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Abstract

Artificial intelligence (Al) is a branch of computer science where machines are
trained to imitate human-level intelligence and perform well-defined tasks. Al can
provide accurate results as well as analyze vast amounts of data that cannot be
analyzed via conventional statistical methods. Al has been utilized in pulmonary
medicine for almost two decades and its utilization continues to expand. Al can
help in making diagnoses and predicting outcomes in pulmonary diseases based
on clinical data, chest imaging, lung pathology, and pulmonary function testing.
Al-based applications enable physicians to use enormous amounts of data and
improve their precision in the treatment of pulmonary diseases. Given the
growing role of Al in pulmonary medicine, it is important for practitioners caring
for patients with pulmonary diseases to understand how Al can work in order to
implement it into clinical practices and improve patient care. The goal of this
mini-review is to discuss the use of Al in pulmonary medicine and imaging in
cases of obstructive lung disease, interstitial lung disease, infections, nodules, and
lung cancer.

Key Words: Artificial intelligence; Machine learning; Imaging; Lung; Respiratory;
Pulmonary disease; Coronavirus disease 2019
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Core Tip: Artificial Intelligence (AI) has the potential to have a tremendous influence
when dealing with pulmonary diseases. This review provides a glimpse of Al
application in pulmonary medicine and explains how Al uses imaging data to facilitate
precision medicine in our data-driven era.
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INTRODUCTION

Artificial Intelligence (Al) is a branch of computer science that aims to imitate human thinking ability,
learning, planning, and reasoning to solve complex problems. In 1956, scientists began theorizing a
computer's ability to learn new information by analyzing data which led to the beginning of the field of
AlI[1]. While the terms Al, machine learning and deep learning are often used similarly, the relationship
between them needs to be clarified to avoid confusion. Al is the overall concept of the simulation of
human intelligence using computer systems[2]. Meanwhile, machine learning (ML) is a field of Al
which provides knowledge or information using its capability of learning and analyzing massive
amounts of data from larger datasets including more variables than conventional statistical methods.
Machine learning uses various algorithms to process data, such as supervised learning, unsupervised
learning and reinforced learning[1]. Supervised learning involves the computer recognizing patterns
from data using guidance. Whereas, unsupervised learning involves pattern recognition by the
computer without any guidance[2]. Reinforced learning has the ability to recognize and analyze data
without any labels, by using incremental positive or negative feedback[3]. Deep learning is a subset of
ML that enables the algorithm to learn from a training data set and apply that to fulfill intended tasks to
a new data set[2]. As healthcare data has become increasingly complex, Al has the potential to have a
significant influence on medical data analysis and medical practice.

Al has been implemented in many fields of medicine to facilitate precision medicine by predicting
outcomes, diagnosis, and therapeutic results. Al may assist in diagnosis of different diseases by
recognizing the images from different parts of the body, predicting mortality in the critical care unit,
classifying skin biopsies, and identifying new genotypes in heart failure. The US Food and Drug
Administration (FDA) and Conformité Européenne (CE)-marked have approved more than 300 Al-
based software/medical devices[4,6]. Many of them are related to pulmonary imaging (Table 1)[4,6].

In the 1980s, Al was initially introduced into pulmonary medicine to interpret lung function tests[5].
Since then, AI has been applied in various pulmonary diseases, including, but not limited to obstructive
lung diseases, pulmonary infections, interstitial lung disease, and malignancy[6]. Given its widespread
use in pulmonary medicine, it is important for pulmonologists to have a general understanding of the
utilization of Al in this field and how it can aid them in caring for patients. In this narrative mini-
review, we provided an overview of the pulmonary diseases that are commonly diagnosed and
managed by general pulmonologists for which Al has been applied including obstructive lung disease,
interstitial lung disease, pulmonary tuberculosis (TB), coronavirus disease 2019 (COVID-19) pneumonia,
lung nodules and lung cancer (Figure 1.).

METHOD

PubMed was searched from inception to November 30, 2021, using keywords: “artificial intelligence,

”oou ”oou ”oou

lung disease”, “ artificial intelligence, pulmonary disease”, “artificial intelligence, COPD, asthma”,
artificial intelligence, interstitial lung disease”, “artificial intelligence, tuberculosis”, “artificial
intelligence, COVID-19”, and “artificial intelligence, lung nodule, lung cancer”. All types of published
publications were included, e.g., reviews, observational studies, and meta-analyses. We prioritized

recent articles within five years in this narrative mini-review.

OBSTRUCTIVE LUNG DISEASES

The gold standard of diagnosis in obstructive lung diseases like asthma and chronic obstructive
pulmonary disease (COPD) involves a combination of signs, symptoms, and spirometry. While Al
cannot replace the clinicians’ role, it can complement clinicians’ interpretation of the data available at
the bedside. A study by Topalovic et al[7] compared the accuracy of pulmonologists” interpretation of
pulmonary function testing to an Al-based software that used more than 1430 historical patient cases.
Both groups were asked to study 50 patient cases and correctly interpret the pulmonary function test
while placing them in diagnostic categories. Al-based software was found to outperform the pulmono-
logist interpretation by a substantial margin[7].
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Table 1 Example of Conformité Européenne (CE)-marked, US Food and Drug Administration (FDA)-approved or FDA-permitted artificial

intelligence devices

Pulmona . . . . _
. "y Al device/algorithm Imaging Brief description
conditions
Chronic obstructive Lung density analysis Chest CT Uses three-dimensional segmentation of the lungs, volumetric analysis and
pulmonary disease software density evaluations from CT images to aid in diagnosis and progression of the
disease
LungQ software Chest CT Quantitative analysis of lung volume. Airway morphology analysis
Interstitial lung disease ~ LungPrint Discovery Chest CT Lung tissue and airway evaluation. Quantitative analysis using deep learning to
detect interstitial lung disease and chronic obstructive lung disease
Lung Texture Analysis ~ Chest CT Transforms a standard chest CT into a detailed map. Lung textures quanti-
fication
Pulmonary infection Icolung Non-contrast Detects COVID-19 at an early stage and quantify the extent of lung lesions
Chest CT
InferRead CT Chest CT Real-time identification. Alerts of suspected pneumonia cases
pneumonia
Lung nodule Syngo.CT Lung CAD Multidetector Computer-aid detection tool designed to detect solid pulmonary nodules using
Chest CT convolutional neural network. To be used as the second reader.
Al-Rad Companion CT DICOM chest  Quantitative and qualitative analysis using deep learning. Segmentation of lung
(Pulmonary) lobes and identification of lesions
Temporal Comparison Chest X-ray The new image is superimposed on the old image to detect changes in the lung
software parenchyma.
ClearRead CT CT chest Lung nodule detection asymptomatic population

COVID-19: Coronavirus disease-2019; CT: Computed tomography; DICOM: Digital imaging and communication.

Chest imagings Output

Emph detecti
Interstitial lung disease detection

Tuberculosis detection

Computed tomography
—_—

chest X-ray

Machine learning

Deep learning COVID-19 identification and staging

Malignant lung nodule detection

DOI: 10.35711/aimi.v3.i1.1 Copyright ©The Author(s) 2022.

Figure 1 Representative diagram showing examples of artificial intelligence applications in pulmonary diseases. COVID-19: Coronavirus
disease-2019.

COPD

According to the Global Strategy for Diagnosis, Management and Prevention of Chronic Obstructive
Pulmonary Disease (GOLD) reports 2022, COPD is one of the top three causes of death in the world[8].
Moll et al[9] also proposed a machine learning mortality prediction model for patients with COPD based
on six-minute walk tests, percent predicted of forced expiratory volume in 1 second (FEV1), and age.
While the gold standard of diagnosis of COPD is spirometry, studies have suggested that artificial
intelligence and deep learning can potentially be utilized to screen patients for COPD. Tang et al[10]
suggests that low dose computed tomography (CT) screening of the lungs of both smokers and ex-
smokers can be examined using deep residual networks to identify patients who may have COPD but
remain undiagnosed. Al has also been used to characterize patients already diagnosed with COPD. The
Genetic Epidemiology Study (COPDGene) is one of the largest data sets obtained over ten years,
consisting of chest imaging, spirometry, and molecular data from patients with COPD. This has been
used as the source for multiple studies that have related specific COPD phenotypes to genetic and
molecular mechanisms and has led to the prediction of the disease progression of various COPD
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subtypes[11]. A study by Fischer et al[12] describes an algorithm that can perform lung lobe
segmentation and emphysema quantification, which has been shown to correlate with different GOLD
stages in patients with COPD per their spirometry data. Furthermore, Al-based applications have also
been suggested to help patients identify if they may be having an exacerbation at home and when they
should seek help from a medical professional[13]. This can promote patient responsibility and
potentially save on resources, including emergency department visits.

Asthma

Asthma is an intermittent and reversible obstructive lung disease with multiple phenotypes. Al may
improve diagnosis, phenotype classification, prediction of asthma exacerbations and treatment response
[1,15]. Multiple studies have shown good accuracy of ML-based algorithms in screening and diagnosis
of asthma in adult patients[1]. In regards to phenotype classification, when using the machine learning
approach as well as cluster analysis, the highest corticosteroid-responsiveness phenotype was identified
in patients with low pulmonary function, high serum eosinophils, nasal polyps, and late-onset asthma
[14]. The least corticosteroid-responsiveness phenotype was also found in young, obese females with
early-onset asthma[14]. In another study, Qin et al[15] adopted deep learning algorithms-based high-
resolution computed tomography (HRCT) chest images to assess small airway thickness with the aim of
steroids response evaluation in asthma patients with small airway obstruction. Phenotype identification
can help tailor asthma management and possibly improve outcomes.

INTERSTITIAL LUNG DISEASE

Interstitial lung disease (ILD) is an umbrella term that encompasses all disease processes that can cause
pleural/ parenchymal inflammation and scarring. Deep learning algorithms can help with the diagnosis
of ILD using HRCT chest images. In a case-control study by Walsh et al[16], a database of 1157 de-
identified HRCT images showing evidence of diffuse fibrotic lung disease were classified using the
American Thoracic Society/European Respiratory Society/Japanese Respiratory Society/Latin
American Thoracic Association (ATS/ERS/JRS/ ALAT) idiopathic pulmonary fibrosis guidelines. These
images were divided into multiple groups and separately read by a deep learning algorithm and 91
thoracic radiologists. Walsh et al[16] found that the algorithm outperformed thoracic radiologists’
interpretation of HRCT images with the median accuracy of 73.3% vs 70.7%, respectively. This study
showed that deep learning algorithms could serve as a valuable tool in the diagnosis of ILD. Similarly,
Choe et al[17] has revealed that deep learning increases the diagnostic accuracy of chronic hypersens-
itivity pneumonitis, cryptogenic organizing pneumonia, nonspecific interstitial pneumonia, and usual
interstitial pneumonia patterns. Other studies have used Al algorithms to evaluate HRCT images of
patients with interstitial pulmonary fibrosis and have successfully been able to quantify airway volumes
and parenchymal lesions[17,18].

PULMONARY INFECTIONS

The utilization of Al has also been investigated in multiple pulmonary infections. Here, we briefly
review the utilization of Al in pulmonary tuberculosis and COVID-19.

Tuberculosis

Tuberculosis (TB) remains a significant cause of mortality in many parts of the world. Due to the
variable presentations of TB in chest radiography, diagnosis remains a challenge. The first conventional
computer-aided diagnosis (CAD) was made in 2016 to aid in the detection of TB. Over the years, invest-
igators have also developed multiple CAD algorithms that can detect various radiographic findings in
TB, for example, cavitary and focal TB[19]. In addition to diagnosis, Al can be helpful in other aspects of
TB care as well. Al has been suggested as an aid to review records, identify symptomatic patterns,
surveillance, and factors that may contribute to the treatment and medication adherence failure in TB
[20]. Doshi et al[21] describe innovative ways in which Al-based software can provide access to care and
facilitate the management of TB patients worldwide.

CoVID-19

In recent times, COVID-19 has taken the world by storm. Morbidity and mortality around the world
have risen as treatment options for COVID-19 remain largely experimental. Al software has been
developed to aid in the early diagnosis and prognostication of patients with COVID-19. In a
retrospective, multi-center study by Li et al[22], a deep learning model, called COVID-19 detection
neural network was developed to identify CT findings of COVID-19 infection and differentiate it from
CT findings in community-acquired pneumonia. Another study developed a deep learning convolution
neural network to effectively stage the severity of COVID-19 infection via scoring of various
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radiographic features[23]. This can help in early prognostication of the disease, which can lead to
making early treatment decisions. Another study by Burdick ef al[24] used ML algorithm to build a
model which uses inputs of diastolic blood pressure, systolic blood pressure, heart rate, temperature,
respiratory rate, oxygen saturation, white blood cell, platelet count, lactate, blood urea nitrogen,
creatinine, and bilirubin to predict the need for mechanical ventilation. Furthermore, investigators have
developed deep learning algorithms which help to identify protein structures and shapes. The data
provided using this algorithm has been invaluable in the development of the COVID-19 vaccine[6].

PULMONARY NODULES AND LUNG MALIGNANCY

Despite recent advances in the treatment of pulmonary malignancies, the World Health Organization
considers them among the deadliest of all solid malignancies[25]. Early and accurate diagnosis remains
paramount in improving patient outcomes. CAD systems use deep learning algorithms as an aid for
radiologists to analyze CT images by lung segmentation and provide a more focused analysis that will
allow nodule detection and classification. One such state-of-the-art algorithm implemented by Siemen
Healthcare uses statistical finite element analysis or three-dimensional lung segmentation in adversarial
neural network training[26]. A study by Chauvie et al[27] compared different machine learning
algorithms and lung-RADs criteria and concluded that neural network algorithms enhanced the positive
predictive value in chest digital tomosynthesis in lung cancer detection. One identified disadvantage of
deep learning is that it does not provide uniform features for identifying malignant versus benign
nodules. This problem has been addressed using a method called Radiomics[28]. Radiomics uses
features from one image in order to provide data-characterization algorithms that helps to identify
similar features in new data. This tool can help in finding characteristics of malignancies that can be
otherwise missed by human experts. The combination of Radiomics and deep learning promises the
ability to provide radiologists around the world an advantage in diagnosing pulmonary malignancies.
Finally, a study by Afshar et al[29] has proposed a deep learning-based Radiomics model to predict the
time-to-event outcome prediction, that utilizes raw images of CT and PET (Positron Emission
Tomography) scans and can calculate the image-based risk of death or recurrence, for each patient.

LIMITATIONS OF Al IN CLINICAL PRACTICE

Despite the promising outcomes of Al, small or unstructured databases and missing data may result in
unsatisfactory Al quality. For example, in the diagnosis of lung nodules and lung malignancy, the
software’s ability is usually compared to the ability of expert radiologists. However, since the ultimate
goal is to diagnose malignancies and not just identify lung nodules, algorithms should be made to focus
on identifying malignancies with a different reference standard[30]. Similarly, Al poses other limitations
as well. For example, characteristics of CT imaging are being primarily used as an input for Al
algorithm to diagnose early COVID-19 infection. However, it should be noted that while CT scan has
high sensitivity it does not have very high specificity for COVID-19. So, diagnosing the disease based
solely on CT images with the help of Al may be erroneous[31]. Therefore, while Al has many
advantages, it is important to keep these limitations in mind. Finally, cooperation between physicians
and Al researchers is needed to be able to develop well-structured Al applications that can be validated
in real-world study before launching Al models into clinical fields.

CONCLUSION

The implementation of Al and machine learning algorithms is an evolving and relevant topic in
pulmonary medicine. Human errors can occur in the medical field. It can be associated with missed,
late, and incorrect diagnoses leading to health and economic burden. Al is an efficient tool that can be
implemented to prevent this problem by aiding in the fast, accurate, and early diagnosis, prognost-
ication, as well as treatment of pulmonary diseases. Nonetheless, the lack of knowledge and confidence
in applying Al into practice may hinder the utilization of Al in the medical field. Moreover, well-
performed Al algorithms require a large well quality database. Physician and Al algorithm developers
should work closely to minimize these limitations. While AI alone cannot replace clinician expertise, it
can add to the armamentarium and improve patient care and healthcare worldwide.
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Abstract

For many years, ultrasound was thought to have no indications in pulmonary
imaging because lungs are filled with air, creating no acoustic mismatch, as
encountered by ultrasound wave beam. Lung ultrasound (LUS) was started in
adult critical care settings to detect pleural effusion and acquired more indications
over time. In the neonatal intensive care unit (NICU), the use of chest ultrasound
has gained more attention during the last two decades. Being a radiation-free,
bedside, rapid, and handy tool, LUS started to replace chest X-rays in NICU.
Using LUS depends upon understanding the nature of normal lungs and the
changes induced by different diseases. With the help of LUS, an experienced
neonatologist can detect many of the respiratory problems so fast that interven-
tional therapy can be introduced as early as possible. LUS can diagnose pleural
effusion, pneumothorax, pneumonia, transient tachypnoea of the newborn,
respiratory distress syndrome, pulmonary atelectasis, meconium aspiration
syndrome, bronchopulmonary dysplasia, and some other disorders with very
high accuracy. LUS will be helpful in initial diagnosis, follow-up, and predicting
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the need for further procedures such as mechanical ventilation, diuretic therapy, surfactant
therapy, etc. There are some limitations to using LUS in some respiratory disorders such as bullae,
interstitial emphysema, and other conditions. This review will highlight the importance of LUS, its
uses, and limitations.

Key Words: Lung ultrasound; Neonatal respiratory Disorders; Neonatal chest ultrasound; Meconium,;
Pneumonia; Pneumothorax

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Lung ultrasound is a valuable imaging procedure in neonatal respiratory care. It helps diagnose
many respiratory disorders with excellent accuracy and safety. Some limitations are experienced for its
use, but its benefits are more.
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INTRODUCTION

Lung diseases are the most common reasons of respiratory distress in newborn, leading in some
instances to respiratory failure; even may end with death. Mortality caused by neonatal respiratory
problems was estimated to be 11% in the United States and 32% in China[1,2]. Thus, neonatologists need
to identify the etiology and pathology of lung disease causing respiratory problems. Since the sixties of
the last century, applying point-of-care ultrasound (POCUS) in neonates was first illustrated, with
growing interest with several applications to be used over the past two decades[3,4]. Lung ultrasound
started in adult critical care medicine to diagnose various lung and pleural problems. Then in the early
nineties, chest ultrasound was suggested to diagnose neonatal respiratory distress syndrome (RDS).
Since then, pediatric and neonatal ultrasound of the lung has developed rapidly[5]. After that, several
indications were introduced for the lung ultrasound in neonates as transient tachypnoea of the newborn
(TTN), neonatal pneumonia, pneumothorax, and meconium aspiration syndrome (MAS) with high
specificity and sensitivity[6-10]. Neonatal lung ultrasound (LUS) is an easy bedside procedure with no
radiation exposure and can be done serially in neonates[11,12]. LUS can differentiate neonatal
respiratory diseases and predict neonatal morbidity[3]. Because of its advantages, LUS aids in distin-
guishing the various causes of neonatal respiratory failure and guides the management[3,13]. Another
advantage of performing LUS in the neonatal intensive care unit (ICU) is the immediate interpretation
by the neonatologist with a more accurate diagnosis aiding to start a precise and rapid therapeutic
intervention[13]. Although the European Resuscitation Council guidelines recommend utilizing LUS to
confirm the placement of the endotracheal tube (ETT) diagnose cardiac tamponade, pneumothorax, and
pneumonia, the use of LUS is still not routinely taught in neonatology training programs around the
world[14].

There was a notable increase in publications on the use of LUS in both adults and neonates during the
last fifteen years. The successful establishment of LUS programs in some neonatal intensive care units
(NICU) resulted in a significant reduction in chest radiograms and, subsequently, radiation exposure to
patients[12]. One study showed that the risk of cancer occurrence in infants receiving a single small dose
of radiation was two to three times higher than the average population and was six to nine times higher
than the risk from an exposure of a 60-year-old patient[15]. The POCUS Working Group of the
European Society of Paediatric and Neonatal Intensive Care issued evidence-based guidelines on
POCUS for neonates and children in 2020[16]. Because it costs less than chest radiology, being radiation-
free with higher sensitivity for diagnosing small lesions close to the pleural surface, LUS has been
widely used in NICUs. Recently, it has been the most preferred radiological intervention for diagnosing
many diseases in the neonatal ICU as RDS, TTN, pneumothorax, MAS, pleural effusions, and neonatal
pneumonia than the chest X-ray[17]. LUS is beneficial in the initial diagnosis, follow-up, and assessing
the need for further procedures such as mechanical ventilation. Every neonatologist needs to know LUS
and get training courses for this unique safe technique.
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TECHNIQUE OF LUNG ULTRASOUND

Ultrasound imaging uses one principle; an interface reflects the ultrasound wave between the different
media with various acoustic absorption and impedance[18]. Ultrasound is of limited use in normal well-
aerated lungs as there is no acoustic discrepancy in the ultrasound beam as it confronts air[19]. LUS is
very useful in neonates because of the thin chest wall and less ossification of the bony thoracic cage[11,
20]. A high-frequency linear probe is preferred to perform LUS in neonates because of the relatively
thinner chest walls and smaller thoraxes. This high-frequency probe gives a better image quality and
allows visualization of the entire lung surface[21]. The high-frequency probe gives a good resolution
with penetration to a superficial depth. We use probes with higher frequencies in preterm neonates, for
example micro-linear probes with a small footprint (like a hockey stick). An operator with high
experience may use different probe types[22]. Different ultrasound modes can be used for LUS. 2-
Dimensional brightness (B-mode) and motion (M-mode), and the color doppler to estimate blood flow
[23].

To perform lung ultrasound in neonates we perform it in the lateral, supine, or prone position. Each
chest side hemithorax is divided into three areas: Posterior, anterior, and lateral, by the posterior and
anterior axillary lines. We can perform longitudinal and transverse scans in all areas to directly identify
the ribs, subcutaneous tissue, pleural line, and recognize the lung sliding to indirectly assess the lung
tissue[21]. To evaluate or interpret the LUS images, we should understand some terms such as pleural
line, A-lines, B-lines, lung sliding and acoustic shadowing artifacts (rib shadow). The pleural line
(Figure 1) represents the lung's outer surface, including the visceral and parietal pleura. The pleural line
is a regular and smooth hyperechoic line, moving to and fro with respiration. We can clearly visualize
the pleural lines in neonates even without pleural or pulmonary pathology. It becomes apparent after
birth following the first few breaths[24]. The Bat sign (Figure 2) represents a normal lung surface and is
identified by visualizing the bright lateral pleural line (visceral and parietal) and the dark "bat wings" of
the two adjacent ribs on each side. In the presence of lung or pleural diseases, the pleural line may
become thick and coarse compared to the thin and regular hyperechoic pleural line shape in the healthy
lung.

The A-lines are a group of parallel flat lines, occurring at regular distances below and in parallel with
the pleural line. They represent a significant alteration in acoustic impedance at the pleuropulmonary
line creating horizontal artifacts[25]. A-lines are echo artifacts reflected from the pleural line. They are
visualized as hyperechoic, horizontal lines, occurring at equal spaces and extending deeply into the
two-Dimensional image. The acoustic shadowing of the ribs represents an artifact arising from the ribs,
shown by an anechoic area underneath the ribs and extending deeply into the two-dimensional image
and disrupting the A-lines[26]. When the air content of the lung decreases as in subpleural interstitial
edema, there will be an acoustic mismatch generated by the ultrasound wave between the fluid interface
surrounded by air. This change will be reflected repeatedly at the deeper zones[21,27] and creates
vertical artifacts called B-lines. These B-lines correlate with the pulmonary interstitial fluid content. The
number of these lines increases with reducing the air content. B-lines or comet tail artifacts represent
reverberation artifacts that are laser-like, hyperechoic, shadows that arise from this pleural line
extending to the edge of the screen with coinciding movement with respiration. They can be caused by
interstitial edema or interlobar septal pulmonary scarring[11,20]. The presence of multiple B-lines
indicates alveolar interstitial edema[28,29]. Proof of compact coalesced B-lines in the lung denotes a
serious form of the alveolar-interstitial syndrome, called "white lung". It is normal to visualize B-lines in
healthy neonatal lungs. Their number will decrease with the baby's growth until being non-visualized at
the age of 6 mo in a healthy infant[30,31]. Serial ultrasound imaging is advised to differentiate between
standard B lines visualized during the neonatal period from pathological B-lines. If B lines increase,
being more compact and coalesced, they will be more pathological. The denser the B-lines are, the more
likely they are due to underlying lung pathology.

Lung sliding (Figure 3) represents the to-and-fro movement of the parietal and visceral pleura
(pleural line) with respiratory movements and could be seen in B-mode and M-mode. Lung sliding
visualized in B-mode is known as the movement of marching ants alongside the pleural line with
respiration while, in M-mode, we can see lung sliding as the seashore sign in which the non-moving
structures above the pleural line correspond to the sea, and the movement underneath the pleural line
induces some irregularities simulating a sandy shore (Figure 4)[21,26]. Sometimes, the lung sliding is
absent, which indicates a problem in the pleuropulmonary interface that can be observed in pneumo-
thorax, complete atelectasis, pleuropulmonary pathology, and severe hyperinflation that could be seen
in cases of foreign body aspiration[32]. Neonatal LUS scores provide a standardized approach to assess
pulmonary pathology in the neonate, and evaluation of the disease progression is a semi-quantitative
way|[3,33-36]. Practically, the score of LUS is frequently assessed by six chest regions over the anterior
and lateral zones of the chest. Early after birth, gravity plays a significant role, giving a slight distinction
between the dependent and non-dependent lung zones[37]. For each zone, the score will range from 0 to
3. Thus, the total score will be between 0 and 18. Different neonatal pulmonary and pleural diseases
have different numbers of B-lines and subpleural lung consolidations per each zone, which can help
distinguish each of them[33]. A recent study proved that using more lung zones (10 or even 12 zones) in
the first few days after birth did not result in better accuracy for diagnosis and management of
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Figure 1 Pleural line and A-lines in normal lung. The A-lines (red arrows) are horizontal artifactual repetitions of the pleural line (yellow lines) displayed at
regular intervals.

DOI: 10.35711/aimi.v3.i1.8 Copyright ©The Author(s) 2022.

Figure 2 Bat sign created by the pleural line and ribs on either side. This view represents a normal lung surface, where the bright lateral line is the
visceral and parietal interface, and the dark “bat wings” are rib shadows.

DOI: 10.35711/aimi.v3.i1.8 Copyright ©The Author(s) 2022.

Figure 3 Lung sliding and a shimmering appearance of the pleura. Lung sliding refers to a to-and-fro movement of the visceral pleura in contact with the
parietal pleura due to shimmering/glimmering (or twinkling) of the pleural line on 2-Dimensional ultrasound.

bronchopulmonary dysplasia when compared to the standard six zones approach[38].

CLINICAL USES OF NEONATAL LUS

Neonatal LUS has a broad spectrum of clinical uses nowadays. The guidelines made by the POCUS
working group of the European Society of Paediatric and Neonatal Intensive Care in 2020[16] stated that
there was reasonable evidence (level B evidence) for neonatal LUS use in cases of transient tachypnoea
of the newborn (TTN), respiratory distress syndrome (RDS), pneumothorax, and pleural effusions (with
the advantage of guiding the thoracentesis). In some other diseases, the level of evidence was less (level
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Figure 4 M-mode of the normal lung shows “Sand on the Beach” appearance or Seashore sign. The movement of the lung during respiration
creates a speckled appearance like grains of sand (the shore) beneath the bright pleural line (Yellow arrow). In contrast, the soft tissues (Subcutaneous fat tissues)
above the pleural line do not move with respiration and do not change with time and thus have a linear appearance (Sea appearance).
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C), such as pulmonary edema and atelectasis. Different algorithms were suggested for neonatal
LUS, e.g., evaluation of life-threatening situations[3,39], the neonatal respiratory pathologies algorithm
[20], the neonatal LUS protocol[40,41], and SAFE-R protocol (which also include assessment of cardiac
tamponade, myocardial function, pleural effusion, and pneumothorax) in the decompensating neonate
[39]. These algorithms require more controlled studies on many patients with different pathologies.
Some limitations for using LUS in neonates will be discussed separately.

PLEURAL EFFUSION

LUS in the neonate can detect even small volumes of pleural effusion very efficiently and can be used to
guide pleural fluid aspiration[42]. In the B-mode, fluid is usually anechoic, sometimes with hepatization
of the lung parenchyma. We can see the sinusoid sign in-M mode with the visceral line moving towards
the pleural line during respiration. Colour doppler is not commonly used in these cases but can differ-
entiate between echogenic and solid collections inside the effusion[21,26].

