereby enabling the translation from mere ‘promise’ to measurable 
‘impact’ on global screening programs. There are encouraging steps taken in that regard, where novel 
approaches like ‘Leave-in-situ’ and ‘Resect and Discard’, can potentially change the landscape of CRC 
screening programs. Validated and reliable CADx systems can enable the adoption of these strategies. 
The most critical and exciting aspect is the potential to implement these strategies at the community 
level in emerging economies like India, where CRC prevalence have shown alarming upward trends in 
the past decade, owing to a higher prevalence of metabolic risk factors and changing patterns of diet 
and lifestyle practices. These strategies can reduce the cost of screening programs significantly by 
obviating the need for histopathological evaluation of small diminutive polyps. In addition, the reduced 
requirement of specialised man-power, logistical issues and equipment installation at primary care 
centres in the community can make CRC screening programs economically viable and a welcome 
addition to global efforts to reduce the burden of CRC.

AI in the field of EUS, however, is still in its infancy. Given the present lacunae in the diagnosis of 
early PDAC, there is significant scope for the application of AI-based CADe and CADx systems, which 
can augment our capabilities to manage patients with solid pancreatic lesions with/without CP in the 
future. However, there is an acute need to re-examine the available approaches to development of 
CADe and CADx systems in this area. The specific functions and questions that need the assistance of 
AI based systems needs to be clarified by expert consensus before we embark further on the 
development of newer systems.

In conclusion, there is an urgent need, now more than ever before, for future collaborative projects 
with the ever-expanding world of data science and artificial intelligence, which could pave the way for a 
brave new world, of man and machine, acting in concert to bring about the technological age of modern 
medicine.
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Abstract
Colorectal cancer (CRC) is a heterogeneous illness characterized by various 
epigenetic and microenvironmental changes and is the third-highest cause of 
cancer-related death in the US. Artificial intelligence (AI) with its ability to allow 
automatic learning and improvement from experiences using statistical methods 
and Deep learning has made a distinctive contribution to the diagnosis and 
treatment of several cancer types. This review discusses the uses and application 
of AI in CRC screening using automated polyp detection assistance technologies 
to the development of computer-assisted diagnostic algorithms capable of 
accurately detecting polyps during colonoscopy and classifying them. Furth-
ermore, we summarize the current research initiatives geared towards building 
computer-assisted diagnostic algorithms that aim at improving the diagnostic 
accuracy of benign from premalignant lesions. Considering the evolving 
transition to more personalized and tailored treatment strategies for CRC, the 
review also discusses the development of machine learning algorithms to 
understand responses to therapies and mechanisms of resistance as well as the 
future roles that AI applications may play in assisting in the treatment of CRC 
with the aim to improve disease outcomes. We also discuss the constraints and 
limitations of the use of AI systems. While the medical profession remains 
enthusiastic about the future of AI and machine learning, large-scale randomized 
clinical trials are needed to analyze AI algorithms before they can be used.

Key Words: Artificial intelligence; Machine learning; Colonic polyps; Colorectal 
neoplasms; Computer-aided diagnosis; Precision oncology
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Core Tip: Artificial intelligence (AI) and its potential in diagnosing colorectal cancer have been the subject 
of various reviews in the literature. However, this review reports the most recent discoveries and studies 
on artificial and machine learning in colorectal cancer screening, diagnosis, and treatment, as well as the 
future roles that AI applications may play in assisting in the treatment of colorectal cancer. Furthermore, 
this review talks about prospects and constraints for the use of AI systems, as well as the need for large-
scale randomized clinical trials to examine AI algorithms before they can be implemented.

Citation: Awidi M, Bagga A. Artificial intelligence and machine learning in colorectal cancer. Artif Intell 
Gastrointest Endosc 2022; 3(3): 31-43
URL: https://www.wjgnet.com/2689-7164/full/v3/i3/31.htm
DOI: https://dx.doi.org/10.37126/aige.v3.i3.31

INTRODUCTION
In the United States, the third leading cause of cancer-related deaths is colorectal cancer (CRC)[1]. Since 
1980, the number of people diagnosed with colon or rectal cancer has decreased due to improved 
screening guidelines and lifestyle-related risk factors modification. In addition, treatments for colorectal 
cancer have improved over the last few decades[2]. CRC is a diverse group of diseases with differences 
in epidemiology, histology, genomics, and host immune responses[3,4]. Recognizing the diversity of the 
disease, and the importance of personalized medicine, machine learning models have been utilized to 
improve detection rates, diagnosis, and treatment of CRC.

