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Abstract
Artificial intelligence (AI) is defined as the digital computer or computer-controlled robot's ability 
to mimic intelligent conduct and crucial thinking commonly associated with intelligent beings. The 
application of AI technology and machine learning in medicine have allowed medical practitioners 
to provide patients with better quality of services; and current advancements have led to a 
dramatic change in the healthcare system. However, many efficient applications are still in their 
initial stages, which need further evaluations to improve and develop these applications. 
Clinicians must recognize and acclimate themselves with the developments in AI technology to 
improve their delivery of healthcare services; but for this to be possible, a significant revision of 
medical education is needed to provide future leaders with the required competencies. This article 
reviews the potential and limitations of AI in healthcare, as well as the current medical application 
trends including healthcare administration, clinical decision assistance, patient health monitoring, 
healthcare resource allocation, medical research, and public health policy development. Also, 
future possibilities for further clinical and scientific practice were also summarized.

Key Words: Artificial intelligence; Machine learning; Potential; Limitation; Medical healthcare application; 
Coronavirus disease 19

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: In this review, we explored the potential of powerful artificial intelligence (AI) for a more 
comprehensive application in the healthcare setting. Moreover, we also pointed out the demerits and 
problems in the current application of AI in medicine.

Citation: Hung CM, Shi HY, Lee PH, Chang CS, Rau KM, Lee HM, Tseng CH, Pei SN, Tsai KJ, Chiu CC. 
Potential and role of artificial intelligence in current medical healthcare. Artif Intell Cancer 2022; 3(1): 1-10
URL: https://www.wjgnet.com/2644-3228/full/v3/i1/1.htm
DOI: https://dx.doi.org/10.35713/aic.v3.i1.1

INTRODUCTION
McCarthy, one of the core founders of artificial intelligence (AI), defined AI as the science and 
engineering of making intelligent machines[1]. AI has come a long way since its conception in 1956[2]. 
AI research aims to establish a capable system with intelligence to overcome the Turing test, 
demonstrating intelligent behavior identical to humans. For the next 60 years, this specialty encountered 
several episodes of excitement and frustration with nearly no advancement. However, in 2010, deep 
learning achieved marked improvements. This achievement is a type of machine learning (ML) with 
multiple layers of nodes among the input and output layers, resulting in artificial neural networks 
capable of establishing excellent development in recognizing speech, classifying an image, and 
translating context[3].

AI has been applied to analyze complex and big data to deliver outputs beyond human input in 
diverse healthcare backgrounds[4]. Davenport et al[5] advocated that AI systems would not extensively 
take over human clinical professionals but would amplify their patient care achievements. In other 
words, the concept of professional advice from a digital helper is not better than the clinician, but the 
fusion and application of ML into clinical medicine would enhance accurate healthcare delivery[6]. 
Rather than traditional robotics, AI applications in current healthcare mainly affect clinicians and 
medical institutions accessing enormous data sets of crucial clinical knowledge. A scheme of medical 
information for patient care could use sophisticated algorithms to give real-time analysis[7], including 
diagnosis, management strategies and prognosis, recurrence and survival rates, and information 
collection rates of millions of patients, geographical distributions, and countless and sometimes 
interconnected health status of oncologic patients. This advanced computing power of AI can detect and 
analyze large and small trends from the available information, and even forecast through ML designed 
to classify possible health prognoses.

The importance of AI technology in medical healthcare provision and study is increasingly becoming 
apparent[8]. There is a rapid growth trend of related publications on this topic in the form of academic 
articles from medical professionals (Figure 1). Specialists have emphasized the effectiveness and 

mailto:chiuchongchi@gmail.com
https://www.wjgnet.com/2644-3228/full/v3/i1/1.htm
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Figure 1  Number of medical artificial intelligence publications by year beginning in 2012 up to 2021, searched on Pubmed.com using the 
terms “machine learning” OR “deep learning”.

capability of AI-empowered healthcare provision. Recently, more countries and private institutions 
have invested in this technological progress[9]. In addition, the United States Food and Drug Adminis-
tration (FDA) has enthusiastically promoted AI-empowered instruments in the medical market[10].

In this study, the potentials of AI, its application in different fields of healthcare, and its current 
limitations will be discussed. Furthermore, we also investigated the advantages of clinicians over AI in 
clinical work and suggest different ways of cooperating with AI effectively.

RELEVANT POTENTIALS OF AI
AI is a collection of technologies consisting of abilities that could be applied in healthcare. Some 
particular AI technologies are paramount to healthcare (Figure 2).

Neural network and deep learning
Neural networks and deep learning are essential to ML, a statistical technology for fitting models to 
data and 'learning' by training models with data. The neural networks technology has been available 
since the 1960s for categorization applications[11]. A standard neural network comprises many simple, 
connected processors called neurons, each producing a sequence of real-valued activations[12]. It 
imitates the process of how neurons manage signals. It can determine if one person would suffer from a 
specific disease in his or her life. It views the disease based on the inputs, outputs, and weights of 
variables or parameters related to the inputs with outputs.

Deep learning is the most complicated form of ML, which involves neural network models with 
different levels of parameters to predict prognosis. Each character in a deep learning model usually has 
limited implications for clinical professionals. In other words, the explanation of the model's prognosis 
may be very challenging to interpret. Nowadays, the typical utilization of deep learning in healthcare 
involves the recognition of possibly cancerous lesions in radiologic imaging[13]. Currently, it is 
commonly applied to detect clinically specific features in imaging data, which is easily neglected by the 
human eye[14].

Natural language processing
Since the 1950s, AI researchers have strived to make sense of human language. Natural language 
processing aims to program machines to interpret human language as humans do. It comprises speech 
recognition, word analysis, sentence translation, and other intentions based on human language. 
Statistical natural language processing is related to deep learning neural networks. It has also 
contributed to increased recognition accuracy. A natural language processing system can duplicate 
patient interactions and operate conversational AI[15]. Furthermore, it has succeeded in scaling up 
partial roles of clinical decision-making, developing tools to stratify risks, and even identifying possible 
surgical complications from clinical records[16], and performing patient triage by identifying 
syndromes[17].

Rule-based expert systems
Expert systems could automatically alert patients and provide instructions according to the telemon-
itoring data. This is expected to increase patient self-care and improve clinical management[18].

In the 1980s, expert systems related to the ‘if-then’ rules were the primary technique for AI. Human 
experts and knowledge engineers were required to build up a set of guides in a specific knowledge 
domain. In the healthcare aspect, they were extensively applied to assist in making clinical decisions. 
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Figure 2  Relevant potentials of artificial intelligence.

This system consisted of an expert system and a statistical analysis system linked to a patient database
[19]. They have been used for the past decades, but are more extensively used nowadays[20]. However, 
they are proposed to be replaced by more advanced ML algorithms, possibly because of their static 
nature. As these expert systems are applied to clinical use, this demerit becomes accentuated by the 
rapid generation rate of new knowledge, the regional differences related to the expression of many 
diseases, and the change rate of patient demographics and disease incidence in the future[19].

Physical characteristics of robots
Physical robots are well-known for performing repetitive and precise pre-defined work, such as 
elevating, locating, welding, or collecting objects during hospital supply delivery. Since the 1980s, there 
has been an incremental development of minimally invasive surgeries. However, this was limited by the 
complexity of surgery due to the technical constraint of traditional laparoscopic instruments. Robotic 
technology provides a 3-dimensional view of the operating field, allows filtering of physiological 
tremor, and permits greater precision and control through its articulated arms. These advantages offer 
solutions to the limitation of traditional laparoscopic instruments[21]. The United States initially 
approved robot-assisted surgery in 2000. Robots empower the surgeons and provide a clearer vision to 
perform accurate and minimally invasive surgery resulting in smaller surgical wounds[22]. Robotic-
assisted prostatectomy, cystectomy, pyeloplasty, nephrectomy, and partial nephrectomy are all 
becoming increasingly common techniques used by surgeons[23]. Moreover, robots are becoming more 
intelligent, as other AI facilities are being installed in the operating systems. Of course, dominant 
decision-making is still made by humans during surgery.

Robotic process automation
“Automation” is defined as the application of robotics, AI, ML, machine vision, and similar emerging 
and mature digital technologies to allow human work to be substituted by robots[24]. This technique 
executes structured digital works for organizational goals. Robotic process automation involves mere 
computer programs on servers. It hinges on a set of work assignments, business guidelines, and a 
‘presentation layer’ combination with information systems to mimic a semi-intelligent system operator. 
In the medical field, it is usually applied to perform repetitive work, e.g., updating patient records or 
billing, extracting data from images into transactional systems, etc[25].

According to the study by Willis et al[26], many forms of automation already exist in the healthcare 
setting. Not only do they increase the productivity of human employees, but they also do not remove 
human tasks entirely. Automation has even unexpectedly created more work for the medical staff. 
Although automation has allowed humans to process tasks more efficiently, it has resulted in more 
administrative work.

PRACTICAL FIELDS OF AI APPLICATION IN HEALTHCARE
During the global health emergency related to coronavirus disease 19 (COVID-19), experts have worked 
day and night to explore new technologies to mitigate the pandemic. Due to this, the trend of AI 
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Figure 3  Practical fields of artificial intelligence application in healthcare.

application in healthcare has grown rapidly[9], and has involved the development of sophisticated 
algorithms to perform complicated work efficiently and effectively[27]. Recent research has shown that 
AI could greatly enhance COVID-19 screening, diagnostics, and prediction, resulting in better scale-up, 
a timely response, a more reliable and efficient outcome. Furthermore, it was found that sometimes it 
outperforms humans in certain healthcare tasks[28].

In summary, AI-empowered healthcare delivery exerts a significant impact on healthcare adminis-
tration, clinical decision assistance, patient health monitoring, healthcare resource allocation, medical 
research, and public health policy development (Figure 3).

Healthcare administration
AI could save time, which the clinical staff could use to care for patients, by performing repetitive and 
routine work, such as data entry, imaging, and laboratory data review[2]. The connection of ML 
algorithms with digital medical records could help clinical staff and administrators gain accurate patient 
data[29]. The accuracy and speed of data searches could be refined using ML and concept-based 
information retrieval systems. AI has already been applied to identify diseases even in the early stages. 
For example, AI-assisted diagnosis of breast cancer has significant advantages over those without AI 
assistance. It helps radiologists act as a second interpreter during data interpretation and patient 
screening. According to the American Cancer Society, it also reduces false-positive diagnosis rates, 
eliminating the need for unnecessary biopsy and lowering medical expenses[30]. It can finish reviewing 
and reporting the findings in just a few seconds. Although innovative methods have been established to 
diagnose and distinguish breast cancer, none of those methods could identify all cancer patients.

Clinical decision assistance
Clinical decision assistance systems are computer-guided programs that assist clinicians in their 
decision-making based on patient clinical data and updated knowledge[31]. AI is a powerful tool that 
lowers the medical error rate and improves healthcare consistency and efficacy.

The trend of AI application in clinical decision assistance is rising tremendously. For example, the 
case number of the COVID-19 global pandemic has overcome current medical facilities and obligated 
the clinical professionals, patients, and families to make crucial determinations based on limited 
information and within a short time. ML methods have been previously applied to assist in making 
clinical decisions. There is currently a demand for ML-supported decisions based on acquired vital 
signs, laboratory data, prescription orders, and complications from caring for previous patients. In 
clinical practice, AI-related precision medicine can predict patients' most suitable treatment protocols 
based on different patient characteristics and the treatment context[32]. AI can also make individualized 
treatment protocols for patients based on the large-scale database and updated information[33]. In 
addition, it is expected to guide inexperienced hospital frontline and healthcare providers to perform 
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appropriately with ample evidence under emergent situations[34].

Patient health monitoring
The popularity of smartphones and monitoring instruments has brought new access to digital data 
transfer to medical institutions. Using digital medical records also empowers the AI to monitor patient 
health status[29]. Through AI, patients with chronic diseases could be better informed about their health 
and stay connected with their health caregivers. Furthermore, AI-assisted home health monitoring 
instruments and techniques help low functioning and elderly patients to keep connected to assure that 
emergency medical technicians can immediately provide first aid when needed[35].

AI systems are also capable of following patient prognosis. For example, the National Institutes of 
Health has created the AiCure app to monitor medication used by patients. Moreover, those with 
hypertension or diabetes could benefit from AI’s ability to track their health status through its clinically 
validated sensors and devices, effectively driving self-management[35]. Technology applications and 
apps boost more suitable actions in individuals and push one to follow a healthier lifestyle. In other 
words, it puts people in control of their health and well-being.

Healthcare resource allocation
Many governments use AI to plan medical resource allocation and provide social care services. AI could 
connect individual patients with suitable healthcare providers who could satisfy their needs based on 
their allocated medical budget.

Furthermore, AI could also design a specific treatment protocol and suggest more effective resource 
use for every patient[36]. For example, clinicians could identify potential risk factors associated with 
obesity using statistics, ML, and data visualization methods. AI systems can generate automated, 
personalized, contextual, and behavioral recommendations for obese patients during body weight 
control, including the suggestion of bariatric surgery, if indicated[37].

Shi et al[38] and Shi et al[39] used an artificial neural network model for predicting the 5-year 
mortality after surgery for hepatocellular carcinoma using the administrative claims data obtained from 
the Taiwan Bureau of National Health Insurance (BNHI). Their studies demonstrated that surgeon 
volume was the most crucial factor influencing 5-year mortality, followed by hospital volume and 
Charlson co-morbidity index. These parameters could be addressed in preoperative and postoperative 
healthcare consultations to educate the patients for better recovery and prognosis after hepatocellular 
carcinoma surgery. In addition, the government could also adjust the policy of healthcare resource 
allocation in hepatocellular carcinoma surgery with the aid of the AI-empowered analysis results of the 
BNHI database.

Medical research
Clinicians could use AI to analyze rare and exceptional cases from large and complex databases faster 
and more precisely than previously[40]. AI could also search for related scientific studies and 
information from the literature and combine different data to aid in medical progress[41]. In clinical 
trials, inappropriate patient selection and recruiting techniques, paired with ineffective patient 
monitoring and coaching could lead to high trial failure rates. AI can transform the critical steps of a 
clinical trial design, from study preparation to execution, to improve the trial success rates, thus 
lowering the cost burden of the research units[42]. It is expected to select the most precise patient data 
for relevant clinical studies and establish a database with a large population for more studies in the 
future.

Kiely et al[43] applied real-world data to screen for idiopathic pulmonary arterial hypertension, and 
the initial report was published in 2019. Their initial AI analysis algorithm has been used to provide a 
lower-cost screening at a significant population level, facilitate earlier diagnosis, and improve diagnostic 
rates and patient outcomes.

There was no reliably effective vaccine or specific drug invented for COVID-19 until the end of 
September 2020. Specialists have proposed several vaccines and drugs for COVID-19 by utilizing AI-
based approaches. For example, the Harvard T.H. Chan School of Public Health and the Human 
Vaccines Project declared that they are using AI models to accelerate vaccine development by utilizing 
state-of-the-art techniques in epidemiology, immune monitoring, and network biology to explain 
effective immunity in older populations[44,45].

Public health policy development
Nowadays, many medical and health-related institutions use AI to assist in the early detection of 
infectious disease outbreaks and sources of epidemics[46]. Moreover, AI could also forecast adverse 
drug reactions, which causes about 6.5% of hospital admissions in the UK[47]. This indicates that AI 
could use big data analytic methods to assist in public health policy development.

When AI applications are deployed mainly in high-income countries, their use in low-income regions 
remains relatively nascent. However, AI systems in such low-income countries could support healthcare 
management in several ways. First, medical expert systems can assist clinicians in disease diagnosis and 
treatment plan selection, as performed in developed countries. AI could act as a human clinician in 
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Figure 4 Current limitations of artificial intelligence medical healthcare development. AI: Artificial intelligence.

initial disease diagnosis in poor communities if one is not readily available. The sick could then be 
transferred to a suitable institution with the relevant medical resources. Furthermore, AI has already 
been used to forecast the disease model and delay its spread in epidemic situations worldwide, even in 
resource-poor regions[48].

LIMITATIONS OF AI MEDICAL HEALTHCARE DEVELOPMENT
Deep learning is short in explanatory power; deep neural networks cannot interpret how a diagnosis is 
made, and prejudice characteristics are difficult to identify[7]. This means that ML cannot determine 
underlying problems and is unable to make causal conclusions from observational data. Algorithms are 
efficient in outcome prediction, but predictors are not causes[49]. Furthermore, there are still problems 
that need to be solved, such as data and label availability, clarification of the ML model, and effortless 
integration of these models with existing digital medical record systems[50].

With the advent of AI development, new ethical issues have also been encountered after it intervened 
in medical practice, e.g., risk of erroneous decisions by AI, responsibility of using AI in support decision-
making, difficulties in confirmation of AI outputs, constitutive data biases in AI system training, 
sensitive data security crisis, assurance of public trust in AI medical interventions, and the possibility of 
AI being used for malicious goals[51]. Among these issues, privacy, sharing, and disclosure of safety 
data relating to AI applications must be strengthened and solved first (Figure 4).

ADVANTAGES OF CLINICIANS OVER AI IN PATIENT CARE
AI cannot replace the clinician’s role in healthcare because it intrinsically lacks articulation and cannot 
generate insights[4]. However, AI could assuredly assist in making better clinical decisions and even 
provide more accurate judgment in specific healthcare fields[52]. ML has already alleviated much of the 
workload of radiologists and anatomical pathologists in many medical institutions due to its massive 
imaging database, accompanied by advanced innovation in computer vision. With rapid progress in AI 
performance, machine accuracy can overcome that of humans[53]. The expanding availability of 
healthcare databases and the fast progression of big data analytic methods have led to the success and 
popularity of AI applications in the healthcare field. In addition, powerful AI techniques can discover 
new clinical information hidden in the extensive database, further assisting clinical decision-making[54-
56]. However, there are no universally applicable healthcare rules. AI must be complemented with 
clinician confirmation in many instances. Furthermore, the clinician-patient relationship is guided by 
associative thinking and could affect real-life treatment decisions. The impact of psychosocial and 
emotional factors on disease prognosis falls outside the AI scope, which should always be considered. 
Thus, most AI experts believe that a blend of human experience and digital augmentation should be the 
natural settling point for AI in healthcare (Table 1).
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Table 1 Collaboration of human and artificial intelligence characteristics aiming to provide an ideal healthcare delivery

Human factors AI factors

Clinicians could regard their patient as a fellow mortal, 
vulnerable being and gain detailed knowledge of the patient's 
disease related to their lives

AI continually coordinates new knowledge and perfects itself more rapidly than humans 
do

Clinicians know about social relationships and norms and 
could establish a genuinely intimate and empathetic 
connection with their patients

Automation of routine work could save time, such as documentation, administrative 
reporting, or even triaging images

The clinician-patient relationship could be guided by human 
associative thinking and affect real-life treatment strategies

AI could provide reliable diagnosis and treatment strategies, issue reminders for 
medication, provide precise analytics for pathology and images, and predict overall 
health according to the current medical database and patient information

The impact of psychosocial and emotional factors on disease 
prognosis and patient compliance could benefit from a good 
and close clinician-patient relationships

AI could provide simple mental health assistance via chatbot, monitor patient health, and 
predict disease progression

AI: Artificial intelligence.