PNEUMONIA

Pneumonia is a severe neonatal disease that carries a high risk of morbidity and mortality, with about
one million neonatal deaths yearly and about 10% of the worldwide child mortality[43]. Many
pathogens are causing pneumonia in the neonates, such as bacteria, fungi, and viruses. Pneumonia can
be acquired after birth or even during the intrauterine period[44]. The pathology includes epithelial
injury of airways and alveoli, leakage of protein fluid (exudate), and interstitial edema of the alveoli.
Clinical presentations are usually nonspecific and can be indistinguishable from RDS or TTN. Besides
the laboratory workup, LUS can help in diagnosis. LUS in neonatal pneumonia cases shows pulmonary
consolidation areas with irregular margins surrounding multiple B-lines. Other LUS findings that could
present in pneumonia include an invisible pleural line on the affected part of the lung and absent lung
sliding. Sometimes we can observe a dynamic air bronchogram, moving with respiration (Figure 5),
especially in extensive areas of consolidation, which indicates the patency of airways (thus excluding
atelectasis)[45]. In one study on forty cases of neonatal pneumonia vs forty neonates without pulmonary
diseases, the authors found that LUS was a reliable method to diagnose neonatal pneumonia. They
recommended routine use of LUS in the NICU[46]. A meta-analysis reviewed eight studies found that
LUS has excellent sensitivity (96%) and specificity (93%) for the diagnosis of pneumonia in children, and
the study recommended LUS as an alternative tool in such cases with no radiation exposure[47].

RDS

RDS or hyaline membrane disease is a significant reason for NICU admission and neonatal death. It
primarily happens in preterm babies as about 70% of cases are seen in neonates born before 28 wk of
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Figure 5 Dynamic air bronchogram.
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pregnancy, and 15%-30% of cases occur in neonates 32-36 wk of gestation[48]. Pulmonary surfactant
deficiency is significant in the pathogenesis of RDS. Type II pneumocytes produce pulmonary
surfactants. One of their essential functions is to reduce the surface tension in the alveoli preventing the
end-expiratory collapse of the alveoli, which requires more work of breathing to re-open in the next
respiratory cycle. Affected patients present with respiratory distress and failure within 4-6 h postpartum
and, in many cases, require mechanical ventilation[21,26]. LUS in RDS cases shows compact B-lines that
coalesce together, giving the appearance of an echographic white lung, a thickened and irregular pleural
line, and multiple areas of subpleural pulmonary consolidation (reflecting the presence of alveolar
collapse). In one study, these ultrasonic features showed both sensitivity and specificity of 100% for RDS
diagnosis[49]. In another study involving 59 neonates having clinical features suggestive of RDS, only
23 of them had actual RDS. In that study, the sensitivity of LUS was 95.6% (in comparison to 91.3 for
chest X-ray), and the specificity was 94.4% (it was 84.2% in chest X-ray)[50]. LUS appearance of RDS is,
sometimes, not symmetrical in the same or both lungs. Due to gravity issues, these features are usually
found in the posterior parts of the chest because of the supine position acquired by the baby most of the
time. So, it is crucial to examine the posterior chest in neonates not to miss these signs[51].

The treatment of choice in cases of RDS is the administration of surfactant and supported ventilation
as needed. Neonatal LUS is able to expect the requirement for giving surfactant therapy and possibility
of mechanical ventilation. One study showed that the presence of white lung signs in neonatal
respiratory distress anticipated the need for intubation and mechanical ventilation with good sensitivity
and specificity (88.9%, 100%, respectively)[52]. Another study showed that the lung ultrasound score in
the first few hours after birth significantly correlates with the oxygenation condition (oxygen indices) in
neonates and revealed adequate reliability to predict the requirement for surfactant therapy in
premature infants[37]. Two more studies showed that the accuracy of LUS was higher than the fraction
of inspired oxygen (FiO,) in predicting the need for surfactant administration in premature babies[53,
54]. A recently published trial showed a significant ability of LUS in predicting the need for surfactant
compared to FiO, as a guide for that[55]. The concept of Echography-guided Surfactant THERapy,
which uses the LUS score to direct surfactant therapy, resulted in an earlier intake of surfactant, which
reduced the duration of invasive mechanical ventilation without any additional cost[56-58].

ATELECTASIS

Atelectasis is a collapse of a part of the lung parenchyma causing impairment of gas exchange. It can be
caused by either airway obstruction, lung compression (by pulmonary or extrapulmonary lesion), or
alveolar collapse due to increased surface tension of the alveolar wall. The most common mechanism of
atelectasis in neonates is airway obstruction by thick mucus, meconium, or foreign particles. Atelectasis
is usually associated with some other respiratory disorders[59]. Additionally, right upper lobe collapse
in an intubated and mechanically ventilated baby can occur because of traumatic damage to the airway
mucosa of the right-sided bronchi[60].

LUS can demonstrate atelectasis as an area of consolidation with the anechoic border and A-lines
disruption[20,61]. Complete collapse leads to the absence of lung sliding and lung hepatization[11,61].
In severe atelectasis, lung pulse signs can be noticed in LUS, in which the collapsed part of the lung is
pulsating with heartbeats[61]. Static air bronchogram can be observed with atelectasis, and this is
different from dynamic air bronchograms (in pneumonia) that move with respiration, although differ-
entiating between them is often challenging and requires an experienced sonographer[46,62]. Also,
atelectasis in many cases is indistinguishable from pleural effusion in chest X-ray, but with LUS, it is
easy to distinguish. One study showed that the sensitivity of LUS for diagnosing lung atelectasis was
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100% vs 75% of chest X-rays (CT was the reference procedure in this study)[61]. Another study showed
that the accuracy of LUS for diagnosis of post-anesthesia atelectasis in children was 88%, with a
sensitivity of 89% and specificity of 88% (using magnetic resonance imaging as reference)[63].

PNEUMOTHORAX

The incidence of pneumothorax in neonates is about 1%-2%, but this rate is much more in neonates on
mechanical ventilation, reaching up to 30%[64]. Tension pneumothorax is mainly encountered in
neonates on mechanical ventilation either due to the original disease (as meconium aspiration or ball-
valve obstruction of airways causing air trapping and rupture of alveoli) or due to iatrogenic causes
such as birth trauma or improper suctioning techniques[65]. LUS signs of a pneumothorax include
absent lung sliding, absent B-lines, and the existence of lung point. The absence of lung sliding and B-
lines can be explained by accumulation of air in the pleural cavity, preventing the movement of the
visceral pleura. It is worth noting that any disease that interrupts the visceral and parietal pleural
interface will also cause absent lung sliding. The lung point sign is an area identified where parietal and
visceral pleura separate[66]. This sign may be lacking in large tension pneumothorax[67,68].

Many studies showed the usefulness of LUS to detect pneumothorax. One study showed sensitivity
and specificity to be 96.7% and 100%, respectively[69]. Another study showed the superiority of LUS
over chest X-rays in diagnosing pneumothorax[66]. Another large multi-center study found that LUS is
a safe and effective tool to identify serious pneumothorax and assist to manage chest drainage without
doing chest X-rays. That study also showed that LUS has sensitivity, specificity, positive predictive
value, and negative predictive value reaching up to 100% in diagnosing pneumothorax[8]. Another
study compared three imaging techniques for the diagnosis of pneumothorax. It showed that LUS had
100% sensitivity and specificity, chest X-ray had 96% sensitivity and 100% specificity, while chest
transillumination had 87% sensitivity and 96% specificity[67].

TN

TTN, or the so-called "wet lung", is considered the most common reason of neonatal respiratory distress.
TTN is usually a mild disorder, caused by a delay in the fetal lung fluid clearance (most of the fluid is
removed by vaginal squeezing of the chest during labor, while the lymphatics system and pulmonary
circulation clear the remaining fluid after being transported to lung interstitium)[70]. So, prematurity
and elective cesarean sections are the main precipitating factors[72]. The condition usually resolves
spontaneously within 24 h after birth but in a few cases may persist for several days. LUS can
distinguish TTN from RDS by identifying B-lines' number and site[6,7]. In TTN cases, there are bilateral
symmetric B-lines with a regular pleural line. Severe TTN presents as a white lung. LUS has high
specificity but low sensitivity for the diagnosis of TTN. The double lung point sign represents the area
between the upper and lower lung zones at which we can distinguish spaced-out B-lines next to
confluent B-lines. So, double lung point can be considered a demarcation point of echogenic differences
in the lung field[6,7,68].

The double lung point additionally occurs during the diseases recovery phase, such as severe TTN,
RDS, and pneumonia[6] Sometimes a mixed RDS/TTN pattern can be identified when the baby has
reduced reabsorption of the lung fluid and relative surfactant deficiency. This pattern can be recognized
using the LUS score[72]. One prospective cohort study on 59 neonates with respiratory distress found
that sensitivity and specificity of LUS for TTN diagnosis were 93.3% and 96.5%, respectively. These
values were better than those observed in chest X-rays (89.4% and 91.3%, respectively)[50]. Another
recent meta-analysis concluded that LUS has excellent specificity and sensitivity for diagnosing TTN
[73]. Studies also showed that LUS could diagnose TTN and predict which neonate may need a higher
level of care[74].

BRONCHOPULMONARY DYSPLASIA

Bronchopulmonary dysplasia (BPD) is a common complication related to prematurity and is one of the
common complications of RDS. BPD is associated with required respiratory support and/or oxygen
supplement at 36 wk corrected gestation. It associates with long-term morbidity and even mortality in
some cases[75]. In BPD, structural lung abnormalities, immature biochemical pathways, and oxidant
injuries are associated with repeated pulmonary infections and poor nutrition, leading to impaired
cardiopulmonary function[76]. LUS features of BPD include thickened coarse pleural lines, subpleural
consolidations, and B-lines. According to the severity of inter-lobar septal scarring and interstitial
edema, B-lines can be scattered or diffuse. LUS score can help diagnose BPD severity[77] and guide the
management, including diuretics use[36].
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LUS score can predict the development of BPD in some studies. In a multi-center cohort study,
authors found that LUS score on day seven and day fourteen correlates with the oxygenation indices
and predicts BPD occurrence when adjusted for gestation and sex[38]. In another cohort study, LUS was
done on days 3, 7, and 14 in neonates born before 29 wk gestation[78]. This study showed that the LUS
score was higher in neonates who later developed BPD on all-time points, with an LUS score of more
than ten on day seven having the highest sensitivity and specificity.

MAS

MAS is due to intra-uterine aspiration of meconium-contaminated amniotic fluid into the newborn
airways due to fetal hypoxia, acidosis, or infection[79]. Meconium obstructs the airways and induces
surfactant dysfunction, chemical pneumonitis, and secondary infection. These will lead to hypoxia due
to ventilation/perfusion mismatch[80]. Neonates with MAS have yellowish greenish (meconium
stained) skin, umbilical cord, and nails, and signs of respiratory distress. It may develop immediately
after birth. MAS is a specific type of pneumonia. So, its LUS features are like pneumonia, giving the
features of irregular subpleural consolidations with coalescent B-lines. These features are usually
unilateral[81]. Some studies showed the usefulness of LUS for diagnosing MAS in neonates[9,82].
However, LUS should be correlated to the clinical circumstances and physical examination.

Table 1 summarizes lung ultrasound appearance in different neonatal lung diseases compared to
chest X-rays.

OTHER USES OF LUNG ULTRASOUND IN NEONATES

LUS can be used to assess lung recruitment with positive end-expiratory pressure without the need for
exposure to ionizing radiation by doing CT chest[83]. LUS can also effectively monitor bronchoalveolar
lavage in neonates with atelectasis, with an efficacy approaching 93%[84]. Another application of
interest that was seen in some studies is the use of LUS to assess the position of the ETT in the trachea
by measuring the space between the ETT distal end and the aortic arch apex[85] or the space between
ETT distal end and the superior edge of the right pulmonary artery[86]. We can achieve this technique
by utilising either a phase array probe (while doing the high parasternal view) or a linear probe (in the
midsagittal view). Another study reported the use of LUS to immediately confirm the proper ETT
position during neonatal resuscitation. This study used a linear probe in the transverse position[87].

Another critical use of ultrasounds is evaluation of vocal cord function. One study displayed that
utilising high-frequency linear hockey stick probe in a transverse position over the middle of the neck
could identify the presence of vocal cord paresis post-operatively (after aortic arch repair) with high
sensitivity and specificity is compared to flexible fibreoptic endoscopy[88]. LUS has also been utilized to
evaluate the diaphragm[89,90]. A recent study used LUS and diaphragmatic shortening fraction, a
known way of assessing adult diaphragm function, to evaluate diaphragm in neonates. This study
found that the diaphragmatic shortening fraction could be assessed in neonates[91]. LUS has also been
suggested as a modality to follow asymptomatic CPAMs, but more studies are needed to stabilize this
indication[92,93].

LIMITATIONS OF LUNG ULTRASOUND USE FOR NEONATAL RESPIRATORY PRO-
BLEMS

Although LUS is a very effective and safe imaging technique in neonates, we should consider the
clinical finding of each case. Moreover, according to the application of LUS, and some problems in
actual clinical practice, LUS has some limitations in some pulmonary conditions. For example, as
mentioned above, the diagnosis of CPAMs using LUS is still not standardized, and many studies must
be done in this context. Some cases of CPAMs can be detected in utero using ultrasound as the fetal lung
is filled with fluid. On the contrary, due to air-filled neonatal lungs, their diagnosis by LUS in the
neonatal period seems to be difficult because these lesions are usually away from the chest wall. Thus,
lesions that are located away from the pleura could not be visualized by LUS[92].

LUS cannot identify some specific lesions because of the influence of gas in front of the lesion. When
the acoustic beam of ultrasound encounters gas, it will be reflected ultimately. So, cases of pulmonary
bullae cannot be visualized by LUS because of the large amount of gas in the bulla reflecting the
acoustic beam of ultrasound. Similarly, the presence of subcutaneous emphysema or pneumomedi-
astinum will affect the results of LUS due to the same reasons described above. Although LUS is a
handy tool to diagnose pneumothorax, it cannot measure the size due to the total reflection caused by
the gas[66].
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Table 1 Lung ultrasound appearance in different neonatal lung diseases compared to chest X-ray

Disease Chest X-ray Lung ultrasound

Pleural Homogenous opacity obliterating costophrenic and B-mode: Fluid is anechoic, sometimes # hepatization of the lung parenchyma. M-

effusion cardiophrenic angles mode: The sinusoid sign with the visceral line moving towards the pleural line

during respiration

Pneumonia Homogeneous opacities that can be patchy or lobar in Consolidation areas with irregular margins surrounding multiple B-lines.
distribution Invisible pleural line on the affected area. Sometimes: Dynamic air bronchogram

RDS Alveolar shadowing (ground glass) with air Compact coalescent B-lines (white lung). Thickened, irregular pleural line.
bronchogram Multiple areas of sub-pleural consolidation

Atelectasis Area of opacity in the lung with features of volume Area of consolidation with anechoic clear border and disrupted A-lines. Static air
loss as shifting of mediastinum to the same side, bronchogram. Complete collapse leads to the absence of lung sliding, lung
pulled fissure, etc. hepatization, and lung pulse signs

Pneumothorax Jet black translucency with collapsed lung and Absent lung sliding, absent B-lines, and the presence of lung point
sometimes mediastinal shift to the other side

TTN Interstitial oedema predominantly in the peri-hilar Double lung point sign. B-lines. In severe cases: (white lung)
region (wet silhouette)

BPD Tll-defined diffuse reticular markings with circular Thickened coarse pleural linesSubpleural areas of consolidation. B-lines
lucent areas in between and hyperinflated lung

MAS Patchy consolidation Same as pneumonia

BPD: Bronchopulmonary dysplasia; MAS: Meconium aspiration syndrome; RDS: respiratory distress syndrome; TTN: Transient tachypnoea of the
newborn.

Consequently, we need more studies to quantify the size of pneumothorax using LUS. Pulmonary
interstitial emphysema is another condition that LUS cannot diagnose. In a published case study, the
authors used LUS to follow-up localized interstitial emphysema. The infant presented again with
tachypnoea after being treated with continuous positive airway pressure for three days. The chest
computed tomography revealed localized interstitial emphysema of the left upper lobe, whereas LUS
did not show this lesion[94]. We emphasized that using LUS is potentially harmful without adequate
expertise. It may not provide definite diagnostic information and may allow over trust in the procedure,
which could have profound legal implications and not address the underlying lesions. The misuse of
artifacts as a diagnostic tool should be abandoned. Lung ultrasound imaging is advantageous when
definite imaging is possible, even in the newborn.

CONCLUSION

Lung ultrasound is a valuable imaging tool frequently used in neonatal respiratory care. It helps diagnose
many respiratory disorders with excellent accuracy and safety with no radiation risk. Lung ultrasound
is operator dependent and needs adequate experience to achieve good results. Some limitations are
encountered for its use, but its benefits are more.
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Abstract

Pancreatic adenocarcinoma remains to be one of the deadliest malignancies in the
world despite treatment advancement over the past few decades. Its low survival
rates and poor prognosis can be attributed to ambiguity in recommendations for
screening and late symptom onset, contributing to its late presentation. In the
recent years, artificial intelligence (Al) as emerged as a field to aid in the process
of clinical decision making. Considerable efforts have been made in the realm of
Al to screen for and predict future development of pancreatic ductal adenocar-
cinoma. This review discusses the use of Al in early detection and screening for
pancreatic adenocarcinoma, and factors which may limit its use in a clinical
setting.

Key Words: Artificial intelligence; Pancreatic cancer; Pancreatic adenocarcinoma;
screening; Early detection
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Core Tip: Pancreatic adenocarcinoma has poor survival rate and high morbidity.
Artificial intelligence is a potential tool to screen for high risk individuals and for early
detection of pancreatic adenocarcinoma. Despite advances made in artificial intelligence
research in pancreatic adenocarcinoma, it faces a number of challenges before it can be
generalised and applied in a clinical setting.

Citation: Lin KW, Ang TL, Li JW. Role of artificial intelligence in early detection and
screening for pancreatic adenocarcinoma. Artif Intell Med Imaging 2022; 3(2): 21-32

URL: https://www.wjgnet.com/2644-3260/full/v3/i2/21.htm

DOI: https://dx.doi.org/10.35711/aimi.v3.i2.21

April 28,2022 | Volume3 | Issue2 |


https://www.f6publishing.com
https://dx.doi.org/10.35711/aimi.v3.i2.21
mailto:james.li.w.q@singhealth.com.sg
https://www.wjgnet.com/2644-3260/full/v3/i2/21.htm
https://dx.doi.org/10.35711/aimi.v3.i2.21

Lin KW et al. Artificial intelligence in pancreatic adenocarcinoma

Jaishideng®

INTRODUCTION

The global incidence of pancreatic cancer is increasing, and it remains as one of the leading causes of
cancer-related death, with 495773 new cases of pancreatic cancer diagnosed and accounting for 466003
deaths in 2020[1]. Although the 5-year survival rates for pancreatic ductal adenocarcinoma (PDAC)
have improved, it remains low at approximately 9%[2,3], and the overall prognosis of PDAC is poor.
This is partly due to the late stage of presentation of PDAC, which is largely dependent on patient
symptoms for suspicion of the disease[4,5]. Early cases are asymptomatic and there is a lack of a simple
screening tool for clinical use unlike the case of colorectal cancer screening where screening can be
performed in the primary care setting with the use of fecal immunohistochemical test. In the case of
PDAC, cross-sectional imaging tests such as computed tomography (CT) or magnetic resonance
imaging (MRI) are needed for detection, making widespread population screening unfeasible. Germline
mutations and a family history of PDAC have been identified as the strongest risk factors for the disease
[6,7]. As such, efforts in screening programmes have focused their attention on this group of patients[8].
Pancreatic cysts, increased age, and smoking are also known risk factors for PDAC[5,9,10], although it
may not be practical to conduct routine surveillance for patients with these risk factors. There is an
interest in selecting higher risk patients for screening, as the appropriate use biomarkers and imaging
may result in detection of early-stage PDAC amenable to curative resection[2,3,11-15].

Artificial intelligence (Al) is a branch in computer science where computer systems are designed to
perform tasks which would require human intelligence. It is recognised as a potential tool as part of the
screening efforts and building predictive models[16]. Most progress for Al in endoscopy has been made
in the field of colonoscopy, where polyp detection and characterisation has been studied[17]. Computer-
aided diagnosis has also been extended to detection and screening of PDAC[18] in endoscopic
ultrasound (EUS)[19,20], MRI[21] and cytology from fine needle sampling[22]. In recent years, various
groups have harnessed the potential of Al in creating prediction models. These include The Felix Project
[23], the Pancreatic-Cancer Collective[24], and the Early Detection Research Network[25] effort.

This mini-review aims to study the role of Al in the early detection and screening for pancreatic
cancer, as well as factors which may limit its use.

METHODS

A comprehensive literature search was performed in the PubMed, MEDLINE and EMBASE electronic
databases from the inception of the databases up to and including 30 November 2021. The key words
used were “artificial intelligence”, “pancreatic cancer”, “pancreatic adenocarcinoma”, “pancreatic ductal
adenocarcinoma”, “pancreatic carcinoma”, “screening”, and “early detection”. These were supple-
mented with manual searches of references from retrieved articles. Publications in English were

considered for this mini-review.

Al BASIC PRINCIPLES AND TERMINOLOGIES

Al is a term that refers to the ability of a computer programme to imitate the human mind to perform
tasks such as problem solving and learning[26,27].

Machine learning (ML) is the commonest branch of Al used in medicine and refers to a mathematical
model that aims to generate a prediction based on a set of data provided[28,29]. In supervised learning,
the data points are labelled and the ML model “learns” from these labels and identifies new data points.
In contrast, labels are not provided in unsupervised learning, and the model recognises the patterns of
the data by learning its unknown properties and identifying crucial data checkpoints. This is especially
important when the gold standard is not available[29].

Deep learning (DL) is subset of ML that employs the use of Artificial Neural Networks (ANN). Like
the human brain, ANN consists of layers of artificial neurons that are interlinked. Each layer receives a
weighted signal from the previous layer(s) and these signals will be propagated to the next layer when a
specific threshold is exceeded[29]. In the setting of a pancreatic lesion or cancer, DL first identifies the
basics of the lesion (e.g., location) in its initial layers before moving on to next layer for further character-
isation (e.g., size, shape, colour). A final prediction of the pancreatic lesion is made after a systematic
assessment via multiple layers of neural network[29].

ANN s are first trained using the training data set, where the model learns to identify specific patterns
to obtain a relationship between the input and the output. Hyperparameters refer to all settings that are
pre-determined by the investigator and are used to construct the model for optimal execution of a
particular task or on a specific dataset. The validation data set involves a different data set that is used
to fine-tune the hyperparameters of the model. Finally, the test data set refers to a data set whose
purpose is to evaluate the performance of the model against unseen data and determine its generaliz-
ability[29]. This set needs to be unseen by the model during training and validation. However in certain
studies, the test set is sometimes a subset of the training or validation data set, which many result in
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Figure 1 Schematic diagram showing the workflow and neural network to be designed for an early detection protocol. CT: Computed
tomography; CEA: Carcinoembryonic antigen; PDAC: Pancreatic ductal adenocarcinoma; MRI: Magnetic resonance imaging.
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overfitting of the model. This may lead to a discrepancy in the performance of the model when tested in
the same centre and a decline in performance when validated externally.

MODEL FOR SCREENING FOR AND EARLY IDENFICATION OF DEVELOPING PDAC

Early detection of pancreatic cancer requires a step wise approach in order to systematically screen for
risk factors and identify high-risk groups. Figure 1 is a schematic diagram showing the workflow and
neural network to be designed for an early detection protocol. It represents the complex interplay
between each of the input(s) to be processed for the next neural layer(s) until a final output is obtained.
We will be discussing the role of Al in early detection of pancreatic cancer based on this model.

Al'IN CLINICAL DECISION MAKING USING HEALTH RECORDS

The identification of risk factors for pancreatic cancer is essential in identifying the specific population
which would benefit from screening[18,30,31]. Factors such as diabetes, hemoglobin A1C (HbAlc)
value, weight, body mass index (BMI), blood type, smoking status, alcohol use and family history of
pancreatic cancer influence the age of onset of screening for an individual[13,32]. These factors are easily
available in the primary care setting and could potentially predict the development of pancreatic cancer
within 5 years, even before any changes to the pancreas can be detected on imaging[30]. However, most
of the data is stored in health records, which are often proprietary or internet-separated to protect
patient data. The retrieval and subsequent integration of data from different platforms remains a
manual and laborious process for physicians[30]. Even after retrieval, there are no validated scoring
systems to assess these risk factors and stratify patients. On the other hand, Al, with the aid of Natural
Language Processing, can facilitate this process[33-38]. In a case-control study, Malhotra et al[33] created
an algorithm based on electronic health records (EHR) obtained from primary care to identify 41.3% of
patients (< 60 years old) who had significant risk of developing pancreatic cancer up to 20 mo prior to
diagnosis with a sensitivity, specificity, area under the receiver operating characteristic (AUROC) curve
of 72.5%, 59.0% and 0.66%, respectively. Similarly, Appelbaum et al[35] was able to train an ANN using
101381 EHRs to predict the development of PDAC one year before the diagnosis in a population of
high-risk patients (AUROC 0.68, confidence interval (CI): 0.65-0.71).

Despite its potential benefits, research in Al for the above purpose is still preliminary as they are
mostly based on retrospective data from single institutions or registries, and hence not ready for use in a
wider clinical setting[33-38]. One of the major limitations would be the lack validation in the real-world
setting or at least in populations derived from different centres to overcome the risk of bias and
overfitting.

AIMI | https://www.wjgnet.com 23 April 28,2022 | Volume3 | Issue2 |



Lin KW et al. Artificial intelligence in pancreatic adenocarcinoma

Jaishideng®

The use of Al in EHR faces other challenges. Various institutions” medical records are built on
different healthcare systems and encoding systems, making the task of harmonising them difficult[30].
There is also a lack of standardised clinical research data collection models. To overcome this, efforts are
made to build a model of processing and integrating data across institutions. The i2b2 was created to
review medical records, retrieve specific data of interest and repurpose it for research[39]. The Observa-
tional Health Data Sciences and Informatics was developed from the Observational Medical Outcomes
Partnership, an initiative that develops the Common Data Model aiming to gather information from
different data sets or medical repositories and systemically analyse them in a common platform[40].
Similarly, the National Patient-centered Clinical research network is another example which was
developed in United States to access millions of EHR and create a common data set for research
purposes[41]. A common dataset with a standardised format for input of data relevant to PDAC would
enable Al systems to leverage on big data to identify changing risk profiles in PDAC, enabling the
clinician to channel resources for screening to the appropriate cohorts of patients depending on the
population from which this data has been derived.

While these are upcoming and promising initiatives, concerns surrounding restrictions in data
sharing, privacy issues, and maintenance costs could hinder data collection efforts[18]. EHRs are also
stored in different languages in different regions of the world, making the integration of data difficult.
Besides, once data sets are gathered, obtaining IRB approval from the various sites for research may be
difficult.

Al AND THE USE OF NON-INVASIVE BIOMARKERS

Carbohydrate Antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA) are the most widely used
markers for screening of PDAC, but have also been proven to lack the specificity when applied
individually and without clinical context[42,43]. On the other hand, a combined measurement can
potentially increase its sensitivity and specificity up to 1 year before the diagnosis of PDAC[44-46].
Capitalising on this concept, Yang et al[47], developed an algorithm (with 658 subjects in its training set)
to diagnose pancreatic cancer by using ANN to combine CA19-9, CA125 and CEA values. This model
was subsequently evaluated against the test set and was able to yield an AUROC of 0.905 (95%CI =
0.868-0.942) and a high diagnostic accuracy of 83.5% for pancreatic cancer.

New biomarkers for PDAC such as MicroRNAs and gene expressions have generated much interest
in the recent years[45,48-52]. MicroRNAs are non-coding RNAs that are involved in the regulation of
biological pathways, and when altered, could lead to the development of PDAC[53]. MicroRNAs can
potentially predict future PDAC[54] or detect early stage pancreatic cancer. However, they have the
same limitations in sensitivity and specificity when applied without clinical context and as independent
test[55,56]. A combination of the commonly used biomarkers and newer biomarkers may address the
problem of low sensitivity and specificity[56], and in particular can be combined with clinical and
demographic information as described earlier to increase its usefulness.

While Al is able to make use of plasma microRNA panels and specific gene expressions to diagnose
pancreatic cancer[57,58], studies on their use on predicting future pancreatic cancer are not available
[55]. By integrating Particle Swarm Optimization, ANN and Neighborhood Component Analysis
iterations on a list of microRNAs that are most commonly expressed by pancreatic cancer, Alizadeh ef al
[59] created a model consisting of 5 MicroRNAs (miR-663a, miR-1469, miR-92a-2-5p, miR-125b-1-3p and
miR-532-5p) to diagnose pancreatic cancer (Accuracy: 0.93, Sensitivity: 93%, and Specificity: 92%).
Similarly in a multicentre study by Cao et al[57], a machine learning approach was able to identify 2
panels of microRNAs to differentiate pancreatic cancer from chronic pancreatitis with an accuracy of
above 80%.