Artificial intelligence (AI) is a computer science field dedicated to developing systems capable of 
performing tasks that typically require human-level intelligence[5]. It is a broad term used to encompass 
Machine learning (ML), a subset of AI algorithms that allows automatic learning and improvement from 
experiences using statistical methods and deep learning which imitates higher level human data 
processing by using multi-layered neural networks for extractions and self-training algorithms[6] 
(Figure 1).

The increased utilization of this novel technology has made a distinctive contribution to the diagnosis 
and treatment of several cancer types. From AI models to reduce rates of missed adenomas to novel 
computer assisted drug delivery techniques and robotic surgery colorectal carcinoma treatment entered 
a new area rapidly moving towards precision and personalized medicine[7,8].

Our review aims to analyze the AI uses and application in CRC screening, diagnosis, and treatment. 
In addition, we will discuss potential future directions and limitations for the use of AI systems.

SCREENING
Colorectal screening remains the gold standard for improving patient clinical outcomes, such as 
avoiding treatment delays and lowering CRC morbidity and mortality[9]. CRC patients are diagnosed at 
advanced stages of the disease in 60%–70% of cases[9].

It is thought that the alterations from the normal mucosa to malignant state lesion take almost 10 to 20 
years[10]. Colonoscopy, flexible sigmoidoscopy, and less invasive capsule endoscopy, computed 
tomography chorography, blood in stool tests, fecal immune-chemical testing, and multi-target cell 
DNA testing are just a few of the screening options available for CRC[11,12]. Colonoscopy is the gold 
standard screening test, though it is not without flaws[13]. It has been reported that around 9% of cases 
of CRC occurred within three years following a negative colonoscopy[14]. Adenoma detection rates are 
very variable with reported detection rates of 7% to 50%[15]. The wide range of detection rates is due to 
different factors, including endoscopic procedural experience, pre-procedure bowel preparation, time of 
procedure termination, use of sedation, flexure visualization, image enhanced endoscopy, and the 
presence of flat or diminished polyps[16,17].

The growing interest of AI in CRC yielded automated polyp detection assisted technology to aid in 
the detection and diagnosis of polyps during colonoscopy[5]. In addition, technologies that use deep 
learning techniques to improve detection rates and localize premalignant lesions are available and being 
applied[18].

A recent randomized controlled trial studied the effect of computer aided detection deep learning 
models on polyps and adenoma detection rates. The trial randomized 1058 patients to either conven-
tional colonoscopy (n = 536) or colonoscopy with computer aided detection system (n = 522). In the 
computer aided detection system group there was an increase in both the adenoma detection rates, 
29.1% vs 20.3%, P < 0.001, in addition to the mean number of identified adenomas per patient, 0.53 vs 
0.31, P < 0.001, in comparison to the group assigned standard colonoscopy. This trial, however, did not 
reveal a significant statistical difference for the detection of large adenomas between the groups (77 vs 
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Figure 1  Operational levels of artificial intelligence.

58, P = 0.075). Interestingly, the computer aided detection system arm had more hyperplastic adenomas 
(114 vs 52, P < 0.001) and diminutive polyps (185 vs 102, P < 0.001) identified. This study demonstrates 
the impact of AI-assisted colonoscopy technologies on the detection of small polyps that even highly 
trained endoscopists may miss[19].

Karkanis et al[20] used color and texture analysis of mucosal surfaces based on color wave covariance 
features were used to develop a computer-assisted diagnostic algorithm for automatic polyp identi-
fication. Rather than a real-time recognition system, the system was able to identify precancerous lesions 
in static endoscopic images. It accomplished that by examining frame images extracted from 60 
colonoscopy video sequences containing small polyps with a sensitivity and specificity of 99.3% and 
93.6% respectively.