CONCLUSION
Clinical medicine always requires professional staff to manage enormous amounts of data, from patient 
physiologic information to laboratory and imaging results. The capability of this complex management 
has separated excellent clinicians from others. AI has been regarded as an essential tool for clinicians in 
their daily practice. The increased application of AI technologies does not lower the value of face-to-face 
interaction with patients. On the contrary, because of AI, it is expected that clinicians would move 
toward the tasks that uniquely need social skills such as empathy, persuasion, and big-picture 
integration. Integrating the human clinician’s 'hardware' with the AI’s 'software' could provide an ideal 
healthcare delivery that exceeds what either could do alone. Perhaps the experts who refuse to apply AI 
technology in their clinical practice would be regarded as non-professional in the next decade.
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Abstract
Artificial intelligence (AI) is defined as the theory and development of computer 
systems able to perform tasks normally requiring human intelligence, such as 
visual perception, speech recognition, and decision-making. Machine learning 
and deep learning (DL) are subfields of AI that are able to learn from experience 
in order to complete tasks. AI and its subfields, in particular DL, have been 
applied in numerous fields of medicine, especially in the cure of cancer. Computer 
vision (CV) system has improved diagnostic accuracy both in histopathology 
analyses and radiology. In surgery, CV has been used to design navigation system 
and robotic-assisted surgical tools that increased the safety and efficiency of 
oncological surgery by minimizing human error. By learning the basis of AI, 
surgeons can take part in this revolution to optimize surgical care of oncologic 
disease.
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recognition; Cancer
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Core Tip: Artificial intelligence (AI) has been applied in different fields of medicine to 
maximize the accuracy of diagnosis and treatment. AI-based navigating systems and 
surgical robots have helped surgeons to improve their results in terms of safety and 
efficacy in oncologic surgery. By learning the basis of AI, surgeons can take part in this 
revolution to optimize surgical care of oncologic disease.
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INTRODUCTION
Artificial intelligence (AI) is defined as the theory and development of computer systems able to 
perform tasks normally requiring human intelligence, such as visual perception, speech recognition, and 
decision-making. Machine learning (ML) is a subset of AI. It is based on algorithms inspired by neural 
networks, developed to be able to learn to solve problems as a human brain would do[1]. A part of ML 
is deep learning (DL), based on artificial neural networks (ANNs) (such as deep neural networks, deep 
belief networks, deep reinforcement learning, recurrent neural networks, and convolutional neural 
networks). In DL, multiple layers of processing are used to extract progressively an higher level of 
features from data, with the final purpose ‘to learn through experience’[2]. AI, ML, and DL are having 
greater and greater impact in everyday life and health care providing. Being developed faster and more 
reliably, they are expected to gain a relevant position in diagnostic and thera-peutic processes.

Cancer is still one of the most common causes of death in developed countries, destined to increase 
due to the global aging of the population[3]. An enormous effort has been made and it is still going on 
to employ AI and its future developments in cancer diagnosis and treatment, as it is still a huge priority 
worldwide. Approximately 30 years ago, surgeons witnessed the birth of robotic surgery, which has 
been constantly improved with AI technologies to improve its efficiency and minimize human mistake. 
To be truly part of this revolution, surgeons must understand the foundation of AI technologies.

The purpose of this minireview is to show the basis of AI and its subfields and its role in cancer 
surgery.

METHODS
A MEDLINE search on PubMed was performed. We screened the resulting articles to identify key 
concepts and techniques within AI, especially leading innovation in the field of oncologic surgery. 
Thirty-four articles are cited in our minireview, including reviews and meta-analyses.

AI IN MEDICINE
At present, AI is applied to computers and medical robots to mimic human intelli-gence, assisting in 
drug design, clinical diagnosis formulation, and robotic surgery[4]. In addition, sophisticated AI 
software is used to produce medical statistical datasets and recognize tumoral cellular patterns for 
histological diagnoses, including cancer[5].

In medicine, AI has two main branches: Virtual and physical[6]. The virtual component applies DL 
information management to control electronic health records and guide physicians to take treatment 
decisions. The physical branch is represented by robots[7]. Robotic systems have been used in surgery 
since the late 90 s; also robotic assistants are also used in the care of elderly patients and nanorobots are 
currently being developed to deliver drugs to a specific target[8]. In the next future, this new way to 
administer chemotherapy will change cancer treatment, improving its efficacy by reducing global 
toxicity.

Nevertheless, as any new technology introduced in a critical field like healthcare providing, societal 
and ethical controversies of these new technologies need a special focus on their true utility, economic 
and environmental sustainability, and constant widening of their applications[9].

SUBFIELDS IN AI: ML, NATURAL LANGUAGE PROCESSING, ARTIFICIAL NEURAL 
NETWORK, AND COMPUTER VISION
To better understand AI and its role in oncologic surgery, it is crucial to discuss AI’s principal subfields 
and their role in medicine.

ML allows machines to recognize specific patterns and, by doing that, automats can learn and make 
predictions. Actually, there are two types of ML: Supervised and unsupervised. Supervised ML utilizes 
partial labelling of the data to predict a known result or outcome. Unsupervised ML, instead, analyses 
the structure detected in the data itself to find patterns within data[10]. ML is particularly useful to 
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identify hidden patterns in large datasets. In fact, they can easily detect complex non-linear 
relationships and multivariate effects compared to conventional statistical analysis[11]. Also, part of ML 
is reinforcement learning, where accomplishing a task depends on previous success or failure.

Natural language processing focuses on machine’s understanding of human language beyond simple 
word recognition including semantics and syntax. At present, it has been used to analyze large datasets 
in search of adverse events and postope-rative complications. Moreover, it has found an interesting use 
in surgery: By analyzing operative reports and postoperative notes, it has been able to elaborate an 
algorithm that predicts the anastomotic leak after colorectal surgery. Of interest, the software did not 
only include obvious data like the type of surgery and time to first oral feeding, but also could 
understand and codify how the patient was described by doctors (weak, irritated, at ease, etc.) and 
include this data in the analyses[12].

ANNs are the base of DL. They get their inspiration from human neural networks. These networks 
are made of many layers of connections and are able to learn from previous experiences. Based on 
previous feedbacks, in fact, in-put and out-put patterns change to complete the due task. In clinical 
practice, these technologies have been proved more accurate than traditional scores in predicting 
patients’ outcomes[13].

Computer vision (CV) is the ability of computers to understand and process images. Its applications 
in clinical practice are huge and in continuous growth: Computer-aided diagnosis, image-guided 
surgery, and virtual colonoscopy are only few of the new technologies developed and introduced in 
everyday medical practice[14].

AI IN CANCER SURGERY
AI technologies, especially the field of DL, have a huge role in cancer diagnosis and treatment. At 
present, early detection is the key to preventing neoplastic affections to become incurable. The role of AI 
in the diagnostic field of oncologic affection is well known and widely described in the medical 
literature. As a matter of fact, DL has been applied to clinical radiology and histopathology to obviate 
the operator’s sensitive level of precision. DL has proved great success rates in imaging pattern 
recognition, thus the expectations on its future clinical applications have grown exponentially in the last 
decade. Early results published in the literature showed how DL-based imaging recognition provided 
superior performances compared to traditional computer-mediated techniques, or in some cases, they 
were even more accurate than experienced physicians[15].

High impact examples of this are dermatologic software able to perform dermo-scopies to detect 
melanoma. In the literature, these technologies have been proved to have same accuracy as expert 
dermatologists[16]. CV has been extensively used in oncologic radiology. Recent studies have 
demonstrated that AI software is able to interpret mammographic images for breast cancer screening as 
an expert physician would do[17]. Moreover, computer aided-detection improved by ANN, generated a 
software program able to detect imaging alterations on computed tomography (CT), like enlarged 
lymph nodes and suspect colonic lesions for colon cancer early diagnosis[18].

Another interesting cancer-related field in great expansion is automatic histopa-thology analysis. Of 
interest, in cancer treatment, tissue biomarker positivity (expressed in scores) is essential to plan a 
chemotherapy schedule. Recently developed DL-based computational approaches can automatically 
score the presence of a specific biomarker. For example, a recent study demonstrated that the DL-
mediated scoring of HER 2 in breast cancer samples was more accurate than the human-mediated 
scoring and lead to identification of few cases at high risk of misdiagnosis[19].

When explaining the role of AI in histopathology analyses, it is crucial to emphasize how ML-based 
increased accuracy can influence physicians’ therapeutic choices and, therefore, a patients’ history. In 
fact, DL models can recognize high risk cancer lesions at fine needle biopsy with greater accuracy than 
traditional methods. This can affect surgery too, since the diagnosis of a benign neoplasm can prevent or 
limit surgical excision, reducing patients’ risk of developing complications or carrying impairing 
lesions. As an example, in an interesting study by Juwara et al[20], AI assistance significantly reduced 
mastectomies by 30.6% by increasing the detection of benign lesions at core biopsy, which usually were 
diagnosed only after extended surgery.

Surgical resection is often a crucial point in cancer treatment. AI subfield gets employed in computer 
assisted surgery (CAS), which has entered everyday clinical practice, and has improved its efficiency 
and efficacy in the management of oncologic diseases that need surgical attention[21]. CV is widely 
applied in image guidance and navigation, defined as a system designed to assist surgeons on the basis 
of pre-operative radiological CT images[22]. It is used to easily explore a patient’s anatomy, recognize 
pathologic or noble structures, and plan their removal or sparing. Radiological imaging combined with 
specific tracking technologies installed in surgical instruments get set on the patient’s coordinate 
system. The machine recognizes and indicates the structures of interest, even when they are hidden, 
helping surgeons to easily and safely find their way towards their operative targets[21]. At present, 
image guidance and navigation have found a prolific field of application in neurosurgery and 
orthopedic surgery, more in general in all kinds of surgery where anatomy do not get subverted by 
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tissue shifting and organ moving[23]. In these cases, computer-based navigation has found limited 
application. Great efforts have been made to apply AI surgical navigation techniques to surgeries where 
plane dissection generates anatomical subversion, like abdominal surgery. As a result, new techniques 
in study can give insights and orientation for hidden anatomical features, like showing the position of 
the aorta and the ureter in relation to the instruments in laparoscopic rectal surgery[24]. Another 
successful example is computer-assisted liver map creation in liver cancer surgery[25]. In future, more 
structures will be ‘mapped’ on CT images and will be available for image-guided abdominal surgery 
like the spleen, pancreas, and esophagus[26,27].

The most popular field of CAS is robotic-assisted surgery. Robotic surgery boasts a 50-year-long 
history. The use of robotics in the surgery field has been hypothesized around 1964, but it took more 
than 30 years to finally be approved in medical practice by the United States Food and Drug Adminis-
tration[28]. Originally, abdominal robotic surgery was thought intended for long-distance trauma 
surgery in battlefield settings. Since the first 2000 s, when surgical robots became commonly used in 
worldwide operating rooms, robotic surgery gained more and more popularity. Its advantages, in fact, 
have been shown in medical studies, international randomised controlled trial, and meta-analyses, 
winning the trust of the more skeptical physicians[29,30]. At present, the well-known advantages of 
robotic surgery, like 3-D vision, the elimination of hand tremor, and the expanded degrees of freedom of 
its tools, led robot-assisted surgery to become frequently used in pelvic surgery, like in prostatectomy 
and hysterectomy. In recent meta-analyses, robotic prostatectomy was connected to improved urinary 
function, lower intraoperative complication rates, and improvements in positive surgical margins 
compared to laparoscopic technique[31]. Thus, there is a chance for robotic prostatectomy to become 
gold standard for surgical treatment of prostate cancer[32]. Huge expectations rely in the field of robotic 
surgery. In the next future, assistance systems are expected to be integrated with surgical robots. This 
imple-mented CV technologies will provide surgeons with answers to their doubts about anatomical 
structures and resection margins by comparing intra-operative data with millions of inventory images
[33].

Again, computer imaging is currently used to create virtual models of surgical fields on which 
surgeons can be trained to acquire the psychomotor skills and surgical knowledge necessary before 
operating on real patients. This kind of technology is not only useful to train new generations of 
surgeons, but in future, 3-D operative simula-tors of patients’ specific anatomies will be available. This 
will be revolutionary in oncologic surgery, allowing the deep anatomical understanding of hardly 
resectable tumors[34].

Looking at these new technological opportunities, it is easy to predict how the role of AI in oncologic 
surgery will grow fast and will be applied also to pre- and post-operative phases, aiming to a more 
patient-targeted type of health care that can minimize mortality and morbidity. As a result, surgeons 
have a key role in the application of ML and DL in the everyday surgical practice. By understanding the 
basis of AI, surgeons can be part of the designing process of new machine integrated with AI systems. In 
fact, by highlighting the surgical point of view and changing their skills to adapt to this new way of 
delivering clinical care, surgeons can be part of this new way to provide health care that will become 
more targeted, safer, and always more accurate, improving success rates and reducing mortality and 
postoperative morbidity.

LIMITATIONS
As a minireview, this article has potential limitations common to all reviews. These include potential 
bias, like the influence of the authors' personal viewpoints and gaps in literature searching that may 
lead to the omission of relevant data.

CONCLUSION
AI-based technologies, especially ML and DL, have entered the field of oncology, bringing new 
perspectives and improving accuracy in different fields. In surgery, new CV system and intra-operative 
image analyses are currently helping surgeons to be more accurate, reducing human error and 
improving survival. By learning the basis of AI, surgeons can take part in this revolution to optimize 
surgical care of oncologic disease.
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Abstract
Gastric cancer (GC) is a major cancer worldwide, with high mortality and 
morbidity. Endoscopy, important for the early detection of GC, requires trained 
skills, high-quality technologies, surveillance and screening programs. Early 
diagnosis allows a better prognosis, through surgical or curative endoscopic 
therapy. Magnified endoscopy with virtual chromoendoscopy remarkably 
improve the detection of early gastric cancer (EGC) when endoscopy is performed 
by expert endoscopists. Artificial intelligence (AI) has also been introduced to GC 
diagnostics to increase diagnostic efficiency. AI improves the early detection of 
gastric lesions because it supports the non-expert and experienced endoscopist in 
defining the margins of the tumor and the depth of infiltration. AI increases the 
detection rate of EGC, reduces the rate of missing tumors, and characterizes 
EGCs, allowing clinicians to make the best therapeutic decision, that is, one that 
ensures curability. AI has had a remarkable evolution in medicine in recent years, 
moving from the research phase to clinical practice. In addition, the diagnosis of 
GC has markedly progressed. We predict that AI will allow great evolution in the 
diagnosis and treatment of EGC by overcoming the variability in performance 
that is currently a limitation of chromoendoscopy.

Key Words: Early gastric cancer; Artificial intelligence; Helicobacter pylori; Endoscopic 
submucosal dissection; Dysplasia; Computer-aided; Detection
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Core Tip: Early diagnosis and treatment of gastric cancer (GC) can benefit from the introduction of 
artificial intelligence (AI) into endoscopic diagnostics of the upper digestive tract. AI improves endoscopic 
diagnosis because it overcomes the difficulty of diagnosis linked to the experience of the endoscopist. 
Improving endoscopic diagnosis will allow for better treatment, which is more likely to be curative, with 
submucosal endoscopic dissection or surgery. However, because research advances in this area continue to 
be rapid, prospective multicenter studies are needed on the application of AI to the diagnosis of early GC.

Citation: Panarese A. Usefulness of artificial intelligence in early gastric cancer. Artif Intell Cancer 2022; 3(2): 17-
26
URL: https://www.wjgnet.com/2644-3228/full/v3/i2/17.htm
DOI: https://dx.doi.org/10.35713/aic.v3.i2.17

THE RELEVANCE DIAGNOSIS OF GASTRIC CANCER
Gastric cancer (GC), the fourth leading cause of cancer in men and seventh in women, is still third for 
cancer-related deaths worldwide[1]. It’s 5-year survival rate is less than 40%[2] and its prognosis is 
related to the stage at the time of detection. The 5-year survival rate of patients with early gastric cancer 
(EGC) is 91.5%, whereas it is 16.4% for patients in the advanced stage[2-4]. The screening programs are 
cost effective in high-incidence regions[1,5] and advanced endoscopic technologies allow endoscopists 
to diagnose EGC[6-8]; however, optical diagnosis requires a period of training[9].

Recently, the practice of medicine has changed with the development of artificial intelligence (AI) 
based on image recognition with deep learning (DL) using the convolutional neural network (CNN), 
which, in upper endoscopy, is trained with endoscopic images and detects GC accurately[10-14]. Several 
AI-assisted CNN computer-aided diagnosis (CAD) systems have been built, with diagnostic precision in 
the detection of GC based on different types of endoscopic images. AI helps endoscopists to achieve the 
accuracy needed for GC screening, surveillance of precancerous, as well as for detecting the depth of 
invasion of gastric lesions, and when applied to radiological imaging techniques, lymph node and 
peritoneal metastasis[11-14].

OPTICAL ENDOSCOPIC DIAGNOSIS OF EGC 
While computed tomography, endoscopic ultrasound, and positron emission tomography are important 
for the diagnosis and staging of advanced GC, endoscopy plays an essential role in the early detection of 
EGC, as it allows the gastric mucosa to be examined directly. Endoscopy with targeted biopsies is the 
gold standard method for diagnosing EGC, and the accurate diagnosis of EGC through endoscopic 
imaging is a primary goal for improving the poor prognosis of patients[4,15-17]. Although the quality 
and accuracy of endoscopic detection are variable between centers and endoscopists, endoscopy is 
crucial because many early-stage tumors (i.e. intramucosal cancer) can be resected endoscopically in a 
curative manner, with an excellent prognosis at 5 years[4,18,19].