Gene expressions have gained popularity in diagnosing pancreatic cancer[13,60]. Using a machine
learning approach, Khatri et al[61] analysed the results from transcriptomics-based meta-analysis to
create a nine-gene panel to diagnose pancreatic cancer. This panel was able to differentiate PDAC from
chronic pancreatitis with a specificity of 89%, sensitivity of 78%, and accuracy of 83% and an AUROC of
0.95. As compared to a normal pancreas, it was also used to identify stage I and II PDACs with a
sensitivity of 74%, specificity of 75%, and an AUROC of 0.82. In another study, a machine learning
algorithm was formulated based on the biochemical differences in the serum of 2 groups of subjects
(PDAC group and High risk group) detected via the use of Probe Electrospray lonization Mass
Spectrometry (PESI-MS) to identify early stages of pancreatic cancer[62]. It was able to differentiate
healthy controls from subjects with earlier stage of PDAC with sensitivity of 81.2% and specificity of
96.8% respectively and an accuracy of 92.9%.

At present, these studies have shown that Al can offer the advantage of identifying specific
microRNA and genetic combinations to identifying pancreatic cancer at a faster speed, making this
process less laborious. However, these studies lack external validation, limiting their application in
modern practice. Besides, studies utilising Al to formulate specific sequences to accurately predict
future pancreatic cancer development are still lacking. More studies are required to analyse its ability in
predicting future pancreatic cancer for high risk groups especially during the latency period.
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Table 1 Studies on artificial intelligence using computed tomography or MRI imaging to diagnose pancreatic ductal adenocarcinoma

Training  Validation

set set Al
Ref. Clinical question  (number (number | AUROC Accuracy Sensitivity  Specificity
instrument
of of
subjects) subjects)
Watson Detection of 18 9 CNN NA NA NA NA
et al Ppancreatic cystic
[66], neoplasms
2021 (including PDAC) vs
benign cysts
Sietal  Detection of 319 347 DL 0.871 87.6% for 86.8% for 69.5% for
[65], Ppancreatic cancer PDAC pancreatic pancreatic
2021 (including PDAC, cancer cancer
IPMN, PNET)
Parket  Distinguishing 120 62 Random 0.975 95.2% 89.7% 100%
al[64],  pancreatic cancer forest
2020 tissue from machine
autoimmune pancre- learning
atitis
Maetal Differentiate 330 41 CNN 0.9653 (plain scan) 95.47% (plain ~ 91.58% (plain  98.3% (plain
[63], pancreatic cancer scan),95.76%  scan), 94.08% scan), 97.6%
2020 from benign tissue (arterial scan), (arterial (arterial
95.15% scan), 92.28%  scan), 97.9%
(venous (venous (venous
phase) phase) phase)
Zhang  Detection of 2650 240 images CNN 0.9455 90.2% 83.8% 91.8%
et al Ppancreatic cancer images
[67],
2020
Liuetal Differentiating 412 139 CNN 0.92 83.2% 79.0% 97.6%
[69], pancreatic cancer
2020 tissue from non-
cancerous pancreatic
tissue
Gaoet  To differentiate 398 106 CNN 0.9035 (includes PDAC, NA NA NA
al[71],  pancreatic diseases adenosquamous carcinoma,
2020 in pancreatic lesions acinar cell carcinoma, colloid
carcinoma, myoepithelial
carcinoma, undifferentiated
carcinoma with osteoclast-like
giant cells, mucinous
cystadenocarcinoma, pancre-
atoblastoma, pancreatic
neuroendocrine carcinoma
and metastatic carcinoma)
Chuet Differentiating 255 125 Random NA 93.6% 95% 92.3%
al[70],  PDAC from normal forest
2019 pancreas
Zhuet  Detecting PDAC 205 234 CNN NA 57.3% 94.1% 98.5%
al[72],  from normal
2019 pancreas
Liu et al Diagnosis of 238 100 CNN 0.9632 NA NA NA
[73], pancreatic cancer
2019
Corral  Identify and stratify ~ 139 DL 0.783 NA 75% (for 78% (for
etal IPMN lesions PDAC or PDAC or
[21], high grade high grade
2019 dysplasia) dysplasia)
Chuet Differentiating 456 DL NA NA 94.1% 98.5%
al[74], PDAC from normal
2019 pancreas
Fuetal Pancreas 59 CNN NA NA 82.5% 76.22 (PPV)
[75], segmentation
2018 (including PDAC,
IPMN, Pancreatic
Neuroendocrine
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Tumors, Serous Cyst
Adenoma, and Solid
Pseudopapillary
Tumour of the
pancreas)

AUROC: Area under the receiver operating characteristic; Al: Artificial intelligence; CNN: Convolutional neural network; DL: Deep learning; NA: Not

available; IPMN: Intraductal papillary mucinous neoplasm; PNET: Pancreatic neuroendocrine tumour; PDAC: Pancreatic ductal adenocarcinoma.
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CURRENT EVIDENCE IN PREDICTING THE DEVELOPMENT OF PANCREATIC LESIONS
INTO PDAC IN THE FUTURE

Various studies have been conducted using Al to diagnose pancreatic cancer and yielded promising
results. Table 1 summarises the studies to date[21,63-75]. In a retrospective study, Liu et al[69] was able
to train a convolutional neural network (CNN) to identify pancreatic cancer on contrast-enhanced CT
and achieve an AUROC of 0.9, with more than 90% for its sensitivity and specificity for its test set. It
maintained good sensitivity of 91.3%, specificity of 84.5%, an accuracy of 85.6% and AUROC of 0.955
(95%CI 0.955-0.956) with the validation set. Further analysis revealed that with CNN, radiologists
missed 7% of the pancreatic cancers, of which majority were accurately diagnosed by CNNJ[69]. By
enhancing the CNN, Liu et al[73] was able to process the CT images and obtain the diagnosis faster than
the radiologists (3 s for CNN vs 8 mins for a radiologist) with an AUROC of 0.9632, proving that Al is
comparable to radiologists.

Besides CT, EUS has been frequently utilised to diagnosed pancreatic cancer. Table 2 summaries these
studies[19,20,76-86]. The EUS-CAD based CNN was developed in a retrospective study by Tonozuka et
al[83] to identify lesions harbouring pancreatic cancer in patients with chronic pancreatitis with a
sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 90.2%,
74.9%, 80.1%, and 88.7%, respectively, and an AUROC of 0.924. Similar findings were also echoed in
Zhu et al[86] who utilised SVM to obtain a sensitivity, specificity, PPV and NPV of over 90% for
diagnosis of pancreatic cancer in chronic pancreatitis.

Despite numerous studies looking at using Al to diagnose pancreatic cancer (as shown in Tables 1
and 2), only a few attempted to predict the development to pancreatic cancer. On average, CT changes
for early pancreatic cancer starts approximately 12 to 18 mo before diagnosis[87]. Yet, pancreatic cancer
can advance from being undetectable to metastatic in a short period of time even before the next
surveillance imaging[88,89]. Al-based imaging itself cannot be used to predict pancreatic cancer and
should be combined with other markers.

An ideal Al model for predicting pancreatic cancer is one that integrates multiple biochemical,
radiological and clinical data[90]. In a retrospective proof-of-concept study, Springer et al[91] developed
a supervised machine learning-based approach (CompCyst) based on a combination of patient-reported
symptoms, imaging results (including CT, MRI and EUS images), cyst fluid and molecular character-
istics to calculate its malignant potential and subsequently determine the management of pancreatic
cyst(s). When tested against the validation set, CompCyst outperformed the current standard of care
(accuracy 56%) in its ability to identify patients who required surgery, close monitoring or can be
discharged (accuracy 69%). CompCyst correctly identified 60% of the surgeries that were not warranted
and could have been avoided, while not compromising on its ability to identifying those who truly
require surgery. With CompCyst, 71% of the pancreatic lesions were correctly identified as PDAC as
compared to 58% based on clinical suspicion[91].

While this study has proven that Al has the potential to incorporate various clinical characteristics,
biomarkers, and imaging characteristics to assess for the malignant potential of a pancreatic lesion, it
has a number of limitations. Firstly, the imaging characteristics and molecular biomarkers that were
identified as high risk features were obtained at the time of surgery and not during screening. These
features may not be present early enough to be identified by routine screening. Secondly, important risk
factors (including age and diabetes) that were crucial in the early detection of PDAC (as shown in
Figure 1) were not included in its learning process, representing a missed step in the screening process.
Finally, CompCyst is yet to be externally validated and cannot be applied to the clinical setting
currently.

While CompCyst is a potential tool to aid in clinical decision making, future studies aiming at early
detection of PDAC face a myriad of challenges. Firstly, the pancreas is a complex organ. Unlike the
other organs, the pancreas can be highly variable in its anatomy and location. Moreover, the training
data set is highly dependent on the quality of the images provided. Hence, automated segmentation of
the pancreas via a deep learning approach remains challenging[92]. Secondly, the lack of databases
limits the ability to develop new training sets. There are currently only a few open-access databases[93],
and there are issues regarding sharing of images across various institutions as pointed out by the
Alliance of Pancreatic Cancer Consortia imaging working group[90]. Finally, the algorithm for early
detection of PDAC will have to evaluate images of pancreatic lesion(s) across different time points of
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Table 2 Studies on artificial intelligence using endoscopic ultrasound to diagnose pancreatic ductal adenocarcinoma

Trainin AT
w9 Validation
Ref. Clinical question T set (number Alinstrument AUROC  Accuracy  Sensitivity  Specificity
. of subjects)
subjects)
Udristoiu et Detecting focal pancreatic 65 CNN and 0.97 97.6% 98.1% 96.7%
al[84],2021  masses in four EUS imaging Long Short-
modalities term Memory
models
Tonozuka et Detecting PDAC in patients 92 CNN 0.924 NA 90.2% 74.9%
al[83],2021  with normal
pancreas/ Chronic pancre-
atitis
Maryaetal Differentiate AIP from 336 124 CNN 0.976 NA 95% 90%
[78], 2021 PDAC, chronic pancreatitis
and other pancreatic
diseases
Kuwahara  Predicting malignancy in 50 CNN 0.98 94% 95.7% 92.6%
et al[77), IPMN
2019
Ozkanetal Differentiating pancreatic 260 images 72images ANN NA 87.5% 83.3% 93.3%
[80], 2016 cancer from healthy
pancreas
Saftoiu et al  Differentiate pancreatic 117 25 ANN NA NA 94.6% 94.4%
[81], 2015 cancer from chronic pancre-
atitis
Zhu et al Differentiating pancreatic 194 194 SVM NA 94.2% 96.3% 93.4%
[86], 2013 cancer from chronic pancre-
atitis.
Saftoiu et al  Diagnosis of focal 258 patients ANN 0.94 84.27% 87.59% 82.94%
[82], 2012 pancreatic lesions
Zhangetal  Differentiate pancreatic 108 108 SVM NA 97.98% 94.3% 99.45%
[85], 2010 cancer from non-tumorous
tissue
Saftoiu et al  Differentiate normal 68 Neural 0.847 (for 86.1% (for 93.8% (for 63.6% (for
[20], 2008 pancreas, chronic pancre- network PDAC vs PDAC vs PDAC vs PDAC vs
cancer atitis, pancreatic cancer, and chronic chronic pan-  chronic pan-  chronic pan-
neuroendocrine tumors pan- creatitis) creatitis) creatitis)
creatitis)
Das et al Differentiating pancreatic 160 159 ANN 0.93 NA 93% 92%
[19], 2008 adenocarcinoma from non-
neoplastic tissue (includes
normal pancreas and
chronic pancreatitis)
Norton et al  Differentiate malignancy 35 ML NA 80% 100% 50%

[791, 2001

from pancreatitis

AUROC: Area under the receiver operating characteristic; Al: Artificial intelligence; CNN: Convolutional neural network; EUS: Endoscopic ultrasound;

SVM: Support vector machines; ML: Machine learning; NA: Not available; IPMN: Intraductal papillary mucinous neoplasm; PDAC: Pancreatic ductal

adenocarcinoma.
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surveillance and from different 3 imaging modalities (namely CT, MRI, and EUS). Unlike CompCyst
which looks at images at one time point (i.e. at surgery), combining multiple images obtained from
periodical surveillance via these 3 imaging modalities will require a very large database and multiple

layers.

There is a major gap that needs to be bridged before Al systems for early detection of pancreatic
cancer can be developed. Given sufficient training data and cooperation, Al-based image analyzers

could match or even outperform physicians in image classification and lesion detection[90].

CONCLUSION

Despite the recent advances to predict future PDAC, the use of Al in screening for pancreatic cancer
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remains limited in the clinical setting. Much of the efforts are made in the research setting and lack
external validation and generalisability. However, this field remains promising as we recognise the
challenges ahead to bridge the necessary gaps. The hope to develop an integrated Al model to screen for
PDAC remains a reality, and it will play a complementary role in assisting physicians in their clinical
decision making process but not replace it.
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Abstract

Artificial intelligence (Al) has been entwined with the field of radiology ever since
digital imaging began replacing films over half a century ago. These algorithms,
ranging from simplistic speech-to-text dictation programs to automated
interpretation neural networks, have continuously sought to revolutionize
medical imaging. With the number of imaging studies outpacing the amount of
trained of readers, Al has been implemented to streamline workflow efficiency
and provide quantitative, standardized interpretation. Al relies on massive
amounts of data for its algorithms to function, and with the wide-spread adoption
of Picture Archiving and Communication Systems (PACS), imaging data is
accumulating rapidly. Current Al algorithms using machine-learning technology,
or computer aided-detection, have been able to successfully pool this data for
clinical use, although the scope of these algorithms remains narrow. Many
systems have been developed to assist the workflow of the radiologist through
PACS optimization and imaging study triage, however interpretation has
generally remained a human responsibility for now. In this review article, we will
summarize the current successes and limitations of Al in radiology, and explore
the exciting prospects that deep-learning technology offers for the future.

Key Words: Artificial intelligence; Machine-learning; Deep-learning; Radiology workflow;
Image interpretation
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Core Tip: Artificial intelligence (Al) has been an increasingly publicized subject in the field of radiology.
This review will attempt to summarize the evolving philosophy and mechanisms behind the AI movement
as well as the current applications, limitations, and future directions of the field.
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INTRODUCTION

Advancements in artificial intelligence (AI) technology have created a stir of excitement—and
trepidation —amongst professionals in radiology. With the advent of concepts such as machine learning
and artificial neural networks promising instantaneous and accurate image interpretation, Al has been
heralded as the next step in radiology evolution[1,2]. The ability to reduce image interpretation time and
increase detection to levels beyond what is possible for the human eye could create a revolutionary, and
increasingly necessary, impact on patient care across all medical disciplines.

Al in radiology has focused on improving three broad principles attributed to human limitations;
efficiency, objectivity, and standardization[1,2,3]. Over the past few years there has been a continual
increase in imaging orders, and it has been estimated that a radiologist must interpret an image every 3-
4 s to match the demand[3,4] This demand, combined with declining reimbursement, has put more
pressure on radiologists to increase productivity[5]. Additionally, human and health system variability
has long been seen as a potential target to improve standardization across the field. Depending on who
the reader is, what hospital system they work for, the time of day, and the number of scans the
radiologist has read can result in measurable discrepancies in accuracy and timeliness of image
interpretation[3,6,7].

Despite the exciting potential of Al utilization, the fear of algorithms replacing radiologists is ever
present. Al companies have grown at an astonishing rate, with 60 new Food and Drug Administration
(FDA) approved products in 2020, however the once foreseen Al takeover has not yet manifested[8-10].
Nonetheless, Al is making an impact, just not in the way it was originally planned. A fundamental shift
has occurred in recent years in Al implementation, scope, and underlying philosophy. The idea of
“replacing radiologists” is not a viable next step in Al evolution, at least for now, and the new
philosophy of “working with radiologists” is one that is rapidly gaining traction[11,12]. By examining
the current utilizations and limitations of Al in radiology, we can recognize the importance of this fast-
rising technology and where the interaction between human and machine may be headed in the future.

CURRENT Al UTILIZATION IN RADIOLOGY

The current state of Al utilization in the field of radiology is variable based on institution, although
there are several widely-adopted systems. Aligning with the newer philosophy of “working with
radiologists”, many of the current Al systems are being used in a limited capacity as tools to enhance
the radiologist’s workflow. Many of these Al systems fall under the category of “micro-optimizations”
[13].

The primary goal for micro-optimization algorithms is to assist the radiologist in his or her daily tasks
rather than fully automating the radiologic process. Micro-optimizations can be broken down into two
categories; nonpixel-based optimizations and pixel-based optimizations. By using Al to streamline the
efficiency and standardization of time-consuming, mundane, or non-interpretive tasks, radiologists can
better allocate their time and energy to further focus on image interpretation, consultation, and overall
patient care[3,4,14]. Table 1 provides a summary of Al applications for both nonpixel-based and pixel-
based optimizations.

Nonpixel-based optimizations

Nonpixel-based optimizations refers to Al assistance in tasks that are not directly related to image
interpretation. Some of these tasks include triaging patients, Picture Archiving and Communication
Systems (PACS) optimizations, and standardized reporting. As an example, to better triage patients for
immediate interpretation Al systems are currently being tested for risk stratification in patients with
possible aortic dissection or aneurysm rupture[15,16]. As a different example, through big data analysis,
Al algorithms have started to tackle the issue of automated image protocol creations. By reviewing
imaging study requests, Al can determine if the study is appropriate, if another study may be more
appropriate, or if contrast is necessary or not. With the ability to automatically mine the electronic
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Table 1 Areas of radiology workflow with current artificial intelligence implementation

Workflow target

Application examples

Nonpixel-based
Triage

PACS display
Order verification
Reporting
Pixel-based
Segmentation
Disease registration

Screening

Risk stratification for aortic pathology and generation of ‘aortic calcification score” to assess for disease severity[15,16]
Automated hanging protocol and comparison image generation[11]
Patient medical record mining with built-in appropriateness criteria guidelines to approve or flag study orders[17,18,19,20,21]

Automated data insertion into templates for standardized reporting of chest radiograph findings[23,24]

Segmentation of simple lung nodules on chest CT images[43]
PI-RADS lesion classification based on MRI image characteristics[25,26]

Algorithmic interpretation and classification of screening mammograms[27,28]

PACS: Picture Archiving and Communication Systems; CT: Computed tomography; MRI: magnetic resonance imaging.
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medical record system and compare it to established guidelines, the system can then make the
appropriate recommendation[17-19]. With an estimated 10% of all imaging studies being ordered in
error, these nonpixel-based algorithms can automatically detect and eliminate erroneous study orders
[20,21].

The automatic generation of hanging protocols and standardized screen display is another target for
optimization. Before data interpretation can commence, a radiologist can spend 10-60 s selecting the
appropriate images for comparison[11]. By having the appropriate hanging protocol and display
automatically generate, image interpretation can commence instantaneously. What may at first seem
like an insignificant amount of time, the elimination of manual protocol selection can significantly
improve efficiency and allow for the redirection of the radiologist’s brain power toward actual
diagnostic interpretation[11].

The standardization of reporting is one of the final areas for optimization, and one that is becoming
increasingly necessary among all medical specialties in order to efficiently navigate and report in the
electronic medical systems. Reporting is the final step in the radiologist’'s workflow, and it is also one of
the most error-prone[22]. Many micro-optimization Al algorithms are working on increasing the
efficiency of reporting through the creation of automatic report generation tools including pre-selected
formats specific for the study and automatic annotation. Automating and standardizing reporting can
optimize radiologists’ reimbursements and save time, as demonstrated by one current chest x-ray
reporting algorithm that saved radiologists an average of 8.5 h per month[23,24].

Pixel-based optimizations

While the importance of these nonpixel-based micro-optimizations cannot be understated, the prospect
of instantaneous image interpretation is the ultimate ambition of Al. Although Al technology has not
yet achieved this ability in a broad sense, the development of pixel-based micro-optimizations have
been paramount in maximizing a radiologist’s workflow efficiency[14]. Some example applications of
these systems involve image segmentation, reconstruction, and disease registration.

Al segmentation has the ability to automatically delineate structures and provide measurements such
as organ volume or the surface area of a tumor. Taken a step further, these Al algorithms can be
specialized to stage tumors and provide pre-interpreted read-outs such as PI-RADS scores for prostate
cancer staging[25,26]. A study by Sanford et al[25] demonstrated a modest 40% agreement between an
Al algorithm and an expert radiologist when assigning PI-RADS scores based on magnetic resonance
imaging (MRI). This result was comparable with previous human inter-reader agreements. Automated
segmentation and pre-interpreted read-outs may be maximally utilized in areas that have the most
amount of data, such as screening imaging studies.

Utilizing Al for screening processes helps to reduce the workload for radiologists while not over-
extending the abilities of AL As the typical screen produces categorically “positive”, “negative”, or
“inconclusive” results, the complexity of the Al reads can be minimized. Using machine learning for
screening detection is referred to as computer aided detection (CADe). CADe is currently being used in
screening mammography, where there is an abundance of imaging studies and a relatively dispropor-
tionate amount of mammography trained readers[1,2,27]. CADe highlights the area of interest, and it is
then determined whether an additional diagnostic study is indicated. CADe for mammography has
been around since 1998 and its implementation into clinical workflow has continued to increase
allowing radiologists to read more screening studies in less time. Along with the decreased read-time, it
should be noted that several studies comparing the accuracy of CADe mammography to traditional
radiologist-read mammograms have shown no discernable difference[26]. In one such study, an
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ensemble of top-performing Al algorithms combined with a single radiologist reader achieved an area
under the curve (AUC) of 0.942, with 92% specificity, outperforming the radiologists’ specificity of
90.5%[28]. This is a representative example of new Al algorithms geared toward instantaneous,
automatic interpretation.

LIMITATIONS

Despite the constant development of new Al companies, advanced algorithms, and enhanced learning
technology, Al has not yet become mainstream in the radiology world due to a combination of both
logistical and clinical challenges. The ease of which AI programs can be implemented varies widely
based on the scope and technicalities of the clinical problem they aim to solve, as well as the mechanism
by which they solve them. In general terminology, there are two main types of Al systems, machine-
learning and deep-learning, each of with have some specific limitations of their own[1,29].

Machine-learning Al

Machine-learning functions largely on the principal of pattern recognition. If the machine is able to
“see” enough example image characteristics of a certain disease, it can then look at new images and be
able to recognize them based on those previously defined features. The caveat here, is that these “pre-
defined features”, such as tumor volume, density, etc., must be hand-fed into each specific machine-
learning classifier[3]. In this way the Al does not actually learn, but rather applies the specifics of its pre-
engineered programming. Consequently, machine-learning Al is intrinsically limited by these specific
characteristics which can reduce its ability to recognize image features, such as rare or unusual disease
presentations[30,31]. Figure 1 demonstrates a schematic example of how machine-learning Al systems
utilize these pre-defined features for classification. Furthermore, as the breadth of medical knowledge
continues to expand, previous CAD systems may become outdated, and therefore obsolete[30]. The
theoretical solution to these hard-wired restrictions is the use of Al algorithms that do not rely on pre-
engineered feature recognition, but rather one that can learn and adapt in a manner similar to the
human brain.

Deep-learning Al
Deep-learning is programmed to mimic the pattern of neural networks such as those in the human
brain, referred to in the literature as convolutional neural networks (CNNs). The principal mechanism
behind AI algorithms relies on a vast quantity of data, and through this data the Al can develop its own
pattern of feature recognition without the need for pre-programming from human experts. Deep-
learning Al uses these features to create connections and draw conclusions in a way similar to the
human brain, and allowing it to operate freely from human input thus increasing its automaticity and
decreasing restrictions[3,32,33]. While in theory this method appears to be a step-up from classical
machine-learning technology, the reliance on data and complexity of the mechanism has its limitations.
With the wide-implementation of PACS and an ever-increasing number of medical images, there is
no shortage of data for Al algorithms to mine[34]. The issue is not quantity —but quality. Different
PACS, different imaging machine manufacturers, and different protocols can all effect the generaliz-
ability of an AI algorithm. These variations in image reconstruction, segmentation, and labelling can
have adverse effects on the Al’s ability to learn, and the process of standardization across these variables
would be a time-consuming and expensive task. This is one of the reasons for the current narrow use of
Al in clinical practice. Currently approved AI programs only function with specific computed
tomography (CT) imager models, specific PAC systems, and specific disease processes. With such a
narrow clinical window, Al in its current form is limited in scope[30,31]. If multiple different Al systems
are needed for each specific pathology the process of creating and implementing these systems may not
be fiscally feasible[35]. Even with implementation, a lapse in the detection of rare diseases would still
exist.

Industry acceptance

Questions regarding the mechanism of how deep-learning functions can also create additional
limitations, specifically regarding FDA approval and the accuracy of the AI’s results[8,36]. The
mechanism is extremely complex, and in many instances, the exact way in which the Al forms these
CNN:s is either unknown or proprietary. If the way the Al algorithm functions to produce its results is
not well understood, this begs the question of whether or not its results can be trusted[8,36,37]. This
question has haunted Al since its inception, and the answer of whether or not health professionals and
patients would be willing to put their faith in the recommendation of a 100% computer-controlled
radiologic study is not an easy one to answer. A variety of comparison studies have been conducted to
determine whether Al accuracy is comparable to that of human readers, and the results have been
mixed.
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Figure 1 Machine-learning requires pre-defined feature inputs which are then extracted in order to classify target image characteristics.
Al: Artificial intelligence.
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In the previously mentioned Schaffter et al[28] study on breast cancer detection, no single Al
algorithm was able to outperform the radiologists, with a specificity of 66.1% for the top-performing
algorithm compared to 90.5% for the radiologists. In a breast cancer detection study using a different Al
system, the Al outperformed the radiologists with an AUC of 0.740 compared to the radiologists” AUC
of 0.625[38]. In a study comparing chest radiograph interpretation, Al outperformed the radiologists on
detection of pulmonary edema, underperformed on detection of consolidation, and had comparable
performance for detection of pleural effusions[39]. These studies collectively demonstrate that Al
systems have mixed performance compared to human radiologists.

The utilization of different algorithms, training datasets, and radiologist experience in these studies
makes drawing conclusions about Al’s general trustworthiness difficult. Concerns such as these are why
the shift toward micro-optimizations has been an attractive one for the interim, however as new techno-
logies are developed and deep-learning systems are polished the future of Al continues to push the
boundaries of possibility.

FUTURE DIRECTIONS

The future of Al in radiology is constantly evolving, and with new computer systems, implementation
targets, and algorithms being developed seemingly by the day there is no discernable end to what is
possible[8-10]. Within PACS, the utilization of deep learning Al could theoretically be implemented
wherever large quantities of data are available, although as previously stated there are several
limitations to deep learning technology. With the interconnectivity, digitization, and increasing data
pool in modern radiology, the limitations of deep-learning may slowly start to be overcome, and the use
of micro-optimization may ramp up in scale.

The next phase in Al utilization will likely continue the trend of micro-optimization, but with
increased efficiency. As hospital systems become more integrated, with imaging devices and PACS
being able to directly communicate with each other, it would only make sense that the Al algorithms
within these systems do the same. With Al's current narrow clinical usage, each system excels at only
one specific task[30,31]. By combining these systems, the scope of each can be summated into a larger,
more efficient system. For example a lung cancer screening CT reconstruction algorithm could be used
alongside a hanging protocol algorithm, with CADe for detection, and another algorithm for report
generation[40]. Until a more encompassing system is created, combining existing micro-optimizations
can scale efficiency in clinical workflow.

Disease recognition and triage

Despite the profound promise of deep learning, it has yet to have seen wide-spread clinical utilization.
That being said, the power behind deep learning is data and the amount of available data is
continuously growing. As we gather more high-quality data, the deep learning systems should become
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Figure 2 Deep-learning artificial intelligence application in triaging head computed tomography images. The input image characteristics are
extracted and analyzed by the convolutional neural network to create an output. The output is then flagged or not flagged depending on the algorithm’s interpretation.
Al: Artificial intelligence.
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more powerful, increasing their usage potential. The full potential of deep learning is still unknown,
however there are several promising applications in detection and automated disease monitoring. One
of these applications is in the identification of incidental findings. When a radiologist is examining a
trauma study, the Al system can detect incidental pulmonary nodules, allowing the radiologist to focus
on the primary clinical issue without overlooking other findings[41,42,43]. Looking to improve upon
current CAD systems, utilizing deep learning Al for triage is another attractive target, where the
urgency of a given study is prioritized and then sent to a radiologist for final interpretation. These
algorithms pool hundreds of thousands of imaging studies along with their subsequent reports, and use
this information to train their CNNs. In a study of one such algorithm on assigning priority to adult
chest radiographs, Al was able to assign priority with a sensitivity of 71% and a specificity of 95%.
Importantly, the time taken to report critical findings was reduced significantly from 11.2 to 2.7[32].
Another study on triaging patients based on head CT findings produced similar results, with an AUC of
0.92 for accurately detecting intracranial hemorrhage[44]. Figure 2 is schematic example demonstrating
this type of Al triage system. The ability for the system to distinguish between ‘normal” and ‘abnormal’
accurately, and then further stratify ‘abnormal’ into severity categories, is a promising step toward
automated interpretation[32,44].