In a study to evaluate deep learning algorithms for automated polyp detection during colonoscopy 
using colonoscopy images, colonoscopy videos obtained from four different datasets resulted a 
significant improvement in real-time colonoscopy video analysis byprocessing at least 25 frames per 
second with a latency of 76.8 milliseconds[65].

A recent systematic review and meta-analysis that included 48 studies showed a significant increase 
in both polyp detection rates [odds ratio (OR) 1.75, 95%CI 1.56-1.96; P < 0.001] as well as adenoma 
detection rates (OR 1.53, 95%CI 1.32-1.77; P < 0.001) patients who had a colonoscopy with AI compared 
to those who did not[21].

Recognizing that colonoscopy is a highly operator-dependent procedure, challenges such as light 
conditions, morphology of colorectal polyps during colonoscopy, and size could be overcome by AI 
computer assisted diagnostic systems as they serve as an “extra pair of eyes” and improve adenoma 
detection rates.

Several alternative screening tools to conventional colonoscopy have been developed. A modified 
computed tomography (CT) examination known as virtual colonoscopy or computed tomographic 
colonography (CTC) was first described in 1994[22]. Its ability to evaluate the entire colorectum, rapid 
acquisition of imaging, and lack of sedation makes it a valuable alternative for certain patients. The 
effectiveness of CTC in detecting asymptomatic colorectal lesions is still a point of contention. Several 
studies reported identification of 90 percent of patients with asymptomatic adenomas or cancers (≥ 10 
mm in diameter) using CT colonography[23,24]. AI-based algorithm concepts have been used to obtain 
optimal diagnostics standards and image qualities to aid in CRC detection and diagnosis using CTC. 
Grosu et al[25] developed a machine learning method that had an area under the curve (AUC) of 0.91, a 
sensitivity of 82%, a specificity of 85% in differentiating between benign and precancerous lesions in 
average risk asymptomatic patients using CTC. In another study, Song et al[26] developed a virtual 
pathological model to see if image high-order differentiations (curvature and gradient) could be used to 
distinguish colorectal lesions (neoplastic and non-neoplastic). The results revealed an improvement of 
receiver operating characteristic (ROC) curve (AUC) from 0.74 (Using image intensity alone) to 0.85 
(Using texture features from high-order differentiations).

In cases of incomplete colonoscopy or when evaluating the small intestines, capsule endoscopy (CE) 
is used as a minimally invasive technique. It acquires images as it passes through the gastrointestinal 
tract[27]. Hence, CE can be affected by laxative use. In addition, it requires manual interpretation and 
analysis of acquired images which is particularly time consuming[28,29]. AI-based systems are being 
used to automate the reading and examination of the results to reduce the time and the human error 
inherently present when reading images thereby improving adenoma detection rates[30,31]. Novel 
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algorithms were developed to match CE and colonoscopy-identified polyps based on their size, 
morphology and location as well as utilizing deep convolutional neural networks for automatic 
colorectal polyp detection. When compared to the manual process of polyp detection, localization had a 
high sensitivity (97.1%), accuracy (96.4%), and specificity (93.3%) for identifying polyps[30].

Blood-based screening approaches have been developed to detect CRC at early stages. Demographic 
characteristics and blood test results such as complete blood count (CBC), which may indicate iron 
deficiency, microcytic anemia, or elevated red cell distribution width are frequently used to evaluate the 
risk of developing CRC[32-34]. An AI-assisted prediction model (MeScore®, Calgary, Alberta, Canada) 
was designed to identify people at high risk for CRC using parameters such as age, sex, and CBC data 
collected 3 to 6 mo prior to cancer diagnosis. A study using this AI-assisted prediction model revealed a 
2.1-fold increase in cancer detection rates when the model is used in combination with FOBT[35]. 
Furthermore, a study using CellMax (CMx®) platform to detect and isolate circulating tumor cells in 
peripheral blood samples resulted in a sensitivity and specificity of 80%[36]. Table 1 highlights studies 
focusing on screening.