Unfortunately, few endoscopists are experts in advanced endoscopic imaging, and diagnostic 
accuracy depends largely on the clinical experience of the experts and is influenced by multiple factors, 
such as training and technologies[9,20]. Ultimately, early diagnosis and curative treatment are 
important for prognosis but can be difficult to achieve depending on the endoscopist[10,21]. The false 
negative rate of GC detected by esophagogastroduodenoscopy is 4.6-25.8[22-24], with higher values for 
inexperienced endoscopists[9,25]. The diagnostic capacity of endoscopists, due to the endoscopic 
appearance of EGC, which is usually very subtle, varies widely with regard to the differentiation 
between GC and gastritis, the prediction of the horizontal extension of GC and the depth of invasion
[26].

As lesions of the gastric mucosa develop according to the Correa cascade, from atrophy to intestinal 
metaplasia, intraepithelial neoplasia and invasive neoplasia[27,28]; improving the accuracy of 
endoscopic diagnosis of precancerous lesions and EGC through screening and surveillance programs, is 
useful to reduce the incidence and mortality of GC[29-31]. The standard modality for the detection of 
EGC is endoscopy with white light imaging (WLI), but its overall sensitivity is not satisfactory (40%-
60%)[32]. Magnified endoscopy (ME) with image-enhanced endoscopy techniques such as narrow-band 
imaging (NBI; Olympus Co., Tokyo, Japan), flexible spectral imaging color enhancement (FICE; Fujifilm 
Co., Tokyo, Japan), and blue laser imaging (BLI; Fujifilm), improve the accuracy of the detection of 
gastric lesions[26,33,34]. In particular, ME-NBI, the most frequent technology used in AI studies, 
achieves significantly better sensitivity, specificity, and accuracy than WLI, facilitating examination of 
the glandular epithelium in the stomach by observing the microvascular architecture and structure of 
the microsurface[32,35-39].

https://www.wjgnet.com/2644-3228/full/v3/i2/17.htm
https://dx.doi.org/10.35713/aic.v3.i2.17


Panarese A. AI and early GC

AIC https://www.wjgnet.com 19 April 28, 2022 Volume 3 Issue 2

However, the virtual chromoendoscopic diagnosis of EGC requires considerable skill and experience
[9,38,40,41]. The diagnostic effectiveness of endoscopists non yet trained in differentiating EGC from 
non-cancerous lesions with ME-NBI is disappointing[9,36,41]. Optical diagnosis can improve with AI-
assisted CNN, which has been mainly applied to ME-NBI[14].

AI FOR THE DIAGNOSIS OF EGC
AI, which mimics human cognitive function[42] with its efficient computational power and learning 
capabilities, can be applied to GC because it processes and analyzes large amounts of data with systems 
that classify and recognize lesion images without the need to write complicated image processing 
algorithms[43]. Therefore, AI could help gastroenterologists in clinical diagnosis and decision-making. 
Technically, the DL method approximates complex information using a multilayer system (e.g., CNN), 
in which neural layers connect only to the next layer (Figure 1), overcoming the limitation of the "black 
box" of previous systems because it shows the reasons for the decisions made[44]. Over the years, new 
CNN-based systems have been introduced to analyze lesions of the gastric mucosa, using higher quality 
images and image selection strategies based on evidence from previous experiences. CNN systems in 
the initial training phase take a few hours to generate the identification system, which can then be used 
repeatedly; and has a good adaptability as it can be used on multiple platforms for the real-time analysis 
of JPEG images or video captured by chromoendoscopy. Magnifying chromoendoscopic images can 
improve the speed and accuracy of CNN diagnostics compared to conventional endoscopy alone[45,
46]. Typically, training images are judged by experienced endoscopists and pathologically confirmed, 
and only endoscopic and chromoendoscopic images with appropriate magnification and typical 
manifestation for learning the CNN model are selected.

In recent studies, other important outcomes have been added to the main outcome to establish 
endoscopic resectability, namely the identification of the margins and depth of the lesion[47-49]. Gastric 
tumors of differentiated intramucous type (m) or infiltrating only the superficial layer of the submucosal 
(≤ 500 μm: Sm1) can be resected endoscopically, while those that deeply invade the submucosal (> 500 
μm: Sm2) are surgically resected because of the risk of lymph node and distant metastases. The optical 
differentiation between m/Sm1 and Sm2 is often difficult[19].

Using PubMed, Embase, Web of Science, and Cochrane Library databases to search the literature on 
CAD systems for the diagnosis of EGC, we identified 26 relevant physician-initiated studies through 
November 2021. Table 1 summarizes the main characteristics of the studies (two single-center 
prospective[50,51], two multicenter prospective[49,52], and twenty-two retrospective[14,45-48,53-69]): 
Study design; endoscopic modality; main study aim; and subjects/lesions/images for validation. 
Table 2 describes the endpoints of the studies.

Selected studies included a diagnostic test on the application of AI in endoscopy for the diagnosis of 
EGC; the absolute numbers of true-positive, false-negative, true-negative and false-positive; clear 
information about data and number of images; the description of the algorithms and the process applied 
to the EGC diagnosis.

To form a training dataset, 11 studies used only WLI images[47,50-53,55-58,60,61], 9 only virtual 
chromoendoscopy images[48-49,59,63-68], 1 only WLI and chromoendoscopy images[54], and 5 WLI, 
chromoendoscopy and NBI images[14,45,46,62,69]. The identified studies were largely published in the 
last 3 years.

Overall, current CNN systems work quite well in detecting the endoscopic/chromoendoscopic 
characteristics of EGC and other gastric lesions and could provide diagnostic support to experienced 
and non-expert endoscopists in future practice. AI-assisted CNN CAD systems can avoid subjectivity 
during the processing and diagnosis of endoscopic/chromoendoscopic images; moreover, in the 
screening of GC, they work as a “confirmer” or “corrector,” providing a second opinion to reduce the 
diagnostic errors committed by endoscopists and suggesting optimal treatment. Current studies by 
Asian authors[54,59] confirm that CAD systems detect EGCs and estimate the depth of infiltration and 
extension, overcoming the problem of operator training and the subjectivity of diagnosis. Moreover, if 
the first studies report comparable results between experts and CAD systems, the most recent ones 
show that AI has reached a sensitivity even higher than that of experts, with similar specificity[46]. Over 
time, images used for CAD system training have improved and, at present, advanced training strategies 
and videos are being used.

Namikawa et al[58] first reported the usefulness of AI systems in GC detection, developing the 
“original convolutional neural network (O-CNN),” with a relatively low positive predictive value 
(PPV). The same authors developed an advanced AI-based diagnostic system, “advanced CNN (A-
CNN)”, by adding a new training dataset to the O-CNN and evaluated its applicability for the classi-
fication of GC and gastric ulcer. The diagnostic performance of A-CNN was evaluated retrospectively 
using an independent validation dataset and compared to that of the O-CNN by estimating the overall 
accuracy of the classification. The sensitivity, specificity, and PPV rates of A-CNN for the classification 
of GC at the lesion level were 99.0%, 93.3%, and 92.5%, respectively, and 93.3%, 99.0%, and 99.1% for the 
classification of gastric ulcers. The overall accuracy of O-CNN and A-CNN in the classification of GC 
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Table 1 Studies involving computer-aided diagnosis for early gastric cancer detection

Ref. Study design Endoscopic 
modality Main study aim Subjects for 

validation

Kubota et al[53], 2012 Retrospective WLI Prediction of invasion depth 344 patients

Miyaki et al[63], 2013 Retrospective ME-FICE Differentiation of cancerous areas from non-cancerous 
areas

46 patients

Miyaki et al[64], 2015 Retrospective ME-BLI Differentiation of cancerous areas from non-cancerous 
areas

95 patients

Kanesaka et al[65], 
2018

Retrospective ME-NBI Delineation of cancerous areas 81 images

Hirasawa et al[14], 
2018

Retrospective WLI, CE, NBI Delineation of cancer 69 patients

Zhu et al[54], 2019 Retrospective WLI, NBI Prediction of invasion depth 203 lesions

Cho et al[50], 2019 Prospective validation 
dataset

WLI Differentiation of cancerous areas from non-cancerous 
areas

200 patients

Ishioka et al[55], 2019 Retrospective WLI Detection of GC 62 patients

Yoon et al[56], 2019 Retrospective WLI Detection of GC 800 patients

Tang et al[57], 2020 Retrospective WLI Differentiation of cancerous areas from non-cancerous 
areas

279 patients

Namikawa et al[58], 
2020

Retrospective WLI Differentiation of cancerous areas from non-cancerous 
areas

220 lesions

Li et al[66], 2020 Retrospective ME-NBI Detection of cancer 341 images

An et al[62], 2020 Retrospective WLI, CE, ME-NBI Delineation of EGC margins 355 images

Horiuki et al[67], 
2020

Retrospective ME-NBI Differentiation of cancerous areas from non-cancerous 
areas

258 images

Nagao et al[45], 2020 Retrospective WLI, CE, NBI Prediction of invasion depth of GC 1084 GC

Wu et al[52], 2021 Prospective WLI Detection of Blind spotsAnd early gastric cancer 1050 patients

Ueyama et al[59], 
2021

Retrospective ME-NBI Differentiation of cancerous areas from non-cancerous 
areas

2300 images

Ling et al[48], 2021 Retrospective ME-NBI Differentiation status and margins for EGC 139 + 58 + 87 EGCs

Ikenoyama et al[46], 
2021

Retrospective WLI, CE, NBI Detection of cancer 140 lesions

Hu et al[68], 2021 Retrospective ME-NBI Detection of cancer 295 lesions

Oura et al[60], 2021 Retrospective WLI Missing GC and point out low-quality images 855 lesions + 50 
lesions

Zhang et al[61], 2021 Retrospective WLI Detection of cancer 1091 images

Wu et al[51], 2021 Prospective WLI Screening gastric lesions 10000 patients

Hamada et al[69], 
2022

Retrospective WLI, CE, BLI Depth of invasion of EGC 68 patients

Nam et al[47], 2022 Retrospective WLI Lesion detection, differentiation and depth 1366 patients

Wu et al[49], 2022 Prospective ME-NBI GC and EGC detection, EGC invasion depth and differ-
entiation status

BLI: Blue laser imaging; CE: Color enhancement; EGC: Early gastric cancer; ME-NBI: Magnification endoscopy; NBI: Narrow-band imaging; WLI: White 
light imaging.

and gastric ulcer was 45.9% (GC: 100%, gastric ulcer 0.8%) and 95.9% (GC: 99.0%, gastric ulcer 93.3%), 
respectively, at the lesion level. The A-CNN system can effectively classify GC and gastric ulcer. Yu et al
[36] explored the diagnostic capacity of the CNN system with ME-NBI to distinguish EGC from 
gastritis. CNN accuracy with ME-NBI images was 85.3% (220 of 258 images correctly diagnosed). Rates 
of sensitivity, specificity, PPV, and negative predictive value (NPV) were 95.4%, 71.0%, 82.3%, and 
91.7%, respectively. In total, 7 of 151 EGC images were identified as gastritis, while 31 of the 107 gastritis 
images were recognized as EGC. The overall test speed was 51.83 images/s (0.02 s/image). CNN with 
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Table 2 Endpoints of the extracted studies

Ref. Main outcome

[45,53,54,69] Accuracy rate of diagnosing the depth of wall invasion of gastric cancer

[64] Detection rate of gastric cancer 

[63] Identification rate of cancerous lesions, reddened lesions and surrounding tissue

[48,62,65] Detection rate of early gastric cancer and its margins

[14] Identification rate of gastric cancer and gastric ulcer

[50] Identification rate of advanced gastric cancer, early gastric cancer, high grade dysplasia, low grade dysplasia and non-neoplasm

[46,51,55,57,59,60,
66,68] 

Detection rate of early gastric cancer

[56] Detection rate of early gastric cancer and its localization. Accuracy rate of diagnosing the depth of wall invasion of gastric cancer

[58] Identification rate of early gastric cancer, advanced gastric cancer and benign gastric ulcer

[67] Identification rate of early gastric cancer and gastritis

[52] Identification rate of early gastric cancer and number of blind spots

[61] Identification rate of early gastric cancer and other gastric lesions (high grade dysplasia, peptic ulcer, advanced gastric cancer, gastric 
submucosal tumors and normal gastric mucosa)

[47] Identification rate of early gastric cancer, advanced gastric cancer and benign gastric ulcer. Accuracy rate of diagnosing the depth of 
wall invasion of gastric cancer

[49] Detection rate of early gastric cancer. Accuracy rate of diagnosing the depth of wall invasion of gastric cancer

Figure 1  The multilayer system in the diagnosis of early gatric cancer.

ME-NBI can differentiate between EGC and gastritis with high sensitivity and NPV in a short period of 
time. Thus, the A-CNN system can complement current clinical practice of diagnosis with ME-NBI.

Nam et al[47] have developed and validated CNN-based AI models for lesion detection, differential 
diagnosis (AI-DDx), and depth of invasion (AI-ID; pT1a vs pT1b among EGC). AI-DDx is comparable to 
experts and outperforms novice and intermediate endoscopists in the differential diagnosis of gastric 
mucosal lesions. AI-ID performs better than endoscopic ultrasound to assess depth of invasion. Ling et 
al[48] have developed a system to identify in real time with precision with ME-NBI the state of differen-
tiation and delineate the margins of the EGC, fundamental to determine a surgical strategy and achieve 
the curative resection. In the unprocessed videos of EGC, the system obtained a real-time diagnosis of 
EGC differentiation and its margins ME-NBI endoscopy. This system has achieved higher performance 
than experts and has been successfully tested in real EGC videos.

Zhu et al[54] represented a further step forward because they developed an algorithm capable of 
differentiating lesions with Sm2 invasion depth from m/Sm1. AI has presented 76% sensitivity and 96% 
specificity in identifying “Sm2 or deeper” cancers, resulting in significantly higher sensitivity and 
specificity than those achieved through visual inspection of endoscopists. The specificity of 96% could 
minimize the overdiagnosis of invasion, which would contribute to a reduction of unnecessary surgeries 
for m/Sm1 cancers.

Wu et al[52], in a prospective multicenter randomized controlled trial, developed a CNN system to 
monitor blind spots during esophagogastroduodenoscopy, updating the previous system 
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(ENDOANGEL), verifying efficacy in improving endoscopy quality, and pretesting performance in 
detecting EGC.

Ultimately, AI is even superior to endoscopists experienced in identifying and classifying ECC, 
eliminates interobserver variability, and can train inexperienced endoscopists. Yet, it must optimize the 
ability to recognize all lesions (PPV) and not interpret the inflammatory or benign aspects of the mucosa 
as neoplastic (NPV). Over time, CAD systems have improved image selection strategies with strict 
criteria, using high-quality data and videos, and eliminating overlearning and misdiagnosis. Videos 
improve the performance of AI[55] because they represent real-life scenarios, and compared to static 
images improve PPV and NPV. Regarding the selection of images, gastritis, that is, the presence of 
inflammation, reduces the performance of AI[14] and endoscopists[70]. The small (diameter ≤ 5 mm) 
and depressed EGCs, difficult to distinguish from gastritis even for experienced endoscopists, influence 
the rate of false negatives; and gastritis with redness, atrophy and intestinal metaplasia affects the rate 
of false positives. In dedicated studies, CAD systems detect Helicobacter pylori (H. pylori) infection 
(sensitivity 89%, specificity 87% and diagnostic time 194 s)[71,72], but, regarding the diagnosis of EGC 
with AI sistems, we propose to evaluate the gastric mucosa after the eradication of H. pylori to reduce 
the intensity of redness of gastritis.

Integrating in appropriate algorithms, through the intersection of engineering and medical expertise, 
high-quality image sets, poor images, and images from regular sites, will increase clinical effectiveness. 
Moreover, the products obtained through collaboration among centers specialized in the diagnosis and 
treatment of gastric lesions are reproducible and the limitation in applying AI to the diagnosis of EGC is 
the acquisition of new technologies, which requires investment. Finally, prospective multicenter trials 
are needed.

CONCLUSION
The application of AI to the clinical practice of the upper digestive tract increases the rate of EGC 
compared to all GCs, exceeding the subjectivity of the diagnosis and reducing the chance of missing 
EGCs. AI recognizes those lesions that not even the most experienced endoscopists can detect, as if 
“illuminating” the images with its third artificial eye. Of course, AI increases the accuracy of endoscopic 
diagnosis of EGC, especially when combined with the experience of endoscopists. However, since its 
introduction in this field is very recent, the results in clinical practice must be further validated, 
considering all possible aspects, both technical and technological concerning endoscopy, and organiza-
tional ones.

FOOTNOTES
Author contributions: Panarese A conceived, designed, wrote, and revised the manuscript.

Conflict-of-interest statement: There is no conflict of interest associated with the author.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by 
external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-
NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license 
their derivative works on different terms, provided the original work is properly cited and the use is non-
commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Italy

ORCID number: Alba Panarese 0000-0002-6931-2171.