Disease monitoring

The prospect of monitoring disease progression is a more complicated one, but the ability of the deep
learning system to accumulate and track data changes over time makes this an attractive target. These
systems may also have the ability to automatically adjust for changes in patient position or body habitus
at the times the studies were conducted[3]. One of the obvious applications for this is oncology, with Al
models already demonstrating their ability to accurately measure therapeutic response and tumor
recurrence[45,46]. Throughout the coronavirus disease 2019 (COVID-19) pandemic, the ability to track
disease progression has been crucial for medical decision making. Unfortunately, the wide variability in
an individual’s disease course has been difficult to predict. To solve this problem, several deep learning
systems have been tested to identify minute chest CT changes based on quantitative pixel analysis,
giving us a more sophisticated look into the pathophysiology of the disease[47-49]. Not only does this
present the potential to make educated decisions for COVID-19 patients regarding the need for hospital-
ization and allocation of resources, but the pandemic in general has further stressed the need of
increased efficiency in radiology during times of unprecedented volume.

CONCLUSION

As the role of Al in radiology continues to advance and diversify, the potential for revolutionary clinical
impact persists. One of the most important factors for the continued development of Al in radiology is
achieving wide-spread implementation, and to achieve this Al must be embraced by radiologists.
Currently, only an estimated 30% of radiologists use Al in day-to-day workflow[50]. With the shift of Al
philosophy away from replacing radiologists, the view of Al as a threat to fear may be replaced with its
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view as a tool to exploit. As more algorithms are approved, more studies published, and more systems
implemented into clinical practice, radiologists and trainees alike need to educate themselves on what
Al can do for them and their patients. When radiologists and Al learn to work together, the potential
clinical benefits of a human-machine symbiosis can be fully realized.
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Abstract

BACKGROUND

The pandemic outbreak of the novel coronavirus disease (COVID-19) has
highlighted the need to combine rapid, non-invasive and widely accessible
techniques with the least risk of patient’s cross-infection to achieve a successful
early detection and surveillance of the disease. In this regard, the lung ultrasound
(LUS) technique has been proved invaluable in both the differential diagnosis and
the follow-up of COVID-19 patients, and its potential may be destined to evolve.
Recently, indeed, LUS has been empowered through the development of
automated image processing techniques.

AIM

To provide a systematic review of the application of artificial intelligence (Al)
technology in medical LUS analysis of COVID-19 patients using the preferred
reporting items of systematic reviews and meta-analysis (PRISMA) guidelines.

METHODS

A literature search was performed for relevant studies published from March 2020
- outbreak of the pandemic - to 30 September 2021. Seventeen articles were
included in the result synthesis of this paper.

RESULTS

As part of the review, we presented the main characteristics related to Al
techniques, in particular deep learning (DL), adopted in the selected articles. A
survey was carried out on the type of architectures used, availability of the source
code, network weights and open access datasets, use of data augmentation, use of
the transfer learning strategy, type of input data and training/test datasets, and
explainability.

CONCLUSION
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Finally, this review highlighted the existing challenges, including the lack of large datasets of
reliable COVID-19-based LUS images to test the effectiveness of DL methods and the
ethical/regulatory issues associated with the adoption of automated systems in real clinical
scenarios.

Key Words: Lung ultrasound; Deep learning; Neural network; COVID-19 pneumonia; Medical imaging

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Challenging coronavirus disease 2019 (COVID-19) pandemic through the identification of
effective diagnostic and prognostic tools is of outstanding importance to tackle the healthcare system
burdening and improve clinical outcomes. Application of deep learning (DL) in medical lung ultrasound
may offer the advantage of combining non-invasiveness and wide accessibility of ultrasound imaging
techniques with higher diagnostic performance and classification accuracy. This paper overviews the
current applications of DL models in medical lung ultrasound imaging in COVID-19 patients, and
highlight the existing challenges associated with the effective clinical application of automated systems in
the medical imaging field.

Citation: De Rosa L, L'Abbate S, Kusmic C, Faita F. Applications of artificial intelligence in lung ultrasound:
Review of deep learning methods for COVID-19 fighting. Artif Intell Med Imaging 2022; 3(2): 42-54

URL: https://www.wjgnet.com/2644-3260/full/v3/i2/42.htm

DOI: https://dx.doi.org/10.35711/aimi.v3.i2.42

INTRODUCTION

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a life-threatening infectious virus and
its related disease (COVID-19) represents a still ongoing challenge for humans. At time of writing, over
497 million infections have been recorded worldwide including more than 6.1 million attributable
deaths[1]. Despite the large number of vaccination programs introduced from the end of 2020 has
represented an opportunity to minimise the risk of severe COVID-19 and death, the spread of new
genetic viral variants with a higher probability of contagion has raised a renewed strong concern for
either not vaccinated and vaccinated people. Thus, since the outbreak of the pandemic, research has
continuously looked for a quick and reliable way to diagnose the disease, treat and monitor people
affected by coronavirus.

To date, molecular test based on real time quantitative reverse transcription polymerase chain
reaction (RT-qPCR) assay by nasopharyngeal swabs along with the serological antibody-detecting and
antigen-detecting tests are the current accepted diagnostic tools for the conclusive diagnosis of COVID-
19[2]. RT-qPCR may take up to 24 h to provide information and requires multiple tests for definitive
results and, in addition, it is not relevant to assess the disease severity. Furthermore, the accuracy of
molecular and serological tests remains highly dependent on timing of sample collection relative to
infection, improper sampling of respiratory specimens, inadequate preservation of samples and
technical errors, particularly contamination during RT-qPCR process and cross-reactivity in the
immunoassay[3,4].

To complement conventional in vitro analytical techniques of COVID-19, biomedical imaging
techniques have demonstrated great potential in clinical diagnostic evaluation by providing rapid
patient assessment in the presence of high pre-test probability. Furthermore, imaging techniques are
currently important in the follow-up of subjects with COVID-19[5,6]. Among the imaging techniques,
chest computed tomography (CT) is considered the primary diagnostic modality and an important
indicator for assessing severity and progression of COVID-19 pneumonia[7,8], although it has been
reported to have limited specificity[9-11]. Indeed, the CT imaging features can overlap between COVID-
19 and other viral pneumonia. Moreover, CT scanning is expensive, not easy to perform in the COVID-
19 context, and multiple risks are associated with it, such as radiation exposure and cross-infection risk
associated with repeated use of a CT suite[12], along with unavailability of CT in many parts of the
world.

In the last few years, lung ultrasound (LUS) technique has become increasingly popular and a good
option for real-time point-of-care testing, with several advantages making it a valuable tool in the fight
against COVID-19[13], although it has specificity limits comparable to those of chest CT.

Ultrasound (US) is a low-cost, non-radioactive medical imaging method, particularly indicated for
evaluation in pregnant women and children, which is portable to the bedside or patient’s home and is
easy to sterilise. Moreover, the risk of COVID-19 cross-infection can be limited by making use of
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disposable ultrasound gel with a portable probe[14]. In addition, some studies indicate that LUS shows
excellent performances in speed of execution and accuracy of diagnosis in case of respiratory failure
[15]. Furthermore, compared with chest X-ray, LUS demonstrated higher sensitivity in detecting
pneumonia[16] and similar specificity in the diagnosis of pneumothorax[15]. On the other hand, the
distinctive LUS features (B-lines, consolidations, pleural thickening and rupture) observed in patients
with varying severity of COVID pneumonia are similar to the features seen in patients with pneumonia
of different aetiologies. Indeed, a recent review[17] on ultrasound findings of LUS in COVID-19
demonstrated that LUS has high sensitivity and reliability in ruling out lung involvement, but at the
expense of low specificity. Therefore, especially in the case of low prevalence of the disease, at present
LUS cannot be considered a valid gold standard in clinical practice.

Ultrasound image processing techniques have assumed great importance in recent years, with the
growing experience that accurate image processing can significantly help in extracting quantitative
characteristics to assess and classify the severity of diseases. Accordingly, sophisticated techniques of
automated image processing, that include the use of artificial intelligence (AI) methods, have been
developed and applied to assist LUS imaging in the detection of COVID-19 and make such assessment
more objective and accurate. AI methods - from machine learning (ML) to deep learning (DL), indeed,
aim to imitate cognitive functions and stand out in automatically recognizing complex patterns in
imaging data, providing quantitative rather than qualitative assessments. The primary purpose of
applying Al methods in medical imaging is to improve the visual recognition of certain features in
images to produce lower-than-human error rates. Furthermore, an enhancement in LUS performance
can reduce the use of more invasive and time-consuming techniques, facilitating both faster diagnosis
and recognition of earlier stages of the disease[18]. To allow a quick development of highly performant
Al models, a large amount of accessible and validated data to train and test AI models is a critical
requirement that can be achieved, for instance, with the development of shared big data archives.
Indeed, one of the most common problems associated with using limited training samples is the over-
fitting of DL models. To address this issue, two main approaches can be selected: model optimization
and transfer learning. These strategies significantly improve the performance of DL models. Likewise,
data pre-processing and data augmentation/enhancement can be useful additional strategies[19,20].

The most common applications of DL methods in clinical imaging, and hence in medical ultrasound
imaging as well, are object detection, object segmentation, and object classification[21]. The main
architectures applied in current analysis are convolutional neural networks (CNNs) and recurrent
neural networks (RNNs)[22]. CNNs are architectures able to work with 2D and 3D input images and
RNNSs recognize the image's sequential characteristics and use patterns to predict the next likely
scenario[23].

Since the outbreak of the pandemic, many proposals have been made based on Al methods applied to
LUS scans of COVID-19 patients. Here we propose a comprehensive systematic review of the literature
on the use of Al technology, DL in particular, to aid in the fight against COVID-19.

MATERIALS AND METHODS

Study selection
A literature search to identify all relevant articles on the use of DL tools applied to LUS imaging in
patients affected by COVID-19 virus was conducted.

This systematic review was carried out using the PubMed/Medline electronic database and
according to the preferred reporting for systematic reviews and meta-analysis (PRISMA) guidelines[24,
25]. We performed a systematic search covering the period from March 2020 (from the outbreak of the
pandemic) to 30 September 2021. The search strategy was restricted to English-language publications.

We performed an advanced research concatenating terms with Boolean operators. In particular,
search words and key terms used in the search included ("lung ultrasound" OR "lus") AND ("COVID-
19" OR "coronavirus" OR "SARS-CoV2") AND ("artificial intelligence" OR "deep learning" OR "neural
networks" OR "CNN").

Eligibility criteria

The inclusion criteria were: Studies that include COVID-19 patients with LUS acquisitions and
developed or tested DL-based algorithms on LUS images or on features extracted from the images; No
restriction on the ground truth adopted to analyse the presence/absence of COVID-19 and/or the
severity of lung disease (e.g., PCR, visual evaluation of video/images and score assignment by expert
clinicians); No restriction on the type of DL architecture used in the studies. Studies on paediatric
population were excluded. Studies were restricted to peer reviewed articles and conference
proceedings. However, the following publication types were excluded: reviews and conference
abstracts.
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Data extraction and analysis

Two investigators (DRL and FF) screened the articles independently. Disagreement between reviewers
was resolved by consensus via discussion. The reasons for the exclusion of some trials are described in
the Results section. Publications by the same research group or by different groups using the same
dataset were included in the analysis. After the selection of the articles, we collected the following
characteristics: First author’s surname, date of publication, sample size, general characteristics of the
study populations, Al techniques used, validation methods and main results obtained. The study
selection process is presented in Figure 1.

RESULTS

Search results

Twenty-four articles resulted after querying the database and screened for eligibility (Figure 1). Of the
24 articles, we discarded four references as review papers. After examining the titles and abstracts, we
excluded five articles: one manuscript did not include DL methods applied on US imaging, three papers
were not based on Al and DL approaches, and one article was focused on the paediatric population.
Moreover, two additional papers, retrieved from the checking of references of the eligible articles, were
included. Finally, 17 articles[26-42] were selected for full-text screening and included in our analysis
(Table 1 and 2). The following part of the section provides a concise overview of the studies” main
features.

Dataset and source code availability
Authors of seven[27-30,33,39,40] of the seventeen selected articles (41.2%) extrapolated their datasets
from the free access LUS database acquired by point-of-care ultrasound imaging and made available
firstly by Born et al[30]. Instead, an Italian group firstly introduced the Italian COVID-19 Lung
Ultrasound DataBase (ICLUS-DB)[38], which is accessible upon mandatory request to the authors, and
that was used in two other studies[32,37]. Noteworthy, Roy et al[38] have created a platform through
which physicians can access algorithms, upload their data and see the algorithm's evaluation of the
data.

Besides dataset open access, access to the code for the neural network is also important to reproduce
results and compare performances. Seven articles[26-30,32,38] (41.2%) made the source code
implementing the proposed DL architecture available for download from the Git-hub repository.

Single-frame/multi-frames or video based architecture

In the majority of the selected papers, DL architectures work with single frame images as input and only
three publications[29,34,41] (17.6%) report DL architectures based on image sequences (i.e., video).
However, six studies[28,30,32,37-39] (35.3%), despite adopting a DL architecture designed to perform
single-frame classification, also propose additional methods to fulfil video-based classification. In
particular, Roy et al[38] proposed an aggregation layer system of frame-level scores to produce
predictions on LUS videos and Mento et al[37] proposed an alternative video-based classification using a
threshold-based system on the frame-level scores obtained from DL architecture.

Other authors[32] adopted a Long Short-Term Memory (LSTM) system, which has been used to
exploit temporal relationships between multiple frames by taking long time series as input, over
performing their results obtained by CNN without LSTM.

Finally, Xue et al[42] applied AI models for patient-level assessment of severity using a final module
across the entire architecture that works with ML rather than DL systems.

Test strategy of DL models
The proposed DL models have been tested on a database entirely independent from the training
database in seven articles[26,35-39,42] (41.2%); five-fold and ten-fold cross-validation techniques were
applied in nine[27-34,40] (52.9%) and one[41] (5.9%) studies, respectively. Among the papers that tested
DL models on an independent database, the percentage of data used for the testing ranged from 33%[35]
to 20%[38] and 10%[26,36] of the overall data. Born et al[29], alongside the five-fold cross-validation
technique in the training/test phase of the DL model, also used an independent validation dataset
made-up of 31 videos (28 convex and 3 linear probes) from six patients. Indeed, Roy et al[38], for
instance, used 80 videos/10709 frames out of the total 277 videos/58924 frames to test their DL model.
In all studies, the splitting of data between training set and test set was performed either at the
patient-level or at the video-level. Thus, all the frames of a single video clip belonged either to the
training or to the test set.

Data augmentation
Twelve (70.6%) research groups extended their LUS database by augmentation. The main strategies for
data augmentation applied to LUS images were: Horizontal / vertical flipping[26,27,29,30,32,33,36,38-40,
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Table 1 General characteristics of the studies included in the analysis (part I)

Publication Sample size', N° . .
Ref. Journal p ! Subjects Main results
date ptsivideos/images
Arntfield etal ~ 22/02/2021 BM]J Open 243/612/121k COVID +, COVID -, Overall Acc = 0.978AUC =1/0.934/1 for
[26] HPE COVID +, COVID -, HPE
Awatshi et al 23/03/2021 IEEE Trans Ultrason  -/64/1.1k COVID +, Healthy, PN 5-fold validation: Acc = 0.829
[27] Ferroelectr Freq
Control
Barros et al[28]  14/08/2021 Sensors 131/185/- COVID +, PN bacterial, = Best model (Xception+LSTM): Acc =
Healthy 0.93 - Se = 0.97
Born et al[29] 12/01/2021 Applied Sciences 216/202/3.2k COVID +, Healthy, PN External validation: Se = 0.806 - Sp =
0.962
Born et al[30] 24/01/2021 ISMB TransMed -/64/1.1k COVID +, Healthy, PN Overall Acc = 0.89Binarization COVID
y/n:Se =0.96 - Sp = 0.79 - Flscore =
0.92
Chen et al[31] 29/06/2021 IEEE Trans Ultrason  31/45/1.6k COVID-19 PN 5-fold validation: Acc = 0.87
Ferroelectr Freq
Control
Dastider et al 20/02/2021 Comput Biol Med 29/60/14.3k COVID-19 PN Independent data validation: Acc =
[32] 0.677 - Se = 0.677 - Sp = 0.768 - Flscore
=0.666
Diaz Escobar et 13/08/2021 PLos One 216/185/3.3k COVID +, PN bacterial,  Best model (InceptionV3): Acc = 0.891 -
al[33] Healthy AUC=0971
Erfanian Ebadi  04/08/2021 Inform Med 300/1.5k/288k COVID +, PN 5-fold validation: Acc = 0.90 - PP=0.95
et al[34] Unlocked
Hu et al[35] 20/03/2021 BioMed Eng OnLine  108/-/5.7k COVID + COVID detection: Acc =0.944 - PP =
0.823 - Se = 0.763 - Sp=0.964
LaSalviaetal ~ 03/08/2021 Comput Biol Med 450/5.4k/> 60k Hospitalised COVID-19  External validation (ResNet50): Acc =
[36] 0.979 - PP=0.978 - Flscore = 0.977 -
AUC =0.998
Mento et al[37]  27/05/2021 J Acoust Soc Am 82/1.5k/315k COVID-19 confirmed % Agreement DL and LUS = 96%
Roy et al[38] 14/05/2020 IEEE Trans 35/277/58.9k COVID-19 confirmed, Segmentation: Acc = 0.96 - DICE = 0.75
COVID-19 suspected,
Healthy
Sadik et al[39]  09/07/2021 Health Inf Sci Syst -/123/41.5k COVID +, PN, Healthy ~ COVID y/n (VGG19+SpecMen): PP =
0.81 - Flscore = 0.89
Muhammad et  25/02/2021 Information Fusion 121 videos + 40 frames COVID +, PN bacterial, ~ Overall: Acc =0.918 - PP = 0.925
al[40] Healthy
Tsai et al[41] 08/03/2021 Phys Med 70/623/99.2k Healthy, Pleural effusion Pleural effusion detection:Acc = 0.924
pts
Xue et al[42] 20/01/2021 Med Image Anal 313/-/6.9k COVID-19 confirmed 4-level and binary disease severity:Acc =

0.75 and Acc = 0.85

1k: Indicates x 10°.

pts: Patients; HPE: Hydrostatic pulmonary edema; PN: Pneumonia; Acc: Accuracy; Se: Sensitivity; Sp: Specificity; AUC: Area under the curve; PP:

Precision; DL: Deep learning; LUS: Lung ultrasound.
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42], bidirectional arbitrary rotation[26,27,29,30,32,33,35,38-40,42], horizontal and vertical shift[30,32,38,
39,42]; filtering, colour transformation, adding salt and pepper noise, Gaussian noise[36,38,42], normal-
isation of grey levels’ intensity[38]. Although proposed by all the authors, only seven papers[26,29,30,32,
33,38,40] provided details on the amplitude of image rotation. In particular, Dastider et al[32] applied
rotations in the range of 0 + 360 degrees, while other authors have limited image rotations to 10 degrees
[26,29,30,33], £ 15 degrees[38] and * 20 degrees[40], respectively. The remaining five papers[28,31,34,37,

41] (29.4%) did not perform data augmentation.

Explainability
Among the selected articles, tools for interpreting the network output were provided in twelve studies
(70.6%), whereas in the remaining five (29.4%) the DL algorithms’ outcomes were proposed as black box
systems. The majority of papers[26-29,32,35,36,38,40] reported the Gradient-weighted Class Activation

AIMI | https://www.wjgnet.com

46

April 28,2022 | Volume3 |

Issue2 |



De Rosa L et al. DL methods in COVID-19 LUS imaging

Table 2 General characteristics of the studies included in the analysis (part II)

DL Input of Available  Available  Pre- Test Data L
Ref. . . . . Explainability
architecture DL models dataset code trained/TL  independent  Augmentation

Arntfield et al CNN SF No Yes (on Yes Yes Yes Yes

[26] github)

Awatshi et al CNN SE No Yes (on Yes No (five-fold) Yes Yes

[27] github)

Barros et al[28] CNN+LSTM SF Yes Yes (on Yes No(five-fold) No Yes
github)

Born et al[29] 3D CNN MF Yes Yes (on Yes No(five-fold) Yes Yes
github)

Born et al[30] CNN SF Yes Yes (on Yes No(five-fold) Yes No
github)

Chen et al[31] MLFCNN SF No Yes (on No No(five-fold) No No
github)

Dastider et al CNN+LSTM SF No Yes (on Yes No(five-fold) Yes Yes

[32] github)

Diaz Escobar et CNN SF No No Yes No(five-fold) Yes No

al[33]

Erfanian Ebadi 3D CNN MF No Yes (on Yes No(five-fold) No Yes

et al[34] github)

Hu et al[35] CNN + MCRF  SF No No Yes Yes Yes Yes

La Salvia et al CNN SE No No Yes Yes Yes Yes

[36]

Mento et al[37] CNN+ STN SF No No No - No No

Roy et al[38] CNN+ STN SF Yes (on Yes (on No Yes Yes Yes

request) github)

Sadik et al[39] CNN SF No No Yes Yes Yes Yes

Muhammad et CNN SF Yes No No No(five-fold) Yes Yes

al[40]

Tsai et al[41] CNN+ STN MF No No Yes No(ten-fold) No No

Xue et al[42] CNN SF No No No Yes Yes Yes

CNN: Convolutional neural network; LSTM: Long short-term memory; MCRF: Multimodal channel and receptive field; MLFCNN: Multi-layer fully
connected neural network; STN: Spatial transformer network; SF: Single-frame; MF: Multi-frame; DL: Deep learning; TL: Transfer learning.

Mapping (Grad-CAM) as the preferred explainability tool. Grad-CAM uses gradients to create a location
map to highlight the region of interest of the images[43]. Instead, Sadik et al[39] used a colormap jet to
visualise a heat map overlay to US images; Erfanian Ebadi et al[34] adopted an activation map system to
detect and segment features in LUS scans. Furthermore, one study[42] showed LUS images with
overlaid colormaps to indicate the segmentation zone of ultrasound according to the different severity.
Roy et al[38], differently, provided an ultrasound colormap overlay on the LUS frame/video and used
four colours to distinguish the different classes of disease severity recognized by DL architecture.

Clinical use

Most of the selected papers applied the Al system to diagnose COVID-19 and/ or discriminate between
COVID-19 and other lung diseases (such as bacterial pneumonia)[26-30,33,34,39,40]. The first approach
using DL architecture for automatic differential diagnosis of COVID-19 from LUS data was POCOVID-
Net[30].

However, a fair number of studies have focused on assessing the severity of COVID-19[31,32,35-38,
42]. In particular, a disease severity score is assigned to the single image according to some character-
istics visible in the image pattern. Most of the articles used four severity classes by assigning a score to
the single frame from 0 to 3[31,32,35-38], as defined by Soldati et al[44]. Xue et al[42] proposed a classi-
fication in five classes of pneumonia severity (score from 0 to 4) along with a binary severe/non-severe
classification. Furthermore, these authors used the DL technology exclusively to implement a
segmentation phase based on a VGG network, while the classification phase still employed a more
traditional, features-based machine learning approach. Finally, La Salvia et al[36] proposed a classi-
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Figure 1 Flow diagram of systematic identification, screening, eligibility and inclusion of publications that applied deep learning methods
to lung ultrasound imaging in coronavirus disease 2019 patients. Al: Artificial intelligence; DL: Deep learning; US: Ultrasound.
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fication based on three severity classes and a modified version considering a seven-classes scenario.

Furthermore, Arntfield et al[26] showed that their network was able to recognize pathological pattern
in LUS images with higher sensitivity than sonographers; whilst an InceptionV3 network proposed by
Diaz-Escobar et al[33] was able to discriminate COVID-19 pneumonia from healthy lung and other
bacterial pneumonia with an accuracy of 89.1% and an area under the ROC curve of 97.1%.

Curiously, one of the eligible papers[41] did not include confirmed cases of COVID-19 patients. The
authors” aim was to design an algorithm capable of identifying the presence of pleural effusion.
However, we have included this work in our systematic review, because small pleural effusions are
rarely reported in COVID-19 patients. Therefore, the detection of pneumonia with pleural effusion can
help rule out the hypothesis of COVID-19 disease.

Transfer learning and DL architecture

From our analysis, it emerged that most of the studies have proposed convolutional neural networks
(CNNS5s) as DL models to generate screening systems for COVID-19. In particular, all publications with
the exception of one[31] used the CNN network. Conversely, Chen et al[31] developed a multi-layer
fully connected neural network for scoring LUS images in assessing the severity of COVID-19
pneumonia.

Among the DL systems included in this review, most of them were generated starting from DL
architectures already proposed for other tasks[26-30,32-36,39,42], suitably modified and trained for new
tasks. Furthermore, many works compared the results of their architectures with those obtained using
existing and well-known architectures[27-30,32,33,35,38-40]. In particular, the following DL
architectures were adapted to fulfil the requirements of LUS analysis to assist in COVID-19 detection
and/or assessment of the severity of the lung disease, or just to compare their performances: VGG-19
[28,33,39] and VGG-50[28-30,33]; Xception[26,28,39]; ResNet 50[27,33,36,40]; NasNetMobile[27,29,39];
DenseNet[32,39].

More in detail, Awasthi et al[27] proposed Mini-COVIDNet, a modified MobileNet model belonging
to the CNN’s networks family and originally developed for detecting objects in mobile applications[45].
Barros et al[28], along with their proposed DL model, also investigated the impact of using different pre-
trained CNN architectures in extracting spatial features that were successively classified by a LSTM
model. Finally, Born et al[29] derived their DL video-based models from a model that was pre-trained
on lung CT scans[46].
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All aforementioned architectures are pre-trained on ImageNet[47].

Sample size

Partly due to the recent outbreak of the pandemic and to the difficulty of having standardised high
quality archives of US images, only few of the selected studies relied on a large dataset in terms of
enrolled patients. Six papers (35.3%) reported a sample size greater than 200 subjects (namely, 243, 216,
216, 300, 450 and 313 in references[26,29,33,34,36,42] respectively).

However, despite the relatively low number of subjects, the total number of LUS videos reaches up to
5400 in one study[36], with an average equal to 1589 videos[26,29,33,34,36]. Among the studies carried
out on a low sample size, Dastider et al[32] included 29 patients and 60 videos, whilst 35 patients/45
videos and 35 patients/277 videos were analysed in references Chen et al[31] and Roy et al[38],
respectively. However, it should be noted that Roy et al[38] published their work at the beginning of the
COVID-19 pandemic, when the total number of COVID-19 patients was still relatively limited. In the
paper by Xue ef al[42], the number of frames/video was not reported.

DISCUSSION

The paper reviews the different DL techniques able to work with LUS images in assisting the diagnosis
and/or prognosis of the COVID-19 disease published since the outbreak of the pandemic. In the
selected documents, the use of DL systems aimed to achieve an accuracy comparable to or better than
clinical standards to provide a faster diagnosis and/or follow-up in COVID-19 patients.

Most of the papers present pre-trained DL architectures[26-30,32-36,39,42] that were modified and
adapted to new data. This approach is also known as transfer learning (TL) technique - i.e., a training
strategy for new DL models with reduced datasets. The network is pre-trained on a very large dataset,
such as ImageNet, with millions of images intentionally created to facilitate the training of DL models,
focusing on image classification and object location/detection tasks[48]. Indeed, deeper models are
difficult to train and provide inconsistent performances when trained on a limited amount of data[49].
Therefore, most of the studies based on DL systems to classify COVID-19 images appropriately use the
TL strategy as large datasets of US images from COVID-19 patients are not yet easily available, partly
because the coronavirus disease is a relatively recent concern.

Furthermore, most of the proposed systems shared the same design, i.e., CNN’s architectures. CNNs
have several applications in medical imaging - among others, image segmentation and object detection
[50]. However, CNNs are particularly suited for image classification problems[51] and, consequently,
represent an optimal solution for the classification of the disease severity from US images.

To date, one of the main challenges faced by DL architectures applied to LUS images of COVID-19
patients are the limited datasets in the available databases. This problem could benefit from creating
open access databases that collect large amounts of data from multiple centres. In some of the selected
studies, a first attempt to overcome this issue is evident, with particular emphasis on the work by Born
et al[30], the authors who first collected a free access dataset of lung images from healthy controls and
patients affected by COVID-19 or other pneumonia.