DIAGNOSIS
A machine learning algorithm can be trained to identify or differentiate polyps in real time in the field 
of endoscopy. Techniques for analyzing non-magnified endoscopic images and techniques for cellular 
imaging at a microscopic level have both been investigated (i.e., optical biopsy). The theory behind these 
methods is that they will improve polyp detection rates, reduce missed adenomas, and thus lower the 
risk of CRC. However, the increase in polyp detection rates will lead to an increase in financial burdens 
on health systems, specifically histopathological departments involved in the analysis of resected tissue. 
Current research initiatives are geared towards building a computer assisted diagnostic algorithm 
capable of reliably detecting polyps while also characterizing them as hyperplastic or adenomatous 
during colonoscopy[37].

The Preservation and Incorporation of Valuable endoscopic Innovations (PIVI) an American Society 
of Gastrointestinal Endoscopy program set a threshold of negative predictive value (NPV) > 90% for the 
development of new endoscopic technologies, such as the optical diagnosis of small colorectal polyps
[38].

Many AI applications have been developed to assist endoscopist with the aim of adopting a 
“diagnose and leave” strategy for hyperplastic polyps and a “resect and discard” strategy for 
diminutive adenomas[39]. In one study a system was designed to predict the histology of colorectal 
polyps (adenomatous vs non-adenomatous) by analyzing linked color imaging demonstrated an 83.3% 
sensitivity, 70.1% specificity, 82.6% positive predictive value (PPV), 71.2% NPV and an accuracy of 
78.4% when compared to expert endoscopists[40].

Magnification Endoscopy with Narrow-Band Imaging (NBI), Endocytoscopy, Magnifying Chromoen-
doscopy, Confocal Laser Endomicroscopy, Laser-Induced Fluorescence Spectroscopy, Autofluorescence 
Endoscopy, and White Light Endoscopy are example of advanced endoscopic techniques currently used 
to aid in the detection and diagnosis of polyps.

Magnification Endoscopy with NBI is a imaging system that allows observation of mucosal surfaces 
and microvascular patterns[41]. It improves the diagnostic accuracy of benign from premalignant 
lesions by evaluating depth of submucosal lesions[42-44]. Gross et al[45] developed a computer-assisted 
model for polyp classification by analyzing 9 vessel features, including perimeter and brightness from 
patients who underwent magnifying endoscopy with NBI. The model had a higher sensitivity (95% vs 
86%), specificity (90.3% vs 87.8%) and accuracy (93.1% vs 86.8%) when compared to novice endoscopists 
however, they are comparable to those of experienced endoscopists (sensitivity, specificity, and 
accuracy of 93.4%, 91.8% and 92.7%, respectively).

In addition, Chen et al[46] used magnifying NBI images with 284 diminutive colorectal polyps 
extracted to create a deep learning model to classify diminutive colorectal polyps When compared to 
expert endoscopists, the algorithm was able to distinguish between neoplastic and hyperplastic lesions 
in less time (0.45 vs 1.54 s). It had a sensitivity, specificity, accuracy, PPV, and NPV of 96.3%, 78.1%, 
90.1%, 89.6%, and 91.5% respectively.

Endocytoscopy is an endoscopic imaging modality, that allows in vivo microscopic imaging and real-
time diagnosis of cellular structures at high magnifications (400× magnification power in endoscope-
based to 1400× magnification in probe-based endocytoscopy) during colonoscopy[47]. A computer-
aided algorithm was designed to histologically differentiate colorectal lesions in vivo using endocyt-
oscopy[48]. Initially, this model used nuclear features (area, standard deviation of area, circularity, 
circularity of the 20 largest nuclei, shortest and longest diameter) after nuclear segmentation from the 
endocytoscopic images with a 92% sensitivity and 89.2% accuracy in establishing a histological 
diagnosis. This model was later improved by extracting features from texture analysis and utilizing 
SVM to classify benign, adenomatous lesions or invasive carcinoma[49,50]. Another model looked at the 
role of a computer-aided endocytoscopy system in the diagnosis of invasive colorectal carcinoma, and 
found that it had 89.4% sensitivity, 98.9% specificity, 98.8% positive predictive value, 90.1 percent 
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Table 1 Overview of screening studies

Ref. Objective Results

Wang et al[19], 
2019

Effect of computer aided detection deep learning models on 
polyps and adenoma detection rates

Increase in adenoma detection rates [29.1% vs 20.3%, P < 0.001] and 
mean number of identified adenomas per patient [0.53 vs 0.31, P 
<0.001]; More hyperplastic adenomas (114 vs 52, P < 0.001) and 
diminutive polyps (185 vs 102, P < 0.001) identified