S-Editor: Liu JH 
L-Editor: A 
P-Editor: Liu JH

REFERENCES
Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, Znaor A, Bray F. Estimating the global cancer 
incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 2019; 144: 1941-1953 [PMID: 30350310 
DOI: 10.1002/ijc.31937]

1     

Song Z, Wu Y, Yang J, Yang D, Fang X. Progress in the treatment of advanced gastric cancer. Tumour Biol 2017; 39: 
1010428317714626 [PMID: 28671042 DOI: 10.1177/1010428317714626]

2     

Nishizawa T, Yahagi N. Long-Term Outcomes of Using Endoscopic Submucosal Dissection to Treat Early Gastric Cancer. 3     

https://creativecommons.org/Licenses/by-nc/4.0/
http://orcid.org/0000-0002-6931-2171
http://orcid.org/0000-0002-6931-2171
http://www.ncbi.nlm.nih.gov/pubmed/30350310
https://dx.doi.org/10.1002/ijc.31937
http://www.ncbi.nlm.nih.gov/pubmed/28671042
https://dx.doi.org/10.1177/1010428317714626


Panarese A. AI and early GC

AIC https://www.wjgnet.com 23 April 28, 2022 Volume 3 Issue 2

Gut Liver 2018; 12: 119-124 [PMID: 28673068 DOI: 10.5009/gnl17095]
Young E, Philpott H, Singh R. Endoscopic diagnosis and treatment of gastric dysplasia and early cancer: Current evidence 
and what the future may hold. World J Gastroenterol 2021; 27: 5126-5151 [PMID: 34497440 DOI: 
10.3748/wjg.v27.i31.5126]

4     

Zhang X, Li M, Chen S, Hu J, Guo Q, Liu R, Zheng H, Jin Z, Yuan Y, Xi Y, Hua B. Endoscopic Screening in Asian 
Countries Is Associated With Reduced Gastric Cancer Mortality: A Meta-analysis and Systematic Review. 
Gastroenterology 2018; 155: 347-354.e9 [PMID: 29723507 DOI: 10.1053/j.gastro.2018.04.026]

5     

Yao K, Takaki Y, Matsui T, Iwashita A, Anagnostopoulos GK, Kaye P, Ragunath K. Clinical application of magnification 
endoscopy and narrow-band imaging in the upper gastrointestinal tract: new imaging techniques for detecting and 
characterizing gastrointestinal neoplasia. Gastrointest Endosc Clin N Am 2008; 18: 415-433, vii [PMID: 18674694 DOI: 
10.1016/j.giec.2008.05.011]

6     

Osawa H, Yamamoto H, Miura Y, Yoshizawa M, Sunada K, Satoh K, Sugano K. Diagnosis of extent of early gastric 
cancer using flexible spectral imaging color enhancement. World J Gastrointest Endosc 2012; 4: 356-361 [PMID: 
22912909 DOI: 10.4253/wjge.v4.i8.356]

7     

Kimura-Tsuchiya R, Dohi O, Fujita Y, Yagi N, Majima A, Horii Y, Kitaichi T, Onozawa Y, Suzuki K, Tomie A, 
Okayama T, Yoshida N, Kamada K, Katada K, Uchiyama K, Ishikawa T, Takagi T, Handa O, Konishi H, Kishimoto M, 
Naito Y, Yanagisawa A, Itoh Y. Magnifying Endoscopy with Blue Laser Imaging Improves the Microstructure 
Visualization in Early Gastric Cancer: Comparison of Magnifying Endoscopy with Narrow-Band Imaging. Gastroenterol 
Res Pract 2017; 2017: 8303046 [PMID: 28947900 DOI: 10.1155/2017/8303046]

8     

Wagner A, Zandanell S, Kiesslich T, Neureiter D, Klieser E, Holzinger J, Berr F. Systematic Review on Optical Diagnosis 
of Early Gastrointestinal Neoplasia. J Clin Med 2021; 10 [PMID: 34202001 DOI: 10.3390/jcm10132794]

9     

Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer 
with deep neural networks. Nature 2017; 542: 115-118 [PMID: 28117445 DOI: 10.1038/nature21056]

10     

Ehteshami Bejnordi B, Veta M, Johannes van Diest P, van Ginneken B, Karssemeijer N, Litjens G, van der Laak JAWM; 
the CAMELYON16 Consortium, Hermsen M, Manson QF, Balkenhol M, Geessink O, Stathonikos N, van Dijk MC, Bult 
P, Beca F, Beck AH, Wang D, Khosla A, Gargeya R, Irshad H, Zhong A, Dou Q, Li Q, Chen H, Lin HJ, Heng PA, Haß C, 
Bruni E, Wong Q, Halici U, Öner MÜ, Cetin-Atalay R, Berseth M, Khvatkov V, Vylegzhanin A, Kraus O, Shaban M, 
Rajpoot N, Awan R, Sirinukunwattana K, Qaiser T, Tsang YW, Tellez D, Annuscheit J, Hufnagl P, Valkonen M, Kartasalo 
K, Latonen L, Ruusuvuori P, Liimatainen K, Albarqouni S, Mungal B, George A, Demirci S, Navab N, Watanabe S, Seno 
S, Takenaka Y, Matsuda H, Ahmady Phoulady H, Kovalev V, Kalinovsky A, Liauchuk V, Bueno G, Fernandez-Carrobles 
MM, Serrano I, Deniz O, Racoceanu D, Venâncio R. Diagnostic Assessment of Deep Learning Algorithms for Detection of 
Lymph Node Metastases in Women With Breast Cancer. JAMA 2017; 318: 2199-2210 [PMID: 29234806 DOI: 
10.1001/jama.2017.14585]

11     

Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, Allison T, Arnaout O, Abbosh C, Dunn IF, Mak RH, 
Tamimi RM, Tempany CM, Swanton C, Hoffmann U, Schwartz LH, Gillies RJ, Huang RY, Aerts HJWL. Artificial 
intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin 2019; 69: 127-157 [PMID: 
30720861 DOI: 10.3322/caac.21552]

12     

Szegedy C, Liu W, Jia Y, Sermanent P, Reed SE, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A.   Going deeper with 
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2015; 1-x9

13     

Hirasawa T, Aoyama K, Tanimoto T, Ishihara S, Shichijo S, Ozawa T, Ohnishi T, Fujishiro M, Matsuo K, Fujisaki J, Tada 
T. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic 
images. Gastric Cancer 2018; 21: 653-660 [PMID: 29335825 DOI: 10.1007/s10120-018-0793-2]

14     

Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. Lancet 2016; 388: 2654-2664 [PMID: 
27156933 DOI: 10.1016/S0140-6736(16)30354-3]

15     

Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. Gastric cancer: descriptive epidemiology, risk 
factors, screening, and prevention. Cancer Epidemiol Biomarkers Prev 2014; 23: 700-713 [PMID: 24618998 DOI: 
10.1158/1055-9965.EPI-13-1057]

16     

Kono Y, Kanzaki H, Iwamuro M, Kawano S, Kawahara Y, Okada H. Reality of Gastric Cancer in Young Patients: The 
Importance and Difficulty of the Early Diagnosis, Prevention and Treatment. Acta Med Okayama 2020; 74: 461-466 
[PMID: 33361865 DOI: 10.18926/AMO/61204]

17     

Draganov PV, Wang AY, Othman MO, Fukami N. AGA Institute Clinical Practice Update: Endoscopic Submucosal 
Dissection in the United States. Clin Gastroenterol Hepatol 2019; 17: 16-25.e1 [PMID: 30077787 DOI: 
10.1016/j.cgh.2018.07.041]

18     

Ono H, Yao K, Fujishiro M, Oda I, Uedo N, Nimura S, Yahagi N, Iishi H, Oka M, Ajioka Y, Fujimoto K. Guidelines for 
endoscopic submucosal dissection and endoscopic mucosal resection for early gastric cancer (second edition). Dig Endosc 
2021; 33: 4-20 [PMID: 33107115 DOI: 10.1111/den.13883]

19     

Yamazato T, Oyama T, Yoshida T, Baba Y, Yamanouchi K, Ishii Y, Inoue F, Toda S, Mannen K, Shimoda R, Iwakiri R, 
Fujimoto K. Two years' intensive training in endoscopic diagnosis facilitates detection of early gastric cancer. Intern Med 
2012; 51: 1461-1465 [PMID: 22728475 DOI: 10.2169/internalmedicine.51.7414]

20     

Barbour JA, O'Toole P, Suzuki N, Dolwani S. Learning endoscopic submucosal dissection in the UK: Barriers, solutions 
and pathways for training. Frontline Gastroenterol 2021; 12: 671-676 [PMID: 34917325 DOI: 
10.1136/flgastro-2020-101526]

21     

Menon S, Trudgill N. How commonly is upper gastrointestinal cancer missed at endoscopy? Endosc Int Open 2014; 2: 
E46-E50 [PMID: 26135259 DOI: 10.1055/s-0034-1365524]

22     

Hosokawa O, Hattori M, Douden K, Hayashi H, Ohta K, Kaizaki Y. Difference in accuracy between gastroscopy and 
colonoscopy for detection of cancer. Hepatogastroenterology 2007; 54: 442-444 [PMID: 17523293]

23     

Raftopoulos SC, Segarajasingam DS, Burke V, Ee HC, Yusoff IF. A cohort study of missed and new cancers after 
esophagogastroduodenoscopy. Am J Gastroenterol 2010; 105: 1292-1297 [PMID: 20068557 DOI: 10.1038/ajg.2009.736]

24     

Yoshimizu S, Hirasawa T, Horiuchi Y, Omae M, Ishiyama A, Yoshio T, Tsuchida T, Fujisaki J. Differences in upper 25     

http://www.ncbi.nlm.nih.gov/pubmed/28673068
https://dx.doi.org/10.5009/gnl17095
http://www.ncbi.nlm.nih.gov/pubmed/34497440
https://dx.doi.org/10.3748/wjg.v27.i31.5126
http://www.ncbi.nlm.nih.gov/pubmed/29723507
https://dx.doi.org/10.1053/j.gastro.2018.04.026
http://www.ncbi.nlm.nih.gov/pubmed/18674694
https://dx.doi.org/10.1016/j.giec.2008.05.011
http://www.ncbi.nlm.nih.gov/pubmed/22912909
https://dx.doi.org/10.4253/wjge.v4.i8.356
http://www.ncbi.nlm.nih.gov/pubmed/28947900
https://dx.doi.org/10.1155/2017/8303046
http://www.ncbi.nlm.nih.gov/pubmed/34202001
https://dx.doi.org/10.3390/jcm10132794
http://www.ncbi.nlm.nih.gov/pubmed/28117445
https://dx.doi.org/10.1038/nature21056
http://www.ncbi.nlm.nih.gov/pubmed/29234806
https://dx.doi.org/10.1001/jama.2017.14585
http://www.ncbi.nlm.nih.gov/pubmed/30720861
https://dx.doi.org/10.3322/caac.21552
http://www.ncbi.nlm.nih.gov/pubmed/29335825
https://dx.doi.org/10.1007/s10120-018-0793-2
http://www.ncbi.nlm.nih.gov/pubmed/27156933
https://dx.doi.org/10.1016/S0140-6736(16)30354-3
http://www.ncbi.nlm.nih.gov/pubmed/24618998
https://dx.doi.org/10.1158/1055-9965.EPI-13-1057
http://www.ncbi.nlm.nih.gov/pubmed/33361865
https://dx.doi.org/10.18926/AMO/61204
http://www.ncbi.nlm.nih.gov/pubmed/30077787
https://dx.doi.org/10.1016/j.cgh.2018.07.041
http://www.ncbi.nlm.nih.gov/pubmed/33107115
https://dx.doi.org/10.1111/den.13883
http://www.ncbi.nlm.nih.gov/pubmed/22728475
https://dx.doi.org/10.2169/internalmedicine.51.7414
http://www.ncbi.nlm.nih.gov/pubmed/34917325
https://dx.doi.org/10.1136/flgastro-2020-101526
http://www.ncbi.nlm.nih.gov/pubmed/26135259
https://dx.doi.org/10.1055/s-0034-1365524
http://www.ncbi.nlm.nih.gov/pubmed/17523293
http://www.ncbi.nlm.nih.gov/pubmed/20068557
https://dx.doi.org/10.1038/ajg.2009.736


Panarese A. AI and early GC

AIC https://www.wjgnet.com 24 April 28, 2022 Volume 3 Issue 2

gastrointestinal neoplasm detection rates based on inspection time and esophagogastroduodenoscopy training. Endosc Int 
Open 2018; 6: E1190-E1197 [PMID: 30302376 DOI: 10.1055/a-0655-7382]
Yao K, Uedo N, Kamada T, Hirasawa T, Nagahama T, Yoshinaga S, Oka M, Inoue K, Mabe K, Yao T, Yoshida M, 
Miyashiro I, Fujimoto K, Tajiri H. Guidelines for endoscopic diagnosis of early gastric cancer. Dig Endosc 2020; 32: 663-
698 [PMID: 32275342 DOI: 10.1111/den.13684]

26     

Correa P, Piazuelo MB. The gastric precancerous cascade. J Dig Dis 2012; 13: 2-9 [PMID: 22188910 DOI: 
10.1111/j.1751-2980.2011.00550.x]

27     

Kodama M, Murakami K, Okimoto T, Abe H, Sato R, Ogawa R, Mizukami K, Shiota S, Nakagawa Y, Soma W, Arita T, 
Fujioka T. Histological characteristics of gastric mucosa prior to Helicobacter pylori eradication may predict gastric cancer. 
Scand J Gastroenterol 2013; 48: 1249-1256 [PMID: 24079881 DOI: 10.3109/00365521.2013.838994]

28     

Lee KJ, Inoue M, Otani T, Iwasaki M, Sasazuki S, Tsugane S; JPHC Study Group. Gastric cancer screening and 
subsequent risk of gastric cancer: a large-scale population-based cohort study, with a 13-year follow-up in Japan. Int J 
Cancer 2006; 118: 2315-2321 [PMID: 16331632 DOI: 10.1002/ijc.21664]

29     

Park SY, Jeon SW, Jung MK, Cho CM, Tak WY, Kweon YO, Kim SK, Choi YH. Long-term follow-up study of gastric 
intraepithelial neoplasias: progression from low-grade dysplasia to invasive carcinoma. Eur J Gastroenterol Hepatol 2008; 
20: 966-970 [PMID: 18787462 DOI: 10.1097/MEG.0b013e3283013d58]

30     

de Vries AC, van Grieken NC, Looman CW, Casparie MK, de Vries E, Meijer GA, Kuipers EJ. Gastric cancer risk in 
patients with premalignant gastric lesions: a nationwide cohort study in the Netherlands. Gastroenterology 2008; 134: 945-
952 [PMID: 18395075 DOI: 10.1053/j.gastro.2008.01.071]

31     

Ezoe Y, Muto M, Uedo N, Doyama H, Yao K, Oda I, Kaneko K, Kawahara Y, Yokoi C, Sugiura Y, Ishikawa H, Takeuchi 
Y, Kaneko Y, Saito Y. Magnifying narrowband imaging is more accurate than conventional white-light imaging in 
diagnosis of gastric mucosal cancer. Gastroenterology 2011; 141: 2017-2025.e3 [PMID: 21856268 DOI: 
10.1053/j.gastro.2011.08.007]

32     

Zhou F, Wu L, Huang M, Jin Q, Qin Y, Chen J. The accuracy of magnifying narrow band imaging (ME-NBI) in 
distinguishing between cancerous and noncancerous gastric lesions: A meta-analysis. Medicine (Baltimore) 2018; 97: 
e9780 [PMID: 29489678 DOI: 10.1097/MD.0000000000009780]

33     

Dohi O, Yagi N, Yoshida S, Ono S, Sanomura Y, Tanaka S, Naito Y, Kato M. Magnifying Blue Laser Imaging vs 
Magnifying Narrow-Band Imaging for the Diagnosis of Early Gastric Cancer: A Prospective, Multicenter, Comparative 
Study. Digestion 2017; 96: 127-134 [PMID: 28848169 DOI: 10.1159/000479553]

34     

Fujiyoshi MRA, Inoue H, Fujiyoshi Y, Nishikawa Y, Toshimori A, Shimamura Y, Tanabe M, Ikeda H, Onimaru M. 
Endoscopic Classifications of Early Gastric Cancer: A Literature Review. Cancers (Basel) 2021; 14 [PMID: 35008263 
DOI: 10.3390/cancers14010100]

35     

Yu H, Yang AM, Lu XH, Zhou WX, Yao F, Fei GJ, Guo T, Yao LQ, He LP, Wang BM. Magnifying narrow-band imaging 
endoscopy is superior in diagnosis of early gastric cancer. World J Gastroenterol 2015; 21: 9156-9162 [PMID: 26290643 
DOI: 10.3748/wjg.v21.i30.9156]

36     

Yao K. Clinical Application of Magnifying Endoscopy with Narrow-Band Imaging in the Stomach. Clin Endosc 2015; 48: 
481-490 [PMID: 26668793 DOI: 10.5946/ce.2015.48.6.481]

37     

Ang TL, Fock KM, Teo EK, Tan J, Poh CH, Ong J, Ang D. The diagnostic utility of narrow band imaging magnifying 
endoscopy in clinical practice in a population with intermediate gastric cancer risk. Eur J Gastroenterol Hepatol 2012; 24: 
362-367 [PMID: 22198222 DOI: 10.1097/MEG.0b013e3283500968]

38     

Ang TL, Pittayanon R, Lau JY, Rerknimitr R, Ho SH, Singh R, Kwek AB, Ang DS, Chiu PW, Luk S, Goh KL, Ong JP, 
Tan JY, Teo EK, Fock KM. A multicenter randomized comparison between high-definition white light endoscopy and 
narrow band imaging for detection of gastric lesions. Eur J Gastroenterol Hepatol 2015; 27: 1473-1478 [PMID: 26426836 
DOI: 10.1097/MEG.0000000000000478]

39     

Yao K, Uedo N, Muto M, Ishikawa H, Cardona HJ, Filho ECC, Pittayanon R, Olano C, Yao F, Parra-Blanco A, Ho SH, 
Avendano AG, Piscoya A, Fedorov E, Bialek AP, Mitrakov A, Caro L, Gonen C, Dolwani S, Farca A, Cuaresma LF, 
Bonilla JJ, Kasetsermwiriya W, Ragunath K, Kim SE, Marini M, Li H, Cimmino DG, Piskorz MM, Iacopini F, So JB, 
Yamazaki K, Kim GH, Ang TL, Milhomem-Cardoso DM, Waldbaum CA, Carvajal WAP, Hayward CM, Singh R, 
Banerjee R, Anagnostopoulos GK, Takahashi Y. Development of an E-learning System for the Endoscopic Diagnosis of 
Early Gastric Cancer: An International Multicenter Randomized Controlled Trial. EBioMedicine 2016; 9: 140-147 [PMID: 
27333048 DOI: 10.1016/j.ebiom.2016.05.016]

40     

Shibagaki K, Ishimura N, Yuki T, Taniguchi H, Aimi M, Kobayashi K, Kotani S, Yazaki T, Yamashita N, Tamagawa Y, 
Mishiro T, Ishihara S, Yasuda A, Kinshita Y. Magnification endoscopy in combination with acetic acid enhancement and 
narrow-band imaging for the accurate diagnosis of colonic neoplasms. Endosc Int Open 2020; 8: E488-E497 [PMID: 
32258370 DOI: 10.1055/a-1068-2056]

41     

Russel S, Norvig P.   Artificial Intelligence: A Modern Approach. 2th ed. Pearson Education, 200342     
Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI. 
A survey on deep learning in medical image analysis. Med Image Anal 2017; 42: 60-88 [PMID: 28778026 DOI: 
10.1016/j.media.2017.07.005]

43     

Yeung S, Downing NL, Fei-Fei L, Milstein A. Bedside Computer Vision - Moving Artificial Intelligence from Driver 
Assistance to Patient Safety. N Engl J Med 2018; 378: 1271-1273 [PMID: 29617592 DOI: 10.1056/NEJMp1716891]