The development of public and multicentre platforms would guarantee the collection of a
continuously growing amount of data, large and highly heterogeneous, suited for the training and
testing of new DL applications in medical imaging, both in the COVID-19 and LUS field. Furthermore,
this would allow an easier comparison of performances among DL models proposed in different
studies. However, alternative approaches are often used in the testing phase that do not require the use
of independent data sets to evaluate the performance of the model in the event of a limited number of
images available. Among these, the k-fold cross-validation is a statistical method used to evaluate the
ability of ML models to generalise to previously unseen data. Despite being widely used in ML models,
the k-fold cross validation approach is less reliable than tests performed using an external dataset; the
latter is always preferable to test model's ability to adapt properly to new, previously unseen data.

Data augmentation techniques are an alternative strategy to overcome the issue of the limited
amounts of data, largely adopted in practice. These techniques generate different versions of a real
dataset artificially to both increase its size and the power of model's generalisation. Despite the great
advantage in increasing data to feed DL architectures, data augmentation techniques should be used
with awareness, as some geometric transformations could be unrealistic when applied to LUS images (
e.g., angles of rotations greater than 30°). In the field of DL applied to medical imaging, the use of
architectures designed to work with 3D images is another interesting challenge. Indeed, a DL system
that operates with 3D data input usually requires a larger amount of data for training, as a 3D network
contains a parameters’ number that is orders of magnitude greater than a 2D network. This could
significantly increase the risk of overfitting, especially in the case of limited dataset availability. In
addition, the training on large amounts of data requires high computational costs associated with
memory and performance requirements of the tools used. LUS images are usually recorded in the form
of videoclips (2D + time) and can be assimilated to 3D data. Exploitation of dynamic information
naturally embedded in image sequences has proven very important in the analysis of lung echoes. In
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particular, changes induced by COVID-19 viral pneumonia are better detectable in LUS through the
analysis of multi-frames acquisition due to its ability in capturing dynamic features, e.g., pleural sliding
movements and generation of B-line artefacts[44].

Regardless of the data format (i.e., 3D, 2D or 2D+time images), the labelling of ground truth data is
required in supervised DL applications and should be provided by skilled medical professionals.
However, it is a time-consuming activity, in particular in the 2D approach that is characterised by a high
number of samples.

Indeed, some authors demonstrated that the performance in pleural effusion classification on LUS
images obtained with the video-based approach was comparable to that obtained with frame-based
analysis, despite a significant reduction in labelling effort[41]. Furthermore, Kinetics-I3D network was
able to classify LUS video sequences with great accuracy and efficiency[34]. On the other hand, the
video-based approach has also revealed a reduced accuracy in patients classification with respect to the
single frame analysis; however, this could be explained by the relatively reduced number of available
LUS clips[29].

Extending the use of DL architectures beyond multi-frame analysis with respect to single 2D images
is highly desirable. In particular, these methods could be effectively used to assign a patient-level
disease severity score. In fact, this information plays a key role in the selection of treatment, monitoring
of disease progression and management of medical resources (e.g., mechanical ventilator needed).

Code availability is another very critical issue in applications of Al in medical imaging. Indeed, the
lack of ability to reproduce the training of the proposed DL models or to test these models on new US
images is a rather widespread problem. Often, authors do not provide access to either the source code
used to train NNs or the final weight of the trained network. On the other hand, the availability of this
information would greatly facilitate the diffusion of new Al systems in the clinical setting.

DL systems are often presented as black boxes - i.e., they produce a result without providing a clear
understanding in "human terms" of how it was obtained. The black-box nature of the algorithms has
restricted their clinical use until now. Consistently, the explainability - i.e., making clear and
understandable the features that influence the decisions of a DL model - is a critical point to guarantee a
safe, ethical, and reliable use of Al Especially in medical imaging applications, explainability is very
important as it gives the opportunity to highlight regions of the image containing the visual features
that are critical for the diagnosis. Gradient-weighted Class Activation Mapping (Grad-CAM) is a
promising technique for producing "visual explanations" of decisions taken from a large class of CNN-
based models, making their internal behaviour more understandable, thus partially overcoming the
black-box problem. The basic idea is to produce a rough localization map that highlights the key regions
in the image that have a major effect on customization of network parameters, thus maximally
contributing to the prediction of outcomes[43].

These maps visualised areas using a blue-to-red scale, with the highest/lowest contribution to the
class prediction operated by the model. The clinical use of DL systems is a crucial issue. One of the
major current limitations of LUS imaging in COVID patients is the specificity. Focusing the design of DL
systems to overcome this limit could really represent a benefit in the clinical setting.

Along this line, some of the included studies tested the agreement between physicians' ability to
classify COVID-19 patients and that proposed by neural networks. Furthermore, this finding suggests
that the automated system can capture some features (biomarkers) in US images that are not clearly
visible to the human eye.

Finally, another important issue to mention is the use of the quantitative evaluation indicators and
the analysis of the benchmarking techniques adopted to evaluate the effectiveness of the proposed
methods. Unfortunately, the tools examined in the selected manuscripts had very heterogeneous targets
(Table 1, Main results column), ranging from diagnostic to prognostic purposes or assessment of disease
severity. This dispersion of intent and the few articles published in the literature at present make any
comparison or analysis very difficult.

CONCLUSION

The studies analysed in this article have shown that DL systems applied to LUS images for the
diagnosis/prognosis of COVID-19 disease have the potential to provide significant support to the
medical community. However, there are a number of challenges to overcome before Al systems can be
regularly employed in the clinical setting. On the one hand, the critical issues related to the availability
of high-quality databases with large sample size of lung images/videos of COVID-19 patients and free
access to datasets must be addressed. On the other hand, existing concerns about the methodological
transparency (e.g., explainability and reproducibility) of DL systems and the regulatory/ethical and
cultural issues that the clinical use of AI methods raise must be resolved. Finally, a closer collaboration
between the communities of informatics/engineers and medical professionals is desirable to facilitate
the outcome of adequate guidelines for the use of DL in US pulmonary imaging and, more generally, in
medical imaging.
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ARTICLE HIGHLIGHTS

Research background

The current coronavirus disease 2019 (COVID-19) pandemic crisis has highlighted the need for
biomedical imaging techniques in rapid clinical diagnostic evaluation of patients. Furthermore, imaging
techniques are currently important in the follow-up of subjects with COVID-19. The lung ultrasound
technique has become increasingly popular and is considered a good option for real-time point-of-care
testing, although it has specificity limits comparable to those of chest computed tomography.

Research motivation
The application of artificial intelligence, and of deep learning in particular, in medical pulmonary
ultrasound can offer an improvement in diagnostic performance and classification accuracy to a non-

invasive and low-cost technique, thus implementing its diagnostic and prognostic importance to
COVID-10 pandemic.

Research objectives
This review presents the state of the art of the use of artificial intelligence and deep learning techniques
applied to lung ultrasound in COVID-19 patients.

Research methods

We performed a literature search, according to preferred reporting items of systematic reviews and
meta-analysis guidelines, for relevant studies published from March 2020 - to 30 September 2021 on the
use of deep learning tools applied to lung ultrasound imaging in COVID-19 patients. Only English-
language publications were selected.

Research results

We surveyed the type of architectures used, availability of the source code, network weights and open
access datasets, use of data augmentation, use of the transfer learning strategy, type of input data and
training/test datasets, and explainability.

Research conclusions

Application of deep learning systems to lung ultrasound images for the diagnosis/prognosis of COVID-
19 disease has the potential to provide significant support to the medical community. However, there
are critical issues related to the availability of high-quality databases with large sample size and free
access to datasets.

Research perspectives

Close collaboration between the communities of computer scientists/engineers and medical profes-
sionals could facilitate the outcome of adequate guidelines for the use of deep learning in ultrasound
lung imaging.
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Abstract

Much of the published literature in Radiology-related Artificial Intelligence (AI)
focuses on single tasks, such as identifying the presence or absence or severity of
specific lesions. Progress comparable to that achieved for general-purpose
computer vision has been hampered by the unavailability of large and diverse
radiology datasets containing different types of lesions with possibly multiple
kinds of abnormalities in the same image. Also, since a diagnosis is rarely
achieved through an image alone, radiology Al must be able to employ diverse
strategies that consider all available evidence, not just imaging information. Using
key imaging and clinical signs will help improve their accuracy and utility
tremendously. Employing strategies that consider all available evidence will be a
formidable task; we believe that the combination of human and computer
intelligence will be superior to either one alone. Further, unless an Al application
is explainable, radiologists will not trust it to be either reliable or bias-free; we
discuss some approaches aimed at providing better explanations, as well as
regulatory concerns regarding explainability (“transparency”). Finally, we look at
federated learning, which allows pooling data from multiple locales while
maintaining data privacy to create more generalizable and reliable models, and
quantum computing, still prototypical but potentially revolutionary in its
computing impact.

Key Words: Medical imaging; Artificial intelligence; Federated learning; holistic approach;
Quantum computing; Future insights
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Core Tip: It is necessary to understand the principles of how different artificial intelligence (AI)
approaches work to appreciate their respective strengths and limitations. While advances in deep neural
net research in Radiology are impressive, their focus must shift from applications that perform only single
recognition task, to those that perform realistic multi-recognition tasks that radiologists perform daily.
Humans use multiple problem-solving strategies, applying each as needed. Similarly, realistic Al solutions
must combine multiple approaches. Good radiologists are also good clinicians. AI must similarly be able
to use all available evidence, not imaging information alone, and not just one/Limited aspects of imaging.
Both humans and computer algorithms (including AI) can be biased. A way to reduce bias, as well as
prevent failure, is better explainability — the ability to clearly describe the workings of a particular
application to a subject-matter expert unfamiliar with Al technology. Federated learning allows more
generalizable and accurate machine-learning models to be created by preserving data privacy, concerns
about which form a major barrier to large-scale collaboration. While the physical hurdles to implementing
Quantum computing at a commercial level are formidable, this technology has the potential to revolu-
tionize all of computing.

Citation: Nadkarni P, Merchant SA. Enhancing medical-imaging artificial intelligence through holistic use of time-
tested key imaging and clinical parameters: Future insights. Artif Intell Med Imaging 2022; 3(3): 55-69

URL: https://www.wjgnet.com/2644-3260/full/v3/i3/55 . htm

DOI: https://dx.doi.org/10.35711/aimi.v3.i3.55

INTRODUCTION

As medical knowledge’s volume and complexity advances, electronic clinical decision support will
become increasingly important in healthcare delivery, and increasingly likely to use Artificial
Intelligence (AI). Historically, Al approaches have been diverse. However, even senior radiologists, e.g.
[1], have inaccurately considered Al, machine learning, and deep learning as synonymous. We therefore
summarize these approaches, considering their strengths and weaknesses.

Symbolic approaches
These, the focus of “classical” Al (1950s-1990s), embody the use of high-level abstractions (“symbols”)
that represent the concepts that humans (often experts) use in solving non-numerical problems. They
are most closely related to traditional computer science/software development. In fact, they are
mainstream enough that specific terms (instead of “Al”) are preferred to describe a given approach.
Among the successes:

Business-rule systems (BRS or “Expert Systems”)[2]: These allow human experts, working either with
software developers or with graphical user interfaces, to embody their knowledge of a particular area to
offer domain-specific advice/diagnosis. Robust open-source tools such as Drools[3] are available for
building BRS.

Constraint programming systems[4]: Constraint satisfaction involves finding a solution to a
multivariate problem given a set of constraints on those variables. When the constraints are numeric,
techniques such as linear programming[5] (which preceded symbolic Al and is applied in numerous
business-operations problems) work better. Some software, such as Frontline Solver(TM)[6] (of which
Microsoft Excel’s “Solver” add-in is a lightweight version) handles both numerical and symbolic
constraints.

Data-driven approaches

(Also called “machine learning” or ML): These are used to make predictions, or decisions based on those
predictions, by manipulating numbers, or entities transformed into numbers, rather than symbols. They
are most useful in domains where human experts have not formulated problem-solving strategies, but
data is available that, if analyzed to discover patterns, can guide such formulation.

Understandably, ML approaches have received a major boost in today’s “big data” era. Approaches
that employ probabilities, such as Bayesian inferencing[7], have become viable: prior probabilities that
could only be guessed at previously (using highly subjective “expert judgment”) can now be computed
directly from data (e.g., EHRs/ public-health registries), with the caveat that these reflect local conditions
- e.g., incidence of specific infectious diseases - and will vary with the data source.

All data-driven approaches use iterative mathematical optimization techniques (originally pioneered
by Isaac Newton and his contemporaries) to converge onto solutions. In ML parlance, the optimization
process is called “training”.
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ML APPROACHES ARE SUBDIVIDED INTO

Statistical learning

The use of statistical methods to discover patterns or fit predictive models to data. These techniques
originated in the late 19* century (linear regression/correlation), though they have advanced to tackling
vast numbers of input variables (also called “features” in ML) and vastly more diverse problems.
Human expertise is involved in identifying the features (numeric or categorical) relevant to the problem,
and in transforming them to a form suitable for analysis. (For example, a variable comprising of N
categories - e.g., gender/race - can be transformed into (N-1) one-or-zero variables using a simple
technique called “one-hot encoding”[8]). Almost all statistical learning (SL) methods have been
developed by researchers with an applied math/statistics background. Individual methods might make
specific assumptions about the nature of the variables (e.g., that they have a Gaussian distribution, or
that their effects are additive).

Artificial neural networks

(The term “artificial” is typically implied and therefore usually dropped in both the full phrase and the
abbreviation.) This family of approaches, which began in the 1950s, also results in the creation of
predictive models. It is now prominent enough to deserve its own subsection, below.

Neural networks: Deep learning: Neural Networks (NNs) are inspired by the microstructural anatomy
and functioning of animals’ central nervous systems: software that simulates two or more layers of
“neuron”-like computational units (“cells”). Each layer’s cells send their output to cells in the next - and
in approaches called “recurrent NNs”, provide “feedback” to earlier layers as well. However, NNs
employ mathematical techniques under the hood, notably mathematical “activation functions” for
individual cells. The activation function for a neuron typically transforms inputs of large positive or
negative numbers into outputs with a smaller range (e.g., zero to one, or + 1). An activation function
may also incorporate a threshold, i.e., the output is zero unless the input exceeds a particular value.

“Deep” NNs, their modern incarnation, have many more layers than older (“shallow”) NNs. (“Deep
learning” is ML performed by DNNs). NNs differ from Statistical learning in two ways.

NNs make few or no assumptions about variables’ characteristics: their statistical distributions don’t
matter, and their inter-relationships may be non-linear (typically, unknown). Consequently, NNs may
sometimes yield accurate predictive models where traditional SL fails.

While NNs can use human-expert-supplied features, they don’t have to. For image input, DNNs can
discover features directly from the raw pixels/voxels. The initial layer discovers basic feature such as
regional lines, subsequent layers assemble these into shapes, and so on: LeCun et al’s classic Nature
paper describes this process[9], which parallels the cat visual cortex’s operation, as discovered by
Nobelists David Hubel and Torsten Wiesel[10]. After training, the initial layers can be reused for other
image-recognition problems, a phenomenon called Transfer Learning (TL)[11]: Starting training with
layers that recognize basic features is faster than starting from scratch.

TL is also widely used in DNN-based natural language processing (NLP) for medical text: BERT[12],
a giant DNN trained by a Google team on the entire contents of Wikipedia and Google Books, was used
to bootstrap the training of BioBERT, trained on the full text of PubMed and PubMed Central[13].
Choudhary et al[14] review medical-imaging applications of Domain adaptation, a special case of TL,
where a DNN trained on a set of labeled images (e.g., relating to a particular medical condition) are
reused for images for a different, but related, condition, either as-is or after an accelerated training
process.

This gain in power isn’t free. The number of computations involved goes up non-linearly with the
number of layers[15], and so much more compute power is required: Notably, abundant random-access-
memory (RAM) and the use of general-purpose Graphics Processing Units (GPUs)[16], which perform
mathematical operations on sequences of numbers in parallel. (In fact, the theoretical advances
embodied in diverse modern DNN architectures would be infeasible without powerful hardware).

DNNs require vastly more data than SL to discover reliable features which human experts may find
obvious. Data volume isn’t enough: One must also try to eliminate bias by using diverse data. (We
address bias in section 3).

Certain arithmetic-based issues manifest when the number of layers becomes large - production
DNNs can have hundreds of layers - and inputs from each layer pass to the next. Underneath the hood,
numbers are being multiplied. When a large sequence of numbers that are all either larger or less than 1
get multiplied repeatedly, the product tends to infinity or to zero: For example, 2 multiplied by itself 64
times is approximately 1.88 x 10%.

In DNNs, the consequences of repeated multiplication, called the “Exploding Gradient” or
“Vanishing Gradient” problems, can thwart the training process. These are both prevented by batch
normalization (BN), which re-adjusts the numerical values of all the outputs of each hidden layer
during each iteration of the optimization training, so that the average of the outputs is zero and their
standard deviation is one. Apart from speeding learning, BN allows more layers to be added to the
DNN, and hence one can tackle harder problems.
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Because of their performance characteristics - DNNs have achieved better accuracy than previous
methods, on numerous benchmarks, in a variety of domains - most current Al research focuses on
DNNEs.

Table 1 summarizes the differences between the symbolic, statistical and DNN approaches.

Training in machine learning: ML models can be trained in one of two ways: Supervised Learning: The
objective here is to predict a category (presence/absence or severity of a lesion/disease) or a numeric
(interval) value. Category prediction is also called “classification”. The training data contains the
answers: Either in the output variable/s for tabular data, or for images, human annotation/Labeling
that identifies specific object categories (including their region of interest, if multiple categories coexist
within an image).

Unsupervised Learning: Here, the objective is to discover patterns in the data, thereby achieving
dimension reduction (i.e., a more compact, parsimonious representation of the data).

Semi-supervised learning: The drawback of supervised learning is that for unstructured data
(narrative text, images) annotation/Labeling is human-intensive, as well as costly if it involves human
expertise that must be paid for. Semi-supervised learning uses a combination of (some) labeled and
(mostly) unlabeled data, under the assumption that unlabeled data points close to (or in the same cluster
as) labeled data points are likely to share the same category /class.

Statistical learning techniques can be either supervised or unsupervised. Examples of supervised
techniques are: Multivariate linear regression/general linear models, which predict interval values;
logistic regression and support vector machines, which predict categories; K-nearest neighbor and
Classification and Regression Trees (CART), which predict either. Unsupervised SL methods include
clustering algorithms, principal components/factor analysis and Latent Dirichlet Allocation.

DNNSs, which need very large amounts of data, have motivated the development of semi-supervised
methods. They are intrinsically suited for classification. For interval-value prediction with image data,
they typically perform or assist in segmentation (which can work with/without supervision), after
which numeric volumes can be computed from the demarcated voxels.

Preprocessing: Before training, the data is typically pre-processed with one or more steps. Pre-
processing makes the training (and hence predictions) more reliable. The strategies used depend on the
kind of data (numeric vs image). Some strategies are general, while others are problem specific (we
occasionally refer to the latter). Among these steps are: Detecting suspected erroneous values including
unrealistic outliers (e.g., non-physiological clinical-parameter values). The adage “Garbage In, Garbage
Out” applies to all facets of computing.

Replacing missing/erroneous values (“imputing”): An entire subfield of applied statistics is devoted
to this problem. Strategies include picking the average value across all data points, average value for the
individual patient, interpolated values (for time-series data), etc. In general, SL algorithms, many of
which mandate either imputing all missing values or dropping the data point/s in question, are more
vulnerable to missing values than DL.

Standardizing: Adjusting numeric values so that disparate variables are represented on the same
scale. For variables with a Gaussian (“Normal”) distribution, each value is subtracted from the
variable’s mean and the result divided by the variable’s standard deviation, with the sign preserved. For
non-Gaussian variables, the value is subtracted from the median and divided by the inter-quartile
range. (Batch normalization, discussed earlier, was inspired by standardizing).

For images, editing out artefacts extraneous to the content to be analyzed - e.g., superimposed text
labels or rulers to indicate object size. We come back to this issue later.

Sources of error: Overfitting and hidden stratification: A strength of DNNs, stated earlier, is their
ability to discover features from raw data. Sometimes, this can also be a weakness: Overfitting occurs
when any ML model is led astray by incidental but irrelevant features in the input. Apart from working
unreliably with a new dataset, an overfitted model often making mistakes that humans never would. A
DNN for diagnosing skin malignancies used a ruler/scale’s presence to infer cancerous lesions, whose
dimensions are usually recorded diligently[17]. Similarly, textual labels on plain musculoskeletal
radiographs were confused with internal-fixation implants, lowering accuracy[18].

Several strategies minimize the risk of overfitting, in addition to making reporting of results more
honest: Cross-validation: The training data is partitioned into a certain number, N (e.g., 10), of approx-
imately equal slices. The training is conducted N times, each time sequentially withholding 1 slice (i.e.,
only the remaining N-1 slices are used), and the results are averaged.

Withholding of test data from training: A portion of the data is completely withheld from the training
process. After the ML model is fully trained with the training data, it is evaluated with the test data, and
results are (or should be) reported against the test data only.

Regularization: This is a general term for computational techniques that reduce the likelihood of
overfitting during the operation of the training algorithm’s optimization phase. The most well-known
and general approach is to penalize model complexity: the fewer the number of variables that remain in the
final trained model, the less the complexity. Originally applied to linear and logistic regression[19],
where Lasso and Ridge Regression respectively include penalties that are linear and quadratic in the
final number of variables, it is also used for DL.
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Table 1 Comparison of symbolic artificial intelligence, statistical learning and deep learning (Nadkarni P & Merchant SA)

Symbolic Al Statistical learning (SL) Deep learning (DL)
Entities Both symbols and numbers Numbers (most representing interval data, but some Same as SL, can be applied to the same
manipulated representing categories) problems
Algorithm design Requires computer-science Less customization needed, but problem-specific Same as SL

knowledge & traditional pre-processing of data (e.g., statistical standard-

software skills, including user-  ization is necessary)

interface design

Domain expert Work closely and extensively To identify variables/features of interest, annotating Same as SL, but features can be discovered

role with software developer, training data, and evaluating results and individual ~ from raw data, so may not need designation.
Evaluate output of algorithm for features’ relative importance. Must evaluate results ~ Annotation is more burdensome because
a set of test cases against desired for novelty much more data is typically needed
output

Data inputs Expert and software work Rows of data, annotated text, or images. For Same as SL, in some forms of DL, notably for
closely to design software and ~ supervised learning, the output variable’s value for ~ image processing, features are discovered
create test cases each instance is also supplied from raw data

Partitioning of (Not applicable) Divided into training data and test data Same as SL

input data

Generalizability =~ Limited to modest: Typically More generalizable than symbolic A, but success DL methods are “non-parametric” and rely
required tailored solutions, depends on careful feature selection, choice of on few or no assumptions about the

especially for the user interface  method and whether the data matches the method’s ~ variables/features in the data
assumptions (e.g., Gaussian distribution, additive
effects)

Al Artificial intelligence; SL: Statistical learning; DL: Deep learning.

A regularization approach specific to DLs is Dropout: disabling a certain fraction of neurons in
hidden layers of a multilayer network during each cycle of training. Li et al[20] provide theoretical
reasons why dropout can interfere with batch normalization, discussed above, resulting in performance
degradation. They recommend that dropout be employed only after the last hidden layer where BN is
used, and that the proportion of disabled neurons not exceed 50% (and should usually be much
smaller).

A related problem, Hidden Stratification[21] occurs when a category contains sub-categories (“strata”)
unrecognized during problem analysis: here, performance on some strata may be poor. Thus, Rueckel et
al[22] cite an example of severe pneumothorax being recognized accurately only in those images where
a chest tube (inserted to provide an outlet for trapped air) is present[23]. While mild pneumothorax is
treated conservatively without a tube, misdiagnosing a yet-to-be-treated, severe pneumothorax has
serious consequences.

Nakkiran et al[24] had earlier observed the phenomenon of “double descent.” For some problems,
when a DNN classifier is trained on increasingly larger datasets, performance intially gets worse. Later,
when the training dataset has become much larger, performance gets better. This could be explained by
hidden stratification. The somewhat-larger dataset is heterogenous in unconsidered ways, but the
instances of minority sub-categories are too few to learn from, so they only serve to degrade
performance. With much larger datasets, these instances become numerous enough to yield a signal that
the DNN can use to discriminate more accurately.

The need for a holistic, system based approach

Most recent research in radiology Al has focused on DNNSs: The following is just a brief list of DL
applications. (This list is not intended to be comprehensive). Binary (Yes/no) classification: Elbow
fractures[25], rib fractures[26], orthopedic implants[27], pneumothorax[28], pulmonary embolism[29],
lung cancer[30], pulmonary tuberculosis (where several commercial applications exist)[31]. Multi-
category classification (grading/staging): Anterior cruciate ligament injuries[32], hip fracture[33].
Segmentation with quantitation: Pulmonary edema[34], epicardial fat[35,36]; gliomas[37,38]; liver
metastases[39,40]; spleen[41], and brain infarcts[42]. While impressive, much more is needed to apply
Al to realistic problems, especially when intended for deployment in teleradiology scenarios where
onsite skill/experience is often lacking. We summarize the issues here before discussing each issue in
detail. The focus on DNN applications that perform only a single task, while proliferating the number of
publications in the literature, does little to advance the likelihood of practical deployment. Depending
on the problem, humans use multiple problem-solving strategies. Similarly, realistic solutions must
combine multiple Al approaches, in addition to old-fashioned software engineering (such as intuitive
and robust user interfaces). Good radiologists are also good clinicians. Al must be able to use all
available evidence, including collective wisdom gained over decades of experience. Both humans and
Al can be biased; this susceptibility must be recognized. Among the numerous ways to reduce bias, one
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must consider explainability - the ability to clearly describe the workings of a particular application to a
subject-matter expert unfamiliar with Al technology.

The Limitations of Uni-tasking: As Krupinski notes[1], most DNNs in radiology uni-task. Thus, a DNN
specialized for rib-fracture recognition will, even if outperforming radiologists, ignore concurrent
tuberculosis, pneumothorax, or Flail Chest, unless trained for the same. For that matter, DNN
tuberculosis (TB) diagnosis considering only consolidation/cavitation/ mediastinal lymph nodes may
miss TB in children. In one series of pediatric patients with pleural effusions, 22% had TB; in 41% of
these, effusion was the only radiologic TB sign[43]. We have noticed that these effusions may be
lamellar and track upwards, akin to pleural thickening, without being overtly visible, unlike the usual
pleural effusions. In fact, in our experience, a lamellar effusion in a child is a good pointer towards the
presence of a Primary Complex of TB.

No clinical radiologist uni-tasks: “Savant Syndrome” describes humans with exceptional skill in one
area who are mentally challenged otherwise. Overspecialized DNNs suffer, in effect, from perceptual
blindness. This phenomenon can be induced experimentally in normal humans by overwhelming their
cognitive abilities: in a famous experiment, where subjects had to watch a basketball-game video and
count the number of passes one team made, half the subjects failed to notice an intermingling gorilla-
suited actor in the center of several scenes[44].

Based on general-purpose vision (GPV) studies, features learned in one specialized uni-tasking
recognition problem (e.g., cats) transfer poorly to a related problem (e.g., recognizing horses). GPV has
advanced because of the public availability of datasets, most notably ImageNet[45], which contain a vast
number of object categories, often with multiple categories per image. The images are annotated by
crowdsourcing: each object is indicated with a bounding box. Any DL approach expecting to perform
well in a challenge to identify these objects cannot be over-specialized. (Unfortunately, DNNs trained on
ImageNet perform very poorly with radiology images: Transfer learning is not guaranteed to work).

We believe that focusing short-term on research publications addressing relatively simple problems
(with much research being PhD-thesis-driven) retards overall progress. Historically, symbolic Al’s
notorious addiction to this approach, accompanied by hype that greatly outpaced actual achievement,
led to several “Al Winters”[46,47], steep funding drops following disillusionment. McDermott (a
symbolic Al researcher) raised such concerns in a famous 1976 paper, “Artificial Intelligence Meets
Natural Stupidity”[48].

Moving toward multi-tasking: There is no reason (besides the costs of compensating radiologists for
their time) why radiographic modality-specific ImageNet equivalents cannot be created. Collections of
images for trauma patients where multiple lesions are likely to be present may be a good starting point.
One could also reuse the vast amount of existing annotated images for uni-tasking-DL research:
Federated DL (see section 5.1) may help to test new, broader, lesion-recognition algorithms.

While DNNs excel at the important subtask of pattern recognition, they alone would not suffice to
move radiology Al into the clinic, as now discussed.

The right strategy for the right subtask: Decades of research in cognitive psychology, especially
observations of human expertise, have shown that humans use different strategies to different
problems. In his classic, “Conceptual Blockbusting”, Adams et al[49] identifies strategies as varied as:
General-purpose critical thinking; knowledge of science and mathematics (including calculus); visual-
ization; and applying ethical constraints.