Nazarian et al
[20], 2021

Detection rates of polyp and adenoma with AI vs without AI Increase in both polyp detection rates (odds ratio [OR] 1.75, 95%CI 
1.56-1.96; P < 0.001) as well as adenoma detection rates (OR 1.53, 
95%CI 1.32-1.77; P < 0.001)

Johnson et al[23], 
2008; Pickhardt et 
al[24], 2003

Degree to which CTC is effective in detecting asymptomatic 
colorectal lesions 

Reported identification of 90% of patients with asymptomatic 
adenomas or cancers (≥ 10 mm in diameter) using CT colonography

Grosu et al[25], 
2021

Development of machine learning method differentiating 
between benign and precancerous lesions in average risk 
asymptomatic patients using CTC

Sensitivity of 82%, specificity of 85% and AUC of 0.91

Song et al[26], 
2015

Development of virtual pathological model to assess the 
suitability of using image high-order differentiations to 
distinguish colorectal lesions

Improvement of ROC curve (AUC) from 0.74 to 0.85 

Blanes-Vidal et al
[30], 2019

Algorithms developed to match CE and colonoscopy-identified 
polyps based on their estimated size, morphology and location 
as well as utilizing deep convolutional neural networks for 
automatic colorectal polyp detection

Localization resulted in high sensitivity (97.1%), specificity (93.3%), 
and accuracy (96.4%) for identifying polyps when compared to the 
manual process of polyp detection

Kinar et al[35], 
2017

AI-assisted prediction model (MeScore®, Calgary, Alberta, 
Canada) was designed to identify people at high risk for CRC 

Revealed a 2.1-fold increase in cancer detection rates when the 
model is used in combination with FOBT

Gupta et al[36], 
2019

Using CellMax (CMx®) platform to detect and isolate 
circulating tumor cells in peripheral blood samples

A sensitivity and specificity of 80%

AI: Artificial intelligence; AUC: Area under the curve; CTC: Computed tomographic colonography; CT: Computed tomography; CE: Capsule endoscopy; 
ROC: Receiver operating characteristic.

negative predictive value, and 94.1 percent accuracy[51].
Magnifying Chromoendoscopy is a technique that uses dye to inspect and analyze the pit patterns of 

the polyp surfaces resulting in high diagnostic performance (97.8% sensitivity, 91.4% specificity and 
97.1% accuracy) when performed by expert endoscopists[52]. Takemura et al[53] created a software 
model to automatically quantify and classify pit patterns. They used texture and quantitative analysis 
(area, perimeter, and circularity) to classify pit patterns. Using this model type I and II pit patterns were 
in complete agreement with the endoscopic diagnosis on discriminant analysis. Type III was found in 29 
of the 30 cases (96.7%), while type IV was found in one. Type IV pit pattern was found in 29 of the 30 
cases (96.7%). The computerized recognition system's overall accuracy was 132 out of 134 (98.5%).

Confocal Laser Endomicroscopy is a microscopic imaging modality that allows in vivo examination of 
cellular and subcellular structures at 1000× magnification power[54]. Andréet al[55] used an automated 
polyp characterization system to distinguish between benign and malignant lesions using the k-nearest 
neighbor classification with an accuracy of 89.6%. A neural network analysis algorithm had an accuracy 
of 84.5% in differentiating advanced colorectal adenocarcinomas from normal mucosa[56]. Algorithms 
using Confocal Laser Endomicroscopy are yet to be validated in randomized clinical trials.

Autofluorescence imaging endoscope characterizes colorectal polyps by analyzing different color 
emissions of tissue after exposure to a light source. It has shown promising results in differentiating 
non-neoplastic from neoplastic lesions during colonoscopy[57,58].

White light endoscopy and laser-induced fluorescence spectroscopy technologies have been tested as 
potential models to discriminate between neoplastic and non-neoplastic lesions with results that were 
inferior to NBI or chromoendoscopy with or without magnification[59,60]. Table 2 summarized relevant 
diagnostic research.