44     

Nagao S, Tsuji Y, Sakaguchi Y, Takahashi Y, Minatsuki C, Niimi K, Yamashita H, Yamamichi N, Seto Y, Tada T, Koike 
K. Highly accurate artificial intelligence systems to predict the invasion depth of gastric cancer: efficacy of conventional 
white-light imaging, nonmagnifying narrow-band imaging, and indigo-carmine dye contrast imaging. Gastrointest Endosc 
2020; 92: 866-873.e1 [PMID: 32592776 DOI: 10.1016/j.gie.2020.06.047]

45     

Ikenoyama Y, Hirasawa T, Ishioka M, Namikawa K, Yoshimizu S, Horiuchi Y, Ishiyama A, Yoshio T, Tsuchida T, 
Takeuchi Y, Shichijo S, Katayama N, Fujisaki J, Tada T. Detecting early gastric cancer: Comparison between the 
diagnostic ability of convolutional neural networks and endoscopists. Dig Endosc 2021; 33: 141-150 [PMID: 32282110 
DOI: 10.1111/den.13688]

46     

http://www.ncbi.nlm.nih.gov/pubmed/30302376
https://dx.doi.org/10.1055/a-0655-7382
http://www.ncbi.nlm.nih.gov/pubmed/32275342
https://dx.doi.org/10.1111/den.13684
http://www.ncbi.nlm.nih.gov/pubmed/22188910
https://dx.doi.org/10.1111/j.1751-2980.2011.00550.x
http://www.ncbi.nlm.nih.gov/pubmed/24079881
https://dx.doi.org/10.3109/00365521.2013.838994
http://www.ncbi.nlm.nih.gov/pubmed/16331632
https://dx.doi.org/10.1002/ijc.21664
http://www.ncbi.nlm.nih.gov/pubmed/18787462
https://dx.doi.org/10.1097/MEG.0b013e3283013d58
http://www.ncbi.nlm.nih.gov/pubmed/18395075
https://dx.doi.org/10.1053/j.gastro.2008.01.071
http://www.ncbi.nlm.nih.gov/pubmed/21856268
https://dx.doi.org/10.1053/j.gastro.2011.08.007
http://www.ncbi.nlm.nih.gov/pubmed/29489678
https://dx.doi.org/10.1097/MD.0000000000009780
http://www.ncbi.nlm.nih.gov/pubmed/28848169
https://dx.doi.org/10.1159/000479553
http://www.ncbi.nlm.nih.gov/pubmed/35008263
https://dx.doi.org/10.3390/cancers14010100
http://www.ncbi.nlm.nih.gov/pubmed/26290643
https://dx.doi.org/10.3748/wjg.v21.i30.9156
http://www.ncbi.nlm.nih.gov/pubmed/26668793
https://dx.doi.org/10.5946/ce.2015.48.6.481
http://www.ncbi.nlm.nih.gov/pubmed/22198222
https://dx.doi.org/10.1097/MEG.0b013e3283500968
http://www.ncbi.nlm.nih.gov/pubmed/26426836
https://dx.doi.org/10.1097/MEG.0000000000000478
http://www.ncbi.nlm.nih.gov/pubmed/27333048
https://dx.doi.org/10.1016/j.ebiom.2016.05.016
http://www.ncbi.nlm.nih.gov/pubmed/32258370
https://dx.doi.org/10.1055/a-1068-2056
http://www.ncbi.nlm.nih.gov/pubmed/28778026
https://dx.doi.org/10.1016/j.media.2017.07.005
http://www.ncbi.nlm.nih.gov/pubmed/29617592
https://dx.doi.org/10.1056/NEJMp1716891
http://www.ncbi.nlm.nih.gov/pubmed/32592776
https://dx.doi.org/10.1016/j.gie.2020.06.047
http://www.ncbi.nlm.nih.gov/pubmed/32282110
https://dx.doi.org/10.1111/den.13688


Panarese A. AI and early GC

AIC https://www.wjgnet.com 25 April 28, 2022 Volume 3 Issue 2

Nam JY, Chung HJ, Choi KS, Lee H, Kim TJ, Soh H, Kang EA, Cho SJ, Ye JC, Im JP, Kim SG, Kim JS, Chung H, Lee 
JH. Deep learning model for diagnosing gastric mucosal lesions using endoscopic images: development, validation, and 
method comparison. Gastrointest Endosc 2022; 95: 258-268.e10 [PMID: 34492271 DOI: 10.1016/j.gie.2021.08.022]

47     

Ling T, Wu L, Fu Y, Xu Q, An P, Zhang J, Hu S, Chen Y, He X, Wang J, Chen X, Zhou J, Xu Y, Zou X, Yu H. A deep 
learning-based system for identifying differentiation status and delineating the margins of early gastric cancer in 
magnifying narrow-band imaging endoscopy. Endoscopy 2021; 53: 469-477 [PMID: 32725617 DOI: 10.1055/a-1229-0920]

48     

Wu L, Wang J, He X, Zhu Y, Jiang X, Chen Y, Wang Y, Huang L, Shang R, Dong Z, Chen B, Tao X, Wu Q, Yu H. Deep 
learning system compared with expert endoscopists in predicting early gastric cancer and its invasion depth and 
differentiation status (with videos). Gastrointest Endosc 2022; 95: 92-104.e3 [PMID: 34245752 DOI: 
10.1016/j.gie.2021.06.033]

49     

Cho BJ, Bang CS, Park SW, Yang YJ, Seo SI, Lim H, Shin WG, Hong JT, Yoo YT, Hong SH, Choi JH, Lee JJ, Baik GH. 
Automated classification of gastric neoplasms in endoscopic images using a convolutional neural network. Endoscopy 
2019; 51: 1121-1129 [PMID: 31443108 DOI: 10.1055/a-0981-6133]

50     

Wu L, Xu M, Jiang X, He X, Zhang H, Ai Y, Tong Q, Lv P, Lu B, Guo M, Huang M, Ye L, Shen L, Yu H. Real-time 
artificial intelligence for detecting focal lesions and diagnosing neoplasms of the stomach by white-light endoscopy (with 
videos). Gastrointest Endosc 2022; 95: 269-280.e6 [PMID: 34547254 DOI: 10.1016/j.gie.2021.09.017]

51     

Wu L, He X, Liu M, Xie H, An P, Zhang J, Zhang H, Ai Y, Tong Q, Guo M, Huang M, Ge C, Yang Z, Yuan J, Liu J, Zhou 
W, Jiang X, Huang X, Mu G, Wan X, Li Y, Wang H, Wang Y, Chen D, Gong D, Wang J, Huang L, Li J, Yao L, Zhu Y, Yu 
H. Evaluation of the effects of an artificial intelligence system on endoscopy quality and preliminary testing of its 
performance in detecting early gastric cancer: a randomized controlled trial. Endoscopy 2021; 53: 1199-1207 [PMID: 
33429441 DOI: 10.1055/a-1350-5583]

52     

Kubota K, Kuroda J, Yoshida M, Ohta K, Kitajima M. Medical image analysis: computer-aided diagnosis of gastric cancer 
invasion on endoscopic images. Surg Endosc 2012; 26: 1485-1489 [PMID: 22083334 DOI: 10.1007/s00464-011-2036-z]

53     

Zhu Y, Wang QC, Xu MD, Zhang Z, Cheng J, Zhong YS, Zhang YQ, Chen WF, Yao LQ, Zhou PH, Li QL. Application of 
convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy. 
Gastrointest Endosc 2019; 89: 806-815.e1 [PMID: 30452913 DOI: 10.1016/j.gie.2018.11.011]

54     

Ishioka M, Hirasawa T, Tada T. Detecting gastric cancer from video images using convolutional neural networks. Dig 
Endosc 2019; 31: e34-e35 [PMID: 30449050 DOI: 10.1111/den.13306]

55     

Yoon HJ, Kim S, Kim JH, Keum JS, Oh SI, Jo J, Chun J, Youn YH, Park H, Kwon IG, Choi SH, Noh SH. A Lesion-Based 
Convolutional Neural Network Improves Endoscopic Detection and Depth Prediction of Early Gastric Cancer. J Clin Med 
2019; 8 [PMID: 31454949 DOI: 10.3390/jcm8091310]

56     

Tang D, Wang L, Ling T, Lv Y, Ni M, Zhan Q, Fu Y, Zhuang D, Guo H, Dou X, Zhang W, Xu G, Zou X. Development 
and validation of a real-time artificial intelligence-assisted system for detecting early gastric cancer: A multicentre 
retrospective diagnostic study. EBioMedicine 2020; 62: 103146 [PMID: 33254026 DOI: 10.1016/j.ebiom.2020.103146]

57     

Namikawa K, Hirasawa T, Nakano K, Ikenoyama Y, Ishioka M, Shiroma S, Tokai Y, Yoshimizu S, Horiuchi Y, Ishiyama 
A, Yoshio T, Tsuchida T, Fujisaki J, Tada T. Artificial intelligence-based diagnostic system classifying gastric cancers and 
ulcers: comparison between the original and newly developed systems. Endoscopy 2020; 52: 1077-1083 [PMID: 32503056 
DOI: 10.1055/a-1194-8771]

58     

Ueyama H, Kato Y, Akazawa Y, Yatagai N, Komori H, Takeda T, Matsumoto K, Ueda K, Hojo M, Yao T, Nagahara A, 
Tada T. Application of artificial intelligence using a convolutional neural network for diagnosis of early gastric cancer 
based on magnifying endoscopy with narrow-band imaging. J Gastroenterol Hepatol 2021; 36: 482-489 [PMID: 32681536 
DOI: 10.1111/jgh.15190]

59     

Oura H, Matsumura T, Fujie M, Ishikawa T, Nagashima A, Shiratori W, Tokunaga M, Kaneko T, Imai Y, Oike T, 
Yokoyama Y, Akizue N, Ota Y, Okimoto K, Arai M, Nakagawa Y, Inada M, Yamaguchi K, Kato J, Kato N. Development 
and evaluation of a double-check support system using artificial intelligence in endoscopic screening for gastric cancer. 
Gastric Cancer 2022; 25: 392-400 [PMID: 34652556 DOI: 10.1007/s10120-021-01256-8]

60     

Zhang L, Zhang Y, Wang L, Wang J, Liu Y. Diagnosis of gastric lesions through a deep convolutional neural network. Dig 
Endosc 2021; 33: 788-796 [PMID: 32961597 DOI: 10.1111/den.13844]

61     

An P, Yang D, Wang J, Wu L, Zhou J, Zeng Z, Huang X, Xiao Y, Hu S, Chen Y, Yao F, Guo M, Wu Q, Yang Y, Yu H. A 
deep learning method for delineating early gastric cancer resection margin under chromoendoscopy and white light 
endoscopy. Gastric Cancer 2020; 23: 884-892 [PMID: 32356118 DOI: 10.1007/s10120-020-01071-7]

62     

Miyaki R, Yoshida S, Tanaka S, Kominami Y, Sanomura Y, Matsuo T, Oka S, Raytchev B, Tamaki T, Koide T, Kaneda K, 
Yoshihara M, Chayama K. Quantitative identification of mucosal gastric cancer under magnifying endoscopy with flexible 
spectral imaging color enhancement. J Gastroenterol Hepatol 2013; 28: 841-847 [PMID: 23424994 DOI: 
10.1111/jgh.12149]

63     

Miyaki R, Yoshida S, Tanaka S, Kominami Y, Sanomura Y, Matsuo T, Oka S, Raytchev B, Tamaki T, Koide T, Kaneda K, 
Yoshihara M, Chayama K. A computer system to be used with laser-based endoscopy for quantitative diagnosis of early 
gastric cancer. J Clin Gastroenterol 2015; 49: 108-115 [PMID: 24583752 DOI: 10.1097/MCG.0000000000000104]

64     

Kanesaka T, Lee TC, Uedo N, Lin KP, Chen HZ, Lee JY, Wang HP, Chang HT. Computer-aided diagnosis for identifying 
and delineating early gastric cancers in magnifying narrow-band imaging. Gastrointest Endosc 2018; 87: 1339-1344 
[PMID: 29225083 DOI: 10.1016/j.gie.2017.11.029]

65     

Li L, Chen Y, Shen Z, Zhang X, Sang J, Ding Y, Yang X, Li J, Chen M, Jin C, Chen C, Yu C. Convolutional neural 
network for the diagnosis of early gastric cancer based on magnifying narrow band imaging. Gastric Cancer 2020; 23: 126-
132 [PMID: 31332619 DOI: 10.1007/s10120-019-00992-2]

66     

Horiuchi Y, Aoyama K, Tokai Y, Hirasawa T, Yoshimizu S, Ishiyama A, Yoshio T, Tsuchida T, Fujisaki J, Tada T. 
Convolutional Neural Network for Differentiating Gastric Cancer from Gastritis Using Magnified Endoscopy with Narrow 
Band Imaging. Dig Dis Sci 2020; 65: 1355-1363 [PMID: 31584138 DOI: 10.1007/s10620-019-05862-6]

67     

Hu H, Gong L, Dong D, Zhu L, Wang M, He J, Shu L, Cai Y, Cai S, Su W, Zhong Y, Li C, Zhu Y, Fang M, Zhong L, 
Yang X, Zhou P, Tian J. Identifying early gastric cancer under magnifying narrow-band images with deep learning: a 

68     

http://www.ncbi.nlm.nih.gov/pubmed/34492271
https://dx.doi.org/10.1016/j.gie.2021.08.022
http://www.ncbi.nlm.nih.gov/pubmed/32725617
https://dx.doi.org/10.1055/a-1229-0920
http://www.ncbi.nlm.nih.gov/pubmed/34245752
https://dx.doi.org/10.1016/j.gie.2021.06.033
http://www.ncbi.nlm.nih.gov/pubmed/31443108
https://dx.doi.org/10.1055/a-0981-6133
http://www.ncbi.nlm.nih.gov/pubmed/34547254
https://dx.doi.org/10.1016/j.gie.2021.09.017
http://www.ncbi.nlm.nih.gov/pubmed/33429441
https://dx.doi.org/10.1055/a-1350-5583
http://www.ncbi.nlm.nih.gov/pubmed/22083334
https://dx.doi.org/10.1007/s00464-011-2036-z
http://www.ncbi.nlm.nih.gov/pubmed/30452913
https://dx.doi.org/10.1016/j.gie.2018.11.011
http://www.ncbi.nlm.nih.gov/pubmed/30449050
https://dx.doi.org/10.1111/den.13306
http://www.ncbi.nlm.nih.gov/pubmed/31454949
https://dx.doi.org/10.3390/jcm8091310
http://www.ncbi.nlm.nih.gov/pubmed/33254026
https://dx.doi.org/10.1016/j.ebiom.2020.103146
http://www.ncbi.nlm.nih.gov/pubmed/32503056
https://dx.doi.org/10.1055/a-1194-8771
http://www.ncbi.nlm.nih.gov/pubmed/32681536
https://dx.doi.org/10.1111/jgh.15190
http://www.ncbi.nlm.nih.gov/pubmed/34652556
https://dx.doi.org/10.1007/s10120-021-01256-8
http://www.ncbi.nlm.nih.gov/pubmed/32961597
https://dx.doi.org/10.1111/den.13844
http://www.ncbi.nlm.nih.gov/pubmed/32356118
https://dx.doi.org/10.1007/s10120-020-01071-7
http://www.ncbi.nlm.nih.gov/pubmed/23424994
https://dx.doi.org/10.1111/jgh.12149
http://www.ncbi.nlm.nih.gov/pubmed/24583752
https://dx.doi.org/10.1097/MCG.0000000000000104
http://www.ncbi.nlm.nih.gov/pubmed/29225083
https://dx.doi.org/10.1016/j.gie.2017.11.029
http://www.ncbi.nlm.nih.gov/pubmed/31332619
https://dx.doi.org/10.1007/s10120-019-00992-2
http://www.ncbi.nlm.nih.gov/pubmed/31584138
https://dx.doi.org/10.1007/s10620-019-05862-6


Panarese A. AI and early GC

AIC https://www.wjgnet.com 26 April 28, 2022 Volume 3 Issue 2

multicenter study. Gastrointest Endosc 2021; 93: 1333-1341.e3 [PMID: 33248070 DOI: 10.1016/j.gie.2020.11.014]
Hamada K, Kawahara Y, Tanimoto T, Ohto A, Toda A, Aida T, Yamasaki Y, Gotoda T, Ogawa T, Abe M, Okanoue S, 
Takei K, Kikuchi S, Kuroda S, Fujiwara T, Okada H. Application of convolutional neural networks for evaluating the depth 
of invasion of early gastric cancer based on endoscopic images. J Gastroenterol Hepatol 2022; 37: 352-357 [PMID: 
34713495 DOI: 10.1111/jgh.15725]

69     

Panarese A, Galatola G, Armentano R, Pimentel-Nunes P, Ierardi E, Caruso ML, Pesce F, Lenti MV, Palmitessa V, Coletta 
S, Shahini E. Helicobacter pylori-induced inflammation masks the underlying presence of low-grade dysplasia on gastric 
lesions. World J Gastroenterol 2020; 26: 3834-3850 [PMID: 32774061 DOI: 10.3748/wjg.v26.i26.3834]

70     

Shichijo S, Nomura S, Aoyama K, Nishikawa Y, Miura M, Shinagawa T, Takiyama H, Tanimoto T, Ishihara S, Matsuo K, 
Tada T. Application of Convolutional Neural Networks in the Diagnosis of Helicobacter pylori Infection Based on 
Endoscopic Images. EBioMedicine 2017; 25: 106-111 [PMID: 29056541 DOI: 10.1016/j.ebiom.2017.10.014]

71     

Itoh T, Kawahira H, Nakashima H, Yata N. Deep learning analyzes Helicobacter pylori infection by upper gastrointestinal 
endoscopy images. Endosc Int Open 2018; 6: E139-E144 [PMID: 29399610 DOI: 10.1055/s-0043-120830]

72     

http://www.ncbi.nlm.nih.gov/pubmed/33248070
https://dx.doi.org/10.1016/j.gie.2020.11.014
http://www.ncbi.nlm.nih.gov/pubmed/34713495
https://dx.doi.org/10.1111/jgh.15725
http://www.ncbi.nlm.nih.gov/pubmed/32774061
https://dx.doi.org/10.3748/wjg.v26.i26.3834
http://www.ncbi.nlm.nih.gov/pubmed/29056541
https://dx.doi.org/10.1016/j.ebiom.2017.10.014
http://www.ncbi.nlm.nih.gov/pubmed/29399610
https://dx.doi.org/10.1055/s-0043-120830


AIC https://www.wjgnet.com 27 April 28, 2022 Volume 3 Issue 2

Artificial Intelligence in 

CancerA I C
Submit a Manuscript: https://www.f6publishing.com Artif Intell Cancer 2022 April 28; 3(2): 27-41

DOI: 10.35713/aic.v3.i2.27 ISSN 2644-3228 (online)

ORIGINAL ARTICLE

Basic Study

Learning models for colorectal cancer signature reconstruction and 
classification in patients with chronic inflammatory bowel disease

Mariem Abaach, Ian Morilla

Specialty type: Mathematical and 
computational biology

Provenance and peer review: 
Invited article; Externally peer 
reviewed.