The psychologists Daniel Kahneman and Amos Tversky, founders of “behavioral economics”
(Kahneman got a Nobel- Tversky was deceased by then) postulate two modes of thinking. These are
“System 1”7 - “lower level”, rapid, intuitive, and reflex (“short-cut”)- and “System 2” - “higher level”,
slow, deliberate, considering multiple sources of information, and requiring concentration. (We return
to this work later.) As noted by Lawton[50], DNNs embody System 1 thinking, while statistical and
symbolic approaches embody System 2. Both must be used together.

What applies to humans also applies to electronic systems. Symbolic, statistical and NN approaches
have been combined in several ways: In new domains where little practical human experience has
accumulated, statistical learning has led to discovery of patterns that can then be encoded as rules or in
decision trees, which originated symbolic Al.

While symbolic Al can identify differential diagnosis for a given clinical presentation, statistical Al,
using data from local sources or from the literature, can compute probabilities to rank these diagnoses,
as well as sensitivity /positive predictive value of individual findings (including test results) to suggest
the way forward.

Symbolic approaches are easier for human experts to understand (because they parallel deliberative
human problem-solving approaches), and so are often used to “explain” patterns discovered by DNNSs.
(We discuss explainability in Section 4).

In radiology Al, Rudie ef al[51] combine DNN with symbolic/statistical Al (Bayesian networks) for
differential diagnosis of brain lesions. Doing this on a large scale across multiple radiology domains has
the potential to improve clinical decision making.

Using all available evidence: In sufficiently diverse patient populations, attribution of diagnoses to
detected radiographic lesions requires evidence from history, physical exam, non-radiology investig-
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ations, plus knowledge of prevalence. Our recommendation to combine all such information to make
better decisions is not unique: Kwon et al[52] also suggest a Radiology Al that approach that combines
multiple evidence sources (imaging plus clinical variables) for COVID-19 prognostication, while
Jamshidi et al[53] also recommend a combined approach for COVID-19 diagnosis and treatment.

We provide examples below. An upper-lobe cavity on a chest X-ray could suggest neoplastic
processes, mycobacterial infection, intracellular fungal infection (histoplasma, coccidiosis), efc.
Serological confirmation plus newer technologies (e.g., GenXPert for tuberculosis[54]) assist diagnosis.

The failure to elicit a proper history can be expensive and traumatizing. One of us (5.A.M.)
encountered a young girl who had been repeatedly evaluated under general anesthesia for possible
ectopic ureter localization, because of failure to make one simple observation on the plain radiograph. A
subsequent Multidetector CT exam concluded erroneously that the incontinence was due to a vesicov-
aginal fistula, which is extremely rare in children, more so if acquired. This erroneous diagnosis could
have been avoided by a simple observation (a slight gap in the pubic symphysis) and one simple
question: When did symptoms start? (From birth). This suggested the correct diagnosis: female
epispadias, which a pediatric surgeon confirmed.

Recognizing midline shift (MLS), plus trans-tentorial and other herniations, allows better triaging for
intracranial bleeds or head trauma[55,56]). Xiao et al[57] describe an algorithm to MLS of the brain on
CT, with a sensitivity of 94% and specificity of 100%, comparable to radiologists.

In head injury, ear-nose-throat bleeds/pneumocephalus suggest basilar skull fractures[58], which are
non-displaced and difficult to detect unless looked for diligently.

Pneumothorax diagnosis by DNNs[59], while useful, could increase accuracy for Tension Pneumo-
thorax by additionally looking for simple radiological signs like - inversion of the diaphragm, tracheal
shift/shift of mediastinal structures to the opposite side (Figure 1).

Al for rib-fracture recognition[60] can be complemented by the clinical finding of “Flail Chest”, which
seriously impairs respiratory physiology[61] and may occur when three or more ribs are broken in at
least two places.

Combining AI with other technologies: A major thrust of medical Al is in making other technologies,
both existing and novel, much “smarter”, reducing error by assisting manual tasks and decision-making
performed by the radiologist or operator.

Applications in Interventional Radiology: The Royal Free Hospital in London employs an Al-backed
keyhole procedure for stenting, coupled with Optical coherence tomography (OCT). While OCT allows
viewing the inside of a blood vessel, the Al software automatically measures vessel diameter to enhance
decision-making by the interventionist[62]. Similar roles are possible in interventions such as robotic
intussusception-where visualization of the ileocecal junction and reflux into terminal ileum could be
taken as end points of the procedure.

Al-assisted 3-D Printing of biological tissue such as heart valves, blood vessel grafts and possibly
complete organs is discussed in[63].

BIASES IN RADIOLOGY

Artificial Intelligence needs real Intelligence to guide it. Truly intelligent humans are distinguished from
the merely smart by intellectual humility and flexibility: as noted in Robson’s “The Intellect Trap”[64],
they constantly consider the possibility of being wrong, and abandon long-held beliefs when these are
invalidated by new evidence. Tetlock’s work on human expertise also emphasizes flexibility’s
importance; both in adapting to reality, as well as in problem-solving strategies. As discussed in section
2.2, Al approaches must be flexible too.

Tversky and Kahneman emphasize that, because of its reflex nature, System 1 thinking is prone to
bias. Also, because System 2 requires sustained mental effort (which can cause fatigue), System 1 often
contaminates System 2 thought, leading to errors or bias. Busby et al[65] cite this work in their excellent
article on bias in radiology. An early paper by Egglin and Feinstein considers context bias in radiology
[66], where certain aspects of patients’ initial presentation to their clinicians led radiologists to give less
weight to alternative diagnoses.

Electronic applications can be biased just as humans are. The sources of bias are several. Symbolic
approaches may reflect the biases of their human creators. Machine-learning approaches that rely on
humans to specify relevant features/input variables may be biased if the features chosen are inappro-
priate, or if relevant features are omitted.

If features are discovered entirely by DL, the data itself may be biased or non-representative. An early
version of Facebook’s artificial-vision system misidentified bare-chested black males as “primates”[67]
because of too few samples in the training data.
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Figure 1 Tension Pneumothorax computed tomography topogram. A large left Tension Pneumothorax herniating across the midline with a marked shift
of the mediastinal structures to the opposite side. Arrowheads denote a displaced trachea. Image courtesy Dr. Anagha Joshi, Prof & Head (Radiology), LTMMC &
LTMGH, Mumbai.

EXPLAINABILITY OF Al

Explainability is the ability to describe the internal workings of a particular AI model (which may apply
one or more techniques to a practical problem) to a human expert who intimately knows the problem’s-
domain but not Al technology. Molnar’s book on Interpretable ML[68] is an excellent reference. From
this perspective, ML techniques are classified into “white-box” (explainable in terms resembling ordinary
language), and “black-box” models, which cannot be readily explained, because they rely on complex
mathematical functions/concepts.

What determines “Black-Box” vs “White-Box”?

Explainability is determined by the following factors: The choice of technique. In general, Symbolic Al
(and techniques that display output as symbols, such as decision trees) are most understandable/ex-
plainable.

Statistical techniques are less explainable. Tversky and Kahneman found in their studies of cognitive
errors that people find statistical concepts - such as the phenomenon of regression to the mean due to
random processes— more difficult to understand than symbols. In the real-life example of the “Monty
Hall problem”[69], at least 1000 PhDs, including the great mathematician Paul Erdos, had difficulty
believing the correct answer, which is an application of Bayesian reasoning that causes a revision of
posterior probabilities when new evidence arrives. Therefore, the explainer must often educate the
human expert in statistics before addressing the specifics of the application.

In DNNSs, the “explanation” is actually a large set of numbers, corresponding to the weights of the
inputs of each “neuron” to the neurons to which it connects, along with descriptions of the mathem-
atical transformation/s involved. This is so far removed from everyday experience as to be practically
incomprehensible (though there is active research in converting this information into explanatory
visuals).

The classification of a particular technique as “black-box” or “white-box” is somewhat arbitrary,
depending on the beholder, and on the domain expert’s background knowledge. For example, Loyola-
Gonzales[70] classifies Support Vector Machines (SVMs) as “black-box”. However, SVMs, developed by
applied statistician Vladimir Vapnik’s group at Bell Labs[71] , are mathematically very closely related to
regression[72], but try to optimize a different mathematical function (maximized separation between
instances of different classes vs minimized sum-of-least-squares deviations between observed and
predicted values). Multivariate regression (linear, logistic, etc.) is taught in enough practically oriented
college-level statistics courses for non-statisticians (e.g., business majors, life scientists, medical
researchers) to be widely understood.

The complexity of individual problems: Any model with hundreds of input variables (such as the
regression models used by macro-economists) will be intrinsically hard to comprehend.

Business-Rule systems are naturally expressed in ordinary language, and so are in principle, highly
explainable. However, R1, devised by McDermott[73] to configure Digital Equipment Equipment’s VAX
minicomputers based on a customer’s needs, eventually used 2500 rules. Proving that a BRS is internally
consistent - that is, no rule contradicts any other rule in the system- is known to be combinatorically
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hard. “Understanding” the principles of a large BRS does not make it any easier to debug if its output is
incorrect.

Whether human-understandable input needs to be modified into an unfamiliar form to make it
amenable to computation. This is the case with SVMs when employed for optical character recognition:
the image of each letter is converted to a set of numeric features. In the extreme case, radiographic
images are transformed by DNNs from individual pixels into hundreds of features that are
“discovered” from the raw data, with each subsequent layer in the DNN representing composite
features of increasing complexity.

The consequences of non-explainability

The concerns about explainability are closely tied to two risks: Bias: If you cannot explain the
application (to a human expert, or to a jury if the application’s use is challenged legally), how can you
show that it is not biased? “Because the computer says so” is unpersuasive.

Failure: DNNSs that process images often make unexplained, bizarre mistakes - misidentifications or
failure to identify, as noted by Heaven D[74]. Explanations for such mistakes” origins are not obvious in
“post-mortems” even to DNN experts. One approach to forestalling such errors is to deliberately
attempt to fool image-classification DNNs by generating “fakes” using another “adversary” DNN to
make tweaks (minor or not-so-minor) to authentic images, which are then supplied as training input to
the classification-DNN[75]. However, while adversarial networks have reduced misidentifications, they
do not offer cast-iron guarantees that a mistake will never be made. As in the cliché, absence of evidence
(of defects) is not evidence of absence.

Failure can have consequences ranging from the merely frustrating to the near-apocalyptic. A famous
example of the latter was the Soviets” satellite-based Early-Missile-Warning System, which, in 1983,
flagged 5 missiles from US sites heading toward the USSR[76]. A retaliatory nuclear strike, which would
have started World War 3, was averted by Lt. Col. Stanislav Petrov, who reasoned that this was a false
alarm - an intentional US attack would need many more missiles - and disobeyed standing orders (to
relay the warning up the command-chain) by deciding to wait for confirming evidence, which never
arrived.

Approaches toward making “Black-Box” Al more explainable

In general, such approaches are specific to the problem being addressed, as Molnar makes clear. One
can show the impact of the values of individual input variables/features on the output variable (e.g.,
categorization, risk score) using a technique called Deep Taylor Decomposition (DTD)[77], based on the
Taylor series taught in intermediate-level Calculus. Lauritsen et al[78] use DTD as part of an explanation
module for predicting four categories of acute critical illness in inpatients based on EHR data. DTD
works when the number of input variables is modest (this paper used 33 clinical parameters), and the
variables correspond to concepts in the domain. It would not be useful for very numerous, transformed,
or automatically discovered variables.

Sometimes, a detailed technical explanation may not be necessary: one can simply test with enough
test cases where the system’s output matched that of human experts. For images, delineating areas of
interest with highlight boxes can draw the user’s attention. (This is a standard technique employed by
object-recognition systems on benchmark datasets such as ImageNet). This technique has the drawback
that in case of erroneous diagnosis, merely drawing the user’s attention to regions of interest may not
suffice.

Also, “absence of evidence is not evidence of absence”. For a “black-box” system with a critical bug
that manifests under uncommon circumstances, you will discover the problem only when it happens. In
a complex-system (non-Al) context, Jon Bentley, in his classic work “Programming Pearls”[79] cites a
colleague who implemented what he thought was a performance optimization in a FORTRAN compiler.
Two years later, the compiler crashed during use. The colleague traced the crash to his “optimization”,
which had never been invoked in the interim and crashed the very first time it was activated in
production.

Loyola-Gonzales[70] suggests combining a white-box and black-box approach (the order depending
on the problem) in a pipeline, so that the output of the first is processed into a more human-
understandable approach by the second.

Regulatory concerns
Certain software applications for tasks previously requiring specialized human skills have already
received FDA approval and are in wide use. For example, smartphone-deployable electrocardiogram
(EKG)-interpretation programs report standard EKG parameters as well as a few abnormal signals such
as Ventricular Premature Beats. Given the increasing deployment of Software as a Medical Device
(SaMD), and the possibility of catastrophic medical error when operated (semi-) autonomously, national
regulatory bodies are naturally concerned about standardizing the processes of development and
testing of SaMD to prevent such errors.

The FDA has specified an action plan, including guidelines for best ML practices, version control
when the algorithm is changed, and protection of patient data[80]. The European Commission’s
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proposal for regulation is much wider, encompassing uses of Al across all of society[81]: Human Rights
Watch has criticized this proposal[82] on the grounds that it currently does not offer sufficient
protection for the social safety net when such software functions autonomously to make decisions
concerning, for example, eligibility of individuals for benefits.

FUTURE DIRECTIONS

Federated machine learning

ML in general, and DL specifically, need lots of data to achieve desired accuracy. Volume alone does not
suffice: the data must also be sufficiently diverse (i.e., coming from multiple locales) to minimize bias.
The obvious solution, physical pooling of data. faces the following barriers: Data privacy - which is less
of an issue with digital radiography, where DICOM metadata containing identifiable information can be
removed. Mistrust - a formidable hurdle when academic or commercial consortia bring rivals together.
The technique of Federated Learning (FL), originally pioneered by Google as an application of their well-
known MapReduce algorithm[83] allows iteratively training an ML model across geographically
separated hardware: The ML algorithm is distributed, while data remains local, thereby ensuring data
privacy. It can be employed for both statistical and deep learning.

Typically, a central server coordinates computations across multiple distributed clients. At start-up,
the server sends the clients initialization information. The clients commence computation. When each
client is done, it sends its results back to the server, which collates all clients’ results. For the next
iteration, the server sends updates to each client, which then computes again. The process continues
until the ML training completes convergence.

FL’s drawbacks are Internet-based communication overhead, which limits training speed, and greater
difficulty of analysis of any detected residual bias. Ng et al[84] provide a detailed technology overview.
Sheller et al[85] use FL to replicate prior analysis of a 10-institution brain-tumor-image-dataset derived
from The Cancer Genome Atlas (TCGA). Sarma et al[86] describe 3-institution FL-based training on
whole-prostate segmentation from MRIs, while Navia-Vazquez et al[87] describe an approach for
Federated Logistic Regression.

In balance, FL’s finessing of data privacy issues enables addressing of problems at scales not
previously possible, with the greater data volume and diversity ensuring better accuracy and generaliz-
ability.

Quantum computing

See our previous work, Merchant et al[88], for an exploration of this rapidly progressing and revolu-
tionary field. Here, we only provide a basic introduction and address some issues not covered in that
paper.

Quantum mechanics describes the rules governing the properties and behavior of matter at the
molecular and subatomic levels. Established technologies such as digital photography and nuclear
radiography (based on the photoelectric effect), the integrated circuit (based on semi-conduction of
electricity by certain materials), and the laser (based on coherent emission of photons) are all applic-
ations of quantum mechanics.

Quantum computing (QC) uses the phenomenon of quantum superposition, in which matter at the
atomic/subatomic level can exist (briefly) in two different states simultaneously, as the basis for
computing hardware design. Unlike the bit in an ordinary computer, which can be either 1 or 0, the
quantum bit (“qubit”) can be both 1 and 0 simultaneously, so that an array of N qubits could represent
2Nstates simultaneously.

QC can, in theory, help solve certain computational problems (called NP-hard problems, where NP =
“non-deterministic polynomial”[89]). The time taken to solve an NP-hard problem by brute force (i.e.,
trying out every possible solution, which is the only way to solve such a problem exactly) increases
exponentially as the problem size grows linearly. For example, cracking the widely used Advanced
Encryption Standard-256 (with 256 bits) would take all the world’s (non-quantum) computers working
together, longer than the age of the Universe. In 1994, Peter Shor’s theoretical work[90] showed that a
“quantum computer” with enough qubits could solve a particular NP-hard problem (factoring the
product of 2 large prime numbers, used in AES-256) in polynomial time, making cryptographic attacks
feasible.

The physical challenge is to maintain the qubits stable for a sufficiently long time to accomplish some
computation (thus far, such stability has been achieved at temperatures close to absolute zero). In
addition, for a computer based on qubits, prototypical work suggests that replacing the conducting
elements (the interconnecting wires in an integrated circuit) with light-conducting elements (so-called
optical computing[91]) may be the way forward[92].

There are also theoretical considerations as to the kinds of problems for which QC will offer benefits.
Thus, Aaronson[93] points out that we don’t yet know if the class of problems involved in the
optimization (training) phase of DNNs will benefit: while we can hope that they do, the simulations
must still be performed to show that this will be the case. Similar concerns are echoed by Sarma[94],
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who expresses uncertainty about the timeline for QC to become commercially feasible.

Despite the risks of hype and disillusion, it may be worth remembering Arthur C. Clarke’s dictum
about the future: “If an elderly but distinguished scientist says that something is possible, he is almost
certainly right; but if he says that it is impossible, he is very probably wrong”[95]. If quantum
computing becomes commercially viable, almost every aspect of computing (and therefore, every
technology that depends on computing) will benefit vastly. The Quantum Internet, Intelligent Edge
devices, Edge Computing, Quantum Artificial Intelligence, Quantum Artificial Intelligence Algorithms
and their applications in Augmented Reality/Virtual Reality and a more immersive Metaverse
experience (for teaching/simulations, actual interactions etc.); are some of the exciting future
developments/enhancements based on Quantum Computing that we have discussed in our previous

paper.

CONCLUSION

Combining the wisdom (of both knowledge and meta-knowledge - i.e., problem-solving strategies)
gained over the years, with the tremendous versatility of Al algorithms will maximize the utility of Al
applications in medical imaging for everyday clinical care. However, scaling up the use of multiple
algorithmic strategies and sources of evidence is challenging. Because of its sheer diversity and volume,
radiologists” experiential knowledge is very hard to encode in a form that allows instant retrieval. This
difficulty applies even to its subset, “artificial general intelligence” (AGI), also known as “common
sense”. Common sense, apart from being not so common across humans, turns out to be surprisingly
hard to implement, because of the sheer breadth of information that must be encoded into computable
form.

We see two ways forward: The first long-term and less feasible, the second possible today. Allocating
massive effort and resources to create medical/radiology AGI. Using software technology (including
Al to extend the human mind, much as access to Web search engines has vastly democratized access to
considerable specialized knowledge.

In the latter approach, Al technology can be ubiquitous, integrated, and often functioning behind the
scenes for tedious, monotonous and time-consuming tasks (as suggested by Krupinski[1], but still
leaving humans in control of critical decisions.
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Abstract

The development of artificial intelligence in endoscopic assessment of the
gastrointestinal tract has shown progressive enhancement in diagnostic acuity.
This review discusses the expanding applications for gastric and esophageal
diseases. The gastric section covers the utility of Al in detecting and characterizing
gastric polyps and further explores prevention, detection, and classification of
gastric cancer. The esophageal discussion highlights applications for use in
screening and surveillance in Barrett's esophagus and in high-risk conditions for
esophageal squamous cell carcinoma. Additionally, these discussions highlight
applications for use in assessing eosinophilic esophagitis and future potential in
assessing esophageal microbiome changes.
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Core Tip: The application of artificial intelligence (AI) in gastroenterology has demonstrated broad utility
in esophageal and gastric disease diagnosis and management. The current data shows that Al can be used
for gastric polyp and cancer detection and characterization as well as screening and surveillance for
esophageal cancer and its high-risk conditions such as Barrett’s esophagus. The Al systems can also apply
in conditions such as achalasia, post-caustic esophageal injuries, and eosinophilic esophagitis.
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INTRODUCTION

Artificial intelligence (AlI) has emerged as a new tool with a wide applicability and has transformed
every aspect of society including medicine. This technology is an assimilation of human intelligence
through computer algorithms to perform specific tasks[1-3]. Machine learning (ML) and deep learning
(DL) are techniques of Al. A ML system refers to automatically built mathematical algorithms from data
sets that form decisions with or without human supervision[1-3]. A DL system is a subdomain of ML in
which Al self-creates algorithms that connects multi-layers of artificial neural networks[1-3].

The recent expansion of research involving AI has shed light on the potential applications in
gastrointestinal diseases. Researchers have developed computer aided diagnosis (CAD) systems based
on DL to enhance detection and characterization of lesions. CAD systems are now being investigated in
numerous studies involving Barrett’s esophagus, esophageal cancers, inflammatory bowel disease, and
detection and characterization of colonic polyps[4].

In this review, we aim to evaluate the evidence on the role of Al in endoscopic screening and
surveillance of gastric and esophageal diseases. In addition, we also provide the current limitations and
future directions associated with eosinophilic esophagitis and esophageal microbiome (Figure 1).

MATERIALS AND METHODS

A literature search to identify all relevant articles on the use of Al in endoscopic screening and
surveillance of gastric and esophageal diseases was conducted. The search was conducted utilizing
PubMed, Medline, and Reference Citation Analysis (RCA) electronic database. We performed a
systematic search from January 1998 to January 2022 with search words and key terms including

voou voou

“artificial intelligence”, “deep learning”, “neural network”, “endoscopy”, “endoscopic screening”,

“gastric disease”, esophageal disease”, “gastric cancer”, “gastric polyps”, “Barrett’s esophagus”,

a7

“eosinophilic esophagitis”, “microbiome”.

Al AND GASTRIC POLYPS

Gastric polyps represent abnormal tissue growth, the majority of which do not cause symptoms and, as
such, are often found incidentally in patients undergoing upper gastrointestinal endoscopy for an
unrelated condition[5]. The incidence of gastric polyps ranges from 1% to 6%, depending on
geographical location and predisposing factors, such as Helicobacter pylori (H. pylori) infection and PPI
use[6]. While most polyps are not neoplastic, certain subtypes carry malignant potential with a rater of
cancerization as high as 20%[7]. Therefore, the primary utility of polyp detection is cancer prevention.
The necessity for detection and recognition of precancerous gastric polyps and the fact that most are
incidental findings are a crossroad that has helped propel research and advancement in the field of Al
computer-assisted systems for upper-endoscopy.

Detection of gastric polyps

One way to increase accurate detection of gastric polyps is by ensuring complete mapping of the
stomach during esophagogastroduodenoscopy (EGD). WISENSE is a real-time quality improvement
system that uses deep convolutional neural network (DCNN) and deep reinforcement learning to
monitor blind spots, track procedural time and, generate photo documentation during EGD. One of the
datasets used to train the network of learning and classifying gastric sites utilized 34513 qualified EGD
images. Images were labeled into 26 different sites based on the guidelines of the ESGE and Japanese
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Figure 1 Artificial intelligence -assisted endoscopy and data processing are the currently demonstrated uses for Artificial intelligence. Al:
Artificial intelligence; EoE: Eosinophilic esophagitis; mMRNA: Messenger ribonucleic acid.
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systematic screening protocol. The system was tested using a single-center randomized-control trial. A
total of 324 patients were randomized, with 153 of them undergoing EGD with WISENSE assistance.
The rate of blind spots (number of unobserved sites in each patient/26) was significantly lower for
WISENSE group compared to the control group, 5.86% vs 22.46%. Additionally, the system led to
increased inspection time and completeness of photodocumentation[8].

A year after the previously mentioned study, the developers renamed WISENSE to ENDOANGEL
and further explored the systems capability of identifying blind spots in three different types of EGD;
sedated conventional EGD (C-EGD), non-sedated ultrathin transoral endoscopy (U-toe), and non-
sedated C-EGD[9]. ENDOANGEL was tested using a prospective single-center, single-blind,
randomized, 3-parallel group study. The study results indicated that with the assistance of
ENDOANGEL the blind spot rate was significantly reduced for all three EGD modalities. The greatest
reduction was seen in the sedated C-EGD group and demonstrated 84.77% reduction. Non-sedated U-
TOE and C-EGD blind spot rate decreased by 24.24% and 26.45%, respectively[9]. The major benefit of
ENDOANGEL is that it provided real-time prompting when blind spots were identified, thereby
allowing the endoscopist to re-examine the missing parts and improve overall visualization.
Furthermore, through reduction in total blind spots the authors extrapolate that ENDOANGEL has the
potential to mitigate the skill variation between endoscopists[9].

While neither of the above-mentioned systems are specifically designed for the detection of polyps,
these encourage and assist endoscopists in completing complete and thorough visualization of stomach
during upper endoscopy, a task that has become more daunting over the years as the workload of
endoscopists continues to increase. Multiple research groups have created various automated computer-
aided vision methods to help detect gastric polyps in real time. Billah ef al[10] proposed a system that
uses multiresolution analysis of color textural features. These color wavelet (CW) features are used in
conjunction with CNN features of real time videoframes to train a linear support vector machine (SVM).
The fusion of all three features then allows the SVM to differentiate between polyp and non-polyp. The
program was trained using more than 100 videos from various sources, resulting in greater than 14000
images being used. This proposed model was then tested on a standard public database and achieved a
detection rate of 98.65 %, sensitivity of 98.79%, and specificity 98.52%.

One of the commonly encountered problems with regard to developing computer-aided polyp
detection systems is identification of small polyps. To address this problem, Zhang et al[11] constructed
a CNN using enhanced single shot multibox detector (SSD) architecture that they termed SSD for
gastric-polyps (SSD-GPNet). This system was designed to circumvent the problem of lost information
that occurs during the process of max-pooling utilized by the SSD feature pyramid during object
detection. By reusing this lost information, their new algorithm maximized the quantity of information
that could be utilized and therefore increased detection accuracy. The system was tested on 404 images
containing gastric polyps, the majority of which were categorized as small. According to the authors, the
system was able to achieve real-time gastric polyp detection with a mean average precision of 90.4%
utilizing a speed of 50 frames per second[11].

Recently, Cao et al[7] developed a system that further improves upon the traditional feature pyramid
to identify small polyps as well as those that are more difficult to distinguish from surrounding mucosa
due to similarity in features. Their proposed system contains a ‘feature fusion and extraction module’
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which allows the program to combine features from multiple levels of view without diluting the
information obtained from adjacent levels. In doing so, program continues to create new feature
pyramids which deepens the network, retains more high-level semantic and low-level detailed texture
information. The retention and fusion of such information allows the system to distinguish gastric
polyps from gastric folds. The system was trained using 1941 images with polyps. To overcome the
small data set, the authors utilized random data augmentation which consists of changing image hue
and saturation, rotation of the image, etc. The system demonstrated a mean sensitivity of 91.6% and
recall of 86.2% (proportion correctly identified true positives), after 10-fold validation testing[7].
Unfortunately, the authors do not provide detection results regarding those polyps they deemed
difficult to discern from gastric folds. Nonetheless, the development of an augmented data set and a
high level of sensitivity show promise with regards to overall polyp detection rates.

Characterization of gastric polyps
There are numerous types of gastric polyps and most of them do not carry any malignant potential. The
two classes of polyps with the highest potential for malignancy are hyperplastic polyps and gastric
adenomas. Gastric adenomas, or raised intraepithelial neoplasia, represent direct precursor lesions to
adenocarcinoma and rarely appear in the presence of normal gastric mucosa. Instead, they are often
found on a background of chronic mucosal injury, such as chronic gastritis and gastric atrophy[6].
Therefore, many of the Al systems that have been developed to assist endoscopists in the prevention of
gastric cancer focus on the characterization and identification of known gastric cancer precursor lesions
such as gastric atrophy and intestinal metaplasia, rather than characterizing all the various types of
polyps. Characterization of gastric polyps relies heavily on image-enhanced endoscopy (IEE). Especially
modalities such as narrow-band imaging (NBI) and blue laser imaging with or without magnification.
Xu et al[12] utilized various IEE images to train their DCNN system, named ENDOANGEL, to detect
and diagnose gastric precancerous conditions, specifically gastric atrophy and intestinal metaplasia, in
real time. The performance of their Al model tested using a prospective video set achieved an accuracy
of 87.8%, sensitivity of 96.7% and specificity of 73.0% with regards to identification of gastric atrophy. In
the prospective video set test for intestinal metaplasia the system achieved an accuracy, sensitivity, and
specificity of 89.8%, 94.6%, and 83.7%, respectively[12]. Additionally, the system performance was
tested against that of endoscopist with varying degrees of expertise (for a subset 24 patients). Overall,
the program performed similarly to 4 expert endoscopists (those with 5 or more years of training
including 3 or more in IEE). Compared to 5 nonexpert endoscopists (those with 2 years of endoscopic
experience and 1 year of experience in IEE) who had a mean accuracy of 75.0%, sensitivity of 82.8% and
specificity of 59.4% for GA and an accuracy of 73.6%, sensitivity of 73.8%, and specificity of 73.3% for
IM, ENDOANGEL performed significantly better[12].