TREATMENT SELECTION, TREATMENT RESPONSE, TOXICITY, AND PROGNOSIS
Colorectal cancer is a heterogenic disease with numerous epigenetic and microenvironment alterations 
that affects drug response, aggressiveness, and prognosis[61,62]. The shift to a more personalized and 
tailored treatment tactic considering the various alternations is evolving to improve disease outcomes
[63].
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Table 2 Overview of diagnosis studies

Ref. Objective Results

Min et al[40], 
2019

System designed to predict the histology of 
colorectal polyps by analyzing linked color 
imaging

83.3% sensitivity, 70.1% specificity, 82.6% PPV, 71.2% NPV and an accuracy of 78.4% 
when compared to expert endoscopists 

Gross et al
[45], 2011

Development of computer-assisted model for 
polyp classification by analyzing 9 vessel 
features, from patients who underwent 
magnifying endoscopy with NBI

Higher sensitivity (95% vs 86%), specificity (90.3% vs 87.8%) and accuracy (93.1% vs 
86.8%) when compared to novice endoscopists but comparable to those of expert 
endoscopists (sensitivity, specificity, and accuracy of 93.4%, 91.8% and 92.7%, 
respectively)

Chen et al
[46], 2018

Designed a deep learning model to classify 
diminutive colorectal polyps using magnifying 
NBI images with 284 diminutive colorectal 
polyps extracted

Able to distinguish between neoplastic and hyperplastic lesions in a shorter period 
compared to expert endoscopists (0.45 vs 1.54 seconds) and had a sensitivity, specificity, 
accuracy, PPV, and NPV of 96.3%, 78.1%, 90.1%, 89.6% and 91.5% respectively

Mori et al
[48], 2015

Computer-aided algorithm designed to histolo-
gically differentiate colorectal lesions in vivo 
using endocytoscopy

92% sensitivity and 89.2% accuracy in establishing a histological diagnosis.

Takeda et al
[51], 2017

Model investigated the role of a computer-aided 
endocytoscopy system on the diagnosis of 
invasive colorectal carcinoma 

89.4% sensitivity, 98.9% specificity, 98.8% PPV, 90.1% NPV and 94.1% accuracy

Takemura et 
al[53], 2010

Software model to automatically quantify and 
classify pit patterns. Used texture and 
quantitative analysis to classify pit patterns

Type I and II pit patterns were in complete agreement with the endoscopic diagnosis on 
discriminant analysis. Type III was diagnosed in 29 of 30 cases (96.7%) and type IV was 
diagnosed in one case. Twenty-nine of 30 cases (96.7%) were diagnosed as type IV pit 
pattern. The overall accuracy of the computerized recognition system was 132 of 134 
(98.5%)

André et al
[55], 2012

Automated polyp characterization system to 
distinguish between benign and malignant 
lesions using the k-nearest neighbor classi-
fication

Accuracy of 89.6%

Ştefănescu et 
al[56], 2016

A neural network analysis algorithm differen-
tiating advanced colorectal adenocarcinomas 
from the normal mucosa

Accuracy of 84.5% 

PPV: Positive predictive value; NPV: Negative predictive value.

Treatment selection 
AI is being integrated in treatment selection to provide a true individualized treatment strategy. A 
MATCH system was developed to integrate clinical and genetic sequence data using data from 
hospitals, pharmaceutical laboratories, and research centers. The MATCH system aided in correlating 
between medical features and genetic data, giving the oncologist the opportunity to understand 
patient’s individual situation[64].

Machine learning techniques are also being used to predict protein-protein interactions of a potential 
therapeutic target protein (S100A9) with different drugs[65]. Several other models are being developed 
to identify molecular biomarkers and targets by integrating transcriptomics, proteomics data, and RNA-
sequencing data[66,67].

Treatment response
Chemotherapy, neoadjuvant chemoradiotherapy (nCRT) and other approaches are treatment options 
for CRC. Studies have applied AI technology to CRC treatment to help clinicians choose the appropriate 
treatment option and improve efficacy and limit potential toxicities.

In a study based on an unsupervised machine learning algorithm comparing pharmacological 
response relationships between cancer therapies, distinct intrinsic subpopulation sensitivity to one drug 
but resistance to others was identified. They also identified genetic alterations that could be used as 
biomarkers for those subpopulations[68].