Peer-review model: Single blind

Peer-review report’s scientific 
quality classification
Grade A (Excellent): A 
Grade B (Very good): B 
Grade C (Good): 0 
Grade D (Fair): 0 
Grade E (Poor): 0

P-Reviewer: Bertani L, Italy; 
Sassaki LY, Brazil

Received: December 9, 2021 
Peer-review started: December 9, 
2021 
First decision: January 26, 2022 
Revised: February 16, 2022 
Accepted: April 28, 2022 
Article in press: April 28, 2022 
Published online: April 28, 2022

Mariem Abaach, Mathématiques Appliquées à Paris 5, Unité mixte de Recherche, Centre 
National de la Recherche Scientifique, Université de Paris, Paris 75006, France

Ian Morilla, Laboratoire Analyse, Géométrie et Applications, Centre National de la Recherche 
Scientifique (Unité mixte de Recherche), Université Sorbonne Paris Nord, Villetaneuse, Paris 
93430, France

Corresponding author: Ian Morilla, PhD, Assistant Professor, Research Associate, Laboratoire 
Analyse, Géométrie et Applications, Centre National de la Recherche Scientifique (Unité mixte 
de Recherche), Université Sorbonne Paris Nord, 99 avenue Jean Baptiste clément, Villetaneuse, 
Paris 93430, France. morilla@math.univ-paris13.fr

Abstract
BACKGROUND 
In their everyday life, clinicians face an overabundance of biological indicators 
potentially helpful during a disease therapy. In this context, to be able to reliably 
identify a reduced number of those markers showing the ability of optimising the 
classification of treatment outcomes becomes a factor of vital importance to 
medical prognosis. In this work, we focus our interest in inflammatory bowel 
disease (IBD), a long-life threaten with a continuous increasing prevalence 
worldwide. In particular, IBD can be described as a set of autoimmune conditions 
affecting the gastrointestinal tract whose two main types are Crohn’s disease and 
ulcerative colitis.

AIM 
To identify the minimal signature of microRNA (miRNA) associated with 
colorectal cancer (CRC) in patients with one chronic IBD.

METHODS 
We provide a framework of well-established statistical and computational 
learning methods wisely adapted to reconstructing a CRC network leveraged to 
stratify these patients.

RESULTS 
Our strategy resulted in an adjusted signature of 5 miRNAs out of approximately 
2600 in Crohn’s Disease (resp. 8 in Ulcerative Colitis) with a percentage of success 
in patient classification of 82% (resp. 81%).
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CONCLUSION 
Importantly, these two signatures optimally balance the proportion between the number of 
significant miRNAs and their percentage of success in patients’ stratification.

Key Words: Inflammatory bowel disease; microRNA; Muti-group comparison; Machine learning; Colorectal 
cancer; Sparse partial least squares-discriminant analysis

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This study provides an optimised strategy based on classic learning methods and multi-group 
variable selection combination from 2600 microRNAs of 225 patients with one chronic inflammatory 
bowel disease to identify the minimal signature of microRNAs associated with the development of 
colorectal cancer in these patients.

Citation: Abaach M, Morilla I. Learning models for colorectal cancer signature reconstruction and classification in 
patients with chronic inflammatory bowel disease. Artif Intell Cancer 2022; 3(2): 27-41
URL: https://www.wjgnet.com/2644-3228/full/v3/i2/27.htm
DOI: https://dx.doi.org/10.35713/aic.v3.i2.27

INTRODUCTION
The emergence of high-through experiments, image-based analysis and massive sequencing techniques
[1-3] has disrupted the way clinicians make decision on a disease therapy. Now the usage of the grade 
of expertise in their respective do- mains to decide a treatment, frequently considered as a subjective 
evaluation, is strengthened by an overwhelming capability of support. However, this overabundance of 
available information does not make their task that straightforward. In this context, the use of 
interpretable mathematical methods can decipher the underlying complexity of data, generating 
systemic hypothesis that really help practitioners with their treatment outcomes. In this study, we 
introduce a learning framework based on a combination between unsupervised hierarchical clustering 
and weakly supervised classification approaches. These methods are applied to the analysis of a pool 
with approximately 6000 miRNAs extracted from biopsies of 216 inflammatory bowel disease (IBD) 
patients with and without colorectal cancer (CRC).

IBD consist of various disorders that cause prolonged inflammation of the digestive tract. Its 
prevalence rises more and more in the western developed countries[4] largely affecting their health-care 
systems. Besides that fact, the treatment of such disorders requires an early assessment of the response 
to the medical treatment[5]. Thus, the finding of a reduced signature optimally predicting the strata a 
patient will be lying on is of paramount importance during therapy. The main goal of our methodology 
is using the above approaches to reconstructing a minimal network that stratifies patients with a chronic 
IBD[5,6] having developed CRC as indicated in[7,8].

Unsupervised hierarchical clustering[5] is a robust method successfully used in the comparison of 
more than two groups. Particularly, this method enables the identification of biologically meaningful 
biomarkers, i.e. miRNAs, reducing significantly the amount of data in the study. Powered by parse 
partial least squares discriminant analysis (sPLS-DA) this signature becomes minimal[9] in the 
description of the required CRC network in IBD. And the later application of random forests (RF)[10] 
and support vector machines (SVM)[11,12] to the adjusted signature of selected miRNAs ensures the 
classification of patients is less sensitive to data heterogeneity. Regarding the calibration of classifiers, 
the performance of each algorithm is assessed by means of leave-one-out (LOO) cross validation[13] and 
their confusion matrices[14]. Overall this methodology shortens clinicians’ efforts, enhancing a reduced 
set of important features and avoiding unnecessary time delays prior to make any decision on the 
course of a disease therapy.

Motivation
There exist intra patient differences in miRNA expression between the inflammatory and healthy tissue, 
between the healthy tissue of an inflammatory and non-inflammatory patient and between the healthy 
tissue of a cancer and non- cancer colic patient. We want to identify a minimal miRNA profile of 
developing or not cancer in patients with a chronic inflammatory bowel disease. In other words, a 
miRNA profile of healthy tissue from patients with chronic IBD with (case) vs without cancer (control). 
In that way, provided a specific miRNA profile is of interest, this one could be prospectively validated, 
and its predictive marker maybe also developed. Ultimately, this would allow clinicians to in- crease the 
diagnosis colonoscopy pace in IBD patients where a miRNA profile of risk is detected and conversely 
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decreasing that pace in patients tagged as at lower risk.

MATERIALS AND METHODS
Samples and mi RNA extractions
Patients were recruited from various public French hospitals for this study. Our sample consists of 225 
IBD patients with 75 cases developing dysplasia in colon. These cases matched with 150 controls, i.e., 
patients with IBD who did not develop dysplasia, yielding a total ratio of 1 case for each 2 controls. The 
extraction of 6609 miRNAs in each sample resulted from the biopsies of 216 quantified patients. A 
posteriori, 10 out of these 216 patients were discarded because of their difficulty in extracting miRNAS.

Biological variability
At least 40 biopsies were extracted from each sample during diagnostic chromo-endoscopies in IBD. The 
anatomopathological grading of inflammation described in[15,16] is adopted on the Hematoxylin Eosin 
Saffron slide of each sample. To not get affected the miRNA signature by a mucosa inflammation, only 
the healthy mucosa (non-inflammatory nor dysplastic) corresponding to the grade 0 in GOMES classi-
fication was collected. Finally, the absence of histological inflammatory lesion in the mucosa has been 
considered in preference to the colic segments.

Quality control
Following the Affymetrix hybridisation standards[17], the intensity of miRNA was log2-transformed 
(Supplementary Figure 1). A first quality control on all miRNA was performed using a principal 
component analysis (PCA). PCA by[18] allows transforming a set of correlated data, herein their 
intensity in the gene-chip of Affimetrix GeneChip miRNA 4.0 chips, in a new data set, uncorrelated, by 
following the top ranked principal components. These components are used as axes of a new space 
where detect patients with an ambiguous score of intensity, i.e., those intensity outputs generated by 
unsuitable experimental condition, and exclude them all. Just after one of the two RNA strands becomes 
functional the miRNA is prepared to participate in intricate biological processes within the cell. This 
maturation process leads the miRNA to a “steady-state” that provides a more valuable biological 
information. Thus, we opted for considering only mature transcript miRNAs defined in[19], noted by 
MIMAT, in the completion of this study. Those transcripts amount to 2578 miRNAs in total. In addition, 
miRNAs with an average intensity > 8 were also removed being considered as outliers of the overall 
expression profile.

Technical variability
The Affymetrix Genechip 4.0 encompasses around 36000 probes, more than 6000 of which are humans 
(each probe corresponds to a complementary sequence of nucleotides). Details on each miRNA and 
sample are provided by the Affymetrix database. The intensity values of 6609 miRNAs are considered 
from the 216 patients. Notably, both the RNA extraction and the miRNA technical analysis were 
performed twice with similar library sizes (see Supplemental Material) detecting a very low bias attrib-
utable to a defective sample collection or a poor miRNA quality.

STATISTICAL LEARNING ANALYSIS
Reconstruction of the miRNA signature
Differential expression using general linear models: A first signature of differentially expressed (DE) 
miRNAs is inferred from general linear models implemented in the limma R-package[20]. During this 
process we estimate variance for other miRNAs, weight to incorporate unequal variations in data, and 
pre-process to reduce noise.

Multiclass DE analysis: The signature identified by linear models returned an amount of miRNAs 
larger than expected to be considered in practice as biologically significant. We decided, then, to reduce 
the size of miRNA signature by means of a multi-group comparison strategy. Firstly, we cal- culated the 
mean expression of each miRNA according to the four analysed groups [i.e., Ulcerative colitis (UC) and 
Crohn’s disease (CD) cases and controls respectively]. Next, we construct the tree related groups. Thus, 
we assume an underlying tree structure to compare groups based on recursive binary splits along the 
tree. Then each mean expression was compared, using a simple t test as in[21]. Any miRNA with a 
significant t test (i.e., threshold = 0.005) was included in the final model.

We propose different strategies to test in pairwise all the possible combinations of groups: (1) Use the 
CD patients or the UC patients exclusively; and (2) Use each one of the groups to construct the tree 
(Figure 1 and Table 1): (1) Strategy 1: Comparison between the CD controls and the three remaining 
leaves (UC controls, CD cases and UC cases), then UC controls compare to CD cases and UC cases, etc.; 

https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
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Table 1 Possible comparisons to be made during the unsupervised (i.e., we do not rely on the type of disease) global analysis of 
patients following the considered three different strategies

Strategy Comparison

1 vs (2,3,4)

2 vs (3,4)

Strategy 1 (classic)

3 vs 4

1 vs 2; 1 vs 3; 1 vs 4

2 vs 1; 2 vs 3; 2 vs 4

3 vs 1; 3 vs 2; 3 vs 4

Strategy 2 (1&1)

4 vs 1; 4 vs 2; 4 vs 3

1 vs (2,3,4)

2 vs (1,3,4)

3 vs (1,2,4)

Strategy 3 (pairwise)

4 vs (1,2,3)

Figure 1 Pairwise leaves comparison to be tested. Hierarchical structure amounts to strategy 1 while horizontal and bottom arrows describe strategies 2 
and 3 respectively. Highlighted in red, green, blue, and black the 4 possible comparisons amongst group of patients. UC: Ulcerative colitis; CD: Crohn’s disease.

(2) Strategy 2: Comparison between each leaf and the others; CD controls compare to UC controls, CD 
cases and UC cases, then UC controls compare to CD controls and cases, and UC cases, and so on; and 
(3) Strategy 3: Comparison among leaves one by one; CD controls compare to UC controls, then CD 
controls compare to CD cases, and so on.

Upon setting the methodology, we analyse two related data set in tandem. Initially, we applied the 
method only to the miRNA labeled as MIMAT; to repeat the same approach, on a second occasion, with 
a set of 152 miRNAs previously selected by sparse PLS Discriminant Analysis (sPLS-DA).

In brief, PLS is an exploratory variable selection technique successfully proven in classification[22]. In 
particular, the sPLS-DA[9] is an extension of PLS applied in multi-class classification. It selects the most 
discriminant variables to classify patients, using Lasso penalization. By means of the mixOmics R 
package[23] three components of miRNAs were identified to predict cancer in all patients. The number 
of selected variables for each of the three components was chosen based on the lowest average balanced 
classification error rate with centroids after tuning of the sPLS-DA model using the selected number of 
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components and 5-fold cross-validation with 10 repeats. The linear programming problem associated 
with sPLS-DA may be succinctly described as:

Where  ,  is applied component-wise in the vector 

 (i.e., the left singular vector from the Singular Value Decom-
position (SVD) of the miRNA matrix expression M) and acts as the relaxed thresholding function that 
scales the Lasso penalty functions[24]. Thus, λ is the penalization parameter to tune.

Each sPLS-DA axe is constructed by a convex linear combination of a miRNA. Hence, the coordinate 
of any given patient on that axe is described by:

Then applying the majority vote criterion, any given individual having been calculated to have a 
probability > 0.5 in at least 2 out of 3 PLS-DA axes is considered misclassified.

Classification of patients
In an early exploratory classification, we based our results on the Euclidian distance of miRNA 
intensities across patients. Nevertheless, the high sensitivity of the Euclidean-based norm to hetero-
genous data and non-linearity produced a poor classification (Supplementary Figure 2). Anyway, this 
first classification definitively clued us in on the miRNA signature’s optimisation. Next, to prevent the 
non-linear effect of our measurements in classification, we contemplated the employment of learning 
methods. Thus, the main purpose random forests and support vector machines pursue is the re-
construction of a minimal CRC network that could lead to optimally stratify the IBD patients evaluating 
the associated miRNA signature. These two methods are powerful tools to predict patients developing 
CRC that perform well in different classification issues. Briefly, RF is a machine learning method for 
classification based on decision tree and probabilities, introduced in[10], whereas SVM is a strong 
classifier with the aim of finding the optimal separation hyperplane of data by maximising the margin
[25]. A total of 5,000 trees were conducted for RF analysis. The SVM was implemented using a linear 

kernel, i.e.,  with bandwidth and including soft-regularisation with 
Sequential Minimal Optimization (SMO) as solver to find the optimal hyperplane well separating 
classes. The general out- put of a binary SVM classifier can be computed by the following expression:

where αi ≥ 0 are Lagrangian multipliers obtained by solving a quadratic optimisation problem, b is the 
bias, and K is the above defined kernel function. We evaluated the performance of each patient’s classi-
fication using cross-validation with the LOO method. The RF classification was performed using the 
randomForest function of the random-Forest R-package[26]. Complementary, the variable importance 
(VIMP) of each miRNA for RF[27] was also calculated using the varImp and varImpPlot functions of the 
same pack- age. The Matlab© classification app implemented the SVM analysis and results are 
confirmed using svm function of the e1071 R-package.

Performance evaluation of classification methods
We evaluate how optimal a miRNA signature is by means of its confusion matrix, using the confusion-
Matrix function of the caret R-package[28], and the so-called Receiver Operating Characteristic (ROC) 
curve along the calculus of its area under curve (AUC) using the plotROC R-package[29]. Percentage of 
true classification, sensibility, specificity, and the AUC were also calculated for each strategy using these 
two packages.

In summary, all the calculations of the statistical learning analysis were implemented using in-house 
scripts based on R and Matlab© (2014a, The MathWorks Inc., Natick, MA), and figures were depicted 
with ggplot2 R-package.

RESULTS
A previous work of denoising is required if we want to reduce possible issues of bias and overfitting in 
our algorithms. Thus, the analysis was performed on 206 patients; excluding 4 patients considered as 
outliers, and 6 unmatched controls with cases. In addition, 101 miRNAs were removed since their 
expression was higher than 8. These miRNAs highly influenced to broke inconsistently down large 
clusters in the construction of tree and though considered as outliers. Yet, note that the unsupervised 
clustering can be biased by the lack of linearity in data. Hence, the way we use the hierarchical classi-
fication is limited to track a definite signature trend to be further learned by more robust methods. The 
best result was always obtained by the strategy 1. For clarity, we only show those results yielded by 

https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
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Table 2 Summary of patients’ classification predicted by random forests/support vector machines respectively. From left to right: 
Group of patients, amount of selected miRNA, percentage of success in true positive classification, sensitivity, specificity and their 
area under the curve

Methods Nº miRNA % True classification 
(95%CI) Sensitivity Specificity AUC

All miRNA

Strategy 1 56 69 (62-75)/69 (62-75) 0.25/0.43 0.93/0.83 0.76/0.74

CD 9 87 (78-93)/86 (77-92) 0.70/0.73 0.96/0.93 0.89/0.92

UC 30 72% (63-80)/76 (67-83) 0.45/0.55 0.86/0.87 0.77/0.81

miRNAs selected by sPLS-DA

Strategy 1 11 69 (62-75)/68 (62-75) 0.36/0.36 0.87/0.86 0.72/0.74

CD 5 80 (70-88)/82 (67-86) 0.67/0.60 0.87/0.87 0.84/0.86

UC 8 73 (64-80)/81 (73-88) 0.48/0.57 0.86/0.93 0.73/0.81

AUC: Area under curve; CD: Crohn’s disease; UC: Ulcerative colitis.

Table 3 All patients contingence matrix of the 56-selected miRNAs by means of random forests and support vector machines methods

Predicted by RF Predicted by SVM

Cases Controls Cases Controls

True Case 18 54 31 41

Controls 10 124 23 111

RF: Random forests; SVM: Support vector machines.

means of this strategy. We address to supplemental material for further details on the other two 
remaining strategies (Supplementary Figures 3-5 and 7-8). Naturally, the performance of this approach 
depends on each initial tree re- construction. The Table 2 summaries patients classification performed by 
all the methods using the strategy 1.

The overall signature associated with CRC
A priori, one would expect to find here a tree with two well separated branches making distinction 
between CD and UC patients. Nevertheless, the tree this first comparison returned describes a structure 
composed of three branches that mixes up cases with controls. Hence, the primary leaf groups the CD 
cases, the second one binds UC cases together, whereas the third leaf consists of control patients. See 
Supplementary Figure 1 to visualise the tree corresponding to the analysis of all the IBD patients.