Limitations of Al in gastric polyps

To the best of our knowledge, there have been no randomized control trials to evaluate the clinical
efficacy of Al automated gastric polyp detection systems. However, the accuracy, sensitivity, and
specificity of those mentioned here, as well as others not mentioned, indicate great potential in assisting
endoscopist to detect gastric polyps. With the further development of Al systems to not only detect but,
to characterize these gastric lesions, the potential clinical utility is further increased. Al systems with
fully developed CADe and CADx can be developed to aid rapid and effective decision making for
identifying lesions that should be targeted for biopsy. Such systems may also improve other patient
outcomes by mitigating the difference in endoscopist experience.

Al AND GASTRIC CANCER

Gastric cancer (GC) is the fifth most common cancer in the world and the fourth most fatal cancer[11].
The 5-year survival rate is greater than 90% when diagnosed at early stages, making early detection
particularly important[7]. Alarmingly, in 2019, more than 80% of GCs in China were diagnosed at
advanced stages, signifying inadequate early detection[12]. Risk factors for GC include H. pylori
infection, alcohol use, smoking, diet, race and gender[13]. Due to the non-specific nature of symptoms,
most GC is usually diagnosed at later stages which makes prognosis poor[14].

Although endoscopic imaging is the most effective method of detection, visualization can be difficult.
The reasons for this include the subtle changes in mucosa (elevations, depressions, redness or atrophy)
that can be mistaken for gastritis or intestinal metaplasia, especially when found in a region with
background gastritis[15]. Further, the subjective nature of identification makes detection endoscopist
dependent with reported miss rates as high as 14% and 26%[15,16]. In addition to the limitations in
detecting mucosal changes, endoscopy is historically poor at predicting depth of invasion with studies
reporting only 69% to 79% accuracy[17]. This is important because accurately predicting depth of
invasion can aid in guiding management and surgical planning.
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Over the past several decades, Al has expanded towards new horizons in medicine and image
recognition. Recently, DL has become more widely applied in the prevention and detection of GC.
Medical image recognition in locating tumors is called “image segmentation”. Importantly, image
segmentation determines diagnostic accuracy for evaluation and surgical planning in GC. DL has been
shown to improve image segmentation via three networks; supervised network, semi-supervised
network, and unsupervised network[18]. Supervised learning networks comprise the majority. These
networks use large data sets that are preemptively labeled. Convolutional Neural Networks (CNN) are

supervised learning networks which have demonstrated high performance in image recognition tasks
[18].

Prevention, detection and classification of gastric cancer

For prevention of GG, it is important to optimize the diagnosis and eradication of H. pylori. In 2018, Itoh
et al[19] developed a CNN-based system which was trained on 149 images to diagnose H. pylori. The
results showed 86.7% sensitivity and 86.7% specificity which significantly outcompetes traditional
endoscopy and the researchers concluded that CNN-aided endoscopy may improve diagnostic yield in
H. pylori endoscopy.

A 2020 systematic review and meta-analysis. reviewed 8 studies with 1719 patients and found a
pooled sensitivity and specificity of 0.87 (95%CI 0.72-0.94) and 0.86 (95%CI 0.77-0.92), respectively in
predicting H. pylori infection. In addition, the study showed an 82% accuracy of Al for differentiating
between post eradication images and non-infected images[20]. The authors were also able to identify 2
studies where discrimination using Al, between H. pylori infected and post-eradicated images was
analyzed, revealing an accuracy of 77%. While the authors state external validity as a limitation of this
study, the results cannot be ignored in the context of prior studies. Accordingly, Al may have a role in
diagnosis as well as confirmation of treatment.

Along with eradication of H. pylori, prevention also comes in the form of detecting precancerous
lesions. These lesions include erosion, polyps and ulcers which may develop into gastric cancer if they
are not detected early. In 2017, Zhang et al[21] developed a CNN known as the Gastric Precancerous
Disease Network (GPDNET) to categorize precancerous gastric disease. This Al demonstrated an
accuracy of 88.90% in classifying lesions as either polyps, erosions or ulcers.

As previously mentioned, GC is often discovered in late stages, which thereby makes improvements
in early detection, particularly important. Deep learning algorithms have shown promise with this
regard. A study by Li et al[22] demonstrated significantly higher diagnostic accuracy in CNN trained
(90.91%) endoscopy compared to non-experts (69.79 and 73.61%) (P < 0.001 with kappa scores of 0.466
and 0.331). The researchers looked at CNN-based analysis of gastric lesions observed by magnifying
endoscopy with narrow band imaging (M-NBI) and found a 91.8% sensitivity, 90.64 specificity and 90.91
accuracy in diagnosing early gastric cancer (EGC). While specificity was like that of experts, sensitivity
of EGC detection was superior to both experts (78.24 and 81.18) and non-experts (77.65 and 74.12). The
researchers attributed this to a lack of subjectivity which is inherent to human endoscopy. Ikenoyama et
al[23] constructed their CNN using 13584 images from 2639 early GC lesions and compared its
diagnostic ability to 67 endoscopists. Results showed faster processing as well as a 26.5% higher
diagnostic sensitivity in CNN compared to endoscopists. This further demonstrates the potential for Al
to improve efficiency in diagnosing GC.

The role of Al is not limited to early detection. Hirasawa et al[24] constructed a CNN trained with
13584 images to detect both early (T1) and advanced GC (T2-4). They demonstrated an overall
sensitivity of 92.2% in diagnosing gastric cancer. The diagnostic yield was further accentuated at
diameters of 6mm or greater with a sensitivity of 98.6%. All invasive lesions were correctly identified as
cancer during this study. Despite these promising results, there were false positives that lead to a
positive predictive value (PPV) of only 30.6%.

In addition to CNN, fully convolutional neural networks (FCN) use pixel level classification to allow
for more robust image segmentation[25]. When it comes to distinguishing cancer from precancerous
disease, FCN has shown promise. In 2019, Lee et al[26] used data from 200 normal, 220 ulcer and 367
cancer cases to build the Inception-ResNet-v2 FCN which was able to distinguish between cancer and
normal as well as cancer and ulcer at accuracies above 90%. In a 2019 study by Nguyen et al Inception-
ResNet-v2 was used to further classify neoplasms based on severity. Five categories were assessed:
EGC, advanced GC, high grade dysplasia, low grade dysplasia and non-neoplasm. The result was a
weighted average accuracy of 84.6% in classifying neoplasm[27].

Depth of invasion of gastric cancer

Depth of invasion is an important characteristic when it comes to accordant direction for best
management of GC[17]. The current evidence suggests that early stages of EGCs with depth limited to
the mucosal (M) or superficial submucosal layers (SM1) can be managed with endoscopic submucosal
dissection or endoscopic mucosal resection[17]. Invasion into the deeper submucosal layer will require
surgery. In 2018, Zhu et al[17] built a CNN computer-aided detection (CNN-CAD) system to determine
depth of invasion of GC. The results showed accuracy of 89.16% which was significantly higher than
that of endoscopists (69% to 79%). PPV and NPV were 89.66% and 88.97%, respectively. Endoscopists
had values of 55.86% and 91.01%. This enhanced ability to predict invasion supports the assertion that
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CNN has shown utility in helping endoscopists detect, classify, and predict prognosis of GC.

Limitations of Al in gastric cancer

Supervised learning networks show promise in the prevention of cancer through detection of H. pylori
and precancerous lesions as well as promise in detection and classification of neoplasm. Al has not only
demonstrated superiority to traditional endoscopists when it comes to identifying GC stage but also at
determining depth of invasion which can dramatically improve prognosis in a disease with inadequacy
of early detection. There is utility when it comes to helping less experienced endoscopists. Despite their
superior diagnostic efficacy, supervised learning networks are not immune to false positives and false
negatives. Because they rely heavily on the quality and quantity of learning samples, they may interpret
poor images of intestinal metaplasia or atrophy as GC and are data dependent[25]. Semi-supervised and
unsupervised learning networks are potential alternatives as they are not entirely data dependent[18].

Al AND BARRETT’S ESOPHAGUS

The American Cancer Society’s estimates about 19260 new cases of esophageal cancer (EC) diagnosed
(15310 in men and 3950 in women) and about 15530 deaths from EC (12410 in men and 3120 in women)
in the United States in 2021[28]. It is the seventh most common cancer and the sixth leading cause of
cancer related mortality worldwide[29]. The two major histological types of EC are adenocarcinoma
(AC) and squamous cell carcinoma (SCC)[30]. For SCC alone, the primary causal risk factors vary
geographically. Over the past 40 years, the incidence of AC, which typically arises in the lower third of
the esophagus, has risen faster than any other cancer in the Western world, and rates continue to rise
even among new birth cohorts. Conversely, the incidence of SCC has declined in these same
populations. As such, AC is now the predominant subtype of esophageal cancer in North America,
Australia and Europe. Like AC, the incidence of Barrett esophagus has increased in many Western
populations[31].

Barret’s esophagus (BE) is a change of the normal squamous epithelium of the distal esophagus to a
columnar-lined intestinal metaplasia, and the main risk factors associated with its the development are
long-standing gastroesophageal reflux disease (GERD), male gender, central obesity, and age over 50
years[32]. It is thought to follow a linear progression from nondysplastic BE to low-grade dysplasia to
high-grade dysplasia and finally to cancer. The presence of regions of dysplasia in BE increases the risk
of progression and guides treatment considerations. Early detection of dysplastic lesions and cancer
confined to the mucosa allows for minimally invasive curative endoscopic treatment, which provides a
less invasive method of treatment than surgical resection and/or neo adjuvant therapy for advanced
lesions. However, the evaluation and assessment of BE is challenging for both expert and nonexpert
endoscopists. The appearance of dysplasia may be subtle, and segmental biopsy samples may not detect
patchy dysplasia[33,34].

Current challenges in Barrett’s esophagus

Results from a multicentric cohort study support that missed esophageal cancer is relatively frequent at
routine upper gastrointestinal endoscopies in tertiary referral centers, with an overall MEC rate as high
as 6.4% among newly diagnosed esophageal cancer patients[35]. Additionally, a recent meta-analysis
showed a high miss rate of 25% for high grade dysplasia and cancer within 1 year of a negative index
examination, the reasons for this are likely multifactorial, including the lack of recognition of subtle
lesions, lack of detailed inspection of the esophageal mucosa, non-optimum cleaning techniques, and
less experienced endoscopists[34].

Optical identification and diagnosis of dysplasia would guide treatment decisions during endoscopy
for BE. The limitations of current screening and surveillance strategies impulse to improve diagnostic
accuracy and risk stratification of patients with BE. In recent years, many new endoscopic techniques
have been developed, such as magnification endoscopy, chromoendoscopy, confocal laser endomic-
roscopy, and volumetric laser endomicroscopy, most of which are expensive and take a long time for
endoscopists to learn. Differences in endoscopists' interpretations of the images can also lead to
differences in diagnosis[36].

Al and convolutional neural network

A proposed use of Al during upper endoscopy will be with live video images that will be sent to the Al
application and analyzed in real time. The application will be able to detect areas suspicious for
neoplasia and measure the size and morphology of lesions. It will alert the endoscopist to suspicious
areas either with a screen alert or location box. The endoscopist can then decide if the area needs to be
sampled based on the characterization provided by the machine or managed endoscopically[34].
Therefore, Al can assist in by using methods of DL to identify and process in real-time endoscopic data
that may not consciously appreciated by humans such as subtle changes in color and texture to aid in
taking targeted biopsies rather than random biopsies.
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Al uses several machine learning methods, one that is frequently used is CNN, a form of DL which
receives input (e.g. endoscopic images), learns specific features (e.g. pit pattern), and processes this
information through multilayered neural networks to produce an output (e.g. presence or absence of
neoplasia). Several layers of neurons can exist to make a single decision to call a grouping of pixels on
an image either normal tissue or dysplasia. The advantages that Al appears to confer per-endoscopy is a
removal of the inter-observer or intra-observer variability in identification of non-normal lesions,
combined with rapid, objective analysis of all visual inputs in such a way that is consistent and not
subject to fatigue. This advanced technology of CAD can allow endoscopists to take targeted, high-yield
biopsies in real-time. Compared to taking random biopsies per the Seattle protocol or using enhanced
imaging, CAD may increase efficiency and accuracy for making a diagnosis by limiting the chance of
missing neoplastic mucosa. Moreover, CAD may decrease risk by decreasing sedation time secondary to
decreased procedure length[37].

Al use with white light imaging

Van der Sommen et al[38] in 2016 collected 100 images from 44 BE patients and created a machine
learning algorithm which used texture and color filters to detect early neoplasia in BE. The sensitivity
and specificity of the system were 83% for the per-image analysis and 86% and 87% for the per-patient
analysis, respectively. Therefore, the automated computer algorithm developed was able to identify
early neoplastic lesions with reasonable accuracy, suggesting that automated detection of early
neoplasia in Barrett’s esophagus is feasible.

In a study by de Groof et al[39], six experts identified likely neoplastic tissue in the same image and
used these expert-delineated images to train the computer algorithm to identify neoplastic BE and non-
dysplastic BE in test cases. The resulting sensitivity and specificity of the computer algorithm was 0.95
and 0.85 respectively. de Groof et al[40] developed a deep learning system using high-definition white
light endoscopy images of over 10000 images of normal GI tract followed by 690 images of early
neoplastic lesions and 557 non dysplastic Barrett’s epithelium to detect, delineate the lesion, and
pinpoint high yielding biopsy sites withing the lesion. This group was able to externally validate their
CAD system demonstrating a better accuracy of 88% in detecting early neoplastic lesions compared
with an accuracy of 73% with endoscopists. Ebigbo et al[41] were also able to validate a CNN system to
detect EAC in real time with the endoscopic examination of 14 patients using 62 images and showed a
sensitivity of 83.7% and specificity of 100%.

Hashimoto et al[42] collected 916 images from 70 patients with early neoplastic BE and 916 control
images from 30 normal BE patients and then trained a CNN algorithm on ImageNet. The researchers
analyzed 458 images using the CNN algorithm. The accuracy, sensitivity, and specificity of the system
for detecting early neoplastic BE were 95.4%, 96.4%, and 94.2%, respectively.

Al use with volumetric laser endomicroscopy and confocal laser endomicroscopy

The volumetric laser endomicroscopy system has the capacity to provide three-dimensional circumfer-
ential data of the entire distal esophagus up to 3-mm tissue depth. This large volume of data in real-time
remains difficult for most experts to analyze. Al has the potential to better interpret such complex data
[43].

Interpretation of volumetric laser endomicroscopy (VLE) images from BE patients can be quite
difficult and requires a steep learning curve. An Al software called intelligent real-time image
segmentation has been developed to identify VLE features by different color schemes. A pink color
scheme indicates a hyper-reflective surface which implies increased cellular crowding, increased
maturation, and a greater nuclear to cytoplasmic ratio. A blue color scheme indicates a hypo-reflective
surface which implies abnormal BE epithelial gland morphology. An orange color scheme indicates lack
of layered architecture which differentiates squamous epithelium from BE[44].

Swager et al[45], created an algorithm to retrospectively identify early BE neoplasia on ex vivo VLE
images showing a sensitivity of 90% and specificity of 93% in detection with better performance than the
clinical VLE prediction score. A CAD system reported by Struyvenberg et al[46] analyzed multiple
neighboring VLE frames and showed improved neoplasia detection in BE with an area under the curve
of 0.91.

Future of Al and applications in Barrett’s esophagus

Ali et al[47] at the University of Oxford reported on one a deep learning tool to automatically estimate
the Prague classification and total area affected by columnar metaplasia in patients with Barrett's
esophagus. They propose a novel methodology for measuring the risk score automatically, enabling the
quantification of the area of Barrett’s epithelium and islands, as well as a 3-dimensional (3D)
reconstruction of the esophageal surface, enabling interactive 3D visualization. This pilot study used a
depth estimator network is used to predict endoscope camera distance from the gastric folds. By
segmenting the area of Barrett’s epithelium and gastroesophageal junction and projecting them to the
estimated mm distances, they were able to measure C&M scores including the area of Barrett’s
epithelium. The derived endoscopy artificial intelligence system was tested on a purpose-built 3D
printed esophagus phantom with varying areas of Barrett’s epithelium and on 194 high-definition
videos from 131 patients with C&M values scored by expert endoscopists. The endoscopic phantom
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video data demonstrated a 97.2% for C&M and island measurements, while the accuracy for the area of
Barrett’s epithelium it was 98.4% compared with ground-truth[47].

This is the first study to demonstrate that Barrett’s circumferential and maximal lengths and total
affected area can be automatically quantified. While further optimization and extensive validation are
required, this tool may be an important component of deep learning-based computer-aided detection
systems to improve the effectiveness of surveillance programs for Barrett’s esophagus patients[48].

The studies show promising results and as Al systems develop, it will be important that they are
tested and validated in real-world settings, in diverse patient populations, with physicians of varying
expertise, with different endoscope types and in different practice settings. Commercially developed Al
will need to demonstrate cost-effective care that will provide meaningful value and impact on patient
care and outcomes. The field continues to expand and promises to impact the field of BE detection,
diagnosis, and endoscopic treatment[33,49].

ACHALASIA AND Al

Achalasia is an esophageal motility disorder characterized by impaired peristalsis and relaxation of the
lower esophageal sphincter. While the pathophysiology is incompletely understood, it is thought to be
related to loss of inhibitory neurons in the myenteric plexus. Symptoms include dysphagia to both
solids and liquids as well as heartburn, chest pain and other nonspecific symptoms. In fact, 27%-42% of
patients are initially misdiagnosed as GERD[50].

High-resolution manometry (HRM) is the gold standard[51]. A limitation of manometry is that it
cannot differentiate between achalasia and pseudo achalasia, a disorder which is often malignancy
presenting as achalasia[52]. As such, the utility of endoscopy comes in ruling out malignancy and
endoscopic biopsy is an important part of the diagnostic algorithm. Endoscopy can also be used to rule
out other obstructive lesions or GERD[53]. However, HRM is vital in classification of achalasia subtypes
which guides treatment and prognosis.

The Chicago Classification system is based on manometric differences between three subtypes. All
three have impaired EG]J relaxation[54]. Subtype 1 has aperistalsis with the absence of pan esophageal
pressurization. Subtype 2 has aperistalsis with pressurization greater than 30 mmHg and subtype three
is characterized by abnormal spastic contractions with or without periods of pan esophageal pressur-
ization. While types 1 and 2 can be corrected with Heller myotomy, type 3 patients are more likely to
benefit from more extensive myotomy[55].

Functional lumen imaging probe and Al

The functional lumen imaging probe (FLIP) device that uses high resolution impedance planimetry to
measure cross sectional area and pressure to provide a 3D model of achalasia. It has been shown to be
just as good as manometry in diagnosing achalasia and has also shown application in cases where
clinical suspicion is high, but manometry is equivocal[56]. Because FLIP is performed during
endoscopy, it can help identify patients who do not respond to manometry.

Despite its ability to diagnose achalasia, FLIP has limited data available in its ability to differentiate
between achalasia subtypes. If it were able to do this, it could essentially combine the steps of
endoscopic evaluation, diagnosis, and classification of achalasia. Machine learning may have a role here.

In 2020, Carlson et al[57] were able to demonstrate the application of supervised machine learning in
using FLIP to characterize achalasia subtypes in a study of 180 patients. The Al was able to differentiate
type 3 achalasia from non-spastic subtypes with an accuracy of 90% while the control group did so with
an accuracy of 78%. The machine was also able to further classify achalasia into subtype 1, 2 and 3 with
an accuracy of 71% compared to the 55% accuracy of the control group. This is an important application
given the differences in prognosis and management based on subtype.

Achalasia and cancer
Esophageal cancer is a rare consequence of achalasia with reported risks ranging from 0.4%-9.2%[58].
One meta-analysis found a risk of SCC of 308.1 per 1000000 per year[59]. One study found that 8.4% of
331 patients with achalasia developed Barrett’'s esophagus after undergoing pneumatic dilation[60].
While there are no established guidelines for cancer screening in patients with achalasia, some studies
have suggested 3-year interval screening for patients with achalasia for 10 or more years[58].

Given the association between achalasia and esophageal cancer, enhanced imaging in high-risk
patients should have value and applications of Al in this population are warranted.

POST CAUSTIC INGESTION AND Al

In the United States, there were over 17000 cases of caustic injury which accounted for about 9% of
poisoning cases[61]. Endoscopy has been determined to be an important part of diagnosis and prognosis
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for these cases of post-caustic ingestion[62,63]. Typically, the Zargar classification is used to help guide
evaluation with patients graded 0 through IV. Those with grade III or above typically had complications
or death[64]. Artificial intelligence in endoscopy and the role for post-caustic ingestion has not been
evaluated. It is reasonable to postulate that with advances in other areas of upper endoscopy in
evaluation of the GI lumen for precancerous lesions, achalasia, esophageal carcinoma that there is a role
for evaluation of the GI lumen for grading of caustic injury. Further studies are necessary to evaluate
whether there is a role for Al assistance in evaluation and if there would be a significant difference in
patient outcomes after implementation.

Al AND ESOPHAGEAL SQUAMOUS CELL CARCINOMA

Esophageal cancer has been a large area of investigation due the aggressive disease course and high
morbidity and mortality outcomes. It has been reported to be as high as the eighth most common cancer
and sixth leading cause of cancer-related death world-wide[65]. As of 2020, there are higher risk
geographic areas of concern regarding esophageal cancer in South-Central Asia being the third overall
leading cause of cancer-related mortality in males and in the region of Eastern and Southern Africa
esophageal cancer ranks second and third in male cancer-mortality respectively. Eastern Africa is also
the third leading cause of female related cancer incidence and mortality[66].

Of the two major subtypes of esophageal cancer esophageal squamous cell carcinoma (ESCC) is the
predominant histological type world-wide[67]. Classically, ESCC has been associated with risk factors
including gender, race, tobacco and alcohol consumption, diet and nutrient intake[67]. Recently, poor
oral health and microbiome changes have been associated with the development or predisposition of
ESCC[68,69]. By the time of diagnosis of ESCC, disease course is typically found at an advanced stage
and often requires highly invasive treatment contributing to poor prognosis, morbidity, and mortality
rates. Investigation into early screening is critical, but as with implementation of any mass screening, the
method must be evaluated for the benefit of screening tests to reduce cancer vs the risk of over-
diagnosing and putting patients through high-risk procedures. It should be noted that there may be
specific benefits in implementation of screening in high-risk populations and geographic areas in areas
of Africa and Asia. Being an area with high rates of esophageal and gastric cancer, a research study
across seven cities in the Henan Province of China enrolled 36154 people for screening using endoscopy
and biopsy[70]. They found 46% of patients had precancerous lesions, 2.42% had confirmed cancer. Of
those with this confirmed cancer diagnosis, 84% of them had an early stage that underwent prompt
treatment with a success rate of 81%. Their study concluded that early detection was crucial in reducing
their rate of esophageal and gastric carcinoma in that region[70].

Early-stage detection of ESCC

Early detection is important for improving outcomes for ESCC. Historically, conventional white light
endoscopy with biopsy was the gold standard for diagnosis of esophageal cancer[71]. The limitation of
this for ESCC is that clinical suspicion needs to be high to perform the procedure and the cancer must be
of significant size to be identified on endoscopy. The emergence of chromoendoscopy, using chemicals
such as iodine, allowed a staining technique to better detect ESCC. But this procedure can often cause
irritation in patients due to mucosal irritation to the GI tract and it increases procedural time per patient.

Alternatively, the emergence of narrow band imaging offers an image-enhancing technique using
wavelength filters to observe mucosal differences and vascular patterns on the GI tract that correlates
with esophageal cancer (among other uses stated throughout this article). The downside of NBI is that
detection rate is dependent on endoscopist experience and subject-ability in processing the information
given[71]. Despite these methods, a large multi-center retrospective cohort study by Rodriguez de
Santiago et al[35] analyzed over 123000 patients undergoing EGD and found a miss rate of esophageal
cancer of 6.4% with a follow-up diagnosis made within 36 mo by repeat endoscopy. This miss rate was
present regardless of histologic subtype of esophageal adenocarcinoma or ESCC. Their analysis found
that less experienced endoscopists and smaller lesions were associated with the missed detection. Their
study acknowledges that there was a low use of chromoendoscopy due to small proportion of early
neoplasms across the study and a lack of digital chromoendoscopy at their institutions at the time of the
study which may limit applicability[35]. But this still suggests conventional techniques have higher miss
rates and newer technology or innovative technique development are essential in assisting and creating
a better standard for ESCC detection and to provide a basis for better screening in this aggressive
disease.

Al systems - early detection, screening, surveillance

The use of endoscopic Al has recently showed potential to change the diagnostic evaluation for many
different gastrointestinal tract diseases. Due to the novelty, ESCC guidelines for use of Al in clinical
practice is still being determined.
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The use of Al specifically in high-risk populations, may provide great utility to reduce rates of ESCC.
Early detection through Al has shown promise through early studies. Ohmori et al[72] used a CNN and
showed an accuracy of the Al system for diagnosing ESCC was comparable to that of experienced
endoscopists. The system achieved a 76% PPV for detection using non-magnified images and in the
differentiation of ESCC using magnified images. Horie ef al[73], one of the pioneer investigators of Al in
GI endoscopy used a CNN-based Al system to detect ESCC. Their study results showed that their CNN
took only 27 s to analyze 1118 images and correctly detected esophageal cancer cases with 98%
sensitivity[73]. Thus, it is reasonable that beyond the use of Al systems for evaluation for high-risk
patients, at a population-based level, Al systems could be utilized to analyze endoscopic images of
patients of medium to low risk that are undergoing EGD for other reasons.

A study by Cai et al[74] specifically developed and validated a computer-aided detection using a
DNN to be used for screening for early ESCC. Out of 1332 abnormal and 1096 normal images from 746
patients, they compared their system to 16 endoscopists of various experience levels. Their results
showed that the DNN-CAD had an accuracy of 91% compared to their senior endoscopist of 88% and
junior endoscopists of 77%. More importantly, after taking the results separately, they allowed the
endoscopists to refer to the data and this improved the average diagnostic ability of the endoscopists

from an overall average accuracy from 81 to 91%, sensitivity from 74 to 89%, and NPV from 79 to 90%
[74].

Depth of invasion

Beyond identifying ESCC at a superficial level for diagnosis, the ability to accurately assess the depth of
invasion is important, because it best guides intradisciplinary treatment options[75]. Criteria for
diagnosis can be divided into two broad categories: non-magnified endoscopy and magnified
endoscopy[75]. In non-magnified endoscopy, macroscopic identifiers are observed such as protrusions
and depressions. Magnified endoscopy observes the blood vessel patterns using narrow-based imaging
or blue laser imaging; criteria of invasion up to 200 pm (SM1) are candidates for resection because of
their lower risk of metastasis[75]. Alternatively, SM2-3 are considered higher risk of metastasis and
require consideration for esophagectomy[75]. This diagnostic identification is shown to have
endoscopist variability.

The Al systems using CNN have recently emerged to assist the endoscopist and create a higher
standard for depth of invasion detection to match or have higher rates than those of expert
endoscopists. Evidence was shown by Tokai et al[76], where they used a CNN to differentiate between
SM1 and SM2. This was a retrospective study, and 1791 test images were prepared and reviewed by the
CNN compared with review by 13 expert endoscopists and found that the Al system demonstrated
higher diagnostic accuracy for invasion depth than those of endoscopists.

To determine clinical application from still-images to video, a more recent study by Shimamoto et al
[77] utilized real-time assessment of video images for ESCC and compared their Al model with those of
expert endoscopists and found that accuracy, sensitivity, and specificity with non-magnified endoscopy
were 87%, 50%, and 99% for the Al system and 85%, 45%, 97% for the experts. Accuracy, sensitivity, and
specificity with magnified endoscopy was 89%, 71%, and 95% for the Al system and 84 %, 42%, 97% for
the experts. This suggests that with more inexperienced endoscopists, Al can offer a similar or even
higher standard and allow for better patient outcomes with higher depth of invasion diagnosis.

Newer advances in the field of endoscopic Al may offer the potential for diagnosis without biopsy.
The Japan esophageal society introduced a classification system for endoscopic diagnosis of ESCC by
analyzing intrapapillary capillary loops which help estimate depth of invasion and make a visual
diagnosis for ESCC. Although this classification can be endoscopist-dependent, in combination with Al
systems, study by Zhao et al[78] used a computer assisted model to allow objective image evaluation
and assist in classification of EPCLs and found that their model was 89% accurate in diagnosing the
lesion. This was in comparison to accuracy of 92% by senior endoscopists (greater than 15 years), 82%
by mid-level endoscopists (10-15 years), and 73% by junior endoscopists (5-10 years). While it is likely
not to replace histopathological confirmation, being able to diagnose at a high rate could help more
efficiently allocate resources and provide faster diagnosis to help guide clinical intervention in this
highly aggressive disease.