In another study, artificial neural network K-nearest neighbors, support vector machine, naïve 
Bayesian classifier, mixed logistic regression models were used to predict response demonstrated an 
accuracy of 0.88, AUC of 0.86 and sensitivity of 0.94[69].

Ferrari et al[70] used AI models to assess response to therapy in locally advanced rectal cancer. The AI 
model was able to identify patients who will have complete response at the end of the treatment and 
those who will not respond to therapy at an early stage of the treatment with an AUC of 0.83.

Shayesteh et al[71] used MRI based ensemble learning methods to predict the response to nCRT with 
AUC of 95% and accuracy of 90%.

Other algorithms to identify pathological complete responders (CR) and non-responders (NR) 
patients after neoadjuvant chemoradiotherapy (CRT) in locally advanced rectal cancer showed an AUC 
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Table 3 Overview of treatment, toxicity, and prognosis studies

Ref. Objective Results

Huang et al
[69], 2020

Artificial neural network K-nearest neighbors, support vector 
machine, naïve Bayesian classifier, mixed logistic regression 
models were used to predict response 

Accuracy of 0.88, AUC of 0.86 and sensitivity of 0.94

Ferrari et al
[70], 2019

AI models to assess response to therapy in locally advanced rectal 
cancer

Able to identify patients who will have complete response at the end 
of the treatment and those who will not respond to therapy at an 
early stage of the treatment with an AUC of 0.83

Shayesteh et al
[71], 2019

MRI based ensemble learning methods to predict the response to 
nCRT

AUC of 95% and accuracy of 90%

Ferrari et al
[71], 2019

Algorithms to identify pathological CR and NR patients after 
neoadjuvant chemoradiotherapy (CRT) in locally advanced rectal 
cancer 

AUC of 0.86 and 0.83 for pathological CRs and NRs 

Oyaga-Iriarte et 
al[73], 2019

Algorithms in metastatic CRC patients to predict Irinotecan 
toxicity 

Accuracy of 76%, 75%, and 91% for predicting leukopenia, 
neutropenia, and diarrhea respectively

Sailer et al[81], 
2015

Compared ten data mining algorithms to predict the 5-yr survival 
based on seven attributes

Accuracy of 67.7% compared to clinical judgment of 59%

AI: Artificial intelligence; AUC: Area under the curve; CR: Complete responders; MRI: Magnetic resonance imaging; nCRT: Neoadjuvant 
chemoradiotherapy; NR: Non-responders; CRs: Complete responders.

of 0.86 and 0.83 for pathological CRs and NRs respectively by analyzing textural features of T2-
weighted magnetic resonance images[70]. Shi et al[72] created a model to predict the neoadjuvant CRT 
response by using pre-treatment and early-treatment MRI imaging. They reported that using deep 
learning achieved a higher accuracy of prediction.

Toxicity
Oyaga-Iriarte et al[73] used algorithms in metastatic CRC patients to predict Irinotecan toxicity with an 
accuracy of 76%, 75%, and 91% for predicting leukopenia, neutropenia, and diarrhea respectively. 
Abraham et al[74] used machine learning to predict the efficacy of bevacizumab combined with 
oxaliplatin based chemotherapies in patients with metastatic colorectal cancers.

AI technology is also being incorporated in drug research. Drug delivery models using nanoparticles 
are being developed[75,76]. Cruz et al[77] created a model using molecular and nuclear magnetic 
resonance to detect the half-maximal inhibitory concentration of a drug against HCT116 cell line with 
predicted accuracy of over 63% for both training and test sets.

Prognosis 
Traditional mathematical and statistical analysis does not provide accurate predictions on patient’s 
progress. However, AI can process and analyze many features based on previous data to potentially 
predict prognosis.

Weiser et al[78], developed a nomogram to predict recurrence of CRC after curative resection to 
identify patients who may benefit from adjuvant therapy and early follow-up.

In addition, long term prediction models using independent prognostic factors such as tumor size, 
high mitotic count, non-gastric location, and sex are established and accurately predict patients who 
may be cured by surgery alone[79].