Strategy 1: When this first strategy is considered, we are able to identify 56 miRNAs whose expression 
is differential between the CRC cases and controls. Those miRNAs are potentially good candidates to be 
associated with a CRC network that can achieve an optimal stratification of patients. A heatmap 
enhancing these miRNAs are depicted below in Figure 2. However, data heterogeneity and non-
linearity negatively influence the measures captured by our multi-class strategy producing a poor strati-
fication performance when re- constructing the sought minimal CRC network. To overcome such an 
obstacle, we keep using the selected miRNAs, but applied to classifiers such as RF and SVM which are 
more robust in presence of non-linear heterogeneous data. This combination enables better learning 
how patients stratify according to CRC. In that way, we attained to correctly classify the 69% of patients 
by means of RF and using linear SVM (see Table 2 and Figure 2B and C). However, the SVM 
performance overtakes at large that one given by RF in every case of patient stratification. Notice the 
large number of selected miRNAs in this first analysis. For clarity, the VIMP analysis shown in 
Supplementary Figure 6A only discloses the top 30 miRNA. The results obtained in the performance of 
patients’ classification is represented as a confusion matrix in Table 3. In general control patients were 
correctly classified, but a remarkable number of cases was muddled with controls. This situation can be 
explained by the, pointed out in the literature, divergent genetic source of the two types of IBD. The 
ROC curve displayed in Figure 2B and C reported sensitivity-specificity ranges of 0.25-0.93 and 0.43-0.83 
associated with RF and SVM respectively (Table 2).

https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
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Figure 2 All patients hierarchical and leaning performance. A: Heatmap of the 56- selected miRNA intensity. Colour corresponding to the status of the 
patients: Purple: Ulcerative colitis patients; light blue: Crohn’s disease patients; green: cases and yellow: Controls; B: Receiver operating characteristic curve for the 
classification using random forests analysis; C: Using L-SVM models for the 56 selected miRNA. AUC: Area under the curve.

Constructing the local signature of CD patients
For this analysis we provide a sample data composed of 85 patients with CD, whose 30 are cases and 55 
controls. As observed in panel (A) of Figure 3, we detect 9 miRNAs differentially expressed between 
cases and control in CD patients. But the use of the Euclidian distance misleads their percent- age of 
classification as occurred in the previous case-control study. The results obtained by the above indicated 
RF and SVM learning methods may be observed in Figure 3B and C and Table 2. The variable 
importance of each miRNA is also considered to simplify the calibration of the RF models (data not 
shown, see Supplementary Figure 6B). Moreover, their associated sensitivity-specificity ranges are 0.70-
0.73 and 0.96-0.93 to RF and SVM respectively (Table 2). With these selected miRNAs, patients are 
correctly classified in the 87% and 86% of cases. These percentages are also shown in terms of a 
confusion matrix in Table 4. The adopted non supervised - supervised strategy returns rather good 
candidates to conform the network associate to CRC in IBD also providing the signature with an 
accurate predictive ability.

https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
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Table 4 Contingence matrix of the 9-selected miRNA and random forests methods for Crohn’s disease patients

Predicted by RF Predicted by SVM

Cases Controls Cases Controls

True Case 21 9 22 4

Controls 2 53 8 51

RF: Random forests; SVM: Support vector machines.

Figure 3 Crohn’s disease patients hierarchical and leaning performance. A: Heatmap of the 9-selected miRNA intensity. Colour corresponding to the 
status of the patients: Purple: green: Cases and yellow: Controls; B: Receiver operating characteristic curve for the classification using random forests analysis; C: 
Using L-SVM models for the 9 selected miRNA. AUC: Area under the curve.

The local signature of UC patients
To identify a significant signature of UC patients we analysed a data set of 121 individuals. These 
patients are distributed in 42 cases and 79 controls respectively. Upon applying the previous approach 
to these samples, a signature of 30 miRNAs differentially expressed between cases and control in UC 
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was detected. The results derived from this calculation are plotted below in Figure 4.
As occurred with the two previous results, see Figure 2 and Figure 3, the presence of data hetero-

geneity hampers a right classification of patients when using the Euclidean norm across the expression 
profile of the detected 30 miRNAs. Additionally, the classification results yielded by the two learning 
methods used in this work are displayed by their ROC curves in Figure 4B and C. These curves attain a 
sensitivity-specificity ranges of 0.45-0.86 and 0.55-0.87 to RF and SVM respectively. And the miRNAs 
selected by multiple comparison of the annotated miRNAs achieved a percentage of success in classi-
fication of 76% across the mean expression of each group of patients. These amounts are slightly lower 
than in CD patients. Such a drop can be explained by a more scatter matching distribution among UC 
patients as well as a greater control-case ratio. The confusion matrix corresponding to this calculation is 
introduced above in Table 5.

Minimising the size of the overall signature by parse PLS discriminant analysis
Despite the relative low size of the prognostic signature identified so far, we wonder if it was possible to 
minimise the amount of miRNAs involved in the analysis without harming the overall classification 
performance. The statistical robustness of the parse PLS Discriminant Analysis in supervised feature 
selection makes us to consider its application before performing the unsupervised hierarchical 
clustering introduced in methods. The stratification of all patients is plotted in Figure 5A while 
Figure 5B describes the diseases tree architecture. The synergy between the two complementary 
statistical methods, supervised later unsupervised, still allow us to conclude the predictive power of the 
miRNAs minimal signature associated with CRC in IBD.

Reconstructing the overall signature: After having applied the proposed sPLS-DA to the miRNAs, the 
reconstruction of the tree structure based on the multi-class comparison strategy 1 improved the 
previous classification of patients between clusters (Figure 5B). The analysis of patients following such 
architecture resulted in a final signature composed by 11 miRNAs. Hence, these selected miRNAs 
correctly classified the 69% and 68% of cases (RF and SVM respectively). Both percentages are similar in 
accuracy to those obtained without the use of sPLS-DA, but with a signature consisting of only 11 out of 
initial 56 miRNAs. Nevertheless, the effect of the genetic drift of CD and UC origin could not have been 
prevented. We also provide the overall performance of the methods as a confusion matrix in the Table 6. 
For further details on the variable importance of this signature in the RF calculation see supplemental 
information (Supplementary Figure 9A).

Reconstructing the local signature of the CD patients: In this analysis 5 miRNAs were selected with 
the recursion cluster for CD patients. The SVM allows a better classification of true patients in the 82% 
of cases, and particularly the controls patients. The RF and SVM performances along their feature 
selection refining are presented in Figure 6B. See supplemental material for details on variable 
importance for each miRNA (Supplementary Figure 9B) of the RF computation. We also obtain their 
patients classification in a confusion matrix presented in Table 7. The accuracy and sensitivity are 
consistent with the above percentage of classification in CD patients reducing the signature in 4 
miRNAs up to a final figure of 5 predictive profiles.

Reconstructing the local signature of UC patients: The overall signature of UC patients after making 
use of sPLS-DA was composed of 8 miRNAs. We also calibrated models by feature selection of these 
miRNAs, which results are shown in the Figure 6C. The attained percentage of success goes to the 81% 
upon computation of a SVM model across UC samples what improved the RF performance as had 
already occurred with previous counterpart calculations. For further details on the RF analysis see 
Supplementary Figure 9C. Strikingly the use of sPLS-DA enabled reducing the quantity of miRNAs 
required to predict UC patients developing or not CRC from 30 to 8 while increasing in a 5% the 
percentage of success. This may be due to the detection and later removal of features largely 
contributing to the dispersal form of the matching distribution among UC patients. Finally, the 
confusion matrix corresponding to this miRNAs signature is described below in Table 8.

DISCUSSION
The soundness of the signature has been improved accordingly to the incremental combination of 
learning methods presented in this study until attaint a sensitivity of 73% in CD and 57% in UC with a 
specificity of 87% and 93% in CD and UC respectively (see Table 2). These results are depending on the 
assumption of an initial hierarchical tree structure. The usage of PLS-DA decreases a bit its global 
sensitivity but gaining more in CRC signature optimisation. Noteworthy, the final overall signature is 
composed by only 5 miRNAs in CD and 8 in UC. These miRNAs are molecules extremely resistant and 
highly preserved. In general, low percentages of true classification are obtained is no difference on 
disease type is made on the IBD patients. This is in accordance with previous works that suggest the 
genetic divergence between CD and UC. However, if we consider the two types of the disease 
separately, the aim of classifying false controls, i.e., controls with a closer profile to cases and 

https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
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Table 5 Contingence matrix of the 30-selected miRNA and random forests methods for Ulcerative colitis patients

Predicted by RF Predicted by SVM

Cases Controls Cases Controls

True Case 19 23 23 19

Controls 11 68 10 69

RF: Random forests; SVM: Support vector machines.

Table 6 Contingence matrix of the 11-selected miRNA and random forests methods for all patients

Predicted by RF Predicted by SVM

Cases Controls Cases Controls

True Case 27 45 26 46

Controls 18 116 19 115

RF: Random forests; SVM: Support vector machines.

Table 7 Contingence matrix of the 5-selected miRNA and random forests methods for Crohn’s disease patients

Predicted by RF Predicted by SVM

Cases Controls Cases Controls

True Case 20 10 20 10

Controls 7 48 5 50

RF: Random forests; SVM: Support vector machines.

Table 8 Contingence matrix of the 9-selected miRNA and random forests methods for Ulcerative colitis patients.

Predicted by RF Predicted by SVM

Cases Controls Cases Controls

True Case 20 22 24 18

Controls 11 68 5 74

RF: Random forests; SVM: Support vector machines.

monitoring whether those samples are developing cancer can be approached now. Indeed, the 
introduced methodology would allow us to provide the identified molecular signature with predictive 
power. Additionally, the eventual availability of a second independent cohort could improve possibly 
the precision of results. Thus, we claim that in any case a clinician having this information will 
potentially benefit from an accurate prediction tool of prognosis rather than only using his or her own 
experience-based criteria[30,31]. This clinical scenario enhances the paramount importance of statistical 
learning-based applications in clinical practice since CRC is a feared life-threatening factor among 
patients with IBD[32,33]. In particular, the analysis of eventual miRNAs signatures associated with CRC 
in patients with IBD has been successfully proven previously in such contexts[34-36]. That way, these 
methodologies will contribute to shorten unnecessary delays prior to make any decision on a proper 
therapy in individuals with a IBD developing CRC[37,38].

CONCLUSION
In this study we provide a wise combination of statistical learning methods for patients’ stratification 
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Figure 4 Ulcerative colitis patients hierarchical and leaning performance. A: Heatmap of the 30-selected miRNA intensity. Colour corresponding to the 
status of the patients: Purple: Green: Cases and yellow: Controls; B: Receiver operating characteristic curve for the classification using random forests analysis; C: 
Using L-SVM models for the 30-selected miRNA. AUC: Area under the curve.

based on biologically meaningful characteristics, and its application in IBD based on a minimal miRNA 
network associated with CRC is demonstrated. The time constraint affecting the assessment of the 
response to the medical treatment indicates the interest of our method in improving the classification 
accuracy, minimising the signature of miRNAs required in the IBD patients’ stratification, and avoiding 
unnecessary time delays. The findings are also consistent with the physio-pathological knowledge. 
Comparison with other existing classifying method shows that SVM makes our method yields better 
mean performances, using a reduced miRNA signature and reporting a much lower sensitivity to data 
heterogeneity. The application of the proposed method to a multi-class classification further points out 
the robustness and efficiency of our strategy particularly in the CD and UC group of patients. 
Additionally, the use of parse PLS Discriminant Analysis is also concluded for a minimal signature with 
accurate enough performances. In the next future, we will combine this method with other approaches 
such as deep learning methods enabling more intricate relationships between the elements of the 
signature and possibly another robust clinical data. Finally, we are convinced our methodology will be 
also instrumental for other diseases broadening the general framework herein provided.
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Figure 5 Partial least squares discriminant analysis base. Left-hand side panel: Patient-control stratification (i.e. orange-blue) in three dimensional view 
with 152 miRNAs; Right-hand side panel: Classification tree with the 152 miRNAs selected by sPLS-DA.

Figure 6 Final performance of each reconstructed sub-signature. A: Receiver operating characteristic curve amounts to all patients learned classification 
by a signature corresponding to 13 selected miRNA; B: Similarly to the Crohn’s disease patients classification of 5 selected miRNA; C: Ulcerative colitis patients 
classified according to 9 selected miRNA.

ARTICLE HIGHLIGHTS
Research background
Face the overabundance of information, it is not easy to clinicians discriminating amid biological 
indicators that potentially could be helpful during an inflammatory bowel disease (IBD) disease 
therapy.

Research motivation
There exist intra patient differences in miRNA expression between the inflammatory and healthy tissue, 
between the healthy tissue of an inflammatory and non-inflammatory patient and between the healthy 
tissue of a cancer and non- cancer colic patient. We want to identify a minimal miRNA profile of 
developing or not cancer in patients with a chronic inflammatory bowel disease. In other words, a 
miRNA profile of healthy tissue from patients with chronic IBD with (case) vs without cancer (control). 
In that way, provided a specific miRNA profile is of interest, this one could be prospectively validated, 
and its predictive marker maybe also developed. Ultimately, this would allow clinicians to in- crease the 
diagnosis colonoscopy pace in IBD patients where a miRNA profile of risk is detected and conversely 
decreasing that pace in patients tagged as at lower risk.

Research objectives
In this scenario, the identification of an optimal signa- ture, for example composed by microRNA 
(miRNA), associated with colorectal cancer (CRC) in patients with one chronic IBD is of vital 
importance.
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Research methods
We provide a framework of well-established statistical learning methods (i.e., RF, SVM, PLS-DA, ...) 
wisely adapted to reconstructing a CRC network leveraged to stratify these patients.

Research results
Our strategy provides an adjusted signature of 5 miRNAs with a percentage of success in patient classi-
fication of 82% in Crohn’s disease (resp. 81% in Ulcerative Colitis).

Research conclusions
The application of the proposed method to a multi-class classification further points out the robustness 
and efficiency of our strategy particularly in the CD and UC group of patients. Additionally, the use of 
parse PLS Discriminant Analysis spots a minimal signature with accurate enough performances.

Research perspectives
In the next future, the combination of this method with deep learning models will enable more intricate 
relationships between the elements of the signature and possibly another robust clinical data. Finally, 
we are convinced our methodology will be also instrumental for other diseases broadening the general 
framework herein provided.
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Abstract
The use of machine learning and deep learning has enabled many applications, 
previously thought of as being impossible. Among all medical fields, cancer care 
is arguably the most significantly impacted, with precision medicine now truly 
being a possibility. The effect of these technologies, loosely known as artificial 
intelligence, is particularly striking in fields involving images (such as radiology 
and pathology) and fields involving large amounts of data (such as genomics). 
Practicing oncologists are often confronted with new technologies claiming to 
predict response to therapy or predict the genomic make-up of patients. Underst-
anding these new claims and technologies requires a deep understanding of the 
field. In this review, we provide an overview of the basis of deep learning. We 
describe various common tasks and their data requirements so that oncologists 
could be equipped to start such projects, as well as evaluate algorithms presented 
to them.
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Core Tip: Designing projects and evaluating algorithms require a basic understanding of principles of 
machine learning. In addition, specific tasks have specific data requirements, annotation requirements, and 
applications. In this review, we describe the basic principles of machine learning, as well as explain 
various common tasks and their data requirements and applications in order to enable practicing 
oncologists to plan their own projects.
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INTRODUCTION
Artificial intelligence (AI) has touched many areas of our everyday life. In medical practice also, it has 
shown great potential in several studies[1]. The implications of use of AI in oncology are profound, with 
applications ranging from assisting early screening of cancer to personalization of cancer therapy. As we 
enter this exciting transformation, practicing oncologists in any sub-field of oncology are oftentimes 
faced with various studies and products claiming to achieve certain results. Verifying these claims and 
implementing these in clinical practice remain an uphill task.

This is an educational review, through which we will attempt to familiarize the reader with AI 
technology in current use. We first explain some basic concepts, in order to understand the meaning of 
techniques labelled as AI, and then move into explaining the various tasks that can be performed by AI. 
In each we provide information on what kind of data would be required, what kind of effort would be 
required to annotate these images, as well as how to assess networks based on these tasks, for the 
benefit of those oncologists wishing to foray into the field for research, or for those wishing to 
implement these algorithms in their clinical practice.

WHAT IS ARTIFICIAL INTELLIGENCE: BASIC PRINCIPLES
AI is a broad, non-specific term referring only to the “intelligence” in a specific task performed, 
irrespective of the method used. Machine learning (ML) is a subgroup of AI, and deep learning (DL) is a 
further subgroup of ML, which are data-driven approaches. Unlike traditional software engineering 
where a set of rules is defined upon which the computer’s outputs are based, ML involves learning of 
rules by “experience” without “explicit programming”[2,3]. What this means is that given large 
amounts of data which includes a set of inputs and the ideal outputs (training data), the task of ML is to 
understand a pattern within this set of inputs which results in outputs closest to the ideal output 
(Figure 1). The process of training the model is explained in Figure 2.

To understand this in medical terms, say the task of an AI system is to predict the survival of patients, 
given the stage of a particular tumour. If we were to use traditional software engineering, we would 
have to feed the median survival for each stage into the model, and teach the model to output the 
number corresponding to a particular stage. Whereas in case of a ML model, we would simply give as 
input, the stage and survival information of a few thousand patients. The model would learn the rules 
involved in making this prediction. While in the former case, we defined the rules (that is if stage= X 
then survival= Y), in the latter we only provided data, and the ML model deciphered the rules. While 
the former is rigid, that is, if a new therapy alters the survival, we would have to change the rules to 
accommodate the change, the latter learns with experience. As new data emerges, the ML model would 
learn to update the rules so that it can dynamically make accurate predictions. In addition, the ML 
model can take multiple inputs, say level of tumour markers, age, general condition, blood parameters 
into account, in addition to the stage of the patient, and personalise the survival prediction of a 
particular patient.

The above example also illustrates why ML models are data intensive. A good model needs to see a 
large amount of data, with adequate variability in parameters to make accurate predictions. For the 
same reason, AI has bloomed in disciplines which have large amount of digital data available, and these 
include ophthalmology, dermatology, pathology, radiology, and genomics. However, as curated digital 
data emerges in all fields, it is likely to touch and transform all fields of medical practice.

https://www.wjgnet.com/2644-3228/full/v3/i3/42.htm
https://dx.doi.org/10.35713/aic.v3.i3.42
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Figure 1 Functioning of a software engineering process vs a machine learning model. In the former, a rule is programmed into the system based on 
which it computes output for a given input. Whereas in a machine learning model, the system learns from a large training dataset, and deciphers the rule to predict 
output.