In summary, implementation of any cancer-screening for primary prevention is going to require
careful analysis of risk-benefits through large-scale medical studies. It is clear that ESCC has a
significant presence world-wide and of particular healthcare burden in geographic areas of Africa and
Asia. ESCC studies have suggested that implementation of screening can benefit high-risk populations
in these areas. Al in endoscopy has emerged with promise in showing consistent results in both early
detection, quicker diagnosis, and non-inferior rates of success for the studied patients. Implementation
of Al with endoscopic screening of high-risk populations for ESCC should be considered in the coming
years as the technology becomes more widely available.
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FUTURE PERSPECTIVES FOR Al AND ESOPHAGEAL DISEASES AND MICROBIOME
Eosinophilic esophagitis (EoE)

Eosinophilic esophagitis is a food allergen-mediated inflammatory disease affecting the esophagus. It is
traditionally associated with atopic conditions such as asthma and atopic dermatitis[79]. Treatment
includes food-elimination diets, proton-pump inhibitors, and topical steroids[79].

Initial diagnosis of eosinophilic esophagitis (EoE) involves mucosal biopsy demonstrating > 15
eosinophils per high-powered field (400% magnification)[79]. In addition to this peripheral eosinophil
count (PEC), other histological features may be present in EoE, and can be used to characterize the
disease state and to assess for response to therapy, including epithelial thickness, eosinophilic abscess,
surface layering, and epithelial alteration[80]. These features have been used to develop a histologic
scoring system for diagnosis, the EOEHSS[80]. Both PEC and EoEHSS are evaluated by a pathologist,
and are time-consuming processes. EOEHSS additionally requires training and there appears to be inter-
observer variability. The need for a more precise and automated process has let to machine learning
approaches. Several groups have developed platforms for automated analysis of biopsy images that
utilized a deep-convolutional neural network approach to distinguish downscaled biopsy images for
features of EoE[81,82]. One platform was able to distinguish between normal tissue, candidiasis, and
EoE with 87% sensitivity and 94% specificity. Another platform was able to achieve 82.5% sensitivity
and 87% specificity in distinguishing between EoE and controls, despite the potential limitations of
image downscaling[82].

In addition to improving efficiency and precision of current diagnostic methods for EoE, Al is a
promising tool for the development of new diagnostic methods to subclassify disease and guide
treatment. One approach is through evaluation of tissue mRNA expression for unique factors that can
classify or subclassify EoE. One group used mRNA transcript patterns to develop a probability score for
EoE, in comparison to GERD and controls[83]. This diagnostic model was found to have a 91%
diagnostic sensitivity and 93% specificity[83]. Additionally, this EoE predictive score was able to
demonstrate response to steroid treatment[83]. Further work may develop new diagnostic criteria,
methods for subclassification of disease, and to assess for various therapeutic options.

Esophageal microbiome

Current understanding of the commensal microbiome has developed through various techniques,
including 16s rRNA sequencing to describe genus-level composition or shotgun sequencing to describe
strain-level composition of a sample microbial community[84]. Various ML models, specifically DL,
have been utilized to develop descriptive techniques, disease prediction models based on composition
and for exploration of novel therapeutic targets[85].

Initial work on the esophageal microbiome described two compositional types: Type I, associated
with the healthy population, mainly consisting of gram-positive flora, including Streptococcus spp., and a
Type II, associated with GERD and BE, with higher prevalence of gram-negative anaerobes[86]. Later
work stratified esophageal microbiome communities into three types, a Streptococcus spp. predominant
(Cluster 2), Prevotella spp. predominant (Cluster 3), and an intermediate abundance type (Cluster 1)[87].
Further work has identified specific flora or groups of flora associated with various disease states as
well as a gradient of composition from proximal to distal esophagus[69].

The ML models can be used to expand on this work using both supervised and unsupervised
methods. Random Forest classifiers and Least Absolute Shrinkage and Selection Operator feature
selection have been used to analyze shotgun genomics data and classify disease state and stage several
GI disorders, including colorectal cancer and Crohn’s disease[87-90]. In addition to descriptive methods,
machine learning has been used to develop models to predict disease progression in primary sclerosing
cholangitis[91]. Finally, correlation-based network analysis methods have been used to assess response
to intervention, such as symptomatic response to probiotics and association with microbial changes[92].
Within esophageal disease, a neural network framework has been used to develop a microbiome profile
for classification of phenotypes, including datasets from patients with BE and EAC[93]. Future work has
the potential to further develop microbiome-based models for detection, assessment of progression, and
development of new therapeutics for several esophageal disease states.

DISCUSSION

The emerging use of Al in medicine has the potential for practice changing effects. During the
diagnostic process, better visualization techniques, including CAD can assist endoscopists in detection
of lesions[94]. When malignancy is detected, Al can be used to predict extent of disease[94]. Following
diagnosis, CNN can be used to predict response to treatment as well as risk of recurrence[94].

Of the multiple Al techniques with demonstrated use, some are more likely to be more adaptable to
everyday use by clinicians. Al-assisted endoscopy is already being utilized in the area of colorectal
disease, with products available on the market to assist with adenoma detection rate and early detection
[95]. Given the compatibility of Al solutions with current endoscopic devices, it is likely that broader
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applications of these systems to other areas of the GI tract are approaching[96].

Some limitations exist in the use of Al-based techniques. First, the quality and number of learning
samples significantly affects the accuracy of predictive algorithms. This primarily affects supervised
learning networks, where the use of labeled sample data affects the quality of training, and can affect
overall accuracy. This concept is sometimes referred to as "garbage in, garbage out." For example, in the
detection of gastric cancer, supervised learning algorithms that rely heavily on the quality and quantity
of samples may interpret poor images of intestinal metaplasia or atrophy as GC and are heavily data
dependent[24]. Semi-supervised and unsupervised learning networks are potential alternatives as they
are not entirely data dependent[19]. Another possible limitation is the role of confounding factors- lack
of population diversity in training models may lead to lack of generalizability of Al systems to alternate
populations.

Finally, privacy will be important to maintain when translated to clinical practice, in both the
improvement of training models as well as in patient care. Further legislative discussion is needed to
ensure adequate privacy when patient medical data is used and potentially shared for use in ongoing
training of Al models[97]. Additionally, this further digitization and storage of patient data will require
appropriate security within adapting healthcare system infrastructures[97,98].

CONCLUSION

Clearly, the rapidly developing application of artificial intelligence has shown its wide applicability in
gastroenterology and continues to be investigated for the accuracy in endoscopic diagnosis of
esophageal and gastric diseases. The esophagogastric diseases including gastric polyps, gastric cancer,
BE, achalasia, post-caustic ingestion, ESCC, eosinophilic esophagitis have distinct features that Al can be
utilized. The current systems propose a sound base for an Al system that envelops all the esophago-
gastric diseases. Although this area of active research is very encouraging, further work is needed to
better define the specific needs in assessing disease states as well as the cost effectiveness before
incorporating Al as a standard tool for daily practice.
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Abstract

Noninvasive imaging (computed tomography, magnetic resonance imaging,
endoscopic ultrasonography, and positron emission tomography) as an important
part of the clinical workflow in the clinic, but it still provides limited information
for diagnosis, treatment effect evaluation and prognosis prediction. In addition,
judgment and diagnoses made by experts are usually based on multiple years of
experience and subjective impression which lead to variable results in the same
case. With accumulation of medical imaging data, radiomics emerges as a
relatively new approach for analysis. Via artificial intelligence techniques, high-
throughput quantitative data which is invisible to the naked eyes extracted from
original images can be used in the process of patients’ management. Several
studies have evaluated radiomics combined with clinical factors, pathological, or
genetic information would assist in the diagnosis, particularly in the prediction of
biological characteristics, risk of recurrence, and survival with encouraging
results. In various clinical settings, there are limitations and challenges needing to
be overcome before transformation. Therefore, we summarize the concepts and
method of radiomics including image acquisition, region of interest segmentation,
feature extraction and model development. We also set forth the current applic-
ations of radiomics in clinical routine. At last, the limitations and related
deficiencies of radiomics are pointed out to direct the future opportunities and
development.

Key Words: Radiomics; Methodologies; Quantification; Clinical applications; Limitations
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Core Tip: Radiomics is widespread applied in clinical researches through extracting high-dimensional
quantitative imaging features as a relatively emerging and mature technique based on medical imaging.
The basic principles and methodologies of radiomics were reviewed to make it easy to understand from
the relatively fixed processes. The representative clinical utilizations were declared to show the benefits of
radiomics in diagnosis, tumor biological features and prognosis. Radiomics has revealed potential of
clinical applications, while there are still many limitations to resolve in the further researches.
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INTRODUCTION

Radiomics was first proposed by Lambin et al[1] in 2012, which converts medical images into high-
throughput quantitative features. Radiomic features can capture tissue and lesion properties
noninvasively, such as shape and heterogeneity, and radiomics acts as a new approach to extract the
information underlying the medical images that fail to be appreciated by naked eyes[2]. In the
meantime, radiomics also possesses several advantages over molecular assays, such as being non-tissue-
destructive, rapid analysis, easily serialized, fairly inexpensive, and being fully compatible with the
existing clinical workflows[3]. In 2014, Aerts et al[4] demonstrated the role of radiomics in disease
prognostication, promoting the development of radiomic-based signatures. Subsequently, the
Pyradiomics framework based on the image biomarker standardization initiative (IBSI) criteria
published in 2017 strongly supported the standardized application of radiomics[5].

Radiomics has evolved tremendously in the last decade, with the objective of precision medicine.
However, the interpretability of radiomic-based signatures and the correlation with biology and
pathology need to be further discussed. Additional multi-center data and prospective validation are also
required for verification, in order to improve the confidence of applications[6]. There are still several
substantial barriers to realize the objective of transforming artificial intelligence (Al) into the real clinical
practice.

In the present study, the basic principles and methodologies of radiomics were reviewed and an
outline of the representative clinical utilization was provided to highlight the benefits of radiomics in
diagnosis, staging, tumor biological features, and prognosis. Additionally, it is essential to explore the
deficiencies of radiomics to achieve a balanced interpretation between Al and clinical practice.

CONCEPT AND METHODOLOGIES

“Radiomics,” a term that describes the “omics” approach for the analysis of imaging data, has emerged
as a novel tool for diagnosis and prognosis[2]. Using advanced computational tools, high-throughput
quantitative imaging features beyond inspections of naked human eyes are extracted and the desens-
itized medical images are transformed into multiple textural features for quantitative assessment[7-9].
With semantic features, radiomics enables clinicians to make more objective and accurate clinical
decisions in diagnosis and prognosis[10,11]. The workflow of radiomics analysis, consisting of several
steps, is illustrated in Figure 1.

Image acquisition

Image acquisition is approved by the ethics committee and informed consent form is signed by
participants or their close relatives. The right to know patients is protected by relevant regulations. As
the research of radiomics concentrated on human participants, it complies with the basic principles of
1964, Helsinki Manifesto and its later revisions. Sensitive information is erased from medical imaging
data exported from imaging databases, including but not limited to organization name, organization
address, physician’s name, patient’s name, patient’s birthday, efc. Besides, personal data are kept confid-
ential, such as ID number, home address, contact information, medical insurance information, etc.
Acquisition, transmission, and use of data should meet relevant legal requirements.

In addition, medical imaging data, which are consistent with standard imaging protocols, are the
foundation of radiomics[12,13]. It can be single- or multi-center, and retrospective or prospective.
Although there are various types of imaging examinations, including computed tomography (CT),
magnetic resonance imaging (MRI), positron emission tomography (PET), ultrasound, etc.[11,14-16] for
different research purposes, the dominant examination methods or sequences are more recommended.
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Hence, more eligible cases are included to find out common features, which may contribute to the
stability of models[17]. There is no general standard for the medical imaging data from different
examination methods using different imaging methods, acquisition methods, imaging parameters, and
imaging quality that may affect the subsequent analysis. Therefore, how to normalize the data and
conform to the imaging standard is the focus of radiomics studies at present.

After data collection, the data need to be checked and confirmed, in order to correct or eliminate
unqualified data. The specific inspection content includes the validity of the file format, the integrity of
the sequence, and the correctness of the image content, in order to exclude unrecognizable images,
sequence deletion, and wrong image layers. More detailed image quality specifications can also be
formed according to specific research requirements. In the process of image quality control, it is
necessary to sort out the imaging problems encountered, so that the data can be traced back when the
inclusion and exclusion criteria are defined.

Preprocessing

Because of different scanning parameters, reconstruction procedures (slice thickness, voxel size, and
reconstruction algorithm), and inconsistent imaging acquisition of multi-brand manufactories, it has a
significant influence on distribution of features[18,19]. In order to decrease this discrepancy, prepro-
cessing of the collected imaging data is essential. At present, the most common methods include
resampling, gray-level discretization, and intensity normalization. Image resampling involves
generation of equal-size voxels by applying the linear interpolation algorithm to improve image quality
and to eliminate bias introduced by non-uniform imaging resolution[20]. Gray-level discretization refers
to the bundling of pixels based on their density, either by relative discretization (fixed number) or
absolute discretization (fixed size)[21]. Image intensity normalization is used to correct inter-subject
intensity variation by transforming all images from original greyscale into a standard greyscale.
Furthermore, image enhancement approaches, such as image flipping, image rotation, image distortion,
image transformation, and image scaling, can enrich data diversity, improve model generalization
ability, and reduce the risk of model overfitting.

In addition to the above-mentioned methods, not only for images, we also need to preprocess clinical
data. Deidentification of data is beneficial to protect personal information and query data among
multiple departments. Hospital number is advised to be the unique identification, realizing the
mapping of images. In order to effectively eliminate the deficiency of data inconsistency and bias in
multi-center studies, it is necessary to conduct data consistency processing, which is advantageous to
realize cross-center data modeling and verification. The methods of data consistency processing include:
(1) Standardization of data collection: Data are collected according to the unified data acquisition
standard in each center; (2) Consistency processing based on extracted features: The method of Z-score
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can be used to standardize data; and (3) Consistency processing based on image domain: According to
the annotated information, the size of region of interest (ROI) is kept consistent.

Segmentation

Segmentation of ROI can be divided into manual and semiautomatic/automatic segmentation, two-
dimensional (2D) and three-dimensional (3D) segmentation, and intratumoral and peritumoral
segmentation[22-26]. This process is relatively tedious and requires open-source or dedicated software
to support[12]. The process at least needs one labeling physician and one senior physician. The
knowledge of relevant anatomy and imaging should be well known by labeling physicians and they
must be familiar with the sketching software. In addition, for manual segmentation, intra-class
correlation coefficient and concordance correlation coefficient can be advantageous to reduce the
discrepancy of subjective judgement and the intra- and inter-reader variability[17,27]. Due to the rapid
development of computer science, semiautomatic/automatic segmentation has been frequently applied.
Automatic segmentation aims to draw ROIs automatically[28], while semiautomatic segmentation still
requires partially manual intervention to mark the center of the lesion before automatic segmentation
[29]. They both decrease instability to a certain extent, however, they are less applied because of
technical restriction. At present, automatic segmentation can be summarized into three categories[30]:
(1) Algorithms based on intensity thresholds and regions; (2) algorithms based on statistical approaches
and deformable models; and (3) algorithms incorporating empirical knowledge into the segmentation
process.

Feature extraction

Features are extracted from ROIs using different software with the similar code, which consist of first-
order, second-order, and higher-order features. First-order features describe the geometric attributes
and the distribution of voxel intensities of the ROIs, including mean, median, maximum, and minimum
values, as well as the skewness, kurtosis, and entropy. Second-order features represent the relationships
between adjacent voxels to measure features[31]. Second-order textural features describe the gray-scale
alterations and are extracted by different algorithms. Higher-order features are extracted via wavelet,
Laplacian, and Gaussian filters from multiple dimensions[32]. With the combination of multiple omics,
semantic features, which are based on the experience and knowledge of radiologists, pathological
features, genetic features, etc., all promote the transformation of radiomics into clinical practice. In
recent years, depiction of deep learning (DL)-based features, which are supplementary high-
dimensional features, by observers has been reported as a challenge[33]. Although DL-based features
reveal certain advantages in terms of estimating prognosis of malignancies, it is enslaved to be widely
used by data size and technological development.

Feature selection

According to the fourth step (feature extraction), the great number of extracted features is achieved, and
how to select the most relevant features is the key to establish a robust radiomics model. This process
simplifies the mathematical problem by decreasing the number of parameters and also reduces the risk
of overfitting. Specific methods include univariate, the least absolute shrinkage and selection operator
(LASSO), RELIEF algorithm, redundancy maximum relevance (MRMR), etc[34].

Modeling and verification

The ultimate objective of radiomics is to establish an effective model for classification and prediction.
The data should be clustered into training and validation datasets. Different classifiers, including
logistics, support vector machine, Bayes, k-Nearest Neighbor algorithm, Tree and Forest, are used to set
up models and to select the most effective model by seed circling for clinical transformation[35].
Meanwhile, the predictive performance of the final model should be verified on a separate cohort, and
an external validation cohort is highly appropriate to confirm its generalization. Owing to the lack of
data sharing, obtaining the results of external validation of the model is a challenge at this stage.

CLINICAL APPLICATION OF RADIOMICS

Diagnosis and staging

In previous studies, radiomics has shown a great potential in the diagnosis and staging of different
diseases. Although the diagnosis of some lesions is easy according to imaging manifestations, radiomics
can improve physicians’ diagnostic confidence and patients” examination strategies. In a plain CT study,
168 patients with hepatocellular carcinoma (HCC) and 117 patients with hepatic hemangioma were
analyzed. Textural features were extracted from plain CT images and 13 features were selected from
1223 candidate features to constitute the radiomics signature, in order to establish a logistic regression
model to classify benign and malignant liver tumors. The final model achieved an average area under
the curve (AUC) of 0.87. In spite of the lack of innovation, it helps patients who cannot successfully
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undergo contrast-enhanced CT (CECT) because of iodine contrast agent allergy for a relatively accurate
diagnosis[36].

In another study, Ding et al[37] explored the capacity of the combined model for differentiating HCC
from focal nodular hyperplasia (FNH) in non-cirrhotic livers using Gd-DTPA contrast-enhanced MRI.
For this purpose, 8 radiomics features were selected for the radiomics model, and 4 clinical factors (age,
gender, hepatitis B surface antigen (HbsAg), and enhancement pattern) were chosen for the clinical
model. The combined model was established using the factors from the previous models. The classi-
fication accuracy of the combined model that differentiated HCC from FNH in both the training and
validation datasets was 0.956 and 0.941, respectively. The model could support clinicians to make more
reliable clinical decisions.

Serous cystadenomas (SCN) are considered as mostly benign cystic neoplasm in the pancreas.
Mucinous cystic neoplasm (MCN) is an easily misdiagnosed lesion of SCN, which is associated with the
risk of malignant transformation[38]. Therefore, Xie et al[39] confirmed the value of CT-based radiomics
analysis in preoperatively discriminating pancreatic MSN and SCN. A total of 103 MCN and 113 SCN
patients who underwent surgery were retrospectively enrolled. The Rad-score model was proved to be
robust and reliable (average AUC, 0.784; sensitivity, 0.847; specificity, 0.745; positive-predictive value
(PPV), 0.767; negative-predictive value, 0.849; accuracy, 0.793), which could serve as a novel tool for
guiding clinical decision-making.

In another multi-center study, researchers took advantages of radiomics to develop a nomogram for
preoperatively predicting grade 1 and grade 2/3 tumors in patients with pancreatic neuroendocrine
tumors (PNETs). Totally, 138 patients from two institutions with pathologically confirmed PNETs were
included in that retrospective study. The nomogram integrating an independent risk factor of tumor
margin and fusion radiomic signature showed a strong discrimination with an AUC of 0.974 (95%
confidence interval (CI): 0.950-0.998) in the training cohort and 0.902 (95% CI: 0.798-1.000) in the
validation cohort, with a satisfactory calibration. Decision curve analysis (DCA) verified the clinical
applicability of the predictive nomogram[40].

Evaluation of tumor biological behaviors

Concurrent advancements in imaging and genomic biomarkers have facilitated identification of
noninvasive imaging surrogates of molecular phenotypes. Villanueva et al[41] investigated the genomic
features of HCC and peritumoral tissues that were associated with patients’ outcomes, and they
explored the relationship between imaging traits and genomic signatures. Patients who underwent pre-
operative CT or MRI and transcriptome profiling were assessed using 11 qualitative and 4 quantitative
(size, enhancement ratio, wash-out ratio, tumor-to-liver contrast ratio) imaging traits. Several imaging
traits, including infiltrative pattern and macrovascular invasion were found to be associated with gene
signatures of aggressive HCC phenotype, such as proliferative signatures and CK19 signature.

Microvascular invasion (MVI) is one of the strongest predictors of hepatic transplantation or
hepatectomy for HCC, which is one of the independent factors for early recurrence and poor prognosis
[42]. MVI could be diagnosed postoperatively and it was defined as the presence of tumor within
microscopic vessels of the portal vein, hepatic artery, and lymphatic vessels[43]. Conventional imaging
methods cannot reveal MVI because of the poor resolution before operation. Therefore, it is important to
develop a non-invasive tool to detect MVI for clinical decision-making. Zhu et al[44] proposed a
nomogram for the prediction of MVI that included a radiomic score and alpha fetoprotein, tumor type,
peritumoral enhancement, arterial rim, and internal arteries. This nomogram was superior to a clinical
and radiologic model with an AUC of 0.858 versus 0.729. In another research, Renzulli et al[45]
demonstrated that non-smooth tumor margins and peritumoral enhancement, combined with the radio-
genomic features were independent predictors for MVI with a PPV of 0.95. In a large-scale study, Xu et
al[46] collected CT scan images from 495 patients and developed a combined model which consisted of
semantic features (aspartate aminotransferase, alpha fetoprotein (AFP), non-smooth tumor margin,
extrahepatic growth, ill-defined pseudocapsule, and peritumoral arterial enhancement) and radiomic
features to predict histological MVI, with an AUC of 0.909 and 0.889 in the training cohort and the test
cohort, respectively.

Gao et al[47] assessed the preoperative prediction of TP53 status based on multiparametric MRI (mp-
MRI) radiomic features extracted from 3D images. In total, 57 patients with pancreatic cancer who
underwent preoperative MRI were included. The 3D ADC-ap-DWI-T2WI model with 11 selected
features yielded the best performance for differentiating TP53 status, with an accuracy of 0.91 and an
AUC of 0.96. The model revealed a good calibration, and the DCA proved the clinical value of the
model. The radiomics model derived from mp-MRI provided a non-invasive, quantitative method to
predict mutational status of TP53 in patients with pancreatic cancer that might contribute to the
precision treatment.

Prognosis

Current guidelines recommend surgical resection as the first-line therapy for patients with HCC[48].
However, postoperative recurrence rate remains high and there is no reliable prediction tool. In a multi-
center study, the potential of radiomics coupled with machine learning algorithms was assessed to
improve the predictive accuracy for HCC recurrence. Using the machine learning framework, they
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identified a three-feature signature that demonstrated a favorable prediction of HCC recurrence across
all datasets, with C-index of 0.633-0.699. AFP, albumin-bilirubin, hepatic cirrhosis, tumor margin, and
radiomic signature were selected for developing a preoperative model; the postoperative model
incorporated satellite nodules into the above-mentioned predictors. The two models showed a superior
prognostic performance, with C-index of 0.733-0.801 and integrated Brier score of 0.147-0.165, compared
with rival models without radiomics, and are widely used in staging systems. Combined with clinical
data, a three-feature fusion signature generated by aggregated ML-based framework could accurately
predict individual recurrence risk, enabling appropriate management and surveillance of HCC[49]. In
another study, CECT with measurement of Gabor and Wavelet radiomics features in patients with a
single HCC tumor treated by hepatectomy revealed that several features were associated with both
overall survival (OS) and disease-free survival (P values < 0.05)[50]. Similar results were reported by a
separate study that risk scores developed from radiomics nomograms obtained from CECT textural data
overmatched traditional clinical staging systems in both the training and validation cohorts for both
tumor recurrence and OS[51].

Patients with pancreatic cancer have a poor prognosis, therefore, it is necessary to identify tumor
characteristics associated with prognosis. Toyama et al[52] enrolled 161 patients with pancreatic cancer
who underwent fluorodeoxyglucose (FDG)-PET/CT before treatment. The area of the primary tumor
was semi-automatically contoured with a threshold of 40% of the maximum standardized uptake value,
and 42 PET-based features were extracted. Among the PET parameters, 10 features showed statistical
significance for predicting OS. Multivariate Cox regression analysis revealed gray-level zone length
matrix (GLZLM)-gray-level non-uniformity (GLNU) as the only PET parameter showing statistical
significance. In the random forest model, GLZLM-GLNU was the most relevant factor for predicting 1-
year survival, followed by total lesion glycolysis. Radiomics with machine learning using FDG-PET in
patients with pancreatic cancer provided valuable prognostic information.

DISCUSSION

There is no doubt that radiomics as a newly emerged quantitative technique is burgeoning in disease
management. Nevertheless, the majority of the research of radiomics encountered common problems,
and whether the radiomic-based signatures can be used in clinical practice needs to be discussed.

Reproducibility is one of the primary challenges that radiomic techniques must overcome for clinical
application. At present, imaging protocols are not standardized worldwide, and hence, variability in
image acquisition and reconstruction parameters is inevitable in clinical practice. A recent study
demonstrated that the quantitative values of radiomic features varied according to imaging protocols
[53]. In addition, although IBSI seeks standardization for radiomic extraction, the differences in
techniques or platforms adopted in different centers may lead to differences in feature values[5],
propagating to the radiomic signatures. Most radiomic signatures have a sharp drop in performance
from training cohort to validation cohort. Researchers have adopted data normalization methods to
correct for multicenter effects, such as ComBat harmonization[54]. However, whether the radiomic-
based signature developed by normalized radiomic features is appropriate for clinical practice has not
yet been studied. It is urgent to develop a reproducible radiomic signature that could overcome inherent
multicenter effects, which is the basis for clinical individualized application.

Data sharing for independent validation is a challenge for radiomic signatures. To date, studies have
mainly developed and validated the radiomic signatures using imaging data derived from their own
center or multiple centers according to the same imaging protocols[55]. However, whether the
signatures would be effective in completely independent centers needs further validation. Although
images are more readily available than tissue molecular assays, the current open radiomic datasets are
not enough for the independent validation. To eliminate this deficiency, data sharing among institutes
and hospitals around the country or even around the world is important for radiomics, although it
presents complex logistical problems. The Cancer Imaging Archive provides a good example of data
sharing with a large portion of clinical data[56], and it is still growing with contribution from different
institutes and hospitals. A previous study indicated that signatures should be validated using an open
dataset that could become the standard to demonstrate their effectiveness|[9].

Biological interpretability of radiomic signatures would accelerate their clinical application. Clinical
experts mainly assume the radiomic model as a black box that can provide promising prediction results
for clinical outcomes, which may make radiomics as a less accepted approach. The problem is further
aggravated in the context of deconvolutional neural or DL networks, which even lack the observable
model that solely concentrates on maximizing performance. A great number of these so-called “black-
box” approaches may be perfectly viable in the diagnostic setting; however, when it comes to radiomic
signatures for optimizing treatment, the question of interpretability becomes more paramount because a
biomarker-driven treatment decision needs an explanation rooted in pathophysiology[57]. The
emergence of radio-genomics provides a bridge for linking the radiomics to the underlying biological
progression. The biological interpretability may provide biological evidence for the predictive ability of
the radiomic signatures.
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Clinical operability is the key in the clinical adoption of prognostic and predictive radiomic tools. To
date, radiomic-based studies have mainly concentrated on developing robust signatures, and their
application details in clinical practice are lack. Therefore, translating the computer language into a
simple software or system may be an effective method to promote clinical application of radiomics.

CONCLUSION

In conclusion, the current researches have achieved encouraging results of radiomics and revealed
potential of clinical applications, while poor standardization and generalization of radiomics limit the
further translation of this method into clinical routine. How to make reproducibility of data, multi-
center data sharing, biological interpretability of radiomic signatures and clinical operability come true,
will become the crucial issue for development of radiomics. Only then will radiomics be more
comparable and increase reliability to get clinician's approval. In foreseeable future, the development of
radiomics will occupy a significant position in personalization and precision medicine. At present, it is
more important to make clinical participants be conscious of benefits and limitations of radiomics in
order to obtain reasonable decision towards clinical practice.
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