The prognosis in CRC is highly dependent on pathology. Kather et al[80] used CNN to automatically 
extract prognostic factors from HE-stained CRC tissues. They used 420 digitalized HE-stained samples 
to predict the 5-year survival with an AUC of 0.69 consistent with “expect level” accuracy.

Sailer et al[81] compared ten data mining algorithm’s to predict the 5-year survival based on seven 
attributes and reported an accuracy of 67.7% compared to clinical judgment of 59%. Table 3 summarizes 
relevant treatment, toxicity, and prognosis studies.

LIMITATIONS
Artificial intelligence and deep learning algorithms assist physicians in detecting and diagnosing CRC. 
They are also used to develop and identify treatment strategies to personalize CRC treatment. Until 
now, AI tools have been able to detect and diagnose CRC in a manner that is comparable to, if not 
superior to, that of humans (Figure 2).

Despite the significant advance in AI applications, AI-based technologies have several limitations. 
Machine training is a complex task and requires integrating the technology into clinical practice to 
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Figure 2  Stages in designing and implementing an artificial intelligence model.

provide high quality large volume training data to train the AI systems and obtain the best results. This 
process requires robust computational infrastructure.

The variability between patients’ clinical presentation could lead to a deviation from the training 
model environment which could result in the unpredictable performance of an algorithm[82]. 
Furthermore, the input and output data of an algorithm is known, there is limited information on the 
exact working and process in-between, frequently referred to as the “black box” problem in machine 
learning. As a result of this limited visibility, factors used by a deep learning algorithm to reach a 
particular decision could be missed potentially leading to significant confounders in output data[82].

Additionally, there is a lack of evidence-based standards in AI development. The data used to train 
algorithms vary in size, number, and quality. This results in inconsistencies in validating machine 
learning systems deterring their implementation on a wide scale clinical setting. Limited research on the 
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application of AI in CRC treatment is currently present. Most of the existing studies assessed AI 
algorithm’s ability to predict response after nCRT and chemotherapy. However, they have small sample 
sizes and therefore lack generalization[83]. In addition, current AI algorithms linking clinical features to 
prognostic status are promising. However, there is a significant difference between sensitivities, 
specificities, and accuracies of different AI applications.

Machine learning systems can unintentionally exacerbate health disparities by magnifying existing 
biases used in their training datasets[84].

Machine learning and artificial intelligence is evolving, though the medical community remains 
highly optimistic about the future of AI, wide scale randomized clinical trials are needed to evaluate 
and validate AI algorithms prior to wide scale clinical implementation. Additionally, these systems 
should provide a high-quality standard with robust ethical and legal frameworks prior to integration in 
health systems.

FUTURE DIRECTIVES
With the rapid expansion in AI research and technology we believe that AI algorithms will improve and 
personalize patient care.

Initially, AI algorithms integrate clinical data such as age, health status, disease history and other 
comorbidities to stratify patients. Though the current gold standard for CRC screening and diagnosis is 
endoscopy and pathological biopsy[12], it carries a significant risk in a subset of patients. We believe 
that future research directives will focus on less invasive technologies in certain patient groups for 
diagnosis instead on colonoscopy. Any model must maintain or even exceed the diagnostic accuracy 
offered by conventional diagnostic modalities. Furthermore, incorporating AI in screen colonoscopy 
may improve the diagnosis of precancerous lesions.

Moreover, AI technologies could assist in a establishing a more accurate staging system that 
incorporates not only the classical TNM stages but also proteomics, metabolomics, and genetic data to 
account for the heterogeneous presentation of CRC. This algorithm would potentially identify patients 
who would benefit from neoadjuvant therapy.

As more datasets are made available, a sufficiently large dataset could support the prediction of the 
prognosis of AI technology. This can help identify factors with the greatest impact on prognosis and 
establish future prognostic and intervention research.

CONCLUSION
Artificial intelligence and deep learning are becoming an integral part of modern-day medicine. Though 
the research advances in the field is an exciting new venture, it currently remains in the infant stage. 
Colorectal cancer screening, diagnosis and treatment will be distinctly enhanced by the incorporation of 
artificial intelligence technologies. AI has showed promise in therapeutic recommendations and 
prediction of treatment toxicity and responses this will hopefully result in a better and more person-
alized treatments for those in need.
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