WHAT ARE NEURAL NETWORKS?
A particular kind of ML algorithm, called neural network, has been particularly effective in performing 
complex tasks. A neural network takes inspiration from a biological neuron, where it receives several 
inputs, performs a certain calculation, and goes through an activation function, where similar to a 
biological neuron, a decision on whether it should fire or not is made. When there are a number of 
layers of these mathematical functions, the network is known as a “deep neural network” (DNN), and 
the process is called “Deep Learning” (Figure 3). A DNN is capable of handling a large amount of data, 
and defining complex functions, which explains its ability to perform complex classification tasks and 
predictions.

A specific kind of DL, called convolutional neural network (CNN), has performed particularly well in 
image-related tasks. CNNs use “filters” which are applied to images, similar to the traditional image 
processing techniques. “Convolving” with a filter (a mathematical operation) results in highlighting 
certain features of an image. Given an input set of images, a CNN basically learns what set of filters 
highlights features of a particular image, most relevant to a given task. In other words, a CNN is 
learning the features of an image that may be crucial to making a decision. For example, in case of 
mammography, a CNN is trying to answer what features of a mammogram are most predictive of the 
presence of a cancer within.

RADIOMICS AND RADIOGENOMICS: SHIFT TOWARD PERSONALIZED PATIENT CARE
Images contain information far beyond what meets the eye. While radiologists can interpret some of 
these features with the naked eye (such as margins, heterogeneity and density), pixel-by-pixel analysis 
of these images can yield significant amounts of hidden information. Studies have shown that these may 
be successfully correlated to outcomes such as patient survival and genomic mutations[4]. More 
specifically, it was shown by Choudhery et al[5] that in addition to differentiating among the molecular 
subtypes of breast cancer, texture features including entropy were significantly different among HER2 
positive tumors showing complete response to chemotherapy. Other parameters such as standard 
deviation of signal intensity were found predictive in triple negative cancers. A similar study by Chen et 
al[6] in patients with non-small cell lung cancer treated with chemoradiotherapy showed that the 
‘radiomics signature’ could predict failure of therapy. Therefore, using non-invasive imaging, it is thus 
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Figure 2 Process of training a machine learning model. Following the initial training dataset, the model is tested on unseen data. The predicted output is 
compared to desired output, and changes are incorporated into the model till the predicted output is sufficiently close to desired output.

Figure 3 Deep learning. A: Artificial neural networks take input from a number of channels (x1....xn), perform a mathematical function, and decide on ‘firing’ based 
on activation function; B: Deep learning involves multiple layers of such neural networks with many nodes. Each node communicates with all nodes of the connecting 
networks. Created with BioRender.com.

possible to predict the mutations, response to specific drugs and best site of biopsy. Thus potentially, the 
therapy of the patient can be guided by markers mined from non-invasive imaging, making precision 
medicine a true possibility.
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DISCUSSION
Common applications of AI in oncology
Most applications of AI in oncology are currently in the field of radiology and pathology, given the 
abundant digital data available in these fields. These tasks may be classified into specific categories 
(Figure 4). For readers wishing to foray into the field, an explanation of each kind of task, as well as data 
requirements and some examples of applications of these tasks is given below.

Classification
A classification task is one in which the AI algorithm classifies each image as belonging to one of several 
target categories. These categories are given at the level of image or patient. For instance, whether a 
particular mammogram has cancer or not.

Data requirement: Training the network requires input images (mammograms in the above example), 
and an image level ground truth label (presence or absence of cancer in the above case). These are 
relatively easy to obtain if reports are available in a digital format, since automated extraction of 
diagnosis from free-text reports may be performed. Usually thousands of such images are required for 
training. Large public datasets of labelled natural images exist, such as “ImageNet” with over 14 million 
images[7], and several classification networks trained on these databases also exist, such as Alexnet, 
Inception and ResNet. These networks trained on these large public databases can be adapted to the 
medical domain, a process called “transfer learning”.

Classification tasks can be evaluated by calculating the area under the receiver operating charac-
teristic curve (AUROC) and by drawing a confusion matrix from which accuracy of classification can be 
calculated.

Applications: Some examples of classification tasks include breast density categorization on 
mammograms[8], detection of stroke on head computed tomography (CT) in order to prioritize their 
reading[9], and prioritising chest radiographs based on presence of pneumothorax in them[10].

Advantages: The most advantageous use of classification networks is for triage. These can be used to 
classify images that need urgent attention, or those that need a re-look by a reporting radiologist, 
pathologist, or ophthalmologist. This helps to reduce workload and effectively divert resources where 
required.

Disadvantages: When a classification task is performed by an algorithm, it simply classifies an image 
into a certain category, say ‘benign’ or ‘malignant’ for a mammogram, or ‘COVID’ or ‘non-COVID’ for a 
chest radiograph. It does not indicate which part of the image is used for classification, or indeed, if 
multiple lesions are present, which lesion is classified. This translates to reduced ‘explainability’ of such 
a model, where the results cannot be understood logically.

Detection
A detection task is one in which the network would predict the presence as well as location of a lesion 
on an image. Unlike a classification task, which is performed at the image or patient level, the detection 
task is performed at the lesion level. For example, if the network draws a box around a cancer on a 
mammogram, the task is a detection task.

Data requirement: Training requires images as input, and the ground truth needs to be provided as a 
box (called a bounding box) around each lesion, with their labels mentioned. This would typically have 
to be done prospectively, as this is not performed in the routine work-flow of most departments. In the 
above example, each mammogram would have to be annotated with bounding boxes by an expert 
radiologist (usually by multiple radiologists to avoid missing/misclassifying lesions), and each box 
would have to be assigned a label (as benign/malignant or with a BIRADS score, depending on what 
output is expected). Several publicly available datasets such as the COCO dataset[11] exist for natural 
images, with several networks trained on these datasets for object detection (such as RCNN, faster-
RCNN and YOLO).

Detection tasks are evaluated by calculating the intersection over union between a predicted box and 
a ground truth box, that is, by calculating how close a predicted box is in comparison to the ground 
truth box. All boxes over a certain cut-off are considered a correct prediction. A free-response operating 
curve is drawn and sensitivity of the network at specific false positivity rates can be computed and 
compared.

Applications: The most prominent applications in oncology are detection of nodules on chest 
radiographs[12] and CT scans of the lungs[13-15], and detection of masses and calcifications on 
mammography[16].
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Figure 4 Summary of tasks performed by artificial intelligence networks. The applications are diverse and range from lesion detection, i.e., automatic 
identification of the area of pathology in a particular image, to segmentation of defined areas and quantification of area, volume, or percentage segment involved. 
Synthetic images may also be generated by artificial intelligence (AI) networks that closely resemble natural images. Further, it performs classification tasks, wherein 
images are placed into one of two or three categories. Analysis of texture features and correlation with genetic mutations is also possible using AI. Newer applications 
include language processing, from free flow to structured reports with standard, reproducible terminology. Genomic analysis of large amounts of DNA to determine 
drug response and susceptibility to drugs is also an evolving application. AI: Artificial intelligence; VOI: Volume of interest; NSCLC: Non-small cell lung carcinoma; 
EGFR: Epidermal growth factor receptor; LAD: Long axis diameter; DRC: Dose response curve.

Segmentation and quantification
A lesion segmentation task essentially involves classifying each pixel in the image as belonging to a 
certain category. So unlike a classification task (image or patient level) or detection task (lesion level), a 
segmentation task is performed at the pixel level. For instance, classification of each pixel of a CT image 
of the liver as background liver or a lesion would result in demarcating the exact margins of a lesion. 
The volume of these pixels may then be calculated to give the volume of the right lobe and left lobe of 
the liver separately.

Data requirement: Here, exact hand annotation of the lesion in question by the expert is required. This 
involves drawing an exact boundary demarcating the exact lesion in each section of the scan. Since this 
is routinely performed for radiotherapy planning, such data may be leveraged for building relevant 
datasets. Datasets like the COCO dataset exist with pixel level annotations for natural images.

These algorithms are evaluated with segmentation accuracy, IOU with the ground truth annotations 
(described in the previous section), or Dice scores[17].

Advantages: There is a tremendous advantage to the use of AI for segmentation, particularly quanti-
fication, in terms of increasing throughput and reducing the man-hours required for these tasks. In 
some cases such as quantification of extent of emphysema, which is particularly tedious for human 
operators, ready acceptance of AI may be found.

Applications: Automated liver volume calculations (liver volumetry) is an important application which 
can significantly reduce the time of the radiologist spent in the process[18,19]. Segmentation of cerebral 
vessels to perform flow calculations[20] and segmentation of ischemic myocardial tissue[21] are other 
such applications.

Image generation
Image generation refers to the network “drawing” an image, based on images that it has seen. For 
instance, if a network is trained with low dose CT and corresponding high resolution CT images, it may 
learn to faithfully draw the high-resolution CT image, given the low dose CT. The most successful 
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neural network to perform this task is called a generative adversarial network (GAN), first described by 
Ian Goodfellow[22]. This involves training two CNNs- a generator, which draws the image, and a 
discriminator, which determines whether a given image is real or generated. The two CNNs are trained 
simultaneously, with each trying to get better than the other.

Data requirement: This kind of network is usually trained in an “unsupervised” manner, that is, no 
ground truth is required. Therefore, no expert time is required in annotating these images. Only curated 
datasets of a particular kind of images are required.

This kind of network is difficult to evaluate, since no objective measure is typically defined. 
Evaluation by human eyes is generally considered the best.

Applications: GAN has found use in several interesting and evolving applications. This includes CT 
and magnetic resonance imaging (MRI) reconstruction techniques to improve spatial resolution while 
reducing the radiation dose or time of acquisition, respectively. GANs can also be trained to correct or 
remove artifacts from images[23]. An interesting application of GAN has been in generating images of a 
different modality, given an image of a certain modality. An example is generation of a positron 
emission tomography (PET) image from a CT image[24], a brain MRI image from a brain CT image[25], 
or a T2 weighted image from T1 weighted image[26].

Advantages: An interesting application of GAN has been used for simulation training for diagnostic 
imaging[27,28]. Students may be trained to recognise a wide variety of pathology using the synthetic 
images generated from these networks. This may be particularly important in certain scenarios such as 
detecting masses in dense breasts.

Disadvantages: These networks seem to possess a supra-human capability. The generated images 
cannot be verified for authenticity of texture or indeed even representation and thus may lead to an 
inherent mistrust of ‘synthetic’ images.

Natural language processing
Natural language processing (NLP) refers to understanding of natural human language. While 
processing structured information is relatively easy, most data in the real world is locked up in the form 
of sentences in natural language. For example, understanding what is written in radiology reports 
would require processing of free-text, and this task is called NLP.

Data requirement: Large publically available datasets such as the “Google blogger corpus” (text) and 
“Spoken Wikipedia corpuses” (spoken language) are available, over which networks can be trained to 
understand natural language. However, large medical corpuses with reports pertaining to specific tasks 
are needed for tackling specific medical problems. With more robust electronic medical records (EMR), 
integrated Hospital and Radiology Information Systems (HIS and RIS), as well as recorded medical 
transcripts, this field is likely to grow rapidly.

Applications: The applications of NLP range from extraction of clinical information from reports and 
EMR to train deep neural networks, to designing chatbots for conversing with patients.

Predictive modelling, radiomics, and radiogenomics
Predictive modelling has been at the core of medical practice for decades. While initial attempts were 
centered at developing scoring systems, or metrics that could be calculated from a few lab parameters, 
predictive modelling can be much more complex today because of the number of variables that ML 
systems can analyse.

A simple example of such a model is the “cholesterol ratio” (total cholesterol/HDL) which is used to 
estimate the risk of cardiac disease. As our models are capable of processing many variables, in fact 
capable of processing whole images, predictive models can be much more nuanced. Radiomics and 
radiogenomics are in fact an extension of the same, built to predict survival, response to therapy, or 
future risk of cancer, with more complex feature extraction and analysis from radiology images.

Data requirement: Building such models requires longitudinal data. Simple ML models would require 
lesser data in comparison to DL models. The amount of data required essentially depends upon which 
level ML is used at. For instance, if lesion segmentation is performed manually, feature extraction is 
performed with routine textural features, and feature selection is performed by means of traditional 
tools such as simple clustering or principle component analysis, then ML model would only use these 
selected features to make the desired prediction, and the amount of data required is relatively small. 
However, if DL is used end-to-end, the data requirement is much higher.

Predictive models are also assessed through AUROC and confusion matrices from which accuracy of 
prediction can be calculated.

Radiomics involve four steps: (1) Segmentation; (2) Extraction of features; (3) Selection of features; 
and (4) model building for prediction (Figure 5). Segmentation involves drawing a margin around a 
lesion. This may be performed by an expert manually, or automatically. Features of the lesion are then 
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Figure 5 The process of radiomics begins with segmentation of the region of interest from the image volumes, which may be manual or 
automatic. Following this, a series of features both histogram based and pixel based are extracted, and a set of these are chosen as classifiers for the discriminator 
model. The performance of this model is tested on a different set of data using statistical methods. ROC: Receiver operating characteristic; K-M: Kaplan-Meier

defined. These may be semantic, that is defined by an expert, such as tissue heterogeneity, spiculated 
margins, or quantitative features (such as mean, median, histogram analysis, and filter-extracted 
features). This may yield several 100 features, of which overlapping features should be removed before 
analysis. Subsequently, a few selected features may then be fed into a ML model along with the 
outcomes that are to be predicted. ML or DL may also be applied at the initial stages, for segmentation 
and feature extraction itself, rather than at the last step.

Applications: Predictive models are extremely useful in oncology. Studies have shown that features 
extracted from images can be used to predict the response to various kinds of therapies. Morshid et al
[29] and Abajian et al[30] showed good accuracy in predicting response to transarterial chemoembol-
isation. Studies have also correlated the imaging features extracted with genomic information, for 
example, several studies have shown that imaging features can accurately predict EGFR mutation status 
in patients with lung cancer[31-34]. Segal et al[35] showed that 28 CT texture features could decode 78% 
of the genes expressed in hepatocellular carcinoma. More recent work also shows that DL models can 
predict future risk of development of cancer. Eriksson et al[36] studied a model that identified women at 
a high likelihood of developing breast cancer within 2 years based on the present mammogram. All 
these pave the way towards more personalised management of patients with cancer.

Genomic data analysis
The next generation of personalised medicine is undoubtedly ‘genomic medicine’, wherein not just 
targeted therapy but also diagnostic procedures are tailored as per the genetic make-up of an 
individual.

In addition, there is a growing effort towards population based studies for pooling of large scale 
genomic data and understanding the relationship between genomics, clinical phenotype, metabolism, 
and such domains. The challenges with these techniques are the huge amounts of data obtained from a 
single cycle, and the computational requirements in its processing and analysis. Thus, both ML and DL 
are ideally suited to deal with each step of the process starting from genome sequencing to data 
processing and interpretation.

For instance, a DL model that combined both histological and genomic data in patients with brain 
tumors to predict the overall survival, was able to show non-inferiority compared to human experts[37].

Data requirement: The essential in this field is not the data, but rather the ability to process the data. 
Since the human genome contains approximately 3 billion base pairs and thousands of genes, the data 
becomes extremely high dimensional. CNNs and recurrent neural networks (RNNs) have been proven 
to be the best approach to evaluate multiple DNA fragments in parallel, similar to the approach used in 
next generation sequencing (NGS)[38]. RNN models have also been used to perform microRNA and 
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Figure 6 Artificial intelligence enables the transition into the era of personalised medicine, where the assistance of artificial intelligence 
allows a radiologist to interact with the patient, correlate the findings with the clinical setting, and potentially issue a report in the same 
sitting as an imaging scan. Multiple different formats of report may be created based on the target audience, which enable clear communication and enhanced 
information exchange.

target prediction from gene expression data[39].

Applications: In addition to the applications detailed above, AI has also found use in variant identi-
fication, particularly Google’s ‘deep variant’ which has shown superior performance to existing 
methods despite not being trained on genomic data[40]. Other studies have also used ML to identify 
disease biomarkers and predict drug response[41,42].

ENABLING PATIENT-CENTRIC ONCOLOGY CARE
Much of medical care today is moving away from patients, with focus shifting towards interpreting 
digital data in the form of blood reports, imaging data, pathology reports, genomic information, etc. The 
sheer amount of data has rendered face to face patient care less important, as synthesizing this 
information takes significant time and effort.

ML and DL have, however, ushered in a new era with endless possibilities. For instance, in a field like 
radiology, where AI is likely to have maximum impact, the onco-radiology reporting room of the future 
is likely to be dramatically different from where we are currently. AI, by reducing the amount of time 
spent in preparing a report, may pre-prepare images and sample reports, allowing a radiologist to 
spend time with the patient, examine the clinical files, and provide the report immediately after the 
examination (unlike in current practice where a radiologist sees the images, never meets the patient, and 
gives them a report about 24 h later). This report can potentially be transcribed into several reports 
simultaneously - for instance a patient friendly report, in easy to understand non-medical language, a 
physician report with important sections and lesions marked on the image, and a traditional descriptive 
radiology report. In fact, the radiology report is likely to have much more information than currently 
considered possible, including the possibility of a particular mutation, possibility of response to a 
particular therapy, and even reconstructed images translated to different modalities which may help 
determine the most important site of biopsy.

While Amara’s law for new technology may well apply (which says that any new technology is 
overestimated early on, and underestimated later[43]), the potential of AI and the vistas that it opens up 
cannot be ignored. As the technology evolves, many of the changes it brings about will enable a leap 
towards the era of personalised medicine (Figure 6).
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CONCLUSION
AI thus holds great potential. The most significant advantage of AI rests in the fact that since it is data-
driven, it holds the potential to derive inferences from very large databases, in a short span of time. It 
brings with it the possibility to standardize clinical care, reduce interpretation times, and improve 
accuracy of diagnosis, and may help enable patient centricity in cancer care.

Like any new technology, however, AI must be used with care and only after thorough clinical tests. 
The most significant disadvantage derives from the fact that it is a “black-box”, with little explainability. 
Little is known about the reasons behind the decisions taken by neural networks, making it imperative 
for the decisions to be seen and approved by human experts.

In summary, there is tremendous scope of AI in cancer care, particularly in the image related tasks. 
With the development of neural networks capable of performing complex tasks, the era of personalised 
medicine seems a reality with AI. Thus, judicious use must be encouraged to maximise the long term 
benefits that outlive the initial enthusiasm of discovery.
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